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VORWORT 
 
 

Das Schwerefeld ist allgegenwärtig. Weder bei hochtechnologisierten Forschungen und 
Anwendungen noch im Alltag kann man sich den gravitativen Effekten entziehen. Und trotzdem 
existieren unter Umständen zu gewissen schwerefeldbezogenen Fragen kaum oder keine 
Untersuchungen. Herr Guillaume nimmt sich den speziellen Umständen an und beantwortet 
entsprechende Fragen in nahezu abschliessender Tiefe. Die Umstände betreffen den möglichen 
Bau eines Linearbeschleunigers beim CERN. Dazu müsste ein gerader Tunnel von ca. 40 km 
Länge ausgebrochen werden, was von geodätischer Seite her kein unlösbares Problem darstellt. 
Dazu kommen allerdings die Genauigkeitsanforderungen an Tunnelinstallationen, die die 
Vorgaben bisher erstellter Bauten deutlich übertreffen. Mit 10 Mikrometern Genauigkeit pro 
200m Länge liegt die Anforderung an der Grenze des Machbaren in einer Nicht-Laborumgebung.  
Das Institut für Geodäsie und Photogrammetrie (IGP) der ETH Zürich blickt auf etliche Jahre 
Erfahrung im Bereich der Geoidbestimmung zurück. Insbesondere wurde die astrogeodätische 
Methode vorangetrieben, die durch die Arbeiten Herrn Guillaumes nochmals verbessert und 
operationalisiert wurde. Im Speziellen ist das neue Zenit Kamera System CODIAC zu erwähnen, 
das von Herrn Dr. Bürki und Herrn Guillaume entwickelt wurde.  
Bereits in den 80-Jahren hatte das IGP Kontakte zum CERN. Damals im Zusammenhang mit 
GPS Messungen und ebenfalls lokaler Geoidbestimmung. Das CERN fasste die Planung des 
Baus eines Linearbeschleunigers ins Auge und trug den Wunsch an uns heran, die Machbarkeit 
einer hochgenauen geodätischen Referenz zu prüfen und Lösungsvorschläge zu deren 
Realisierung auszuarbeiten. Eine spezielle Herausforderung stellt dabei die Höhenreferenz dar, 
weil das Schwerefeld mit den diversen Störeffekten sich direkt in der Lösung abbildet. Die 
möglichst gute Kenntnis aller beeinflussenden Grössen ist wichtig.  
 
In diesem Bericht sind nun die Ergebnisse zusammengefasst und mit entsprechender Theorie 
hinterlegt dargestellt. Das erarbeitete konsistente näherungsfreie Theorie-Gerüst ist 
ausserordentlich wichtig, da die zu beschreibenden Einflüsse sehr klein sind und viele Ansätze 
oder Rechenprogramme zum Teil stillschweigend Approximationen und Vereinfachungen 
machen, die ohne Weiteres zu Fehlinterpretationen führen können.  
 
Diese Arbeit reiht sich in die Schwerefeld bezogenen Arbeiten des Institutes für Geodäsie und 
Photogrammmetrie der ETH Zürich und der Schweizerischen Geodätischen Kommission (SGK) 
ein. Wir danken dem Verfasser, Herrn Guillaume, für den wertvollen Beitrag zur Geodäsie. Dem 
CERN gebührt Dank für die Teilfinanzierung und Unterstützung. 
Der SCNAT danken wir für die Übernahme der Druckkosten.  
 

 
 

 

 
 
Prof. Dr. M. Rothacher       Prof. Dr. Alain Geiger 
Institut für Geodäsie und Photogrammetrie     ETH Zürich 
ETH Zürich         Präsident der SGK 
 



 
 

 
 

PREFACE 
 
 

Le champ de gravité est une chose omniprésente dans notre vie. Ni dans la recherche et ses 
applications de haute technologie ni dans les travaux journaliers de chacun, personnes n’échappe 
des effets de la pesanteur. Malgré cela il n’existe dans certains domaines relatifs au champ 
gravifique que de la littérature et des recherches éparses. 
Monsieur Guillaume a profité de ce manque d’information pour donner des réponses 
approfondies tout au long de ce travail. Le sujet concerne la possible construction d’un 
accélérateur linéaire de particules au CERN (Centre Européen de Recherche Nucléaire). 
L’excavation d’environ 40 km de longueur pour un tunnel rectiligne est faisable avec les moyens 
géodésiques modernes. Cependant une très haute précision, jamais requise précédemment, est 
requise pour le pré-alignement du tube et des aimants de l’accélérateur. L’exigence d’une 
précision de 10 microns sur une distance de 200 mètres est réellement à la limite du faisable. 
L’institut de géodésie et photogrammétrie (IGP) de ETH Zurich a une expérience de nombreuses 
années dans la détermination du géoïde. Particulièrement la méthode astro-géodésique a été 
continuellement poursuivie et développée et opérationnellement mise en œuvre durant le travail 
du Monsieur Guillaume. Il doit aussi être mentionné qu’il a, avec le Dr. B. Bürki, développé le 
nouveau système de la camera zénithale CODIAC. 
Dès le début des années 80 l’IGP a établi des contacts avec le CERN pour la détermination du 
géoïde et pour des mesures GPS. Plus tard lorsque le CERN a envisagé la construction d’un 
accélérateur linéaire il a offert à l’IGP une collaboration pour une recherche sur la faisabilité de 
l’établissement d’une référence géodésique de haute précision et pour des suggestions pour sa 
mise en œuvre. L’établissement d’une référence d’altitude est un défi particulier car le champ de 
pesanteur, avec ses divers effets perturbateurs, influence la solution finale. C’est pourquoi la 
connaissance de tous les effets agissants sur g est de la plus haute importance. 
Ce rapport concentre et met ensemble tous les résultats des diverses recherches et présente une 
théorie de base correspondante. L’élaboration d’une théorie consistante et libre d’approximations 
est importante pour la compréhension de tous les effets. Beaucoup de programmes d’ordinateurs 
disponibles utilisent, tacitement, des approximations et des simplifications qui peuvent conduire à 
des conclusions erronées. 
Le présent travail représente une pièce maitresse dans la série des recherches sur le champ de 
pesanteur de l’IGP et de la commission géodésique suisse (CGS). Nous remercions Monsieur 
Guillaume pour cette contribution de grande valeur à la géodésie. Nos remerciements vont aussi 
au CERN pour leur support actif et leur financement partiel de ces recherches. 
La Commission Géodésique Suisse (CGS) est reconnaissante envers l’Académie Suisse des 
Sciences Naturelles (SCNAT) pour avoir pris à sa charge les coûts d’impression du présent 
manuscrit.   
 

 

 

 
Prof. Dr. M. Rothacher       Prof. Dr. Alain Geiger 
Institut de Géodésie et Photogrammétrie     ETH Zürich 
ETH Zürich         Président de la CGS  



  
 

FOREWORD 
 

 
The gravity field is omnipresent. Nor in high technology research and applications nor in every 
day's work one can escape the effects of gravity. Despite this there exist only sparse literature and 
investigation on certain gravity field related topics. Sébastien Guillaume takes up this lack of 
information and gives in-depth answers along his work. The topic concerns the possible 
construction of a linear accelerator at CERN. The excavation of the about 40 km long, straight 
tunnel is feasible with modern geodetic means, however the unprecedented high demand on 
precision is required by the pre-alignment of the accelerator magnets and tube. The required 10 
microns over 200 meters precision is really at the cutting-edge. The Institute of Geodesy and 
Photogrammetry (IGP) of ETH Zurich looks back on a number of years of experience in the area 
of geoid determination. Notably, the astrogeodetic method has been pursued and further 
developed and operationalized by the work of Sébastien Guillaume. It has to be mentioned that he 
and Dr. Beat Bürki have also devised the new Zenith Camera System CODIAC.  
As early as in the 80'ies IGP established contacts to CERN for geoid determination and GPS 
measurements. CERN, later on was envisaging building a linear accelerator and offered the 
cooperation to investigate the feasibility of the establishment of a high precision geodetic 
reference and to provide suggestions for its realization. A special endeavor is given by the 
establishment of the height reference, because the gravity field with its divers disturbing effects 
directly influences the final solution. Therefore, the knowledge of all the acting effects is of 
utmost importance. 
This report concatenates and concentrates all the results of the investigations and presents the 
corresponding background-theory. The elaborated consistent theory, free of approximations, is 
important to understand all the effects. Many available software does tacitly use approximations 
and simplifications which easily could lead to faulty interpretations. 
This investigation represents a further master piece in the series of gravity field research of the 
Institute of Geodesy and Photogrammetry and the Swiss Geodetic Commission (SGC). 
Thanks go to the author, Sébastien Guillaume, for his valuable contribution to geodesy. Thanks 
are given to CERN for their active support and for partially funding the investigation and to the 
Swiss Academy of Sciences for covering the printing costs of this volume. 
 

 

 

 

 

 

 

 
Prof. Dr. M. Rothacher       Prof. Dr. A. Geiger 
Institute of Geodesy and Photogrammetry     ETH Zurich 
ETH Zurich         President of SGC 
 



 



Summary

This work is part of the studies conducted by CERN as part of a project for a future
electron-positron linear collider (CLIC) of 50 kilometers. In particular, it addresses a spe-
cific aspect related to its pre-alignment in the vertical dimension. In fact, in order to ensure
a high collision probability of incident particles (called luminosity), it is necessary that
the diameter of the beams, at the collision point after 25 kilometers of continuous acceler-
ation, do not exceed a few nanometers. This is only possible if some technical constraints
are fulfilled. One of them concerns the accuracy for the pre-alignment of quadrupoles
along the whole machine. This alignment must be related to a straight line in Euclidean
space with a precision of 10 microns over 200 meters sliding window. In practice, this can
only be envisaged if a positioning system is capable to determine positions at this level
of accuracy. In vertical, hydrostatic levelling systems (HLS) benefit of several advantages
and represent serious candidates. In addition to their sub-micrometric resolution, HLS are
robust and appear to be particularly reliable with respect to radiations. However, they
are unable to realize a Euclidean straight line. Indeed, they are related to the surface of
the fluid in hydrostatic equilibrium, connecting the different sensors, whose geometry is
an equipotential of the Earth’s gravity field.

The principal aim of this work is the study of the feasibility of the determination of
underground gravity equipotential in a tunnel located at approximately 150 meters in
depth. Moreover, a practical strategy which may be implemented is proposed. In a first
step, after the rigorous definition of an operator which measures the misalignment, it is
demonstrated that the Newtonian mechanic framework is precise enough in the frame of
this project. Then, thanks to a rigorous formulation of forces contributing to the varia-
tions of the fluid-gaz interface in a 200 meters HLS system, it is shown that this interface
can be approximated by equipotentials of the gravity field with a precision better than 1
micron.

The theoretical framework being fixed, the precision of astrogravimetric underground
equipotential determinations is analyzed, on the one hand, by numerical Monte-Carlo
simulations which model different kind of noise sources, and on the other hand, by several
gravity field simulations generated by topography, near-field realistic geological anomalies
and by surface variations of the Lake of Geneva. It appears that the principal source
of uncertainty comes from the orthometric correction. In particular from the determina-
tion of the mean gravity acceleration along the plumbline. For the determination of the
profile of CLIC, despite the fact that gravimetric measurements can be carried out on
the surface of topography and in the tunnel, it is necessary to know the density of the
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masses between the surface and the tunnel with a precision between 100 and 200 kg
m3 for

wavelengths between 200 to 3’000 meters. Concerning the pure astrogeodetic part, it is
shown that the accuracy constraints can be reached within a reasonable time, less than
one year, when five modern zenith cameras are deployed in parallel. In this regard, a new
zenith camera system, called CODIAC (Compact Digital Astrometric Camera), entirely
developed and manufactured at the Institute of Geodesy and Photogrammetery of ETH
Zurich, is presented.

In order to validate the astrogravimetric method, the results of a campaign at CERN,
along the tunnel TZ32, 850 meters in length, are presented. The comparisons of the as-
trogravimetric determination with the predictions from a precise mass model integrating
the topography, the near-field geology and the existing TZ32 and LHC tunnels, are in
the order of 20 microns with respect to alignments over 200 meters, in agreement with
predictions.

Finally, a direct and non-ambiguous method for the determination of underground equipo-
tential is proposed. It is based on observations of underground deflections of the vertical
variations. These observations are supposed to be carried out with a new instrument,
called differential geodetic interferometric deflectometer, whose principle is simple and
consists in measuring the tilt of a movable chariot, along a profile, by an interferometer
and a tiltmeter. Because of atmospheric perturbations, the whole device is placed in an
appropriate vacuum tube. For a practical application, it is necessary to have a deflec-
tometer length of minimum 50 meters. In order to validate the feasibility of this new
kind of instrument, a first prototype of 12 meters was entirely designed and developed
in the frame of this thesis, in collaboration with CERN. The first measurements showed
that there are systematic effects remaining which must be reduced at least by one order
of magnitude before considering the construction of a longer range instrument.



Résumé

Ce travail fait partie des études menées par le CERN dans le cadre d’un projet de futur
collisionneur linéaire électron-positon (CLIC) de 50 kilomètres. En particulier, il traite
d’un aspect spécifique lié à son pré-alignement dans la dimension verticale. En effet,
afin de garantir une grande probabilité de collisions entre les particules incidentes (ap-
pelé luminosité), il est nécessaire que les diamètres des faisceaux, au point de collision,
après 25 kilomètres d’accélérations ininterrompues, ne soient que de quelques nanomètres.
Ceci n’est envisageable que si plusieurs contraintes techniques sont assurées. L’une d’elle
est la contrainte de précision extrême que nécessite l’alignement des quadrupôles tout au
long de la future machine. Cet alignement doit se faire par rapport à une ligne droite
dans l’espace Euclidien avec une précision de 10 microns sur une fenêtre glissante de 200
mètres. En pratique, cela ne peut être réalisé que si un systéme de positionnement est
capable de déterminer des positions avec cette précision. En vertical, un système basé sur
des techniques de nivellement hydrostatique (HLS) bénéficie de nombreux avantages et se
profile comme un sérieux candidat. En plus de leur résolution sub-micrométrique, les HLS
permettent de determiner facilement des différences d’altitudes de points trés éloignés les
uns des autres. De plus, de part la simplicité de leur principe, ils s’avèrvent être très
robustes et particulièrement fiables en milieu radioactif. Malgré cela, les systèmes HLS
sont incapables de réaliser une ligne droite Euclidienne. De fait, ils se réfèrent à la surface
du fluide en équilibre hydrostatique qui les relie, dont la géométrie est une équipotentielle
du champs gravifique de la terre.

Ce travail a donc pour objet principal l’étude de faisabilité de la détermination d’équipoten-
tielles du champs gravifique en sous-terrain dans un tunnel situé à environ 150 mètres de
profondeur, et tenter de proposer une méthode pratique qui pourrait être mise en oeu-
vre. Dans un premier temps, après avoir définis rigoureusement un opérateur mesurant
le désalignement, il est demontré que la précision du cadre de la mécanique newtonienne
est suffisant pour le traitement du champs de gravité dans ce projet. Ensuite, grâce à une
formulation rigoureuse des forces contribuant aux variations de la surface de l’interface
fluide-gaz d’un un sysème HLS de 200 mètres, il est démontré que cette dernière peut être
approximée de façon satisfaisante, à moins de 1 micron, par la surface equipotentielle du
champs gravifique.

Le cadre théorique étant fixé, la précision de détermnation de la géométrie des équipotentiel-
les en sous-sol par la méthode astro-gravimétrique est analysée d’une part par des méthodes
numériques de Monte-Carlo en modélisant différents types de bruits de mesures, ainsi que
sur la base de nombreuses simulations de champs de gravité générés par diverses anoma-
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lies topographiques, sous-terraines, géologiquement réalistes, ainsi que celles provoquées
par les variations de la surface du Lac Léman. Il en ressort que la principale source
d’incertitude provient de la correction orthométrique, et en particulier de la détérmination
de la valeure de l’accélération de la pesenteur moyenne le long de la ligne d’aplomb en
chaque point du profil à determiner. Le long du profil du futur CLIC, malgré le fait d’avoir
la possibilité de faire des mesures gravimétriques en surface ainsi que dans le tunnel, il
sera nécessaire de connâıtre la densité de la roche en sous-sol, entre la topographie et le
tunnel, avec une incertitude d’environ 100 à 200 kg

m3 pour des longueurs d’ondes de 200 à
3’000 mètres. Concernant la partie proprement astrogéodésique, il est démontré qu’une
précision suffisante peut être obtenue dans un temps raisonnable, moins d’une année, avec
le mise en oeuvre parallèle de cinq caméras zenithales de dernière génération. De ce fait,
une nouvelle caméra zénithale, appelée CODIAC (Compact Astrometric Digital Camera)
entièrement developpée et manufacturée à l’Institut de géodésie et de photogrammétrie de
l’ETH Zurich est également présentée dans cette thèse.

Afin de valider la méthode astrogravimétrique, les résultats d’une campagne de mesure au
CERN, le long d’un tunnel (TZ32) de 850 mètres, sont également présentés. La compara-
ison de la détermination astrogravimétrique avec les prédictions d’un modèle de masses
précis intégrant la topographie, les anomalies géologiques de champs proche ainsi que les
tunnels TZ32 et LHC, sont de l’ordre de 20 microns pour un alignement sur 200 mètres,
en accord avec les prédictions d’incertitudes.

Finalement, une métode plus directe et non-ambigue de détermination d’équipotentielles
sous-terraines, basée sur des observations de variations de déviations de la verticale est
présentée. Ces variations seraient mesurées par un nouvel instrument, appelé défléctomètre
interférométrique differentiel géodésique, dont le principe est très simple et consiste à deter-
miner l’inclinaison d’un chariot le long d’un profil par interférométrie et par inclinométrie.
En raison des perturbations atmosphériques, tout le dispositif dôıt être placé dans un tube
à vide prévu à cet effet. Pour une application pratique, il serait nécessaire de disposer d’un
défléctomètre d’au minimum 50 mètres. Avant cela, un premier prototype de 12 mètres,
été entirèrement développé dans le cadre de cette thèse en collaboration avec le CERN, a
été construit dans le but de valider sa faisabilité. Des premiers tests ont pu être réalisés et
indiquent que les systématismes résiduels de ce nouvel instrument doivent être réduis d’au
moins un ordre de grandeur avant de pouvoir envisager le developpement d’un instrument
de plus longue portée.
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Chapter 1

Introduction

The Compact Linear Collider (CLIC) is a project proposed by CERN for a future electron-
positron linear collider with a length of 50 km, which would be an essential complement to
the existing Large Hadron Collider (LHC) in order to establish beyond doubt the validity
of the Standard Model (Braun et al., 2008). In order to reach the nominal energy for
the particle collisions, and the expected luminosity (number of collisions per second), an
active pre-alignment system must aim at ensuring the alignment of the components with
a precision of 10 µm (1σ) over 200 m with respect to a straight line in Euclidean space
(Schulte, 2009).

Various alignment systems are under investigation at CERN and at other particle physics
laboratories. Among them, alignment systems based on an optical laser beam (λ = 632
nm) (Griffith, 1989) or an x-ray laser beam (λ = 0.063 nm) (Yang and Friedsam, 2006)
are in principle very promising from their concepts, however, they still suffer from some
technical difficulties. First, the beam must propagate in a vacuum tube in order to ensure
a straight line reference. Second, the reliable and precise geometrical external tie with
the reference beam is a difficult task. Finally, the alignment system must be designed
to operate in real-time in a radioactive environment. The latest alignment strategy pub-
lished at CERN, including the horizontal reference network, can be found in Touzé (2011).

Due to the implicit design constraints, a hydrostatic levelling system (HLS) is a suit-
able candidate for the vertical reference network. However, the physical reference of an
HLS is the instantaneous water surface rather than a perfect straight line (see Figure 1.1),
which then requires the determination of micrometric instantaneous equipotential profiles
at the location of the future accelerator, in a Euclidean reference system (Becker et al.,
2002). This implies that some special investigations have to be done in order to determine
on the one hand, if a determination at this level of precision can be reached, and on the
other hand what the optimal strategy is that could be practically applied.

Without going into much into details of the CLIC project, two variants are nowadays
considered. They are located and centered at the same place but differ in length, see
Figure 1.2. The high-energy variant, CLIC 3.0 TeV, as a length of about 49.3 km in total,
whilst the low-energy variant, CLIC 0.5 TeV, extends only over 12.5 km approximately.
In the frame of this thesis, only the CLIC 3 TeV version is considered while the latter can
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just be considered as its central part. The collider consists of two main linear accelerators
(both 24.65 km long) which are straight, but not collinear in the vertical plane. They have
a crossing angle of 20 (mrad), see Figure 1.3.

The Chapter 2 concerns the definition of the precision indicators for alignments over
200 meters with respect to a straight line. A simple misalignement operator is defined in
order to quantify the quality of alignment in an unambiguous and consistent manner.

The Chapter 3 has the objective to introduce all theoretical aspects needed for the math-
ematical formulation of the geometry of the reference surface of a HLS system, whether
the geometry of the interface between the water and the air. The starting point consists of
estimating the order of magnitude of general relativistic effects in geoid modeling in order
to validate the use of the Newtonian framework, without restrictions, for the rest of the
thesis. Afterwards, the basic concepts of Newtonian mechanics and classical gravitation
are exposed in inertial and non-inertial frames in order the formulate precisely, in the
Earth fixed reference system, the real acceleration felt by particles in fluids or by geodetic
instruments. From this point onward, the geometry of the fluid-air interface is analyzed
regarding different approximations of the equations of fluid dynamics. It is demonstrated
that the hydrostatic solution is acceptable regarding the accuracy constraints of CLIC,
and implies that the complex problem of determining the geometry of the fluid-air inter-
face in a HLS system can be reduced to the determination of the equipotential surface of
the gravity field.

The Chapter 4 is also destined to non-geodesists who would like to become more familiar
with the geodetic approach of gravity field determination. It consists of reviewing some
fundamental basic aspects of the determination of equipotential profiles, with a special
emphasis on the quasi-geometric method provided by astrogravimetric levelling. In this
context, the accuracy of astrogravimetric levelling affected by different sources of errors is
analyzed in terms of misalignment over 200 meters.

The Chapter 5 describes the software QGravity developed in the context of this thesis
for the simulation and the representation of complex gravitational fields. The software is
intensively used in the next chapters.

In the Chapter 6, expected gravity signals at very short wavelengths < 1 km are analyzed
in a systematic manner. In addition, in order to increase the realness of the estimation of
the real capability of a given methodology to determine equipotential profiles, the concept
of observability is introduced. In this context, preliminary observability analyses are per-
formed for the astrogravimetric levelling for the determination of the equipotential profile
along the projected emplacement of CLIC.

The Chapter 7 deals with the astrogeodetic determination of deflections of the vertical
(DoV). It presents some theoretical fundamental aspects with particular emphasis on the
modelization of the anomalous refraction which is presently the limiting factor of practical
astrogeodetic DoV determination. To that point, the new zenith camera system CODIAC,
designed and developed in the frame of this thesis is exposed.
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In Chapter 8 the different aspects exposed in the previous chapters are applied to an
astrogravimetric campaign which took place at CERN, along a straight tunnel of 850 me-
ters in length, called TZ32, linked to the LHC, at a depth of 80 meters. The equipotential
profile determined from surface astrogeodetic deflections of the vertical and surface and
underground gravimetric measurements is then compared to predictions based on known
mass models which include topography, near-field geological density fields, the lake of
Geneva and the underground infrastructure formed by the LHC and TZ32 tunnels.

Finally, the Chapter 9 presents the first developments of a differential geodetic interfer-
ometric deflectometer which has potentially many benefits compared to astrogravimetric
levelling. It is designed to measure variations in the deflection of the vertical variations
directly in the tunnel and would permit a direct determination of the geometry of under-
ground equipotential profiles without making any assumptions about the actual density
field.

straight line(Euclidean space)

topography

HLS

HLS reference= water

Compact Linear Collider CLIC

?
?
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Figure 1.1: Schematic drawing of the Compact Linear Collider (CLIC).
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Chapter 2

Basic Tools for Misalignment
Analyses

2.1 Misalignment Operator M

The ultimate objective is to be able to align accelerator components with respect to a
straight line in Euclidian space, at the required precision of 10 µm, over a wavelength of
200 m. From this point of view, it is necessary to define a mathematical tool which can
be applied to a trajectory (which can represent the positions of accelerator components
or the shape of an equipotential of the gravity field) to generate objective alignment – or
misalignment – criteria. The principle is very basic, it was introduced by Becker (2003)
and used by Touzé (2011) in the context of accelerator alignment. However, the first rig-
orous definition of the following operator was introduced by Guillaume et al. (2014a). The
operator M, which is briefly described, gives the maximal alignment error at a certain
position, for a certain wavelength, by analysing the residuals of best-fit straight lines.

Assuming that we have an arbitrary spatial trajectory P which is discretized by a series
of N position vectors pi, where i = 1, ..., N , can be interpreted as a curvilinear index in P.
The least-squares best-fit line Lk 7→l passing through the sub-path Pk 7→l can be computed
as follows:

Lk 7→l ≡ pm + α · d (2.1)

pm =
1

l − k + 1

l∑
i=k

pi d = max eig
[
P ·PT

]
P = [pk − pm · · · pl − pm]

(2.2)

where α is an arbitrary scalar and max eig [. . .] represents the normalized eigenvector
associated with the largest eigenvalue. Now, if pm and d are known, the misalignment
vectors mi can be computed as the differences between the position vectors pi and their
orthogonal projections on Lk 7→l:

mi = (pi − pm)−
[
(pi − pm)T · d

]
· d (2.3)
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d

pk

plpi

mi

Figure 2.1: Misalignment Operators.

Finally, the misalignment error Mλ
p {P} of the trajectory P at the position p = pm for

the wavelength λ = |pl − pk| is computed as follows:

Mλ
p {P} = max |mi| (2.4)

which is a scalar value. For the misalignment error at every position of P, and for a
particular wavelength λ, the operator is noted Mλ

? {P}. In a similar way, for the mis-
alignment errors at a particular position p and for all possible wavelengths, the operator is
noted asM?

p {P}. Finally for all misalignment errors, at every position and every possible
wavelength, the operator may be written as M?

? {P}.

2.2 Representations of Misalignment

In order to illustrate the behavior of the misalignment operator M, some representations
are presented. They are based on a 2D discrete trajectory P shown in the upper plots
of all upcoming figures of this section. If all misalignments over of M?

? {P} have to
be represented, two possibilities are available. The first is shown in figure 2.2, where a
colored dot represents a particular Mλ

p {P}. The second is given in figure 2.3, where the

particular Mλ
p {P} are plotted in function of the wavelength λ only, but the information

about the position p is no longer available. If only misalignements Mλ=100,200,300
? {P} at

specific wavelengths λ in function of positions p are of interest, a possible representation
is given in figure 2.4. Finally, the figure 2.5 shows a representation of the misalignments
M?

p=500 {P}, if the position p is fixed and all possible wavelengths are explored.
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Chapter 3

Fundamentals of Earth’s Gravity
Field

3.1 Introduction

In this chapter, the fundamental physical concepts related to the gravity field are reviewed.
It begins with determining the approximation level of Newtonian mechanics with respect
to Einstein’s general theory of relativity (GRT) concerning the gravity field of the Earth.
Some orders of magnitude of the GRT effects are provided for various geodetic observables
and also for the geoid. This confirms that the Newtonian framework is precise enough
with respect to the level of precision we are trying to approach in this thesis.

