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VORWORT 
 
 

Das Monitoring von Naturgefahren gewinnt an Bedeutung, da die Risikobereitschaft sinkt und 
das Schadenspotential mit zunehmender Verbauung steigt. Mit dem gegenwärtigen Trend der 
Klimaerwärmung geht auch ein steigendes Gefahrenpotential von potentiellen Rutschgebieten 
aus. Insbesondere sind Permafrost Areale vom Auftauen bedroht und können dadurch ihre 
Stabilität verlieren.  
In diesem Kontext ist auch die vorliegende Publikation von Herrn Neyer zu sehen. Er hat sich 
zum Ziel gesetzt, ein quasi-automatisches Werkzeug zur genauen Überwachung von 
Rutschungen bereitzustellen. Mit der entsprechenden Beobachtungsmethode sollten auch kleine 
Terrain-Bewegungen festgestellt werden können, dies ohne viele manuelle Interventionen zu 
verlangen. Die hier gewählten Ansätze basieren auf der Kombination bildverarbeitender 
Methoden mit GNSS Messungen.  
Die Untersuchungen und Entwicklungen von Herrn Neyer sind in das X-Sense Projekt 
eingebettet, das unter anderem der Entwicklung von Monitoringsystemen zur Überwachung von 
Blockgletschern gewidmet ist. Die Messsysteme sollen eine hohe zeitliche und räumliche 
Auflösung liefern und möglichst autonom operieren. Die mehrjährigen Beobachtungssequenzen 
sollen schliesslich zu einem besseren Prozessverständnis der Rutschvorgänge beitragen. Dabei 
bilden die Automatisierung und Optimierung der Datenverarbeitung eine besondere 
Herausforderung insbesondere im Bereich der Bildverarbeitung. Das Projekt 'x-sense' wurde im 
Rahmen des SNF Forschungsprogramms 'Nano-Tera' gefördert und betraf die 'Technische 
Informatik und Kommunikation' der ETH Zürich, die 'Geodäsie und Photogrammmetrie', ETH 
Zürich sowie die 'Physische Geographie' der Uni Zürich. Als Partner beteiligt waren auch 
Gamma Remote Sensing und das BAFU. 
 
Diese Untersuchung reiht sich in die Arbeiten zum Geomonitoring des Institutes für Geodäsie 
und Photogrammmetrie der ETH Zürich und der Schweizerischen Geodätischen Kommission 
(SGK) ein. Wir danken dem Verfasser, Herrn Neyer, für den wertvollen Beitrag zum 
geodätischen Geomonitoring. Dem SNF mit seinem 'Nano-Tera'-Forschungsprogramm gebührt 
Dank für die Teilfinanzierung und Unterstützung, genauso wie dem BAFU für die finanzielle und 
technische Hilfeleistung.  
Der SCNAT danken wir für die Übernahme der Druckkosten.  
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PREFACE 
 
 

Le monitorage des dangers naturels gagne en utilité et en intérêt. En effet, l’acceptation des 
risques devient en général plus faible, et les dégâts potentiels augmentent avec l’extension du 
tissu construit. Avec le réchauffement climatique actuel, les accidents potentiels liés aux zones 
soumises à des glissements de terrain s’accroissent. En particulier, le dégèle des zones en 
permafrosts peuvent provoquer une perte significative de la stabilité des sols sous-jacents.  
C’est dans ce contexte que se présente la publication de Monsieur Neyer. Il s’était fixé comme 
objectif de créer un outil de surveillance de glissement de terrain quasi-automatique. Grâce à la 
technologie mise en place, qui s’appuie sur des techniques de photogrammétrie et de GNSS, de 
petits mouvements de terrains devraient pouvoir être détectés. Et ceci, en limitant les 
interventions manuelles au strict minimum.  
Les études et les développements de Monsieur Neyer font partie du projet X-Sense, et en 
particulier du développement des systèmes de monitoring pour la surveillance de glaciers 
rocheux. Le système doit permettre de produire des données à hautes résolutions spatiale et 
temporelle en opérant de manière la plus automne possible. Les séquences d’observations qui en 
résultent peuvent ainsi contribuer à une meilleure compréhension des processus physique en jeu 
lors de glissements de terrain. A ce propos, l’automatisation de la chaîne des traitements des 
données, et en particulier celle des traitements d’images, contient des défis techniques majeurs. 
Le projet X-Sense a été soutenu par le programme de recherche Nano-Tera du FNS et fût réalisé 
par les Instituts d’informatique technique et communication de l’EPF de Zürich, de géodésie et de 
photogrammétrie de l’ETH de Zürich ainsi que de celui de géographie physique de l’Université 
de Zürich. De plus, l’entreprise Gamma Remote Sensing ainsi que l’OFEV ont officié comme 
partenaire. 
Le présent travail représente une pièce maitresse dans la série des recherches sur le 
géomonitorage de haute précision de l’IGP et de la commission géodésique suisse (CGS). Nous 
remercions Monsieur Neyer pour cette contribution de grande valeur à la géodésie. Nos 
remerciements vont aussi au FNS qui, à travers son Programme de recherche 'Nano-Tera' a 
fortement co-financé le projet et à l’OFEV pour son support actif et le financement partiel de ces 
recherches. 
La Commission Géodésique Suisse (CGS) est reconnaissante envers l’Académie Suisse des 
Sciences Naturelles (SCNAT) pour avoir pris à sa charge les coûts d’impression du présent 
manuscrit.   
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FOREWORD 
 

 
 
 
The monitoring of natural hazard increasingly gains of attention since awareness of risk and the 
value of build environment is steadily growing. The present trend of climatic warm-up converts 
possible sliding areas into potentially hazardous areas. More specifically permafrost areas are 
prone to melting and thus to loss of stability.  
The present publication of Mr. Fabian Neyer has to be seen in this context. He aimed at an optical 
tool to automatically monitor and survey terrain slides at high precision. The devised observation 
method should also detect small movements without requiring manual interventions. The 
principles of the method are based on the combination of imaging and GNSS.  
Mr. Neyer's investigations and developments are embedded in the 'x-sense'-project that is 
dedicated, among others, to the development of monitoring systems of rock glaciers. The systems 
shall provide a high spatio-temporal resolution as well as a high level of autonomy. The 
observation over a time span of several years shall lead to an enhanced understanding of ongoing 
sliding processes. To this end the automation and optimization of the data treatment especially in 
image processing was a crucial element. The project 'x-sense' has been supported in the frame of 
the SNF-Program 'Nano-Tera' and has involved the 'Technical Informatics and Communication' 
at ETH Zurich, the 'Institute of Geodesy and Photogrammetry', ETH Zurich, and the 'Physical 
Geography' of Uni Zurich. Partners were Gamma Remote Sensing and FOEN. 
This investigation represents a further master piece in the series of geomonitoring research of the 
Institute of Geodesy and Photogrammetry and the Swiss Geodetic Commission (SGC). 
Thanks go to the author, Fabian Neyer, for his valuable contribution to geodetic geomonitoring.  
We thank the SNF who, through its program 'Nano-Tera', strongly supported this work as well 
FOEN, whose financial and technical support is greatly appreciated. Thanks are given to the 
Swiss Academy of Sciences for covering the printing costs of this volume. 
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Abstract

Rock glaciers are creeping landforms of perennially frozen ground and belong to the per-
mafrost creeping phenomena. They are mainly composed of rock debris that accumulate
in areas of high natural erosion. Ice particles between the rocks cause the moving ac-
cumulation in steep terrain to dynamically flow downslope. In the Alpine region, these
morphological landforms mainly occur at north-facing mountain slopes in high altitudes
above the forest boundary and are known for their sensitivity to climate change.

For several decades, rock glaciers have been monitored for scientific aims, while advances
in surveying technologies increased the interest in such studies since the 1990s. Mod-
ern technologies in remote sensing (e.g., airborne imagery or satellite-based measurement
techniques) are often combined with measurements from field campaigns, i.e., measure-
ments taken directly on a rock glacier (e.g., GNSS, laser-scanning, ground temperature
measurements, etc). The high-level goal is to enhance the process understanding, specially
with respect to the changing climate: various studies indicate an extended risk of slope
failures in steep frozen bedrock due to the global temperature increase. Early recognition
of increased activities help to inform local authorities in the endangered areas about the
potential hazard before such an event.

The present work is part of the X-Sense project (Nano-Tera.ch), with an interdisciplinary
team of scientists that build and operate new low-cost devices for data acquisition, develop
new data processing pipelines and algorithms for evaluation, and also gain new insight of
natural processes in these regions. Autonomous measurement systems, developed within
other work packages in the X-Sense project, observe different permafrost creep areas with
high resolution in space and time. Combined with multi-year observations, the derived
surface motions are used to obtain an improved process understanding.

This work focuses on the photogrammetric image processing in order to retrieve pre-
cise surface displacement estimates. More precisely, image sequences, acquired with two
permanently installed commercial digital single-reflex cameras, are used to measure topo-
graphic changes in the observed permafrost area. By the combination with high resolution
GNSS positioning results, the goal is to obtain precise time series of moving rock boulders
at different positions within the field of view. Challenges arising from the combination of
different data sets, the development of an automatic processing pipeline, and an improve-
ment of the processing strategy in general, are the main tasks of this thesis.

The study site is the bordering area above the Grabengufer rock glacier (Mattervalley VS,
Switzerland), known as the Grabengufer rock slide. Local topographic conditions allowed
only a partially good installation geometry for the photogrammetric reconstruction. With

i



respect to a 3D reconstruction without the use of GNSS coordinates, an accuracy increase
of about one order of magnitude could be achieved in case these high-precision solutions
were integrated. More specifically, respective standard deviations for the East, North,
and Height components of 6, 5, and 2 cm were achieved. The stated accuracy, maintained
throughout the measurement period of nearly four years (summer months), was obtained in
an area of approximately 80m × 80m, with a mean distance of 80m from the two cameras.

Position time series of moving rock boulders were filtered using the principles of collocation.
Analyzing the correlation characteristics of the stochastic signal, an optimal correlation
length was computed and used to extract relevant signals from the noise contaminated
time series. Velocity was directly estimated as a derived quantity in the collocation pro-
cess. Furthermore, the techniques of the adaptive collocation approach is presented. This
iterative method uses the principles of a dynamically adjusting anisotropic covariance met-
ric. In an example of 2-dimensional velocity fields it is shown that regional compression
and extension areas can be extracted.

Results indicate that the observed permafrost area has experienced a mean annual ac-
celeration of about 0.1m/year between the years 2013 and 2015. During the late summer
months of 2015, a prominent temporal acceleration was observed. The mean displacement
rate was found to be 0.67m/year, whereas the 3-dimensional displacement is dominated
by a translation following the gliding surface. An area in the front of the observed field
of view was found to have higher displacement rates, specially during the late summer
months, thus it detaches from the otherwise relatively homogeneous flow field.

The methods and principles presented in this work show the potential of monitoring per-
mafrost surface displacements using permanently installed optical cameras in combination
with positioning results from permanently mounted GNSS stations. These principles can
easily be transfered to other monitoring applications and thus contribute to a better un-
derstanding of such processes.
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Zusammenfassung

Blockgletscher sind kriechende Schuttmassen in Gebieten mit mehrjährig gefrorenem Un-
tergrund und gehören somit zu den Permafrost-Kriechphänomenen. Sie bestehen im we-
sentlichen aus Gesteinsmaterial, welches durch erhöhte natürliche Erosionsprozesse ange-
häuft wurde. Eispartikel zwischen den Gesteinsbrocken bewirken, dass sich diese Masse
im steilen Gelände dynamisch talabwärts bewegt. Oft sind Blockgletscher unterhalb von
Endmoränen bei Eisgletschern anzutreffen. Im Alpenraum sind sie hauptsächlich an nach
Norden ausgerichteten Berghängen in grossen Höhen oberhalb der Waldgrenze zu finden.
Sie sind als empfindliche Indikatoren für den Klimawandel bekannt.

Seit einigen Jahrzehnten werden Blockgletscher wissenschaftlich untersucht, wobei Fort-
schritte in der Messtechnik seit den 1990er Jahren zu einer starken Zunahme solcher
Studien geführt haben. Moderne Techniken der Fernerkundung (z.B. Luftaufnahmen oder
satellitengestützte Messtechniken) werden oft mit Messungen von Feldkampagnen, d.h.
Messungen vor Ort auf den Blockgletschern (z.B. GNSS, Laserscans, Temperaturmessun-
gen etc.) ergänzt. Das übergeordnete Ziel ist ein besseres Prozessverständnis, speziell im
Zusammenhang mit dem sich ändernden Klima: Diverse Studien deuten darauf hin, dass
Destabilisierungsprozesse in steilen Berghängen mit Dauerfrost, ausgelöst durch die globa-
le Temperaturzunahme, zu erhöhten Risiken von Hangrutschungen führen. Die frühzeitige
Erkennung solcher Abläufe ermöglicht es, die Behörden der betroffenen Gebiete rechtzeitig
über die potentielle Gefahr zu informieren.

Die vorliegende Arbeit ist Teil des Projektes X-Sense (Nano-Tera.ch), in welchem ein
interdisziplinäres wissenschaftliches Team neue sogennante ’low-cost’ Sensoren baut und
betreibt, neue Algorithmen zur Datenverarbeitung entwickelt und daraus neue Erkennt-
nisse über die ablaufenden Prozesse in diesen Regionen erhält. Autonome Messsysteme,
entwickelt in anderen Arbeiten innerhalb des X-Sense Projektes, werden zur Messung
diverser Permafrost-Kriechprozesse mit hoher zeitlicher und räumlicher Auflösung einge-
setzt. Mittels mehrjähriger Beobachtungen werden die damit errechneten Oberflächenver-
schiebungen für ein verbessertes Prozessverständnis genutzt.

Schwerpunkt dieser Arbeit ist die photogrammetrische Bildverarbeitung in Bezug auf die
präzise Messung von Oberflächenverschiebungen. Konkret sollen Bildsequenzen, aufgenom-
men mit zwei permanent installierten, kommerziellen Spiegelreflexkameras, für die Vermes-
sung von Oberflächenveränderungen im beobachteten Permafrostgebiet genutzt werden.
Durch Kombination mit zeitlich hochaufgelösten GNSS-Positionsmessungen sollen präzise
Zeitserien von sich bewegenden Steinblöcken an unterschiedlichen Positionen innerhalb des
beobachteten Bereiches berechnet werden. Zu den Hauptaufgaben dieser Arbeit gehören
die Bewältigung von Schwierigkeiten bei der Kombination verschiedener Datensätze, die
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Automatisierung der Informationsverarbeitung sowie eine optimierte Verarbeitungsstrate-
gie im Allgemeinen.

Standort der Studie ist das angrenzende Gebiet oberhalb des Grabengufer Blockgletschers
(Mattertal, VS, Schweiz), auch bekannt als die Felsrutschung am Grabengufer. Lokale Ge-
gebenheiten führten zu einer Installationsanordnung, welche für die photogrammetrische
Auswertung als nur teilweise gut bezeichnet werden kann. Im Vergleich zur 3D Rekon-
struktion ohne Nutzung präziser GNSS Positionen konnte durch deren Integration eine
Genauigkeitssteigerung von etwa einer Grössenordnung erreicht werden. Konkret wurden
für die Komponenten Ost, Nord und Höhe Standardabweichungen von 6, 5 und 2 cm er-
reicht. Diese Messgenauigkeit, geltend für ein ca. 80m × 80m grosses Gebiet in einer
mittleren Entfernung von 80m von den beiden Kamerastandorten, konnte über die ge-
samte Messperiode von knapp vier Jahren (Sommermonate) beibehalten werden.

Zur Filterung der gewonnenen Positionszeitreihen von Gesteinsblöcken wurden die Prinzi-
pien der Kollokation angewandt. Mittels Analyse des stochastischen Signals auf Korrela-
tion wurden optimale Korrelationslängen bestimmt. Diese wurden genutzt, um relevante
Signale aus den mit Rauschen behafteten Zeitreihen zu erhalten. Die Geschwindigkeit
wurde direkt als abgeleitete Grösse im Kollokationsprozess mitbestimmt. Des Weiteren
wird die Technik der adaptiven Kollokation vorgestellt. Die iterative Methode nutzt das
Prinzip einer sich dynamisch anpassenden, anisotropen Korrelationsmetrik. Im Beispiel
von 2-dimensionalen Verschiebungsfeldern wird gezeigt, wie sich damit auch regionale
Kompressions- und Extensionsgebiete bestimmen lassen.

Die Resultate zeigen, dass sich das beobachtete Permafrostgebiet zwischen 2013 und 2015
im Mittel um jährlich ca. 0.1 m/Jahr beschleunigt hat. Im Spätsommer 2015 wurde zu-
dem eine ausgeprägte temporäre Zunahme der Verschiebungsgeschwindigkeit festgestellt.
Die durchschnittliche Verschiebungsrate beträgt 0.67 m/Jahr, wobei die 3-dimensionale Ver-
schiebung als eine dem Rutschhorizont folgende Translation beschrieben werden kann. Ein
Gebiet im Frontbereich des beobachteten Ausschnitts zeigt eine erhöhte Verschiebungsra-
te, speziell in den späten Sommermonaten, was zu einer Ablösung von dem sonst relativ
homogenen Verschiebungsfeld führt.

Die Methoden und Prinzipien, welche in dieser Arbeit präsentiert werden, zeigen das Po-
tential der Überwachung von Oberflächenverschiebungen in Permafrostgebieten mittels
permanent installierten optischen Kameras in Kombination mit Positionslösungen von
permanent aufgebauten GNSS Stationen. Diese Prinzipien lassen sich auch leicht auf an-
dere Überwachnungsaufgaben anwenden und tragen so zum besseren Verständnis solcher
Phänomene bei.
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1 Introduction

1.1 Background and Motivation

Long term temperature variations, precipitation, wind, and other erosion processes are
natural phenomena leading to a continuously changing surface topography throughout
Earth’s history (Press and Siever , 2001). With a rapid increase of temperature due to cli-
mate change, glaciers retreat at high speeds and permanently frozen ground (permafrost1)
starts to warm up. Permafrost regions are present not only at high latitudes but also in
high altitudes, e.g., in the Alps (Häberli, 1985). Although not the only controlling force,
permafrost is known to affect slope instabilities (e.g. Noetzli et al., 2006), specially in
steep bedrock (Gruber and Haeberli, 2007). With a permanently increasing population,
more infrastructure will become affected or endangered by natural hazards with small
to catastrophic scales. Besides the scientific interest, it is thus important to study the
influence between the changing climate and slope instabilities in alpine regions. A good
understanding of such interactions help to build, e.g., suitable protection monuments or
to build reliable early warning systems in cases of acute danger.

Rock glaciers are creeping landforms in permafrost areas, typically associated with peren-
nially frozen rocks. It is currently assumed that the number of active landforms is in
the order of 2’000 for the Swiss Alps alone (Delaloye et al., 2010). This also includes
rock glaciers that are - due to a high correlation of their motion rates with mean annual
temperatures - often described as key landforms for the study of permafrost creep (e.g.,
Barsch, 1996). Temperature, however, is not the only quantity influencing the displace-
ments: Local erosion rates (sedimentary loading), slope steepness, bedrock topography,
and hydrological conditions are also key parameters that control the motion behavior.
Given a relatively constant average precipitation rate for a given region, changing creep
characteristics of these landforms are most likely linked to the global temperature change.
Such a relation is also shown by acceleration periods correlating with increased tempera-
tures observed at different rock glaciers throughout the Alps (Delaloye et al., 2008a). As
correlation with temperature seems to be confirmed, a detailed understanding of processes
leading to the destabilization of rock glaciers and permafrost creep in general is missing.

The very principle of process understanding is based on various quantitative and sometimes
also qualitative observations. Long-term rock glacier kinematics are typically estimated
using scanned aerial photographs for epochs before the digital era (e.g., Kaufmann, 1998)
and historical knowledge may be obtained by local inhabitants (e.g., Delaloye et al., 2013).
Since the early 1990s, rock glaciers are more intensively studied using modern surveying

1Defined as ground frozen for at least two consecutive years
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techniques: Individual rock boulders are monitored using the principles of the Global Posi-
tioning System (GPS) or more generally the Global Navigation Satellite System (GNSS2),
either by repeated measurements (Lambiel and Delaloye, 2004) or with permanent low-
cost installations over long periods (Limpach and Grimm, 2009). Measurement techniques
such as InSAR (synthetic aperture radar interferometry) (Delaloye et al., 2007; Lambiel
et al., 2008) or aerial photographs (e.g., Kääb, 2002) are frequently used to obtain dis-
placement maps over extended areas.

It is well known that every measurement system has its strengths and weaknesses, either
due to the measurement technique itself or due to the geometrical configuration during op-
eration. Modern research aims to combine complementary surveying techniques typically
leading to improved accuracies and resolution. When applied with current state-of-the-art
algorithms and processing strategies, GNSS-based positioning with low-cost receivers (as
used in this study) can achieve accuracies in the centimeter to millimeter range (Limpach
and Grimm, 2009). The typical accuracy in photogrammetric reconstruction, on the other
hand, is worse by at least one order of magnitude, depending on the geometrical setting
and camera configuration (e.g., focal length, object distance etc.) (e.g., Kaufmann and
Seier , 2016). The strength of GNSS is to estimate a precise position of the antenna center
in space and time. To a large extend this method does not dependent on the weather
condition, day, or night. A simultaneous estimation of various positions seen by multiple
cameras is the strength of the photogrammetric method. Limited by optical visibility,
however, this method can only be applied during daytime and with targets (i.e., rocks)
being visible, i.e., not covered by snow or hidden behind clouds and other obstacles in the
line-of-sight.

The aim of this study is to apply and develop state-off-the-art processing algorithms to
reliably reconstruct the motion of various rock boulders seen in image sequences. Combin-
ing the photogrammetric processing methodology with high accuracy GNSS coordinates
increases the valuable surface motion estimates during the summer months. An areal cov-
erage of precise surface motion contributes to a better understanding of permafrost creep
with respect to the changing environmental conditions.

The Fourth Assessment Report of the International Panel on Climate Change (IPCC)
has drawn worldwide attention to the future impact of global warming and its regional
consequences (Alcamo et al., 2007; Christensen et al., 2007). The highly sensitive and of-
ten non-linear response of cryosphere phenomena to climate change, as well as important
feedback mechanisms, make the understanding of cryosphere systems a high priority for
climate and climate impact research. It is also conceivable that the monitoring and model-
ing capabilities, e.g., the proposed data combination strategy developed in this thesis, can
be adapted and transferred to other domains and hazard scenarios, e.g., flooding, rockfall,
or the protection of purposely built infrastructure. Switzerland and the alpine arc in gen-
eral exhibit a high density of various scientific measurements, making it an ideal testbed
for methods and technologies to be transferred to other mountain ranges worldwide.

2GNSS in general can include GPS (American system), GLONASS (Russian system), BeiDou (Chinese
system), and GALILEO (European system) satellite data.
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1.2 The X-Sense Project

This study is part of the X-Sense project that tackles the development of equipment and
methods for measuring rock glacier behavior across different scales in space and time.
The project is financed by Nano-Tera.ch3, a program of SNSF (Swiss National Science
Foundation). The X-Sense consortium is led by Prof. L. Thiele, TIK, ETHZ. Using a set
of novel hard- and software tools, combined with real-time measurements at the field site
and near-real-time data processing, the foundation of an early warning system with todays
state-of-the-art products, is obtained. The measurement principle and system describtion
of devices used in this project are given in Beutel et al. (2011). Limpach et al. (2011)
describes the potential of the low-cost GPS devices used within X-Sense. In Wirz et al.
(2016), an overview of the various sites and displacement results are presented.

Various projects assessing risks, e.g., from large volume landslides, show the importance
of interdisciplinary studies of such potential hazards. Concentrating the various scientific
expertises from hardware development, electronic engineering, geodesy, remote sensing,
hydrology, geomorphology, etc., new insights in complex mechanisms of such landforms
may be obtained. The tools and methods developed in this project can be used, e.g., for
studies on permafrost creep dynamics over time scales from days to years, the study of
correlation between permafrost creep (e.g., rock glaciers) and environmental changes such
as changing annual temperatures, precipitation, and more. The application orientated
project is a collaboration among the following parties:

• The Computer Engineering Group, TIK, ETH Zürich. Principle investigator. The
group develops, tests, deploys, and operates new prototype low-cost sensors that are
build for operation in the alpine environment. Data gathered with these instruments
are the RAW data sources of the studies conducted within the X-Sense project.

• The group of Mathematical and Physical Geodesy, IGP, ETH Zürich. Here the task
is to optimally process the GPS/GNSS and camera data received from the sensors,
i.e., GPS raw data is processed for accurate positioning results and camera images
are used to retrieve accurate surface motion over an extended area (presented in this
thesis).

• Gamma Remote Sensing. A partner company that develops and applies InSAR
processing routines to reveal surface height changes over large areas.

• The Glaciology and Geomorphodynamics Group, Physical Geography, University of
Zürich. Their task is to interpret the displacement estimates obtained so far. Also
local surface temperatures and other meteorological data is evaluated for this task.

• The Federal Office for the Environment (FOEN). FOEN is a financial supporter, a
geological advisor, and the primary customer.

Using low-cost sensors as primary measurement devices, the X-Sense project aims to
establish a permanent monitoring setup in high alpine altitudes to ’sense’ various physical
and environmental processes. The content of this thesis with respect to the project is also
illustrated in Fig. 1.1.

3http://www.nano-tera.ch/projects/227.php
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Figure 1.1: X-Sense contribution overview. The various RAW measurements, i.e., RAW images,
a large number of RAW GPS signals (GPS 1, 2, ..., i), meteorological measurements, and more, is
provided by the Computer Engineering Group. Their work includes the development, deployment,
and operation of the various measurement devices. Also they are responsible for data transfer, data
hosting, data accessibility and storage. Validation of the measurements and the processing of po-
sitioning solution time series is accomplished by the group of Mathematical and Physical Geodesy.
The combination of the various results and measurements for characterizing the permafrost creep
behavior is done in the group of Glaciology and Geomorphodynamics. The grey arrows indicate a
solution transfer that has yet to be implemented.
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1.3 State-of-the-Art and Challenges

To study the kinematics and dynamics of permafrost creep, continuous high accuracy mea-
surements are of importance (e.g., Wirz et al., 2016). Typical tools used to obtain such
information are InSAR measurements (Kilburn and Petley, 2003; Delaloye et al., 2007,
2008b; Lambiel et al., 2008; Strozzi et al., 2008), DInSAR (differential InSAR) (Strozzi
et al., 2004), repeated airborne imagery (e.g., Kääb, 2002), terrestrial or air-born laser
scanners (Travelletti et al., 2008; Bell et al., 2012), or GPS/GNSS measurements of se-
lected rock boulders (Limpach and Grimm, 2009).

InSAR and DInSAR are frequently applied to detect creeping landforms, measuring line-
of-sight displacements in the centimeter to millimeter range with a spatial resolution of a
few meters. A great advantage of this remote sensing technology is its large areal coverage
also for regions with limited accessibility. Spatial coverage, however, is reduced to some
extend by layover and shadowing effects of the rugged topography in permafrost areas.
Resolution in time is given by the repeatability of the satellite flyovers and range from 2.5
days (TerraSAR-X) to 35 days (ERS-2) but can be increased by combining two images
from any SAR mode. Ground based radar interferometry is another fast developing tech-
nique that complements the satellite based techniques (e.g. Strozzi et al., 2015). As in the
case of optical imagery, ground- and satellite-based InSAR is successfully applied in the
absence of snow. Snow coverage results in decorrelation such that displacements cannot
be estimated (Lundgren, 2009).

Terrain or construction deformation monitoring by GNSS is a technology that has been
developed to highly performing systems, e.g., Leica (Geosystems, 2009). As an on-line
reference for surveying purposes, many countries have set up a permanent GNSS net-
work (e.g., Wild et al., 2006). Specialized companies have established solutions for small
scale monitoring investigations that are provided by GNSS measurements or by terrestrial
geodetic equipment, e.g. automated theodolites and leveling equipment (Blaikie et al.,
2004; Schätti and Rub, 2008; Solexperts, 2009). With a typical accuracy of 0.5 cm for daily
solutions and 1.5 cm for kinematic solutions (Limpach and Grimm, 2009) this method has
proven to be one of the most accurate and robust monitoring tools available today. Being
operational also in bad weather conditions, various GNSS-based applications have been
developed for different tasks. For example early warning of volcanic activities (Lundgren,
2009), the detection of rapid and small movements (Guillaume and Geiger , 2007), or the
determination of slow deformation patterns (Hollenstein et al., 2006, 2008a,b)), to name
just a few.

Terrestrial photogrammetry (e.g., De Matías et al., 2009; Kaufmann, 2012) and airborne
imagery (e.g., Kääb et al., 1997) in general were successfully applied for studies of rock
glacier flow fields over various time intervals. The method of normalized cross-correlation
for matching features between different epochs in an image sequence is often suggested
as a very fast and easy-to-use procedure for flow estimation with accuracies in the order
of one pixel (Kääb and Vollmer , 2000). Other application orientated projects with aerial
photographs (e.g., Kaufmann and Ladstädter , 2003) rely on the principle of least-squares
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image matching that is based on a more flexible mathematical model with intrinsic sub-
pixel accuracy.

Akca (2013) showed the potential of photogrammetric point estimation for a small landslide
triggered in a test environment. Using four cameras in geometrically optimized positions,
signalized target points were tracked frame by frame and their absolute coordinates es-
timated by the principles of bundle adjustment. With a mean target distance of about
110m, an average accuracy of ±1.8 cm was achieved. This demonstrates the potential of
high resolution imagery for precise point estimation. The precision of the reconstruction of
a scene or the estimation of flow velocity using optical imagery in general highly depends
on the camera position geometry with respect to the object of interest. Also, optical dis-
tortion and other camera parameters need to be reliably estimated to accurately estimate
valuable parameters from image data. In a recent study by Kaufmann and Seier (2016),
the principles of bundle adjustment with a high number of ground control points (31) and
structure from motion (SfM) techniques were used for scene reconstruction. Respective
accuracies of about ±35 cm for position and ±6 cm for the height components, and re-
projection errors in the order of 0.3 pixel were reported. Data acquisition was carried out
once a year with four pre-defined camera positions.

For the purpose of prediction and/or filtering of time series, the method of collocation
is frequently used in the geodetic context (e.g., Hollenstein et al., 2008b; Müller , 2011;
Hurter , 2014). As shown in Geiger (1996), the principles of collocation are comparable to
the methods known as kriging, introduced by Krige (1951); Matheron (1963). Estimated
or assumed correlations between measured quantities, linked by a geometrical distance
(e.g., estimated coordinates of an object in space and time), are used to extract significant
signal from noisy datasets. In scenarios of block-like displacement fields, an improved vari-
ant uses an iterative procedure to change the metric distance between the measurements.
Specially in the vicinity of neighboring blocks, an improved characterization of the dis-
placement field can be obtained. The concept of this adaptive collocation was introduced
by Egli (2004); Egli et al. (2007). Similar approaches were made in the field of kriging
(e.g., Moustapha et al., 2015).

As stated above, the X-Sense project aims for high resolution monitoring in space and time.
A first challenge, solved by the Computer Engineering Group, ETH Zürich, was to develop
and build a reliable long-term infrastructure, with sensors that could be set up, measure,
and survive in the alpine environment (Beutel et al., 2011). The various measurement
systems are embedded in a sensor network and allow near real-time data access. In this
work, the principles of terrestrial photogrammetry, with a sparse network of two GNSS
control points, are used to retrieve high resolution rock boulder motion estimates within
the area of interest. The challenge is to get various 3D position time series with centimeter
accuracy for the given difficult geometrical setting. The permanently installed GNSS and
camera stations are operated throughout the year. Daily to sub-daily image intervals are
used to verify the possible detection of acceleration events. With an average displacement
rate of approximately 0.6m/year (Wirz et al., 2016) the challenge is to achieve an accuracy
suitable to detect inter annual velocity variations for this type of slow permafrost creep.
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1.4 Objectives and Structure of the Thesis

This study focuses on the combination of optical imagery and GNSS-based position es-
timates for the reconstruction of permafrost surface motion over a period of multiple years.

Within the X-Sense project, a stereo-pair of commercial DSLR (digital single reflex) cam-
eras were set up in the vicinity of the observation area (Section 2.1). Two GNSS stations
in field of view (FOV) measure the motion of two selected rock boulders. The goal of this
work is to use this RAW data for the estimation of a number of high resolution 3D rock
boulder trajectories. To reach this goal, four main objectives can be formulated:

• Development of a suitable feature tracking procedure (algorithms and strategy).
The goal here is to have a flexible and highly accurate tool to estimate the image
coordinates of individual features over short and long time intervals.

• Maximization of the usable time window for estimating the surface displacement
rates. The high altitudes and orientation of permafrost areas also imply a relatively
long winter period. The goal here is to also use partially snow covered images as
valuable data sources.

• Optimal scene reconstruction by either using one camera and a digital elevation
model or by combining the stereo-pair cameras with the two GNSS stations that are
used as ground control points. The task of automatically combining the photogram-
metric procedure with the available GNSS position estimates has to be addressed.

• Robust velocity estimation using the estimated feature positions. Because velocity
is generally defined as the change in position within a given time interval (or the
derivative of position w.r.t. time), noise in estimated feature trajectories has a large
impact on velocity estimation. Therefore, a suitable method is needed to optimally
filter the time series to improve the estimation of velocity.

The structure of the thesis closely follows the main objectives given above. Chapter 2
gives an overview of the study area, the equipment, and the processing strategy used. In
Chapter 3, a detailed study and analysis of the least-squares matching technique, opti-
mized for the problem statement, is given. Section 3.1 starts with an overview of related
work that was conducted in the field of photgrammetry, specially in prospect of the least-
squares matching principles. In Section 3.2, the mathematical principles of the technique
are described. It comprises the estimation of initial parameters, outlier detection, robust
estimators, and a performance test using synthetic examples. Section 3.3 then summarizes
the data processing strategy used in the current study.

Chapter 4 covers the topic of object point reconstruction using one or more cameras. In
Section 4.1, the coordinate system and conventions are defined. Section 4.2 explains the
principles of 3D point estimation combining a single camera with a digital elevation model,
emphasizing the problematic of error propagation in such cases. Section 4.3 and 4.4 then
cover the mathematical principles of scene reconstruction using two or more cameras, the
topic of parameter significance testing, gross error detection, and model errors. A simula-
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tion of an idealized scenario then addresses the question of limitation and accuracies that
can be expected with this technique. The strategy to estimate initial parameters needed
for this non-linear adjustment is given in Section 4.5. Section 4.6 finally illustrates the
procedure being followed to combine the GNSS and image-based observations.

The principles of collocation, as a powerful tool for data filtering, prediction, and velocity
estimation, are presented in Chapter 5. Introducing the principles of the technique in Sec-
tion 5.1, the topic of estimating correlations among measurements is addressed in Section
5.2. The theoretical background of the adaptive collocation technique is given in Section
5.3. In Section 5.4, the derivations of the variance-covariance matrices for the respective
quantities are formulated.

Having covered the theoretical part, key results are shown in Chapter 6. A time sequence
of areal displacement rates estimated when using only a single camera is presented in
Section 6.1. In Section 6.2, the achieved accuracies of the 3D point reconstruction along
with examples of estimated time series of selected rock boulders are highlighted. Section
6.3 presents the collocated results obtained by filtering the noisy time sequences and also
gives examples of the derived velocities. An example of the adaptive collocation technique
applied to areal velocity fields is finally given in Section 6.4.

Chapter 7 discusses and summarizes the main objectives and findings of this thesis, and
Chapter 8 gives a short outlook for possible future work in this research field.
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This chapter describes the study site relevant for this thesis. Within the X-Sense project,
investigations at different permafrost landforms where conducted. For this task, GNSS
measurement devices, high-resolution cameras, weather stations, crack-meters, and sur-
face temperature loggers (iBottons, (Gubler et al., 2011)) were deployed in the field. All
devices are located within an area of approximately 6 km × 1.5 km and are located in
the Mattervally, Valais, Switzerland. A more detailed presentation of the project study
site and permafrost creep rates can be found in Wirz et al. (2016). The range of mean
annual velocities, measured within the years 2011 to 2013, is between 0.006 and 6.3m/year
(GNSS-based). The focus of this thesis is in the upper Grabengufer permafrost creep area
with mean annual velocities in the order of 0.6m/year (not to mistake with the Grabengufer
rock glacier at much faster speeds). Fig. 2.1 shows the location of the Grabengufer rock
glacier and its associated rock slide area (Delaloye et al., 2014).
Section 2.1 gives a short overview of the permafrost creep at the Grabengufer, Section 2.2
and Section 2.3 present the installations and RAW data that were deployed and used, and
Section 3.3 explains the processing strategy applied in this study.

Figure 2.1: Location of the study site. The highlighted area in blue shows the Grabengufer
rock glacier while the red area shows the region classified as the Grabengufer rock slide (Delaloye
et al., 2014). The yellow box on the southern part (uphill) indicates the area shown in Fig. 2.3.
Topographic map LK 1:25’000, Swisstopo.
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2.1 Grabengufer Permafrost Creep

Figure 2.2: Grabengufer permafrost areas in August
2012. The approximate extent of the rock slide and rock
glacier are given in red and blue, respectively. Back-
ground image data from Jan Beutel, ETH Zürich (Keller
et al., 2009).

Rock glaciers are geomorphologi-
cal landforms located on periglacial
mountain slopes. Typically they are
composed of rock debris frozen in
interstitial ice or they can be de-
scribed as former ice glaciers that
are now covered by a layer of talus.
Häberli (1985) describes rock glaciers
as «perennially frozen debris masses
that creep down mountain slopes»,
already recognized by Jäckli (1957).
This permafrost creep is a steady-
state deformation of such debris
masses that are supersaturated with
ice. In 1985 about 1’000 active rock
glaciers in Switzerland were known,
whereas by the year 2010, about
twice this number was estimated
(e.g., Delaloye et al., 2010). Active
rock glaciers act as sediment convey-
ors with typical velocities of 0.1 to
2m/year over long time scales of years
to even centuries (Delaloye et al.,
2010). Studies using InSAR, (e.g.,
Strozzi et al., 2009), have recently
revealed several rock glaciers in the
Mattervalley moving at high rates of
more than 1m/year. The Grabengufer
rock glacier (Fig. 2.2) is among these
so called destabilized rock glaciers
with exceptional high displacement
rates of up to 150m/year, observed by
Delaloye et al. (2013) during the period 2009 – 2010 (up to 40 cm/day). After this period,
the displacement rates decreased. Destabilization processes of rock glacier tongues are as-
sumed to be a response of warming ice and its consequences in the changing strain-stress
relation (Roer et al., 2008). The destabilization event caused rock fall and debris flow
events further down the Grabengufer gully (Bühler and Graf , 2013).
As noted in Delaloye et al. (2013), the destabilization event of 2009 – 2010 is qualified as
a mechanical surge process that started at the root zone of the rock glacier. In Delaloye
et al. (2014), the area above the Grabengufer rock glacier is classified as the Grabengufer
sag or rock slide (red area in Fig. 2.2), with velocities between 0.1 and 0.8m/year between
the years 2012 and 2013. The area just above the rock glacier was observed as the origin
of several rock falls with volumes of up to 4300m3 (observed in 2010, also destroying the
hanging bridge about 600m further downslope). For this study, the area just above this
tear-off edge is monitored.
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Figure 2.3: Hardware deployments at the field site (the rock slide zone is shaded in red). G1 and
G2 mark the moving GNSS stations, C1 and C2 the two camera stations that are equipped with
GNSS modules. A base station on a solid rock is used as local reference position. The coordinate
system is given in a topocentric coordinate frame (see Section 4.1).

2.2 Field Installations

Measurement devices were installed in different areas of the project study site. The de-
sign, development, deployment, and operation of these systems (i.e., hard- and software
for GNSS and camera stations) were conducted by the Computer Engineering Group,
ETH Zürich. The individual components were build to sustain the harsh conditions in the
alpine environment (Beutel et al., 2009).

Within the Grabengufer rock slide (Section 2.1), two prototype low-cost GNSS devices
suitable for the extreme alpine environment were deployed as high-precision measurement
systems to monitor the position of two selected rock boulders through time1. The mea-
surement network at the Grabengufer site consists of five GNSS measurement positions
and two optical camera systems. Fig. 2.3 shows the distribution of the main installations,
with individual components described as:

• Base station with GNSS receivers and communication modules
• Two low-cost GNSS stations, G1 and G2, mounted on large rock boulders
• Two commercial digital single reflex cameras, including GNSS modules, C1 and C2
1One station (G2) is a dual GNSS device, i.e., two antennas are mounted on the same mast. For the

purpose of this study, only the position estimates of the antenna centered over the mast are used.
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Additionally, a crack-meter near G2, a weather station at the base station, and surface
temperature loggers were deployed in the course of the X-Sense project but not used in
this study. Data packages acquired at each station are transfered to the base station by
a multi-hop procedure using a local wireless network (see Beutel et al. (2011) for more
details). A connection of the local wireless sensor network to the Internet is established at
the base station (and at the two camera stations), where generally more power is available.
All data (GPS data, camera images, meteorological data, etc.) is stored on a server in
Zürich (Computer Engineering Group, ETH Zürich), allowing near real-time data access.

2.2.1 GNSS Stations

The permanent GNSS stations consist of different components: A GNSS module (antenna
and L1-GPS frequency receiver - ublox LEA-6T), a two-axis inclinometer (SCA830-D07),
a photo-voltaic energy harvesting system including a battery acting as a buffer, wireless
radios, and a mast (1m in height) where all the components are mounted to (Fig. 2.4).
These prototype low energy consumption devices provide the ability to send and receive
data packages, also acting as hop stations for other devices. A detailed describtion of the
principle components and methodology can be found in Wirz et al. (2013) and a more
detailed describtion of the prototype components is given in Buchli et al. (2012). Data
logging follows a two-stage power plan: In case the battery voltage is high enough, con-

Figure 2.4: One of the two X-Sense low-cost GNSS stations mounted on a large boulder within
the Grabengufer rock slide area. Image Jan Beutel, ETH Zürich (Buchli et al., 2012).
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2.2 Field Installations

tinuous measurements are carried out (typically at a sampling interval of 30 seconds). If
the battery voltage drops below a certain threshold (typically 11.8V for a 12V battery),
a low power operation mode is activated. During this mode, only sparse measurements
(e.g., from 11:00 to 13:00 CEST) are carried out. The latter can be tuned and therefore
allows to maximize the valuable output given the energy available (more details in Buchli
et al. (2014)).

Static daily GNSS solutions with cm to mm accuracies are computed automatically using
the base station as a local reference and Bernese processing software (Beutler et al., 2007;
Limpach and Grimm, 2009). The principle GPS processing strategy is based on single-
frequency differential carrier phase techniques and is used for all GNSS stations that are
integrated into the X-Sense project (implemented and operated at the group of Mathe-
matical and Physical Geodesy, ETH Zürich).

Rock boulders are exposed to local rotations such that variations in estimated GNSS
coordinates, representative for a specific boulder, may be misinterpreted as pure transla-
tion. Wirz et al. (2014) suggested a possible workflow to combine orientated inclinometer
measurements with antenna position estimates. Along with some assumptions, the true
translation at the GNSS mast base can then be derived. In this thesis, however, GNSS
solutions are used in a different way, i.e., the GNSS antennas are directly localized in the
images, such that these effects are not of concern.

2.2.2 Camera Stations

A stereo pair of Nikon D300s cameras, equipped with 14mm focal length wide angle lenses,
were installed next to the study site in October 2012. With a mean elevation of about
2’900m and a location exposed to strong winds in the harsh alpine environment, a massive
and imperishable construction was built (C. Senn, D-BAUG, ETH Zürich) to mount the
camera box in the field (Fig. 2.5). Solar panels charge a 12V battery that powers the
camera, the GNSS module, and the WLAN antenna for data transmission. The latter
allows to access the images in almost real time. An embedded PC platform is running
Linux that enables communication with the camera to allow, e.g., to change the frequency
of image acquisition. A more detailed description of this camera system can be found in
Keller et al. (2009). The system is embedded in the X-Sense sensor network such that
images are automatically downloaded to the server at ETH in Zürich.

Camera motion is monitored by the on-board GNSS module and daily solutions are gener-
ated using the same principles as for all other GNSS stations within X-Sense. A maximum
displacement of approximately 8 cm is observed for camera 1 (C1) in the East component
over the course of 3.5 years (details are in Fig. E.1). This station is affected by periodic
displacements, i.e., during the warm season displacements in the range of 2 – 3 cm are
observed, whereas it remains stable during the cold period. The motion of camera 2 (C2)
is different: a continuous displacement with a temporary acceleration phase that hap-
pened during summer 2015 was measured. Over the course of 3.5 years, the total absolute
displacements are 10.8 cm and 6.2 cm for station C1 and C2, respectively.
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2 Study Site

Figure 2.5: One of the two camera stations (C2) installed at the study site. (a) shows a closeup
of the massive steel construction along with the GNSS antenna mounted next to the camera box.
The interior of the camera installation is shown in (b), image Tonio Gsell, ETH Zürich, with details
in Keller et al. (2009). An impression of the terrain surrounding the installation site is given in
(c). The Randa rock fall that happened in 1991 is visible in the background.

2.3 Measurement Period and Data

Data collection at the Grabengufer field site started in the year 2011 (GNSS stations) and
is currently (by the end of 2016) still ongoing. As stated above, the two cameras were
installed in October 2012, also representing the start of the measurements used for this
work. While both the GNSS and the camera stations worked with little to no interruption
throughout the years, only periods between (typically) June and November could be used.
During the rest of the year, the area was fully covered by snow so that no photogrammetric
solution could be computed. July 2016 marks the end date of the data used herein.

All results presented in this thesis are based on the position solutions of the two GNSS
stations on the Grabengufer rock slide, the GNSS position solutions of the two camera
installations, and the RAW images from the stereo-pair cameras between October 2012
and July 2016. While one solution per day is typically available for the GNSS results,
images were usually captured in an hourly interval during daytime. Because of the slow
permafrost motion, only one image per day (in average) was used for further analysis.
RAW data for both, GPS signal measurements and the camera images were provided by
the Computer Engineering Group, ETH Zürich. To test the monoplotting procedure, a
digital elevation model (provided by FOEN) from the year 2010 was used in addition.
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2.4 Processing Strategy

2.4 Processing Strategy

The goal of this study is to combine position estimates of low-cost single-frequency (L1)
GNSS sensors with image sequences obtained by off-the-shelf DSLR cameras. Data merg-
ing should result in a precise estimate of the permafrost creep in various areas that are
within the field of view. As mentioned in the previous chapter, different possibilities exist
to tackle such problems. As soon as high precision is of interest, the method of least-
squares-matching (LSM) is the optimal choice to identify the same features in different
images (Gruen, 1985), more details in Section 3.1.

Absolute quantities of motion or position coordinates can be obtained by the combina-
tion of at least two cameras (stereo-/multi-view) or by the principles of ray tracing onto
a Digital Elevation Model (DEM), known as monoplotting (e.g., Gruen and Sauermann,
1977). In the course of this work, both methods are studied. In a first attempt, one
camera combined with a DEM is used to estimate the displacement rates. Scaling values
for displacements in the image space to absolute units are obtained by ray tracing onto a
DEM. The workflow for this task is given in Fig. 2.6.

Acquisition &
data transfer

Image Selection
& Conversion

Coordinate
Rectification

Collocation
in Time

Adaptive Collo.
in Space

DEM
Projection

Velocity field
Space & Time

Feature
Tracking

Feature
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Image
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Preprocessing Least-Squares Matching Correction of Apparent Motion

Filtering Scaling

Figure 2.6: Processing flow chart of estimating velocity fields using a single camera and a DEM.
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Figure 2.7: Multi-view processing flow chart for the reconstruction of object trajectories and
DEMs. The colorization is according to Fig. 2.6. Coordinate reconstruction is accomplished using
the principals of bundle adjustment.

The principle of bundle adjustment is used to reconstruct the scene for various features (see
Fig. 2.7). Using the LSM technique to estimate feature coordinates in the image sequences
of both cameras, an epoch-wise estimation of object coordinates yields the geo-referenced
feature trajectories in space (3D). Errors in the image matching process are carried on
into the bundle adjustment that itself is an error minimization process of observations. As
in the case of all adjustment processes, observations are linked by a mathematical model
that approximates reality to a certain extent. Model and other error sources lead to re-
sults that are contaminated by noise. Filtering these noisy time series is then realized by
the method of collocation using estimated correlations among the position trajectories of
individual features.

The following three chapters describe these three main tasks, namely least-squares image
matching, object reconstruction in space, and collocation.
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3 Image-Based Displacement Estimation

Optical imagery with off-the-shelf digital cameras is a popular measurement technique for
a variety of applications. Although the principle is known for many decades, improved
processing strategies and easy-to-use applications promote the popularity of this measure-
ment method. A number of recent studies thus explicitly us image-based observations
for monitoring purposes (e.g., Travelletti et al., 2012; Scaioni et al., 2014). While some
use specific targets for detection and point localization (Kersten and Mass, 1995), natural
targets or a combination of both are more frequently used nowadays (e.g., Maas, 1996).
There are scenarios, where no artificial targets can be installed on the object of interest
or where the expense of such installations would no longer be adequate (e.g., steep rock
walls with continuous breakouts).

In this chapter, the principle of image-based displacement estimation based on natural tar-
gets is introduced. Section 3.1 gives an overview about possible mathematical approaches
as well as the motivation to choose the adaptive Least-Squares Matching (LSM) solution
for this type of study. In Section 3.2, the mathematical principle of the LSM method is
outlined, along with statistical testing and gross error detection. Finally, in Section 3.3,
the processing strategy is discussed.

3.1 Conceptual Overview

The estimation of motion from or between image sequences is a problem known for many
years and different solutions exist for a variety of applications (motion estimation in surveil-
lance (e.g., Wang and Brady, 1995), motion based segmentation (e.g., Sturm and Triggs,
1996; Mitiche and Ayed, 2011), structure and depth from motion (e.g., Häming and Pe-
ters, 2010), obstacle avoidance (e.g. Nelson and Aloimonos, 1989), image composition and
registration (e.g., Zitová and Flusser , 2003)). Many implementations are used today in
industry, performing daily tasks in medical image analysis, driver assistance, navigation of
drones, etc. The principle in all these applications is to use the distribution and location
of image pixel intensities to retrieve valuable information about the scene.

For monitoring ice- or rock glaciers and creeping phenomena in general, optical image
sequences have previously been used either as terrestrial (e.g., Travelletti et al., 2012) or
air-/space-borne (e.g., Kääb, 2002) datasets. To estimate motion of such objects, sparse
feature matching techniques are typically applied to find the position of corresponding
features in images taken at different epochs. In contrast, Vogel et al. (2012) presented
methods that perform dense flow estimation, i.e., a displacement vector is estimated for
every image pixel. As this problem is ill-posed (known as the aperture problem), regular-

17



3 Image-Based Displacement Estimation

ization methods in image space and time are applied. Although there are so called dense
matching techniques that try to estimate large displacements in the local neighborhood,
the principle relies on the assumption of smooth displacements between neighboring pixels
and adjacent epochs. Specially in cases of a regular sampling (e.g. video sequences) and
known smooth motion transitions, this a priori information can successfully be used to
stabilize flow estimation. Estimating motion using these techniques is known as optical
flow estimation. This field was extensively studied in the last decades and a number of
strategies have evolved (Barron et al., 1994). The algorithms range from classical methods
(e.g., Horn and Schunck, 1981; Lucas and Kanade, 1981) to more recent developments like
cost-volume filtering or modified versions of the former two (Vogel et al., 2012).

One of the challenges when monitoring permafrost creep over long periods by optical im-
agery, is to deal with the irregular sampling: periods of bad weather, sequences of snow
coverage, specially in autumn, and the winter season, with only a few (if any) features
suitable for matching. In the given geometrical setting of the study field (see Section
2.2), relatively fast moving areas project next to stable (or slowly moving) areas further
in the background, yielding a sharp boundary of motion. As observed by Delaloye et al.
(2010), sharp boundaries of motion may also exist within the flow field, individual rocks
can show rotational components other than their neighbourhood and the kinematics of
permafrost creep may show significant fluctuations in short time scales. As GNSS stations
are optically monitored and integrated into the reconstruction process (Chapter 4), an
adaptive feature matching technique (introduced by Gruen (1985) and extended in Balt-
savias (1991)) is used to solve for the displacement of individual rocks (Section 3.2) as well
as for matching the GNSS template (Section 4.6). The mathematical principle (described
in Section 3.2.1) allows to correct for local rotations, scale variations as well as affine and
perspective distortions.

In a general formulation of the Least-Squares Matching (LSM) technique, a combined solu-
tion of image feature tracking and object point reconstruction can be formulated (Gruen,
1985; Baltsavias, 1991). Using this technique, procedures for particle tracking in the ob-
ject space were successfully applied (Maas et al., 1993).

For this study, the problem of 3D tracking is divided into two separate adjustment prob-
lems (LSM and scene reconstruction). The disadvantage by doing so is that the joint
system of motion detection and object point reconstruction is lost. On the other hand,
this method only works well if the camera parameters are known or if the mathematical
model is extended to included all features of multiple epochs as image pixel observations
(for example mentioned in Triggs et al. (2000)). In the latter case, connection in time
is given by the feature transformation parameters, whereas in space it is defined by the
camera parameters. In such a scenario, the observation and parameter spaces become
extremely large. Because the LSM technique is also used for other matching tasks, the
problem is divided into two separate processes.
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3.1 Conceptual Overview

Figure 3.1: Effect of different scene reflectance and illumination. Image (a) was taken on 01-
08-2014 08:00 UTC, image (b) on 06-08-2014, 08:00 UTC. Although the scene is illuminated by
diffuse scattering in both cases, obvious differences exist. The red ellipse highlights a zone, where
the edge of a rock bolder appears differently, the blue ellipse points to an area before and after
water outflow, obviously changing the reflectivity.

3.1.1 Motivation and Benefits of Feature Tracking

Using a local LSM for feature tracking is suitable for a variety of different tasks. For ex-
ample the same procedure can in principle be used for matching natural features between
images, for matching a given template with respect to a specific pixel location (Section
4.6) or for matching structures across different views in order to reconstruct a scene (e.g.,
Lai, 2000).

An additional benefit of using LSM is that the statistical characterization of the solution is
well established. Estimated feature transformations are uncorrelated among each other if
the matching windows (Section 3.2.4) do not overlap, a condition that is not true in case the
optical flow is computed using dense methods (Fermüller et al., 2001). Thus, gross error
detection, parameter significance testing, and uncorrelated parameter estimates between
different feature displacements are the advantages.

3.1.2 Limitations and Expected Accuracy

Although the principle matching accuracy might be very high, the accuracy and reliability
of the displacement estimation is heavily influenced by varying scene illumination, varying
surface reflectivity (e.g., dry or wet surface), and occlusions (e.g., areas partly covered
with snow). Even if the sun does not directly strike the scenery, differences in diffuse light
scattering cause the reflected light to vary such that obvious differences in the appearance
result (see Fig 3.1 for an example).
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3 Image-Based Displacement Estimation

Due to the large variability of surface structures, similarities of gradient structures in rock
agglomerations, and the variable illumination condition between two images, false positive
matching results might occur even if the algorithm is outlined for high robustness. For
example Ackermann (1984) and Danuser (1996) report a maximum matching accuracy
for the translation components of 0.05 pixel, obtained under ideal conditions. In case of
long-term outdoor image sequences with changing environmental conditions, the accuracy
limit is assumed to be in the range of 0.1 to 0.5pixel.

3.2 Least-Squares Feature Tracking

The principle of Least-Squares Matching (LSM) is a well known and a popular method for
various applications. Gruen (1984, 1985), Ackermann (1984), and Pertl (1984) developed
in parallel the mathematical principals of this technique. Due to its flexibility, differ-
ent problems can be solved using the same implementation: single view image feature
matching (e.g., Zhang and Gruen, 2006), wide baseline matching techniques for stereo
or multi-view 3D object point reconstruction (e.g., Brown et al., 2003; Tuytelaars and
Van Gool, 2004; Zhang and Gruen, 2006), and other photogrammetric matching problems
(e.g., Gruen and Akca, 2005; Beyer , 1992). Although there are some disciplines, where
more efficient algorithms exist (Brown et al., 2003; Baumberg, 2000), the principle of LSM
still remains a powerful, flexible, multi-purpose, and very accurate method to solve a va-
riety of photogrammetric problems.

Sections 3.2.1-3.2.3 describe the mathematical and statistical model of the LSM technique,
mostly based on the work of Gruen (1985) and Baltsavias (1991). Sections 3.2.4 and 3.2.5
discuss methods regarding the general estimation procedure along with initial parameter
estimations, Section 3.2.6 introduces robust estimators, and Section 3.2.7 gives an overview
of the expected performance using simulated examples.

3.2.1 Mathematical Model

A least-squares problem in its very basic form can be written as a relation between some
observations l and a model F with parameters p:

F
(
p, l
)

= 0 (3.1)

The actual observations are always subject to errors (l = ľ + ě), whereas their expectation
values E

〈
l
〉
are ľ. As the true observation and error components cannot be known, a best

estimate of those have to be used: l̂ and ê. The very principle of the image LSM algorithm
is to estimate a set of parameters p̂ such that the sum of squared differences between the
first image (further called the ’template’ image, symbol h) and the transformed second
image (further called the ’patch’ image, symbol g) is minimal. Regarding the general
formulation (Eqn. (3.1)), the image matching problem can be formulated as as:

h
(̂
lh + êh

)
− g

(
p̂, l̂g + êg

)
= 0 (3.2)
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3.2 Least-Squares Feature Tracking

Provided that the measurement errors are normally distributed and assuming that h
and g are linear in l̂h and l̂g, respectively, the least-squares parameter estimator can be
approximated by a maximum likelihood estimator (MLE) (e.g. Danuser and Stricker ,
1998). With these assumptions, the formulation above can be written as a Gauss-Markov
estimation model:

h
(̂
lh
)

+ êh − g
(
p̂, l̂g

)
− êg = 0 (3.3)

h
(̂
lh
)
− g

(
p̂, l̂g

)
+ v̂ = 0 (3.4)

where v̂ equals the difference of both residuals, i.e., v̂ = êh − êg. The first term in Eqn.
(3.4) is the template image, i.e., an estimate of the error-free observations, in the coordinate
system [x, y]. Consequently, the second term describes the modeled patch image (with the
parameter set p̂ in the coordinate system [u, v]. Eqn. (3.4) can also be written as:

ĥ[x, y] + v̂[x, y] = F
(
p̂1, .., p̂N , ĝ[u, v]

)
= g̃[x, y] (3.5)

v ∼ N(0;σ2
0 ·Qhh) (3.6)

with ĥ[x, y], ĝ[u, v] being the template and the patch observations in their respective coor-
dinate systems, F

(
..
)
the transformation of the patch image (from the coordinate system

[u, v] to the coordinate system [x, y] of the template image) with estimated parameters
p̂1, .., p̂N , g̃[x, y] the transformed and resampled patch image, and Qhh as the cofactor, ma-
trix. Resampling onto a common grid is necessary for evaluating the similarity (residual)
component.
To solve the non-linear Gauss-Markov model, the parameters are determined iteratively
using the linearized expression with initial estimates p̊ as:

ĥ + v̂ = F
(
p̂1, .., p̂N , ĝ

)
= g̃

(
p̊1, .., p̊N ,g

)
+ ∂g̃
∂p

∣∣∣∣
◦
· (p̂− p̊) = g̊ + A · δp̂

(3.7)

with

A =
[ ∂g̃
∂p1

∣∣∣∣
◦

∂g̃
∂p2

∣∣∣∣
◦
. . .

∂g̃
∂pN

∣∣∣∣
◦

]
(3.8)

δp̂ =
(
ATQ−1

hhA
)−1 ·ATQ−1

hh δĥ (3.9)
δĥ = ĥ− g̊ (3.10)

Qhh = cofactor matrix of the observation vector h (3.11)
p̂ = p̊ + δp̂ (3.12)

During each iteration, the variables p̂, g̊, A, and δh are updated. The iteration stops, if the
update of all the parameters being determined fall below a certain threshold. Regarding
the Jacobian matrix A, the partial derivative for the k-th observation equation and the
i-th parameter is formed as:

∂g̃k

∂pi

∣∣∣∣
◦

= ∂g̃k◦
∂xk
· ∂xk
∂pi

+ ∂g̃k◦
∂yk
· ∂yk
∂pi

(3.13)
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The terms ∂g̃k◦
∂xk

and ∂g̃k◦
∂yk

are the respective x and y gradients of the transformed patch
image g̃[x, y] at position k. ∂xk

∂pi
and ∂xk

∂pi
are the partial derivatives of the transformed

coordinates g[u, v]→ g[x, y], represented by the coordinate transformation matrix T. For
an affine transformation, using the notation of homogeneous coordinates, this reads as:

(
x y 1

)
k

=
(
u v 1

)
k
·

p1 p2 0
p3 p4 0
p5 p6 1

 =

p1 · u+ p3 · v + p5
p2 · u+ p4 · v + p6

1


T

k

(3.14)

and thus the partial derivatives with respect to the six parameters p1, . . . , p6 are:

∂xk
∂p1

= uk

∂xk
∂p2

= 0

∂xk
∂p3

= vk

∂xk
∂p4

= 0

∂xk
∂p5

= 1

∂xk
∂p6

= 0

∂yk
∂p1

= 0

∂yk
∂p2

= uk

∂yk
∂p3

= 0

∂yk
∂p4

= vk

∂yk
∂p5

= 0

∂yk
∂p6

= 1

(3.15)

Adding two radiometric correction parameters (contrast and offset), the matrix A for an
affine transformation defined by Eqn. (3.14) becomes:

A =



gx,1 · u1 gy,1 · u1 gx,1 · v1 gy,1 · v1 gx,1 gy,1 g̊1 1
gx,2 · u2 gy,2 · u2 gx,2 · v2 gy,2 · v2 gx,2 gy,2 g̊2 1

...
...

...
...

...
...

...
...

gx,k · uk gy,k · uk gx,k · vk gy,k · vk gx,k gy,k g̊k 1


(3.16)

The image gradients in x and y directions (gx and gy) have to be approximated from the
discrete image g̃[x, y], as there is no analytical form. As suggested in Farid and Simoncelli
(2004), the estimate of the image gradient is computed by using a two-dimensional con-
volution filter with predefined convolution kernels. In case of excessive image noise, these
convolution kernels can be modified such that an edge softening effect results, generally
stabilizing the adjustment procedure. Here, two optimal 5-element vectors are used.

An estimate of the parameter accuracy is given by the parameter variance-covariance
matrix Kp̂p̂:

Kp̂p̂ = σ̂2
0 ·
(
ATQ−1

hhA
)−1 = σ̂2

0 ·Qp̂p̂ (3.17)

22



3.2 Least-Squares Feature Tracking

The choice of the observation cofactor matrix Qhh is usually relatively simple. Because in
general no information is given about the pixel variances, a unique variance (typically 1)
is assigned to all observations without any correlations between them. With mean values
µh,g, the observations of the template and patch images h, and g are generally assumed
to be independent and normally distributed, with variance σ2

0:
h,g ∼ N(µh,g;σ2

0I) (3.18)
This might be true for the error-free image, but there are typically four effects that violated
this relation (Eqn. (3.18)):
(1) Light scattering
(2) Bayer demosaicing
(3) Image resampling
(4) Gaussian smoothing

As light between the object and the camera sensor travels through different media (var-
ious air layers and optical interfaces), light scattering effects (1) are present all the time
and generally increase with increasing travel distance. Adding the natural air turbulance
results in blurred projections of the objects. If this effect does not remain below the pixel
resolution, the light of a point object will be spread across more than a single pixel, thus
these observations are correlated. When using amateur DSLR cameras, every image is
produced by a debayering process (2). Because every pixel in these single shot images
record only one of the primary colors (Red, Green, or Blue) the missing colors have to
be estimated by interpolation across the local pixel neighborhood (Keigo Hirakawa, 2005;
Ramanath et al., 2002). A possibility to avoid this interpolation step is to create a single
pixel out of a 2x2 pixel patch containing all the color information. The latter process,
however, reduces the resolution and might thus only be considered under special circum-
stances (for example in szenarios, where the pixel resolution is larger than the theoretical
resolution of the optical components).

During the adjustment of the non-linear system (Eqn. (3.5)), another pixel-to-pixel corre-
lation is introduced by the image resampling process (3) that typically consists of a bilinear
or a bicubic interpolation. In case the parameter estimation process shows a behavior of
alternating parameter convergence or if the image has a bad signal-to-noise ratio, Gaussian
smoothing (4) is commonly applied to increase stability (Berger , 1999), introducing high
correlations between neighboring pixels. If these correlations are neglected, the estimated
parameters tend to have a variance that is too optimistic, even if the parameter estimation
process is not significantly influenced. Mathematically, the effect on the covariance matrix
Qp̂p̂ of the parameters can be assessed by analyzing the effect of an error ∆P = (∆Q−1

hh

in the weight matrix P∗ → P + ∆P (see Koch (1988) for more details):

δp̂ =
(
ATPA

)−1 ·ATPδh

δp̂ + ∆δp̂ =
(
ATPA + AT∆PA

)−1 ·
(
ATPδh + AT∆Pδh

) (3.19)

Assuming small elements in ∆P, thus neglecting products with ∆P · ∆P, this can be
written as:
δp̂ + ∆δp̂ =

(
ATPA

)−1 ·
(
ATPδh−AT∆PA

(
ATPA

)−1 ·ATPδh + AT∆Pδh
)

(3.20)
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Table 3.1: Comparison of different parameter and parameter variance estimations: given are the
average parameter (column 1) and parameter standard deviation (column 2) differences between
100 estimations of a four parameter transformation (p1, p2 for scale and rotation, p3 and p4 for
translation). The difference in the computation is the stochastic model: one series was computed
with the standard diagonal weight matrix Q−1

hh neglecting the effects of high local correlations and
the other series was computed using a weight matrix Q̆−1

hh where only every 2nd measurement was
considered.

Parameters (p̆N )− pN × 10−2 (σ̆pN )− σpN × 10−2

p1 [-] 0.020± 0.545 0.286± 0.276
p2 [-] −0.001± 0.328 0.250± 0.251

p3 [pixel] −0.043± 8.529 0.001± 0.001
p4 [pixel] 0.149± 7.026 0.001± 0.001

average 0.031± 2.767 0.134± 0.093

Considering the effect of Gaussian smoothing, an approximation of an adjusted variance-
covariance matrix Qhh for a symmetric Gaussian distribution with σG ≥ 0.6 is given by
(Berger , 1999):

Q̆hh = σ2
0

4πσ2
G

· e
−

D2
xy

4σ2
G (3.21)

with D2
xy being the squared pixel-to-pixel distance matrix. Thus for a Gaussian smoothing

with σ2
G = 1, the maximum relative error in the diagonal elements of ∆P becomes approx-

imately ±0.1. With empirical tests one can show that for the parameter update δp̂ (as
well as for the estimated parameters p̂ after all iterations) this transfers into an error on
the order of 10−3 to 10−4 and for the parameter variance-covariance matrix Kp̂p̂, this is on
the order of 10−6 to 10−7. For the parameters, this error is at least one order of magnitude
lower than what can be expected as the optimal accuracy of 0.05 pixel (Ackermann, 1984;
Zhang, 2005). In case the adjusted patch scale is in the order of 1 (no scale change), the ef-
fects of the error in the weight matrix due to image interpolation is expected to be smaller
(smaller correlation radius) than that of a Gaussian smoothing, and can thus be neglected.

The above estimates, however, only represent the effect of a pixel variance error due to
interpolation and/or Gaussian smoothing. Although this is negligible, the effect of pixel-
to-pixel correlation has not yet been addressed. The resulting parameter estimates and
parameter standard deviations, when using Q̆hh (with correlated observations and random
variance errors of ±0.1) instead of the standard diagonal Qhh matrix, are summarized in
Tabel 3.1: the influence on the estimated parameters as well as on the the respective
parameter standard deviations is below the significance level.

Although the implementation of a corrected weight matrix is possible, a big drawback is
the increased computation time. Because the P-matrix is no more purely diagonal, the
efficient row-wise computation of the normal matrix N = ATQ−1

hhA (and ATQ−1
hh δh) can

no longer be carried out. In case Gaussian smoothing of σ2
G = 1 is applied, an adjacent
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3.2 Least-Squares Feature Tracking

Table 3.2: Comparison of different parameter and parameter variance computations (for simi-
larity transformations, 4 parameters) between a covariance matrix Q̆−1

hh with variable observation
variances as well as pixel-to-pixel correlations (according to Eqn. (3.21) using σG = 0.6) and diag-
onal weight matrices Q−1

hh1
to Q−1

hh3
. The three diagonal matrices differ in the number of pixels for

which Qhh1
(k, k) = 1. For Q−1

hh1
, all pixels have equal weights, for Q−1

hh2
two out of four neighboring

observations have zero weight, and for Q−1
hh3

three out of four neighbouring observations have zero
weight. Shown are the differences with respect to the correlated weight matrix as well as the mean
and the 1 σ level of approximately 1800 realizations.