Secondly, the main concepts of Newtonian mechanics and gravitation in inertial and accel-
erated systems are explained in order to derive the forces which are felt by observers, and
enter the equation of motion for particles on the Earth. On this basis, the determination
of the shape of the fluid-air-interface is discussed from the general case of fluid dynamics
to the special case of hydrostatic equilibrium which is fundamental to this thesis. In this
context, it is shown that the consequences of the hydrostatic solution are linked to the
fact that the forces acting on the particles of a fluid must be curl-free. Unfortunately,
this is not the case for the Eulerian acceleration usually neglected in geodesy. Therefore,
in order to quantify the consequences of the Eulerian acceleration in hydrostatic levelling
systems, a simple HLS model is numerically investigated.

3.2 Gravity in Modern Physics and Geodesy

In modern physics, the current theory of gravitation1 is given by the general theory of
relativity formulated by Einstein (1916). Since 1916, the theory of general relativity has
never been falsified by any observations and made it possible, for the first time, to handle
the whole universe as a single mathematical object. It led to the emergence of modern
cosmology.

1the general relativity theory is not only a theory of gravitation but unifies, in a consistent formalism,
the concepts of dynamics, classical electromagnetism, gravitation and special relativity.
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When Einstein succeeded to integrate the postulates of special relativity and the prin-
ciple of equivalence in a formalism independent to any reference system, the new concepts
behind GRT revolutionized the classical Newtonian mechanics in all of these components:

� The spatio-temporal framework of Newtonian mechanics, which assumes a radical
separation of the three dimensions of space and the dimension of time, is replaced
by an interlaced four-dimensional space-time.

� The belief that a preferred general inertial system exists wherein all events can be
identified with respect to an absolute time is destroyed by GRT. The concept of
an inertial system exists only locally and varies at each point of space-time. It is
defined in such a way that the effect of gravitation can be completely canceled by
the free-fall of the system itself. Furthermore, the physics in the local inertial system
is governed by the laws of special relativity.

� Gravitation is no longer formulated as an instantaneous force field generated by
masses, but as a consequence of the intrinsic geometrical curvature of space-time,
generated by the content in mass and energy. Moreover, in opposition to New-
ton’s law of gravitation, because the principles of special relativity are completely
integrated in the GRT, the gravitational effects have a finite propagation velocity.

� In accordance with the principle of least action, the trajectories of objects not sub-
jected to external forces are given by the geodesics in the curved four-dimensional
space-time.

Despite the fact that the concepts of GRT and Newtonian gravitation are completely
different, it can be proven that the Newtonian theory is the correct limit of GRT for a
weak gravitational field and for velocities of matter and observers that are small compared
to the speed of light (Kopeikin et al., 2011).

3.2.1 Order of Magnitude of Relativistic Effects in Terrestrial Geodesy

In the vicinity of the Earth, the order of magnitude of the differences between the pre-
dictions of general relativity and the predictions of Newtonian physics depends on the
reference system which is considered. In Müller et al. (2008) and Soffel et al. (2003), we
find that the magnitude of the main GRT effects are of order:

� ηBCRS ∼ 10−8 for the Barycentric Celestial Reference System (BCRS)2.

� ηGCRS ∼ 10−9 for the Geocentric Celestial Reference System (GCRS)3.

with

ηBCRS =
Φ�
c2

=
1

c2
·
GM�
|r� − r♁ |

∼= 9.87 · 10−9 (3.1)

2the BCRS is the reference system defined in the GRT framework which is used to model the light
propagation of distant celestial objects and for the computation of orbits of celestial bodies of the solar
system (Soffel et al., 2003).

3the GCRS is the reference system defined in the GRT framework which is used to model the phenomena
in the vicinity of the Earth (Soffel et al., 2003).
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and

ηGCRS =
Φ♁

c2
=

1

c2
·
GM♁

R♁

∼= 6.96 · 10−10 (3.2)

where:

G ∼= 6.674 · 10−11
[

m3

kg·s2

]
= gravitational constant.

c ∼= 2.998 · 108
[

m
s

]
= speed of light in vacuum.

Φ� ∼= 8.876 · 108
[

m2

s2

]
= gravitational potential of the Sun in the

vicinity of the Earth’s surface.

Φ♁
∼= 6.250 · 107

[
m2

s2

]
= gravitational potential of the Earth in the

vicinity of the Earth’s surface.

GM� ∼= 1.327 · 1020
[

m3

s2

]
= heliocentric gravitational constant.

GM♁
∼= 3.986 · 1014

[
m3

s2

]
= geocentric gravitational constant.

|r� − r♁ | ∼= 1.495 · 1011 [m] = distance between the Earth and the Sun.

R♁
∼= 6.378 · 106 [m] = Earth’s radius.

The parameters ηBCRS and ηGCRS are derived from the post-Newtonian approximation4

(PNA) of the GRT. They are dimensionless and represent the order of magnitude of the
main sources of gravitation not modeled in the Newtonian framework. In addition, they
can be seen as the approximate frequency shifts5 which could be observed between a per-
fect clock attached to the surface of the Earth and a perfect clock situated at the origin
of the BCRS (the center of mass of the solar system) or at the origin of the GCRS (the
Earth’s center of mass), respectively.

The magnitude of relativistic effects on various terrestrial geodetic observables is given
in Soffel (1989). Furthermore, in Kopeikin (1991), we can find a proper formulation of
PNA of Einstein’s equations in geocentric and topocentric coordinate systems including
some orders of magnitude of relativistic effects expected for gravity and gradiometry ob-
servables. In Table 3.1 some relativistic effects not modeled by the Newtonian framework
are listed. They are mainly obtained from Soffel (1989). As we can see, the relativistic
effects are usually very small compared to the accuracy which can be achieved by current
terrestrial geodetic measurement techniques. Only time series from highly precise super-
conducting gravimeters and recent optical clocks might be able to observe relativistic
phenomena.

3.2.2 Relativistic Geoid

Soffel et al. (1988) proposes two different definitions for a relativistic geoid:

4Post-Newtonian approximations are methods used for solving Einstein’s equation of general relativity
up to a certain level of approximation. They are used when bodies are moving slowly compared to the
speed of light and when the gravitational field is weak. They consist in developing the metric tensor gµν
into inverse powers of the speed of light.

5also called gravitational redshift.
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Table 3.1: Terrestrial geodetic measurements and relativistic effects. d = distance [m] to target,
∆h = height difference [m] between two clocks.

observable method accuracy relativistic effect

distance EDM 10−6 · d [m] 10−9 · d [m]

interferometer 10−8 · d [m] 10−9 · d [m]

horizontal direction theodolite 10−6 [rad] − −

zenith angle theodolite 10−6 [rad] 10−16 · d [rad]

gravity potential atomic clock 10−13
[

s
day

]
10−11 ·∆h

[
s

day

]
gravity acceleration free-fall gravimeter 10−8

[
m
s2

]
10−8

[
m
s2

]
super-conducting
gravimeter

10−10
[

m
s2

]
10−8

[
m
s2

]
astro-geodetic
zenith camera

10−1 [arcsec] 10−4 [arcsec]

gravity gradient torsion balance 10−9
[

1
s2

]
10−16

[
1
s2

]

1. the u-geoid is defined to be the surface, close to mean sea level where, the rate of the
proper time of an ideal clock is constant with respect to the geocentric coordinate
time. The prefix u refers to the relativistic four-velocity vector u of a co-moving
atomic clock.

2. the a-geoid is defined to be the surface, close to mean sea level, of constant geocentric
rates and orthogonal everywhere to the topocentric direction of the Earth’s gravity.
The prefix a refers to the relativistic four-acceleration vector a which is related to
the direction of the plumbline.

In addition, Soffel et al. (1988) demonstrate that the u-geoid and the a-geoid are equiva-
lent for any stationary metric.

Subsequently, Kopeikin (1991) demonstrates that the u-geoid and the a-geoid are also
equivalent for constant rigid-body rotation of the Earth. Moreover, he shows that the
level surface of a self-gravitating fluid in the post-Newtonian approximation of GRT co-
incides exactly with the equipotential surface represented by the geoid. This important
result makes it possible to direct transpose the physical interpretation of the Newtonian
geoid as level surface to that of the relativistic geoid (Kopeikin et al., 2011).

To get some numerical estimates of relativistic effects for the geoid, we have to refer
to Müller et al. (2008), who provide the equation of the u-geoid. They approximate the
gravitational potential of the Earth as a post-Newtonian multipole series formed by a
scalar PN potential ΦPN and a PN vector potential ΠPN

6. They found that surfaces of
constant clock rates for observers at rest in an Earth fixed coordinate system (e.g. ITRS)

6also called gravito-magnetic vector potential of the Earth which is usually related to the Lense-Thirring
effect (Soffel et al., 2003).
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are given by:

ΦPN,♁ = ΦPN,0 = cst

= ΦPN +
1

2
· |vGCRS|2

−
Φ2

PN

2c2
− 4 ·ΠPN · vGCRS

c2
+

3 · ΦPN · |vGCRS|2

2c2
+
|vGCRS|4

8c2

(3.3)

with:

ΠPN = −G
2
·
rGCRS × SGCRS

♁

|rGCRS|3
and SGCRS

♁ = IGCRS

♁ · ωGCRS

♁ (3.4)

where:

G
[

m3

kg·s2

]
= gravitational constant.

c
[

m
s

]
= speed of light in vacuum.

ΦPN,♁

[
m2

s2

]
= post-Newtonian gravity potential of the Earth.

ΦPN,0

[
m2

s2

]
= post-Newtonian gravity potential constant of the Earth, at mean

sea level.

ΦPN

[
m2

s2

]
= post-Newtonian gravitational scalar potential of the Earth.

ΠPN

[
m3

s3

]
= post-Newtonian gravitational vector potential of the Earth.

rGCRS [m] = position of an observer in GCRS.

vGCRS
[

m
s

]
= velocity of an observer in GCRS.

SGCRS
♁

[
kg·m2

s

]
= total angular momentum of the Earth.

IGCRS
♁

[
kg ·m2

]
= inertial tensor of the Earth.

ωGCRS
♁

[
rad
s

]
= spin vector of the Earth.

In Equation 3.3, the post-Newtonian scalar potential ΦPN can be related to the stan-
dard Newtonian potential, the second term to the standard centrifugal potential, and
the last four terms, which are proportional to c−2, can be identified as purely relativis-
tic corrections. These corrections can be analyzed in terms of geoid undulations δNi, if
Brun’s formula (see Equation 3.196) is applied. This can be done, if we assume that the
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relativistic corrections are considered as disturbing potentials:

δN1 = − 1

γ0
·

Φ2
PN

2c2

δN2 = − 1

γ0
· 4 ·ΠPN · vGCRS

c2

δN3 = +
1

γ0
· 3 · ΦPN · |vGCRS|2

2c2

δN4 = +
1

γ0
· |v

GCRS|4

8c2

(3.5)

The order of magnitude of these effects can be computed assuming the following values:

γ0 = 9.81
[m

s2

]
, ΦPN = 6.250 · 107

[
m2

s2

]
(3.6)

IGCRS

♁ =


8.008 0.000 0.000

0.000 8.008 0.000

0.000 0.000 8.036

 · 1037
[
kg ·m2

]
, ωGCRS

♁ =


0.000

0.000

7.292

 · 10−5

[
rad

s

]

(3.7)

SGCRS

♁ = IGCRS

♁ · ωGCRS

♁ =


0.000

0.000

5.860

 · 1033

[
kg ·m2

s

]
(3.8)

and if we assume that:
vGCRS = ωGCRS

♁ × rGCRS (3.9)

With these approximations, it is easy to see that all δNi are stationary, i.e., they do
not vary with time. In addition, δN1 is also independent of the position rGCRS and can
be reduced to a constant value of approximately δN1 = 2.2 mm. Concerning the three
others terms, we can prove that they vary only with the latitude and have their maximal
amplitudes at the equator as we can see from Figures 3.1 and 3.2. Figure 3.2 shows the
total relativistic correction δNrel, which is simply the sum of all δNi:

δNrel = δN1 + δN2 + δN3 + δN4 (3.10)

Misalignment due to the relativistic effects

Relativistic effects can produced systematic effects up to 2 mm over the whole Earth.
According to Müller et al. (2008), the magnitude seems to be very small at global scale
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Figure 3.1: Post-Newtonian geoid undulation corrections δN1, δN2, δN3 and δN4 as a function
of the latitude according to Equation 3.5.
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but could become significant in the next years with the increasing accuracy of global geoid
solutions obtained with space techniques. It follows that Müller et al. (2008) advise to
formulate the next generation of global geoid realizations according to a proper post-
Newtonian framework.

Concerning the issue of regional relative geoid determination and, especially, the alignment
of linear colliders with respect to current alignment specifications, it is not surprising that
relativistic effects are largely negligible. In fact, if we compute the misalignment along
an arbitrary meridian we get maximal misalignments of approximately 8.0 µm for wave-
lengths of λ ≈ 20′000 km, and 1.0 µm for λ ≈ 4′000 km (see Figure 3.3). In other words,
the misalignment signal due to GRT has an order of magnitude of 10−13.
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Figure 3.3: Misalignment generated by the effects of general relativity on the geoid, along an
arbitrary meridian. The x-axis represents the position (given by the latitude) along the meridian,
the y-axis the wavelength λ and the misalignment M?

? {δNrel} is color-coded.

3.2.3 Concluding Remarks

In this very short introduction, it was the goal to give a very brief overview of the current
theory of space-time and gravitation and some consequences for geodetic observables, in
particular concerning the Earth’s equipotential surfaces. As expected, in regional geodetic
applications, the purely relativistic effects are negligible.
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3.3 Classical Mechanics and Newtonian Theory of Gravitation

3.3.1 Introduction

In this work, only the classical mechanics framework is considered. Its foundation comes
from one of the most important books in the history of sciences: Philosophiæ Naturalis
Principia Mathematica, written by Newton (1687). This book contains the formulation of
the famous Newton’s laws of motion and the Newton’s law of universal gravitation which
is of particular importance in this thesis.

A very important aspect of the Newtonian theories is that the laws are based on a sim-
ple space-time framework, which postulate a complete independence of space and time.
They are considered to be absolute and independent of the happening of any physical
events. The space is defined as a three-dimensional Euclidean space and the time as a
one-dimensional variable which behaves identically at every position in space. Moreover,
the mathematical formulation of the laws are only valid in a specific class of reference
systems, dynamically equivalent, called inertial systems.

3.3.2 Newton’s Laws of Motion in Inertial Systems

Newton’s First Law

The first law says that if the resultant of the external forces Fi acting on a particle is
equal to 0, the velocity v of this particle remains unchanged.∑

∀i
Fi = 0→ dv

dt
= 0 (3.11)

In other words, if the net forces are equal to zero, a particle at rest stay at rest, and for
a particle in motion, the motion corresponds to a rectilinear motion of constant velocity.
This first law seems to be only a special case of the second law, but this is not the case. It
defines the class of reference systems for which the laws are valid. These reference systems
are called inertial systems.

Newton’s Second Law

The modern version of the second law says that the rate of change of the linear momentum
p of a particle is equal to the resultant of the external forces Fi acting on this particle.

dp

dt
=
∑
∀i

Fi (3.12)

where the linear momentum p = m · v is equal to the product of the inertial mass m and
the velocity v of the particle. In the case when the mass does not vary with time, the
second law can be written as:

m · dv

dt
= m · a = m · d2r

dt2
= m · r̈ =

∑
∀i

Fi (3.13)

where a represents the acceleration and r the position of the particle in an inertial system.
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Newton’s Third Law

The third law says that, if an object A exerts a force FA→B on an object B, the object B
exerts simultaneously a force

FB→A = −FA→B (3.14)

or in terms of linear momentum

dpB→A = −dpA→B (3.15)

which has the same amplitude but the opposite direction. This means also that only pairs
of forces exist that act simultaneously.

Transformation between Inertial Systems

Two inertial reference systems i1 and i2 are related by the fact that they differ only by a
rectilinear constant velocity vi2i1 . At time t, if we know the coordinates ri1(t) of a particle

in i1, we can find the coordinates of this particle ri2(t) in i2 by:

ri2(t) = ri1(t)− vi2i1 · t (3.16)

if at t = 0 the origins of i1 and i2 coincide. In this case, it is easy to see that Newton’s
second law is invariant with respect to a Galilean transformation because:

m · d2ri1

dt2
= m · r̈i1 = m · d2ri2

dt2
= m · r̈i2 (3.17)

Newton’s Second Law in Non-Inertial Systems

Ideally, it would be preferable to work always in inertial systems and apply Newton’s laws
as described before. Unfortunately, this is not always possible. First, when a reference
system is defined, how can we be sure that it is really inertial? Nowadays, since the de-
velopment of GRT, we know that a global inertial system does not exists. However, it is
possible to find an operational quasi-inertial system which appears as inertial up to the
level of accuracy which is needed. Actually, we can check if a system is inertial enough by
observing motions and forces of objects in this system, and check if Newton’s second law
is respected. In geodesy, the most fundamental reference system considered to be quasi-
inertial is given by the International Celestial Reference System ICRS which is realized
by observations of distant emitting galaxies, so-called quasars7.

Nonetheless, in most cases, we observe motions of objects and forces in non-inertial sys-
tems. Therefore it is necessary to reformulate Newton’s second law for non-inertial sys-
tems. This can be done if we look at the position, velocity and acceleration of a particle
P given in the inertial system i and in the accelerated system a. The vector r represents
the position of P in the inertial system i, and the vector ρ the position in the accelerated
system a. In the general case, as can be seen in Figure 3.4, the position vectors are related
by:

ri(t) = Oi(t) + Ri
a(t) · ρa(t) (3.18)

7quasars : quasi-stellar radio source.
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where Oi represents the motion of the origin of a in the i-system, and Ri
a is a time-

dependent rotation matrix which transforms the components of a vector given in the
a-system into components which are parallel to the i-system. If we write all components
of Equation 3.18 we have:

rix(t)

riy(t)

riz(t)

 =


Oix(t)

Oiy(t)

Oiz(t)

+
(
eiax(t) eiay(t) eiaz(t)

)
·


ρax(t)

ρay(t)

ρaz(t)

 (3.19)

where eiax, eiay, eiaz represent the unit axis vectors of system a in system i.

Figure 3.4: Representation of an inertial system i and an accelerated system a.

The velocity vi(t) can be found, when Equation 3.18 is differentiated with respect to
time:

vi = ṙi

= Ȯi + Ṙi
a · ρa + Ri

a · ρ̇a
(3.20)

and the acceleration is found, when Equation 3.20 is differentiated with respect to time:

ai = r̈i

= Öi + R̈i
a · ρa + Ṙi

a · ρ̇a + Ṙi
a · ρ̇a + Ri

a · ρ̈a

= Öi + R̈i
a · ρa + 2 · Ṙi

a · ρ̇a + Ri
a · ρ̈a

(3.21)

and introducing the relations:

Ṙi
a = Ri

a ·Ωa
ia

R̈i
a = Ri

a ·Ωa
ia ·Ωa

ia + Ri
a · Ω̇

a
ia

(3.22)
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in Equation 3.21 leads to

r̈i = Öi + Ri
a ·Ωa

ia ·Ωa
ia · ρa + Ri

a · Ω̇
a
ia · ρa + 2 ·Ri

a ·Ωa
ia · ρ̇a + Ri

a · ρ̈a (3.23)

where the skew-symmetric matrix

Ωa
ia =


0 −ωaz +ωay

+ωaz 0 −ωax
−ωay +ωax 0

 (3.24)

contains the components of the instantaneous spin vector ωaia:

ωaia =


ωax

ωay

ωaz

 (3.25)

Finally, Newton’s second law becomes:

m · r̈i =
∑

Fi

= m · Öi +m ·Ri
a ·Ωa

ia ·Ωa
ia · ρa +m · Ω̇a

ia · ρa + 2m ·Ri
a ·Ωa

ia · ρ̇a +m ·Ri
a · ρ̈a

(3.26)

If we apply the inverse rotation Ra
i =

(
Ri
a

)T
and multiply by 1

m , we have:

Ra
i · r̈i =

1

m
Ra
i ·
∑

Fi =
1

m

∑
Fa

= Ra
i · Öi + Ωa

ia ·Ωa
ia · ρa + Ω̇

a
ia · ρa + 2 ·Ωa

ia · ρ̇a + ρ̈a
(3.27)

which can be rearranged in order to get ρ̈a explicitly:

ρ̈a =
1

m

∑
Fa −Ra

i · Öi −Ωa
ia ·Ωa

ia · ρa − Ω̇
a
ia · ρa − 2 ·Ωa

ia · ρ̇a (3.28)

According to Britting (1971) and Rothacher and Rummel (2012), this general equation
contains six terms:

1. ρ̈a is the acceleration of the particle P measured by an observer situated at the origin
of the accelerated a-system. It is important to understand that this acceleration is
not the acceleration which is sensed — or measured — by an observer attached
to P. It is simply the acceleration obtained when the position of P observed with
respect to the a-system, ρa(t), is differentiated two times with respect to time t.

2. 1
m

∑
Fa is the sum of all real forces Fa, expressed in the a-system, acting on the

particle P divided by the mass m of P. The real forces are the sum of the gravita-
tional, electromagnetic, nuclear forces and forces induced by the exchange of a part
of the linear momentum with other particles — or objects — which collide with P.
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Again, this term is not the acceleration which is sensed — or measured — by an
observer attached to P. The acceleration aaobs which is felt — or observed — at P
is called specific force — or proper acceleration. Actually, the proper acceleration
aaobs is the sum of all non-gravitational forces divided by the mass m. It can also be
interpreted as the acceleration relative to free-fall. Formally it is related to the total
real accelerations by:

aaobs =
1

m

∑
Fa − 1

m

∑
Fa

grav (3.29)

and in combination with Equation 3.28 we have:

aaobs = ρ̈a − 1

m

∑
Fa

grav + Ra
i · Öi + Ωa

ia ·Ωa
ia · ρa + Ω̇

a
ia · ρa + 2 ·Ωa

ia · ρ̇a (3.30)

3. −Ra
i · Öi is the acceleration of the origin of the a-system with respect to the i-

system, and where the components are rotated into the a-system. This acceleration
is independent of the position or the velocity of P.

4. −Ωa
ia ·Ωa

ia ·ρa is the centrifugal acceleration. This term exists if the a-system rotates
with respect to the i-system and if P is not located on the axis defined by the spin
vector ω.

5. −Ω̇
a
ia · ρa is the Euler acceleration. This term only exists if there is a change in the

rotation rate of the a-system with respect to the i-system.

6. −2 ·Ωa
ia · ρ̇a is the Coriolis acceleration. This term exists if the a-system rotates with

respect to the i-system and if P moves with respect to the a-system.

3.3.3 Newton’s Law of Universal Gravitation

The discovery of the law of universal gravitation stated in Newton (1687) is one of the
most important events in the history of science and humanity. This allowed, for the first
time, the unification of the description of phenomena observed on the Earth and in the
universe. In fact, the genius Newton was able to realize that the fundamental cause which
is responsible for falling objects on Earth is identical to that which makes the Earth revolve
around the Sun — or which makes the Moon revolve around the Earth. This fundamental
cause is the gravitational force which is acting on all massive particles and which is gen-
erated by the same massive particles.

In other words, considering two particles P1 and P2, of mass m1 and m2, respectively;
the gravitational force F12, the force acting on P1 generated by P2, is proportional to the
masses m1 and m2 and inversely proportional to the square of the distance between P1

and P2. The proportionality factor is called the gravitational constant G. Formally, the
law can be written as:

F12 = G · m1 ·m2

|r2 − r1|2
· r2 − r1

|r2 − r1|
(3.31)

where r1 and r2 represent the position vectors of P1 and P2. Equivalently, if we are
interested in the force acting on P2 generated by P1, we have:

F21 = G · m1 ·m2

|r1 − r2|2
· r1 − r2

|r1 − r2|
(3.32)
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which implies:

F12 = −F21 (3.33)

This law is universal and is effective in this form in all reference systems, inertial and
non-inertial. In other words, all observers agree about the gravitational force.

Principle of Superposition

A key property of the gravitational force is that it generate a field which is superposable.
This means that the gravitational effect F1S caused by a set S = {P2, ...,Pi, ...,PN+1},
of N individual particles, on a test particle P1, is equal to the sum of the effect of each
particles Pi on P1:

F1S =
N+1∑
i=2

F1i

=

N+1∑
i=2

G · m1 ·mi

|ri − r1|2
· ri − r1

|ri − r1|

= G ·m1 ·
N+1∑
i=2

mi

|ri − r1|2
· ri − r1

|ri − r1|

(3.34)

This can be generalized for a continuous object — or body — B, of boundary ∂B, which
contains a number of particles which tend to infinity, N →∞, and where the masses tends
to zero mi → 0. At limit we get:

F1B = G ·m1 · lim
N→∞
mi→0

{
N+1∑
i=2

mi

|ri − r1|2
· ri − r1

|ri − r1|

}

= G ·m1 ·
ˆˆˆ

B

1

|r′ − r1|2
· r′ − r1

|r′ − r1|
· dm(r′)

= G ·m1 ·
ˆˆˆ

B

r′ − r1

|r′ − r1|3
· dm(r′)

(3.35)

and if we introduce the mass density field ρ(r′) which is related to the differential mass
element dm by:

dm(r′) = ρ(r′) · dV (3.36)

where dV is the differential volume element, we finally obtain:

F1B = G ·m1 ·
ˆˆˆ

B

r′ − r1

|r′ − r1|3
· ρ(r′) · dV (3.37)

where:
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F1B

[
kg·m

s2

]
= force vector induced by B acting on P1.

G
[

m3

kg·s2

]
= gravitational constant.

m1 [kg] = mass of particle P1.

ρ(r′)
[

kg
m3

]
= mass density at location ri.

dV
[
m3
]

= differential volume element.

r1 [m] = position vector of P1.

r′ [m] = position vector of P ′.

3.4 Apparent Acceleration in Earth’s Fixed Reference System

3.4.1 General Formulation

Here, we are interested in the acceleration — or proper acceleration — felt by a particle
P attached to the Earth. Before going into the details of the equations, we have to fix
some assumptions:

1. The inertial system i is given by a barycentric system comparable to ICRS.

2. The accelerated system a — Earth’s rotating system — is comparable to ITRS. It
is geocentric, at a certain time t = T0, the axis eaz is parallel to the Earth’s rotation
vector ω♁.

3. Only the Sun � and the Moon $ are the celestial bodies which are considered. They
are assumed to be perfect homogeneous spheres.