Parameters ×10−2 Qhh1
Qhh2

Qhh3

p1 − p̆1 0.041± 1.845 0.010± 2.101 0.054± 3.448
p2 − p̆2 0.126± 1.511 0.136± 1.689 0.063± 2.701
p3 − p̆3 0.241± 0.333 0.237± 0.345 0.240± 0.437
p4 − p̆4 0.000± 0.123 0.000± 0.134 −0.004± 0.203

average ∆pN 0.102± 0.953 0.096± 1.067 0.088± 1.697

σp1
− σ̆p1

0.001± 0.000 0.000± 0.000 0.000± 0.000
σp2
− σ̆p2

0.001± 0.000 0.001± 0.000 0.000± 0.000
σp3
− σ̆p3

0.257± 0.147 0.176± 0.120 0.007± 0.161
σp4
− σ̆p4

0.220± 0.139 0.152± 0.109 0.011± 0.126
average ∆σpN 0.119± 0.072 0.082± 0.057 0.005± 0.072

pixel will have a correlation as high as 0.78. This is a strong smoothing for least-squares
feature matching, but adding all the correlation effects, such a high pixel-to-pixel cor-
relation in the local neighborhood might not be uncommon. To maintain the diagonal
structure of the weight matrix without overestimating the parameter variances, a possible
solution is to consider only every 2nd or even 3rd observation (pixel), compare Table 3.2.
This reduces the maximum correlation to about 0.1 · σ2

0 (with σ2
G = 1), while no loss in

accuracy is expected, because only highly correlated observations are removed. Therefore,
as long as the template and patch images for matching are big enough, the weight of every
2nd pixel will be assigned to zero.

The next Section describes the parameter estimation procedure based on Eqns. 3.12 to
3.16. It is to note here that in case of bad parameter convergence or large alterations
(e.g., parameters with low significance due to insufficient image (observation) content),
the parameters are introduced as stochastic variables in the estimation model itself. A
priori information (e.g., from previous coarse matching results) thus helps to stabilize the
parameter convergence and prevents parameters to drift into non-meaningful regimes.
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3 Image-Based Displacement Estimation

3.2.2 Parameter Estimation

Eqns. 3.9, 3.12, and 3.16 define the affine parameter estimation scheme. In principle,
however, the set of parameters can be reduce to two (translation components) or increased
to eight (projective transformation). The set of parameters that are estimated depends on
the problem type, i.e., there should be enough parameters to comprehensively model the
distortions, while no over-parametrization should result. According to Gruen (1985), non-
determinable parameters have an impairing effect on the estimation process and worsen
the matching quality. It is thus important to perform a parameter determinability test
during the iterations of the non-linear system. The parameter influence can for example
be estimated by computing its relative contribution to the cofactor matrix Qp̂p̂. With qij
being the element (i, j) of Qp̂p̂, its contribution is given by (Koch, 1988):

δii =
∑
j q

2
ij

qii ·
∑
j q

2
jj

(3.22)

In case δii is high, the parameter pi strongly correlates with at least one other parameter
and thus should be excluded or combined (e.g., constrained) with an other parameter.
Another possibility to check for correlated parameters is to compute the eigenvalues of
the normal matrix N = ATPA. By solving the eigenvalue problem, the independent
components of the parameter space can be used to exclude those, whose influence is
negligible (i.e., having a small eigenvalue). To constrain a parameter pi, the inversion
of the normal matrix is computed by a constraint Moore-Penrose inverse, N−1 → N+

(Moore, 1920), with matrix C containing the constraints of the corresponding parameters:

N+ · · ·
... . . .

 =

 N U CT

UT 0 0
C 0 0


−1

(3.23)

where matrix U contains all eigenvectors of N, whose eigenvalues are below a given thresh-
old. Depending on the image content, parameters have to be constrained a priori in case
they cannot be determined.

3.2.3 Outlier Detection

The detection of outliers or blunders is a critical task in the process of LSM. Erroneous
observations will cause unexpected outcomes and incorrect results (e.g. Zhllin et al., 2001).
The sensitivity of parameter estimation with respect to discrepancies between the template
and the patch image can be detected using the concepts of internal, external reliability, as
well as data snooping (Baltsavias, 1991). The problem, however, is not trivial because any
gross error influences all the residuals in the least-squares adjustment process. Thus the
methods presented below rely on the principle of very few outliers (compared to the total
number of observations). If this prerequisite is not given, inconsistencies due to a wrong
model assumption, an erroneous cofactor matrix of the observations, or gross errors can
hardly be detected, if at all.
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3.2 Least-Squares Feature Tracking

Gross error detection is based on the principles of null-hypothesis testing that is performed
after a first solution has been found. The residuals v̂ in Eqn.(3.5) are then computed as:

v̂ = g̃
(
p̂,g

)
− h = A · δp̂− δh (3.24)

whereas E
〈
v̂
〉

= 0, and E
〈
v̂v̂T

〉
= σ2

0 ·Q
−1
hh (3.25)

To test the assumed normal distribution (global test) of v̂, the null-hypothesis H0 is set
up that E

〈
σ̂2

0
〉

= σ2
0 is true, if the test criterion Θ is distributed as the central Fisher

distribution:

Θ = σ̂2
0

σ2
0

(3.26)

If Θ exceeds the test criterion F (1− α, r,∞) (Fisher distribution with degree of freedom
r and significance level α), H0 is rejected. To compute σ2

0, an a priori estimate of the
noise content with respect to the involved images (compare Eqn. 3.4) has to be known.
Because generally there is no information about this quantity a priori, the goodness of the
fit cannot reliably be expressed with this global test. As proposed in Berger (1999), the
normalized cross correlation in the adjusted state is used as a quality indicator:

ρ =
∑(h− h̄) ·∑(g̃− ¯̃g)√∑(h− h̄)2 ·

∑(g̃− ¯̃g)2
(3.27)

where h̄, ¯̃g indicate the mean value of the template and the adjusted patch image, respec-
tively. If the matching is perfect, ρ is 1. A value clearly below 1 either indicates a wrong
model assumption, an incorrect weight matrix, and/or erroneous observations. Assuming
that the model complexity is sufficient for the deformation scenarios and that the initial
estimates (see Section 3.2.5) were well chosen, the most probable issue causing the test
to fail are errors in the observation vector (outliers). Therefore, additional tests for gross
error detection must be applied. An estimate of the internal reliability is obtained by
computing the smallest detectable gross error with probability β(λ) = 1−P (λ), P (λ) be-
ing the probability of accepting a false hypothesis, λ being the non-centrality parameter.
For a diagonal weight matrix P, and subscript i as its i-th element, this is (Baarda, 1967;
Gruen, 1978):

λi1 = σ0 ·
( λ1

P2
i qvivi

)1/2
(3.28)

with qvivi being the i-th diagonal element of Qvv = Qhh − AQp̂p̂A
T . Due to the high

redundancy, the internal reliability typically is very high.
Also if Ho is rejected, a test on the residuals can be used to detect outliers (typically
called data snooping, see Gruen (1978)). The test variables are the standardized residuals
(Baarda, 1967; Carosio, 2008):

wi = v̂i
σ̂vi

= v̂i
σ̂0 ·
√
qvivi

(3.29)
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3 Image-Based Displacement Estimation

The acceptance interval for wi, with the type I error size α being typically chosen as
α = 0.05 or α = 0.01, is given by:

−F 1/2(1− α, 1, r) < wi < F 1/2(1− α, 1, r) (3.30)

with r being the system redundancy. As shown by Carosio (2008) or Koch (2012), this is
the same as the t-distribution defined as:

|wi| < t(1− α/2, r) (3.31)

For α = 0.05 and α = 0.01, |wi| yields a critical value of 1.960 and 2.576, respectively (for
r →∞).

Practically, several outliers can be detected simultaneously after a first convergence of
the iteration process, if there are multiple large residuals wi that are geometrically inde-
pendent (Luhmann et al., 2006). If the global normalized cross correlation test indicates
possible gross errors, all standardized residuals are validated with respect to their critical
test value (Eqn. (3.31)). After detecting these outliers, the iterative matching process is
restarted with a modified weight matrix, i.e., the weighting coefficients of the erroneous
observations are set to zero. For each iteration run, the maximum number of observa-
tions assigned as outliers is restricted and depends on the total number of observations
available. This iterative procedure is repeated until the global correlation test indicates
no further errors. It is to note that after each parameter convergence, all observations
are again tested for being gross errors, whereas for each cycle, the maximum number of
assigned outliers is increased. Following this procedure allows false positive outliers to be
again considered as valid observations. As shown in Section 3.2.6, this procedure makes
the traditional least-squares image matching a relatively robust parameter estimation pro-
cedure, even though it is a sensitive L2−Norm minimization.

Because the components of matrix A are computed using a 2-dimensional convolution
kernel of length 5 (Section 3.2.1), the image gradient approximations of neighboring pixels
are strongly correlated. In case of a detected outlier, the weight elements of its neighboring
pixels are also set to zero (as the computed gradient components are strongly influenced
by the erroneous observation). This procedure was found to have a stabilizing effect for
the parameter estimation process.

3.2.4 Estimation Scheme

Although the algorithm explained in Sections 3.2.1 to 3.2.3 is fully automatic, a couple
of choices involved in the principle of the LSM process have to be made and adjusted
depending on the problem type. For monitoring surface motion in permafrost areas, the
displacement of individual rock boulders is of interest and LSM is carried out for pre-
defined feature points (Section 3.3.1). For this configuration, the criteria in the following
two paragraphs have to be addressed.
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3.2 Least-Squares Feature Tracking

Search Radius and Matching Window

The first task for feature matching between two images is to define a search radius, i.e., a
maximum expected difference between the image coordinates of the template and patch
images, respectively. In principle the complete image can be used to search for the best
match. In practical applications, however, the displacement to be expected is not random
and a rough estimate is usually known a priori. This upper maximum displacement limit
can be used to define a reduced search radius, thus speeding up the matching process. As
soon as the initial estimate of the transformation has been obtained and applied (Section
3.2.5), the actual size of the matching window has to determined. Debella-Gilo and Kääb
(2012) made an attempt to adaptively adjust the window size for the normalized cross-
correlation procedure. They used image signal-to-noise ratio estimates to find suitable
matching candidates and correlation peaks as a function of the template window size for
the optimal dimension of the matching window. For the LSM used here, the dimensions
of the matching windows are defined individually by evaluating the determinability of the
parameters before the iteration starts. With respect to the selected mathematical model,
the window dimensions (i.e., the number of observations) are tested using the eigenvalues
of the normal matrix N = ATPA. Solving the eigenvalue problem projects the normal
matrix components into an orthogonal system with eigenvalues characterizing the individ-
ual contributions. To reliably solve for the parameters, the difference between the largest
and smallest eigenvalue should not exceed a certain limit. Because this is only an approx-
imation (e.g. possible outliers are considered as valid observations and only the initial
transformation is known), the limit should be set rather optimistically.

Because a rough topography (like in case of rock glaciers and similar permafrost creep
areas) provides ideal targets for feature tracking (high local contrast), the window sizes
determined hereby are typically in the order of 10 by 10 pixel (for ideal targets). When
matching is performed between epochs with different lighting conditions (e.g. between
images taken in the evening and morning), there is the danger of estimating motion due
to the varying reflecting surface rather than true motion (see Fig. 3.2). Thus the LSM
window size is the maximum of either a user-defined minimum window dimension or given
by the minimum dimension that is required to reliably determine all parameters.

The minimum matching window thus has to be a compromise between the estimation of
local deformations and the robustness to variable illuminations. The optimal window size
with regard to both aspects is hard, if not impossible to determine. For the purpose of
this study, a minimum window size of 30× 30 pixels was used.

Stepwise Simplification of Model Complexity

An initial choice of the model complexity (projective, affine, similarity, or only transla-
tion components), suitable for accurately estimate the expected transformation, has to
be made. For steady scene flows or images taken from very large distances with respect
to the feature size (e.g., satellite images), the simplest model (translation components)
is usually a good choice and comparable to the widely used normalized cross-correlation
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3 Image-Based Displacement Estimation

Figure 3.2: Difference in estimated translation components with respect to the size of the matching
window. The template and the patch images were acquired with δt = 10h. Although only diffuse
light scattering illuminated the scenes, some structures in the image changed in appearance. (a)
Shows the template, patch, and residual images for a large matching window (60 × 60 pixels),
whereas in (b) a small matching window (19×19 pixels) was used. The true motion between these
epochs is in the order of 10−2 pixel. The respective translation components (dx and dy) show that
the effect of scene illumination for small window dimensions easily exceeds the precision of the
LSM by up to one order of magnitude. Red areas are gross errors detected during the adjustment
(residual images show the respective contours). The residual images show the absolute differences
between the template and the adjusted patch image, amplified by a factor 2. The blue square in
(a) illustrates the matching window used in part (b).

motion estimation (e.g. Kääb and Vollmer , 2000) but with intrinsic sub-pixel accuracy.
For objects exposed to simple rotation and/or scaling, a 4-parameter similarity transfor-
mation is applicable. For images taken in the vicinity of the moving object, the estimation
of additional transformation parameters can be helpful, specially if rock or ice boulders
are expected to rotate (in three dimensions). For stereo/multi-view matching (Section
4.3) or other projection scenarios, an 8-parameter transformation matrix is suitable.

Another argument for this approach can be made in scenarios with notable effects of geo-
metric projection. In case there is a flat angle between the line of sight and the direction
of motion (or if the direction of motion changes significantly between two measurement
epochs), matching the two projected images is only well modelled if a projective or at
least an affine transformation is assumed. Thus the matching window along with the
image content have to allow the estimation of these parameters. On the other hand, if
the flow field is expected to be inhomogeneous, the matching window should be as small
as possible. This is also in good aggrement with the fact that approximations of uniform
displacements for larger window dimensions is violated in many situations (e.g. Whillans
and Tseng (1995); Debella-Gilo and Kääb (2012)).

30



3.2 Least-Squares Feature Tracking

Figure 3.3: Principle of stepwise model simplification and estimation of local displacements. For
example the most complex transformation model is estimated using a large window (left image),
whereas the simplest model with a small window is estimated in the last step, consequently better
describing the motion of the feature point itself. The red cross indicates the selected feature point
for which the transformation is estimated.

As noted in the previous paragraph, the minimum matching window dimension is defined
either by the minimum dimensions allowed or by the image content. As more parameters
require more observations to be included, this naturally leads to larger window dimen-
sions. For high accuracy matching in complex flow regimes (e.g., the study of interannual
variations in rock glacier kinematics (e.g. Delaloye et al., 2008a) and spatially variable flow
characteristics (e.g. Delaloye et al., 2008b)), however, a matching window that is as small
as possible is favorable. Thus a step-wise estimation of parameters from high to low model
complexity can be applied (Fig. 3.3). The adaptivity in the process is realized by itera-
tively reducing the model complexity from the given starting complexity (usually affine)
after the current parameter estimation has finished. By reducing the number of parame-
ters to be estimated, smaller matching windows may be possible and thus the eigenvalues
are again evaluated for the new configuration. A matching procedure can be started, for
example, by estimating an affine transformation, followed by a similarity transformation
(with a smaller matching window), and a two-parameter translation transformation, again
with a smaller matching window. Mathematically this reads as:

xy
1


T

k

=

uv
1


T

k

·


pa1 pa2 0

pa3 pa4 0

pa5 pa6 1


︸ ︷︷ ︸

affine

·


pb1 −pb2 0

pb2 pb1 0

pb5 pb6 1


︸ ︷︷ ︸

similarity

·


1 0 0

0 1 0

pc5 pc6 1


︸ ︷︷ ︸

translation

(3.32)

with superscripts a, b, and c indicating the different mathematical models. If this estima-
tion procedure is applied, outlier detection (Section 3.2.3) is carried out only in the first
(most complex) model with high redundancy. It was observed that for well sampled im-
ages this stepwise decrease of model complexity does not yield a significant improvement.
This indicates a coherent transformation for the dimension of the LSM window used in
the high order model. In more difficult scenarios of lower image contrast and complex
local deformations, the proposed matching strategy might be of advantage. During the
model simplification, the estimated parameters from the previous model are used as initial
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3 Image-Based Displacement Estimation

guess, whereas those not being estimated anymore are applied in a pre-multiplication. If,
for example, an affine transformation was estimated in a first step, the set of parameters
for the similarity transformation (pb1, pb2, pb5, pb6) will be estimated as:

xy
1


T

k

=

uv
1


T

k

·Ta ·


pb1 −pb2 0

pb2 pb1 0

pb5 pb6 1



where Ta =


pa1 pa2 0
pa3 pa4 0
0 0 1


(3.33)

The initial guess for the parameters pb1 and pa2 is 1 and 0, respectively, whereas for pb5 and
pb6, the respective translation components from the previous estimation, pa5 and pa6, are
used. The simplest model then is estimated as:xy

1


T

k

=

uv
1


T

k

·Ta,b ·


1 0 0
0 1 0
pc5 pc6 1



where Ta,b =


pa1 pa2 0
pa3 pa4 0
0 0 1

 ·

pb1 −pb2 0

pb2 pb1 0
0 0 1


(3.34)

In this case, the final transformation matrix is given by:xy
1


T

k

=

uv
1


T

k

·Ta,b,c

with Ta,b,c =


p̂1 p̂2 0
p̂3 p̂4 0
p̂5 p̂6 1

 =


pa1p

b
1 + pa2p

b
2 −pa1p

b
2 + pa2p

b
1 0

pa3p
b
1 + pa4p

b
2 −pa3p

b
2 + pa4p

b
1 0

pc5 pc6 1


(3.35)

Regarding the parameter variance estimation, error propagation must be applied for the
combined parameter sets:

Kp̂p̂ =
(

Ka,b
pp 0
0 Kc

pp

)
(3.36)

with Ka,b
pp = FT ·

(
Ka
pp 0

0 Kb
pp

)
· F (3.37)

and FT =


pb1 0 0 pb2 pa1 pa2

−pb2 0 0 pb1 pa2 −pa1
0 pb2 pb1 0 pa3 pa4

0 pb1 −pb2 0 pa4 −pa3

 (3.38)
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3.2 Least-Squares Feature Tracking

Figure 3.4: (a), (b) Detected SURF features in the template and patch image, respectively. The
size of the markers indicate the strength of the feature points. (c) Matched features between
the template and the patch image. Yellow lines indicate all matching pairs within the 3 pixel
tolerance found after RANSAC transformation estimation, blue lines indicate false matching pairs.
To approximate an optimal transformation around the point of interest, only SURF features within
a certain radius are considered for the estimation.

3.2.5 Initial Estimates

As the parameter estimation of non-linear systems needs to be carried out iteratively using
a linearized formulation of the mathematical model (Section 3.2.1), it is crucial to have
good initial parameter estimates. For the least-squares matching, good means that the
initial parameters have to be in the pull-in range of about 3 pixel, depending on the image
content (Baltsavias, 1991). The following paragraphs describe the implemented initial
parameter estimation routines: (1) using surface descriptors coupled with the RANSAC
estimation procedure (Fischler and Bolles, 1981), (2) hierarchical matching using image
pyramids, and (3) Normalized Cross-Correlation matching. For automated matching,
these three methods are carried out with priority as listed. In case one fails or the estimated
fit is not satisfying, the next method is tested.

Surface Descriptor Matching

Surface point descriptors are used to describe image features in two images. A robust
matching is applied to find a common set of points between these images (i.e., a common
transformation is estimated to match one set of points with the others). Here, SURF de-
scriptors are used (Bay et al., 2008), a fast algorithm to reliably detect and describe scale
and rotation invariant interest points. The descriptor is based on the sum of first-order
Haar wavelet responses within the feature sub-regions, whereas the typical length of the
descriptor vector is 64. For matching, the trace of the Hessian matrix (sign of Laplacian)
is used to speed up the process, as matching is tested only between features of equal sign.
SURF descriptors are similar to SIFT descriptors (Lowe, 2004) but faster and more robust.

Figure 3.4, a) and b), show SURF features detected in the template and patch image,
respectively. Once these descriptors for both images have been determined, a descriptor
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3 Image-Based Displacement Estimation

matching is performed for plausible point correspondences: for every descriptor in the
patch image, the most probable corresponding descriptors in the template image are com-
puted. The interest points are then tested using the RANSAC estimation procedure with
a point matching tolerance of 2 pixels (to allow for some inaccuracies and local defor-
mations). Depending on the number of successful matches, the valid radius around the
point of interest is reduced to get a more accurate approximation of the local transforma-
tion. Specially in situations, where deformations show a high spatial variability, the latter
restriction along with a higher tolerance value often lead to a successful initial estimate.

Hierarchical Matching

The principle of hierarchical image matching is relatively simple and extensively described
for example in Baltsavias (1991) or Zhang (2005). The idea is to scale down the image
around the point of interest such that the maximum expected motion can be estimated
using the iterative adjustment with initial guess parameters indicating no transformation.
After the first parameter convergence, the next scale is used for matching, whereas the
initial parameters are scaled according to the scale difference (in fact, only the translation
components need to be scaled, as the other parameters are scale invariant). This process
is repeated until the original resolution has been reached.

Normalized Cross-Correlation

Due to its simplicity and fast computation, normalized cross-correlation (and some im-
proved versions of that principle) is a very popular image matching technique also used to
directly derive motion vectors of glaciers and other creeping landforms (Kääb and Vollmer ,
2000; Heid and Kääb, 2012). For each relative shift, i, j between the patch image g and
the template image h a correlation value is computed as:

NCC(i, j) =
∑
x,y

(
g(i+ x, j + y)− ḡ

)
·
(
h(x, y)− h̄

)√∑
x,y

(
g(i+ x, j + y)− ḡ

)2 ·∑x,y

(
h(x, y)− h̄

)2 (3.39)

where x, y is the position in the template image and h̄ and ḡ are the mean intensity values
of the template and patch image, respectively. The best match at offset i, j is given by the
highest correlation value (see Fig. 3.5). An alternative fast computation of this spatial
filter is to compute the cross-correlation matrix in the frequency domain, i.e., multiplying
the Fourier transform of the template image with the conjugated Fourier transform of
the patch image (e.g. Lewis, 1995; James H. McClellan, 2003). Because normalization
of luminosity is lost hereby, a better solution is to only consider the phase information
(as differences in image intensities are contained in the amplitude part), typically called
phase correlation. A full review on existing image matching techniques based on the cross-
correlation principle can be found in Heid and Kääb (2012).

The principle of cross-correlation can also be extended to subpixel accuracy with additional
parameters for higher order transformations. Zheltov and Sibiryakov (1997) showed that
this results in an equivalent formulation as obtained by the LSM technique.
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Figure 3.5: Surface plot of normalized cross correlation estimates (Eqn. 3.39) with the offsets i
and j ranging from −40 to +40. The initial guess for the translation components is found at the
offset, where NCC is maximal.

3.2.6 Robust Estimation

The least-squares adjustment introduced in Section 3.2.1 is an optimal estimator (max-
imum likelihood estimation, MLE) in case the stochastic behavior of the observations is
based on an unbiased symmetric distribution of residuals. For this to be true, no gross
errors and no systematic errors are allowed to be present and the residuals after the ad-
justment must be randomly distributed. The MLE is a non-robust estimator as it is very
sensitive to gross errors (i.e., a single gross error can have a large impact on the parameters
being estimated such that time consuming outlier detection and elimination procedures
have to be applied, Section 3.2.3). A robust estimator has to be robust to non-Gaussian
data, to gross errors in the data, and it has to give the optimal solution while still being
efficient. There are different robust estimators, typically described by the influence func-
tion and/or the breakdown point (e.g. Carosio, 2001). The latter being the more popular
indicator, it can be shown that the maximum breakdown point (defined as the maximum
portion of outliers that can be tolerated without significantly influencing the estimator) is
equal to 50%, which is known as the L1 − norm, or median.

Many types of robust estimators exist, whereof the M-estimator class (maximum likelihood
estimators) is among the most popular ones. Without going into detail, the principle of
these estimators is to define a loss function ρ(v̂), with ρ defining, how a specific residual
and its corresponding observation will be treated in the next iteration. Practically the
estimation is carried out by performing an initial traditional Least-Squares adjustment.
Based on its residuals, the estimation is repeated with re-weighted observations, i.e. for
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Huber’s method (Huber , 1964):
n∑
i=1

pii · ρ(v̂)→ min (3.40)

with ρ(v̂) =
{1

2 v̂
2 for‖v̂‖ < c

c · ‖v̂‖ − 1
2c

2 for‖v̂‖ ≥ c
(3.41)

and c = const. (3.42)

This leads to an iterative optimization according to:

δx̂0 =
(
AT ·Q−1

ll ·A
)−1 ·AT ·Q−1

ll · δl (3.43)
v̂k = A · δx̂k − δl k being 0 in the first iteration (3.44)

For the next iterations, a re-weighting matrix is defined:

Wk = diag
(
ρ(v̂k1 ) ρ(v̂k2 ) . . . ρ(v̂kn)

)
(3.45)

δx̂k =
(
AT ·Wk ·Q−1

ll ·A
)−1 ·AT ·Wk ·Q−1

ll · δl (3.46)

The procedure is repeated until δx̂ has converged. For the LSM being a non-linear adjust-
ment in general, this principle implies a second (sub-) iteration loop. Following Dumouchel
and O’Brien (1991), a robust adjustment was implemented and tested against the tradi-
tional LSM technique with iterative gross error elimination.

3.2.7 Performance

Table 3.3 gives an overview of a set of performance tests that were conducted using differ-
ent synthetic transformations with six parameters (affine transformation). The transfor-
mations were applied to different image windows, randomly positioned in the image. For
good performance, the difference between the applied transformation and the re-estimated
transformation should be minimal. To reliably estimate the average quality, the test was
repeated several thousand times. In total, three test were performed:
(A) Zero noise: simple re-estimation of synthetic transformations.
(B) With noise: both images were contaminated with different noise (i.e., White noise of

random local variance for the patch image and Poisson noise for the template image,
respectively, were used).

(C) With noise and gross errors: the same noise contamination as in (B) but with addi-
tional randomly distributed patches of varying pixel intensities. The error patches
were generated in a random way, of both multiplicative and additive nature.

For all these tests, both, the LSM technique with iterative gross error detection and
elimination, as well as the robust matching strategy using the Huber loss function defined
in Eqn. (3.41) with c = 1.345 were applied. As there were no systematic errors involved,
the mean value of the parameter differences were all found to be in the range of 10−3−10−5

and are thus not listed in Table 3.3. Both methods yield very good results for case (A)
and case (B), with a 1σ level below 0.05 pixel for the translation components (note that
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3.3 Data Processing Strategy

Table 3.3: Synthetic test of feature matching performance using the Ordinary Least-Squares
(OLS) and the Robust Least-Squares (RLS) procedure. The parameters correspond to an affine
transformation defined in Eqn. (3.14). A match was considered successful, if a quality value of
more than 0.8 was reached (Eqn. 3.27). For more explanations, see text.

case A case B case C
OLS RLS OLS RLS OLS RLS

σ(p1,syn − p1,est) 0.0007 0.0005 0.0038 0.0031 0.0064 0.0063
σ(p2,syn − p2,est) 0.0004 0.0003 0.0027 0.0023 0.0050 0.0049
σ(p3,syn − p3,est) 0.0004 0.0003 0.0030 0.0029 0.0054 0.0054
σ(p4,syn − p4,est) 0.0006 0.0004 0.0034 0.0032 0.0058 0.0059
σ(p5,syn − p5,est) 0.0070 0.0061 0.0350 0.0344 0.0462 0.0471
σ(p6,syn − p6,est) 0.0089 0.0075 0.0362 0.0345 0.0860 0.0797
# valid matches 2464 2443 2360 2362 1286 1428

the other parameters are scale invariant thus showing a different error level). Due to the
necessary image interpolation and transformation step, small errors are also observed for
the noise-free case (A). For images with variable outliers, case (C), both techniques give
results at the expected 0.05 pixel level (Danuser , 1996), with the robust least-squares
showing a higher number of positive matches. Considering this result, both methods are
assumed to be good estimators for the matching techniques, where the robust method is
preferred as the number of positive matches is slightly higher.

3.3 Data Processing Strategy

There are different possible scenarios of how to process image sequences in order to opti-
mally extract a continuous displacement estimate over time. Generally, the image sampling
rate should be well above the minimum time resolution needed to capture the processes
of interest. Further it is to note that the time separation between two matching epochs
should not be larger than the expected period, where reliable detection can be performed
(i.e., it depends on the expected possible tracking period and surface changes). For the
study of the Grabengufer permafrost creep (see Chapter 2), a sampling interval of one
image per day was found to be sufficient, as the projected movement is in the order of
0.02 pixel per day (see Appendix E).

In principle, every image can be defined as a template for the forthcoming images to
estimate feature trajectories in the image plane. When processing 100 images for example,
there is a total of (100 − 1) · 100/2 = 4950 independent image pairs. For the purpose of
this work, only high-quality images with a minimal snow coverage (see Section 3.3.3) are
considered for a template candidate. A time separation of roughly 10-30 days for a new
template image is used, whereas feature tracks are being estimated for a time span of up
to two years after the template epoch.
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3 Image-Based Displacement Estimation

3.3.1 Feature Point Selection

Image matching is optimally performed in areas of good contrast with image gradients
in different directions (e.g. Baltsavias, 1991). Feature points for tracking are selected
using a corner point detector with minimum contrast and quality threshold (Harris and
Stephens, 1988). For matching and reconstruction of a scene, a homogeneous distribution
is preferred, as the matching points will be available in all image regions. For this to
become true, the image is segmented into equal areas, whereas the number of points in
each area is adjusted accordingly.

3.3.2 Image Preprocessing

For monitoring ice- or rock glaciers as well as landslides in remote areas, cameras are
usually installed such that images are captured at constant time intervals during the day
(e.g. Travelletti et al., 2012; Bernard et al., 2013). Even if there is the possibility to control
the camera remotely, images are usually also captured in situations where the scenery is
dominated by fog, snowfall, or when ice crystals cling to the lens (e.g. Rüfenacht et al.,
2014). If there is no adaptive control for deciding whether or not to capture an image,
each picture must first be analyzed for its valuable data content. Therefore the first step
is to sequentially evaluate the content of the image for its quality. The current procedure
applies hierarchical tests that each image has to pass in order to be considered valid for
further processing. The test series includes:
A) Capture time window selection: for the current motion speed of the permafrost

creep, one image per day is enough to capture even the fastest processes in view,
thus images taken in the morning hours are preferred as the lightening conditions
turned out to be relatively stable. This minimizes the varying reflectance effect
(though there are still large variations present, see Section 3.1.2), and avoids the
problem of shadow casting, which produces strong local luminosity gradients that
potentially degrade the matching quality.

B) Image contrast check: images are tested for contrast in order to be considered valid.
A lack thereof is usually an indication of no visibility due to fog or bad weather, water
droplets or accumulated ice crystals on the lens cover glass. For the two cameras in
use (see Chapter 6), the global threshold for low contrast image content was set such
that the luminosity values must span a minimum of half the dynamic range (e.g.,
128 levels for an image recorded with 8 bit resolution). Images that were taken with
an exposure either set too high or too low are rejected, as the measured image mean
deviates considerably from its expected value. Also the image standard deviation is
used to roughly decide, if there is enough image contrast in the global scale.

C) Image noise check: here a simple method to estimate image noise is used for evalua-
tion. Images, with a high standard deviation of the upper part of the histogram, are
be rejected. The upper part of the histogram is computed by subtracting a median
filtered image from its original input.

D) Snow cover check: snow cover is estimated for each image (see Section 3.3.3), i.e.,
areas covered by snow are detected and, if the area is mostly covered by snow, the
image will be rejected.
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3.3 Data Processing Strategy

Images passing these evaluations are equalized in terms of their histograms. Contrast
and illumination are analyzed and adjusted for each image being further processed such
that equal objects appear in approximately equal contrast. Image intensities are locally
adjusted by estimating gamma correction and contrast adjustment parameters in a number
of image regions. Interpolating these parameters for every image pixel yields smooth
parameter surfaces that are capable to correct illumination and light scattering variations
of regional scales.

3.3.3 Snow Detection

Snow detection was found to be a crucial part, when monitoring permafrost surface creep
over a long period of time, i.e., over several months at its minimum. The snow-free period
typically is relatively short as these objects are located at high altitudes and usually face
the northern side of the mountain slopes. Specially during the snow melting period, there
are large areas free of snow next to snow filled depression regions that take a long time
to become free of snow. Fig 3.6 shows the effect of a melting snow patch over the course
of four consecutive days. As described before (Section 3.3.1), image features for matching
are extracted automatically based on appropriate image contrast. The transition area be-
tween image pixels representing snow and those showing rocks has an exceptionally high
contrast such that it is very likely that good feature points are defined along the snow-
rock boarder. As shown in Section 3.2.1, the driving force for the non-linear adjustment
of feature matching between images is the image gradient. Thus for these features the
transformation being estimated will not show the motion of rocks but the retreat of snow
as it melts.

Areas covered by snow have to be detected prior to the feature selection and feature
matching process. The accuracy of this detection, however, does not need to be extremely
accurate, as long as prominent snow patches are well discovered. Smaller patches are
generally detected as gross errors during the matching process, as long as their relative
influence remains below the detection threshold (typically not more than 40% - very ro-
bust implementations are near the 50% border (Fellbaum, 1994)).

Figure 3.6: Melting patch of snow monitored over five consecutive days in June 2014. The
background image in (a) is for day 1 and in (b) for day 5. Contours show the changing snow patch
extension.
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3 Image-Based Displacement Estimation

Figure 3.7: Relative snow coverage seen from camera position 2 over the image acquisition time
span. Red areas indicate the snow melt period, defined by the continuous retreat of snow, Areas
in green and blue show the periods without snow and full approximately full snow coverage,
respectively.

Snow detection in digital images was and still is an active area of research (e.g. Mac-
Queen, 1967; Rüfenacht et al., 2014). As imaging conditions are prone to strong variations
(changing illumination, shadow casting, exposure mismatch, white balance issues, etc.),
snow detection by simple intensity clipping is not a feasible method and snow detection
is not as easy as it may seem. As the accuracy does not need to be very high, the ap-
proach used in this work is based on analyzing different image segments that are obtained
using a k-means clustering procedure. Generally, snow patches have three characteristics
in common: high luminosity, low image gradient within the snow areas, and a strong im-
age gradient along the snow-rock boundary. These three quantities are defined for each
cluster type and used to identify clusters representing snow. Three parameters (one for
each criterion) were empirically determined using a couple of images taken under different
conditions. Pixels detected as snow are not considered for matching or any other analysis
during the image processing. Regarding the matching process, snow pixels within the
matching window are treated as outliers a priori by setting the corresponding entries in
the weight matrix Q−1

hh (Eqn. (3.9)) to zero.

Fig 3.7 shows the number of detected snow pixels with respect to the total number of
pixels defined for a given reference area 1 over the course of nearly four years. It is clear
that snow detection not only has to detect snow but also to declare an image to be free of
snow if there is non. A few examples of detected snow areas are given in Appendix A.

1counted using a mask defining the extent of the reference area in Fig. A.1, Appendix A

40



4 Object Point Reconstruction

In geodesy, remote sensing, and a variety of other applications, one of the key tasks is to
estimate 3-dimensional coordinates from points in space (e.g. Mayer , 1999). Given the
problem statement, different methods exist - GPS being the most well-known of them. As
stated in Chapter 1, the project aims at low-cost monitoring using a combination of low-
cost GNSS and optical camera devices. This chapter will give the theoretical background
of 3-dimensional reconstruction using optical images as observations of a scene. Each pho-
tograph shows the 3D scene projected into the 2D image. By combining a minimum of two
photographs taken from the same scene but with a different viewing angle, the principals
of scene reconstruction can be applied. Sometimes in geomonitoring, only one camera
is used to estimate 3D coordinates (e.g. Travelletti et al., 2012). For such scenarios, a
complementary dataset, typically a Digital Elevation Model (DEM), is needed.

The first section of this chapter introduces the coordinate system used in this study.
Section 4.2 then gives an overview about the principles and problems of object point re-
construction using a single camera and a DEM. In Section 4.3, the mathematical principles
of 3-dimensional coordinate estimation based on at least two views is explained. A more
detailed theory on the estimation procedure using the principle of bundle adjustment is
explained in Section 4.4. The problem of initial parameter estimates for bundle adjust-
ment is explained in Section 4.5 and finally, in Section 4.6, the combination principle of
the photogrammetric reconstruction process with GNSS position estimates is explained.

4.1 Coordinate System and Conventions

Before the fundamental equations can be introduced, the coordinate system, wherein the
computations take place, has to be defined. There are different definitions found in litera-
ture: Hartley and Zisserman (2003) define a right-handed coordinate system for world and
camera coordinates, where the camera looks into the positive z-direction. Kraus (2007)
also uses a right-handed frame, but the camera looks into the negative z-direction. This
work uses the latter convention.

Typically, the origin of the image or frame coordinate system is located at the image
center. The 2-dimensional coordinate system, defined by image axes x′ and y′ is extended
by an axis z′ orthogonal to the image plane. The origin of this 3D coordinate system is
located at the perspective center O. An image is produced by projecting rays through the
perspective center, building a negative image on the sensor. For mathematical reasons
it is more convenient to work with the positive image (see Fig. 4.1), thus defining the
principle distance c in the negative z-direction (Luhmann et al., 2006).
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4 Object Point Reconstruction
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Figure 4.1: The world (X, Y, Z) and camera (X’, Y’, Z’) coordinate system used in this work.
The camera looks into the negative z-direction. As the positive image is used for mathematical
derivations, the principle distance is −c.

The world (or object) coordinate system, also a right-handed system, defines X = easting,
Y = northing, and Z = altitude.

4.1.1 Topocentric Cartesian System

Usually geodetic coordinates are given in a national coordinate system. For example dig-
ital elevation models for Switzerland are computed in the reference frame LV03 or LV95.
These systems use ellipsoidal heights that do not correspond to a Cartesian coordinate
frame used and assumed to hold for the reconstruction process. In case of small spatial
regions of interest, the difference between the non-Cartesian and Cartesian frame is negligi-
ble. When measuring object coordinates over 100 meter and more, the difference between
the two reference frames is notable. I.e., for 100m the coordinate difference can be as
high as 47 cm for the X− or Y− and around 8mm for the height component. It is thus
important to work in a fully Cartesian coordinate system. If the original non-Cartesian
frame is used, the systematic model error needs to be corrected by appropriate correction
terms (e.g. Gruen, 1986).

In this work, the DEM coordinates, the ground control points, as well as the GNSS
coordinates for the stations in the FOV are converted into a geocentric coordinate system,
where the initial position of camera number 1 (see Chapter 6) is used as the topocentric
origin.
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4.2 Single-View

4.1.2 Rotation in Space

Rotation in space is treated as a combination of three rotations around the individual
Cartesian axes, with Eulerian angles ω, φ, and κ:

R = Rx(ω) ·Ry(φ) ·Rz(κ) (4.1)

=

1 0 0
0 cω −sω
0 sω cω

 ·
 cφ 0 sφ

0 1 0
−sφ 0 cφ

 ·
cκ −sκ 0
sκ cκ 0
0 0 1

 (4.2)

=

 cφsκ −cφsκ sφ
cωsκ + sωsφcκ cωcκ − sωsφsκ −sωcφ
sωsκ − cωsφcκ sωcκ + cωsφsκ cωcφ

 (4.3)

with cφ = cos(φ), sω = sin(ω), etc. The primary rotation is defined around the x-axis, the
secondary around the y-axis and the tertiary around the z-axis.

4.2 Single-View

Points in space can be reconstructed using a single camera, in the following called single-
view (vs. multi-view for several cameras), combined with a DEM that is used as a projec-
tion surface (Fig. 4.2). In literature, this technique is known as monoplotting. Decades
ago, Gruen and Sauermann (1977) proposed this method with amateur cameras.

Figure 4.2: The principle of monoplotting. A single camera, oriented in space, combined with a
DEM is used to estimate a 3D position of a measured point in the 2-dimensional image space.
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4 Object Point Reconstruction

When using a DEM as the projection surface, errors introduced by the elevation model
are usually large compared to the required accuracy of the object point estimation (Fisher
and Tate, 2006), specially if the model is not up-to-date and the surface is expected to
change in time. This type of data merging is often used in satellite remote sensing, where
the estimated surface displacements are projection onto a DEM to obtain the ground
geometry and to scale the estimated displacements from relative to absolute units (e.g.
Berthier et al., 2005).

4.2.1 DEM Intersection

If the camera parameters are known (Section 4.5.3), image coordinates can be used for
raytracing to find the intersecting points on a DEM. To do so, Möller and Trumbore (1997)
proposed an algorithm to efficiently intersect rays with planes that are defined by three
points in space: A, B, and C. The intersection point P can then be expressed as:

p = a + u · (b− a) + v · (c− a) (4.4)

The same point p can also be defined using the parametrized ray equation with origin o
and direction d:

p = o + t · d (4.5)

An exact solution of point P can then be found by solving for t, u, and v:tu
v

 =
(
−d (b− a) (c− a)

)−1
·
(
o− a

)
(4.6)

When computing p by Eqn. 4.5 or 4.4, the cofactor matrix of the intersection point is
found by error propagation:

KPP = FT ·Kll · F (4.7)

with FT =


∂px
∂l1

∂px
∂l2

. . . ∂px
∂l27

∂py
∂l1

. . . ...
∂pz
∂l1

. . . ∂pz
∂l27

 (4.8)

Here 27 parameters are involved: 16 camera parameters (Section 4.5.3), 2 image coordi-
nates, and 9 components for the three object points a, b, and c. Typically, the elevation
data in a DEM is given on a regularly spaced grid of East and North components, thus the
horizontal position errors can be neglected, whereas the height component errors heavily
depend on the resolution, the slope steepness, and the method the DEM was generated
with (Fisher and Tate, 2006).

A simple example of error propagation for a ray-plane intersection at different incident
angles is shwon in Fig. 4.3. Table 4.1 lists the parameters used in the example. More
details about the meaning of the individual (image) parameters is given in Section 4.3.2.
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4.2 Single-View

Figure 4.3: (a) Effect of ray-plane intersection angle and the estimated error of the intersection
point P (components X and Y). Also given are error estimates of the distance between the camera
center and point p. The parameters used are given in Table 4.1. σpZ

= 0, as points a, b, and
c defining the plane are assumed to be free of error. (b) Test geometry of rays with origin o,
intersecting with the plane defined by the points a, b, and c. Shaded in green are the covariance
ellipsoids.

As the points a, b, and c are given with zero error, the Z-component of the intersection
point has no error either (σpZ = 0). Thus, only the errors of the X, and Y component as
well as the error of the distance measure, variable t, are shown. For intersection angles

Table 4.1: Parameters used to compute the ray-plane intersection error. Covariance components
were all zero. The camera orientation was set to ω = 12◦, κ = 0◦, and φ was iteratively changed
from 10 to 90◦, all with σω,κ,φ = 0.57◦.

limage
value σ

lobjects
value σ

[mm] [mm] [m] [m]
xi 0.5 0.1 OX 12.0 0.2
yi −2.0 0.1 OY 0.5 0.2
xp 0.1 0.01 OZ 109.0 0.5
yp 0.2 0.01 AX −1.0 0.0
c 10.0 0.005 AY −2.0 0.0
k1 1.0e−4 1.0e−6 AZ 9.0 0.0
k2 0.0 1.0e−7 BX 20.0 0.0
k3 0.0 1.0e−9 BY 0.5 0.0
p1 0.0 1.0e−10 BZ 9.0 0.0
p2 0.0 1.0e−10 CX 0.0 0.0
sc 0.0 0.0 CY 6.0 0.0
sh 0.0 0.0 CZ 9.0 0.0
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4 Object Point Reconstruction

Figure 4.4: Two examples of ray surface intersections shown in cross section. Blue dots show the
DEM heights and the grey ellipses represent the formal error of the intersection point. The top
illustration shows a critical scenario of error underestimation, whereas the bottom scenario yields
an overestimation of the error.

close to 90 degrees, the error in t is dominated by the camera position and for the X and Y
components by the intrinsic camera parameters (left part in Table 4.1). With decreasing
incident angle, the error of all components increases, while the error in t increases fastest
and asymptotically approaches the error of the X-component. The latter behavior is
observed, as the incident angle is modified by a rotation around the y-coordinate axis (φ).

4.2.2 Monte Carlo Simulation for Error Estimation

Error propagation as shown in the previous Section (4.2.1) is valid only, if the plane de-
scribed by the three points a, b, and c is infinite. When rays are intersected with a DEM,
however, the valid extent of the intersection plane is defined by the three points of the tri-
angle. As neighboring planes have different orientations, other errors result, if a ray misses
the expected intersection plane. Two examples showing scenarios where the correctness
of the formal error is under- and over-estimated, are shown in Fig. 4.4. The problem
cannot be solved analytically because the distribution of the intersection parameters p is
not Gaussian anymore.

To overcome the problem of formal error estimation, an empirical error analysis using the
Monte Carlo simulation method is applied. The principle here is to create realizations of
rays (Eqn. (4.5)) following the relative frequencies of probabilities given by the covariance
matrix of the parameters. Doing so, the correlation of the random variables is considered
such that each realization follows a multivariate normal distribution (more details on the
realization of this procedure is given in Section 5.2).
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4.2 Single-View

Figure 4.5: (a) Difference of 95% and 5% quantiles obtained by formal error propagation for
ray tracing using a 1m resolution DEM (provided by the Federal Office of Environment). (b)
95% and 5% quantile difference of the Monte Carlo simulation result. Colors define the respective
components (East, North, and Height) for the intersection points. Both figures have the same
logarithmic scale.
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4 Object Point Reconstruction

Figure 4.6: Differences between the formal error propagation and Monte Carlo simulation: (a)
areas, where the formal error is too low, and (b) where the formal error is too high. Both figures
have the same logarithmic scale as also in Fig. 4.5, however, the color scale spans only half the
range. Dark areas are beyond the color scale (too large).
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4.2 Single-View

For each intersection bundle, a different distribution is obtained, so that the standard
deviation is not an adequate quantity to be compared with the formal error estimates. As
an alternative, the difference between the 95% and 5% quantiles are used for comparison.
Fig. 4.5 shows the estimated quantile differences for the formal error as well as for the
Monte Carlo simulation. The camera azimuth orientation is close to 45 degrees, leading to
near-field errors that are dominated by the North component in the left and by the East
component in the right image area. Steep rock walls (e.g., near the middle of the frame)
are dominated by errors in the vertical (Height) component and thus appear in blue. For
zones above the 100m quantile difference, luminosity decreases continuously.
Comparing the two results (Fig. 4.5) clearly shows that there are areas with heavy error
underestimation and areas, where the formal error is too high, more clearly shown in Fig
4.6. For distant regions, error estimation using the Monte Carlo simulation yields smooth
transitions between the different zones. Because small differences in simulated ray direc-
tions yield a larger dispersion of planes being intersected, a smoothing effect results for
the estimated errors between neighboring ray bundles.

Both, the Monte Carlo and the formal error estimates were computed with zero error in
the DEM components, thus shows an idealized scenario. Given the different error sources
of a DEM along with possible temporal inconsistencies, reconstruction of objects in space
using this sort of data bears the potential of erroneous error estimation.

4.2.3 Image Recification

Image rectification defines a transformation of image coordinates into a specific image
plane (i.e., a reference coordinate system defined w.r.t. a specific image). There are
different possibilities to estimate the parameters for this transformation. In the following,
a short overview of three possibilities to conduct this transformation are presented. Note
that some definitions used here are described in more detail in the following sections of
this chapter.

Epipolar Geometry

Generally, the problem can be solved by the principles of Epipolar Geometry (e.g. Hartley
and Zisserman, 2003). In a general case for cameras with unknown intrinsic parameters
(see Section 4.5.1), the Fundamental matrix F relates object points in space seen from two
views by nine parameters given in the 3×3 matrix F. In case of image coordinates x1,2 of
camera 1 and 2, respectively, the essential matrix E can be estimated instead. Mathemat-
ically, the following relationship is given (with x1 and x2 in homogeneous coordinates):

xT1 · F · x2 = 0 (4.9)
xT1 ·E · x2 = 0 (4.10)

E = KT
1 · F ·K2 (4.11)

with K1,2 represent the camera calibration matrices, see also Eqn. (4.52).
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4 Object Point Reconstruction

2D Transformation

A two dimensional transformation as presented in Section 3.2 can be estimated for the
whole image to correct for example for a simple translation, a similarity or an affine trans-
formation. The model can be extended, e.g., to include additional correction parameters
for lens distortion (Eqn. (4.15)). This type of transformation can, e.g., be applied when a
distant scene is observed from the same position in space. In case the latter condition is
not fulfilled, the mathematical model is not valid (as the projection follows the collinearity
principles, Eqn. (4.14)).

Known Camera Parameters

The third method presented here shows the principle of image rectification in case the
intrinsic and extrinsic camera parameters are known (i.e., a set of 16 parameters for both
cameras), see Section 4.3.2. For the purpose of ray tracing, the reference image coordinates
are chosen to be the corrected (i.e., calibrated) image coordinates (xcorr,ycorr), see Eqn.
(4.15). Given a reference image, the transformation into the corrected coordinates of the
reference image can be obtained in a three step procedure:

• Correction of image coordinates using the camera parameters of the image to be
transformed (Eqn. (4.15)).

• Projection of image coordinates into the 3D space using the ray Eqn. (4.5).
• Back-projection of the space coordinates using the collinearity equations with pa-

rameters corresponding to the reference image (Eqn. (4.14)).
Mathematically this rectification process can be written as:

xref = −cref
r1r ·∆m
r3r ·∆m (4.12)

yref = −cref
r2r ·∆m
r3r ·∆m

(4.13)

whereas ∆m =

OX −OXref
+ r1 · d

OY −OYref
+ r2 · d

OZ −OZref
+ r3 · d

 =

∆OX + r1 · d
∆OY + r2 · d
∆OZ + r3 · d


and Rref =

(
rT1r rT2r rT3r

)
R =

r1
r2
r3


d =

(
xcorr ycorr −c

)T
with (..)ref indicating the parameters associated with the reference epoch, others are for
the image to be transformed.

50



4.3 Stereo-/Multi-View

4.3 Stereo-/Multi-View

4.3.1 Reconstruction Principle

In this section, the theory of three-dimensional reconstruction using two or more cameras
is given. This type of object reconstruction is widely used (e.g. Remondino and El-Hakim,
2006) and well studied as no additional information other than camera-related observa-
tions are used for the reconstruction process. To define the coordinate system, i.e., the
geodetic datum, also (ground) control point coordinates are needed, see Fig. 4.7. In
applications like the monitoring of permafrost creep or similar phenomena, where only a
limited number of cameras can be used to observe large spatial areas, spatial intersection
(discussed in Section 4.4) may yield good results only for a small patch in the overlapping
images.

The principle of image-based reconstruction using two or more images relies on the recog-
nition of individual objects between the views. Once a number of such relations has been
found, the camera positions, orientations, as well as other parameters needed to recon-
struct the coordinates of the objects of interest, can be estimated. The aim of the following
section is to give an overview of the mathematical background used for this purpose.

Figure 4.7: The principle of stereo reconstruction. At least two cameras and a set of ground
control points (GCP, in green) are used to find all parameters included in the estimation of a 3D
position of a point P seen in both views.
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4 Object Point Reconstruction

4.3.2 Mathematical Model

When dealing with photogrammetric scene reconstruction, it is important to use an ade-
quate mathematical model to describe the effects involved, when a scene point is projected
onto the image plane, yielding an image coordinate as primary measurement information.
The principal model of scene projection can be described using geometric relations in the
pinhole camera model (e.g. Luhmann et al., 2006; Kraus, 2007):

x = xp − c ·
r11(X −X0) + r21(Y − Y0) + r31(Z − Z0)
r13(X −X0) + r23(Y − Y0) + r33(Z − Z0) = xp − c ·

M1
M3

y = yp − c ·
r21(X −X0) + r22(Y − Y0) + r32(Z − Z0)
r13(X −X0) + r23(Y − Y0) + r33(Z − Z0) = yp − c ·

M2
M3

(4.14)

where the symbols are:

x, y . . . metric image x,y-coordinates [mm]
xp, yp . . . image coordinates of the principal point [mm]

c . . . principal distance [mm]
rij . . . elements of the rotation matrix R (Eqn. 4.3)

X,Y, Z . . . cartesian object coordinates in space [m]
X0, Y0, Z0 . . . cartesian coordinates of the camera center in space [m]

The derivation of these collinearity equations can be found in many textbooks (e.g. Kraus,
2007) and they are the very principle of projective geometry. As any camera differs
from such an ideal pinhole camera, the projective rays are affected by refraction and
imperfections in the manufactured lenses in use (e.g. Clarke and Fryer , 1998). Brown
(1971) has shown that most camera lens distortion effects can well be modeled by five
additional parameters (AP) k1, k2, k3, p1, and p2. In rare cases of different scaling in x
and y or a skew effect between these coordinate axes two additional parameters (sc and
sh) can account for it. The equations for the corrected image coordinates (xcorr, ycorr) are
then given by:

xcorr = xc · (1 + dr) + p1 · (r2 + 2 · x2
c) + 2p2 · xcyc − sc · x0 + sh · y0

ycorr = yc · (1 + dr) + 2p1 · xcyc + p2 · (r2 + 2 · y2
c ) + sh · x0

(4.15)

with

xc = x− xp
yc = y − yp
r2 = x2

c + y2
c

dr = k1 · r
2 + k2 · r

4 + k3 · r
6

(4.16)

Considering the light travelling path of objects projecting in image areas with the same
radial distance, r (Eqn. (4.16)), Fraser and Shortis (1992) have shown that distortion
varies according to the object distance and increases with the image scale (decreasing
object distance). Dold (1997) proposed a distance-dependent distortion correction term
that requires, however, a very strong network in order to yield reliable parameters. As the

52



4.3 Stereo-/Multi-View

image scale in this study does not vary much and as there are only two cameras located at
permanent positions (Chapter 2), the network is relatively weak and thus the additional
distance-dependent distortion parameters cannot be reliably determined. Additional notes
on lens distortion can be found in Section 4.4.6.

The collinearity equations (4.14) describe the projection of object points into a perfect,
i.e., undistorted image with a principle point offset xp, yp, or mathematically:

xcorr = −c · M1
M3

ycorr = −c · M2
M3

(4.17)

The combination of the collinearity equations with the correction terms, Eqn. 4.15, then
results in:

0 = c · M1
M3

+ xc · (1 + dr) + p1 · (r2 + 2 · x2
c) + 2p2 · xcyc − sc · x0 + sh · y0

0 = c · M2
M3

+ yc · (1 + dr) + 2p1 · xcyc + p2 · (r2 + 2 · y2
c ) + sh · x0

(4.18)

Often the scale and skew coefficients sc and sh do not differ significantly from zero (see
Appendix B). For projects, where image acquisition takes place in a relatively stable
environment (over the measurement period), distortion parameters are estimated in a cal-
ibration procedure taking place just before or after the photographs have been taken (see
Section 4.5.3). The advantage hereby is, that 3D object points can be reconstructed in a
relatively simple way, as these coordinates (along with the positions of the camera centers
and the orientation angles) are the only unknowns to be solved for. In contrast to such a
procedure, there are situations, where camera parameters need to be estimated during the
optimization of the model (e.g. Pedersini et al., 1998). These problems are solved using
the well-known bundle adjustment method1, where the residuals of the non-linear Eqn.
(4.18) are minimized, solving for all significant parameters. Although the problem of bun-
dle adjustment is well-known since many decades (Brown, 1976), it is still not an easy task
to make it efficient and robust for all possible scenarios (Triggs et al., 2000). One critical
issue, when estimating 3D object coordinates using bundle adjustment, is that the highly
non-linear system (4.18) needs to be initialized with approximate values (see Section 4.5.1).

There are different strategies to estimate 3D object coordinates, when there are also camera
parameters that need optimization. Doing a full bundle adjustment is the proper way,
specially regarding statistical aspects (i.e., correlation between the various parameters).
The main problem here is, that there are 3×N + 16×M parameters to be estimated (N
is the number of object points, M the number of cameras involved), thus the matrix to
be inverted easily gets very large. Indeed, there are many software tools available (a few
of them mentioned in Triggs et al. (2000)) that are specifically optimized for such large
problems. The following Section (4.4) is dedicated to the bundle adjustment problem,
including its statistical evaluation.

1Bundle adjustment has its name from the fact that bundle of rays (projected through the image
centers) are used for estimation.
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4 Object Point Reconstruction

4.4 Bundle Adjustment

4.4.1 Principles

The principle of bundle adjustment found in the literature is formulated as the following
Gauss-Markov system (e.g., Brown, 1976; Gruen, 1986; Triggs et al., 2000; Hartley and
Zisserman, 2003):

An Ag Ae Aa

I
I

 ·


pn
pg
pe
pa

+

vb
vg
va

 =

lb
lg
la

 (4.19)

with subscripts n . . . new object point coordinates
g . . . ground control point coordinates
e . . . exterior camera parameters (for each view)
a . . . additional camera parameters (for each view)

An . . .Aa . . . the corresponding coefficient matrices
pn . . .pa . . . the corresponding parameter vectors

As the primary observation equations (4.19) are defined by Eqn. 4.18, the coefficient ma-
trices An . . .Aa contain the respective partial derivatives for each parameter involved2.

The observations are given by the image point coordinates lb (with corresponding residuals
vb), the pseudo-observations of the ground control points lg (with corresponding residuals
vg), and the pseudo-observations of the additional parameters la (with corresponding
residuals va). For the stochastic model, the following relation holds:

vb ∼ N(0; Kbb) (4.20a)
vg ∼ N(0; Kgg) (4.20b)
va ∼ N(0; Kaa) (4.20c)

The matrices Kbb, Kgg, and Kaa, being the respective variance-covariance matrices of
the observations. The additional pseudo-observations for ground control points define the
geodetic datum. Also the additional parameters (AP) are traditionally added as pseudo
observations (e.g. Gruen, 1986), as these are helpful for:

• Stabilizing the inversion of the normal matrix, also allowing the parameters not to
take an arbitrary value but to move slightly from their original guesses, la,i.

• A flexible integration of real observations of the additional parameters (e.g., from
external calibration)

2Note that in a very strict formulation, the system has to be written in the form f(ľ, p̌) = 0 rather than
f(p̌) = ľ, as shown in Eqn. C.4 (Appendix C)). Neglecting the additional partial derivatives with respect
to ľ, however, is feasible as they have a vanishing effect on the weight matrix used to build the parameter
covariance matrix. As this is an iterative approach, no difference will be observed in the final parameter
estimates and its corresponding cofactor matrix.
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4.4 Bundle Adjustment

• Constraining a non-significant parameter la,i (found during the adjustment process
- Section 4.4.2 - or from a priori information) by setting la,i = 0 and Kaiai

→ 0.
• Building a very flexible system, where parameters can also be set completely free by

Kaiai
→ inf.

The strength of the formulation 4.19 is that it allows to quickly adjust to a given geometry
and a priori information, which is a very valuable characteristic. The same implementa-
tion can, e.g., also be used to make a pure estimation of camera parameters based on fixed
object coordinates for a single camera. On the other hand, pure spatial intersection can
be performed, when constraining the camera parameters with pseudo-observations using:
Kll,e,1 = Kll,e,2 = . . .Kll,e,v → 0 and Kll,a,1 = Kll,a,2 = . . .Kll,a,v → 0, with subscripts
(..)e,v and (..)a,v indicating the variance-covariance matrices for parameter sets e and a,
corresponding to view number v.

It is to mention here, that using the Bundle Adjustment procedure for pure spatial inter-
section or for the estimation of camera parameters only, error propagation for the new set
of parameters is biased. This is due to the fact that, e.g., with Kll,a,v → 0, the components
′a′ are supposed to be error free observations. Thus when one or the other extreme case
is used, the new parameters are preferably estimated in the form of f (̂l, p̂) = v̂. More
details are given in Appendix C.

4.4.2 Significance Test for Additional Parameters

The additional parameters (AP) in the collinearity Eqn. (4.18) have to be tested for
significance. As shown in Gruen (1986), a null and alternative hypothesis H0 and HA,
respectively, are formulated as

H0 : B · p̂ = 0 (4.21a)
HA : B · p̂ 6= 0 (4.21b)

with B being the coefficient matrix, and p̂ being the corresponding estimated parameter(s)
to be tested for significance. If n is the number of additional parameters being tested, the
corresponding test quantity is given by:

T = 1
n · σ2

o

· p̂T ·BTQp̂p̂B · p̂ (4.22)

The acceptance of H0 is found in the Fisher-distribution for a significance level α with the
degrees of freedom n and r (r is the redundancy of the system). The alternative test HA

can be used to compute the power of the test 1− β, i.e., the probability of detecting HA

in case HA is true. For this purpose, the non-centrality parameter δ, given by

δ = 1
σ2
o

· p̂T ·BTQp̂p̂B · p̂ (4.23)

is computed, where the test follows the non-central Fister-Distribution. The higher δ, the
better the two tests can be separated, i.e., the power of the test increases. Its maximum
is reached, if the set of parameters that are used in the test (4.21) is orthogonal to the
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4 Object Point Reconstruction

remaining parameters involved in the adjustment (e.g. Gruen, 1986). As the additional
parameters used in the current implementation of the bundle adjustment (Eqn. (4.19)) are
given by the expression in (4.15), orthogonality is not given. Thus the strategy used to test
the significance of the additional parameters is to first test each additional parameter for
its significance3 (Eqn. (4.22)). If more than one parameter is found to be non-significant,
the candidates are tested with respect to each other. Defining a matrix F that relates
each test size T with its candidate parameter p̂c in the form of

V = F · p̂c (4.24)

As each parameter is tested separately, a diagonal form of F can be found as:

F =



1√
U11

1√
U22

. . .
1√
Uii

 (4.25)

with U = BTQp̂p̂B (4.26)

By solving the eigenvalue problem of the matrix F ·U ·F ′, the linear combination of the
eigenvector elements corresponding to the largest eigenvalue indicate the relative contri-
bution of each parameter, thus indicating the parameter that has the weakest significance.

4.4.3 Gross Error Detection in Image Coordinates

As described in Section 3.2.3, a global test can be carried out to evaluate, if the a poste-
riori variance, σ̂2

0, is equal to the a priori variance, σ2
0. If this test fails, gross errors are

most likely (also non-Gaussian distribution, systematic errors, wrong a priori covariance
matrix, or wrong functional model are other possible explanations). The derivation of
gross error detection is found extensively in the literature. For example in Gruen (1986)
and Guillaume (2014), derivations of gross error detection are shown. Here, only the most
important results and concepts are given.

For a set of observations l described by a Gaussian random vector, the following relation
holld w.r.t. its true observations:

l ∼ N(̌l;σ2
0 ·Qll) (4.27)

whereas with a gross error (denoted by ∆l) this becomes:

l ∼ N(̌l + ∆l;σ2
0 ·Qll) (4.28)

The consequence of this gross error is that the parameters p, the residuals v, and the a
posteriori variance σ̂2

0 will be biased. To detect possible gross errors in image coordinate

3after the non-linear system has converged
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measurements, a two-sided hypothesis test has to be carried out for each observation
candidate i:

H0i : ∆l̂i = 0 (4.29a)
HAi : ∆l̂i 6= 0 (4.29b)

The critical test size is then given by

Ti = ∆l̂2i
σ2

∆l̂i

(4.30)

which follows the Fisher-distribution with degrees of freedom 1 and r − 1 and, for the
two-sided test T 1/2

i , the Student-Distribution, T 1/2
i ∼ t(r − 1). As e.g., shown in Gruen

(1986), the test size can be computed as:

T
1/2
i = ∆l̂i

σ∆l̂i
= − ∆v̂i

σ0 ·
√
qv̂iv̂i

= −wi (4.31)

using ∆l̂i = −
qlili
qv̂iv̂i

·∆v̂i (4.32)

σ∆l̂i
= σ̂0 ·

qlili√
qv̂iv̂i

(4.33)

where qv̂iv̂i is the i-th diagonal element of the matrix Qv̂v̂. For a significance level of
α = 1%, the critical test size T 1/2

i is 2.60.

The principle of (4.31) is to detect a single gross error. Gruen (1986) derived a formulation
for detecting multiple gross errors simultaneously by adjusting the formulation of the
hypothesis H0, i.e.:

H0i : B ·∆l̂ = 0 (4.34)
HAi : B ·∆l̂ 6= 0 (4.35)

which leads to a test size of

T = 1
n · σ2

0
·∆v̂TQ−1

ll B ·
(
BTQ−1

ll QvvQ
−1
ll B

)−1
·BTQ−1

ll ∆v̂ (4.36)

The restriction here is that not all combinations of errors can be tested, as the regularity
of BTQ−1

ll QvvQ
−1
ll B is the limiting condition.
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4 Object Point Reconstruction

4.4.4 Internal/External Reliability

The alternative hypothesisHA (in Eqn. (4.29)) can be used to assess the internal reliability
of the system, i.e., the minimum detectable bias in an observation li. Defining α = 1% and
β = 5%4, the non-centrality parameter λ yields 4.2. With this, the minimum detectable
bias in observation i, ∇li, is given by:

∇li = λ · σ∆l̂i
= λ · σ0 ·

qlili√
qv̂iv̂i

= λ ·
σli√
zi

(4.37)

with zi =
qv̂iv̂i
ql̂i l̂i

(4.38)

Relation (4.37) can now be used to estimate the external reliability, i.e., the impact of
non-detectable gross errors on the unknown parameters p̂. In the Gauss-Markov model
(Eqn. (4.19)), this is given by

∇p̂i = Qx̂x̂ ·A
T ·Q−1

ll · ∇li (4.39)

with ∇li =
(
0 . . . 0 ∇li 0 . . . 0

)T
(4.40)

∇p̂i is a vector showing the influence of the undetected gross error ∇li on each parameter.
The complete influence matrix N is then obtained by

N = Qx̂x̂ ·A
T ·Q−1

ll ·


∇l1 0 . . . 0
0 ∇l2

...
... . . . 0
0 . . . 0 ∇ln

 (4.41)

N is used to find the maximum influence and its associated observation. This result is
helpful for analyzing the reliability of a network (any geodetic, photogrammetric, etc.
network) or to optimize an existing network by improving specific observations.

4.4.5 Detecting Errors in Control Points

Control points are usually used to define the datum of the network (e.g. Kraus, 1997). If
there is a sufficient redundancy in the distribution and number of control point coordinates,
the estimated coordinates of ’free’ control points can be tested against their measured
value (typically control points are measured by other geodetic methods - e.g. GNSS
(Section 4.5.3), yielding measurements of higher precision. The hypothesis H0 can then
be formulated as:

H0,x: Xph −Xgeo= 0 (4.42a)
H0,y : Yph − Ygeo = 0 (4.42b)
H0,z : Zph − Zgeo= 0 (4.42c)

with (..)ph and (..)geo being the photographically and geodetically determined coordinates,
respectively. These one-dimensional test quantities follow the Student-Distribution.

4these are the traditional levels in geodesy (Guillaume, 2014)
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4.4.6 Model Errors

Ignoring systematic errors in the functional model cause the estimated parameters as well
as their variance components to be biased. In principle there are three main types of
model error: local, regional and global errors. With respect to image projection, the
spatial dimension of the projection error gives the error type:

• Local errors arise, e.g., from local asperities of the imaging sensor surface.
• Regional errors can be present f.e. due to varying atmospheric densities causing

complex atmospheric refraction patterns that influence the ray traveling path.
• Global errors result, e.g., due to the Earth curvature (if not taken into account - see

Section 4.1), lens distortion, atmospheric refraction.
In the current work, only global errors are considered, as these are generally the largest
errors that might cause the functional model to be inaccurate (Gruen, 1986). As the cur-
vature of the Earth was already taken into account by working in a topocentric coordinate
frame, the two remaining issues are lens distortion and atmospheric refraction, discussed
in the following paragraphs.

Lens Distortion

As introduced in Section 4.3.2, lens distortion is modeled by a polynomial function of
degree 5. Brown (1976) derived the form of this polynomial (Eqn. (4.15)) based on the
approach to physically model image deformation as good as possible. In contrast, one may
also define an arbitrary polynomial that optimally removes systematic lens distortion, if a
specific arrangement of measurement points is given. In the latter case, polynomials should
be formulated such that optimal orthogonality is achieved (this increases the power of the
test when testing the parameter significance). Gruen (1986) suggests to use bivariate
polynomials with a degree that matches the density and distribution of image points.

For the current situation, intrinsic camera parameters were estimated using Brown’s 5
polynomial model (see Section 4.5.3). For the current stage, this is the polynomial used
to compensate for lens distortion effects. A transformation and/or re-estimation of a
bivariate polynomial may be an interesting approach for future studies.

Atmoshperic Refraction

Observations of fixed points at large distances are affected by atmospheric refraction. The
exact path of a ray between points A and B is given by Fermant’s Principle:

1
c

∫ B

A
ds =

∫ B

A
dt→ min (4.43)

with c = cv
n

(4.44)

with cv as the speed of light in vacuum and c as the speed of light in a medium with a
refractive index n. n is a function of wavelength, space, time, pressure, temperature, and
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air moisture: n = f(λ,X, t, P, T, e). The curve the light path takes can be computed, if the
field n is known. For a simple atmospheric layering, n is defined analytically as a function
of height and refraction index nA at point A. As shown in Elmiger (2002), this leads to a
light path following a circle. Depending on the atmospheric layering, the refractive index
k (defined as the radius of the light curve with respect to the curvature of the Earth)
varies between k = 1.3 for near surface layers and k = 0.155 for high altitudes. Following
Elmiger (2002), the influence of the atmospheric refraction on the height component, ∆Z,
can be expressed as:

∆Z = k · ∆X2 + ∆Y 2

2REarth
(4.45)

with ∆X,Y describing the East and North position difference and REarth representing
the radius of the Earth. For k = 0.13, the influence on the height component is about
1 cm at a distance of 1 km. As the refraction index in an alpine environment is likely to
be smaller, its influence is well below the accuracy of the object point reconstruction (see
Section 4.4.7), and thus neglected in the reconstruction process.

4.4.7 Limitations and Expected Accuracy

This section aims at giving some examples of the capabilities of object point reconstruction
concerning to precision and reliability using two or more cameras. In combination with
the reconstruction process camera parameters are estimated. Although these parameters
are usually of secondary interest, an analysis of their determinability is important for sce-
narios, where parameters have to be included as pseudo-observations.

The setup of the test field to be considered here is constructed by regularly spaced grid
points in a 3D volume in front of the cameras (Fig. 4.8). Synthetic image points are
generated by projecting object points into each view. Resulting image coordinates were
disturbed by additive Gaussian noise i ∼ N(0, σi).