Using Equation 3.30 we have:

aaobs = − 1

m

∑
Fa

grav + Ra
i · Öi + Ωa

ia ·Ωa
ia · ρa + Ω̇

a
ia · ρa + 2 ·Ωa

ia · ρ̇a + ρ̈a (3.38)

3.4.2 Gravitational Forces

The gravitational forces acting on P can be computed with Equations 3.31 and 3.37 as
follows:

− 1

m

∑
Fa

grav =−G ·
ˆˆˆ

♁

ρ′a − ρa

|ρ′a − ρa|3
· ρ(ρ′a) · dV

−G ·
ˆˆˆ

�

ρ′a − ρa

|ρ′a − ρa|3
· ρ(ρ′a) · dV

−G ·
ˆˆˆ

$

ρ′a − ρa

|ρ′a − ρa|3
· ρ(ρ′a) · dV

(3.39)
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Figure 3.5: Representation of the (quasi-) inertial system ICRS and the accelerated system ITRS.

which can be simplified considering the Sun and the Moon as homogeneous spheres:

− 1

m

∑
Fa

grav =−G ·
ˆˆˆ

♁

ρ′a − ρa

|ρ′a − ρa|3
· ρ(ρ′a) · dV

−GM� ·
ρa� − ρa

|ρa� − ρa|3

−GM$ ·
ρa$ − ρa

|ρa$ − ρa|3

(3.40)

where M� and M$ represents the mass of the Sun and the Moon, and ρa� and ρa$ the
position vectors, in the Earth’s rotating system a, of the center of mass of the Sun and
the Moon, respectively.

3.4.3 Acceleration of the Origin of the Earth’s Rotating System

In our case, the origin Oi of the Earth’s rotating system a is defined as the center of mass
of the Earth, the geocenter G. In this case, the acceleration of G, in the inertial system
i, is equal to the sum of all accelerations induced by all gravitational forces acting on the
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center of mass of the Earth:

+Ra
i · Öi = +G ·

ˆˆˆ
♁

ρ′a

|ρ′a|3
· ρ(ρ′a) · dV

+GM� ·
ρa�
|ρa�|3

+GM$ ·
ρa$
|ρa$|3

(3.41)

where the first term is, by definition, equal to zero when O ≡ G, and it follows that:

+Ra
i · Öi = +GM� ·

ρa�
|ρa�|3

+GM$ ·
ρa$
|ρa$|3

(3.42)

3.4.4 Centripetal Acceleration

The centripetal acceleration is given by

+Ωa
ia ·Ωa

ia · ρa (3.43)

where the skew-symmetric matrix Ωa
ia contains the elements of the instantaneous angular

velocity vector of the Earth ω♁, given in the Earth’s fixed system a.

The Earth’s rotation vector ω♁ is almost parallel to the axis eaz. The small difference
in direction, called polar motion comes from the fact that the axis eaz is not defined to be
parallel to ω♁ over time. Indeed, the axis eax, eay, eaz are defined to keep minimal varia-
tions of the components of the position’s vectors ρa of benchmarks fixed on the Earth’s
crust8. The polar motion is defined by two small angles (xp, yp), where xp is the angle
between ω♁ and eaz projected on the plane containing the meridian of Greenwich, and yp
the angle projected on the plane containing the 90◦W meridian.

For many non-geodetic applications, polar motion can be neglected since it represents
an angle which does not exceed a few 0.1 arcsec. In contrary, for geodetic applications,
polar motion is crucial. Assuming that xp and yp are small and given in radian, the
components of the Earth’s rotation vector ωa♁ are given by:

ωa♁ = ω♁ ·


+xp

−yp√
1− x2

p − y2
p

 (3.44)

where ω♁ is the Earth’s rotation angular velocity. Further details concerning the numerical
computation of ω♁ in the inertial and in the Earth’s fixed system can be found in Appendix
B.

8This is realized with the concept of no-net rotation.
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It follows that the matrix Ωa
ia beomes:

Ωa
ia = ω♁ ·


0 −γ −yp

γ 0 −xp

+yp +xp 0

 (3.45)

if we define γ =
√

1− x2
p − y2

p. Finally, the centripetal acceleration is given by:

+Ωa
ia ·Ωa

ia · ρa = ω2
♁ ·


−1 + x2

p −yp · xp xp · γ

−yp · xp −1 + y2
p −yp · γ

xp · γ −yp · γ −y2
p − x2

p

 ·

ρx

ρy

ρz

 (3.46)

3.4.5 Euler Acceleration

The Euler acceleration is given by

+Ω̇
a
ia · ρa (3.47)

where Ω̇
a
ia contains the components, given in the a-system, of the time derivative of the

Earth’s rotation vector ω̇a♁ .

3.4.6 Coriolis Acceleration

The Coriolis acceleration is given by

+2 ·Ωa
ia · ρ̇a (3.48)

which depends on the velocity ρ̇a on the particle P with respect to the Earth’s fixed
a-system and the Earth’s rotation vector ωa♁ .

3.4.7 Observed Acceleration

Using Equation 3.38, if we write explicitly the gravitational acceleration given in Equation
3.40 and the acceleration of the origin of the Earth’s fixed system a given in Equation 3.42
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we have:

aaobs = −G ·
ˆˆˆ

♁

ρ′a − ρa

|ρ′a − ρa|3
· ρ(ρ′a) · dV −GM� ·

ρa� − ρa

|ρa� − ρa|3
−GM$ ·

ρa$ − ρa

|ρa$ − ρa|3

+GM� ·
ρa�
|ρa�|3

+GM$ ·
ρa$
|ρa$|3

+ Ωa
ia ·Ωa

ia · ρa

+ Ω̇
a
ia · ρa

+ 2 ·Ωa
ia · ρ̇a

+ ρ̈a

(3.49)

and by rearranging some terms we obtain:

aaobs = −G ·
ˆˆˆ

♁

ρ′a − ρa

|ρ′a − ρa|3
· ρ(ρ′a) · dV

+ Ωa
ia ·Ωa

ia · ρa

−GM� ·
{
ρa� − ρa

|ρa� − ρa|3
−

ρa�
|ρa�|3

}
−GM$ ·

{
ρa$ − ρa

|ρa$ − ρa|3
−

ρa$
|ρa$|3

}
+ Ω̇

a
ia · ρa

+ 2 ·Ωa
ia · ρ̇a

+ ρ̈a

(3.50)

and if we define:

aagrav,♁ = −G ·
ˆˆˆ

♁

ρ′a − ρa

|ρ′a − ρa|3
· ρ(ρ′a) · dV

aacentrp = + Ωa
ia ·Ωa

ia · ρa

aatidal = −GM� ·
{
ρa� − ρa

|ρa� − ρa|3
−

ρa�
|ρa�|3

}
−GM$ ·

{
ρa$ − ρa

|ρa$ − ρa|3
−

ρa$
|ρa$|3

}
aaEulerian = + Ω̇

a
ia · ρa

aaCoriolis = + 2 ·Ωa
ia · ρ̇a

(3.51)

we can write Equation 3.50 as follows :

aaobs = aagrav,♁ + aacentrp + aatidal + aaEulerian + aaCoriolis + ρ̈a (3.52)
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3.4.8 Apparent Gravity

If we look at the directions of the individual terms in Equation 3.52, it can be surprising
that they are pointing exactly to the opposite direction as what we intuitively expect! For
example, the gravitational part aagrav,♁ is not pointing to the center of the Earth, as we
would expect, but to the opposite direction. The same is true concerning the centripetal
acceleration aacentrp: the vector is pointing into the direction of the Earth’s rotation axis
and not into the opposite direction — we would expect a centrifugal acceleration instead
— as we intuitively expect, etc.

This ambiguous feeling comes from the fact that the particle P does not feel what we
call observed here. What does the particle really observe? It observes the acceleration
which is needed to maintain P on the trajectory given by ρ(t) even if P is subjected to the
attracting gravitational forces. This becomes more evident when we look at the special
case, when P is assumed to be fixed to the surface of a non-rotating solid Earth and when
the tides are neglected. Mathematically this corresponds to:

ρ̇a = 0; ρ̈a = 0

Ωa
ia = 0; Ω̇

a
ia = 0

(3.53)

which simplifies Equation 3.52 to:

aaobs = aagrav,♁
∼= −ga (3.54)

What does the particle P really feel? It feels that it is pushed to the ground and this
corresponds to the reaction of P with respect to the observed acceleration aaobs.

For this reason, we define the apparent gravity gaobs as the opposite of the observed accel-
eration aaobs:

gaobs = −aaobs = −aagrav,♁ − aacentrp − aatidal − aaEulerian − aaCoriolis − ρ̈a

= +gagrav,♁ + gacentr + gatidal + gaEulerian + gaCoriolis − ρ̈a
(3.55)

with:

gagrav,♁ = G ·
ˆˆˆ

♁

ρ′a − ρa

|ρ′a − ρa|3
· ρ(ρ′a) · dV

gacentr = −Ωa
ia ·Ωa

ia · ρa

gatidal = +GM� ·
{
ρa� − ρa

|ρa� − ρa|3
−

ρa�
|ρa�|3

}
+GM$ ·

{
ρa$ − ρa

|ρa$ − ρa|3
−

ρa$
|ρa$|3

}
gaEulerian = − Ω̇

a
ia · ρa

gaCoriolis = − 2 ·Ωa
ia · ρ̇a

(3.56)

where the sum of the gravitational acceleration — only integrated over the Earth — and
the centrifugal acceleration is defined as the gravity acceleration vector ga, see Torge and
Müller (2012):

ga = gagrav,♁ + gacentr (3.57)



3.4 Apparent Acceleration in Earth’s Fixed Reference System 31

The main reason for this definition comes from the wish to distinguish between the time
quasi-invariant part — ga — and the time varying part mainly represented by the tidal
acceleration gatidal. Concerning the Eulerian acceleration vector gaEulerian, this term is usually
neglected because of its small order of magnitude ∼ 10−9

[
m
s2

]
and by the fact that the

vertical component — in the local topocentric system — is always equal to zero9, see 3.7.1.

3.4.9 Equation of Motion

From Equations 3.55 and 3.57 it is possible to write the equation of motion of a particle
P in a Earth’s fixed reference system:

ρ̈a = gagrav,♁ + gacentr + gatidal + gaEulerian + gaCoriolis − gaobs

= ga + gatidal + gaEulerian + gaCoriolis − gaobs

= gadyn − gaobs

(3.58)

where gadyn = ga + gatidal + gaEulerian + gaCoriolis is defined here as the dynamical gravity vector.

3.4.10 Apparent Gravity for a Deformable Earth

In the previous development, we made the assumption that the Earth is perfectly rigid.
It is obvious that this is not the case in reality and the solid part of the Earth is deformed
in reaction to all apparent forces acting on it. Moreover, the effects on the gravity and
the deformations due to the movement of all fluid masses (like oceans) must be taken
into account. In this case, the mathematical formulation of the global Earth-Moon-Sun
deformable system can be a very difficult task.

The most fundamental way would be to consider the field of deformations u(ρ, t) ≡ u
as unknown, associated with a rheological model and a fluid model in order to be able
to couple the deformations to the apparent forces. In geodesy, this approach is usually
applied for regional applications limited to the studying of surface deformations and not
for the prediction of the apparent gravity observed on the Earth.

An other possibility, if we consider that the field of deformations u is known or can be
determined by a simple geophysical model, is to integrate the deformations into Equations
3.55 and 3.56. This can be done, when Equation 3.56 is modified in the following way:

1. For an observer P attached to the surface of the Earth, the position ρ is now given
by the sum of a reference position ρ0, supposed to be fix in the Earth’s fixed system,
and the displacement vector u(ρ, t) ≡ u:

ρa = ρa0 + ua (3.59)

which now depends always on time. This implies that the Coriolis acceleration
gCoriolis and the term ρ̈ are not equal to 0 anymore.

9only in the spherical approximation.
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2. The gravitational acceleration ggrav,♁ must be integrated over the deformed Earth as
follows:

gagrav,♁ = G ·
ˆˆˆ

♁

(ρ′a + u′a)− ρa

|(ρ′a + u′a)− ρa|3
· ρ(ρ′a + u′a) · dV (3.60)

We see that all components of the apparent gravity are affected by the time-dependent
deformation field. This signifies that all components of the apparent gravity gobs must be
re-computed each time we want to predict the apparent gravity for an observer attached
to the surface of the Earth. This rigorous approach is simple and elegant but still difficult
to apply in practice due to the huge amount of computations which are needed.

Nowadays, in geodesy, another solution is usually applied in order to predict the apparent
gravity. Due to the fact that the largest time-variable signal in the apparent gravity is
caused by Earth tides, all effects concerning the deformation of the Earth and all variations
in gravity (direct and indirect effects) are modeled by linear functionals of the tidal forces
gtidal only. The other parts of the apparent gravity are computed with position vectors, ρ
and ρ′, reduced to a conventional tide free10 crust model, see (Petit and Luzum, 2010).
More details about the treatment and the order of magnitude of the tides are given in
section 3.7.4.

Remark For the rest of this thesis, if the reference system is not explicitely specified it
is supposed to be the Earth fixed system a.

3.5 Potential Theory

3.5.1 Introduction

To mathematics and physics, the concept of potential and potential energy is central.
These discoveries are closely related to the introduction of the general theory of energy
associated with its law of conservation of energy. Since the formulation of Newton’s laws
in 1687, it took a long time with many confusions before the creation of an unambiguous
general modern formulation of potential energy. In Roche (2003), we can find that various
famous scientists (D. Bernoulli11, L. Euler12, J.-L. Lagrange13, L. Carnot14, G. Green15,
W. Thomson16) anticipated the concept of potential energy but without reaching the gen-
erality and the conceptual power used today in modern physics.

According to Roche (2003), the first proper introduction of the modern definition of energy
is attributed to W.J.M. Rankine17 in Rankine (1853) who defines energy as follows:

10as the positions in ITRF.
11Daniel Bernoulli (1700-1782), Swiss mathematician and physicist.
12Leonhard Euler (1707-1783), Swiss mathematician and physicist
13Joseph-Louis Lagrange (1736-1813), French and Italian mathematician and astronomer.
14Lazare Carnot (1753-1823), French politician, engineer, and mathematician
15George Green (1793-1841), British mathematical physicist.
16William Thomson, 1st Baron Kelvin (1824-1907), British mathematical physicist and engineer.
17William John Macquorn Rankine (1820-1872), Scottish civil engineer, physicist and mathematician.
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”The term energy comprehends every state of a substance which constitutes the capac-
ity for performing work. Quantities of energy are measured by the quantities of work
which they constitute the means of performing.”

and postulates that all conceivable forms of energy may be divided into two kinds:

1. the actual or sensible energy:

”Actual energy is a measurable, transferable, and transformable affection of sub-
stance, the presence of which causes the substance to tend to change its state in one
or more respect; by the occurrence of which changes actual energy disappears, and
is replaced by potential energy, which is measurable by the amount of a change in
the condition of a substance, and that of the tendency or force whereby that change
is produced (or, what is the same thing, of the resistance overcome in producing it),
taken jointly.”

which is called, today, kinetic energy.

2. the potential or latent energy:

”Potential energy, which is measured by the amount of a change in the condition
of a substance, and that of the tendency or force whereby that change is produced
(or, what is the same thing, of the resistance overcome in producing it), taken jointly.
If the change whereby potential energy has been developed be exactly reversed, then as
the potential energy disappears, the actual energy which had previously disappeared
is reproduced.”

Today, according to Feynman et al. (1999), the potential energy of an object is defined
as the energy due to the interactions of this objects with other objects related to the
positions of these objects. This implies that the interactions which can be associated to
a potential energy must arise from a conservative force field. For example:

� the work done by the gravitational force field is called graviational potential energy.

� the work done by the Coulomb force field is called electrostatic potential energy.

� the work done by the nuclear forces field is called nuclear potential energy.

� etc.

in contrary, frictional and viscous forces are non-conservative. From all these definitions,
we can see that they are all defined with respect to the concept of work done by a force,
introduced by G.-G. Coriolis18 in 1829 together with the correct expression of kinetic
energy.

18Gaspard-Gustave de Coriolis (1792-1843), French mathematician, mechanical engineer and scientist.
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3.5.2 Work

According to Blakely (1996), the work W (F, r1, r2,S) done by the force field F(r) on a
particle of mass m is defined as the kinetic energy K(t1, t2) expended by F in moving the
particle from r1(t1) to r2(t2) along the path S. Between t1 and t2, the variation of kinetic
energy can be written as follows:

K(t1, t2) =

ˆ t2

t1

d

dt

[
1

2
m · ṙ(t) · ṙ(t)

]
· dt

=

ˆ t2

t1

1

2
m · [r̈(t) · ṙ(t) + ṙ(t) · r̈(t)] · dt

=

ˆ t2

t1

m · r̈(t) · ṙ(t) · dt

(3.61)

From Newton’s second law we know that F(t) = m · r̈(t) which implies that:

K(t1, t2) =

ˆ t2

t1

F(t) · ṙ(t) · dt

=

ˆ t2

t1

F(t) · dr(t)

dt
· dt

=

ˆ r2

r1,S
F(r) · dr = W (F, r1, r2,S)

(3.62)

This shows that the work done by a force F(r) is also equal to the path integral along
S of the scalar product of the force F(r) and the differential displacement element dr of
the particle. In this general case, the work W (F, r1, r2,S) depends on the path S taken
by the particle. However, if we can prove that the work done by a force field is always
independent of the path taken by the particle, the force field is called conservative and
benefits from very interesting properties.

3.5.3 Conservative Force Field

A force field F(r) is called conservative if the work W (F, r1, r2,S) done by this field is
independent of the path S. Then, we can write:

W (F, r1, r2, ∀S) = W (F, r1, r2) =

ˆ r2

r1,∀S
F(r) · dr (3.63)

This gives the possibility to define a scalar work field W (r), assuming an origin r0 is fixed
for r1, and we compute the work for all points r of the space:

W (r) = W (F, r0, r) =

ˆ r

r0

F(r′) · dr′ (3.64)

In addition, because the function W (r) is independent of the integration path, we can see
that the work between two arbitrary positions r1 and r2 is simply given by:

W (F, r1, r2) = W (r2)−W (r1) (3.65)
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But the most important property of W (r) is that it can directly be linked to the vectorial
force field F with the gradient operator:

∇W (r) = F (r) (3.66)

which implies that F is mandatory an irrotational field. This comes from the general
identity of vector analysis which say that the curl of the gradient of any scalar field is
always the zero vector:

∇× [∇W (r)] = ∇× F (r) = 0 (3.67)

The inverse statement is not true. If the curl of a force field is irrotational, a scalar potential
exists but the field is not necessarily conservative (e.g. a time-varying gravitational field).

3.5.4 Potential Function

According to Blakely (1996), the potential function Φ(r) is a special case of the work scalar
field where r0 is chosen at infinity and the force is scaled by the mass of the particle. From
Equation 3.64 we get:

Φ (r) =
1

m

ˆ r

r0→∞
F(r′) · dr′ (3.68)

3.6 Shape of Fluid-Air Interface

3.6.1 General Solution

In the general case of hydrodynamics, the determination of the shape of a fluid-gaz in-
terface ρ∼(t) — or two-phase free surface flows — is a difficult task for many reasons.
First, it comes from the fact that the governing partial differential equations for fluids, the
Navier-Stokes equations, are highly non-linear. Secondly, the shape — or the geometry
— of the interface is not directly a field — like pressure or the velocity fields (which are
explicit fields of the Navier-Stokes equations). Actually, based on the two possible specifi-
cations of the flow field (Lagrangian and Eulerian), there exist two classes of approaches
in order to determine the shape of the interface.

When the Lagrangian specification is used for the integration of the Navier-Stokes equa-
tions, the domain of integration follows the fluid. It must always match, at any time,
the space occupied by the fluid. It follows that the free surface is considered as a free
deformable boundary condition which has to be tracked in time.

When when the Eulerian specification is used, however the domain of integration is fixed
and the fluid is propagated in this fixed space. If we want to know if a certain point of
the space is occupied by the fluid or not, it is necessary to introduce a new ”matter” field,
computed after the advection step. Then, from this field, the geometry of the interface is
defined as the set of the paths which separate the space occupied by matter and no matter.
In Caboussat (2005) we can find a summary of the methods used in computational fluid
dynamics simulations.
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Navier-Stokes Equations for Incompressible Newtonian Fluids

The governing equations of a fluid described by a velocity vector field v (ρ, t), a pressure
scalar field p (ρ, t), a density ρ and a kinematic viscosity ν are called the Navier-Stokes
equations. In the special case when the density of the fluid is assumed to be constant19,
the temperature field is neglected 20 and the fluid is assumed to be Newtonian21, we get a
system of four partial differential equations. Three equations22 express the conservation of
momentum23 and one equation24 expresses the conservation of mass. In the non-inertial
system a we have: 

∂v

∂t
+ v ·∇v = −1

ρ
·∇p+ ν ·∆v + gdyn

∇ · v = 0

(3.69)

where:

v (ρ, t)
[

m
s

]
= velocity field.

p (ρ, t)
[

N
m2

]
= pressure field.

ρ
[

kg
m3

]
= density of the fluid.

ν
[

m2

s

]
= kinematic viscosity of the fluid.

gdyn (ρ, t)
[

m
s2

]
= dynamical gravity.

3.6.2 Vertically Integrated Solution

For a specific class of problems, it is possible to integrate partially the Navier-Stokes
equations. If the vertical dimension of the problem is significantly smaller than the hori-
zontal dimensions, the Navier-Stokes equations can be integrated in the vertical dimension.
This, unlike in the case of Navier-Stokes equations, allows to get a set of partial differential
equations which contains directly the geometry of the free surface interface as field. In the
literature, we can find two basic types of vertical integrated equations. The Boussinesq
equations and the shallow water equations — or St-Venant equations. The main differ-
ences concern the hypotheses assumed for the vertically velocity profile: the Boussinesq
equations can take into account variations in the vertical velocity profile, while the shal-
low water equations consider that the velocity is constant over a water column, see Figure
3.6. The main consequence is that only the Boussinesq equation modelizes dispersion
phenomena in the wave propagation. However, because only very small water velocities
are considered in this work, only the shallow water equations are considered.

19incompressibility.
20no thermal convection and conduction.
21the shear stress of the fluid is proportional to the derivative of the velocity component that is parallel

to the direction of shear.
22regrouped in the first line of the system of Equations 3.69.
23Newton’s second law.
24the second line of the system of Equations 3.69.



3.6 Shape of Fluid-Air Interface 37

Shallow Water Equations

From the Navier-Stokes equations 3.69 we can derive the shallow water equations consid-
ering the following assumptions (Figure 3.6):

� the thickness of the water is described by a new scalar field h(x, y, t) depending on
the horizontal coordinates25 and time only. The locus of the fluid-gaz interface ρ∼(t)
is described as follows:

ρ∼(t) =


x

y

h(x, y, t) + hfloor(x, y)

 (3.70)

where hfloor(x, y) represents the time-invariant surface of the floor.

� the slope of the water surface is small:

|∇h (x, y, t)| << 1 (3.71)

� the velocity field is assumed to be constant along the vertical axis:

v (ρ, t) = v (x, y, t) (3.72)

� the pressure field p (ρ, t) is assumed to be known and hydrostatic. In addition, we
assume a constant vertical component of the gravity acceleration gz ∼= −9.81 m

s2 .
Moreover, the pressure on the free surface ρ∼ is assumed to be constant and equal
to p (ρ∼, t) = p0:

p (ρ, t) = −ρ · gz · [h(x, y, t)− z + hfloor(x, y)] + p0 (3.73)

� the viscosity of the fluid is neglected:

ν = 0 (3.74)

with these assumptions we can find the two-dimensional shallow water equations:
∂v

∂t
+ v ·∇v = gz ·∇h+ gdyn

∂h

∂t
= −∇ · (h · v)

(3.75)

where:

25here the components x, y represent the horizontal coordinates and z the vertical component in a
topocentric system.
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h (x, y, t) [m] = free surface elevation with respect to the fixed bottom
boundary limit (e.g. oceanic floor).

v (x, y, t)
[

m
s

]
= velocity field.

gdyn (x, y, t)
[

m
s2

]
= dynamical gravity.

ρ
[

kg
m3

]
= density of the fluid.

gz
[

m
s2

]
= vertical gravity acceleration.

Figure 3.6: Schematic representation of the simplified model used for the shallow water equations.
The parallel continuous blue lines represent the assumed hydrostatic pressure as a function of the
depth at two different positions. This shows clearly that the resulting horizontal force due to the
pressure gradient depends directly on the height of the water h(x, y, t).

3.6.3 Forced Harmonic Oscillator Solution

If we go further in the restriction of systems involving fluids, it is sometimes possible to
solve analytically free-surface fluid dynamic problems. This can be the case if the govern-
ing equation takes the form of a time-invariant second order linear differential equation
of which solutions are analytic. Furthermore, because such systems are linear and time-
invariant26, they can be completely characterized by transfer functions which can be used
to compute the response of any input excitation and to analyze easily both, frequency and
phase responses.

26also called LTI systems.
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For example, in d’Oreye de Lantremange (2003) or Boudin (2004), simple models of hydro-
static levelling systems (HLS), which result from LTI equations, can be found. In Boudin
(2004) the governing linear differential equation is derived from the Navier-Stokes equa-
tions while d’Oreye de Lantremange (2003) derives it from the Lagrangian of the system
in a very elegant manner.

Dynamic Model of a Basic Hydrostatic Levelling System

Here, a simplified version of the HLS model, presented by d’Oreye de Lantremange (2003),
is developed. The HLS, see Figure 3.7, is formed by two cylindrical pots at the extremities
which are connected by a circular tube which is assumed to be always filled by fluid.
Because of the configuration of the system, the dimension of the problem can be reduced
from three to two, one horizontal component x which is represented by the axis passing
through the centers of the pots, and the vertical component z. The model assumes the
following hypotheses:

� the origin of the system a is defined at the center of the first pot at the level equi-
librium of the fluid.

� the shape of the free surface ρ∼ is reduced to a set of two position vectors ρ∼1
and

ρ∼2
which represent the levels of the fluid in the pots.

� the HLS is assumed to be perfectly fixed to a solid Earth and the pots are separated
by a distance L. This implies:

ρ∼1
(t) =


0

0

z1(t)

 and ρ∼2
(t) =


L

0

z2(t)

 (3.76)

where z1(t) and z2(t) represents the vertical component of the free surface in the
pots.

� the cross sections Spot of the pots are identical and the velocity of the fluid inside a
single pot ρ̇i(t) is assumed to be vertical and constant:

ρ̇i(t) =


0

0

żi(t)

 (3.77)

� the cross section of the tube is represented by Stube and the velocity of the fluid
inside the tube ρ̇tube(t) is assumed to be constant and horizontal:

ρ̇tube(t) =


ẋtube(t)

0

0

 (3.78)
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� the fluid is incompressible so that the condition of mass conservation implies:

Spot · ż1(t) = −Spot · ż2(t) = −Stube · ẋtube(t) (3.79)

� the viscosity of the fluid is neglected.

� the dynamical gravity vector gdyn is assumed to be constant in space:

gdyn(ρ, t) = gdyn(t) (3.80)

In addition, the dynamical gravity vector is decomposed into a vertical conservative
time-invariant part gcons and a horizontal non-conservative part anon-cons:

gdyn = gcons + anon-cons =


0

0

gz

+


ax(t)

0

0

 (3.81)

� the density ρ of the fluid is assumed to be constant.

equipotential

Figure 3.7: Schematic representation of a simple hydrostatic levelling system with two pots.

Lagrangian of the System

The Lagrangian L of the system is the difference between the total kinetic energy Ekin and
the total potential energy Epot of all water particles:

L (ρ, ρ̇, t) = Ekin (ρ̇)− Epot (ρ) (3.82)

This implies that all forces acting on the particles must be related to a velocity or to a
potential. In our case, this condition is not completely fullfiled. The force generated by
the non-conservative acceleration gnon-cons cannot be taken into account in the formulation
of the Lagrangian function. Nevertheless, there is still a way to use the Lagrangian for-
mulation with non-conservative forces if we only consider, in a first step, the conservative
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forces and if we add the contribution of the non-conservative forces in the generalized
Euler-Lagrange differential equation, see Equation 3.94. Considering that ≈ represents
the total region of the HLS occupied by the fluid and w the region occupied by the fluid
in hydrostatic equilibrium, the total kinetic energy is defined as:

Ekin (ρ̇) =
1

2
ρ ·
ˆˆˆ

≈
ρ̇ · ρ̇ · dV

=
1

2
ρ · Spot · [H + z1(t)] · ż1(t)2︸ ︷︷ ︸

pot 1

+
1

2
ρ · Spot · [H + z2(t)] · ż2(t)2︸ ︷︷ ︸

pot 2

+
1

2
ρ · Stube · L · ẋtube(t)

2︸ ︷︷ ︸
tube

(3.83)

where H corresponds to the vertical distance between the floor of the pots and the free sur-
face at equilibrium. Considering Equation 3.79 we can write Equation 3.83, as a function
of ż(t):

Ekin (ż) = ż(t)2 ·
(
ρ · Spot ·H +

1

2
ρ ·

S2
pot

Stube

· L
)

(3.84)

The total potential energy of the fluid which differs from equilibrium is given by:

Epot (ρ) = ρ ·
ˆˆˆ

≈
[−Φ (ρ)] · dV − ρ ·

ˆˆˆ
w

[−Φ (ρ)] · dV (3.85)

Assuming that the conservative acceleration gcons is generated by the simplified potential
linearized in the vicinity of the Earth’s surface, we have:

Φ (ρa) = Φ (z) = gz · |z(t)| (3.86)

and we can write Equation 3.85 as the sum of the contributions of the fluid which differs
from equilibrium:

Epot (z) = ρ ·
ˆ z′=z1(t)=z(t)

z′=0
−gz · |z′| · Spot · dz′︸ ︷︷ ︸

pot 1

+ ρ ·
ˆ z′=z2(t)=−z(t)

z′=0
−gz · |z′| · Spot · dz′︸ ︷︷ ︸

pot 2

=− 1

2
ρ · gz · Spot · z(t)2 − 1

2
ρ · gz · Spot · z(t)2

=− z(t)2 · ρ · gz · Spot

(3.87)

Finnally, introducing Equation 3.83 and 3.85 in Equation 3.82 gives the Lagrangian of the
system:

L (z, ż, t) = ż(t)2 ·
(
ρ · Spot ·H +

1

2
ρ ·

S2
pot

Stube

· L
)

+ z(t)2 · ρ · gz · Spot (3.88)
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Equation of Motion

From the Lagrangian function L, it is possible to find directly the equation of motion using
the Euler-Lagrange differential equation. This comes from the fundamental principle that
a physical system, during a given time interval [t0, t1], evolves always in order to produce
an extremal action S(t0, t1). The action is given by:

S(t0, t1) =

ˆ t1

t0

L(z, ż, t) · dt (3.89)

and the equation of motion is given when the action is extremal:

S(t0, t1) =

ˆ t1

t0

L(z, ż, t) · dt → extremal (3.90)

or when:

δS(t0, t1) = δ

ˆ t1

t0

L(z, ż, t) · dt = 0 (3.91)

where the solution is given by the Euler-Lagrange differential equation. In our case, we
have:

d

dt

[
∂L(z, ż, t)

∂ż

]
− ∂L(z, ż, t)

∂z
= 0 (3.92)

Applied to Equation 3.88 this gives:

2

(
ρ · Spot ·H +

1

2
ρ ·

S2
pot

Stube

· L
)
· z̈(t)− 2ρ · gz · Spot · z(t) = 0 (3.93)

which is the solution if the non-conservative forces are neglected. In the case that we have
non-conservative forces fz acting on the system, it can be proven that the equation of
motion can be written as follows:

d

dt

[
∂L(z, ż, t)

∂ż

]
− ∂L(z, ż, t)

∂z
= fz (3.94)

In our case, the force generated by the non-conservative acceleration anon-cons has only one
horizontal component ax(t), which is acting on the fluid inside the tube of mass mtube.
This corresponds to an additional horizontal non-conservative force:

fx = mtube · ax(t) = ρ · Stube · L · ax(t) (3.95)

which can be transposed to a vertical force fz if we again consider Equation 3.79 which
implies the conservation of mass. The horizontal acceleration ax(t) = ẍtube inside the tube

corresponds to a vertical acceleration − Spot

Stube
· z̈ of the fluid inside pot 1 so that:

fx −→ fz = −ρ · Stube · L ·
Stube

Spot

· ax(t) (3.96)

and from Equations 3.88, 3.94 and 3.96 we have the final equation of motion:

2

(
ρ · Spot ·H +

1

2
ρ ·

S2
pot

Stube

· L
)
· z̈(t)−2ρ ·gz ·Spot ·z(t) = −ρ ·Stube ·L ·

Stube

Spot

·ax(t) (3.97)
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which can be written in the form of a forced undamped harmonic oscillator:

z̈(t) + ω2
0 · z(t) = k · ax(t) (3.98)

with

ω2
0 = − 2gz

2H +
Spot

Stube
· L

(3.99)

and

k = − S2
tube · L

S2
pot ·

(
2H +

Spot

Stube
· L
) (3.100)

where ω0 is the resonance angular frequency and k · ax(t) the non-homogeneous forcing
term.

Transfer Function

From the ordinary linear differential Equation 3.98 and a set of initial conditions27, it is
possible to predict the function z(t) and analyze the behavior of the system using different
methods.

The classical way is to solve the differential equation analytically in the time domain
in order to get an explicit function for z(t). The direct time-domain resolution implies
that the time-dependent forcing term ax(t) is given explicitly. In the case where we do not
want to analyze the response of the system to a specific forcing function but the response
to an arbitrary function, it is more convenient to solve the system using the LTI system
theory.

The LTI system theory is based on the properties of the Laplace-transform L {} which
gives the possibility to transform the linear differential equation into an algebraic equation.
This transformed algebraic equation can be solved very easily and automatically produces
a simple transfer function, which completely links the transformed input of the system to
the transformed output of the system by a simple multiplication. This signifies that the
behavior of the system can be completely characterized by the transfer function only. In
addition, the transfer function gives the possibility to directly find the frequency and the
phase response of the system.

The formal definition of the Laplace transform of a function f(t) is given by:

L {f(t)} = F (s) =

ˆ ∞
0

e−s·t · f(t) · dt with s = σ + iω (3.101)

which has the following useful properties:

L {a · f(t) + b · g(t)} = a ·L {f(t)}+ b ·L {g(t)}

L
{
ḟ(t)

}
= s ·L {f(t)} − f(0)

(3.102)

27in this case it is the initial water level z(t0) = z0 and the initial velocity ż(t0) = v0 at time t0
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In our case, if we consider the non-conservative acceleration function ax(t) as the input
function of the system and the level of the fluid function z(t) as the output of the system,
and if we assume in addition, that the initial conditions are z(t = 0) = 0 and ż(t = 0) = 0,
the Laplace transform of Equation 3.98 is:

L
{
z̈(t) + ω2

0 · z(t)
}

= L {k · ax(t)}

L {z̈(t)}+ L
{
ω2

0 · z(t)
}

= L {k · ax(t)}

s2 ·L {z(t)}+ ω2
0 ·L {z(t)} = k ·L {ax(t)}

(3.103)

which can be rewritten as:

L {z(t)} =
k

s2 + ω2
0

·L {ax(t)} (3.104)

or:

Z(s) = H(s) ·Ax(s) (3.105)

where

H(s) =
k

s2 + ω2
0

(3.106)

is the transfer function of the system which links the Laplace-transform of the input Ax(s)
to the Laplace transform of the output Z(s). Moreover, H(s) is also equal to the Laplace
transform of the impulse response function h(t) which represents the output of the system
excited by a Dirac delta distribution δ(t).

Amplitude and Phase Responses

From the transfer function H(s) given by Equation 3.106 it is easy to find the amplitude
and the phase responses. When we set s = iω, the amplitude response A(ω) is given by
the module and the phase response φ(ω) by the argument of H(iω). In our case we get:

H(iω) =
k

(iω)2 + ω2
0

=
k

ω2
0 − ω2

(3.107)

where the amplitude response is:

A(ω) = |H(iω)| =
∣∣∣∣ k

ω2
0 − ω2

∣∣∣∣ (3.108)

and the phase response is

φ(ω) = arg {H(iω)} =

 0 if 0 < ω < ω0

−π if ω0 < ω < +∞
(3.109)
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In Figure 3.8, the amplitude and phase responses of HLS of various length L = 1...100′000
m can be seen. In this case, the equilibrium height is fixed to H = 0.05 and the ratio
between the section of the pot and the section of the tube is fixed to

Spot

Stube
= 4.0. The

horizontal axis represents the period T of the horizontal acceleration forcing term ax(t).
The period T [s] is related to the angular frequency ω

[
rad
s

]
by:

T =
2π

ω
(3.110)

If we look at the behavior of the amplitude response, we can see that the amplitude
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Figure 3.8: Amplitude (upper) and phase response (lower), in function of the period, for HLS
of various length L according to Equations 3.108 and 3.109. The equilibrium height is fixed at
H = 0.05 m and the ratio between the section of the pot and the section of the tube is fixed at
Spot

Stube
= 4.0.

response converges to a well defined value when the angular frequency approaches zero
(ω → 0) — or when the period approaches infinity (T → ∞). According to Equation
3.108 this amplitude is given by:

Alim = lim
ω→0

A(ω) =

∣∣∣∣ kω2
0

∣∣∣∣ = lim
T→∞

A(T ) =

∣∣∣∣k · T 2
0

4π2

∣∣∣∣ (3.111)

On the opposite side, when the angular frequency approaches infinity (ω → ∞) — or
when the period approaches zero (T → 0) — we see that the amplitude response decreases
rapidly toward 0. In between, the amplitude response increases to infinity when the
angular frequency ω approaches the resonance frequency ω0 — or when the period T
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Figure 3.9: Long period amplitude response Alim, according to Equations 3.111, of HLS of various

lengths L and various ratios between the section of the pot and the section of the tube
Spot

Stube
.

approaches the resonance period T0. From these observations, it is possible to define three
main regions which summarize the response of the HLS, see table 3.2.

1. The region R1 = [0;T1], where the input signal ax(t) can be considered to be filtered
out.

2. The region R2 = [T1;T2], where the input signal ax(t) is amplified due to resonance
phenomena.

3. The region R3 = [T2;∞[, where the input signal ax(t) is transmitted without ampli-
fication due to resonance.

The periods T1 and T2 are defined as follows:

� T1 is the period, for which the amplitude response is equal to one percent of the
amplitude response at very large periods. From Equations 3.111 and 3.108, we can
compute the corresponding angular frequency ω1 as follows:

ω1 =
√

101 · ω0 (3.112)

and using Equation 3.110:

T1 =
T0√
101

(3.113)

� T2 is the period, for which the amplitude response is equal to hundred-one percent
of the amplitude response at very large period. From Equations 3.111 and 3.108, we
can compute the corresponding angular frequency ω2 as follows:

ω2 =
√

0.01 · ω0 (3.114)
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and using Equation 3.110:

T2 =
T0√
0.01

(3.115)

Table 3.2: Long period amplitude response Alim, resonance period T0, largest period T1 which is
assumed to be absorbed by the HLS and smallest period T2 which is assumed to be transmitted
without resonance amplification for various HLS of length L and cross-section ratio Spot

Stube
.

L
Spot

Stube
Alim T0 T1 T2

[m] [-] [s2] [hh:mm:ss.s] [hh:mm:ss.s] [hh:mm:ss.s]

1 0.1 5.1 · 10+0 00:00:01.0 00:00:00.1 00:00:10.0
1.0 5.1 · 10−2 00:00:01.7 00:00:00.2 00:00:16.8
4.0 3.2 · 10−3 00:00:03.0 00:00:00.3 00:00:29.8

10.0 5.1 · 10−4 00:00:04.6 00:00:00.4 00:00:45.7
100.0 5.1 · 10−6 00:00:14.2 00:00:01.4 00:02:22.1

1000.0 5.1 · 10−8 00:00:44.9 00:00:04.4 00:07:28.7

10 0.1 5.1 · 10+1 00:00:01.7 00:00:00.2 00:00:16.8
1.0 5.1 · 10−1 00:00:04.6 00:00:00.5 00:00:45.7
4.0 3.2 · 10−2 00:00:09.0 00:00:00.9 00:01:30.1

10.0 5.1 · 10−3 00:00:14.2 00:00:01.4 00:02:22.1
100.0 5.1 · 10−5 00:00:44.9 00:00:04.5 00:07:28.7

1000.0 5.1 · 10−7 00:02:21.9 00:00:14.1 00:23:38.5

100 0.1 5.1 · 10+2 00:00:04.6 00:00:00.5 00:00:45.7
1.0 5.1 · 10+0 00:00:14.2 00:00:01.4 00:02:22.1
4.0 3.2 · 10−1 00:00:28.4 00:00:02.8 00:04:43.8

10.0 5.1 · 10−2 00:00:44.9 00:00:04.5 00:07:28.7
100.0 5.1 · 10−4 00:02:21.9 00:00:14.1 00:23:38.5

1000.0 5.1 · 10−6 00:07:28.6 00:00:44.6 01:14:45.7

1000 0.1 5.1 · 10+3 00:00:14.2 00:00:01.4 00:02:22.1
1.0 5.1 · 10+1 00:00:44.9 00:00:04.5 00:07:28.7
4.0 3.2 · 10+0 00:01:29.7 00:00:08.9 00:14:57.2

10.0 5.1 · 10−1 00:02:21.9 00:00:14.1 00:23:38.5
100.0 5.1 · 10−3 00:07:28.6 00:00:44.6 01:14:45.7

1000.0 5.1 · 10−5 00:23:38.5 00:02:21.1 03:56:25.0

10000 0.1 5.1 · 10+4 00:00:44.9 00:00:04.5 00:07:28.7
1.0 5.1 · 10+2 00:02:21.9 00:00:14.1 00:23:38.5
4.0 3.2 · 10+1 00:04:43.7 00:00:28.2 00:47:17.0

10.0 5.1 · 10+0 00:07:28.6 00:00:44.6 01:14:45.7
100.0 5.1 · 10−2 00:23:38.5 00:02:21.1 03:56:25.0

1000.0 5.1 · 10−4 01:14:45.7 00:07:26.3 12:27:37.0

100000 0.1 5.1 · 10+5 00:02:21.9 00:00:14.1 00:23:38.5
1.0 5.1 · 10+3 00:07:28.6 00:00:44.6 01:14:45.7
4.0 3.2 · 10+2 00:14:57.1 00:01:29.3 02:29:31.4

10.0 5.1 · 10+1 00:23:38.5 00:02:21.1 03:56:25.0
100.0 5.1 · 10−1 01:14:45.7 00:07:26.3 12:27:37.0

1000.0 5.1 · 10−3 03:56:25.0 00:23:31.5 39:24:10.3
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3.6.4 Hydrostatic Solution

In the case where we assume that the the velocity of all particles in the fluid are at rest
v = ρ̇ = 0, we can prove that the locus of the fluid-gaz interface ρ∼ can be found in a
very elegant and powerful way. From the first Navier-Stokes equation 3.69 we get:

0 = −1

ρ
·∇p+ gstat (3.116)

or
1

ρ
·∇p = gstat (3.117)

with

gstat = gdyn − gCoriolis

= g + gtidal + gEulerian

(3.118)

which represents the gravity acceleration vector for a particle at rest in the Earth fixed
system, ρ̇ = 0→ gCoriolis = 0.

Moreover, if we look at Equation 3.117, we can see that it can only be valid if the gravity
acceleration field gstat is the gradient of a scalar potential function Φstat:

gstat = ∇Φstat (3.119)

If this is the case, combining Equations 3.117 and 3.119 gives the usual form of hydrostatic
equilibrium:

1

ρ
·∇p = ∇Φstat (3.120)

in addition, if we assume that the density of the fluid ρ is not homogeneous, we get the
general form of the hydrostatic equation:

∇p (ρ) = ρ (ρ) ·∇Φstat (ρ) (3.121)

Consequences of Hydrostatic Equilibrium

From Equation 3.121 it is possible to see very interesting properties of fluids in hydrostatic
equilibrium.

The first consequence comes from a property of potential fields which tells that the gra-
dient of a potential field is irrotational, see Equation 3.67. This means that the gravity
field gstat must be irrotational (Gallavotti , 2002):

∇× gstat = 0 (3.122)

The second consequence is that the surfaces of equal pressure, isobars, Sp ≡ p (ρ) = const
are parallel to the surfaces of identical potential, equipotential, SΦ ≡ Φstat (ρ) = const:

Sp || SΦ (3.123)
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This can be proved when we first observe that the gradient of the pressure ∇p (ρ) and
the gradient of the potential ∇Φstat (ρ) are always parallel because they differ only by a
scaling factor represented by the density field ρ (ρ) and, secondly, from the property of
gradient fields which tells that the level set of a differentiable scalar function is always
orthogonal to its gradient field.

The third consequence is that surfaces of constant density, isopycnics, Sρ ≡ ρ (ρ) = const
are parallel to equipotentials SΦ and isobars Sp:

Sρ || SΦ || Sp (3.124)

This can be proved if we take the curl of Equation 3.121 (Lautrup, 2005):

∇×∇p (ρ) = ∇× [ρ (ρ) ·∇Φstat (ρ)]

0 = ρ (ρ) ·∇× Φstat (ρ)︸ ︷︷ ︸
=0

+∇ρ (ρ)×∇Φstat (ρ)

0 = ∇ρ (ρ)×∇Φstat (ρ)

(3.125)

which shows that the vector product between the gradient of the density field ∇ρ (ρ) and
the gradient of the potential field ∇Φstat (ρ) is equal to 0, if both fields are parallel, or
equivalently, if their level sets coincide.

Geometry of Hydrostatic Liquid-Gas Interface

If we look at physical systems formed by liquids and gazes, the hydrostatic equilibrium is
only achieved when both, the liquids and the gazes fulfill the hydrostatic Equation 3.121.
In this case, the geometry of the liquid-gaz interface ρ∼ is equivalently given by the geom-
etry of the isopycnic surface Sρ∼ , the isobar surface Sp∼ or the equipotential surface SΦ∼

passing through a limit point where the density is jumping from the density of the liquid
to the density of the gas.

In this very special case, we see that the geometry of the interface can be completely
determined by the knowledge of the potential Φstat. In addition, the hydrostatic case ben-
efits from another very nice property: the solution does not depend on the geometry of
the boundaries.

3.7 Apparent Gravity Potential in the Earth Fixed Reference
System

In Section 3.6.4 we saw that the hydrostatic equilibrium solution is very attractive for
the determination of the shape of liquid-air interfaces. However, the equilibrium can only
be achieved when the gravity field gstat can be derived from a potential function Φstat.
Using Equation 3.67, it is possible to check if a vector field can be derived from a scalar
potential just by looking whether it is irrotational or not. In our case, if we do that by
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applying the curl operator on each element of Equation 3.118, we can prove that all terms
are irrotational except the Eulerian acceleration gEulerian. Formally, we have:

∇× ggrav,♁ = 0

∇× gcentr = 0

∇× gtidal = 0

∇× gEulerian = −2 · ω̇aia

(3.126)

This has several theoretical consequences. If the rotation vector ωaia is subject to time
variation, the Eulerian acceleration gEulerian is non-zero which implies that:

� We can find a potential function neither for the Eulerian acceleration gEulerian nor,
by consequences, for the apparent gravity field gstat.

� The hydrostatic equilibrium can never be achieved — no hydrostatic solution exists
— the liquid is forced to be in motion (Gallavotti , 2002).

� The geometry of the liquid-air interface must be computed using the Navier-Stokes
equations or a partially integrated version. This implies that the solution depends
also on the geometry of the boundary conditions. The behavior is not the same
for an ocean, a lake or hydrostatic measurement systems connected with pipes of
various dimensions.

� The geometry of the liquid-air interface cannot be derived directly and easily from
an equipotential surface of the apparent gravity potential field.

In our model, the rotation vector ωaia is equal to the Earth’s rotation vector ω♁ which is
subject to very complicated variations in time, like precession, nutation and polar motion,
see Appendix B. Thus, it is important to see what is the order of magnitude and the
behavior of the Eulerian acceleration in order to be able to anticipate its effects on the
geometry of a liquid-air interface, on a HLS in our case.

3.7.1 Numerical Computation of the Eulerian Acceleration

In order to have a better idea of the real effect of the Eulerian acceleration on the Earth,
a time series of the time derivative ω̇aia ≡ ω̇ITRS

♁ of the Earth’s rotation vector, for 1-hour
intervals between 1980 and 2013 is computed, see Figure 3.10. The computations are
based on the libraries NOVAS-C (Kaplan et al., 2009) and on the Earth orientation pa-
rameter (EOP) time series EOP 08 C04 (IAU1980) provided by the International Earth
Rotation and Reference Systems Service (IERS) data center. Moreover, in order to take
into account the diurnal and sub-diurnal terms which model the effects of ocean tides and
libration on the Earth’s rotation vector, the routine INTERP.f of the IERS data center is
used.

The time derivative ω̇ITRS

♁ of the Earth’s rotation vector is computed in two steps, see
Appendix B for the details.
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1. The time-derivative ω̇iia ≡ ω̇ICRS

♁ ≡ ω̇GCRS

♁ of the Earth’s rotation vector in the
inertial system is computed numerically from the time series of ωGCRS

♁ .

ω̇GCRS

♁ (ti) ∼=
ωGCRS

♁ (ti+1)− ωGCRS
♁ (ti)

ti+1 − ti
(3.127)

where:

ω̇GCRS

♁

[
rad
s2

]
= time derivative of the Earth’s rotation vector in the geocen-

tric celestial reference system.

ωGCRS
♁

[
rad
s

]
= Earth’s rotation vector in the geocentric celestial reference

system.

2. ω̇ITRS

♁ is finally computed by transforming ω̇GCRS

♁ into the ITRS system with the
rotation matrix SITRS

GCRS.

ω̇ITRS

♁ (ti) ∼= SITRS
GCRS(ti) · ω̇GCRS

♁ (ti) (3.128)

where:

ω̇ITRS

♁

[
rad
s2

]
= time derivative of the Earth’s rotation vector in the terres-

trial reference system.

ω̇GCRS

♁

[
rad
s2

]
= time derivative of the Earth’s rotation vector in the geocen-

tric celestial reference system.

SITRS
GCRS = Transformation matrix from GCRS to ITRS.

As we can see in Figure 3.10, the vector ω̇ITRS

♁ is practically parallel to the equatorial
plane and the order of magnitude of the x- and y-component is five times larger than
the z-component. According to Equation 3.56, the Eulerian acceleration gITRS

Eulerian can be
computed by:

gITRS
Eulerian = −Ω̇

ITRS

♁ · ρITRS

= −


0 −ω̇ITRS

♁z +ω̇ITRS
♁y

+ω̇ITRS
♁z 0 −ω̇ITRS

♁x

−ω̇ITRS
♁y +ω̇ITRS

♁x 0

 ·

ρITRS
x

ρITRS
y

ρITRS
z

 (3.129)

where:

gITRS
Eulerian

[
m
s2

]
= Euler acceleration vector in the terrestrial reference system.

Ω̇
ITRS

♁

[
rad
s2

]
= time derivative of the Earth’s rotation skew-symmetric ma-

trix in the terrestrial reference system.

ρITRS [m] = Position vector in the terrestrial reference system.
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Figure 3.10: Time series of the x-y and z-component of ω̇ITRS

♁ the time derivative Earth’s rotation
vector based on the libraries NOVAS-C (Kaplan et al., 2009), the routine INTERP.f of the IERS data
center and on the Earth orientation parameter time series EOP 08 C04 (IAU1980).

which can be transformed into the topocentric system by:

gTopo
Eulerian = TTopo

ITRS(ρITRS) · gITRS
Eulerian (3.130)

where:

gTopo
Eulerian

[
m
s2

]
= Euler acceleration vector in the topocentric reference sys-

tem.

gITRS
Eulerian

[
m
s2

]
= Euler acceleration vector in the terrestrial reference system.

TTopo
ITRS = Transformation matrix from ITRS to the topocentric sys-

tem.

ρITRS [m] = Position vector in the terrestrial reference system.

A trivial property28 of the vector field resulting from Equations 3.129 and 3.130 is that the
Eulerian acceleration is always perpendicular to ρITRS or equivalently, is always contained
in the local topocentric horizontal plane29. This means that the Eulerian acceleration

28property of the vector product.
29if we consider that the deflection of the vertical can be neglected in this case.
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cannot be observed by a gravimeter. Theoretically, only instruments which are sensitive
to lateral accelerations allows the observation of this acceleration.

The numerical values of the norm of the Eulerian acceleration for position vectors all
over the world between 1980 and 2003 are very small and never exceed 5 · 10−9 m

s2 , see
Figure 3.11, and show that the dominant periods are given around one day. They are
identical to the dominant periods of ω̇ITRS

♁ , see Figure B.7.
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Figure 3.11: Eulerian acceleration on the Earth’s surface due to the time variation of the Earth’s
rotation vector on 07.01.2012 at 20:00 UTC.

Eulerian Acceleration and Response of HLS along the CLIC Profile

When we look at the Eulerian acceleration in the region of Geneva and especially the
horizontal component projected onto the profile of CLIC, it is possible to estimate the
response of a HLS according to the Eulerian acceleration.

The time series of the Eulerian acceleration projected onto the profile of CLIC from 1980
to 2013 together with its amplitude spectrum are shown in Figure 3.12 and confirm the
order of magnitude of the effect and the dominant periods, see Table 3.3. We can see
three remarkable groups of periods. Around one day, we have the Oppolzer periods which
have an order of magnitude of 10−9 m

s2 . The second dominant group has periods larger
than one year, which are related to polar motion, have order of magnitude of 10−11 m

s2 .
The last group contains sub-daily polar motion effects around 0.5 days with an order of
magnitude of 10−12 m

s2 .

We now want to look at the variation of the water level in a HLS due to the Eulerian
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Figure 3.12: Time series (upper) and amplitude spectrum (lower) of the Eulerian acceleration
from 1980 to 2013 based on the libraries NOVAS-C (Kaplan et al., 2009), the routine INTERP.f of
the IERS data center and on the Earth orientation parameter time series EOP 08 C04 (IAU1980).

Table 3.3: List of the main periods of the components of the Eulerian acceleration projected on
the profile of CLIC.

Rank Period Amplitude

[-] [day]
[

m
s2

]
1 0.99726 1.292 · 10−9

2 1.07576 7.755 · 10−10

3 1.07585 4.993 · 10−10

4 1.00274 4.390 · 10−10

18 430.497 4.678 · 10−11

32 365.270 3.229 · 10−11

51 446.441 2.162 · 10−11

384 0.51751 2.382 · 10−12

acceleration. To do this, we use the simplified HLS model, exposed in Section 3.6.3,
leading a forced harmonic oscillator. The general solution of the response of the system
exited by an arbitrary time series requires the computation of the convolution between
the transfer function, Equation 3.106, and the time series of the Eulerian acceleration. In
our case, it is not necessary to do this complicated computation. In fact, when we look at
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the spectrum of the transfer function and the spectrum of the Eulerian acceleration, we
can see that all significant signals have periods which are contained in the region R3, see
Table 3.2, where no resonance effects can be seen. In this case, the response can simply
be computed by the multiplication of the times series of the Eulerian acceleration with
the amplitude response limit Alim given in Equation 3.111:

z(t) = Alim · gCLIC
Eulerian (3.131)

where gCLIC
Eulerian represents the horizontal component of the Eulerian acceleration projected

onto the profile of CLIC. In Figure 3.13 we can see a version of Figure 3.9 which is
complemented by the amplitude of the water level change due to an Eulerian acceleration
of 5 · 10−9 m

s2 .
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Figure 3.13: Long period amplitude response Alim, according to Equations 3.111, of a HLS
systems of various lengths L and various ratios between the section of the pot and the section

of the tube
Spot

Stube
. In red, the amplitude produced by the Eulerian acceleration due to the time

variation of the Earth’s rotation vector is shown.