Camera Parameter Estimation

Camera parameters from all views in all configurations (Fig. 4.8) can be estimated using
the set of synthetic object points and the corresponding image points in each view. With-
out any a priori information on the extrinsic and intrinsic parameters, an initial parameter
estimation must be carried out (see Section 4.5). As all object points are treated as ob-
servations of very high accuracy, correlations between different views vanish and therefore
the problem can be divided into individual sub-problems. Thus only configuration 3 is
used for testing.

Table 4.2 shows how the determinability of camera parameters (specially the higher-order
intrinsic parameters k2, k3, p1, and p2) becomes non-significant, as the image observation
noise increases (σi). The same conclusion holds for weaker geometries5. The test is

5weak in the context of a bad image coverage (e.g., only points in the lower half of the image)
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Figure 4.8: Setup of the synthetic test summarized in Table 4.2 and 4.3. All baselines between
the cameras (except camera 2 to camera 4 and camera 1 to camera 3 in configuration 1) are 50 m.
Three quadratic backside views show the camera arrangements for the free configurations.

carried out using object point coordinates with the corresponding image point coordinates
for each view. For the true camera parameters p̌, values with the same order of magnitude
as determined for the real cameras used in this study, were used (Appendix B). Initial
extrinsic parameters are computed by the direct linear transformation method (explained
in Section 4.5.1), initial intrinsic parameters were all set to zero. When non-significant
parameters are constrained, the standard deviation for the remaining parameters usually
increases (see e.g., p2 between noise level σi = 0.200 and σi = 0.600). This also shows the
importance of using a robust step-wise parameter elimination scheme to reliably identify
non-significant parameters.

Object Point Reconstruction

Table 4.3 summarizes the results for pure object point reconstruction using the synthetic
image points and the given (and fixed) camera parameters. The camera parameters applied
here, are listed in Appendix C.3. The estimated standard deviations of the reconstructed
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Table 4.2: Results of camera parameter reconstruction using synthetic data. For each image noise
level σi, all extrinsic, intrinsic, and additional parameters are estimated. The first columns, p̂, of
each block are the estimated parameters, whereas the second columns, σ̂p, show the respective
parameter standard deviations. Fields marked by ′−′ were found not to be significant during the
adjustment (see Section 4.4.2), and were thus constrained to zero.

parameter p̌
σi = 0.200 σi = 0.600 σi = 1.500
p̂ σ̂p p̂ σ̂p p̂ σ̂p

xp 0.100 0.105 0.004 0.094 0.003 0.096 0.007
yp −0.100 −0.950 0.003 −0.105 0.008 −0.063 0.011
c 15.000 15.000 0.002 15.000 0.005 14.992 0.006
k1 1.0e−4 1.06e−4 0.07e−4 0.93e−4 0.00e−4 - -
k2 −2.0e−6 −2.15e−6 0.16e−6 −1.98e−6 0.48e−6 - -
k3 −3.5e−8 3.59e−8 0.01e−8 3.52e−8 0.30e−8 2.38e−8 0.06e−8

p1 −1.0e−5 −1.96e−5 0.65e−5 - - - -
p2 8.5e−5 8.14e−5 0.46e−5 7.48e−5 0.01e−5 - -
ω 1.7000 1.7000 0.0002 1.7000 0.0005 1.6998 0.0007
φ 0.0000 −0.0003 0.0002 −0.0004 0.0002 −0.0002 0.0005
κ 0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000
OX 0.000 0.009 0.007 −0.038 0.019 −0.041 0.043
OY 50.000 50.000 0.002 50.000 0.006 50.000 0.015
OZ 50.000 50.010 0.002 50.022 0.007 50.001 0.015
σ̂0 - 0.2023 0.6403 1.4983

coordinates match the empirical standard errors between the true and the reconstructed
positions within the numerical accuracies. The external reliability indicator shows the
sensitivity of the system to undetected gross errors.

With increasing distance, both the standard deviation and the external reliability get
worse (i.e., higher values). A difference between 4 and 3 views is found mainly in the
external reliability: although standard deviations for the estimated coordinates (σ̂X,Y,Z)
show a minor difference, the external reliability almost doubles for theX-component. With
2 views, the standard deviation as well as the external reliability for the X-component
increase significantly. In this configuration, coordinate components in the line-of-sight
direction are weakly bounded and thus image residuals parallel to the baseline (or more
generally parallel to the epipolar plane6) between the cameras (here it is the image x-axis)
become very small (see Fig. 4.9). The consequence is, that the errors of the corresponding
coordinate components increase (here the X-axis, compare Table 4.3).

6The epipolar plane is the plane defined by the too camera centers and the object point seen by both
views

62



4.5 Initial Parameters for Bundle Adjustment

Table 4.3: Results of object point reconstruction using synthetic data. The ’distance to point’
column indicates the distances of the four selected points with respect to the centroid of all cameras.
The baseline between the cameras was 50 m in all cases and the image scales for the four distances
are: 2.3, 4.2, 6.1, and 8.1 cm/pixel.

Distance Standard Deviation [cm] Ext. Reliability [cm]
to Point [m] σ̂X σ̂Y σ̂Z ∇X ∇Y ∇Z

4
vi
ew

s 50 1.01 0.54 0.57 1.48 1.11 1.15
100 3.81 1.05 1.07 5.54 2.14 2.18
150 8.40 1.56 1.57 12.18 3.18 3.21
200 14.78 2.07 2.08 21.38 4.22 4.23

3
vi
ew

s 50 1.09 0.60 0.62 2.56 1.49 1.56
100 4.12 1.16 1.18 9.93 2.87 2.93
150 9.09 1.73 1.74 22.12 4.26 4.30
200 16.02 2.29 2.30 39.06 5.64 5.67

2
vi
ew

s 50 1.45 0.72 0.72 4.20 2.10 2.10
100 5.80 1.45 1.45 16.82 4.20 4.20
150 13.04 2.17 2.17 37.84 6.30 6.30
200 23.14 2.89 2.89 67.16 8.40 8.40

Combined Camera and Object Point Estimation

The task of the bundle adjustment is to combine the previously separated estimation
procedures. In the given simulation setup, configuration 3 was used to test its performance:
15 control points were randomly selected from the synthetic object points. Together with
the image point measurements (σi ∼ N(0, σi = 0.5 pixel)), initial camera parameters and
object point coordinates were computed. For the same evaluation points at distances of
50, 100, 150, and 200m, equal estimates of parameter precision were obtained, whereas
the external reliability is ∼ 15 % worse than in the case of pure spatial intersection. This
result reflects the fact that if there were undetected gross errors in image coordinates, they
also affect camera parameters and lead, therefore, to a higher impact on the object point
reconstruction. For the camera parameters, the same conclusion holds.

4.5 Initial Parameters for Bundle Adjustment

The previous section (Section 4.3.2) showed that the mathematical model used to solve
the bundle adjustment is highly non-linear. As such, initial estimates for the internal and
external camera parameters are needed. If no estimates for the additional parameters are
available (e.g., using a separate calibration procedure), they are set to zero as this has only
a secondary effect (i.e., for the reduction of systematic errors (Gruen, 1986)). Along with
the intrinsic parameters, the extrinsic parameters (camera position and orientation) have
to be estimated for each view in the first place. Afterwards, the initial object coordinates
can be estimated.
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4 Object Point Reconstruction

Figure 4.9: Image residuals for configuration 2 (3 views - top figures) and configuration 3 (2 views
- bottom figures). For configuration 2, only the first two image residuals are shown. The vector
scale of 6µm corresponds to 1 pixel. σi = 0.5 pixel in both cases. Only residuals of points seen
from all views are plotted.

4.5.1 Intrinsic/Extrinsic Parameters

In the general case of a projective camera, a matrix P maps the object points (3D space)
X = [X Y Z 1]T to the corresponding image points (2D space) x = [x y 1]:

x = P ·X (4.46)

Matrix P thus encodes all the mapping properties of the camera. Following Hartley and
Zisserman (2003), the 4× 3 P-matrix is defined as:

P =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 (4.47)
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Eqn. (4.46) above can also be written in the form of the cross-product ((x×P) ·X = 0)
such that a simple linear solution can be found:

(
0T −ziX

T
i yiX

T
i

ziX
T
i 0T −xiX

T
i

)
·



p11
p12
p13
p14
p21
...
p34


= A · p = 0 (4.48)

with (xi, yi, zi) being the i-th homogeneous image point coordinates and Xi the coordi-
nates of the corresponding object point. Note that following the cross-product derivation,
the first matrix in Eqn. 4.48 has an additional row. Due to the linear dependency of this
row with respect to the first rows, it can be dropped (see Hartley and Zisserman (2003) for
more details). Using at least six control points (i = 1..6), the linear equation can be solved
for all the elements of P. With n observation pairs xi ↔ Xi, i = 1..n, the system matrix
has dimension 2n× 12. As matrix P has 11 degrees of freedom7, an additional condition
has to be defined. In a first step, the algebraic error is minimized with the constraint
‖p‖ = 1. This type of estimation is known as the Direct Linear Transformation (DLT).
The solution is the eigenvector of ATA having the smallest eigenvalue (least-squares so-
lution of homogeneous equations). An elegant way to obtain this is to perform a singular
value decomposition, where the solution vector is the eigenvector corresponding to the
smallest eigenvalue.

As the minimization of the algebraic error does not minimize the geometric distance, such
a (nonlinear) minimization can be performed additionally. Using the result obtained with
the DLT, a least-squares adjustment minimizing the geometric error can be performed.∑

i

d
(
xi,P ·Xi

)2 → min (4.49)

In addition, constraints with respect to known parameters can be included. Typically the
camera pixel sizes in x- and y-direction (αx, αy) are equal and the skew s (see Eqn. 4.52)
is constrained to zero. As small variations in these parameters can have a large impact on
other parameters, the solution is obtained by iteratively increasing the weight w on the
pseudo-observations defining the constraints:∑

i

d
(
xi,P ·Xi

)2 + w · (αx − αy)2 + w · s2 → min (4.50)

In the implementation used in this work, the second adjustment step (non-linear least-
squares) is performed by adjusting the parameters of the decomposed camera matrix P.
The decomposed elements are obtained by solving for the following relationship:

P = KR
[
I | −O

]
(4.51)

73 rotation components, 3 translation components, focal lengths fx and fy, skew s, and principle point
offset xp, and yp
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with

K =

fx s x0
0 fy y0
0 0 1

 calibration matrix (4.52)

R =

r11 . . . r13
... . . .
r31 r33

 rotation matrix (4.53)

O =


OX
OY
OZ
1

 camera center (4.54)

I is the 3× 3 identity matrix, fx and fy are the respective focal lengths of the camera, s
is the skew parameter, and xo and yo represent the principle point coordinates. If pixel
coordinates for image point measurements are used, then the unit of these parameters is
pixel. The units of the camera center (in the world coordinate system), O, correspond to
the units in Xi. Attention must be paid to use consistent coordinate systems, i.e., either
both, the world and the camera coordinates have to be defined in a right- or left-handed
coordinate system (Section 4.1). Metric image coordinates can be used in case the pixel
size and image dimensions are known. The resulting calibration matrix K then directly
indicates the focal length(s) (fx, fy) and the principle point offset (x0, x0) in mm as used
for the initial estimates. In this case, however, the direction of the y-axis is flipped (points
upward). To account for this change in the orientation of the coordinate system, the sec-
ond column of K and the second row of R have to change sign.

The decomposition of P is straight forward: defining M = KR and thus P = [M | −MO]
(Eqn. (4.51)), it follows that:

O = −M−1 · p4 (4.55)

with p4 being the last column of P. M then has to be further decomposed into an upper
triangular matrix K and an orthogonal matrix R, known as the QR-decomposition. The
inversion of M is only possible, if M is not singular, that is for a camera at a finite distance
(M is singular for cameras at infinity). One last decomposition - if needed - can be made
on R to retrive the three Euler angles ω, φ, and κ (see Equn. (4.1)). Here an adjusted
decomposition of the procedure presented in Slabaugh (1999) is used.

Table C.2 shows the difference between the solution of the DLT and the constrained least-
squares minimization (CLS), (Eqn. (4.50)). Several parameters show differences between
the two approaches. The coordinate OX for camera 2 shows a shift of almost 3 meters
and the Euler angle ω changes by about 17 degrees. Using the CLS as a second step to
estimate initial parameters might thus show a considerable improvement.8 In terms of
parameter accuracy, the standard deviations for the CLS adjustment have been computed

8For a more detailed analysis of this effect, tests using different initial estimates for the Bundle Ad-
justment should be performed.
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Table 4.4: Results of initial estimates on basic camera parameters using 11 ground control points.
The DLT (Direct Linear Transformation) columns show the results obtained by minimizing the
algebraic error, whereas the CLS (Constrained Least-Squares) columns show the estimated param-
eters after the non-linear adjustment with fy = fx and s = 0 imposed as soft constraints (see text
for more details). The estimated parameter standard deviations for the CLS are listed in Table
4.5. A 14mm lens attached to a Nikon D300s was used.

Parameters DLT CLS DLT CLS
camera 1 camera 2

fx [mm] 13.71 13.95 13.88 14.31
fy [mm] 13.34 13.95 13.61 14.31
s [mm] -0.12 0.00 -0.09 0.00
x0 [mm] 0.015 0.01 0.04 -0.065
y0 [mm] -0.08 0.57 0.05 1.43
ω [rad] 4.66 4.74 4.55 4.88
φ [rad] 4.16 4.17 4.39 4.39
κ [rad] 3.08 3.16 2.99 3.30
OX [m] 0.52 -1.48 -32.66 -35.31
OY [m] -0.52 -1.10 20.25 19.59
OZ [m] 0.57 -0.11 -16.46 -16.97

Table 4.5: Estimated standard deviations of parameters determined by CLS (see Table C.2).

parameter CLS CLS
σ̂ camera 1 camera 2

fx [mm] 0.110 0.099
fy [mm] 0.000 0.000
s [mm] 0.000 0.000
x0 [mm] 0.089 0.126
y0 [mm] 0.440 0.546
ω [rad] 0.031 0.037
φ [rad] 0.002 0.001
κ [rad] 0.006 0.009
OX [m] 0.826 0.745
OY [m] 0.532 0.309
OZ [m] 0.240 0.140

(see Table 4.5). As the corresponding parameter standard deviations for the DLT are
not directly accessible, only the a posteriori variance is compared: for the DLT estimates,
these are 1.2× 10−4 mm in average, whereas the CLS adjustment yields an average σ̂0 of
1.5× 10−4 mm.
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4.5.2 Object Point Coordinates

The second set of initial parameters that need to be determined are the coordinates of
the (3D) object points. As shown in Eqn. (4.46), the relationship between object points
X and image points x is described by the projective camera matrix P. Once P has been
determined (see the paragraph above), measured image coordinates of the same object
point in at least two views can be used to reconstruct the coordinates of the object point.
This problem is known as triangulation (Hartley and Sturm, 1997). In principle the same
algorithm as in the previous section can be used for this task. For each view, there exists
a linear relationship for the object point i in the form of:

(
x · pT3 − pT1
y · pT3 − pT2

)
·


X
Y
Z
1


i

= A ·Xi = 0 (4.56)

Again the third row can be dropped as this is a linear combination of the first two rows
(compare with Eqn. (4.48)). For multiple views j, matrix A becomes:

A =



1x · 1pT3 −
1pT1

1y · 1pT3 −
1pT2

2x · 2pT3 −
2pT1

2y · 2pT3 −
2pT2

...
jx · jpT3 −

jpT1
jy · jpT3 −

jpT2


(4.57)

And the linear system can be solved for Xi using the singular value decomposition. pTn
represents the n-th row of camera matrix P. As before, the algebraic error is minimized.
Hartley and Schaffalitzky (2004) for example note that this procedure is not an optimal
solution in terms of minimizing the geometric errors, specially in a scenario of nearly
parallel rays, may thus lead to initial guess estimates that are far off the actual solution.
As all measurements are noisy by nature, rays in space do not perfectly intersect. Similar
to Eqn. (4.49), a cost function that minimizes the projection error can be defined:∑

i

d
(
xi,Pi ·X

)2 → min (4.58)

For two views, a popular method was proposed by Hartley and Sturm (1997): here the
roots of a sixth-degree polynomial function need to be found, where the optimal solution
is then determined by an evaluation procedure of the three local minima.

In this work, initial object point coordinates are determined using the singular-value-
decomposition in Eqn. (4.57). This solution is then geometrically optimized using a non-
linear adjustment (details are given in Appendix C). The underlying principle is identical
to its sub-problem in the bundle adjustment. Optimizing single object coordinates before
the bundle procedure allows for faster convergence and generally results in a better stability
(as each initial optimization is uncorrelated with the other parameters).
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4.5.3 Additional Parameters

Camera calibration is usually performed in a special envirnoment or as a self-calibration
task during a full bundle adjustment (e.g. Clarke and Fryer , 1998). As presented in Eqn.
(4.15), the additional parameters are polynomials, where the coefficients need to be reli-
ably determined. Often a network geometry used to reconstruct scene objects is different
from that required for a comprehensive camera calibration (Remondino and Fraser , 2006).
As indicated in Section 4.4.7, the network for a reliable self-calibration with additional
parameters needs to be very strong, i.e., measurement points in the image have to have
a dense and homogeneous distribution and image coordinates need to be measured with
sufficient precision (also noted in Luhmann et al. (2006)).

Nowadays, camera calibration is an easy task and can be performed in almost all envi-
ronmental conditions. A self-calibrating bundle adjustment in a local coordinate system
is typically carried (Hartley, 1994). Here, the camera observes a static scene from various
positions. Characteristic markers or point patterns that are commonly used and detected
in each image are used to simplify the process of point identification. The next section
contains more details about this calibration procedure.

4.5.4 Camera Calibration

Intrinsic and Additional Parameters

For a reliable estimation of the additional parameters, an in-field calibration was carried
out. A calibration board shown in Fig. 4.10 was used after the camera installation in
the weatherproof housing box was completed. About 50 images were taken, where the
board orientation was changed after every image9. This has the same effect as moving the
camera around a static scene. The computation of the self-calibrating bundle adjustment
in a local coordinate system was done in Australis Photometrix (2013). The patterns fixed
onto the rigid foam board are identified by their unique point layout. The result obtained
for the intrinsic and additional parameters is given in Appendix B.

Extrinsic parameters

Absolute orientation, i.e., orientation of the camera with respect to the area of interest was
performed after the calibration for the intrinsic and additional parameters was completed.
Focus and camera position with respect to the cover glass remained unchanged for this
task. Nine ground control points (GCPs) - rectangular orange patterns - were placed in
the field and oriented such that they could easily be detected in both views. Each position
was measured by GNSS to an average accuracy of σx = σy = 1 cm and σz = 3 cm. To-
gether with the permanent GNSS stations in the field, a total of 11 stations for absolute
orientation could be used.

9With optimal calibration images, only about 10 images would be necessary to reliably estimate all
parameters.
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4 Object Point Reconstruction

Figure 4.10: Calibration board used to estimate intrinsic and additional parameters. Three close-
up views of uniquely defined calibration patterns are shown (Nr. 1-3). The estimation procedure
was carried out with the Australis software package (Photometrix, 2013).

Image coordinates corresponding to the individual stations were determined in a semi-
automatic process: initialized by defining approximate coordinates (±100 pixel), a clus-
tering of pixel values based on kmeans (Arthur and Vassilvitskii, 2007) was used for image
segmentation. To increase the efficiency, the color image was converted into gray scales
such that the orange calibration plates were easily detected (see Fig. 4.11). For the iden-
tification of the calibration pattern, different statistical properties of the segmentation
clusters were extracted:

• cluster roundness: a maximum deviation of ±30% from a circle is allowed.
• minimum/maximum size: the calibration pattern size can optionally be constrained

to be in a given range, e.g., 52 ≤ Area ≤ 502.
• pixel intensity: the mean luminosity is expected to be in the upper end of the

histogram.

For calibration patterns at larger distances small errors in the segmentation process caused
the centroids to be inaccurate. To overcome this limitation a region growing was applied
at the initial centroid position. An example of such a refinement process is given in Fig.
4.12.
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4.5 Initial Parameters for Bundle Adjustment

Figure 4.11: Example of a calibration plate (40×40 cm) seen in camera 2. (a) shows a crop of the
original image, whereas the black-and-white image in (b) was created by Ibw = Ir−0.4 ·Ig−0.4 ·Ib,
with subscripts r, g, and b indicating the corresponding color channel.
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Figure 4.12: Refinement of centroid position based on region growth. The left plot shows the
change of the centroid after each regional growth for the x− and y−components. On the right a
highly zoomed image shows the initial and final centroid.

Fig. 4.13 shows the result of the centroid centers determined after the refinement. Visual
inspection suggests that the achieved precision is in the order of 0.2-0.5 pixel10.

As demonstrated in the previous chapter, the precision of the LSM technique is in the order
of 0.05 pixel for ideal targets. Thus a template matching procedure could be used instead
of the region growing process. The image coordinates corresponding to the respective
(known) object coordinates are finally used to perform an initial estimate of the extrinsic
parameters (Section 4.5.1).

10This value is confirmed by the initial bundle adjustment (Section 6.2.1) with one centroid position
being found to be erroneous.
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Figure 4.13: Centroids of calibration patterns determined in the images. Image coordinates are
used to relate the pixel to the world coordinate system.

4.6 Integration of Permanent GNSS Stations

As explained in Chapter 1, the goal of this study is to estimate surface motion of a creeping
permafrost area over a period of multiple years. As the stability of the camera platform
over such a long period was uncertain, each camera station was equipped with a GNSS
module to accurately track its motion. In addition, two permanent GNSS stations were
installed on large rock boulders of the moving rock slide in the field of view of the cameras
(see Section 2.2 for hardware details). The primary goal of these stations is to deliver
daily solutions of their respective antenna positions. For the purpose of photogrammetric
object point reconstruction they can also be used as accurate control point measurements,
if the GNSS antennas can be identified within the images.

An accurate localization of the GNSS antennas in all images is needed to link their ac-
tual position to image coordinates. This task is realized by an image template matching
procedure, following the principles of LSM described in Section 3.2. Due to the flexibility
of the mathematical model, templates of arbitrary shape can be defined (Fig. 4.14). The
two GNSS stations in view (called station 1 and station 2) are at mean distances of 128
and 101m from the two cameras, respectively. For station 2, the outline of the template
had to be chosen such that only a minimum number of background pixels are included.
This was necessary as the background seen in this projection is at a much larger distance
and moves considerably less than the station in the foreground. For the station 1, this
was not of concern.
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Figure 4.14: Low cost GNSS stations seen in the two views. For station 1, the image scales are
5.2 and 6.4 cm/pixel and for station 2, the image scales are 4.1 and 4.5 cm/pixel for camera 1 and 2,
respectively (based on the distances from the GNSS antenna to the respective camera centers).
Outlined in red are the corresponding templates used for matching. Blue arrows point to the
antenna centers.

The transformation being estimated is formulated with respect to the GNSS antenna cen-
ters (as these correspond to the measured GNSS coordinates). For a given template image,
the pixel coordinates of the corresponding antenna positions were manually determined.
To increase redundancy and reduce the error of manual pixel localization, a template was
defined for each operation year, yielding multiple matching results for each image. Nat-
urally, a systematic bias can not be excluded at this stage, because (1) the antennas in
the images are only about 2 pixel in size and (2) the exact antenna center is not known.
Combined, a systematic error in the order of 0.5 pixel or 5 cm (projected) might be present.

As mentioned before, the matching principle is identical to the least-squares technique
used for feature tracking. A notable difference is the matching window geometry: within
the template outline, the number of pixels near the antennas are very few and thus other
areas have to be included to reach a certain level of redundancy and contrast. As the
border of the solar panels show the highest image gradients, the matching results are most
sensitive to these structures.
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4.7 Processing Strategy

By combining GNSS and image-based point measurements, the following strategy for
object point reconstruction is applied:

• Initial camera calibration, epoch t0: independent estimation of extrinsic, intrinsic,
and additional parameters (Section 4.5.4).

• Optimization of all camera parameters for epoch t0: the combined set of parameters
are re-estimated using the principle of bundle adjustment (Section 4.4). Parameters
that are weakly defined in this geometry are given appropriate weights.

• Estimation of new object points on solid rock for epoch t0: new 3D points are defined
to be used as pseudo ground control points for epochs t > t0.

• Estimation of coordinates for features on the surface of the permafrost creep for
epoch t0.

• Re-estimation of camera parameters and coordinates of moving features: the prin-
ciple of bundle adjustment is applied for epochs t > t0. The camera positions are
kept at constant offsets with respect to the estimated positions of the onboard GNSS
antenna centers. Daily GNSS positioning solutions are interpolated for the respec-
tive epochs of image acquisition. The initial set of pseudo ground control points
along with the high precision GNSS ground control points are used for every epoch
possible.

As noted in Chapter 2, images are typically acquired once every hour. Due to the slow
motion of the rock slide, however, only one image per day was selected (manually) for
further analysis. Both cameras were given the same image acquisition schedule. Although
the clocks are accurate, absolute differences of up to 10 seconds in the image acquisition
epochs between the cameras were observed (acquisition time stamp in the image headers).
Due to the slow motion of the rock slide, this is not of concern for the reconstruction
process. For the automatic allocation of images corresponding to the same epoch, a
respective acquisition time tolerance of a few seconds was therefore used.
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5 Collocation for Time Series Analysis

5.1 Least-Squares Collocation

5.1.1 Principle

Least-squares collocation is a well known method to differentiate between measurement
noise and signal, based on assigned neighbourhood relations (i.e., correlations). In the
geodetic content, this method is well described in Moritz (1970) and Moritz (1973). Tra-
ditionally a linear estimator of a general vector field l(r) is combined with an empirical
estimate of correlations in a stochastic field Css. In case the observation noise n and the
statistical signal s are uncorrelated and s ∼ N(0; Css) and n ∼ N(0; Cnn) the solution can
be formulated as:

l(r) = A · x̂ + ŝ + n̂ (5.1a)
D = (Css + Cnn)−1 (5.1b)
k̂ = D · (l(r)−A · x̂) (5.1c)
ŝ = Css · k̂ (5.1d)
n̂ = Cnn · k̂ (5.1e)

where Css is the covariance matrix of ŝ, Cnn is the (auto-) covariance matrix of n̂, and
x̂ the estimated parameter vector of the deterministic part, given in Eqn. (5.2), with
A as its design matrix and Qxx as the parameter variance-covariance matrix. Matrix
D represents the weight matrix, and k̂ the correlation vector. The system minimizes
nTC−1

nnn + sTC−1
ss s. Also note that vector r represents coordinates in space and time.

x̂ = Qx̂x̂ ·A
−1 ·D · l(r) (5.2)

Qx̂x̂ = (AT ·D ·A)−1 (5.3)

The general (noise free) interpolated field l(r′) at the predicted coordinates r′ is then given
by

l̂(r′) = A′ · x̂ + Cs
′
s · k̂ (5.4)

with Cs′s as the covariance matrix between the predicted and the measured points. The
correlations between the measured positions described in the covariance matrix Css, the
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(auto-)correlations of the noise components described in Cnn, and their relative weights
determine how the measurements are distributed into a signal ŝ and a noise n̂ part. The
signal correlation follows an a priori model, either determined by external information
(e.g., a known tectonic setting), see Egli et al. (2007) or Villiger (2014) for further details,
or an estimated correlation function computed by using the covariogram representation
(Journel, 1989). If both, a physical correlation between measurements at different coordi-
nates and a database with units of geometrically well distributed measurement positions
at sufficient measurement quality is given, the variance and co-variance components can
be determined empirically, see Section 5.2.

5.1.2 Derived Quantities

The formulation given by Eqn. (5.2) can also be formulated such that a quantity derived
from the observation vector l is estimated. A typical example, that is also used in this
study, is the estimation of the velocity from a sequence of observed positions coordinates.
The relation is formulated as the derivative w.r.t. time t:

v(r) = ∂l(t, r)
∂t (5.5)

For the collocated velocity of the interpolation field v(r), this is (e.g., Peter , 2000):

v(r) = ∇ ·A′ · x̂ +∇Cs
′
s · k̂ (5.6)

Eqn. (5.6) shows that the derivatives of the deterministic part of matrix A as well as the
derivative of the covariance function f (see Section 5.2), defining the covariance matrix
Cs
′
s, have to be found.

5.2 Empiric Covariance Function

The covariance matrix Css is usually described by a correlation function f :

Css = σ2
s · f(rij , rs) (5.7)

with rij = |ri − rj | describing the measurement distance matrix (space and time), rs the
signal correlation length, and σ2

s the signal variance. The solution of Eqn. (5.1) thus
highly depends on the choice of the analytical covariance function (5.7), describing the
correlation between the measurements. The choice of the function f is not free because it
must follow a series of important properties (e.g., Geiger , 1996; Hurter , 2014):

• f(rij) ≥ 0 with rij ≥ 0
• f(0) = 1
• lim

rij→∞
f(rij) = 0

• −∞ < f ′(rij) <∞
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• f ′(0) = 0
• positive, monotonically decreasing

Typical functions that fulfill these requirements are:

Model 1: f(rij) = σ2
s · e

−u·|ri−rj |
n

(5.8)

Model 2: f(rij) = σ2
s ·

1
1 + u · |ri − rj |

n (5.9)

Model 3: f(rij) = σ2
s ·

sin(rs · |ri − rj |)
rs · |ri − rj |

(5.10)

with u = 1/rns and n ∈ R+

The parameters rs, n, and σ2
s are unknowns and consequently must either be set a priori

or estimated empirically from the data. The choice of the parameter n is not totally free,
because the conditions listed above imply that the covariance matrix must be positive
definite, which is the case as long as n ∈ ]0, 2]. More details regarding these constraints
are given in Rudin (2011).
When the parameters of f are determined empirically, the autocorrelation of the dataset
is used for reference. As shown in Hurter (2014), estimating the correlation length is
relatively robust with respect to sampling. An underestimated correlation length has the
negative effect of yielding more noise in the collocation result. For large datasets a more

Figure 5.1: (a) Synthetic vector field generated from a random variable ∼ N(0; 1). (b) shows the
variance-covariance matrix with f(r) = 0.7 · e−0.3·|ri−rj |

1.2

being evaluated for all |ri − rj |. The
position vector r was generated by weakly disturbing a regular grid (50 samples from 0 to 30 for
both dimensions). More details about generating such a vector field can be found in the text.
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robust estimate can be obtained, if binned correlation estimates ĉ(db) at different offsets
are used. For each bin position, db (b being the distance index), the weighted average
correlation over the distance range k is computed as:

c(d) = l(ri) · l(rj) for all |ri − rj | = d (5.11)

ĉ(db) =

b·k≤N∑
n=(b−1)·k+1

wn · c(n)

b·k≤N∑
n=(b−1)·k+1

wn

(5.12)

with N being the length of vector c(d) and w the measurement weights. In other words,
the estimated correlation at distance db is proportional to the (weighted) average of all
measurement products l(ri) · l(rj) with d(b−1)·k < |ri − rj | ≤ db·k. Depending on the
complexity of the physical problem, the correlation vector ĉ can be multi-dimensional and
ĉ ∈ RN . For many practical problems, however, ĉ is defined in R+N (as in Eqn.(5.12)).

Table 5.1: Summary of covariance parameter estimations using a synthetic velocity field with a
given variance-covariance matrix, following f(r) = 0.7 · e−0.4·|ri−rj |

1.3

, with σ2
n = 0.4. Each row

shows the average result of 100 different realizations (see text for more details). The relative bin
size states the number of position pairs within one bin relative to the total number of positions
(here 900). Each estimate is given with its corresponding 1σ level.

Relative bin size σ2
s u n absolute # bins

8 0.850± 0.032 0.427± 0.044 1.533± 0.074 39
4 0.776± 0.035 0.469± 0.049 1.312± 0.081 76
2 0.727± 0.031 0.438± 0.043 1.343± 0.071 151
1 0.720± 0.028 0.423± 0.039 1.389± 0.065 300

1/2 0.703± 0.028 0.411± 0.039 1.383± 0.065 599
1/4 0.699± 0.028 0.419± 0.039 1.360± 0.064 1197
1/8 0.685± 0.028 0.405± 0.039 1.365± 0.065 2393
1/16 0.674± 0.028 0.413± 0.039 1.353± 0.065 4785
1/32 0.659± 0.028 0.435± 0.039 1.317± 0.065 9569
1/64 0.673± 0.028 0.487± 0.040 1.278± 0.068 19137

A synthetic dataset was generated to test the effect of data binning. Because collocation
assumes normal data distribution, displacements were produced such that they follow
∼ N(0; C). A realization of the vector v can be obtained as soon as the covariance matrix
C is defined. Here, C was computed using model 1 (Eqn.(5.8)) with pre-defined parameters
σ2
s , u, and n, where r has the dimension of 900× 2. Using the normalized eigenvectors U

and corresponding eigenvalues Λ of C, the vector v is computed as v = U ·
√

Λ · y, with
y ∼ N(0; 1) (Guillaume, 2014). Additional Gaussian noise (∼ N(0;σ2

n)) was added to v.
The result with σ2

s = 0.70, u = 0.40, n = 1.30, and σ2
n = 0.40 is summarized in Table 5.1.

The numbers represent the average of 100 realizations and parameter estimations. An
example of the 2-dimensional vector field with its (noise free) covariance matrix is shown
in Fig. 5.1.
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5.2 Empiric Covariance Function

Figure 5.2: Empirical covariance function estimates. Black dots represent the mean covariance
of binned data ĉ(db) with 1σ error bars in grey. The least-squares solution of the three analytical
models (Eqns. (5.8) - (5.10)) are given in red, green, and blue, with the corresponding 3σ envelopes.
d represents the absolute point-to-point distance. The brown circle at d = 0 shows the mean
variance with its 1σ standard deviation. The total variance is not used in the computation of the
model parameters.
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5 Collocation for Time Series Analysis

The covariogram (Eqn.(5.12)) of the synthetic vector field is computed using different bin
sizes, whereas in every scenario, a least-squares adjustment is used to estimate the pa-
rameters of the covariance function (model 1, Eqn.(5.8)). Tabel 5.1 summarizes the result.

According to this test series, the optimal relative bin size is ≈ 1/2 (i.e., the number of
position pairs in one bin corresponds to about half the total number of measurement
positions). In Fig. 5.2, the difference between well-binned (number of samples in each
bin equals the number of measurements, N) and hardly binned (number of samples in
each bin equals 1/32N) correlation estimates are shown for a real dataset: displacement
estimates of matched images features of a scene taken with different lenses at different
image scales are used as measurements. A globally estimated transformation mapping
the features from the patch image onto the template image was applied to compute the
residuals. These residuals are then used to compute the covariogram (Eqn. (5.12)) that
serves as input for estimating the empirical correlation functions (model 1 to 3, Eqns. 5.8
- 5.10). The resulting three curves in Fig. 5.2 were computed by least-squares adjustment,
corresponding errors of f were obtained using the error propagations laws. In Fig. 5.3,
estimated parameters for every decreasing bin sizes are shown.