Concluding Remarks

Despite the fact that the order of magnitude of the Eulerian acceleration is known to be
very small with respect to the other components contributing to gravity, it was interesting
to compute a realistic time series applied to a simple physical model of the HLS in order to
predict quantitatively up to which order of approximation we can consider the hydrostatic
modelization as acceptable. In the case of an alignment system for the CLIC based on
overlapping HLS systems of approximately 200 meters in length, we can definitively assume
that the Eulerian acceleration is a negligible term. As we can see in Figure 3.13, the effects
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are significantly below 1 micron for all
Spot

Stube
ratios, except for the rather unrealistic ratio

of
Spot

Stube
= 0.1.

3.7.2 Earth’s Gravitational Potential

The Earth’s gravitational potential function Φgrav,♁ is defined so that:

∇Φgrav,♁ = ggrav,♁ (3.132)

and is given by:

Φgrav,♁(ρ, t) = +G ·
ˆˆˆ

♁

1

|ρ− ρ′|
· ρ(ρ′, t) · dV (3.133)

where the potential vanishes when the position ρ tends to infinity:

Φgrav,♁ (ρ→∞, t) = 0 (3.134)

3.7.3 Centrifugal Potential

The centrifugal potential function Φcentr is defined so that:

∇Φcentr = gcentr (3.135)

and is given by:

Φcentr(ρ, t) = +
1

2
·
{
|ωaia(t)|

2 · |ρ|2 − (ρ · ωaia(t))
2
}

(3.136)

where the potential vanishes when the position ρ is on the rotation axis ω(t).

3.7.4 Tidal Potential

The tidal potential function Φtidal is defined so that:

∇Φtidal = gtidal (3.137)

and is given by:

Φtidal(ρ, t) = +GM� ·
{

1

|ρ�(t)− ρ|
−
ρ�(t) · ρ
|ρ�(t)|3

− 1

|ρ�(t)|

}

+GM$ ·
{

1

|ρ$(t)− ρ|
−
ρ$(t) · ρ
|ρ$(t)|3

− 1

|ρ$(t)|

} (3.138)

where the terms in Equation 3.138

− 1

|ρ�(t)|
and − 1

|ρ$(t)|
(3.139)

are just integrating constants which make the potential vanish when the position ρ is at
the geocenter G (Wenzel , 1997):

Φtidal (ρ ≡ G ≡ 0, t) = 0 (3.140)
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Spherical Harmonic Expansion of the Tidal Potential for a Rigid Earth

In geodesy, the tidal potential formulated in Equation 3.138 is usually reformulated in
terms of spherical harmonics instead of the vector formulation. Assuming that the posi-
tions of the celestial bodies are provided, the vector formulation gives a simple straight-
forward way to compute solid Earth tides for an ocean-less rigid Earth model. However,
if we want to predict the Earth tides of a non-rigid Earth model, it is necessary to make
a spectral decomposition of the tidal potential in terms of spherical harmonics functions
(Wenzel , 1997).

Firstly, we have to reformulate Equation 3.138 with scalar variables. If only the Moon30

is considered we have:

Φtidal(ρ, t) = +GM$ ·
{

1

s$(t)
− r cosψ$(t)

r2
$(t)

− 1

r$(t)

}
(3.141)

where:

s$(t) [m] = |ρ$(t)− ρ|, distance between the point P on the Earth and
the Moon.

r$(t) [m] = |ρ$(t)|, distance between the geocenter G and the Moon.

r [m] = |ρ|, distance between the geocenter G and the point P on
the Earth.

ψ$(t) [rad] = arccos
(
ρ$(t)·ρ
|ρ$(t)|·|ρ|

)
, spatial angle between ρ$(t) and ρ.

Secondly, if the reciprocal distance 1
s$

is given as a function of r$, r and ψ$

1

s$
=

1√
r2

$ + r2 + 2r$r cosψ$

(3.142)

and expanded in terms of Legendre polynomials

1

s$
=

1

r$
·
∞∑
n=0

(
r

r$

)n
Pn(cosψ$)

=
1

r$︸︷︷︸
n=0

+
1

r$
· r
r$
· cos(ψ$)︸ ︷︷ ︸

n=1

+
1

r$
·
∞∑
n=2

(
r

r$

)n
Pn(cosψ$)

(3.143)

the Equation 3.143 can be inserted into Equation 3.141 and we obtain:

Φtidal(ρ, t) = +
GM$

r$
·
∞∑
n=2

(
r

r$

)n
Pn(cosψ$) (3.144)

where we can see that the terms for the degrees l = 0 and l = 1 are simplified and disap-
pear. The Equation 3.144 is given in terms of Legendre polynomials where the argument

30the treatment of the other celestial bodies is identical.
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is the spatial angle ψ$. It means that the spectral decomposition (in space) of the tides
is related to ψ$.

If we want to go a step further and decompose the tides (in space) as a function of
the geocentric spherical coordinates of P, ρ ≡ (λ,ϑ,r)31, and the position of the Moon,
ρ$ ≡ (λ$,ϑ$, r$), we can formulate the Legendre polynomials of degree n, Pn, in terms of
fully normalized spherical harmonics of degree n and order m, Pnm by:

Pn(cosψ$) =
1

2n+ 1
·

n∑
m=0

Pnm(cosϑ) · Pnm(cosϑ$) · cos (mλ−mλ$) (3.145)

as we can find in Wenzel (1997). Finally, the spherical harmonic expansion of the tidal
potential of a rigid Earth is given by inserting Equation 3.145 into Equation 3.144:

Φtidal(ρ, t) = +
GM$

r$
·
∞∑
n=2

(
r

r$

)n 1

2n+ 1
·

n∑
m=0

Pnm(cosϑ) · Pnm(cosϑ$) · cos (mλ−mλ$)

= +
∞∑
n=2

n∑
m=0

GM$

r$
·
(
r

r$

)n 1

2n+ 1
· Pnm(cosϑ) · Pnm(cosϑ$) · cos (mλ−mλ$)

= +

∞∑
n=2

n∑
m=0

Φtidal,nm

(3.146)

Remarks For practical computations, it is not necessary to consider the terms larger
than degree four (n = 4). In fact, the spherical harmonics series converges rapidly(
r
r$

)n
≈
(

1
60

)n
, for the Moon, and

(
r
r�

)n
≈
(

1
23600

)n
for the Sun. Moreover it can

be proven that 98% of the total tidal potential is modeled by the first term (which is the
second degree n = 2), see Wenzel (1997) and Torge and Müller (2012).

From the last remarks it is possible to get a very good order of magnitude of the tidal
potential by looking at the first term (n=2). This can be done using Equation 3.144:

Φtidal(ρ, t) ≈+
GM$

r$
·
(
r

r$

)2

·
(

3

2
cos2 ψ$ −

1

2

)
(3.147)

which attains its maximum when ψ$ = k · π, with (k = 0, 1, 2, ...). In this case (for the
Moon only) we have:

max {Φtidal(ρ, t)} ≈+
GM$ · r2

r3
$

≈ 3.5

[
m2

s2

]
(3.148)

for the Sun, we get:

max {Φtidal(ρ, t)} ≈+
GM� · r2

r3
�

≈ 1.6

[
m2

s2

]
(3.149)

31the geocentric spherical coordinates are given by the longitude λ, the co-latitude ϑ and the radius r.
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and for Venus, we get:

max {Φtidal(ρ, t)} ≈ 2.3 · 10−4

[
m2

s2

]
(3.150)

Spherical Harmonics Expansion of the Tidal Potential for a Deformable Earth

As mentioned in Section 3.4.10, the modelization of the consequences of the non-rigid
Earth for the positions attached to the Earth’s body and the apparent gravity are formu-
lated directly within the Earth’s tides model. In the following developments the Earth is
assumed to be free from moving waters like oceans and seas, incompressible, homogeneous,
non-rotating and spherically symmetric, see Agnew (2007) and Torge and Müller (2012).

From the seminal work of Love (1911), the problem can be decomposed into two main as-
pects. Firstly, the computation of the impact of the tidal potential on the geometry — or
the shape — of the Earth and, secondly, the computation of the consequences of the new
deformed Earth on the potential or on some observable quantities (which are functions
of the potential and the new position of the observer) like geoid undulation, gravity, tilt,
deflection of the vertical, strain, levelling observation, etc.

Concerning the deformation of the surface of the Earth in response to the tides, we assume
that the deformations unm of degree n and order m are proportional to the rigid Earth’s
tidal potential Φtidal,nm given in Equation 3.146. To be more precise, they are proportional
to the displacements u∼ of the equilibrium surface of a hypothetical liquid Earth, given
by u∼ = Φtidal

g , where g reprensents the acceleration of gravity.

The proportionality factors for the vertical component, hnm, are called first Love numbers.
For the horizontal components they are given by the factors lnm called Shida numbers.
In other words, in the case where the Earth would be completely liquid, we would have
hnm = lnm = 1, and in the case where the Earth would be perfectly rigid, we would have
hnm = lnm = 0 (Vańıček and Krakiwsky , 1982). In a local topocentric system (x= North,
y = East, z = height) we have:

uz =

∞∑
n=2

n∑
m=0

hnm · u∼z,nm =
1

g

∞∑
n=2

n∑
m=0

hnm · Φtidal,nm

ux =
∞∑
n=2

n∑
m=0

lnm · u∼x,nm = −1

g

∞∑
n=2

n∑
m=0

lnm ·
∂Φtidal,nm

∂ϑ

uy =

∞∑
n=2

n∑
m=0

lnm · u∼y,nm =
1

g

∞∑
n=2

n∑
m=0

lnm ·
1

sinϑ
· ∂Φtidal,nm

∂λ

(3.151)

The second step is to compute the changes in the potential due to the deformations given
by the relations in Equation 3.151. This additional indirect potential is also called the
deformation potential, noted Φtidal,deform, which is also proportional to the rigid Earth’s
tidal potential. The proportionality factors knm associated with the degree n and order
m of the spherical harmonics expansion are called second Love numbers. Similarly to the
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factors hnm and lnm, for a prefectly rigid Earth, we would find knm = 0. Formally we can
write:

Φtidal,deform(ρ, t) =
∞∑
n=2

n∑
m=0

knm · Φtidal,nm (3.152)

As it is well explained in Vańıček and Krakiwsky (1982) we could imagine to compute a
further deformation field based on the deformation potential which would generate again
an additional deformation potential and so on, up to infinity. Actually, we do not need
to process in this way because we assume that the Love and Shida numbers are given for
final deformations when the equilibrium is reached. In Table 3.4, we can see the values of
hnm, lnm and knm up to the degree and order 4 as they are given in the software ETERNA

(Wenzel , 1993) provided by the International Center for Earth Tides (ICET).

Table 3.4: Love and Shida numbers up to the degree and order 4 as they are given in the software
ETERNA.

n m hnm knm lnm

[-] [-] [-] [-] [-]

2 0 0.6180 0.3035 0.0875
2 1 0.6072 0.3015 0.0832
2 2 0.6144 0.3055 0.0828

3 0 0.2946 0.0942 0.0149
3 1 0.2946 0.0942 0.0149
3 2 0.2946 0.0942 0.0149
3 3 0.2955 0.0963 0.0149

4 0 0.1807 0.0427 0.0100
4 1 0.1807 0.0427 0.0100
4 2 0.1807 0.0427 0.0100
4 3 0.1807 0.0427 0.0100
4 4 0.1812 0.0452 0.0100

The total tidal potential Φtidal,total observed at a position ρ0 fixed in space (not attached
to the Earth’s surface) is given by the sum of the rigid Earth’s tidal potential and the
deformation potential:

Φtidal,total(ρ0, t) = Φtidal(ρ0, t) + Φtidal,deform(ρ0, t)

=
∞∑
n=2

n∑
m=0

Φtidal,nm +
∞∑
n=2

n∑
m=0

knm · Φtidal,nm

=

∞∑
n=2

n∑
m=0

(1 + knm) · Φtidal,nm

(3.153)

which is approximately 1.3 times higher or 30% larger than what we would observe on a
rigid Earth.
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If we now look at the total tidal potential Φtidal,total observed at a position ρEarth = ρ0 + u
attached to the Earth’s surface, we have to consider the superposition of two phenomena.
On the one hand we have again the total tidal potential observed at ρEarth and on the
other hand the variation of the apparent potential Φtot due to the displacement to the
position ρEarth. In this case, we have to consider the total potential and we can write:

Φtot(ρEarth, t) = Φtot(ρ0 + u, t)

≈ Φgrav,♁(ρ0 + u, t) + Φtidal,total(ρ0 + u, t)
(3.154)

which can be developed using a general first order Taylor expansion (see Equation 3.8.3)
by:

Φtot(ρ0 + u, t) ≈ Φgrav,♁(ρ0, t) +∇Φgrav,♁(ρ0, t)︸ ︷︷ ︸
≈g

·u

+ Φtide,total(ρ0, t) +∇Φtide,total(ρ0, t)︸ ︷︷ ︸
≈0

·u

= Φgrav,♁(ρ0, t) + g︸︷︷︸
≈(0,0,−g)T

·u + Φtide,total(ρ0, t)

= Φgrav,♁(ρ0, t) +−g · uz + Φtide,total(ρ0, t)

(3.155)

with uz given by Equation 3.151 and Φtide,total by Equation 3.153 we find:

Φtot(ρEarth, t) = Φgrav,♁(ρ0, t) +−g · 1

g
·
∞∑
n=2

n∑
m=0

hnm · Φtidal,nm

+

∞∑
n=2

n∑
m=0

(1 + knm) · Φtidal,nm

= Φgrav,♁(ρ0, t) +
∞∑
n=2

n∑
m=0

(1 + knm − hnm) · Φtidal,nm

(3.156)

where the total tidal potential at ρEarth is finally given by:

Φtidal,tot(ρEarth, t) =

∞∑
n=2

n∑
m=0

(1 + knm − hnm) · Φtidal,nm (3.157)

which reduces the potential we would observe on a rigid Earth by a factor of 0.68.

3.8 Geometry of Equipotential Surfaces

As shown in Section 3.7.1, the Eulerian acceleration can be neglected regarding the level
of accuracy needed in our application. Thus, the geometry of the liquid-air interface can
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be derived directly from the equipotential surface of the apparent gravity field Φstat, now
denoted by Φtot for the rest of the thesis. When nothing is specified, we are working in
the Earth fixed system a. The liquid-air interface is represented by the set of all position
vectors {ρ∼(t)} which fulfill the following condition:

Φtot(ρ∼(t), t) = Φ∼tot(t) (3.158)

where:

Φtot(ρ, t)
[

m2

s2

]
= Space-time gravity scalar potential field, including the grav-

itational, the centrifugal and the tidal potential.

ρ∼(t) [m] = Time-dependent position vector of a point at the liquid-air
interface ∼.

Φ∼tot(t)
[

m2

s2

]
= Gravity potential at the liquid-air interface at time t.

and:

Φtot(ρ, t) = Φgrav,♁(ρ, t) + Φcentr(ρ, t) + Φtidal(ρ, t) (3.159)

This shows clearly the different physical components of the gravity potential field but it
is not very suited for the determination and the analysis of equipotential surfaces and
observables. This comes from the fact that the variations are small compared to the whole
signal and that the major part of the signal can be modeled very well by a very simple
Earth model.

In geodesy, we usually reformulate the gravity potential, given in Equation 3.159, as the
sum of a potential U(ρ) generated by a simple rotating ellipsoidal Earth model, called
Normal Potential, and a potential Ttot(ρ, t) which takes into account the remaining part
of the whole signal, called Disturbing Potential. The tidal potential Φtidal(ρ, t) remains
unchanged:

Φtot(ρ, t) = U(ρ) + Ttot(ρ, t) + Φtidal(ρ, t) (3.160)

where:

U(ρ)
[

m2

s2

]
= Time-invariant normal potential field.

Ttot(ρ, t)
[

m2

s2

]
= Space-time disturbing potential field.

Φtidal(ρ, t)
[

m2

s2

]
= Space-time tidal potential field.

3.8.1 Normal Potential and Equipotential Ellipsoid

The normal potential is a non-intuitive and important concept in geodesy. It is a sub-
product of an equipotential ellipsoid — also called level ellipsoid — which is used as
reference for both, the geometry and the gravity potential of the Earth. As we will see in
Section 3.8.3, it is of first importance concerning the linearization of the gravity field and
the determination of the geometry of equipotential surfaces or profiles.
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Geophysical Aspects of Equipotential Ellipsoids and Spheroids

From a geophysical point of view, the research on the figure of the Earth was always as-
sociated with the investigation in theories of figures of equilibrium. The presumption that
the Earth must be close to a figure of equilibrium was propped by the fact that we can find
emerged crustal surfaces all over the world and not at some latitudes only. This becomes
obvious by doing the following proof by contradiction. On the one hand we consider that
the mean surfaces of oceans are in hydrostatic equilibrium and on the other hand we con-
sider that the solid part of the Earth is not close to equilibrium and less oblate than the
figure given by the oceans. In this case we should observe emergent continents only near
the poles. In the opposite case, emerging parts would be observed near the equator only.

From this assumption, several famous scientists like Newton, Huygens, Clairaut, Mac Lau-
rin, Jacobi, Riemann, Poincaré, Chandrasekhar and others, tried to find out what are the
possible solutions of equilibrium of rotating bodies subject to gravitational and centrifugal
forces. Most of them made the hypothesis of homogeneity for the density field in associa-
tion with different assumptions for the definition of equilibrium. Today, we would simply
define the equilibrium rigorously as the hydrostatic equilibrium, as it is given in Section
3.6.4. However, we must still distinguish two classes of models of Earth’s equilibrium
which are usually used as reference models for geophysics (first class) or geodetic (second
class) applications.

1. The whole Earth is in hydrostatic equilibrium. As we have seen in Section 3.6.4,
the main consequence is that equipotential surfaces are parallel to surfaces of equal
density everywhere inside and at the surface of the Earth. In this case, the solutions
are called spheroids which have, in general, not the shape of ellipsoids. There exist
only a few particular solutions which have the shape of ellipsoids. The most famous
ones are given by Mac Laurin and Jacobi which have both strictly homogeneous
densities. In short, Mac Laurin ellipsoids are homogeneous ellipsoids of revolution
rotating uniformly around their minor axis and Jacobi ellipsoids are homogeneous
tri-axial ellipsoids which also rotate around their minor axis. For a given total mass,
the body unambiguously takes the shape of a Mac Laurin or a Jacobi ellipsoid as a
function of the angular velocity. At low velocities, the equilibrium is given by the
family of Mac Laurin ellipsoids and at certain precise velocities, the type of solu-
tion bifurcates to Jacobi ellipsoids. Afterward, there are other figures of equilibrium
which break the ellipsoidal symmetries as it is well summarized in Chandrasekhar
(1967).

For the Earth, only the ellipsoid of Mac Laurin can be considered. In this regard,
if we try to see if the Earth can be fitted to a Mac Laurin ellipsoid, we can try to
compute the mean density of the Earth ρ♁ which fulfills the relation of a Mac Laurin
ellipsoid from the conventional IERS dimensions (a, b) and the angular velocity ω♁

of the reference ellipsoid. The Mac Laurin relation can be found in Chandrasekhar
(1967) and can be easily reformulated in order to find the density:

ρML =
ω2

0

πG ·
[√

1−e2
e3
· 2(3− 2e2) · arcsin(e)− 6

e2
· (1− e2)

] ∼= 7096

[
kg

m3

]
(3.161)
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where:

ρML

[
kg
m3

]
= Density of the Mac Laurin ellipsoid.

e =
√
a2−b2
a [−] = First numerical eccentricity of the IERS reference ellipsoid.

a [m] = Semi-major axis of the IERS reference ellipsoid.

b [m] = Semi-minor axis of the IERS reference ellipsoid.

This density differs significantly from the real mean density of the Earth ρ♁
∼= 5515

kg
m3 . In a similar way, when the density is fixed and the geometrical flattening f = a−b

a
is computed, we find fML

∼= 1
230 — which corresponds to the value predicted by New-

ton — instead f♁
∼= 1

298 . The main part of this large difference comes from the fact
that the Earth is not homogeneous. Concerning the hydrostatic equilibrium hypoth-
esis, the deviation is quite small. Numerical models based on global density fields
give geometrical flattening values of approximatively f♁

∼= 1
300 which corresponds

to a deviation of ∼ 113 m between the polar and equatorial radii (Chambat et al.,
2010).

2. Only the surface of the Earth is assumed to be in “hydrostatic equilibrium”. In this
case, for a given total mass and a given rotation angular velocity, only one condition
must be fulfilled. The surface of the Earth has to be an equipotential surface and its
geometry can be defined to be a perfect ellipsoid of revolution. The main contributor
of the solutions of this kind of problem is Clairaut in 1743, who derived many very
powerful relations in his famous Théorie de la Figure de la Terre, which are still
used today. His main contributions are:

� to write the equation of the ellipsoid as a function of the semi-major axis a and
the geometric flattening f .

� to write the equation of the gravity acceleration of an arbitrary point on the
surface of the ellipsoid as a function of the gravity flattening fg =

gPole−gEquator

gEquator
.

� to relate the purely geometrical flattening f with the gravity flattening fg, the
dynamical factor J2 (which contains the moments of inertia, the total mass and
the semi-major axis) and a geodynamic factor q which especially contains the
Earth’s angular velocity. This is simply the starting point of the era of physical
geodesy.

� to give minimal and maximal possible physical values for the geometrical flat-
tening f , if the Earth is homogeneous fmax

∼= 1
230 and if the total mass is

concentrated at the center of the Earth fmin
∼= 1

576 .

Afterward, Pizzeti (1894) and Somigliana (1929) developed theories which permit to com-
pute the gravity potential, in the outer space, generated by ellipsoids of revolution. Nowa-
days, from a geophysical point of view, an equipotential ellipsoid of revolution E0 is a rotat-
ing heterogeneous non-equilibrium ellipsoid of revolution, for which the normal potential
U(ρ0) on the surface is constant (Moritz , 1990). The general non-equilibrium statement
comes from the theorem of Ledersteger which says that an equipotential ellipsoid cannot
be in hydrostatic equilibrium, except for Mac Laurin ellipsoids.
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Normal Potential of Equipotential Ellipsoids

The normal potential is defined as the sum of the gravitational potential generated by the
matter inside E0 and the centrifugal potential generated by the rotation:

U(ρ) = Φgrav,E0(ρ) + Φcentr,ω0
(ρ) (3.162)

From the Stokes-Poincaré theorem (Torge and Müller , 2012), the normal potential outside
E0 is completely determined by four parameters only, usually we use:

� the shape of E0, given by a and b.

� the total mass M inside E0.

� the angular velocity ω0 of E0.

An interesting fact is that the determination of the normal potential outside E0 depends
only on the total mass M and not on the density field ρ(ρ). This is also consistent with the
inverse problem of potential theory, stating that an infinite set of density fields can gen-
erate the same normal potential outside E0. In contrary, concerning the normal potential
inside E0, the problem is much more complicated, see Moritz (1990). In fact, the potential
is no longer more harmonic, it must fulfill Poisson’s equation which depends directly on
the density field. In this work, the normal potential inside E0 is not treated since the aim
of the thesis is to look at equipotential profiles which are certainly in the underground but
still above E0.

The analytical computation of U(ρ) outside E0 can be realized in different manners Torge
and Müller (2012) and Hofmann-Wellenhof and Moritz (2005): by a closed formula or by
a spherical harmonics expansion. The advantage of the closed formula with respect to a
truncated spherical harmonics expansion is that it gives exact values. The main advantage
of the spherical harmonics expansion is that it is a function of spherical coordinates, which
are convenient in many problems, and completely compatible with the spherical harmonics
expansion of the gravity potential.

Closed Formula. The closed formula is given as a function of ellipsoidal coordinates32,
see Figure 3.14, by:

U(ρ) = U(λ, β, u)

=
GM

ε
arctan

( ε
u

)
+
ω2

0 · a2 · q
2q0

·
(

sin2(β)− 1

3

)
+
ω2

0

2
· (u2 + ε2) · cos2(β)

(3.163)

with:

q =
1

2
·
[(

1 +
3u2

ε2

)
· arctan

( ε
u

)
− 3u

ε

]
(3.164)

32which must not be confounded with the geodetic coordinates (λ, φ, h)
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and:

q0 =
1

2
·
[(

1 +
3b2

ε2

)
· arctan

(ε
b

)
− 3b

ε

]
(3.165)

where:

U
[

m2

s2

]
= Normal potential.

λ, β, u [deg] , [m] = Ellipsoidal longitude, latitude, third parameter (semi-minor
axis of passing through ellipsoid).

GM
[

m3

s2

]
= Geocentric gravitational constant of the Earth.

ε =
√
a2 − b2 [m] = Linear eccentricity.

a, b [m] = Semi-major and semi-minor axis of the ellipsoid of revolu-
tion.

ω0

[
rad
s

]
= Angular velocity of the ellipsoid of revolution.

Spherical Harmonics Expansion. The spherical harmonics expansion is given as a func-
tion of spherical coordinates by:

U(ρ) = U(λ, ϑ, r)

=
GM

r
·

[
1−

∞∑
n=1

(a
r

)2n
· J2n · P2n(cosϑ)

]
+
ω2

0

2
· r2 sin2 ϑ

(3.166)

where:

U
[

m2

s2

]
= Normal potential.

λ, ϑ, r [deg] , [m] = Geocentric longitude, co-latitude and radius.

GM
[

m3

s2

]
= Geocentric gravitational constant of the Earth.

a [m] = Semi-major axis of the ellipsoid of revolution.

Jl [−] = Zonal harmonic coefficients of the spherical harmonics ex-
pansion.

Pl [−] = Legendre polynomials.

ω0

[
rad
s

]
= Angular velocity of the ellipsoid of revolution.

Geometry of Normal Equipotential Surfaces

The geometry of a normal equipotential surface is defined as the locus of position vectors
{ρ◦}, where the normal potential U(ρ) is constant. Formally we have:

U (ρ◦) = U∼ (3.167)
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Figure 3.14: Earth’s equipotential ellipsoid of revolution with spherical coordinates (black, r =
|ρ|), geodetic coordinates (orange) and ellipsoidal coordinates (red). On the surface, the solid
part of the ellipsoid is identical to the equipotential surface. Elsewhere, the shape of equipotential
surfaces is not ellipsoidal. For example, the equipotential surface (blue) passing through the
position ρ differs from its corresponding confocal ellipsoid (red).

As we can see in Equations 3.163 and 3.166, for a given normal potential U∼, it is difficult
to isolate explicitly the geometry of its corresponding equipotential surface. Neverthe-
less, we clearly see that the normal potential does not vary with the longitude but only
along meridians without forgetting the strong dependence on height, see Figure 3.15. In
(Torge and Müller , 2012) and (Hofmann-Wellenhof and Moritz , 2005) the geometry of the
normal potential is described locally by the curvature tensor and the gradient vector of
U(ρ) and not directly in terms of distance separations to a reference surface (e.g. ellipsoid).

Here, the discrepancies between the true normal equipotential surfaces ρ◦ and a sim-
ple surface defined by the locus of position vectors which have a constant geodetic height
h0, are computed numerically in a direct manner from the normal potential function,
given in closed form by Equation 3.163, in order to be preserved from any truncation or
approximation errors.
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When the components (λ, ϕ) of the position vector ρ◦ are provided, the height h◦ which
matches the normal potential U∼ is computed numerically using a simple Newton iterative
method:

1. start with iteration k = 1.

2. set hk=1 = 0.

3. the position vector ρN
∼,k with geodetic components is given by:

ρN
∼,k =


λ

ϕ

hk

 (3.168)

4. convert the geodetic components of ρN
∼,k into ellipsoidal components according to

Appendix C:

ρN
∼,k =


λ

ϕ

hk

→

λ

β

uk

 (3.169)

5. compute the normal potential Uk(ρ
N
∼,k) with Equation 3.163.

6. compute numerically the partial derivative of the normal potential with respect to
h by applying (3) and (4) to an auxiliary position vector with h = hk + ∆h :

∂U

∂h

∣∣∣∣
ρ◦,k

(3.170)

7. compute the updated height hk+1 by:

hk+1 = hk −
Uk − U∼

∂U
∂h

(3.171)

8. if |hk+1 − hk| ≥ 10−7[m]→ iterate again from (3), else goto (9).

9. the position vector which is at normal potential U∼ is given by:

ρ◦ =


λ

ϕ

h◦ = hk+1

 (3.172)

10. stop.

In Table 3.5 and Figure 3.15 we can see some normal equipotential profiles along a fixed
meridian for different given normal potentials U∼(h0) which correspond to different start-
ing heights h0. The starting height h0 is defined as the height of the first position vector (at
North pole) of a particular profile. The normal potential is generated using the geocentric
equipotential ellipsoid GRS80 (Moritz , 2000):
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Table 3.5: Geodetic height of normal equipotential profiles along the Greenwich meridian, λ = 0.0
[deg], for various potential values.

U∼ h0 hN
∼,ϕ=+90.0 hN

∼,ϕ=0.0 hN
∼,ϕ=−90.0 ∆hN

∼,ϕ=0.0[
m2

s2

]
[m] [m] [m] [m] [m]

62636860.85 +0.000 +0.000 +0.000 +0.000 +0.000
62635877.65 +100.000 +100.000 +100.530 +100.000 +0.530
62634894.47 +200.000 +200.000 +201.060 +200.000 +1.060
62633911.33 +300.000 +300.000 +301.591 +300.000 +1.591
62632928.22 +400.000 +400.000 +402.121 +400.000 +2.121
62631945.14 +500.000 +500.000 +502.651 +500.000 +2.651
62630962.09 +600.000 +600.000 +603.181 +600.000 +3.181
62629979.07 +700.000 +700.000 +703.712 +700.000 +3.712
62628996.09 +800.000 +800.000 +804.242 +800.000 +4.242
62628013.13 +900.000 +900.000 +904.773 +900.000 +4.773
62627030.21 +1000.000 +1000.000 +1005.303 +1000.000 +5.303
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Figure 3.15: Distance separation ∆h◦ between normal equipotential profiles and profiles of equal
geodetic height for different normal potentials U∼ corresponding to different heights at the North
pole.

3.8.2 Disturbing Potential

The disturbing potential Ttot(ρ, t) is the key concept used for the determination of equipo-
tential surfaces and profiles. It contains the potential generated by all phenomena that are
not modeled by the normal potential U(ρ) and the tidal potential Φtidal(ρ, t). Formally,
this means that it contains all terms of the total gravity potential Φtot(ρ, t) not contained
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Figure 3.16: Misalignment due to the distance separation M?
? {∆h◦} between normal equipo-

tential profiles and profiles of equal geodetic height for the normal potentials U∼ corresponding to
h◦ = 350 m at North pole.

in the normal potential U(ρ):

Ttot(ρ, t) = Φtot(ρ, t)− U(ρ)− Φtidal(ρ, t)

= Φgrav,♁(ρ, t) + Φcentr(ρ, t) + Φtidal(ρ, t)

− Φgrav,E0(ρ)− Φcentr,ω0
(ρ)− Φtidal(ρ, t)

(3.173)
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which can be rearranged to give:

Ttot(ρ, t) = Φgrav,♁(ρ, t)− Φgrav,E0(ρ)

+ Φcentr(ρ, t)− Φcentr,ω0
(ρ)

= Φgrav,♁−E0(ρ, t) + δΦcentr(ρ, t)

(3.174)

and if the disturbing gravitational potential Φgrav,♁−E0 = Φgrav,♁ − Φgrav,E0 is decomposed
into stationary and non-stationary dynamic terms, we have:

Ttot(ρ, t) = Φgrav,st(ρ) + Φgrav,dyn(ρ, t) + δΦcentr(ρ, t) (3.175)

or with a more convenient notation:

Ttot(ρ, t) = Tst(ρ) + Tdyn(ρ, t) (3.176)

where:

Tst(ρ) = Φgrav,st(ρ)

Tdyn(ρ, t) = Φgrav,dyn(ρ, t) + δΦcentr(ρ, t)
(3.177)

In brief, the disturbing field Ttot(ρ, t) is decomposed into two parts. The stationary part
Tst(ρ) represents the gravitational effect of all masses which are not taken into account in
U(ρ) and which do not vary with time like:

� geological structures between the equipotential ellipsoid E0 and the topography,

� density anomalies inside the equipotential ellipsoid E0 compared to the normal den-
sity field of E0. This assumption is true but may seem to be confusing. In fact,
the normal density field U(ρ) is not defined. In the definition of the normal po-
tential only the whole mass inside E0 is fixed, but not the precise distribution of
masses. This has an unfortunate consequence concerning the modeling of the dis-
turbing potential from the disturbing density field. There exists an infinite set of
possible disturbing density fields because there exist an infinite set of normal density
fields which generate the unique normal potential U(ρ). This problem can be fixed
basically in two ways.

Firstly, we could create another normal potential field which would be generated
from a predefined normal density field33. In this case, the main drawback is that we
would loose the nice property that the surface of ellipsoid is an equipotential surface.
The new body of reference would certainly not be an equipotential surface anymore.

Secondly, we may assume that the density anomalies inside the normal ellipsoid
do not need to be modeled because they generate signals in the potential (of large
wavelengths) which are properly caught by the observation. In other words, the
spacing of the observables is below the Nyquist’s wavelength of the signals.

33e.g. with a simple Earth’s density model as the Preliminary Reference Earth Model (PREM).
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� the lakes at mean level,

� the stationary part of the atmosphere, etc ...

The second part Tdyn(ρ, t) represents, on the one hand, the gravitational parts of all time-
varying masses like:

� geological and geotechnical time-varying phenomena,

� underground water flows,

� the time-varying part of the open water masses like oceans, lakes, etc...

� the time-varying part of the atmosphere, etc ...

and on the other hand, the time varying part of the centrifugal potential Φcentr(ρ, t) due
to the variation of the Earth’s rotation vector ωaia(t).

3.8.3 Link between Potential Field and Geometry of Equipotential Surfaces

In this section, the link between total gravity potential field Φtot(ρ, t) and the geometry
of equipotential surface can be realized if the real gravity potential field is approximated
by a Taylor series expansion in the vicinity of the liquid-air interface represented by the
set of positions {ρ∼} and the position vector of the liquid-air interface is given by:

ρ∼ = ρ◦ + ∆ρ (3.178)

where ∆ρ is an arbitrary relative position vector (see Figure 3.17).

topography

Figure 3.17: Schematic representation of the link between potential field and geometry of equipo-
tential surfaces.
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General Taylor Series Expansion of the Gravity Potential

At a given time t, the Taylor series expansion of Φtot(ρ∼, t) around ρ◦ is given by:

Φtot(ρ∼) =Φtot(ρ◦) +∇Φtot(ρ◦) ·∆ρ

+
1

2
·∆ρT · ∇ [∇Φtot(ρ◦)] ·∆ρ

+O(∆ρ3)

(3.179)

Introducing the gravity acceleration vector gtot(ρ◦) and the gravity gradient tensor34

Γtot(ρ◦) we have:

Φtot(ρ∼) =Φtot(ρ◦) + gtot(ρ◦) ·∆ρ

+
1

2
·∆ρT · Γtot(ρ◦) ·∆ρ

+O(∆ρ3)

(3.180)

where:

gtot(ρ◦) = ∇Φtot(ρ◦) =


∂Φtot
∂x

∂Φtot
∂y

∂Φtot
∂z


∣∣∣∣∣∣∣∣∣
ρ◦

(3.181)

and:

Γtot(ρ◦) = ∇ [∇Φtot(ρ◦)]

= ∇


∂Φtot
∂x

∂Φtot
∂y

∂Φtot
∂z


∣∣∣∣∣∣∣∣∣
ρ◦

=


∂2Φtot
∂x2

∂2Φtot
∂x∂y

∂2Φtot
∂x∂z

∂2Φtot
∂y∂x

∂2Φtot
∂y2

∂2Φtot
∂y∂z

∂2Φtot
∂z∂x

∂2Φtot
∂z∂y

∂2Φtot
∂z2


∣∣∣∣∣∣∣∣∣
ρ◦

(3.182)

Taylor Series Expansion in the Normal Direction of the Equipotential Surface

A special case of the general expansion given in Section 3.8.3 is very useful for the determi-
nation of the geometric separation between the normal and the real equipotential surfaces.
If the vector ∆ρ is chosen to be perpendicular to the gravity equipotential surface and
Ntot(ρ◦) represents the module of ∆ρ, we can write:

∆ρ = nΦtot(ρ◦) ·Ntot(ρ◦) = − gtot(ρ◦)

|gtot(ρ◦)|
·Ntot(ρ◦) (3.183)

where nΦtot(ρ◦) corresponds to the normal vector of the equipotential surface at ρ◦. The
position vector of the liquid-air interface is given by:

ρ∼ = ρ◦ + nΦtot(ρ◦) ·Ntot(ρ◦) (3.184)

34which is the Hessian matrix of the gravity potential and also called Eötvös tensor if the coordinates
are given in the local topocentric system.
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and Equation 3.180 can be written as follows:

Φtot(ρ∼) =Φtot(ρ◦)− |gtot(ρ◦)| ·Ntot(ρ◦)

+
1

2 · |gtot(ρ◦)|2
· gtot(ρ◦)

T · Γtot(ρ◦) · gtot(ρ◦) ·N2
tot(ρ◦)

+O(N3
tot)

(3.185)

which can be written in a more convenient form as a second order polynomial:

Φtot(ρ∼) =Φtot(ρ◦) +A ·Ntot(ρ◦) +B ·N2
tot(ρ◦) +O(N3

tot) (3.186)

where the coefficients A and B are given by:

A = −|gtot(ρ◦)|

B =
1

2 · |gtot(ρ◦)|2
· gtot(ρ◦)

T · Γtot(ρ◦) · gtot(ρ◦)
(3.187)

Disturbing Potential in Terms of Geometrical Separation

In the previous section, thanks to the Taylor series expansion of the gravity potential,
the link between the gravity potential and the geometry of the equipotential surface was
found. Here, it is the objective to formulate the disturbing potential35 as a function of
the geometric separation. To do this, it is necessary to introduce an additional condition.
This condition is the gauge of the gravity potential Φ∼tot at the liquid-air interface ρ∼ to
the normal potential U∼ at normal equiptential surface ρ◦. Formally the following relation
is always satisfied:

U(ρ◦) = U∼ = Φtot(ρ∼) = Φ∼tot (3.188)

and if this condition is applied to Equation 3.186 combined with Equation 3.160, we get
the following remarkable relation:

U(ρ◦)︸ ︷︷ ︸
=Φtot(ρ∼)

=U(ρ◦) + Ttot(ρ◦) + Φtidal(ρ◦)︸ ︷︷ ︸
=Φtot(ρ◦)

+A ·Ntot(ρ◦) +B ·N2
tot(ρ◦) +O(N3

tot)
(3.189)

which can be simplified and rearranged as follows:

−Ttot(ρ◦)− Φtidal(ρ◦) = +A ·Ntot(ρ◦) +B ·N2
tot(ρ◦) +O(N3

tot) (3.190)

and since all terms (including A and B) are given at position ρ◦ we can write:

f (Ntot) = +A ·Ntot +B ·N2
tot +O(N3

tot) (3.191)

with:
f (Ntot) = − (Ttot + Φtidal) (3.192)

35in this case, the disturbing potential must be understood as being the sum of the standard disturbing
potential and the tidal potential Ttot + Φtidal.
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Geometrical Separation in Terms of the Disturbing Potential

From Equation 3.191, the geometric separation Ntot as a function of the disturbing poten-
tial, represented by −f , is given by finding the inverse function:

f−1 (Ntot) = Ntot (f) (3.193)

First order approximation. Usually, Equation 3.191 is only expanded to the first order
and not up to second order as in our case. In the former case, the inverse function is very
easy to compute:

f (Ntot) = +A ·Ntot +O(N2
tot) f−1 (Ntot) = Ntot (f) =

f

A
+O(f2) (3.194)

and by replacing the coefficients using Equations 3.187 and 3.192 we get:

N 1st
tot (ρ◦) =

Ttot(ρ◦) + Φtidal(ρ◦)

|gtot(ρ◦)|
+O(N2

tot) (3.195)

which is very similar, but not exactly identical, to the traditional Brun’s formula which
can be found in Torge and Müller (2012); Hofmann-Wellenhof and Moritz (2005):

N(ρ◦) =
Ttot(ρ∼)

|γ(ρ◦)|
+O(N2) (3.196)

where γ(ρ◦) corresponds to the normal gravity acceleration vector at ρ◦.

Remarks. The differences between Equations 3.195 and 3.196 are often neglected and in
reality very small, but it is still interesting to look at the main theoretical differences of
these two approaches.

Firstly, consider the status of the tidal potential part Φtidal. In fact, in Equation 3.196,
N(ρ◦) is traditionally reduced from the effect of tides. This aspect is not conceptually
significant since it would be straightforward and simple to introduce a tidal potential part
Φtidal(ρ∼) to get the more realistic physical undulation Ntot(ρ∼).

Secondly, the positions, where the disturbing potentials Ttot and Φtidal, as well as the
gravity accelerations, |gtot| and |γ|, are determined, are considered to be different. In
Equation 3.195, all fields are related to the known position vector ρ◦ which is very conve-
nient for computations, whereas in Equation 3.196, the disturbing potential, Ttot, is related
to the unknown position ρ∼ and the normal gravity |γ| to known position ρ◦.

Finally in Equation 3.196, the denominator |γ| has the advantage that it is perfectly
known. Whilst, in (3.195), the denominator |gtot|, which represents the real gravity ac-
celeration sensed at ρ◦, is not directly known. However, it can be directly observed by a
gravimeter if access to ρ◦ is possible, which is usually the case in our application.
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Second order approximation using GSK algorithm. In the case when Equation 3.191 is
expanded up to second order, the inverse function f−1 is more complicated to be found.
In Grafarend et al. (1996) an algorithm (GKS) for computing the approximate inverse
function of a univariate polynomial of degree n which passes through the origin36 can be
found. In Grafarend et al. (1999) and Ardalan and Grafarend (2001) the GSK algorithm
is applied to the formulation of an ellipsoidal and a spheroidal Brun’s transformation. For
a simple second order polynomial given by:

f(x) = a1 · x+ a2 · x2 (3.197)

the GSK algorithm provides an approximate inverse function:

xGSK(f) = −a−1
1 · f + a−3

1 a2 · f2 (3.198)

which has the advantage to be a simple polynomial of second order. Applied to Equation
3.191 gives:

f−1 (Ntot) = Ntot (f) = A−1 · f −A−3B · f2 +O(f3) (3.199)

and by replacing the coefficients using Equations 3.187 and 3.192 we get:

N 2nd,GSK
tot (ρ◦) =

Ttot(ρ◦) + Φtidal(ρ◦)

|gtot(ρ◦)|

+
gtot(ρ◦)

T · Γtot(ρ◦) · gtot(ρ◦)

2 · |gtot(ρ◦)|5
· [Ttot(ρ◦) + Φtidal(ρ◦)]

2

+O(N3
tot)

(3.200)

Second order approximation using the exact inverse function. The exact inverse func-
tion of a second order polynomial can be found using the analytic solution of the second
order polynomial equation. Equation 3.191 can be written as follows:

A ·Ntot +B ·N2
tot − f (Ntot) +O(N3

tot) = 0 (3.201)

where the solution for Ntot, which vanishes for f = 0 (since −A is always positive) is given
by:

Ntot =
−A−

√
A2 − 4B · (−f)

2B
(3.202)

and by replacing the coefficients using Equations 3.187 and 3.192 we get:

N 2nd
tot (ρ◦) =

|gtot(ρ◦)|2

gtot(ρ◦)
T · Γtot(ρ◦) · gtot(ρ◦)

·

{
|gtot(ρ◦)|

−

√
|gtot(ρ◦)|2 −

2

|gtot(ρ◦)|2
· gtot(ρ◦)

T · Γtot(ρ◦) · gtot(ρ◦) · [Ttot(ρ◦) + Φtidal(ρ◦)]

}

+O(N3
tot)

(3.203)

36In Grafarend et al. (1996) such polynomials are clumsily called homogeneous. From a mathematical
point of view, a homogeneous polynomial, is a polynomial, where all non-zero terms have the same degree.
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Second order omission error. An empirical estimation of the omission error due to the
second order term is computed in order to see up to which level of accuracy the first order
approximation is sufficient. In addition, the differences between the solution provided by
the GSK algorithm and the exact formula are shown in Figure 3.18 and Table 3.6. This is
done by applying Equations 3.195, 3.200 and 3.203 with the following values given in the
local topocentric system:

ρ◦ =


λ = 0 [deg]

ϕ = 45 [deg]

h = 0 [m]

 gTopo
tot (ρ◦) =


0

0

−9.81

[m

s2

]
(3.204)

ΓTopo
tot (ρ◦) =


−1540 0 8.1 · sin 2ϕ

0 −1540 + 10.4 · cos2 ϕ 0

8.1 · sin 2ϕ 0 3086

 · 10−9

[
1

s2

]
(3.205)

These are approximate values provided by the normal gravity field, see Torge (1989).
Concerning the disturbing potential, the values are chosen as follows:

Ttot(ρ◦) + Φtidal(ρ◦) = [−1000, ...,+1000]

[
m2

s2

]
(3.206)

This represents values to be expected on the surface of the Earth.

Table 3.6: First order and second order geometrical separation of equipotential surface. They
are computed for various disturbing potential values and a given normal ellipsoidal potential.

Ttot + Φtidal N1st
tot N2nd

tot N2nd,GSK
tot N2nd

tot −N1st
tot N2nd

tot −N
2nd,GSK
tot[

m2

s2

]
[m] [m] [m] [µm] [nm]

0.000000 0.000000 0.000000 0.000000 0.0000 0.0000
9.809998 1.000000 1.000000 1.000000 0.1573 0.0000
19.619994 1.999999 2.000000 2.000000 0.6292 0.0004
29.429986 2.999999 3.000000 3.000000 1.4156 0.0013
39.239975 3.999997 4.000000 4.000000 2.5166 0.0032
49.049961 4.999996 5.000000 5.000000 3.9322 0.0062
98.099846 9.999984 10.000000 10.000000 15.7288 0.0495
196.199383 19.999937 20.000000 20.000000 62.9154 0.3958
294.298611 29.999858 30.000000 30.000000 141.5596 1.3359
392.397531 39.999748 40.000000 40.000000 251.6616 3.1667
490.496143 49.999607 50.000000 50.000000 393.2212 6.1849
980.984570 99.998427 100.000000 100.000000 1572.8848 49.4790

Remarks. Firstly, we can conclude that, for any point on the Earth, the differences be-
tween the exact second order (equation 3.203) and the GSK second order approximation
algorithms (equation 3.200) give the same results at the µm level. This permits us to use,
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Figure 3.18: (Left) geometrical separation of equipotential surface N2nd
tot in terms of the disturbing

potential computed with the exact second order approximation (see Equation 3.203). (Middle)
second order omission error N2nd

tot −N1st
tot (see Equations 3.203 and 3.195). (Right) difference between

the exact second order approximation (Equation 3.203) and the GSK second order approximation
algorithm (see Equation 3.200).

without restriction, the more convenient GSK algorithm.

Secondly, the difference between the second and the first order approximation reaches
1 µm for a disturbing potential of Ttot + Φtidal ∼ 25 m2

s2 or for a geometrical separation of
N 2nd

tot ∼ 2.5 m.

The main contributor of the second order correction term is the gravity gradient ten-
sor Γtot which contributes in a linear manner. If a local topocentric system is chosen, only
the vertical gravity gradient ∂gz

∂z ∼ 3086 · 10−9 1
s2 is concerned. In extreme situations, if

we assume that ∂gz
∂z could have variations in the order of ∼ 3000 · 10−9 1

s2 , the second

order corrections would exceed 1 µm for disturbing potentials larger than ∼ 12.5 m2

s2 or
for geometrical separations larger than ∼ 1.25 m.

From these findings and regarding the aim of the alignment performance of CLIC, we
can assume that the geometrical variations — or the geoid undulation — over some hun-
dred meters will be smaller than one meter and this allows us to consider that the first
order approximations given by Equations 3.195 and 3.196 are precise enough.
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Synthesis Formulas

Lastly, according to Equation 3.195, the geometrical separation Ntot(t) can be approxi-
mated — with enough accuracy by:

Ntot(t) =
Ttot(ρ◦, t) + Φtidal(ρ◦, t)

|gtot(ρ◦, t)|
(3.207)

or, combined with Equation 3.176, by

Ntot(t) =
Tst(ρ◦)

|gtot(ρ◦, t)|
+
Tdyn(ρ◦, t)

|gtot(ρ◦, t)|
+

Φtidal(ρ◦, t)

|gtot(ρ◦, t)|
(3.208)

and introducing equation 3.177, we find:

Ntot(t) =
Φgrav,st(ρ◦)

|gtot(ρ◦, t)|
+

Φgrav,dyn(ρ◦, t)

|gtot(ρ◦, t)|
+
δΦcentr(ρ◦, t)

|gtot(ρ◦, t)|
+

Φtidal(ρ◦, t)

|gtot(ρ◦, t)|
(3.209)

which can also be written as:

Ntot(t) = Ngrav,st(t) +Ngrav,dyn(t) + δNcentr(t) +Ntidal(t) (3.210)

By looking at Equations 3.209 and 3.210, it is remarkable that even if the different phe-
nomena are properly splitted in terms of potentials, there still remains a dependence on
a non-splitted total quantity, |gtot(ρ◦, t)|. The consequence of a variation of |gtot(ρ◦, t)|,
noted δgtot on a particular Ni , is given by:

δNi =
∂

∂|gtot|

(
Φi

|gtot|

)
· δgtot

= − Φi

|gtot|2
· δgtot

[m] ≈ −
Φi

[
m2

s2

]
100

[
m2

s4

] · δgtot

[m

s2

]
(3.211)

This relation can be used to compute the order of magnitude of acceptable spatio-temporal
changes in |gtot| for micrometric relative precision. With the perspective of the determina-
tion of a 200 m profile, it is reasonable to expect a maximal total variation of Ntot smaller
than 0.1 m, or equivalently, total variations of Φtot smaller than 1.0 m2

s2 . Thus, setting
δNtot ≤ 1 · 10−6 m, we have:

δgtot ≤
δNtot · 100

∆Φtot

=
1 · 10−6 · 100

1.0
= 1 · 10−4

[m

s2

]
= 10 [mgal] (3.212)

Concerning the largest time-varying part of |gtot(ρ◦, t)|, generated by Earth’s tides, of
approximately 0.3 [mgal], we can consider the denominators of Equations 3.207, 3.208 and
3.209 as time-invariant and Equation 3.210 can be rewritten as:

Ntot(t) = Ngrav,st +Ngrav,dyn(t) + δNcentr(t) +Ntidal(t) (3.213)

where the first term Ngrav,st can be considered as stationary.
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Chapter 4

Determination of Equipotential
Surfaces

4.1 Introduction

In Section 3.8, it has been shown how to compute rigorously the position vectors ρ∼
of an equipotential if the total disturbing potential Ttot is given. In general, we cannot
assume that Ttot can be computed directly. In particular, the most important term, Tst,
which contains the gravitational part of the static mean density field ρst, has to be known.
This is not the case usually with respect to the level of precision we are looking for in
local gravity field determinations. Therefore, it is necessary to determine the gravity
equipotential surface indirectly through gravity observables.

4.1.1 Direct Observation of the Geometry of Equipotentials

In order to determine ρ∼, the most direct observable we could imagine is available, if the
equipotential surface is somehow materialized and accessible to a geometrical positioning
system. Here it is important to understand that the positioning system must be indepen-
dent of the knowledge of the gravity field. A good and simple example is provided by the
observation of sea and ocean surfaces by satellite or airborne altimetry. Once the dynami-
cal effects of the water current etc. are reduced, the surfaces of oceans and seas are direct
realizations of ρ∼, at sea level, and the positioning system is given by the combination
of range measurements between the surface of water and a satellite, and GNSS1/SLR2

positioning for the determination of the orbit of the satellite itself, see Limpach (2009).

In a similar way, the combination of measurements provided by a Hydrostatic Measure-
ment System (HLS) and a geometric positioning system gives also a direct access to ρ∼.
Nowadays, the limiting factor is by far due to insufficent long range geometrical position-
ing systems. In fact, while highly precise HLS systems are capable to provide micrometric
accuracies, differential GNSS positioning is still limited to the cm accuracy in height3.
Concerning underground facilities, different positioning techniques are conceivable but are

1Global Navigation Satellite System.
2Satellite Laser Ranging.
3for applications on the Earth’s surface
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still in experimental phase. Two classes of systems can be mentioned. Firstly there are
systems based on laser beams (Griffith, 1989) or x-ray beams (Yang and Friedsam, 2006),
and secondly, systems based on a mechanical reference like Wire Positioning Systems
(Touzé, 2011). In practice, the absolute geometrical positioning (at micrometric level)
provided by these systems is not guaranteed over distances larger that a few tens of me-
ters, see Touzé (2011) and Stern et al. (2013). In order to reach micrometric accuracies,
some difficulties have to be overcome: on the one hand, there is the necessity to make
the beams propagating in vacuum and on the other hand the knowledge of the tension
in the wires and variations of humidity content in air in the vicinity of the wire have
to be tackled. Nevertheless, improvements of these positioning techniques could have a
decisive positive impact on the determination of short-wave gravity equipotential surfaces.