Figure 5.3: Parameters estimates of model 1 (Eqn.(5.8)) using different binning numbers. Error
bar envelopes show the 1σ parameter standard deviation. The blue circle gives the optimal solution,
i.e., minimum total parameter variance. Note, however, that estimates from relative bin numbers
of 1 to 0.0312 show a very similar error distribution.
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5.3 Adaptive Least-Squares Collocation

5.3 Adaptive Least-Squares Collocation

One of the limitations of least-squares collocation is the missing flexibility to handle sharp
boundaries of different velocity fields. This is because the covariance function for a given
set of parameters only depends on the coordinate differences of the measurement points
(see Eqns. (5.8) - (5.10)). Also in case the covariance function has directional components
(for example: f(rij) = σ2

s · 1
1+u1·r

2
xx+u2·r

2
yy+u3·rxx·ryy

with rxx = rxi−rxj being the distance
between the positions i and j of the x-component covariance matrix rxx, it represents
a relative measurement position relationship (i.e., independent of the absolute position).
In this section, a modified least-squares collocation method is presented that iteratively
decorrelates boundary areas. It is based on the empirical estimation of an anisotropic and
inhomogeneous covariance function that is not known a priori.

Originally, this method was developed within the Swiss 4D project (Egli et al., 2007) for
GNSS data and levelling measurements. The principle is to decorrelate points with high
strain rates by changing their measurement metric, i.e., the measurement coordinates are
deformed such that the distance between points of high strain rate increases, thus yielding
a smaller correlation. Villiger (2014) improved the original version of this method such
that 3-dimensional GNSS and leveling measurements could by adaptively collocated.

In this section, the main steps of the theoretical background are given as well as a further
improvement of the technique: the measurement epoch is also considered as a coordinate
component making it possible to apply the metric dilation not only in space but also in
time. The motivation to include this additional component can be found, when looking at
time-depending phenomena like for example the flow behavior of (rock) glaciers, that is
prone to rapid changes due to external triggering events (e.g., Delaloye et al., 2010; Wirz
et al., 2013).

Sections 5.3.1 to 5.3.5 are based on the description found in Egli et al. (2007) and Villiger
(2014), but formulated an arbitrary dimensionality. Notes on combining space and time
with this procedure are given in Appendix D.

5.3.1 Principle

Moritz (1970) solves the least-squares collocation problem by dividing the solution vector l
into a deterministic part A·x and a stochastic part ŝ, where matrix A·x defines the a priori
model. Because a priori models are always approximations, the deterministic trend model
will suffer from errors that transfer into the stochastic part which, as a consequence, will
introduce a bias and so lead to a signal s that is not fully stochastic. In most geodetic and
geophysical processes, an exact a priori model is not available or known (e.g., Villiger ,
2014). For many applications the covariance function of the residual signal is inhomo-
geneous (e.g., Rummel and Schwarz, 1977) and anisotropic (e.g., Morrison, 1977), the
Adaptive Least-Squares Collocation (ALSC) approach introduces an inhomogeneous and
anisotropic covariance function, defining Csisi

, that fulfills the same criteria as Eqn.(5.7):

81



5 Collocation for Time Series Analysis

Csisi
= σ2

si
· f(|ri − rj |, rsi) (5.13)

with rsi being the correlation length and σ2
si

the variance of the inhomogeneous and
anisotropic signal. The purpose is to correct the deterministic model for its bias.

Given that Eqn. (5.1) is the basic least-squares collocation approach, formulation (5.1) is
extended by dividing the signal into a inhomogeneous part, ŝi, and a homogeneous part,
ŝh. The total signal is then given by:

l(r) = A · x̂ + ŝi + ŝh + n̂ (5.14)

with ŝi = ŝi(r) and ŝh = ŝh(r) defined as:

ŝi = Csisi
· (Csisi

+ Cshsh
+ Cnn)−1 · (l(r)−A · x̂) (5.15a)

ŝh = Cshsh
· (Csisi

+ Cshsh
+ Cnn)−1 · l(r)−A · x̂) (5.15b)

The inhomogeneous and anisotropic covariance function (5.13) is not known a priori and
must be determined iteratively. A good estimate is obtained if the inhomogeneity and
anisotropy follow the local deformation rates. Thus the principle of the ALSC is to iter-
atively determine local deformation rates (i.e., strain rates) and based on these, estimate
local metric deformations leading to rk−1 → rk, with k being the iteration counter. This
works under the assumption that strain rates are highest at motion boundaries (like for
example rock glacier interfaces). High strain rates, therefore, indicate areas to be decor-
related, thus the inhomogeneous metric is iteratively dilated to achieve this effect. The
collocation begins with the original metric, rk=0, to calculate ŝi. Using the estimated de-
formation rates, a coordinate transformation is computed for the new metric, rk=0 → rk=1,
so that the distance between points with high strain rates is is increased. Using this new
metric, a better model for Csisi

can be computed and used again for a better strain rate
estimate. The variance-covariance matrices after the k-th iteration hence are:

Ck
sisi

= σ2
si
· f(|r(k−1)

i − r(k−1)
j |, rksi) (5.16)

Cshsh
= σ2

sh
· f(|ri − rj |, rsh) (5.17)

As indicated in Eqn. (5.17), the variance-covariance matrix of the stochastic signal ŝh is not
effected by this so called dilation process (described below) and so it remains homogeneous.
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5.3 Adaptive Least-Squares Collocation

5.3.2 Dilation Process

As described in the previous section, a process called dilation is needed to achieve an
’uncoupling’ of regions where high deformation rates indicate a weak correlation. This
increase in point-to-point distance follows a derivable vector function (Egli et al., 2007;
Villiger , 2014) that defines the coordinate transformation for the new metric:

rtr = r + D(r, r0,u1, ..,us, e1, .., es, γ) (5.18)

with rtr being the transformed coordinate, r the original coordinate, r0 the center of
dilation, u1, ..,us the orientation of the orthogonal unit vectors in all s dimensions, the
scaling coefficients e1, .., es, and the dilation length γ.
As explained in Egli et al. (2007), this function has to fulfill two properties:

lim
|r−r0|/γ→0

rtr − r0 =
s∑
i=1

ei· < r− r0,ui > (5.19)

lim
|r−r0|/γ→∞

rtr − r0 = 0 (5.20)

with < a,b > representing the scalar product between the vectors a and b. A simple
formulation that meets these requirements is:

D(r, r0,u1, ..,us, e1, .., es, γ) = 4(|r− r0|, γ)
s∑
l=1

el· < r− r0,ul > ·ul (5.21)

with 4(r, γ) = γ

r
tanh

(
r

γ

)
(5.22)

Function D thus describes the dilation caused by a single source (located at r0). The
total coordinate transformation of N dilation sources (r0 = r1, .., rN ) is obtained by their
superposition:

rtr = r +
N∑
k=1

D(r, rk,uk1, ..,uks, ek1, .., eks, γ) (5.23)

To apply Eqn. (5.23), dilation directions uk1, ..,uks and dilation stretching factors ek1, .., eks
have to be determined.

5.3.3 Estimating Dilation Parameters

The gradient of the coordinate transformation described in Eqn. (5.23) is given by the
directional derivative of D. In direction of n this is given as:

∂

∂nD(r, r0,u1, ..,us, e1, .., es, γ) =
s∑
l=1

el < G(r− r0,n, γ),ul > ul (5.24)

with

G(r,n, γ) =< r,n >
r
r2 sech

2
(
r

γ

)
+ γ

r

[
n− < r,n >

r
r2

]
tanh

(
r

γ

)
(5.25)

r = |ri − rj |
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5 Collocation for Time Series Analysis

By considering Eqns. (5.24) and (5.25), and following Egli et al. (2007) in combination
with Villiger (2014), the derivative of Eqn. (5.23) for a point rj with 1 ≤ j ≤ N along
the orthogonal directions dj1, ..,djs is given by:

N∑
k=1

s∑
l=1

ekl < Gkj1,ukl > ukl = dj1dj1 (5.26a)

N∑
k=1

s∑
l=1

ekl < Gkj2,ukl > ukl = dj2dj2 (5.26b)

...
N∑
k=1

s∑
l=1

ekl < Gkjs,ukl > ukl = djsdjs (5.26c)

where Gkjs = G(rj−rk,djs, γ). When replacing the unit vectors ukl with dkl and building
the scalar product of all components (Eqns. (5.26)), the result is:

N∑
k=1

s∑
l=1

ekl < Gkjs,dkl >< dkl,djm > = djsδml (5.27)

with m = 1, 2, .., s and the Kronecker delta δml. For any two points rj , ri, the following
assumptions can be applied:

(1) < dkl,djm >≈ 0 for l 6= m and |rj − rk| < γ

(2) Gkjldkm ≈ 0 for l 6= m and |rj − rk| < γ

(3) Gkjl ≈ 0 for |rj − rk| � γ

Considering these simplifications, the system of equations can be written as:
N∑
k=1

s∑
l=1

ekl < Gkj1,dkl >< dkl,dj1 > = dj1 (5.28a)

N∑
k=1

s∑
l=1

ekl < Gkj2,dkl >< dkl,dj2 > = dj2 (5.28b)

...
N∑
k=1

s∑
l=1

ekl < Gkjs,dkl >< dkl,djs > = djs (5.28c)

that is a set of s · N linear equations with s · N unknowns ekl. dkl and dkl are the
eigenvectors and eigenvalues of the strain tensor for point k. The system of equations can
be rearranged such that the unknown scaling values ekl are obtained as:

e1
e2
...

es

 =


M11 M12 · · · M1s
M21 M22 · · · M2s
...

... . . . ...
Ms1 Ms2 · · · Mss


−1

·


v1
v2
...

vs

 (5.29)
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5.3 Adaptive Least-Squares Collocation

with [Mlm]kj = (Gkjldkm)(dkmdjl), [el]k = ekl and [vl]j = djl. Thus, once the strain
tensors at the dilation point sources are known, the deformation scaling rates can be com-
puted.

The strain rate tensor is a product of the velocity gradient field ∇ŝ′i, that, in the least-
squares collocation for the interpolated inhomogeneous signal, obtained by:

∇ŝ′i = ∇Cs
′
isi
· (Csisi

+ Cshsh
+ Cnn)−1 · (l(r)−A · x̂) = ∇Cs

′
isi
· k (5.30)

k = (Csisi
+ Cshsh

+ Cnn)−1 · (l(r)−A · x̂) (5.31)

In case the design matrix A describes a deterministic part other than a offset, ∇A also
has to be considered (i.e., added) for computing the strain rates of the total trend (i.e.,
deterministic and inhomogeneous part, τ = A · x̂ + ŝi, compare Section 5.1.2):

∇τ = ∇A · x̂ +∇ŝi (5.32)

In the following Section (5.3.4), ∇A is assumed to be zero. However adding this compo-
nent is trivial because its contribution only depends on the estimated parameters of the
deterministic model and the initial interpolation positions.

5.3.4 Strain Rate Tensor

The general definition of the strain rate tensor εk for a point rk with velocity vector si,k
in three dimensions is:

εk = 1
2
(
(∇si,k)T +∇si,k

)
(5.33)

with ∇si =

∇six∇siy
∇siz

 =


∂six
∂x

∂six
∂y

∂six
∂z

∂siy
∂x

∂siy
∂y

∂siy
∂z

∂siz
∂x

∂siz
∂y

∂siz
∂z

 (5.34)

During the iterative process of the ALSC, the trend metric changes. This does not have
a direct impact on the velocity estimations (Eqns. (5.14) and (5.15)) but on the strain
rate tensor. This is because the dilation process deforms the coordinate grid (originally or-
thogonal unit vector directions) such that the distances and directions are being deformed.
Thus for estimating the strain rates in the undisturbed grid, the directional derivatives,
given by the following expression, have to be considered:

∂ŝi
∂x

= ∂xtr

∂x

∂ŝi
∂xtr

+ ∂ytr

∂x

∂ŝi
∂ytr

+ ∂ztr

∂x

∂ŝi
∂ztr

(5.35a)

∂ŝi
∂y

= ∂xtr

∂y

∂ŝi
∂xtr

+ ∂ytr

∂y

∂ŝi
∂ytr

+ ∂ztr

∂y

∂ŝi
∂ztr

(5.35b)

∂ŝi
∂z

= ∂xtr

∂z

∂ŝi
∂xtr

+ ∂ytr

∂z

∂ŝi
∂ytr

+ ∂ztr

∂z

∂ŝi
∂ztr

(5.35c)
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with (compare Eqn. (5.30)):

∂ŝi
∂xtr

=
∂Cs

′
isi

∂xtr
· k (5.36a)

∂ŝi
∂ytr

=
∂Cs

′
isi

∂ytr
· k (5.36b)

∂ŝi
∂ztr

=
∂Cs

′
isi

∂ztr
· k (5.36c)

Practically, the correction terms ∂x
tr

∂x , ∂y
tr

∂x , ∂x
tr

∂y , etc., for the (k + 1)-th iteration are
determined by multiplying the current estimates with the previous ones. For the first
component ∂x

tr

∂x , this reads as:

∂xtr
k+1

∂x
= ∂xtr

k−1

∂x
· ∂x

tr
k

∂x
(5.37)

The eigenvectors djl and the corresponding eigenvalues λjl (used to estimate the dilation
parameters, Eqn. (5.29)) are obtained using an eigenvalue decomposition on the corrected
strain rate tensor.

5.3.5 Linking Gradient Field and Transformation Parameters

A suitable coordinate transformation is obtained if the dilation directions, given by the
eigenvectors djl, coincide with the directional derivative |u∇ŝi|. In addition, the amount
of dilation, given by the eigenvalues djl should be proportional to |djl∇ŝi|. These condi-
tions assure, that the main dilation component is acting in the direction of the maximum
gradient and is proportional to the gradient itself. To prevent the situation for arbitrary
dilations, a scaling parameter λmax is introduced, defining the maximum allowed dilation
between any two points. Applying an eigenvalue decomposition of the strain rate tensor,
yielding the eigenvectors djl and corresponding eigenvalues λjl, the dilation scales are
obtained by:

djl = λmax · g
−1
max · |λjl| (5.38)

with gmax being a truncation value so that:

djl =
{

1 if g−1
max · λjl > 1

λmax · g
−1
max · |λjl| otherwise

(5.39)

The truncation parameter gmax is used to define an upper threshold for the estimated
eigenvalues. In cases of multiple trend boundaries with highly different velocity compo-
nents (for example the velocity gradient at the first boundary is by a factor of 10 larger
than at the second boundary) the estimated dilation scales would also show a large differ-
ence and thus the dominated dilation would only occur at the highest strain rate areas. By
introducing a clipping parameter, the eigenvalues are clipped (as shown in Eqn. (5.39))
so that blocks eventually are dilated by an equal amount (compare Fig. 5.4).
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5.3 Adaptive Least-Squares Collocation

Figure 5.4: Comparison of different gmax thresholds used for the dilation scale estimation after
three iterations. Left plot: gmax was set to the maximum gradient in the first iteration (gmax =
16.2). Right plot: equal settings as in the left plot but gmax = 3. Arrows indicate relative velocities,
l(r), of the three blocks. Due to the given velocities, the gradient between block 1 and block 3
is larger than between block 2 and block 3. Thus in the left dilation process, dilation is more
pronounced between block 1 and 3: the ratio of the distance between the positions marked as
squares and the distance between the positions marked as circles is 1.72. The same ratio in the
right plot is 0.99

5.3.6 Estimating Optimal ALSC Components

The general problem of the ALSC technique is to find the optimal parameters rksi , rsh ,
σ2
si
, σ2

sh
, λmax, and eventually also gmax without a detailed a priori understanding of

the velocity field. The assumption of an uncorrelated residual n̂ (Eqn. (5.14)) can be
obtained having different signal parts ŝi and ŝh. Thus the following strategy is proposed:
first it is assumed that σ2

sh
is zero during the ALSC iterations, yielding a residual part

n̂1 = ŝh+n̂2 that eventually has some stochastically correlated residual component. In the
second step the parameters for Cshsh

are determined either using an empirical estimate
of the correlation function (see Section 5.2) or by iterating such that the norm of the
autocorrelation of the residual n̂2 gets minimal. This, however, solves only for one part of
the unknown parameters. The initial trend correlation length rk=0

si
, the dilation length γ,

the truncation value gmax, and the ratio of the variance components of the inhomogeneous
and homogeneous signal part, σ2

si
and σ2

sh
, are - at this stage - determined by the trial

and error principles. The initial trend correlation length is typically chosen such that it
corresponds to the expected trend deformation (e.g. Villiger , 2014).
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5.4 Variance-Covariance Matrices of Collocated Quantities

So far, the interest was to derive collocated estimates of noisy measurements or de-
rived quantities thereof. This section gives the respective formulations the corresponding
variance-covariance matrices used to estimate the uncertainty of the collocated quantities.

5.4.1 Variance-Covariance of LSC Components

A derivation for the variance-covariance matrix of the collocated signal is foung, e.g., in
Wirth (1990). As a detailed derivation of the uncertainties for the total signal of the ALSC
procedure is given in Section 5.4.2, only the main results are listed here.

Following the definition given in Eqn. 5.4, the variance-covariance matrices, Q, of the
respective components are:

Ql̂
′
l̂
′ = Cs

′
s
′ −Cs

′
s ·D

−1 ·CT
s
′
s

+ M ·Qx̂x̂ ·M
T (5.40)

with M = Cs
′
s ·D

−1 ·A−A′

Qx̂x̂ =
(
ATD−1A

)−1 (5.41)

5.4.2 Variance-Covariance of ALSC Components

To estimate the uncertainties of the total signal obtained by the adaptive collocation
approach, a formulation of σ2

l̂′ has to be found by the principles of error propagation. A
discussion on error propagation for LSC is given for example in Wirth (1990) or Moritz
(1973), and the main results are presented in Section 5.4.1. Following the notation given
in Wirth (1990), the estimated error of the interpolated signal l̂′ = A′x̂ + ŝ′i + ŝ′h, with
error matrix Ql̂

′
l̂
′ = E〈εl̂′ε

T
l̂
′ 〉, and εl̂′ = l̂′ − l̄′, l̄′ being the error free solution, is:

εl̂′ = l̂′ − l̄′

= A′x̂ + ŝ′i + ŝ′h −
(
A′x̄ + s̄′i + s̄′h

)
=
(
A′G + Li + Lh

)(
Ax̄ + z̄

)
−
(
A′x̄ + s̄′i + s̄′h

)
=
(
A′GA + LiA + LhA

)
x̄ +

(
A′G + Li + Lh

)
z̄−

(
A′x̄ + s̄′i + s̄′h

)
(5.42)

with

z̄ = s̄i + s̄h + n̄ (5.43)
x̂ =

(
ATD−1A

)−1ATD−1l = Qx̂x̂A
TD−1l = Gl (5.44)

ŝ′i = Cs
′
isi

D−1 ·
(
l−A · x̂

)
= Hi ·

(
l−AGl

)
= Hi ·

(
I−AG

)
l = Li · l (5.45)

ŝ′h = Cs
′
hsh

D−1 ·
(
l−A · x̂

)
= Hh ·

(
l−AGl

)
= Hh ·

(
I−AG

)
l = Lh · l (5.46)
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noting that

GA = I, I = identity matrix
LiA = LhA = 0

leads to

εl̂′ =
(
A′G + Li + Lh

)
z̄− s̄′i − s̄′h = Kz̄− s̄′i − s̄′h (5.47)

εl̂′ε
T
l̂
′ =

(
Kz̄− s̄′i − s̄′h

)
·
(
z̄TKT − s̄′Ti − s̄′Th

)
= Kz̄z̄TKT −Kz̄s̄′Ti −Kz̄s̄′Th − s̄′iz̄

TKT

+ s̄′is̄
′T
i + s̄′is̄

′T
h − s̄′hz̄

TKT + s̄′hs̄
′T
i + s̄′hs̄

′T
h

(5.48)

Because there is (by definition) no correlation between the s̄′i and s̄′h, the corresponding
error matrices are given as E〈̄s′is̄′Th 〉 = E〈̄s′hs̄

′T
i 〉 = 0. All other error matrices are defined

as:

E〈̄s′is̄
′T
i 〉 = Cs

′
is
′
i

(5.49)

E〈̄s′hs̄
′T
h 〉 = Cs

′
hs
′
h

(5.50)

E〈z̄z̄T 〉 = Czz (5.51)
E〈̄s′iz̄

T 〉 = E〈̄s′i(̄si + s̄h + n̄)T 〉 = E〈̄s′is̄
T
i 〉+ E〈̄s′is̄

T
h 〉+ E〈̄s′in̄

T 〉

= E〈̄s′is̄
T
i 〉 = Cs

′
isi

(5.52)

E〈z̄s̄′Ti 〉 = Csis
′
i

= CT
s
′
isi

(5.53)

so that:

E〈εl̂′ε
T
l̂
′ 〉 = Ql̂

′
l̂
′ = Cs

′
is
′
i

+ Cs
′
hs
′
h
−K ·

(
CT
s
′
isi

+ CT
s
′
hsh

)
−
(
Cs
′
isi

+ Cs
′
hsh

)
·KT + KCzzK

T
(5.54)

When now looking at the individual terms of Eqn. (5.54), noting that
(
ATD−1A

)−1 =
Qx̂x̂ = QT

x̂x̂, their expansion yields:

K ·
(
CT
s
′
isi

+ CT
s
′
hsh

)
=
(
A′G + Li + Lh

)
·
(
CT
s
′
isi

+ CT
s
′
hsh

)
=
(
A′Qx̂x̂A

TD−1 + Li + Lh
)
·
(
CT
s
′
isi

+ CT
s
′
hsh

)
=
(
A′Qx̂x̂A

T ) · (HT
i + HT

h

)
+
(
Li + Lh

)
·
(
CT
s
′
isi
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KCzzK
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(
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)
·Czz ·

(
GTA′T + LTi + LTh

)
= A′GDGTA′T + A′GDLTi + A′GDLTh

+ LiDGTA′T + LhDGTA′T + LiDLTi
+ LiDLTh + LhDLTi + LhDLTh

(5.57)
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5 Collocation for Time Series Analysis

by substitution of G it can be shown that the 2nd and 3rd term of Eqn. (5.57) are zero
and the first term corresponds to AQx̂x̂A

T . Writing the last four terms in compact form
leads to:

KCzzK
T = AQx̂x̂A

T +
(
Li + Lh

)
·D−1 ·

(
LTi + LTh

)
(5.58)

thus, Eqn. (5.54) can be written as:
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(5.59)

Using the relation L = H ·
(
I−AG

)
= H ·R (compare Eqns. (5.45) and (5.46)), matrices

LTi,h can be written as:
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(5.60)

and thus the three terms in Eqn. (5.59) with Li and Lh components can be written as:
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where R2 = R as shown in Wirth (1990). By back-substitution of R, the resulting
common expresion in Eqn. (5.61), (5.62), and (5.63) can further be expressed as:
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Finally, Eqn. (5.59) can be written as:
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Back-substitution of matrix Hi,h = Cs
′
i,hsi,h

D−1 then gives the final expression for the
variance-covariance matrix of the total signal derived by the principles of ALSC:
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M =
(
Cs
′
isi

+ Cs
′
hsh

)
·D−1 ·A−A′

Qx̂x̂ =
(
ATD−1A

)−1 (5.67)

5.4.3 Variance-Covariance of Derived Quantities

In this section, derivation of the variance-covariance matrix of a derived quantity using
collocation, like velocity from position (Section 5.1.2), is given here. Using the principle of
error propagation presented in Section 5.4.2, the error of a gradient w.r.t. a observation
l(r), ∇l(r), in the following written as ∇l is expressed as ε∇l̂′ = ∇̂l′ − ∇̄l′):

ε∇l̂′ = ∇̂l′ − ∇̄l′

= ∇A′x̂ +∇ŝ′ −
(
∇A′x̄ +∇s̄′

)
=
(
∇A′G +∇L

)(
Ax̄ + z̄

)
−
(
∇A′x̄ +∇s̄′

)
=
(
∇A′Gz̄ +∇Lz̄

)
−∇ŝ′

= ∇Kz̄−∇ŝ′ (5.68)

as in Eqn. (5.42), with

z̄ = s̄ + n̄ (5.69)
∇K = ∇A′G +∇L (5.70)

G = Qx̂x̂A
TD−1 (5.71)

x̂ = G · l (5.72)
∇L = ∇Cs

′
sD
−1 ·

(
I−AG

)
= ∇H ·

(
I−AG

)
(5.73)

∇LA = 0 (5.74)
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This leads to

ε∇l̂′ε
T
∇l̂′ =

(
∇Kz̄−∇s̄′

)
·
(
z̄T∇KT − (∇s̄′)T

)
(5.75)

= ∇Kz̄z̄T∇KT −∇Kz̄(∇s̄′)T

−∇s̄′z̄T∇KT +∇s̄′(∇s̄′)T
(5.76)

Following the strategy presented in Eqns. (5.49) to (5.53), the expectation of the individual
components are:

E
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〉
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′ (5.77)
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s
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′
s∇KT +∇KCzz∇KT

(5.80)

Note that the relation of Eqn. 5.79 is only valid if the chosen covariance function is isotrop.
The second derivative appearing here is a result of the expectation of a linear combination
of cross-covariance functions. Given a covarinace matrix Css(xa, xb), the covariance matrix
Cs
′
s(xa, xb) between s and s′ in general is given by:

Cs
′
s(xa, xb) = Ls′ |xa

(
Css(xa, xb)

)
(5.81)

with L being a linear functional (Guillaume, 2015). For Cs
′
s
′(xa, xb) this becomes:

Cs
′
s
′(xa, xb) = Ls′ |xb

(
Cs
′
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)
= Ls′ |xb

(
Ls′ |xa

(
Css(xa, xb)
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= Ls′ |xa

(
Ls′ |xb

(
Css(xa, xb)

)) (5.82)

In the derivation here, L is the derivative with respect to xa and xb.

The final expression for the error matrix of the strain is then obtained by back-substitution
of ∇K, following the same rearrangement principles as in the previous section. Eqn. 5.80
can then be written as:

Q∇l̂′∇l̂′ = ∇2Cs
′
s
′ −∇Cs

′
sD
−1∇CT

s
′
s

+∇M ·Qxx∇MT (5.83a)
∇M = ∇Cs

′
sD
−1A−∇A′ (5.83b)

Although not used in this study, error propagation for the strain field introduced in Section
5.3.4 for the ALSC process, can be derived as well. More details therefore are given in the
Appendix D.1.
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6 Results

Following the theoretical derivations and simulations given in the previous chapters, the
results for the estimated displacements of the southern part of the Grabengufer sagging
area are presented here. Section 6.1 first presents and describes the results obtained when
a single camera, combined with a DEM, is used. In Section 6.2, the principle of bundle
adjustment is used to estimate object coordinates for the various measurement epochs.
Regarding collocation, Section 6.3 shows the applied collocation technique used also to
estimate respective velocities in the former two sections. A short presentation of results
obtained by applying the technique of ALSC is finally given in Section 6.4.

6.1 Single-View Velocity Estimation

In Section 4.2, the topic of estimating metric displacements using a single camera combined
with a DEM was addressed. Although two cameras were used in this study, a comparison
in terms of estimated velocities is given here. The average direction of motion is nearly
Northwest (azimuth between 310 and 330 degrees), thus the projected motion is larger for
camera station 1 that is used for this comparison.

6.1.1 Correction of Camera Motion

When building a time series of features moving in the image space, the first task is to
correct for any type of camera motion. In this process, image coordinates are aligned to
a reference epoch (reference orientation for t = t0) for which, e.g., a projection onto a
DEM is carried out. With respect to such a reference epoch, image coordinate positions
are affected by the variation of camera parameters (extrinsic, intrinsic, and additional
parameters). Using a single camera, the principles of the camera parameter estimation
procedure (a subproblem of bundle adjustment, Section 4.4.7 and C.2) can be used. Opti-
mally, stable areas or points of known position (ground control points) are known around
the object of interest. As discussed in Section 4.4.7, a good network is required to reliably
solve for all the camera parameters. For the present geometry, areas of solid rock project
into a diagonally shaped region in the upper half of the image (see Fig. 6.6). Such a ge-
ometry does not allow for a reliable estimation of camera parameters necessary to correct
all the main components of apparent camera motion. E.g., high correlations are observed
between the first radial distortion parameter k1 (Eqn. (4.15)) and the camera constant
c (Eqn. (4.14)), as well as for the principal point offset yp and the rotation angle ω, all
varying over time.
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Using a simplified model, as discussed in Section 4.2.3, with constraints on high-order
distortion parameters was found to be not a good choice: approximating the projection
of near- and far-field objects seen by camera 1, led to large residuals, specially along the
right image edge with objects being relatively close.

To allow a comparison, camera parameters estimated during the bundle adjustment (Sec-
tion 6.2.5) are used to rectify image coordinates with respect to the corrected camera
coordinates of epoch t = t0. The strategy presented in Section 4.2.3, Eqn. (4.12) is used
for this purpose.

Including the additional parameters to compute the corrected image coordinates (..)corr,
a total of 2 · 16 = 32 parameters are involved. Given the errors of both components, error
propagation for the referenced image coordinates xref and yref yield higher values than the
estimated matching errors for image coordinates used in the bundle adjustment.

An estimation of significant parameters using a single view in the current geometry led to
errors in the order of 3 and 8 pixels (an example is shown in Section 6.2.5 for the estimated
template image coordinates). Using the estimated camera parameters determined during
the bundle adjustment shows a considerable improvement resulting in errors in the order
of 0.5 to 1.5 pixels, generally increasing toward the image corners (as errors in distortion
terms become more significant). This shows that the constrained geometry using at least
two views not only allows for a direct reconstruction but also leads to camera parameters
of higher precision.

6.1.2 Velocity Estimates

Time series of features tracked and corrected in the image space are being filtered using
the method of collocation (see Section 6.3). Empirical covariance functions (as described
in Section 5.2) were estimated in a series of feature time sequences. With d being the time
lag, the following function with parameters u, n, and rs was found to be well suited in
average:

f(d) = σ2
s ·

1
1 + u · |d|n

(6.1)

with σ2
s = 1 [pixel2]
n = 2
rs = 120 [days] (u = 1/rns ∼ 7 · 10−5)

Using Eqn. (6.1) to define the covariance matrix, velocities and the respective errors were
estimated as described by Eqns. (5.6) and (5.83). Being still in the image space, veloc-
ities are given in units of pixel/day. A time series of rectified image coordinates, both as
unfiltered and filtered (i.e., collocated) estimates, is shown in Fig. 6.1.

Following the principles described in Section 4.2.1, ray tracing is applied to convert the
velocities in the image space into a metric unit. The DEM (provided by the Federal Office

94



6.1 Single-View Velocity Estimation

Figure 6.1: Collocated time series of a rectified feature trajectory in the image space. The principle
coordinate estimates were obtained by least-squares feature matching. Coordinate corrections for
each epoch were conducted using the camera parameters estimated during the bundle adjustment.
Position estimates encircled in red are outliers, defined as positions with a large deviation w.r.t.
its collocated results.

of Environment) was used, whereas an standard deviation of 1m in the height component
was assigned for the DEM. As described in Section 4.2.1, errors in a DEM heavily depend
on the method it was generated with and are not uniformly distributed (e.g., correlated
with slope steepness). As shown in Section 4.2.2, the validity of formal error propagation
also heavily depends on the geometry, i.e., the projection angle, and is favorably deter-
mined by a Monte Carlo simulation.

Whenever an intersection point on the DEM is found, its distance t (compare Eqn. (4.5))
from the camera center can be computed. Given the pixel size and the focal length of the
camera, the velocity scaling vs is given by:

vs = pixel size
focal length · t = s · t (6.2)

The pixel size of the camera (Nikon D300s) is 5.5µm and the focal length as determined
during the bundle adjustment (i.e., around 13.8mm). For the purpose of error propaga-
tion, the scaling coefficient s (Eqn. (6.2)) is included in the full variance-covariance matrix
of all observations that are involved.

Fig. 6.2 shows an example of scaled velocity estimates with errors given for each compo-
nent (i.e., vx and vy) for June 2014. A black ellipse is drawn around the area of critical
error propagation: as shown by the Monte Carlo simulation in Section 4.2.2, the formal
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6 Results

Figure 6.2: (a) Absolute velocity estimates (2D) obtained by projection onto a DEM. Encircled
in black shows the critical projection area, areas indicated by white ellipses show heavily amplified
rectification residuals. (b) and (c) show the vertical and horizontal errors of absolute velocities
(given by error propagation), respectively.

error is heavily underestimated in this region. The DEM used for this projection was
taken in 2010, i.e., four years earlier. Specially in areas close to the camera, the accuracy
of the DEM is poor as the rock agglomeration has moved farther downstream. As a re-
sult, most of the DEM heights in this area are too low and scaling values derived with
DEM intersection points for corresponding rays become overestimated. The two effects
(DEM error and geometrical aspects of error propagation for this geometry) lead to veloc-
ity estimates that are heavily overestimated (red areas in the highlighted zone of Fig. 6.2a).

Also visible in Fig. 6.2 are (originally) small residuals of radial distortion inaccuracies
(highlighted in white). Although not significant (see Fig. 6.3), large scaling values for
distant intersection points amplify these velocities to a high degree. In the hypothetical
case of a wrong radial distortion parameter (yielding radially symmetric displacements),
the result seen in Fig. 6.3 would not be radially symmetric because different scaling values
apply to the various regions as they are at different distances. Thus a systematic error of
a single radial distortion parameter cannot be responsible for the observed effect.

Combining the two results of Fig. 6.2, i.e., showing only significant velocities, a more
realistic picture of the scene is obtained. The significance level is defined by the magnitude
of the velocity being larger than its 3σ level. A sequence of estimated velocities above this
significance level is shown in Fig. 6.3 for the summer months of 2014 with a time interval
of 20 days. To increase the accuracy in the near field area, the DEM was corrected using
the results obtained with the bundle adjustment (Section 6.2.5). The sequence shows a
general acceleration towards the late summer months (September) before it decelerates
again. In the right part of the scene visible in this view, an isolated area with high
acceleration (from about 2mm/day to 5mm/day) can be observed. For reference, the same
sequence showing also the non-significant areas is given in Fig. 6.4.

96



6.1 Single-View Velocity Estimation

Figure 6.3: Series of absolute velocity estimates (2D) showing a small acceleration during the
summer months of 2014, i.e., the front area (red ellipse) between September and May shows a
velocity increase of about 40 %. The time separation between presented results is 20 days. Only
significant velocities (v ≤ 3 · σv) are shown.
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6 Results

Figure 6.4: The same sequence as in Fig. 6.3 but showing also the non-significant flow velocities.
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6.2 Object Point Reconstruction

6.2 Object Point Reconstruction

In this section, results of object point reconstructions using the principle of bundle ad-
justment is presented. A schematic view of the near-field geometry is shown in Fig. 6.5.
With a baseline of 42.3m between the two camera centers, near-field objects (with 50m
mean distance) are seen with an angular view difference of more than 56 degrees. Because
the surface topography of the observed area is exceptionally rough, the differences in the
projection angles cause difficulties for feature matching between the two views. Thus an
initial set of well defined features1 seen in both views, was manually identified. For half
of these features, successful matching between the views was possible, yielding accurate
point correspondences in the sub-pixel range. Fig. 6.6 shows the distribution and type of
points that were placed in both views: in blue are features, where significant displacement
is expected, in green are points on solid rock (stable), and squares in red show the image
location of the two GNSS stations. Black triangles represent SURF2 feature correspon-
dences (see also Section 3.2.5). These are determined independently between the views
for each epoch and are used to increase robustness and redundancy during the bundle
adjustment. The various features defined for tracking are labeled in Fig. 6.7 and Fig.
6.7, respectively. For all theses points, tracking was performed for the complete image

Figure 6.5: (a) Schematic view and orientation of the two cameras next to the observation area.
The image background shows a shaded DEM relief provided by the Federal Office of Environment.
The blue arrow indicates the general flow direction of the permafrost creep. (b) Station 1 with
East-, North, and Height axis (in green) showing the topocenter of the local coordinate system.
The antenna is at an offset of roughly 50 cm from the origin of the coordinate system.