Finally, there is an additional way, speculative for the moment, to realize the locus of
equipotentials at arbitrary positions. In fact, since Einstein (1916), we know that the
proper time τ1 and τ2 of two observers 1 and 2 at positions ρ1 and ρ2 (with no relative
velocities) are directly related to their gravitational potential difference by (Mai , 2013):

dτ2

dτ1
≈ 1− Φgrav(ρ2)− Φgrav(ρ1)

c2
(4.1)

or in terms of relative proper frequency f1 and f2 we have:

f2 − f1

f1
≈ Φgrav(ρ2)− Φgrav(ρ1)

c2
(4.2)

where c is the speed of light. This means that it is theoretically possible to observe
directly relative gravitational potential differences by comparing clock rates. According to
Equation 4.2, it can be shown that the potential difference corresponding to an orthometric
height difference of ∆H = 1 cm, corresponds to a relative change in proper frequency of
approximately f2−f1

f1
≈ 1 · 10−18. Nowadays, according to Hinkley et al. (2013), optical

clocks in laboratories are capable of measuring relative frequencies with an accuracy of
1.6 · 10−18 by averaging 7 hours of observations. This opens very interesting possibilities
for global geoid determination and worldwide height system unification, but will probably
stay of limited practical interest for sub-millimeter local applications for a long time.

4.1.2 Determination of Equipotential Surfaces from Gravity Observables

Since the very beginning of the era of physical geodesy, the most common and precise
ways to determine the geometry of equipotential surfaces are based on gravity field ob-
servables. Here we will distinguish two classes of determination, the Geodetic Boundary
Value Problem and the Geometric Solution.

Geodetic Boundary Value Problem

If the objective is to determine the complete gravity potential field Φtot, it is necessary
to solve the Laplace equation, with the observations defining the boundary conditions.
Mathematically, it corresponds of solving a non-linear elliptic boudary value problem. In
geodesy, the problem is usually restricted to the determination of the field outside a certain
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boundary which is supposed to enclose all masses. This class of problems is also called
the Geodetic Boundary Value Problem (GBVP) and consisting the determination of both
the geometry of the boundary surface and the external gravity potential field itself (Torge
and Müller , 2012).

In order to solve such kind of non-linear problems, the first step consists always in lineariz-
ing the gravity field and the geometry of the boundary. Then, several methods are given
to find the solution. In history, the first approach is the Green’s method which leads to
Stokes-like surface integral formulas which convolve an appropriate Green’s Kernel with
the boundary values given by the observations. Later, we will find the method of separation
of variables which results in decomposing the field in spherical harmonics series where the
unknown coefficients must be estimated in order to fulfill the boundary conditions given
by the observations.

In short, the determination of the geometry of equipotential surfaces based on the GBVP
is based on some restrictive assumptions. In order to fulfill the Laplace equation, it is
assumed that no masses are located outside the chosen boundary (e.g. the geoid) and that
observations are provided on the whole boundary surface (on the whole Earth’s surface).

Geometric Solution

If the objective is to determine the geometry of a certain equipotential surface in a limited
region in space, it is not necessary to formulate the GBVP anymore, followed by the re-
strictive assumptions. In fact, we just need to formulate Brun’s equation as a function of
appropriate observables (e.g. deflection of the vertical or horizontal gradiometric compo-
nents) and integrate them along a given path on the surface of reference. Here, we use the
intrinsic geometric properties of theses observables in a very direct and straightforward
way, without worrying about the gravity potential field itself. The astronomical levelling
(see Figure 4.1) is the most symbolic example of this class of determination.

topography

gravity equipotential
surfaces

gravity acceleration
 (on equipotential)

gravity acceleration
(observed)

Figure 4.1: Astronomical levelling.
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4.2 Gravity Observables

Here we call gravity field observables the spatial derivatives of the apparent gravity po-
tential Φtot or linear combination of them. Today, all components of the first and second
order spatial derivatives can be directly observed.

4.2.1 First order observables

The first derivative — or the gradient — of the apparent gravity potential is the gravity
vector:

∇Φtot(ρ) = gtot(ρ)

= gtot(ρ) · egtot(ρ)

=


∂Φtot
∂x

∂Φtot
∂y

∂Φtot
∂z


∣∣∣∣∣∣∣∣∣
ρ

(4.3)

where its module gtot can be measured directly by absolute gravimeters or indirectly by
relative gravimeters. Its direction egtot can be obtained by astrogeodetic observations. In
ITRS, egtot is given as a function of the astronomical latitude and longitude (Φ,Λ)ITRS by:

eITRS
gtot

(ρ) = −


cos Φ cos Λ

cos Φ sin Λ

sin Φ


∣∣∣∣∣∣∣∣∣
ρ

(4.4)

Nowadays, the accuracy achieved by absolute and relative gravimeters is in the vicinity of
2− 3 µgal in the best cases and 0.07− 0.08 arcsec for the astrogeodetic observations.

4.2.2 Second order observables

The second derivative is obtained by taking the gradient of gtot, called the gravity gradient
tensor:

∇gtot(ρ) = Γtot(ρ)

=


∂2Φtot
∂x2

∂2Φtot
∂x∂y

∂2Φtot
∂x∂z

∂2Φtot
∂y∂x

∂2Φtot
∂y2

∂2Φtot
∂y∂z

∂2Φtot
∂z∂x

∂2Φtot
∂z∂y

∂2Φtot
∂z2


∣∣∣∣∣∣∣∣∣
ρ

=


Γtot,xx Γtot,xy Γtot,xz

Γtot,yx Γtot,yy Γtot,yz

Γtot,zx Γtot,zy Γtot,zz


∣∣∣∣∣∣∣∣∣
ρ

(4.5)
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which is called Eötvös tensor if it is expressed in the local topocentric system. Further-
more, when the Eötvös tensor is normalised by gtot, it is called the Marussi tensor, see
Torge and Müller (2012). It can be represented by a 3× 3 symmetric matrix, where only
five elements are independent4.

In the literature we can find several gradiometers in use since 100 years (Jekeli , 2011).
However, we can distinguish two principal classes of gradiometer designs. Historically
the torsion balance developed by Lorand Eötvös5 represents the first class. This kind of
gradiometer does not have access to all components of Γtot, but only to the following one:

ΓTopo
tot,yy − ΓTopo

tot,xx, ΓTopo
tot,xy, ΓTopo

tot,xz, ΓTopo
tot,yz (4.6)

if the components are given in the local topocentric system. In other words, no diagonal
elements can be directly measured with a torsion balance. However, if ΓTopo

tot,zz is observed
by an other method (e.g. with a gravimeter), if the density ρ at the station is known
(e.g. in the air at 20◦, ρ ≈ 1.204 kg

m3 ), and finally if we assume that the Laplacian of the
centrifugal ∆Φcentr and tidal potential ∆Φtidal can be well predicted, the diagonal elements
are given by:

ΓTopo
tot,yy − ΓTopo

tot,xx

ΓTopo
tot,zz

−4πGρ+ ∆Φcentr + ∆Φtidal


︸ ︷︷ ︸

observed

=


−1 +1 0

0 0 +1

+1 +1 +1

 ·


ΓTopo
tot,xx

ΓTopo
tot,yy

ΓTopo
tot,zz

 (4.7)

and can be found by:
ΓTopo

tot,xx

ΓTopo
tot,yy

ΓTopo
tot,zz

 =


−1 +1 0

0 0 +1

+1 +1 +1


−1

·


ΓTopo

tot,yy − ΓTopo
tot,xx

ΓTopo
tot,zz

−4πGρ+ ∆Φcentr + ∆Φtidal



=


+1

2 −1
2 +1

2

−1
2 −1

2 +1
2

0 +1 0

 ·


ΓTopo
tot,yy − ΓTopo

tot,xx

ΓTopo
tot,zz

−4πGρ+ ∆Φcentr + ∆Φtidal


(4.8)

Using Equation 4.8, it is easy to find the sensitivity of the estimated diagonal elements
with respect to the observed quantities.

� An error in the density of δρ = +1.0 kg
m3 produces a error of +0.4 E6 in the estimation

of ΓTopo
tot,xx and ΓTopo

tot,yy.

4The gravity gradient tensor is symmetric if the Euler term can be neglected.
5Lorand Eötvös, 1848-1919, Hungarian physicist.
6In geodesy, the common unit used for gradiometric quantities is represented by E and called eotvos

and defined as 1 E = 1 · 10−9s−2.
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� An error in the vertical gradient of δΓTopo
tot,zz = +3.0 µgal

m = +30.0 E produces an error
of −15.0 E in ΓTopo

tot,xx and ΓTopo
tot,yy.

� An error in the differential curvature element of δ(ΓTopo
tot,yy−ΓTopo

tot,xx) = +1.0 E produces
an error of +0.5 E in ΓTopo

tot,xx and −0.5 E in ΓTopo
tot,yy.

The second class of gradiometer design is based on differential linear accelerator measure-
ments and can observe all components of Γtot. The principle is simple in theory but very
complicated to realize in practice. It consists in juxtaposing linear accelerometers in their
sensing direction and in approximating the gradient by taking the difference and dividing
by the baseline length. Nowadays, there is no commercial system available for terres-
trial gradiometry and there exist just a few systems for airborne or ship-borne platforms
(Jekeli , 2007). The accuracy in terms of white noise is announced at approximately 1.0

E√
Hz

. This corresponds approximately to the accuracy achieved by a stationary torsion

balance but with an acquisition rate of 3-6 hours per station instead of a few tens of
seconds integration time (Jekeli , 2007).

4.3 Solutions for the Geometrical Determination

The geometrical determination of equipotential profiles consists in deriving a formula
which permits the determination of the difference of the geometrical separation:

∆Ntot
b◦
a◦ = Ntot(b◦)−Ntot(a◦) (4.9)

between two points a◦ and b◦ which are elements of the set of the positions on the reference
equipotential surface:

a◦, b◦ ∈ {ρ◦} (4.10)

The way to find the formula is straightforward. We just have to define a path S ∈ {ρ◦}
between a◦ and b◦, associated with its differential element ds, determine the differential
change dNtot as a function of the observables when we increment ds, and finally integrate
over S. If we define:

εtot = −dNtot(ρ◦)

|ds|
= −dNtot(ρ◦)

ds
(4.11)

where the minus sign is included by convention, we have:

∆Ntot
b◦
a◦ = −

ˆ b◦

a◦

εtot · ds (4.12)

where εtot represents the variation of Ntot along S and at this step, we do not know how
it is linked to the observations. Now we have to find:

εtot (gtot,Γtot) (4.13)

4.3.1 Oriented Normal System

The computation of εtot is simplified when the components of the different vectors are
given in the oriented normal system. Its origin is defined at position ρ◦, with the eSz basis
vector in the opposite direction of the normal gravity vector γ given at position ρ◦. The
basis vector eSx is colinear with ds and eSy perpendicular to eSx and eSz .
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Transformation from ITRS to the Oriented Normal System

Given the geodetic latitude and longitude (ϕ, λ)ITRS of the position ρ◦ and ds which is
pointing in the direction of the ellipsoidal azimuth α, the transformation of a vector vITRS

and a tensor VITRS, given in ITRS, into the oriented normal system is given by:

vS = SSITRS · vITRS (4.14)

and:

VS = SSITRS ·VITRS · SSITRS

T
(4.15)

with:

SSITRS = R3(α) ·T(ϕ, λ) (4.16)

where:

R3(α) =


cosα sinα 0

− sinα cosα 0

0 0 1

 , T(ϕ, λ) =


− sinϕ cosλ − sinϕ sinλ cosϕ

− sinλ cosλ 0

cosϕ cosλ cosϕ sinλ sinϕ


(4.17)

4.3.2 Oriented Topocentric System

The oriented topocentric system is defined as follows. Its origin is defined at an arbitrary
position ρ, with the eGz basis vector in the opposite direction of the gravity vector gtot

given at position ρ. The basis vector eGx is colinear with ds and eGy perpendicular to eGx
and eSz .

Transformation from ITRS to the Oriented Topocentric System

Given the geodetic astronomical latitude and longitude (Φ,Λ)ITRS of the position ρ and
ds which is pointing into the direction of the astronomical azimuth A, the transformation
of a vector vITRS and a tensor VITRS, given in the ITRS, into the local topocentric system
is given by:

vG = SGITRS · vITRS (4.18)

and:

VG = SGITRS ·VITRS · SGITRS

T
(4.19)

with:

SGITRS = R3(A) ·T(Φ,Λ) (4.20)

where:

R3(A) =


cos A sin A 0

− sin A cos A 0

0 0 1

 , T(Φ,Λ) =


− sin Φ cos Λ − sin Φ sin Λ cos Φ

− sin Λ cos Λ 0

cos Φ cos Λ cos Φ sin Λ sin Φ


(4.21)
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4.3.3 Gravity Vectors and Gradiometric Tensors in the Oriented Normal Sys-
tem

In the oriented normal system, the normal gravity vector γS and the normal gradiometric
tensor US at ρ◦ take the special form (Torge, 1989):

γS(ρ◦) =


0

0

γSz


∣∣∣∣∣∣∣∣∣
ρ◦

= γ(ρ◦) · eSγ(ρ◦) = γ(ρ◦) ·


0

0

−1


∣∣∣∣∣∣∣∣∣
ρ◦

(4.22)

and:

US(ρ◦) =


USxx USxy USxz

USyx USyy USyz

USzx USzy USzz


∣∣∣∣∣∣∣∣∣
ρ◦

≈ R3(A) ·


−1540 0 8.1 · sin 2ϕ

0 −1540 + 10.4 · cos2 ϕ 0

8.1 · sin 2ϕ 0 3086

 ·RT
3 (A) · 10−9

[
1

s2

]

(4.23)

The gravity vector gStot and the gradiometric tensor ΓStot at an arbitrary position ρ are
given by:

gStot(ρ) =


gStot,x

gStot,y

gStot,z


∣∣∣∣∣∣∣∣∣
ρ

= gtot(ρ) · eSgtot
(ρ) = gtot(ρ) ·


eSgtot,x

eSgtot,y

eSgtot,z


∣∣∣∣∣∣∣∣∣
ρ

(4.24)

and:

ΓStot(ρ) =


ΓStot,xx ΓStot,xy ΓStot,xz

ΓStot,yx ΓStot,yy ΓStot,yz

ΓStot,zx ΓStot,zy ΓStot,zz


∣∣∣∣∣∣∣∣∣
ρ

(4.25)

where γ = |γ| and gtot = |gtot|.

4.3.4 Astrogeodetic Levelling

Rigorous Geometric Formula

The rigorous purely geometric formula for εtot can be found using the components of eSgtot

given at ρ∼:

εtot = − arctan

(
eSgtot,x

eSgtot,z

)∣∣∣∣∣
ρ∼

(4.26)
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which is a rigorous formulation of the Pizzetti deflection of the vertical into the direction
of ds. In addition, it is usually more convenient to split the deflection of the vertical
in two oriented orthogonal components, North-South (ξtot), and East-West (ηtot). These
components can be computed in a rigorous way by applying Equation 4.26 to ds oriented
to the North and the East respectively:

ξtot = − arctan

(
eNgtot,x

eNgtot,z

)∣∣∣∣∣
ρ∼

with: eNgtot
(ρ∼) = R3(0◦) ·T(ϕ, λ) · eITRS

gtot
(ρ∼)

ηtot = − arctan

(
eEgtot,x

eEgtot,z

)∣∣∣∣∣
ρ∼

with: eEgtot
(ρ∼) = R3(90◦) ·T(ϕ, λ) · eITRS

gtot
(ρ∼)

(4.27)

which can be computed if (Φ,Λ)ITRS at ρ∼, and (ϕ, λ)ITRS at ρ◦ are known. Moreover they
are related to εtot by:

εtot = ξtot · cosα+ ηtot sinα (4.28)

In the literature we can find various approximations of Equation 4.27 which are more or
less accurate. In Voigt (2013), several approximations are developed and analyzed in a
very beautiful and systematic manner. Especially, the most famous, simple and imprecise
one is given by:

ξtot ≈ Φ(ρ∼)− ϕ(ρ◦)

ηtot ≈ [Λ(ρ∼)− λ(ρ◦)] · cos [ϕ(ρ◦)]
(4.29)

which can deviate, in extreme cases7, by ∼ 0.035 arcsec from the rigorous formula.

If we come back to the analysis of these geometrical formulas, we can see that only the
direction of gtot is used. Nevertheless it is assumed that we are able to observe or reduce
egtot at ρ∼, which is implicitly the position we are looking for. In short, we can say that we
have a purely geometric determination only if it is possible to carry out egtot at ρ∼ without
knowing explicitly ρ∼. It would be true in the case of classical geoid determination, when
the measurements are carried out at sea level along the coastline directly.

Gravity Disturbance based Formula

Using the relation developed in Section 3.8.3 which gives the geometric separation in terms
of disturbing potential, it is possible to find εtot from a more physical point of view. The
method is simple and consists in applying Equation 4.11 to Equations 3.195 or 3.196.

7when ξ = η = 100 arcsec, φ = 45◦.
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Firstly, if we look at Equation 3.195 (without the tidal component), we can write:

dNtot(ρ◦) = ∇Ntot(ρ◦) · ds

=

[
1

|gtot|
· ∇Ttot +∇

(
1

|gtot|

)
· Ttot

]∣∣∣∣
ρ◦

· ds

=

[
1

|gtot|
· ∇Ttot −

1

|gtot|2
· ∇|gtot| · Ttot

]∣∣∣∣
ρ◦

· ds

(4.30)

where ∇Ttot is the gravity disturbance δgtot at ρ◦:

∇Ttot(ρ◦) = ∇ [Φtot(ρ◦)− U(ρ◦)] = ∇Φtot(ρ◦)−∇U(ρ◦)

= gtot(ρ◦)− γ(ρ◦) = δgtot(ρ◦)
(4.31)

which takes the following form in the oriented normal system:

δgStot(ρ◦) = gStot(ρ◦)− γS(ρ◦) =


gStot,x

gStot,y

gStot,z


∣∣∣∣∣∣∣∣∣
ρ◦

−


0

0

γSz


∣∣∣∣∣∣∣∣∣
ρ◦

=


gStot,x

gStot,y

gStot,z − γSz


∣∣∣∣∣∣∣∣∣
ρ◦

(4.32)

moreover, if Equation 4.30 is given in the oriented normal system, with:

dsS =


ds

0

0

 (4.33)

we have:

dNtot(ρ◦) =
δgStot,x(ρ◦)

gtot(ρ◦)
· ds− 1

g2
tot(ρ◦)

· ∂gtot

∂s

∣∣∣∣
ρ◦

· Ttot(ρ◦) · ds (4.34)

and if Ttot(ρ◦) is replaced by Ntot(ρ◦) · gtot(ρ◦) from Equation 3.195 we get:

dNtot(ρ◦) =
δgStot,x(ρ◦)

gtot(ρ◦)
· ds− Ntot(ρ◦)

gtot(ρ◦)
· ∂gtot

∂s

∣∣∣∣
ρ◦

· ds (4.35)

and finally:

εtot = −dNtot(ρ◦)

ds
= −

δgStot,x(ρ◦)

gtot(ρ◦)
+
Ntot(ρ◦)

gtot(ρ◦)
· ∂gtot

∂s

∣∣∣∣
ρ◦

(4.36)

If the same scheme is applied to the traditional Brun’s equation given in 3.196, we find:

εtot = −dNtot(ρ◦)

ds
= −

δgStot,x(ρ∼)

γ(ρ◦)
+
Ntot(ρ◦)

γ(ρ◦)
· ∂γ
∂s

∣∣∣∣
ρ◦

(4.37)
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Remarks

� The Equations 4.26, 4.36 and 4.37 provides different way to compute the variation
of a equipotential profile between two points. In a purely theoretical way, only
the geometric solution (4.26) is absolutely rigorous. This, because the solutions
based on the gravity disturbance (4.36, 4.37) are both based on a first order linear
approximation of the gravity potential. However, the second order omission error
due to the linearization is very small. Some orders of magnitude can be found in
Section 3.8.3.

� In Equations 4.36 and 4.37 a second term proportional to the geometric separation
Ntot appears. In Equation 4.36, it represents the plumbline curvature effect between
ρ◦ and ρ∼. In Equation 4.37 it is the effect of the curvature of the normal plumbline
between ρ◦ and ρ∼. It follows that Equations 4.26 and 4.37 are almost similar and
do not contain conceptual differences. The normal curvature term in 4.37 would be
eliminated if we would replace the gravity disturbance δgtot,x by the gravity anomaly
∆gtot,x:

εtot = −
∆gStot,x(ρ∼)

γ(ρ◦)
≈ − arctan

(
eSgtot,x

eSgtot,z

)∣∣∣∣∣
ρ∼

(4.38)

where the gravity anomaly vector is defined as:

∆gtot(ρ∼) = gtot(ρ∼)− γtot(ρ◦) (4.39)

� The Equation 4.36 provides an interesting formula to compute εtot from observations
carried out on the reference equipotential ρ◦ only. However, apart from the observa-
tion of egtot (e.g. with an astrogeodetic instrument), we need to observe theoretically

gtot and ∂gtot

∂s (e.g. with a gravimeter).

4.3.5 Gradiometric Levelling

In Section 4.3.4, the determination of equipotential profiles is based mainly on Pizzetti
deflection of the vertical observables. Here we will see that, theoretically, it is also possible
make a geometrical determination based on gradiometric observables. The way to find a
relation between εtot and Γtot can be found by looking at the derivative of the relation
given in Equation 4.38:

dεtot

ds
= ε̇tot =

d

[
−∆gStot,x(ρ∼)

γ(ρ◦)

]
ds

= − 1

γ(ρ◦)
·
∂∆gStot,x

∂s

∣∣∣∣∣
ρ∼

− 1

γ2(ρ◦)
· ∂γ
∂s

∣∣∣∣
ρ◦

·∆gStot,x(ρ∼)

= − 1

γ(ρ◦)
·∆ΓStot,xx(ρ∼)−

∆gStot,x(ρ∼)

γ(ρ◦)
· ∂γ
∂s

∣∣∣∣
ρ◦

(4.40)
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where ∆ΓStot,xx is the first gradiometric anomaly component of the gradiometric tensor
given in the oriented normal system by:

∆ΓStot = ΓStot(ρ∼)−US(ρ◦) (4.41)

Then, εtot at position ρ◦ can be computed by integrating 4.40 along S from the origin
position a◦:

εtot(ρ◦) = εtot(a◦) +

ˆ ρ◦

a◦

dεtot

= εtot(a◦) +

ˆ ρ◦

a◦

ε̇tot · ds
(4.42)

Finally, the variation of Ntot between a◦ and b◦ is given by inserting 4.42 into 4.12 by:

∆Ntot
b◦
a◦ = −εtot(a◦) · S −

ˆ b◦

a◦

ˆ b◦

a◦

ε̇tot · ds · ds (4.43)

where S represents the curvilinear distance along S between a◦ and b◦.

4.4 Reductions of the Gravity Field and Observations

The ultimate aim is to determine the instantaneous geometrical separation Ntot(t) at
any time t. If we want to determine Ntot(t) using a particular geometric solution, it is
theoretically mandatory to carry out permanently, at any time t, at any positions ρ◦ along
the profile, the corresponding observations. Formally, it means that we need the following
observations:

ltot(ρ◦, t) ∀ ρ◦, t =⇒ Ntot(t) (4.44)

where ltot represents an arbitrary observation (e.g. εtot, gtot, ...). Evidently, this situation
is technically and practically impossible. In practice, we only have access to observations
carried out at arbitrary locations ρ and at different epochs tobs. Thus, it is impossible to
find directly Ntot(t) from a real set of observations:

ltot(ρ, tobs) 6=⇒ Ntot(t) (4.45)

This kind of situation is well known in geodesy and is usually solved in two steps. Firstly,
Ntot is determined at a certain reference epoch t◦ with the actual set of observations, pre-
viously reduced in space and time to ltot(ρ◦, t◦), using a predefined space and time-varying
gravity potential model Φmodel

tot (ρ, t). Secondly, Ntot(t) can be predicted, to an arbitrary
epoch t, using the previously determined stationary Ntot(t◦) and the contribution of Φmodel

tot

to Ntot, see Figure 4.2.

The reduced observations are obtained by:

ltot(ρ◦, t◦) = ltot(ρ, tobs)− δlmodel
tot (ρ◦, t◦,ρ, tobs) (4.46)

where the reduction for an arbitrary observable is given by:

δlmodel
tot (ρ◦, t◦,ρ, tobs) = lmodel

tot (ρ, tobs)− lmodel
tot (ρ◦, t◦) (4.47)
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Figure 4.2: Schematic representation of the reduction of the observations and the computation
of Ntot(t). The elements in red are obtained by the gravity potential model, the black elements
using observations.

Finally once Ntot(t◦) is obtained from the reduced observations, Ntot(t) is given by:

Ntot(t) = Ntot(t◦) + δNmodel
tot (t◦, t) (4.48)

where:

δNmodel
tot (t◦, t) = Nmodel

tot (t)−Nmodel
tot (t◦) (4.49)

can be computed with Equation 4.48.

4.4.1 Reductions in Astronomical Levelling Determinations

Let us assume that only astrogeodetic deflections of the vertical εtot(ρsurf, tobs) are carried
out along a profile, on the surface of topography ρsurf, at different epochs tobs. According
to Equation 4.46, it is necessary to reduce these observations:

εtot(ρsurf, tobs)→ εtot(ρ◦, t◦) (4.50)

using a pre-defined space- and time-varying gravity potential model Φmodel
tot (ρ, t). According

to Equations 3.160 and 3.177, we know that the actual total potential Φtot(ρ, t) can be
represented by a sum of different parts. If we define a numerical model which tries to
model these different parts, we can write :

Φmodel
tot (ρ, t) = U(ρ) + Φmodel

grav,st(ρ) + Φmodel
grav,dyn(ρ, t) + δΦmodel

centr (ρ, t) + Φmodel
tidal (ρ, t) (4.51)

where the normal potential U(ρ) is already known and cannot be considered as an ap-
proximation of the actual U(ρ). Concerning the other potentials, we have:
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1. Φmodel
grav,st represents the stationary gravitational potential generated by a predefined

mass model M (e.g. topography masses, etc...). A modeling of this potential is
absolutely necessary if only surface deflections of the vertical are used in the com-
putation of the equipotential profile. It contributes to the largest spatial reduction
ρsurf → ρ◦.

2. Φmodel
grav,dyn(ρ, t) represents the non-stationary gravitational effect generated by time

varying masses. For example, time varying underground water tables or mass
changes generated by the surface variation of lakes contributes to this potential.
In practice, for short-wavelengths, no realistic models are available. Nowadays, this
part cannot really be modelled. Thus, the only thing we can do is to simulate some
realistic time-varying phenomena and estimate their consequences on the observ-
ables and on the equipotential. In the best case, it can be established that they are
negligible. Otherwise, they contribute to the limiting factors of the method.

3. δΦmodel
centr (ρ, t) represents the time-varying centrifugal potential not taken into account

in the normal potential. This contribution can be well modeled thanks to Earth
Orientation Parameters (EOP) available at the IERS.

4. Φmodel
tidal (ρ, t) represents the tidal potential. The available tidal potential models, see

Section 3.7.4, are well known and provide accuracies better than 1% (Torge and
Müller , 2012)8. In view of the maximal signals, of 0.05 arcsec, expected on astro-
geodetic deflections of the vertical, (Melchior , 1983), the tidal effects can be modeled
with enough accuracy.