1in terms of high contrast and uniqueness
2Speed-Up Robust Features
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6 Results

sequence spanning almost four years. Due to the slow movement of this permafrost area
(∼ 60 cm/year), 92% of them were successfully tracked over this period.

Figure 6.6: Measurement points used for object point reconstruction for (a) view 1 and (b) view
2. Positions in blue show features that are expected to move, points in green are those found
on solid rock, and the GNSS stations used for calibration are shown in red. Arrows point to the
permanent GNSS stations. Along with points on solid rock, the permanent GNSS stations are used
as ground control points for all epochs t > t0, with t0 being the initial calibration epoch. Black
features are SURF descriptors used as additional features seen in both views.

Figure 6.7: Detailed view of ID numbers associated to individual rock boulders. The complete
view is shown in Fig. 6.8.
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6 Results

6.2.1 Initial Solution and Accuracy of Reconstruction

An initial estimation of the various object point coordinates was performed using the cal-
ibration patterns (Section 4.5.4) as well as the two GNSS stations (antenna coordinates)
as ground control points. The computation was carried out with large weights on the
additional parameters because these were determined by a separate calibration procedure
(Australis software package, (Photometrix, 2013)) using the calibration board (Fig. 4.10).

With 11 ground control points for the initial epoch t0, the quality of absolute coordinate
reproduction is evaluated by using only 10 of them at a time. Table 6.1 shows the coor-
dinate differences obtained, when each of the ground control points was once estimated
rather than being included as known position. The first two IDs correspond to the GNSS
stations, whereas the other nine positions are the calibration patterns (Fig. 4.13). Ac-
cording to Eqn. (4.42), the hypothesis test suggested that ground control point ID = 03,
is erroneous, thus it was rejected for the initial solution. The East component shows to be
the worst in terms of precision, a result of the geometrical orientation of the two cameras
(i.e., the prominent heading is in East direction).

The result of the estimated accuracy (following Baarda (1967), i.e., the precision of the
estimated parameters as well as their external reliability) is shown in Fig. 6.9. In the close
range area (50− 200m) the parameter standard deviations are in the order of 2− 15 cm,
continuously increasing with increasing distance. For this geometry, the Height compo-
nent is the most accurate, followed by the North and East components. The latter shows
stronger variations because of the geometrical orientation of the cameras with respect to
the observed area (i.e., near-field points are oriented mostly in East-West direction). The

Table 6.1: Evaluation of absolute coordinate estimation accuracy. Each ID corresponds to a
different ground control point at the initial calibration stage (the first two being the two permanent
GNSS stations). Results show the difference between coordinates derived by GNSS and those
derived by photogrammetric bundle adjustment. The second column gives the average image
sampling from both views.

ID sampling ∆E ∆N ∆H σ̂E σ̂N σ̂H
[cm/pixel] [cm] [cm]

01 5.7 -20.1 0.3 -3.9 3.3 0.8 0.9
02 4.2 5.1 12.6 -2.6 2.5 1.2 1.5
03 6.5 23.3 0.4 23.8 8.7 3.2 1.2
04 3.3 0.2 -10.5 -3.3 2.3 2.1 0.9
05 5.3 -13.0 -10.9 -29.3 6.0 3.9 1.1
06 5.0 9.6 4.6 -20.1 5.3 2.5 0.9
07 3.2 -8.4 -5.3 3.8 2.4 1.5 1.0
08 3.9 11.4 -6.2 2.9 4.2 1.2 1.1
09 6.7 4.2 1.8 -31.3 11.2 2.3 1.4
10 5.8 43.8 -10.7 -6.5 10.0 1.5 1.3
11 7.9 33.6 3.0 -27.8 18.9 1.9 3.4
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6.2 Object Point Reconstruction

Figure 6.9: Accuracy graphs of initial bundle adjustment, i.e., using the absolute calibration
patterns (Fig. 4.13) and the GNSS stations as ground control points. The top row illustrates the
effect of absolute errors (standard deviations) as well as the external reliability of the reconstructed
object points. Insets show the achieved accuracy for the near field. The bottom row shows the
corresponding image residuals for both components. Color coding is equivalent to the points
marked in Fig. 6.6. Image residuals for the near field are in the order of 2 × 10−3 mm (or ∼
0.4 pixel).

external reliability generally shows larger values, where the North component for the near-
field is equally affected by undetected gross errors as the East component.

Considering image coordinate residuals (bottom row in Fig. 6.9), the following obser-
vations can be made: objects close to the cameras are better determined due to their
geometrical position (compare also Fig. 6.10) and thus more constrained. As a result,
discrepancies of intersecting rays are more easily seen as image residuals. For distant ob-
jects, the direction parallel to the line-of-sight is weakly bounded, and thus image residuals
parallel to the epipolar plane become smaller (also discussed in Section 4.4.7), resulting in
a general decrease of image residuals of distant objects. In addition, close-range features
could not be matched by LSM between the views (only manual identification), also con-
tributing to larger image residuals.
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6 Results

Figure 6.10: 95% error ellipsoids derived during the initial bundle adjustment at epoch t = t0.
DEM provided by the Federal Office of the Environment (FOEN).
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6.2 Object Point Reconstruction

Fig. 6.10 shows the distribution and orientation of the 95% error ellipsoids obtained for
the initial solution of the bundle adjustment. The highest variance components are in
viewing direction of the cameras, that is mostly East-Northeast. Pseudo-control points
used for epochs t > t0 exhibit the largest extensions as they are located on relatively
distant solid rock.

The offset between the camera centers and the GNSS centers were determined in the initial
adjustment procedure. For this purpose the camera position parameters were treated as
free parameters (i.e., without including them as pseudo-observations). With respect to
the GNSS centers, the following offsets were determined:

• Camera 1: ∆E,N,H = 4.4,−35.9,−38.5 cm
• Camera 2: ∆E,N,H = 15.5,−28.3,−38.4 cm

with standard deviations in the order of σE = 6 cm and σN,H = 2.5 cm for both cameras.
These offset values agree well with the expected offset as shown in Fig. 6.5. Over the course
of the study period, the absolute positions of the cameras changed by a few centimeters
(Appendix E).

6.2.2 Determinability of Camera Parameters

Section 4.4.7 showed that a strong network is required to estimate additional parameters
with adequate significance. In this section, the determinability of intrinsic and additional
parameters, with respect to the given camera installation geometry, for object point recon-
struction is presented. In Fig. 6.6, the geometrical point distribution with respect to both
views is shown. Especially for station 2, common object points occupy only about half the
image space. As this condition might lead to problems for estimating significant intrinsic
and additional parameters, a synthetic test was performed: the initial set of object points
are used to generate synthetic image coordinates in both views. Image coordinates are
then disturbed by Gaussian noise n ∼ N(0, σ1,2,3), whereas σ1, σ2, and σ3 correspond
to different noise levels in pixel units. For the ground control point accuracies, estimated
errors obtained with the initial reconstruction process were used (blue markers in Fig. 6.9).

Table 6.2 shows that even for low noise levels, not all the additional parameters can be
determined with significance for both, camera 1 and camera 2, respectively. Given the ini-
tial reconstruction result (Section 6.2.1), the average noise level is in the order of 0.4 pixel.
As the results of this simulation suggests, the additional parameters k1, k2, k3, p1, and
p2 as well as the principal point position xp and yp are treated as pseudo observations in
the adjustment for epochs t > t0. High order parameters were completely fixed by setting
large weights on the respective pseudo-observations while other parameters where given
more freedom for adjustment (more details in Section 6.2.5).

The accuracy of the photogrammetrically estimated camera positions are in the order
of the measured camera motion over the measurement period (Appendix E), thus these
parameters are also treated as pseudo-observations with large weights (see next Section).
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Table 6.2: Results of camera parameter reconstruction for camera 1 and camera 2 using synthetic
image coordinate data and the principles of bundle adjustment. For each image noise level σi, all
parameters are estimated without adding pre-known parameters as pseudo-observations. The first
columns, p̂, contain the estimated parameters whereas the second columns, σ̂p, show the respective
parameter standard deviations. Fields marked by ′−′, were found not to be significant during the
adjustment, thus constrained at zero. For OX , OY , and OZ , units are in meter, for ω, φ, and κ in
degrees, and for all other parameters in the metric camera units (mm). The last row, σ̂0, lists the
respective a posterior standard deviation.

Cam 1 p̌
σi = 0.200 σi = 0.600 σi = 1.500

p̂ σ̂p p̂ σ̂p p̂ σ̂p

xp 0.158 0.121 0.018 - - 0.108 0.034
yp −0.064 −0.094 0.015 0.081 0.018 - -
c 13.716 13.701 0.014 13.728 0.016 13.712 0.023
k1 −1.35e−4 −1.50e−4 0.05e−4 −1.10e−4 0.08e−4 −1.09e−4 0.18e−4

k2 6.82e−7 9.30e−7 0.32e−7 - - - -
k3 1.02e−9 - - 4.58e−9 0.29e−9 4.03e−9 0.59e−9

p1 −5.36e−5 - - - - - -
p2 −8.02e−5 −4.29e−5 0.90e−5 −13.01e−5 2.31e−5 −12.07e−5 2.80e−5

ω 4.657 4.653 0.002 4.678 0.003 4.665 0.000
φ 4.169 4.167 0.001 4.159 0.000 4.165 0.002
κ 3.089 3.084 0.002 3.104 0.002 3.092 0.001
OX 0.108 0.205 0.099 0.020 0.117 0.226 0.167
OY −0.193 −0.089 0.047 −0.261 0.078 −0.138 0.125
OZ −0.072 −0.066 0.016 0.030 0.024 0.024 0.046

Cam 2 p̌
σi = 0.200 σi = 0.600 σi = 1.500

p̂ σ̂p p̂ σ̂p p̂ σ̂p

xp 0.237 0.201 0.022 0.219 0.022 0.224 0.032
yp −0.062 −0.084 0.012 - - - -
c 13.876 13.889 0.015 13.910 0.016 13.854 0.023
k1 −1.30e−4 −1.14e−4 0.04e−4 −0.89e−4 0.07e−4 −1.26e−4 0.18e−4

k2 6.61e−7 5.96e−7 0.26e−7 - - - -
k3 2.46e−9 - - 2.78e−9 0.27e−9 4.44e−9 0.65e−9

p1 2.94e−5 7.28e−5 2.00e−5 - - - -
p2 5.10e−5 8.59e−5 1.08e−5 −8.04e−5 1.10e−5 - -
ω 4.556 4.553 0.003 4.571 0.001 4.568 0.002
φ 4.391 4.389 0.001 4.392 0.001 4.392 0.002
κ 2.992 2.989 0.003 3.006 0.001 3.002 0.002
OX −32.712 −32.803 0.110 −32.855 0.132 −32.387 0.246
OY 20.450 20.446 0.040 20.450 0.062 20.600 0.119
OZ −16.847 −16.863 0.018 −16.845 0.029 −16.719 0.058
σ̂0 - 0.155 0.509 1.265
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6.2.3 Effect of GNSS Integration

What so far has not been addressed is the question about the effect of the GNSS solu-
tions with respect to the accuracy of object point reconstruction. As proposed in Section
6.2.2, initially determined coordinates of object points located on solid rock are used as
pseudo ground control points for the reconstruction process in the forthcoming epochs.
With these, the condition for a successful estimation of camera parameters and new object
point coordinates in its principle is given.

Accuracy estimates without including any GNSS station measurements are shown in the
top row of Fig. 6.11: the reconstruction precision for the near-field features is in the order
of 40 cm for the North and Height and around 60 cm for the East component. Adding
GNSS station 1 in the field of view (FOV) improves the coordinate precision by a factor
of 3, the external reliability, however, remains nearly unchanged. A different result is
obtained if GNSS station 2 instead of 1 is included. Here, the precision of the Height
component is below the 5 cm level and just above the 5 cm level for the East and North
components. A similar improvement is found for the external reliability. Using both GNSS
stations as ground control points further improves the precision for all components. The
last row in Fig. 6.11 also shows the effect of adding an additional GNSS station closer to
the cameras: the most prominent outcome here is seen in the improved external reliability
for near-field objects.

The most severe effect of including GNSS solutions into the bundle adjustment is obtained
when the camera positions are being constraint (see Fig. 6.12). As the origin of all bundles
with respect to the coordinate system become fixed, the overall stability is improved. This
also shows that external reliability is strongly bounded to the precision of known camera
positions. Adding GNSS stations as ground control points in the field of view further im-
proves the accuracy (Fig. 6.12). For the current geometry, one additional station placed
at a distance between 50 and 100m improves the precision by about a factor of two for
points being also at such distances from the cameras. This effect is obtained when GNSS
station 2, being at an average distance of 101m, is included. For station 1, no significant
improvement is observed. Care however must be taken in this analysis, because the results
also depend on the image coordinate accuracies as well as on the number of points used
for reconstruction. For example, increasing the number of image point correspondences
between the views increases the redundancy, thus higher accuracies can be expected.

For the time series presented in Section 6.2.5, camera position parameters were constrained
to the GNSS position estimates of the respective station for every epoch. These coordinates
were corrected by the offset determined during the initial adjustment procedure (Section
6.2.1). Both camera displacements are in the order of a few centimeters over the course
of the study period (see Appendix E).
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Figure 6.11: Effect of adding GNSS stations in the field of view (FOV) of both cameras. These
results were computed by estimating all camera parameters as unconstrained variables. The left
column shows the estimated parameter standard deviations as a function of mean distance. In the
right column the corresponding external reliability estimates are plotted.
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6.2 Object Point Reconstruction

Figure 6.12: Effect of adding GNSS stations in the field of view (FOV) of both cameras. With
respect to Fig. 6.11, the difference here is that both camera positions were constrained by the
respective GNSS position estimates, with offset correction applied.
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6.2.4 Image Time Series

Applying the LSM technique to image sequences results in a series of image coordinates for
all features and GNSS antenna centers, respectively. The time series, however, show large
variabilities due to the camera movements between the individual image frames. Besides
the true motion, an apparent camera movement due to the following effects is expected:

• wind (vibrations)
• changing lens arrangement due to automatic focus adjustment between the exposures
• deformation of the camera installation due to temperature variations (general tem-

perature variations and temperature gradients due to directional heating by sunlight)

The first issue causes the external camera parameters (mainly the Euler angles) to vary.
Internal camera parameters are being changed by the second effect and a mixed parame-
ter variation is expected for the last case. All the effects are corrected by estimating the
camera and additional parameters during the bundle adjustment.

As explained in Section 4.6, the GNSS antenna image coordinates are estimated by means
of template matching. Fig. 6.13 shows the extracted positions of valid matches over
the course of the study period. Valid matches were defined by the quality factor value
(q > 0.75, Eqn. (3.27)), the standard deviations of the displacement parameters (σpx < 0.2
and σpy < 0.2, Eqn. (3.17)), as well as a rotation component of less than 10 degrees.
Redundancy was increased and an estimate of the manually determined antenna center

Figure 6.13: Relative positions of GNSS station 1 (top) and 2 (bottom) in the images seen from
camera 2. The image x-coordinate is shown in brown, whereas the image y-coordinate is given in
blue.
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6.2 Object Point Reconstruction

Figure 6.14: De-trended image coordinates of GNSS station 1 (top) and 2 (bottom) of Fig. 6.13.
For the trend model, a linear regression was used. The resulting position ’noise’ is mainly due to
temporary camera motion (some real notable motion is observed in the summer months of 2015).
Note the difference in the scale of the y-axis between this figure and Fig. 6.13.

determined by matching several templates (one for each year) with the whole image se-
quence. The estimated image coordinates for the antenna centers agreed within about
0.3 pixel in average.

By removing a linear trend of the station coordinates in the image, the apparent camera
motion becomes evident: a random motion in the range of 2 to 8 pixel is visible (Fig.
6.14). As the true position variation is known from the 3D GNSS time series (Appendix
E), a projection of these coordinates into the image space would show that the order of
motion seen in Fig. 6.14 is related to the apparent camera motion.
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6.2.5 Bundle Adjustment

Following the camera parameter determinability analysis (Section 6.2.2), all additional
parameters (AP) were also included as pseudo-observations (thus acting as additional ob-
servations in the estimation procedure), whereas the high order terms (k2, p1, and p2)
were given strong weights and k1 a weak weight. Parameters k3, sc, and sh were con-
strained to the initial values determined by the camera calibration. For the intrinsic and
extrinsic parameters, pseudo-observations for the principal point offset (xp,yp), the camera
constant c, and the camera position parameters were used. Eulerian angles ω, φ, and κ
were estimated as free parameters.

Whenever the following conditions were fulfilled, object point reconstruction was carried
out:

• A minimum of seven ground control points are available. This guarantees that the
geodetic datum is well defined and increases the probability of a good reconstruction.

• Corresponding image coordinates of points (ground control points as well as moving
features) must have been successfully matched in both views.

• The camera position has to be known from the GNSS solution.

As noted in Section 6.2, SURF features are determined between the views such that for
each bundle adjustment, more point correspondences could be used to determine all param-
eters. Although more object points have to be estimated too, the redundancy increases,
thus stabilizing the estimation procedure, especially for epochs, where only a small num-
ber of LSM features was found to have successful matches.

A selection of SURF feature correspondences is found by the following procedure: puta-
tive matches are validated by estimating the fundamental matrix F between the views
(x1 · F · x2 = 0, with x1 and x2 being the homogeneous image coordinates of view 1 and
2, respectively). This is accomplished using the RANSAC procedure with a maximum al-
lowed error of 1 pixel. To yield more positive matches, image coordinates are pre-corrected
for distortion using the approximate values of the initial calibration. A variance analysis
between the LSM feature matches and the SURF features showed that the LSM feature
correspondences are about 4 times better in terms of precision, thus the SURF features
were weighted accordingly (i.e., an observation standard deviation of σSURF = 0.8pixel
was assigned).

An example of image residuals after a successful bundle adjustment for one epoch is shown
in Fig. 6.15. Given the image pixel size of 5.5µm, image residuals for the interest points
(blue) are in the order of 0.2 pixel in average. Residuals of object points in larger distances
tend to be smaller, whereas their absolute error increases (compare Fig. 6.11 or 6.12).

In Fig. 6.16, estimated coordinates for three selected boulders (feature ID numbers 48,
51, and 63 - see Fig. 6.8/6.7) are shown. For feature Nr. 48, the mean distance to the
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6.2 Object Point Reconstruction

Figure 6.15: Image residuals in both views after a bundle adjustment. Top row of figures shows
the residuals in the metrical images, amplified by a factor of 200. The bottom row of figures shows
the image residuals as function of object distance. Colored in black are the supporting SURF
features (different for each epoch), in blue the new object points of interest, in green the pseudo
control points on solid rock, and in brown the two GNSS stations in the FOV. Gross errors are
drawn in red.

two cameras measures 78m. While this is about twice the length of the baseline between
the cameras, the average 3σ levels are 20, 8, and 4 cm for the East-, North-, and Height
components, respectively. This is also in good agreement with the varying position seen
in the corresponding sequences (top of Fig. 6.16), assuming a smooth displacement as in
the case of the two GNSS stations.

For the second and third bolder (IDs 51 and 63), respective mean line-of-sight distances
of 117 and 119m are measured. Here the 3σ level is generally higher than for feature
Nr. 48. Although both stations are equally distant, feature Nr. 63 is located closer to
the southern ridge (with respect to the camera FOVs, this is further to the right image
edge). This geometrical difference results in the East component errors being almost twice
as large as for position Nr. 51. North and Height components do not show a significant
difference.

113



6 Results

Figure 6.16: Example of an unfiltered position time series obtained by epoch-wise bundle adjust-
ment. Estimates for the summer months in 2013 and 2014 are shown. Grey error bars show the
3σ level.
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In addition to the error distribution depending on the geometry, the East component of
feature 48 shows about half the error during the summer months in 2013 compared to
the summer months of 2014 (Fig. 6.16). This is a direct result of the missing GNSS
antenna position estimates (during the 2013 period) that was normally used as ground
control point (station 2)3. As illustrated in Fig. 6.12, the effect of a combined solution
with GNSS station 2 for the near-field features is an error reduction by approximately a
factor of two. This is not the case for the far-field (i.e., ' 100m) and also not noticable
in the time series for features Nr. 51 and 63 (Fig. 6.16).

6.2.6 GNSS for Validation

A comparison between time series of photogrammetrically derived GNSS antenna positions
and the positions of the corresponding GNSS station was conducted. For this purpose,
a bundle adjustment was applied without including GNSS station 1 as a ground control
point (but with station 2). As demonstrated in Section 6.2.3, excluding GNSS station 1
does not significantly degrade the expected precision of the reconstruction process. Two
time intervals comparing the two independent solutions for each component are shown in
Fig. 6.17.

As mentioned before, no GNSS solutions for the antenna position of station 2 were available
for the summer period in the year 2013. As a result, no GNSS station on the observed
permafrost creep area could be used as ground control point during the summer months
in this period. The estimated coordinates show a systematic error of roughly 15 cm in the
East and 6 cm in the North component (no systematic offset is observed for the Height
component). For the 2014 period, this offset has vanished as GNSS station 2 could be
integrated in the computation, again showing the advantage of using a well located high
precision reference point. Within the estimated position errors, relative displacements
show no systematic drift.

3A second, non-concentric GNSS antenna is mounted on the same mast. Although position estimates
are available for this period, those were not used in this work. In case the rock boulder does not have a
rotational component in the z-axis, a simple offset correction could have been applied to fill the measure-
ment gab of the concentric antenna. However, because such a rotation can not be estimated with a single
position measurement and also because the direct identification of the second antenna in the image is more
difficult, the non-centric position solution was not used.
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Figure 6.17: Difference between GNSS and photogrammetric position estimation for the summer
months of 2013 (top) and 2014 (bottom). Photogrammetric coordinates are presented in color,
whereas the GNSS reference is shown in black.
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6.2.7 Annual Displacements

Given the slow movement of the observed permafrost creep, yearly displacement rates are
summarized. The increased accuracy of the general yearly flow behavior also allows to
recognize displacement trends more easily. The average displacement over the complete
measurement period is shown in Fig. 6.18.

Regional yearly displacement rates are given in Tab. 6.3 with zones defined in Fig. 6.19.
Areas were defined along the main flow direction, whereas the front was divided into
another two zones, given the high density of features and based on the result presented in
Section 6.4. The general displacement rate over the course of the three years 2013, 2014,
and 2015, indicate an acceleration. Absolute (3D) velocities in 2015 are about 50% higher
than in the year 2013. This is mainly due to the acceleration phase observed in the late
summer months in 2015 (see Section 6.3), during which velocities increased by about a
factor of two on average.

Figure 6.18: Mean displacements measured between October 2012 and July 2016. Height changes
were interpolated on a regular grid and are colorized on the shaded DEM relief (provided by
FOEN). The differences in Height are due to a (dominante) translation of the moving mass having
an irregular topography.
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Table 6.3: Average yearly displacement rates given for the zones defined in Fig. 6.19. Values were
computed as the weighted mean of all displacements estimated during the respective time intervals
being in the corresponding zones. Average errors are in the order of 0.07m/year for the East and
0.03m/year for the North and Height components, respectively, whereas estimated errors for the
two GNSS stations G1 and G2 are smaller by about two orders of magnitude. The average yearly
displacement rates are given in m/year and were computed using the collocated position differences
(see Section 6.3) between January and December of the respective year.

Zones component 2013 2014 2015& GNSS

Z1

East −0.405 −0.409 −0.409
North 0.194 0.248 0.314
Height −0.263 −0.299 −0.405
3D 0.520 0.564 0.656

Z2

East −0.314 −0.350 −0.372
North 0.296 0.318 0.383
Height −0.245 −0.321 −0.376
3D 0.496 0.572 0.653

Z3

East −0.310 −0.332 −0.409
North 0.281 0.361 0.365
Height −0.190 −0.296 −0.340
3D 0.460 0.573 0.645

Z4

East −0.270 −0.423 −0.471
North 0.361 0.405 0.621
Height −0.259 −0.325 −0.456
3D 0.512 0.670 0.903

Z5

East −0.303 −0.358 −0.445
North 0.288 0.369 0.445
Height −0.234 −0.325 −0.383
3D 0.479 0.608 0.737

GNSS 1

East −0.248 −0.318 −0.405
North 0.259 0.318 0.405
Height −0.234 −0.310 −0.383
3D 0.428 0.546 0.689

GNSS 2

East −0.281 −0.409 −0.551
North 0.358 0.507 0.788
Height −0.296 −0.427 −0.617
3D 0.543 0.779 1.143
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Figure 6.19: Definition of zones Z1 to Z5 as used in Tab. 6.3. Brown shadings indicate the
respective camera FOV.

6.3 Collocation

Typically, the principle quantity of interest for surface displacement monitoring applica-
tions is velocity as a function of time and space, v(r, t). This quantity can be derived by
the collocation technique principle, introduced in Section 5.1, using the estimated feature
position coordinates for the various epochs as observations.

Correlation functions, for each feature, were empirically determined using the technique
described in Section 5.2 with a relative bin size of 0.5 [-]. The estimation principle fol-
lowed a robust least-squares adjustment (compare Section 3.2.6) that turned out to yield
more realistic results in some cases than the ordinary least-squares approach. For every
feature, parameters of model 1 and 2 (Eqn. (5.8) and (5.9)) were estimated. The model
that better matched the data (lower a posteriori variance) was chosen4. Four examples
of empiric covariance functions for different rock boulders are shown in Fig. 6.20. On
average, the exponent n (Eqns. (5.8) – (5.8)) was found to be 2 for almost all cases,
whereas the correlation lengths, rs, were found to be between 30 to 120 days. This large
scattering can be explained by the differences in the deterministic models used (see be-
low) and eventually also the differences of the natural motion and noise content in the data.

4model 3 was tested as well but due to the nature of the harmonic function, unrealistic oscillations
were observed in periods of poor data coverage. Therefore only model 1 and 2 were considered
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Figure 6.20: Examples of empirically determined covariance functions. The numbers correspond
to IDs defined in Figs. 6.8 and 6.7. Nr. 1014 is a pseudo ground control point with no motion
and no significant temporal correlation, as seen in the figure. Grey error bars show the errors of
the individual covariogram components. Covariance function defined as model 1 (Eqn. (5.8)) is
shown in red, where the blue curve shows the covariance function following model 2 (Eqn. (5.9)).
A deterministic model of degree 1 was used in all cases. Total variance is indicated by the brown
mark at d = 0.

Collocation was applied for each time series, starting in October 2012 and ending in July
2016. A solution was computed (predicted) for every day within this period (1378 days in
total). Applying the principles of collocation to irregularly sampled data, however, can be
critical, especially if the covariance function shows a correlation length that is in the same
order as the continuous sequences in time (as it is the case here). The choice of the deter-
ministic model then plays an important role as it also effects the correlation length and
the ratio between the stochastic signal and the noise components. Thus a suitable higher
order deterministic model is preferred as correlation length thereafter generally decreases.
For the current scenarios, polynomials of degree 2 or lower were used.

The sensitivity of the chosen deterministic model, i.e., polynomials of varying degree, w.r.t.
the empirically determined covariance function is illustrated in Fig. 6.21. Polynomials of
degree 0 (case (1)), 1 (case (2)), and 2 (case (3)), for a position time sequence were used
for de-trending (using trend functions f(d)det), before the parameters of the covariance
functions were determined. The respective correlation lengths found for hereby are 162,
33, and 38 days. For case (1), a high variance ration r = σ

2
s/σ2

n = 3.6 indicates a high signal
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Figure 6.21: Difference in the estimated covariance functions w.r.t. the chosen deterministic
model. The time series of ID Nr. 112 was used here. Coefficients a1, a2, and a3 are the parameters
of the deterministic model. The brown mark at d = 0 indicates the total signal variance, i.e.,
σ2

0 = σ2
s + σ2

n. With increasing model complexity, differences between the measurements and the
detrended measurements become smaller and so does the total signal variance. The green ellipse
shows an obvious disagreement between the functional fit and the data points (grey) in the near
field (≤ 20 days).

content in the de-trended measurements and the functional fit (here the blue curve) is a
rather poor representative of the date (grey), i.e., a large scattering is seen. A better fit
is obtained for case (2), with a polynomial of degree 1: the differences between the data
points and the analytical function are considerably smaller than before, specially for time
differences larger than 20 days. A relatively large scattering remained for the close range
(≤ 20 days, see green ellipse in Fig. 6.21) that was, however, partially ignored during the
robust least-squares adjustment of the covariance function. Increasing the polynomial de-
gree to 2 (case (3)), the evident near-field scattering vanished. The variance ratio r is about
0.6 for case (2) and (3), and also the correlation lengths are in good agreement between
these two models. The total signal variance in (3) is by a factor of two lower than for case
(2), indicating a better overall fit of the trend model. Note that the vertical scale between
the three graphs is different and therefore differences between the estimated covariance
function and the data points can not directly be compared. Using polynomials with higher
degrees did not show any improvement but unfavorable effects of an over-parameterization.

Practically, the differences between collocated position coordinates and velocities are small,
when comparing results obtained by using a polynomial of degree 1 and 2 as the determin-
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Figure 6.22: Time series of feature Nr. 78. The top row shows the collocated position coordinates
(with unfiltered data as black dots and outliers in red) while the respective velocity estimates
(computed using the principles described in Section 5.1.2) are the shown in the bottom row. The
left column shows the results obtained when using a polynomial of degree 1 for the deterministic
model and the right column illustrates the respective position and velocity estimates when using
a polynomial of degree 2. A noticable difference is highlighted by the red ellipses.
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istic model. Fig. 6.22 shows this effect for feature ID 78. In this example, the correlation
lengths for the degree 1 and degree 2 polynomials were 101 and 55 days, respectively.
While there are hardly any differences in the estimated position solutions, the velocity
shows a faster acceleration where data coverage is good (see red ellipses in Fig. 6.22) and
larger small scale disturbances (along with larger formal errors) where data coverage is
poor. As seen for the velocity estimates in the North component, the peak around October
2015 is found to be larger when using the higher order polynomial. These effects are di-
rectly related to the difference in the estimated correlation lengths. For larger correlation
lengths, the collocated position and velocity estimates are farther passed into periods of
missing data, comparable to a larger smoothing window. In contrast, smaller correlation
lengths cause a higher sensitivity to temporal differences.

With the result presented above, a polynomial with a degree 2 was preferred as the trend
function. In some cases of poor data coverage, degree 1 was used instead. Reliable collo-
cated results are obtained only in areas of good data coverage, as shown in the examples
above. Accuracy estimates for the predicted position coordinates (and velocity) during the
winter months are dominated by the deterministic trend error and might thus be heavily
underestimated.

The collocation principle was applied to the time series obtained by bundle adjustment as
well as to time series of feature displacements in the image space (Section 6.1). For each
coordinate sequence, (3D) and (2D), the following procedure was carried out:
(a) Definition of the deterministic model based on the distribution and number of avail-

able measurements. The principle here is to assign a simple model in case only very
few measurements are available or if they are not regularly distributed along the
time interpolation period.

(b) Reduction of position coordinates by removing the deterministic model part.
(c) Estimation of the covariance function with its associated parameters using the re-

duced position coordinates. A single covariance function is estimated using all di-
mensions of the measurements (i.e., East-, North-, and Height-components for the
3D trajectories or image x and y directions for the single view analysis).

(d) Applying the principles of collocation.
(e) Detection of outliers in the residual noise component by a thresholding approach. A

large variance is assigned to the detected erroneous observations.
(f) If erroneous observations have been detected, the sequence (d)-(e) is repeated until

no more outliers are detected.
(g) Computation of variance-covariance components of the interpolated signal and of

the derived velocity components.

A typical example (i.e., feature ID 99 at an average distance of 70m from the cameras) of
a collocated position time series for the acceleration period in September 2015 is given in
Fig. 6.23, and for the full time period in Fig. 6.24. Error propagation for the collocated
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position estimates predicts an average error of 3 cm for the East, 1.5 cm for the North, and
0.8 cm for the Height component, respectively, whenever measurements are present. These
error propagation results, however, strongly depend on the estimated covariance function,
as described before, and therefore need to be considered with care. The estimated velocity
components, with corresponding 3σ envelopes, show an average velocity of -0.1, 0.1, and
-0.1 cm/day for the East, North, and Height components, respectively. As seen in Fig. 6.24,
error propagation for the three velocity components results in 3σ levels of approximately
0.10, 0.06, and 0.04 cm/day for the measurement periods (summer months), and more than
0.10 cm/day for prediction periods (winter months) for all components. Again, these es-
timates heavily depend on the chosen covariance function and on the relative location
between the observed feature and the two cameras. In addition to the general fluctua-
tion of the velocity estimates, a long term acceleration can be observed over the complete
measurement period, mostly in the East and Height component.

Figure 6.23: Acceleration phase that started around August 2015. The vertical axis for the
position coordinate estimates spans 50 cm in all components. Shaded envolopes show the 3σ level.
The full sequence of the time series is given in Fig. 6.24.
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6.3 Collocation
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6 Results

6.4 Adaptive Collocation

This section presents results obtained by applying the principles of adaptive least-squares
collocation (Section 5.3). 2-dimensional flow fields obtained by bundle adjustment (East
and North component) were used as primary observations. Velocities were estimated for
each time sequence using the principles described in Section 5.1.2 with results presented
in Section 6.3.
The following parameters were used for the initial step, k = 0:

• correlation length of the inhomogeneous signal rk=0
si

= 40m
• correlation length of the homogeneous signal rsh = 15m

• variance of the inhomogeneous signal σ2
si

= σ2
0 − σ

2
n

• variance of the homogeneous signal σ2
sh

= 0
• dilation length γ = 3m
• dilation scaling λmax = 1.25

with σ2
0 being the variance of the signal after reducing the measurements by the determin-

istic trend, and σ2
n = σ2

v , i.e., the variance of the estimated velocity components. For the
deterministic model, a polynomial of degree 0 for both components has been chosen be-
cause of the nearly homogeneous flow field (i.e., mean velocities vx and vy are determined).

After the first iteration, σ2
sh

is adjusted such that the norm of the residual noise compo-
nents is minimal. During this (separate) iterative correction of σ2

sh
, σ2

si
is adjusted such

that σ2
si

= σ2
0 − σ

2
sh
− σ2

n. Because the total dilation defining the new metric is a sum of
dilations applied in each grid point (Eqn. (5.23)), the dimension of the grid increases in
general. To compensate this average increase, the correlation length (rksi , Eqn. (5.16)) is
adjusted, i.e., increased, after iteration. The correction factor is computed by the ratio
of the mean before and after neighborhood distances at the grid position of maximum di-
lation. Typical correction factors obtained hereby are in the order of 1.1 for each iteration.

Fig. 6.25 shows the changing (grid) metric for each iteration (eight iterations were applied
in total). Starting from a regularly spaced grid (∼3m spacing), a prominent dilation
occurs mainly in the North-South direction. The collocated velocity field is shown in
Fig. 6.26: given are the collocated displacement rates for the year 2014 after the first
iteration, i.e., the traditional least-squares collocation solution (a), the result obtained for
the adaptive collocation in (b), and the difference between the latter two (amplified by a
factor of 10). The latter plot shows that the ALSC result - although very similar to the
LSC in this case - estimated velocities in the front region being about 0.03m/year faster as
compared to the LSC result. Other prominent differences are found at the southern edge
of the motion field (along the Northwest orientated boundary).
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6.4 Adaptive Collocation

Figure 6.25: Stepwise dilation of the metric grid during the ALSC procedure for the estimated
displacements in the year 2014. A total of eight iterations were applied.
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6 Results

Figure 6.26: Collocated velocity fields for the year 2015. (a) shows the least-squares collocation
result using a single homogeneous covariance function (i.e., first iteration of the ALSC process).
(b) the adaptive least-squares result after eight iterations. (c) the difference between (a) and (b),
amplified by a factor of 10. Black markers indicate GNSS stations G1 and G2 and the black
contour encloses areas with accuracies better than σv = 0.02 m/year.
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6.4 Adaptive Collocation

G2

G1

G2

G1

G2

G1

Figure 6.27: Divergence of the velocity field (components East and North), iteratively determined
during the ALSC. Black markers indicate GNSS stations G1 and G2. Areas in yellow show zones
of extension while areas colored in blue indicate compression areas. The location of the prominent
extension area is at the edge of the observed rock boulders so that its exact location is not very
well constraint and varies slightly over the years. Arrows show the mean annual displacements.
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6 Results

As described in Section 5.3.3, the dilation process is estimated using the velocity gradient
field as the driving force. Applying the correction factors (see Section 5.3.4) to estimate
the strain rate w.r.t to the original (orthogonal) metric, the velocity divergence field (com-
puted as the trace of the strain rate tensor for each prediction point) can be used to detect
areas of extension and dilation. Fig. 6.27 summarizes the results found hereby: two areas
are affected by a dilation process (positive values, i.e., yellow), also remaining stationary
over the course of the three years 2013, 2014, and 2015. The first area, with a center
at approximately 80m East and 75m North (in the local topocentric coordinate frame),
shows an extension (decoupling) with a significant increase in 2015. The second area in
the lower half of the figures shows another extension region at the edge of the measured
velocities.

It is to note that the ALSC procedure applied to this series of 2-dimensional flow fields
is sensitive to the initially chosen ALSC parameters. As this only shows the horizontal
flow components, a full picture of the scene can only be obtained by including the full 3-
dimensional measurements. For such a scenario, however, a suitable model to handle the
free surface in the 3D volume as well as assumptions or physical conditions for penetration
in depth are needed.
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7 Conclusions

This thesis combines the image-based photogrammetric processing techniques with high
precision GNSS positioning solutions for an accurate estimation of motion at various po-
sitions on the Grabengufer rock slide, Mattervalley VS, Switzerland. A stereo-pair of pro-
totype online camera systems, equipped with commercial digital single-lens reflex (DSLR)
cameras, embedded PC platforms, and GNSS sensors, were constructed and deployed in
the vicinity of the permafrost area. This work was realized by the project partner (Com-
puter Engineering Group, ETH Zürich) that also developed low-cost GNSS stations (using
L1-GPS frequency receivers), of which two were installed on moving rock boulders within
the field of view (FOV) of the cameras.

The thesis comprises three main topics, the first focusing on an accurate feature tracking
procedure that is used to estimate image coordinates of objects between various image
pairs. In the second topic, these image coordinates are used to estimate displacements,
either by combining a camera with a digital elevation model (DEM) or by scene recon-
struction using the stereo-pair cameras. The principles of collocation were explored in the
third topic, aiming at an adequate filtering and prediction procedure. Given the outline
of these topics, the main results and critical aspects are discussed below.

Feature Tracking

Over the course of this work, a semi-automatic processing pipeline was developed to se-
lect images suitable for motion analysis. Short summer periods at these high altitudes
(2’900 a.m.s.l.), and therefore long periods of snow coverage, limit the time window for
the permanent observation of rock movements by optical imagery. Given these conditions,
the time span for selecting suitable images was chose such that periods of partial snow
coverage were also included. An elementary classification approach was implemented for
the detection of areas covered by snow that were treated as unusable areas in the image
matching process. Without this pre-analysis, the systematic retreat of snow during the
melting period would have caused a degradation of the matching results.

The method of least-squares image matching (LSM) was chosen as feature tracking method.
A flexible implementation of this matching technique was conducted and used for different
tasks: (a) for the automatic tracking of natural features between various image pairs, (b)
for matching GNSS image templates to recover the image coordinates of the GNSS an-
tennas, and (c) for matching natural features between the views of the cameras. Testing
the accuracy of the method, empirical standard deviations clearly below 0.05 pixel for the
translation components were found in case the images were contaminated by synthetic
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random noise. Robustness to gross errors was examined in a second test, showing an
empirical precision of ±0.05pixel in scenarios with up to 40% gross error coverage. For
matching features exposed to various lighting conditions, combined with model errors and
other uncertainties, a matching accuracy in the order of 0.1 to 0.5 pixel can be expected -
also confirmed in the reconstruction process.

A strategy was proposed to iteratively improve the matching result by a dynamic adjust-
ment of the matching window size. The automatic procedure uses the structural content
of the image near the feature of interest to evaluate an optimal matching window while
giving also the possibility of a pre-defined minimal dimension. The latter is useful to pre-
vent inaccuracies (model errors) due to the various local lighting conditions. The proposed
matching strategy was found to have a success rate of more than 90% for features seen
over a period of two years.

Reconstruction

The estimation of permafrost displacement rates was conducted, in a first step, by the
principles of monoplotting: LSM was applied to the sequence of images seen by a single
camera. The resulting chronologies of image coordinates, each representing an specific
feature, were corrected by an image rectification process needed to compensate the appar-
ent camera motion: wind, temperature variation, and focus adjustments caused the image
FOV to vary randomly by up to 8 pixel. Necessary correction parameters are typically es-
timated by minimizing position differences in stable areas around the moving object. Here,
however, an unfavorable geometry of such stable areas seen by the camera did not allow
for a conventional accurate estimation of these parameters. To carry out the monoplotting
procedure, image coordinates were rectified using the camera parameters determined dur-
ing bundle adjustment. Error propagation was conducted for the sequence of parameter
estimations involved: initial image coordinate accuracies estimated by the LSM procedure
were combined with the covariance matrices of camera parameters for the rectification
process. The level of standard deviation in the resulting image coordinates was found to
be in the order of 0.5 to 1.5 pixel. These error levels heavily depend on the geometrical
setting and are different for other scenarios. For the present case, i.e., the stereo-view
geometry, the quality of the cross-view feature matches and the precision of ground or
pseudo ground control points was found to have a major influence on the estimated cam-
era parameters because the parameter variance-covariance matrix is a result of the joint
system.

Adjusted image coordinates were further used for the collocation process, yielding collo-
cated position and velocity time series. The last step, i.e., scaling the velocity estimates to
metrical units, was performed by the principles of ray tracing: a scaling factor was deter-
mined based on the distance between the camera origin and the intersection point of a ray
hitting the surface of a recent DEM (provided by the Federal Office of the Environment).
The direction of each ray is expressed as a function of the camera origin and orientation as
well as the position of the object in the image. Because formal error propagation results
can be misleading for the present geometry, a Monte Carlo simulation was performed to
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obtain more realistic error estimates. While differences are usually not significant for aerial
photogrammetric tasks (camera is typically nadir viewing), it was shown that the present
oblique geometry has a strong impact on the validity of the scaled displacement estimates
that is due to a heavy underestimation of the formal uncertainties in some image areas.

A direct 3-dimensional reconstruction was performed for the various epochs by the prin-
ciples of bundle adjustment. Using the joint observations of various features seen by the
stereo-pair cameras, an optimization of camera parameters (e.g., orientation, distortion,
focal length, etc.) and object point coordinates was performed. The two GNSS stations
in the FOV as well as solid rock areas in the background were used as ground control
points, defining the geodetic datum. A parameter significance analysis was performed to
set appropriate camera parameter weights for the respective pseudo-observation equations:
high order distortion coefficients (determined in an initial, independent camera calibra-
tion) were given strong weights and all but the camera orientation parameters were given
weak weights. Points of interest are in distances between 50 and 220m from the cameras.
Combined with a dominant east-facing direction for the far distant points, the area of high
precision was found to be relatively small: within a zone of about 80m × 80m, located
at a mean distance of 80m from the cameras, an average precision (σ) of 6, 5, and 2 cm
was achieved for the East, North, and Height components, respectively.

Daily position solutions of the two GNSS stations in the FOV were integrated into the
bundle adjustment by means of accurate ground control points with strong weights. Re-
spective image coordinates of the antenna centers were determined by LSM using six
templates for every station and view. The agreement of the estimated image antenna
coordinates was found to be 0.3 pixel in average.

The effect of integrating the available GNSS position solutions into the bundle adjust-
ment was studied. Constraining the camera position using the respective GNSS position
parameters was found to have the most severe influence on the predicted rock boulder
precision, i.e., an improvement by a factor of 6 was achieved. Adding the GNSS station
located further downslope (station 2) showed an additional improvement by a factor of 2.
Adding the upslope GNSS station, on the other hand, was found to have only a minimal
improvement (when the camera’s positions are fixed). Thus the net effect of integrating
at least three GNSS position solutions (two camera positions and one in the FOV) turned
into an improvement of precision by a factor of 12. A similar improvement, although not
as large, was found for the external reliability of the estimated coordinates.

To test the absolute accuracy of the reconstruction process, the position of the upper
GNSS antenna (at a distance of 128m) was estimated for various epochs, instead of in-
tegrating it as a ground control point. Results show that the reconstruction performed
within the given confidence levels (a few centimeters). During the summer months of
the year 2013, the measurement sequence of the reference GNSS antenna at station 2
was interrupted and thus no high precision ground control point was available for this
period. The resulting position estimates for the upstream GNSS station 1 then showed
a systematic offset of about 15 cm for the East and 6 cm for the North components (no
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effect was observed in the Height component). Due to the projection geometry, an error
in the definition of the antenna coordinates in the image templates of about 0.5 pixel in
image x-direction is already enough to yield an absolute error of 15 cm in the East compo-
nent. Two scenarios may be considered to explain why the offsets for the East and North
coordinates vanish in case station 2 position solutions were available: a first possibility is
that a similar offset error was made when the image coordinates of the GNSS antenna for
station 2 were defined in the image templates. Because the influence of station 2 on the
definition of the geodetic datum is larger than the influence of the pseudo ground control
points, the error can be compensated. This, however, would lead to a systematic offset
of all position estimates when station 2 was used as ground control point (not visible in
station 1 because the same antenna coordinate offset is acting). The alternative argumen-
tation of the problem is that a systematic error in the estimated image coordinates of the
initial calibration with additional ground control points has occurred. In this scenario, the
estimated coordinates of pseudo ground control points would have a systematic error such
that the observed offset is obtained when station 2 does not tie it to the correct orientation.

The analysis above shows that (1) a continuous support of the GNSS station as ground
control point is important as otherwise the relatively weak geometrical setup is affected
by systematic errors, and (2) the determination of precise image coordinates of the GNSS
antenna centers (as well as the calibration plate coordinates) is of critical importance. If
one or the other systematic error is present and periods of solutions with and without
GNSS station 2 are computed, position offsets are ’turned on and off’, thus the resulting
velocity estimates for such transition periods show highly erroneous values, not indicated
by the estimated formal uncertainties. As small systematic errors may always be present
when human interaction is necessary (i.e., to define antenna coordinates in the image) the
importance of continuous GNSS time series becomes justified.

The reconstruction process was successfully applied during the summer months between
October 2012 and July 2016. Mean annual displacements for the years 2013, 2014, and
2015 are summarized in Table 7.1.

Table 7.1: Annual displacements of the permafrost creep above the Grabengufer rock glacier for
the years 2013 to 2015. E = East, N = North, H = Height, 3D = total displacement. Units are in
m/year.

E N H 3D
2013 -0.320 0.284 -0.238 0.495
2014 -0.374 0.340 -0.313 0.597
2015 -0.421 0.426 -0.392 0.718

A good agreement was obtained when comparing velocity estimates derived from the
monoplotting procedure with those estimated in the stereo-view approach (i.e., the ab-
solute difference is in the order of 0.1mm/day). When the direction of permafrost creep
is assumed to be constant and the scenery is observed with a wide angle lens, the flow
component that is projected into the image varies as a function of image position. For
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example, for a particle moving at a constant rate from the right to the left image edge,
with a 3D trajectory being perpendicular to the optical axis of the camera system, the
velocity becomes less and less underestimated before the image center and gets more and
more underestimated again afterwards. For the geometrical situation at the Grabengufer
field site, the direction of the horizontal flow components in the uppermost part (right
part in the image) points to a large degree towards the camera. Due to the increased slope
steepness, however, the 3D displacement also has a prominent vertical component. The
combination therefrom thus partially compensates the wide-angle projection problem. Be-
cause the surface displacement is not perfectly perpendicular to the line-of-sight, absolute
velocities in the monoplotting procedure are underestimated in general.

Collocation

Collocation is a powerful and delicate technique to predict valuable signal from noisy mea-
surements. Given a correlation between adjacent observations, a covariance function can
be used to extract a significant stochastic signal. One task of this thesis was to implement
a robust procedure to estimate covariance functions that match the stochastic signal of
various observation sequences. It was shown that the choice of the deterministic model
plays an important role in case of non-continuous observation trajectories. For the time
series of estimated feature positions, correlation lengths in the order of 30-40 days were
found for points in distances between 50 and 100m from the cameras. For features located
at larger distances a general increase of the correlation length was observed.

A direct estimation of the velocity components was performed also by the collocation
principle, again using the estimated correlation between the observations. The derivation
for appropriate error propagation w.r.t. position and velocity was given. As noted above,
the choice of the covariance function is critical for non-continuous observation series and
has an even larger impact on the respective error estimates. Correlations between ob-
servations are exclusively described by the covariance function and the ratio between the
stochastic signal and the (ideally) uncorrelated noise controls the respective contributions.
An iterative collocation was conducted to sequentially detect outliers, resulting in a ro-
bust collocation approach. Predicted position estimates showed formal errors for near
field objects (<100m) in the order of 1 cm for East and North, and below 1 cm for the
height components. Estimated errors for the respective velocity components show large
variations, i.e., between 0.1 and 10mm/day for the summer months when measurements
were possible. With absolute velocities in the range of 1mm/day, this result shows that
an absolute velocity on the mm-per-day level can only be reliably estimated under very
good circumstances. Generally, such a high level of precision could not be achieved for
the majority of rock boulders that were being tracked.

The principle of the adaptive least-squares collocation procedure was found to be a pow-
erful tool for the interpolation of inhomogeneous velocity fields. Although not explored
in detail, results presented for 2-dimensional flow fields showed a prominent extension
pattern in the front region of the observed area. The strongest extension was observed in
2015, being in good agreement with the high precision GNSS time series: the GNSS sta-
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tion in the front is located in the area of highest extension, also showing a clear temporal
acceleration during the late summer months of 2015. While the upper station also showed
an increased velocity for this period, the degree of acceleration was less pronounced. Using
the adaptive collocation principle for an analyzes of the areal displacement field, a zone
of significant extension could be localized: the center of this region is located about 20m
East of GNSS station located in the front (station 2).

Summarizing the average annual flow behavior of the observed area, one can conclude that
the surface motion has experienced an acceleration of about 0.1m/year between the years
2013 and 2014, and an acceleration of 0.13m/year between the years 2014 and 2015. While
these rates are based on the average displacements of all observed rock boulders in the
permafrost creep area, a more detailed analysis of different regions within the observed
FOV showed that the front area has accelerated by more than 0.2m/year between the years
2014 and 2015. The resulting extension occurs, as shown by the velocity strain rate anal-
ysis, also in the front area. Although this area is located at the edge of the observed rock
boulders, results indicate a detachment, present in the front area of the measured per-
mafrost creep. The origin of the rock fall, that happened in the year 2010 with a volume
of about 4300m3, was located slightly below this area. Therefore, further observations are
necessary to reveal if such an event is about to happen again in future.

Concluding this work, the main goal to retrieve continuous high resolution time series of
rock boulder coordinates was achieved. It was shown that the combination of high pre-
cision GNSS coordinates with a stereo-pair of optical cameras can lead to high accuracy
results also in a difficult geometrical configuration and within an environment, where the
cameras and most features seen in the images move. The comparison between displacement
estimates of a single camera and the stereo solution showed good agreement, whereas the
critical aspects of projection and error estimation in case of monoplotting was addressed.
Although 3D coordinates were estimated for selected rock boulders, the principles of col-
location and adaptive collocation allowed to obtain accurate and continuous velocity fields
throughout the measurement period and within the area of interest. The combination of
state-off-the-art low-cost equipment and processing algorithms have great potential for the
unattended and continuous monitoring of permafrost creep over extended areas and long
time scales. The principles and techniques presented in this thesis can easily be adjusted
and applied e.g., to monitor glacial flow, for landslide surveying applications, and similar
scenarios. The results help to better understand the interaction between these landforms
and the (changing) environment.
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A short outlook for improvements in this research field is given here. The ranking is chosen
according to the priority:

• GNSS position solutions used as accurate ground control points have to be accurately
identified in the images. For example the center of the solar panel would be a well
defined target for automatic template matching. This, however, is critical, as the
relative position between an absolute offset of the antenna center and the center of
the solar panel (in this example) changes in case the rock boulder, where the GNSS
station is mounted on, rotates. Thus a reliable method, hardware and/or software,
is needed.

• The most limiting factor for the permanent monitoring of the permafrost creep in
terms of the usable measurement period was the short time window in summer when
there was no snow coverage. A possibility to increase the measurement periods is to
place artificial markers (e.g., metal sticks with targets being slightly above the rock
surface) on various boulders in the area of interest. This would help (1) for an easy
and more accurate tracking, (2) for automatically matching the positions between
the views even in difficult geometrical conditions, and (3), to allow the estimation
of the respective positions also in case of slight snow coverage.

• The adaptive collocation technique should be explored in more detail. This pow-
erful method is very sensitive to the controlling parameters but results may show
interesting deformations of the changing flow field. A good network and well dis-
tributed measurement locations also allow to explore 2.5-dimensional variations or
the strain-stress condition in various regions. Additionally, the method can be ex-
tended to include time as another dimension.

• In order to increase precision and field of view coverage, more than two cameras at
suitable locations should be used. Also helping the stability for the reconstruction
processes, an increased redundancy and a more evenly distributed precision for the
various regions on the area of interest can be obtained.

• A couple of improvements in terms of feature matching procedures can be explored.
I.e., a multi-photo constraint matching approach, where features are being matched
under the collinearity constraint using one or more additional cameras.
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A Snow Cover Estimates

Snow cover was estimated on the basis of grey-level pixel intensities using image seg-
mentation principles and statistical properties thereof. A set of critical parameters were
determined empirically using a set of training images. About 95% of the images were
correctly segmented into areas with and without snow throughout the year. Although
this procedure is not state-off-the-art (see Section 3.3.3), reasonably good results were ob-
tained for the current scenario. For the snow cover variation throughout the measurement
period, presented in Fig. 3.6, the area outlined in Fig. A.1 was used for reference.

Figure A.1: Outline of the Area used for the relative snow cover measurement shown in Fig. 3.6.
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A Snow Cover Estimates

Figure A.2: Four examples on detected snow pixels that were mask for the purpose of least-squares
feature matching, i.e., Only areas appearing in white (right column of figures) were used.
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B Camera Calibration Results

The following tables summarizes the intrinsic and additional parameters that were deter-
mined using the calibration pattern and the Australis software package.

Table B.1: Estimated parameters of camera 1 using the Australis camera calibration as self-
calibration procedure. A total of 33 and 43 images with 175 points each were used. The 1σ RMS
is 0.32 pixel (1.75 µ).

Parameter p̂ σ̂p

xp 0.1583 0.001
yp −0.0642 0.001
c 13.7163 0.001
k1 −1.354e−4 2.133e−6

k2 6.822e−7 3.569e−8

k3 1.026e−9 1.823e−10

p1 −5.362e−5 1.711e−6

p2 −8.024e−5 1.676e−6

sc 0.000 6.604e−10

sh 0.000 6.604e−10

Table B.2: Estimated parameters of camera 2 using the Australis camera calibration as self-
calibration procedure. A total of 33 and 43 images with 175 points each were used. The 1σ RMS
is 0.4 pixel (2.21µ).

Parameter p̂ σ̂p

xp 0.2365 0.002
yp −0.0620 0.002
c 13.8760 0.002
k1 −1.230e−4 2.600e−6

k2 6.608e−7 3.910e−8

k3 0.246e−9 1.788e−10

p1 2.940e−5 2.567e−6

p2 5.104e−5 2.541e−6

sc 0.000 8.457e−10

sh 0.000 8.457e−10
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C Appendix to Object Point Reconstruction

C.1 Spatial Intersection

For spatial intersection, all camera parameters are treated as observations, l (each with its
corresponding variance component or, if given, with the full variance-covariance matrix).
Following the notation and definition given in section 3.2.1, the mathematical model then
can be written as:

f (̌l, p̌) = f (̊l + δl̂, p̊ + δp̂) + ŵ = 0 (C.1)

with l ∼ N(ľ;σ2
0 ·Qll) (C.2)

p ∼ N(p̌;σ2
0 ·Qpp) (C.3)

More specifically, after linearisation this can be written as:

BT · δl̂ + A · δp̂ + ŵ = 0 (C.4)
with BT . . . coefficient matrix for observations

A . . . coefficient matrix for parameters
δl̂ . . . increments of observation vector
δp̂ . . . increments of parameter vector
ŵ . . . discrepancy vector

The dimension of BT is given by the number of views v, i.e., (2 · v) × (16 · v + 2 · v) =
r × n: Each camera view adds two observation equations 2 · v and there are 16 camera
parameters involved for each view (16 · v) and finally for each view there are two image
point measurements (2 · v). The parameter coefficient matrix A has the dimension r × 3
for every object point:

BT =


∂f1
∂l1

. . . ∂f1
∂ln... . . . ...

∂fr
∂l1

. . . ∂fr
∂ln

 A =


∂f1
∂p1

∂f1
∂p2

∂f1
∂p3...

...
...

∂fr
∂l1

∂fr
∂p2

∂fr
∂p3

 (C.5)

As indicated in equation C.4, a priori values for all the parameters need to be given in
order to start the optimization process. For the
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C Appendix to Object Point Reconstruction

C.2 Camera Parameter Optimization

To retrieve the camera parameters from a given set of image and object point measure-
ments, the mathematical model is formulated as shown in Section C.1, whereas the obser-
vation vector l combine the image and object points and the unknown parameter vector p
contains camera parameters. To make this parameter estimation procedure more flexible
to known parameters or object coordinates (e.g., known camera position or object points
being control points), the formulation given in equation C.4 is extended for hard and soft
constraints on the parameters and on the observations:

BT · δl̂ + A · δp̂ = −wl

AT · δp̂ + I · δp̂ = −wp

(C.6)

here wl and wl are the discrepancy vectors of the true observations (f(l, p̊) = wl) and the
pseudo observations of the parameters (f(p, p̊) = p − p̊ = wp), respectively. In matrix
notation, this becomes:(

BT A
0 I

)
·
(
δl̂
δp̂

)
+
(

A
I

)
· δp̂ +

(
wl

wp

)
=
(

0
0

)
(C.7)

The stochastic model with added pseudo-observations (indicated by ∗) is given by the
variance-covariance matrices Qll and Qpp such that:

Q∗ll =
(

Qll 0
0 Qpp

)
(C.8)

The lower the variance components in Qpp, the smaller the residual of the pseudo obser-
vation p − p̊ = 0. Typically only a subset of the parameters will be constraint but the
principle remains the same. If a parameter is supposed to be correct (e.g., the camera
position is fixed), it is excluded in the estimation process and treated as an observed pa-
rameter with its corresponding variance-covariance components.
A similar principle applies to object points observed as three coordinate measurements.
In case an object point is supposed to be error free, its corresponding columns in the BT

matrix are deleted and the columns and rows of Qll are removed. Minimizing the cost
function now distributes the increments δl onto the remaining measurements.
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C.3 Camera Parameters used for Testing

C.3 Camera Parameters used for Testing

Table C.1: Intrinsic camera parameters used in the synthetic tests, Section 4.4.7. All quantities
are with respect to metric image coordinates.

Parameter camera 1 camera 2 camera 3 camera 4
xp 0.10 −0.05 0.20 0.00
yp −0.10 0.05 0.00 −0.20
c 15.0 15.0 15.0 15.0
k1 1.0e−4 0.0 −1.5e−4 0.0
k2 0.0 1.0e−5 2.5e−6 0.0
k3 0.0 −2.0e−7 0.0 0.0
p1 −1.0e−5 0.0 0.0 2.5e−5

p2 2.0e−5 0.0 3.5e−5 −5.0e−4

sc 0.0 0.0 0.0 0.0
sh 0.0 0.0 0.0 0.0

Table C.2: Extrinsic camera parameters used in the synthetic tests, section 4.4.7.

Parameter camera 1 camera 2 camera 3 camera 4

C
on

fig
.
1

ω [rad] 1.7 1.7 1.4 1.4
φ [rad] 0.0 0.0 0.0 0.0
κ [rad] 0.0 0.0 0.0 0.0
OX [m] 0.0 0.0 0.0 0.0
OY [m] 30.0 70.0 30.0 70.0
OZ [m] 30.0 30.0 70.0 70.0

C
on

fig
.
2

ω [rad] 1.7 1.7 1.4 −
φ [rad] 0.0 0.0 0.0 −
κ [rad] 0.0 0.0 0.0 −
OX [m] 0.0 0.0 0.0 −
OY [m] 25.0 75.0 50.0 −
OZ [m] 35.6 35.6 78.9 −

C
on

fig
.
3

ω [rad] 1.6 1.6 − −
φ [rad] 0.0 0.0 − −
κ [rad] 0.0 0.0 − −
OX [m] 0.0 0.0 − −
OY [m] 25.0 75.0 − −
OZ [m] 50.0 50.0 − −
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D Complementary Notes on ALSC

D.1 Variance-Covariance Matrix of a Strain Field

The strain field computed in the ALSC algorithm is primarily used to deform the metric
such that the inhomogeneous signal (Eqn. (5.15a)) can be separated from the homogeneous
stochastic signal (Eqn. (5.15b)). In many applications (e.g., Villiger , 2014; Cardozo and
Allmendinger , 2009; Kahle et al., 1995), the strain field is of interest and thus also its error
component. Because the strain rate is computed directly from the velocity gradient (Eqn.
(5.32), Section 5.3.3), the error of the estimated gradient, Q∇τ̂∇τ̂ , is derived.
To estimate the error of the strain rate tensor (Q∇si,k∇si,k), the second derivative of all
components of ∇si,k (compare Eqn. (5.33)) have to be estimated. For a 3-dimensional
problem, with Cs

′
is
′
i
(xa, xb) written as Cxaxb

, Cs
′
is
′
i
(ya, yb) written as Cyayb

, etc., this is:

∇2C =



∂
2Cxaxb
∂xa∂xb

∂
2Cxaxb
∂ya∂yb

∂
2Cxaxb
∂za∂zb

∂
2Cyayb
∂xa∂xb

∂
2Cyayb
∂ya∂yb

∂
2Cyayb
∂za∂zb

∂
2Czazb
∂xa∂xb

∂
2Czazb
∂ya∂yb

∂
2Czazb
∂za∂zb


(D.1)

The partial derivatives with respect to the coordinate systemen axes (x, y, and z) can not
be derived directly due to the deformation of the grid (Section 5.3.4). Thus the second
derivative of the first element is:

∂2Cxaxb

∂xa∂xb
= ∂

∂xa

(∂xtrb
∂xb

∂

∂xtrb
+ ∂ytrb
∂xb

∂

∂ytrb
+ ∂ztrb
∂xb

∂

∂ztrb

)
·Cxaxb

(D.2)

Applying the product rule and using the abbreviations (also neglecting subscribts ’a’ and
’b’) X′x = ∂x

tr

∂x , Y′x = ∂y
tr

∂x , Z′x = ∂z
tr

∂x , X′xx = ∂
2
x
tr

∂x
2 , Y′xx = ∂

2
y
tr

∂x
2 , etc. and ∂

∂x
tr = ∂x′ ,

∂

∂y
tr = ∂y′ , and so on, this leads to

∂2

∂x2 = X′xx∂x′ + X′x
∂

∂x
∂x′

+ Y′xx∂y′ + Y′x
∂

∂x
∂y′

+ Z′xx∂z′ + Z′x
∂

∂x
∂z′

(D.3)
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D Complementary Notes on ALSC

Noting that ∂
∂x = X′x∂x′ + Y′x∂y′ + Z′x∂z′ , Eqn. (D.1) can be expressed as:

∂2

∂x2 = X′xx∂x′ + Y′xx∂y′ + Z′xx∂z′

+ X′2x ∂x′x′ + Y′2x ∂y′y′ + Z′2x ∂z′z′

+ 2X′xY
′
x∂x′y′ + 2X′xZ

′
x∂x′z′ + 2Y′xZ

′
x∂y′z′

(D.4)

Applying the same mathematical operations to the second element in Eqn. (D.1) leads to:

∂2

∂y2 = X′yy∂x′ + Y′yy∂y′ + Z′yy∂z′

+ X′2y ∂x′x′ + Y′2y ∂y′y′ + Z′2y ∂z′z′

+ 2X′yY
′
y∂x′y′ + 2X′yZ

′
y∂x′z′ + 2Y′yZ

′
y∂y′z′

(D.5)

Therefore, Eqn. (D.1) with < . . > as the scalar product can be written as:

∇2C =

< X∗, ∂∗Cx > < Y∗, ∂∗Cx > < Z∗, ∂∗Cx >
< X∗, ∂∗Cy > < Y∗, ∂∗Cy > < Z∗, ∂∗Cy >
< X∗, ∂∗Cz > < Y∗, ∂∗Cz > < Z∗, ∂∗Cz >

 (D.6)

with

X∗ =
(
X′xx Y′xx Z′xx X′2x Y′2x Z′2x 2X′xY

′
x 2X′xZ

′
x 2Y′xZ

′
x∂y′z′

)
(D.7)

Y∗ =
(
X′yy Y′yy Z′yy X′2y Y′2y Z′2y 2X′yY

′
y 2X′yZ

′
y 2Y′yZ

′
y∂y′z′

)
(D.8)

Z∗ =
(
X′zz Y′zz Z′zz X′2z Y′2z Z′2z 2X′zY

′
z 2X′zZ

′
z 2Y′zZ

′
z∂y′z′

)
(D.9)

∂∗ =
(
∂x′ ∂y′ ∂z′ ∂x′x′ ∂y′y′ ∂z′z′ ∂x′y′ ∂x′z′ ∂y′z′

)
(D.10)

The same principles applies for a dimension other then three.

Having all terms of the gradient variance-covariance matrix defined (Q∇τ̂ ′∇τ̂ ′ , Eqn (5.83)),
the variance-covariance matrix of the strain rate field (Qε

′
ε
′), can be obtained by propa-

gation. According to Eqn. (5.33), this is:

Qε
′
ε
′ = 1

2
(
Q∇τ̂ ′∇τ̂ ′ + QT

∇τ̂ ′∇τ̂ ′
)

(D.11)

Qε
′
ε
′ can also be rotated into the principle axis of the strain rate tensor. According to

Peter (2000), this is obtained by:

Qε
′
pε
′
p

= ∂R
∂ε′
·Qε

′
ε
′ ·
(∂RT

∂ε′

)T
(D.12)

where the columns of matrix R contain the eigenvectors of the strain rate tensor ε′.
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D.2 Combining Space and Time

D.2 Combining Space and Time

Although the fundamental equations of the ALSC principle (Eqns. (5.21), (5.25), (5.25),
(5.28), and (5.29)) are given for a general dimension s, there are some special concepts
worth mentioning when extending the three dimensional (typically cartesian) space with
a ’time’ component. Regarding the variance-covariance functions (Eqn. (5.8) - (5.10)),
the extension with time is accomplished by any combination of the given models, one for
the cartesian space r and one for time t, for example:

f(r, t) = σ2
s · f(r) · f(t)

= σ2
s ·

1
1 + u1 · |ri − rj |

n1
· e−u2·|ti−tj |

n2 (D.13)

This new coordinate space typically has not the same dimensions as the measurement
space, for example, there are velocity measurements (3D, signal dimension) at certain
positions and time instances (3D + 1D, position dimension). To compute the strain rate
tensor (Eqns. (5.33) and (5.34)) a square matrix with partial derivatives is needed. In the
example of 3 signal dimensions and 4 position dimensions, this is accomplished by zero
padding:

∇si =


∇six
∇siy
∇siz
∇sit

 =


∂six
∂x

∂six
∂y

∂six
∂z

∂six
∂t

∂siy
∂x

∂siy
∂y

∂siy
∂z

∂siy
∂t

∂siz
∂x

∂siz
∂y

∂siz
∂z

∂siz
∂t

0 0 0 0

 (D.14)

As seen for example in the Eqns. (5.21) and (5.22), the dilation length γ is a scalar value
used to define the influence range of the dilation for a given dilation center r0, for all
dimensions. Because the influence range for time and space is not uniquely defined (is
4t of one hour being affected equally as for example 4r of three meters?), a dimensional
scaling has to be introduced such that by scaling either space γr or time γt component,
the scalar value γr = γt can be used.
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E GNSS Position Time Series

Given below are the position time series estimated for the two cameras (Fig. E.1) and
the two stations on the Grabengufer rock slide (Fig. E.2). A local reference station (Base
station, see Section 2.2) was used for the computation of the daily static positioning solu-
tions (implemented and operated by Dr. Philippe Limpach, Mathematical and Physical
Geodesy, ETH Zürich).

Figure E.1: GNSS time series showing the relative camera motion between October 1012 and
July 2016. The colored error envelope is the 3σ level amplified by a factor of 10. Technical issues
caused the time series to be not completely continuous. The East, North, and Height components
are drawn in red, blue, and green, respectively.
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Figure E.2: GNSS position time series of stations on the rock glacier. Due to the different scale
in the y-axis (compared to Fig. E.1), errors are too small to be shown with the same amplification.
GNSS station 2 is located further downslope. The East, North, and Height components are drawn
in red, blue, and green, respectively.

For the two stations on the Grabengufer rock slide, i.e., within the FOV of the cameras,
the projected motion (∼ 1 − 2 mm/day for the total absolute displacements) in the images
are in the order of 0.02 pixel/day.
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