Now, for each single potential, using Equation 4.38, we can compute its contribution to
the total reduction (Equation 4.47):

δεmodel
tot (ρ◦, t◦,ρsurf, tobs) = εmodel

tot (ρsurf, tobs)− εmodel
tot (ρ◦, t◦)

= εmodel
grav,st(ρsurf)− εmodel

grav,st(ρ◦)

+ εmodel
grav,dyn(ρsurf, tobs)− εmodel

grav,dyn(ρ◦, t◦)

+ εmodel
centr (ρsurf, tobs)− εmodel

centr (ρ◦, t◦)

+ εmodel
tidal (ρsurf, tobs)− εmodel

tidal (ρ◦, t◦)

(4.52)

where the term:
δεst

ρ◦
ρsurf

= εmodel
grav,st(ρsurf)− εmodel

grav,st(ρ◦) (4.53)

represents the traditional curvature of the plumbline. The reduced observations are given
by:

εtot(ρ◦, t◦) = εtot(ρsurf, tobs)− δεmodel
tot (ρ◦, t◦,ρsurf, tobs) (4.54)

8Concerning the accurate and consistent prediction of time-varying reductions for astrogeodetic deflec-
tions of the vertical, the thesis of Voigt (2013) contains very comprehensive and detailed explanations
about this issue in relation with to conventions published by IERS. Apart from the tidal and ocean loading
effects, his thesis covers also the problem generated by the plate tectonic movements which can introduce
systematic effects of the order of a few milliarcsec. From my personal point of view, the procedures pro-
posed and applied by Voigt (2013) can be considered, for the moment, as the most coherent and accurate
ones.
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and the equipotential profile Ntot(t◦) at epoch t◦ can be computed using Equation 4.12.

The final step consists in computing Ntot(t) at an arbitrary epoch t. In accordance to
Equations 4.48 and 3.210, we have:

Ntot(t) = Ntot(t◦) + δNmodel
tot (t◦, t) (4.55)

with:

δNmodel
tot (t◦, t) = Nmodel

grav,dyn(t)−Nmodel
grav,dyn(t◦)

+Nmodel
centr (t)−Nmodel

centr (t◦)

+Nmodel
tidal (t)−Nmodel

tidal (t◦)

(4.56)

4.4.2 Orthometric Correction

In this section, in order to simplify the notation, without loss of generality, we consider
that all fields and observations are stationary and referred to the epoch t◦. There is an
alternative method for reducing astrogeodetic observations at the level of the equipotential
profile ρ◦. Instead of reducing the astrogeodetic observations individually by the curvature
of the plumbline δεtot

ρ◦
ρsurf

in order to be able to rigorously apply Equation 4.12, the
observations are separated in two parts:

∆Ntot
b◦
a◦ =−

ˆ b◦

a◦

εtot(ρ◦) · ds

=−
ˆ b◦

a◦

[
εtot(ρsurf) + δεtot

ρ◦
ρsurf

]
· ds

=−
ˆ b◦

a◦

εtot(ρsurf) · ds−
ˆ b◦

a◦

δεtot
ρ◦
ρsurf
· ds

=−
ˆ bsurf

asurf

εtot(ρsurf) · ds− Eb◦a◦

(4.57)

where:

Eb◦a◦ = +

ˆ b◦

a◦

δεtot
ρ◦
ρsurf
· ds (4.58)

is called the orthometric correction. At this step, there is absolutely no advantage in doing
this separation. If the curvature terms are provided (e.g from mass models), it is evident
that both formulations of ∆Ntot are completely equivalent. The main interest comes from
the fact that Eb◦a◦ can be determined alternatively, rigorously and without restrictions,
from gravimetric quantities by (Hirt , 2009):

Eb◦a◦ =

ˆ bsurf

asurf

gtot(ρsurf)− γ(ρ◦)

γ(ρ◦)
· dn

+
gtot

asurf
a◦ − γ(a◦)

γ(a◦)
·∆Hasurf

a◦ −
gtot

bsurf
b◦
− γ(b◦)

γ(b◦)
·∆Hbsurf

b◦

(4.59)
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where dn represents the differential height element between two consecutive points ρsurf

on the surface. The quantities gtot

asurf
a◦ and gtot

bsurf
b◦

represent the mean gravity along the

plumblines, and ∆Hasurf
a◦ and ∆Hbsurf

b◦
the orthometric height differences between a◦ and

asurf and b◦ and bsurf, respectively. In addition, the mean gravity acceleration is given by:

gtot

ρsurf
ρ◦ =

1

∆H
ρsurf
ρ◦

ˆ ρsurf

ρ◦

gtot(ρ) · dH (4.60)

Assuming that gravity can be observed on the topography and inside the tunnel only, at
ρsurf and ρ◦, the integral part of Equation 4.59 is theoretically unambiguously accessible
by surface gravity observations without any additional information. In other words, it can
be theoretically determined with an arbitrary high precision. In contrast to the second and
the third term containing the mean gravity are fundamentally ambiguous. This ambiguity
can be seen by looking carefully at Equation 4.60.

Because gtot(ρ) is derived from the potential field Φtot, Equation 4.60 can be written
as:

gtot

ρsurf
ρ◦ = −Φtot(ρsurf)− Φtot(ρ◦)

∆H
ρsurf
ρ◦

(4.61)

This Equation 4.61 illustrates the equivalence between the mean gravity along the plumbline
and the gravity potential difference. In other words, instead of determining a mean grav-
ity along the plumbline from gravity observations, it is equivalent to say that we have to
determine the gravity potential difference between ρsurf and ρ◦ from the set of all available
observations {gtot(ρ◦), gtot(ρsurf)}. This type of problem is well known in general poten-
tial theory, or more specifically in geodesy or geophysics. Without going into details, the
problem is closely related to the determination of the density field which generate the ac-
tual gravity field. In fact, if we are able to determine the true density field, the potential
difference can be computed unambiguously using Equation 3.133. However, according to
Blakely (1996), there is definitively no unique solution for the general case. It is possible
to find an infinite set of density fields which can generate the actual set of gravity observa-
tions. Equivalently, we can say that an infinite set of potential differences are compatible
with the actual set of gravity observations. Without supplementary information or as-
sumptions the determination of gtot

ρsurf
ρ◦ is simply impossible.

Nevertheless, there is one special case for which the potential field can be determined
uniquely from gravity data. From Green’s third identity, it can be proven that this special
case applies, if the gravity data are given on the boundary of a region, where Laplace’s
equation is fulfilled — or equivalently if the density field is equal to ρ(ρ) = 0. In our
specific case, it would be applicable when no masses are present between the surface of
the topography and the tunnel. It is obvious that this is physically impossible but math-
ematically it means that this situation becomes true when the gravitational effects of all
masses between the surface of the topography and the tunnel are modeled and removed
from the fields. From this point, once the reduced potential field is harmonic and uniquely
determined, the reduced mean gravity along the plumbline is provided directly.
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4.4.3 Mean Gravity along the Plumbline from Mass Models

In the literature, we can find several methods for the computation of mean gravity along
plumblines. Basically, they can be discriminated by the set of gravity observables which
are involved in the computation, the level of refinements in the mass models and the
numerical methods used for the prediction of the mean gravity. Let us see now how these
quantites are related and can be manipulated. First of all, let us define a total mass model
Mtot, which generates the true gravity potential Φtot to which true gravity observables gtot

are associated. Secondly, we consider that Mtot is formed by three parts. The normal
ellipsoid E◦, the set of all forward modeled masses M and the set of all masses δM which
are not modeled so that:

Mtot ≡ E◦ ∪M ∪ δM (4.62)

Seen from a different perspective, we can say that E◦ gives a numerical modelisation of
the masses up to the mean sea level, and M up to the surface of topography. In addition,
their associated gravitational potential fields are:

Mtot → Φtot(ρ)

E◦ → U(ρ)

M → ΦM (ρ)

δM → ΦδM (ρ)

(4.63)

Thus, a true gravity observation at an arbitrary position ρ is given by:

gtot(ρ) = γ(ρ) + gM (ρ) + gδM (ρ) (4.64)

and with the very precise approximation that the normal gravity varies linearly between
mean sea level and the surface of the topography, we can write Equation 4.64 as:

gtot(ρ) = γ0 + τ◦ ·H(ρ) + gM (ρ) + gδM (ρ) (4.65)

where γ0 ≈ +9.81 m
s2 is the normal gravity on E◦, τ◦ ≈ −0.3086 ·10−5 m

s2 /m the gradient of
the normal gravity and H(ρ) the orthometric height of ρ. Thus, for the specific positions
ρ◦ and ρsurf we have:

gtot(ρ◦) = γ0 + τ◦ ·H(ρ◦) + gM (ρ◦) + gδM (ρ◦)

gtot(ρsurf) = γ0 + τ◦ ·H(ρsurf) + gM (ρsurf) + gδM (ρsurf)
(4.66)

Now, if we look at what happens to the true mean gravity between ρ◦ and ρsurf by inserting
Equation 4.65 into Equation 4.60, we have:

gtot

ρsurf
ρ◦ =

1

∆H
ρsurf
ρ◦

ˆ ρsurf

ρ◦

{γ0 + τ◦ ·H(ρ) + gM (ρ) + gδM (ρ)} · dH

=
1

∆H
ρsurf
ρ◦

ˆ ρsurf

ρ◦

{γ0 + τ◦ ·H(ρ)} · dH

+
1

∆H
ρsurf
ρ◦

ˆ ρsurf

ρ◦

gM (ρ) · dH +
1

∆H
ρsurf
ρ◦

ˆ ρsurf

ρ◦

gδM (ρ) · dH

(4.67)
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where the first term can be integrated easily:

1

∆H
ρsurf
ρ◦

ˆ ρsurf

ρ◦

{γ0 + τ◦ ·H(ρ)} · dH = γ0 ·
∆H

ρsurf
ρ◦

∆H
ρsurf
ρ◦

+
τ◦

2∆H
ρsurf
ρ◦

[
H(ρsurf)

2 −H(ρ◦)
2
]

= γ0 +
τ◦

2∆H
ρsurf
ρ◦

[H(ρsurf)−H(ρ◦)] · [H(ρsurf) +H(ρ◦)]

= γ0 + τ◦ ·
H(ρsurf) +H(ρ◦)

2

= γ0 + τ◦ ·H
ρsurf
ρ◦

(4.68)

and the second and third term can be given as a function of the corresponding potential
so that:

gtot

ρsurf
ρ◦ = γ0 + τ◦ ·H

ρsurf
ρ◦︸ ︷︷ ︸

γ

− ΦM (ρsurf)− ΦM (ρ◦)

∆H
ρsurf
ρ◦︸ ︷︷ ︸

gM

− ΦδM (ρsurf)− ΦδM (ρ◦)

∆H
ρsurf
ρ◦︸ ︷︷ ︸

gδM

(4.69)

In Equation 4.69, the first two terms γ and gM are computed numerically, whereas the
third term gδM represents the true omission error in the mean gravity computed by a pure
forward modeling of gravity. This is also a formal confirmation of the statement given in
the introduction of this section.

4.4.4 Mean Gravity along the Plumbline from Mass Models and Observations

The computation of the mean gravity along the plumbline using mass models and gravi-
metric observations can be done in several ways. Usually, the methods are based on the
set of gravimetric observations gtot(ρsurf) carried out at the surface of topography. In this
section, we will also consider that gravimetric observations gtot(ρ◦) inside the tunnel are
available. The aim is to propose a few methods for the computation of the mean gravity
using the various sets of gravimetric observations and highlight the consequences on their
corresponding omission errors.

Gravity Observed at the Surface of Topography

Considering that only the set gtot(ρsurf) is available we can obtain a formula for the mean
gravity as follows. According to Wirth (1990), when the second Equation 4.66 is manip-
ulated in order to isolate the normal gravity γ0 on the left-hand side, we have:

γ0 = gtot(ρsurf)− τ◦ ·H(ρsurf)− gM (ρsurf)− gδM (ρsurf) (4.70)
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which can replace the normal gravity in Equation 4.69 so that:

gsurf
tot

ρsurf
ρ◦ = gtot(ρsurf)− τ◦ ·H(ρsurf)− gM (ρsurf)− gδM (ρsurf) + τ◦ ·H

ρsurf
ρ◦

− ΦM (ρsurf)− ΦM (ρ◦)

∆H
ρsurf
ρ◦

− ΦδM (ρsurf)− ΦδM (ρ◦)

∆H
ρsurf
ρ◦

= gtot(ρsurf)︸ ︷︷ ︸
observed

− τ◦
2
·∆Hρsurf

ρ◦ − gM (ρsurf)−
ΦM (ρsurf)− ΦM (ρ◦)

∆H
ρsurf
ρ◦︸ ︷︷ ︸

forward modeled

− ΦδM (ρsurf)− ΦδM (ρ◦)

∆H
ρsurf
ρ◦

− gδM (ρsurf)︸ ︷︷ ︸
true omission error

(4.71)

The first part of Equation 4.71 which contains the observed and forward modeled terms,
corresponds, if H(ρ◦) = 0, to the formula proposed by Wirth (1990) also used for the
computation of the official orthometric height in Switzerland (Schlatter , 2007). Now if we
look at the true omission term given in Equation 4.71, it is important to see under which
assumption the formula proposed by Wirth (1990) gives the actual mean gravity. This
happens when the true omission term is equal to zero, or when:

−ΦδM (ρsurf)− ΦδM (ρ◦)

∆H
ρsurf
ρ◦

= gδM (ρsurf) (4.72)

or equivalently when:

gδM
ρsurf
ρ◦ = gδM (ρsurf) (4.73)

Thus the mean gravity along the plumbline generated by the non-modeled masses δM is
equal to the gravity generated by δM at ρsurf, on the surface of the topography. Along a
certain profile, this condition is satisfied when gδM (ρ) is constant for all positions between
ρ◦ and ρsurf. This corresponds to a single type of mass models δM : Bouguer plates which
do not intersect the region defined by the positions ρ◦ and ρsurf (see Figure 4.4). In other
words, if we omit to model any kind of masses between the tunnel and the topography
(also a Bouguer plate), the mean gravity obtained by Equation 4.71 is distorted in any
cases. In addition, we can say that the gravity observations determine only the effect of
non-modeled masses which are equivalent to Bouguer plates located entirely below the
tunnel or above the topography.

Gravity Observed inside the Tunnel

If we consider that only gravimetric observations carried out inside the tunnel are used
for the computation of the mean gravity, we can easily find a formula similar to Equation
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4.71. By proceeding in the same way, we can finally find:

gtnl
tot

ρsurf
ρ◦ = gtot(ρ◦)︸ ︷︷ ︸

observed

+
τ◦
2
·∆Hρsurf

ρ◦ − gM (ρ◦)−
ΦM (ρsurf)− ΦM (ρ◦)

∆H
ρsurf
ρ◦︸ ︷︷ ︸

forward modeled

− ΦδM (ρsurf)− ΦδM (ρ◦)

∆H
ρsurf
ρ◦

− gδM (ρ◦)︸ ︷︷ ︸
true omission error

(4.74)

which is very similar to Equation 4.71 which gives the actual true mean gravity when:

gδM
ρsurf
ρ◦ = gδM (ρ◦) (4.75)

which corresponds to the same class of possible mass models δM mentioned for Equation
4.71 (see Figure 4.4). However, we cannot say that both relations are completely equiva-
lent. In fact, using Equation 4.71, the error is given by the difference between the gravity
signals generated at the surface of topography and its mean gravity. Opposed to this, the
application of Equation 4.74 gives a result which differs from the truth by the difference
between the gravity signals generated inside the tunnel and its mean gravity. Thus, since
the gravity effect fades with the square of the distance to δM , we can consider that the
choice of applying Equation 4.71 rather than Equation 4.74 could be argued by the better
knowledge of the quality of the mass models M in the vicinity of ρsurf compared to ρ◦.

Gravity Observed at the Surface of Topography and inside the Tunnel

If we consider that both sets of gravimetric observations, at the surface of topography and
inside the tunnel, are used for the computation of the mean gravity, the simplest way to
obtain a formula which takes into account both observations is given by the average of the
mean gravity computed using Equations 4.71 and 4.74 by:

gmean
tot

ρsurf
ρ◦ =

gtnl
tot

ρsurf
ρ◦ + gsurf

tot

ρsurf
ρ◦

2

=
gtot(ρ◦) + gtot(ρsurf)

2︸ ︷︷ ︸
observed

− gM (ρ◦) + gM (ρsurf)

2
− ΦM (ρsurf)− ΦM (ρ◦)

∆H
ρsurf
ρ◦︸ ︷︷ ︸

forward modeled

− ΦδM (ρsurf)− ΦδM (ρ◦)

∆H
ρsurf
ρ◦

− gδM (ρ◦) + gδM (ρsurf)

2︸ ︷︷ ︸
true omission error

(4.76)

and provides the actual true mean gravity when:

gδM
ρsurf
ρ◦ =

gδM (ρ◦) + gδM (ρsurf)

2
(4.77)

which covers, with respect to the formulas given by Equations 4.71 and 4.74, two additional
classes of non-modeled masses δM :
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1. The first class is given by the Bouguer plates which are bounded by ρsurf (see Figure
4.4). This is due to the fact that gravity varies linearly inside a Bouguer plate and
ensures that the mean gravity is equal to the quantities at the extremities ρ◦ and
ρsurf.

2. The second class is given by the set of density fields which generate mean gravity
equal to zero and at the same time opposite gravity quantities at ρ◦ and ρsurf.
These conditions are theoretically fulfilled on the one hand, if ρ◦ and ρsurf span two
horizontal profiles, and on the other hand, if the density field is symmetric in the
vertical dimension and centered between ρ◦ and ρsurf.

4.4.5 Mean Gravity along the Plumbline using Remove and Restore Tech-
nique

The methodology described in the following section is more general and ambitious, but
can also be more delicate than the methods described in the previous sections. Here the
very famous technique of remove and restore is used. The first step consists in removing all
modeled signals from the set of observations. For gravimetry observations, using Equation
4.66, we have:

gδM (ρ◦) = gtot(ρ◦)− γ0 − τ◦ ·H(ρ◦)− gM (ρ◦)

gδM (ρsurf) = gtot(ρsurf)− γ0 − τ◦ ·H(ρsurf)− gM (ρsurf)
(4.78)

For other kinds of observations, as deflections of the vertical or gradients, the reduction
must be done in a similar way. Secondly, the non-modeled potential ΦδM is estimated
from the set of all reduced observations (gδM , εδM , ...) using a particular estimation
methodology based on some assumptions (e.g gravity inversion, least-squares collocation,
etc). Finally, the mean gravity is computed by restoring the estimated signal to the
modeled one using Equation 4.69.

4.4.6 Non-Modeled Mean Gravity along the Plumbline using Least-Squares
Collocation

Assuming that we dispose of both sets of reduced gravimetric observations inside the
tunnel and on the topography, gδM (ρ◦) and gδM (ρsurf), the aim is to compute the non-
modeled potential ΦδM at each position ρsurf and ρ◦ so that the mean non-modeled gravity
can be computed by:

gδM
ρsurf
ρ◦ = −ΦδM (ρsurf)− ΦδM (ρ◦)

∆H
ρsurf
ρ◦

(4.79)

Mathematical Model of the Non-Modeled Potential

Basically, at a given position ρ, it is assumed that the non-modeled potential ΦδM can be
modeled as follows:

ΦδM (ρ) = a0 + a1 ·H(ρ) + sΦ(ρ) + nΦ(ρ) (4.80)

where a0 and a1 are unknown parameters, H represents the orthometric height, nΦ a
non-correlated noise and sΦ a purely stochastic signal which is a realization of a stochastic
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process Φ which is supposed to be Gaussian distributed and has the following autocovari-
ance function:

CΦΦ(ρi,ρj) = σ2
Φ · e

−
|ρj−ρi|

2

d2 (4.81)

where ρi and ρj are two arbitrary positions, σΦ represents the standard deviation of sΦ
and d the correlation length. In Equation 4.81, the autocovariance function represents the
statistical behaviour of the random part of the non-modeled potential ΦδM . The main
reason for choosing this Gaussian form instead of another more sophisticated common
function is its simplicity and the absence of singularities. It is also assumed that CΦΦ is
isotropic even if we can imagine that it is not really the case for non-modeled potential
ΦδM generated by arbitrary masses δM . In addition, an empirical estimation of the best
function for CΦΦ from the simulated field has deliberately not been achieved. As we will
show, only the free parameters σΦ and d are estimated from the observations.

Mathematical Model of the Reduced Observations

The observation equation for the reduced gravimetric measurements is given by:

gδM (ρ) = − ∂

∂z
{ΦδM (ρ)}

= −a1 −
∂

∂z
{sΦ(ρ)}+ ng(ρ)

= −a1 + sg(ρ) + ng(ρ)

(4.82)

where ng represents the non-correlated noise part of the measurements, whereas sg rep-
resents the stochastic signals of the gravimetric field which is linked to the potential field
through the linear functional − ∂

∂z{}. This has the huge advantage of relating all possible
cross-covariance functions between sΦ and sg by the functional covariance propagation
law. But first, let us recall how this propagation law is working.

Assuming that a stochastic signal sβ is related to a signal sα, with known autocovari-
ance function Cαα(ρi,ρj), by a linear functional Lβ:

sβ(ρ) = Lβ|ρ {sα(ρ)} (4.83)

the cross-covariance functions are given by:

Cαβ(ρi,ρj) = Lβ|ρj
{
Cαα(ρi,ρj)

}
Cβα(ρi,ρj) = Lβ|ρi

{
Cαα(ρi,ρj)

}
Cββ(ρi,ρj) = Lβ|ρi

{
Cαβ(ρi,ρj)

}
= Lβ|ρj

{
Cβα(ρi,ρj)

}
(4.84)
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Applying this to Equation 4.82 and considering 4.81 we get:

CΦg(ρi,ρj) = − ∂

∂z

∣∣∣∣
ρj

{
CΦΦ(ρi,ρj)

}
= +

2σ2
Φ

d2
· e−

|ρj−ρi|
2

d2 · (zj − zi)

CgΦ(ρi,ρj) = − ∂

∂z

∣∣∣∣
ρi

{
CΦΦ(ρi,ρj)

}
= −

2σ2
Φ

d2
· e−

|ρj−ρi|
2

d2 · (zj − zi)

Cgg(ρi,ρj) = − ∂

∂z

∣∣∣∣
ρi

{
CΦg(ρi,ρj)

}

= +
2σ2

Φ

d2
· e−

|ρj−ρi|
2

d2 ·

[
1− 2 · (zj − zi)2

d2

]

(4.85)

A representation of the cross-covariance functions given in Equations 4.81 and 4.85 is
shown in Figure 4.3. In general, the free parameters of the covariance functions can be
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Figure 4.3: Autocovariance and cross-covariance functions given in Equations 4.81 and 4.85 for

σΦ = 1.0
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]
and d = 100 [m].

fixed in many ways. In our case, the determination of σΦ and d is performed by a usual
empirical approach based on the available observations. Since only gravimetric observa-
tions are available, only the autocovariance Cgg is empirically accessible. Then, once Cgg
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is provided, it is theoretically possible to determine σΦ and d by fitting the empirical Cgg
to its analytic form given in Equation 4.85. This ideal procedure is not used here because
the large discrepancies which can be expected between the empirical and the analytic
forms could make this adjustment unstable and unreliable. Actually, the estimation of
both parameters is done by a more pragmatic and stable way.

First, the correlation length d is estimated by searching for the first minimum of the
empirical Cgg as it is the case in the analytic form (see Figure 4.3).

Secondly, σΦ is simply computed using the quantity of the empirical Cgg when ρi = ρj ,
or equivalently when |ρi − ρj | = 0, so that:

Cgg(ρi,ρi) = +
2σ2

Φ

d2
(4.86)

which permits to estimate σΦ by:

σΦ =

√
Cgg(ρi,ρi) · d2

2
(4.87)

Matrix Formulation of the Functional Model

In order to use the standard formulas of the least-squares collocation, the previously
developed mathematical models must be integrated in the usual matrix formulation where
all observations are incorporated into the following vectorial observation equation:

l = A · x + s + n (4.88)

where A · x represents the deterministic part, s the correlated stochastic signals and n
the non-correlated noises. In our case, considering only potential lΦ and gravimetric lg
observation vectors, we have:lΦ

lg

 =

AΦ

Ag

 · x +

sΦ

sg

+

nΦ

ng

 (4.89)

or more explicitly, from Equations 4.80 and 4.82:

ΦδM (ρ1Φ
)

...

ΦδM (ρmΦ
)

gδM (ρ1g)
...

gδM (ρmg)


=



1 H(ρ1Φ
)

...
...

1 H(ρmΦ
)

0 −1
...

...

0 −1


·

a0

a1

+



sΦ(ρ1Φ
)

...

sΦ(ρmΦ
)

sg(ρ1g)
...

sg(ρmg)


+



nΦ(ρ1Φ
)

...

nΦ(ρmΦ
)

ng(ρ1g)
...

ng(ρmg)


(4.90)

assuming thatmΦ observations of the potential have been carried out at positions ρ1Φ
...ρmΦ

and mg gravimetric observations have been carried out at ρ1g ...ρmg . As mentioned before,
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in our case, only gravimetric observations are provided. Thus, only one pseudo observa-
tion of the potential is introduced in order to fix the singularity that occurs if no potential
observation is included.

Matrix Formulation of the Stochastic Model

First, the non-correlated noise of the n observations is modeled by the covariance matrix
Cnn, defined as follows:

Cnn =


σ2
n1

0 . . . 0

0 σ2
n2

. . .
...

...
. . .

. . . 0

0 . . . 0 σ2
nn

 (4.91)

and for our specific application we have:

Cnn =

CnΦnΦ 0

0 Cngng

 (4.92)

where CnΦnΦ is a diagonal matrix containing the variances of the noise of the potential
observations, CnΦnΦ a diagonal matrix which contains the variances of the noise of the
gravimetric observations.

Concerning the covariance matrices associated to the stochastic signal s, we have to com-
plete the matrix Css which can be filled when all cross-covariance functions are known.
In our case, we have:

Css =

CsΦsΦ CsΦsg

CsgsΦ Csgsg

 (4.93)

where the cross-covariance matrices can be filled thanks to the functions given in Equations
4.81 and 4.85 by:

CsΦsΦ
=


CΦΦ(ρ1Φ

,ρ1Φ
) . . . CΦΦ(ρ1Φ

,ρmΦ
)

...
. . .

...

CΦΦ(ρmΦ
,ρ1Φ

) . . . CΦΦ(ρmΦ
,ρmΦ

)

 CsΦsg =


CΦg(ρ1Φ

,ρ1g ) . . . CΦg(ρ1Φ
,ρmg )

...
. . .

...

CΦg(ρmΦ
,ρ1g ) . . . CΦg(ρmΦ

,ρmg )



CsgsΦ
=


CgΦ(ρ1g ,ρ1Φ

) . . . CgΦ(ρ1g ,ρmΦ
)

...
. . .

...

CgΦ(ρmg ,ρ1Φ
) . . . CgΦ(ρmg ,ρmΦ

)

 Csgsg =


Cgg(ρ1g ,ρ1g ) . . . Cgg(ρ1g ,ρmg )

...
. . .

...

Cgg(ρmg ,ρ1g ) . . . Cgg(ρmg ,ρmg )


(4.94)
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Estimation of the Parameters

According to Möser et al. (2000), the vector x of parameters, the signals s and noises n
which minimize the following quantity

sT ·Q−1
ss · s + nT ·Q−1

nn · n with:

Qss =
1

σ2
0

·Css

Qnn =
1

σ2
0

·Cnn

(4.95)

are given by

x̂ =
(
AT ·Q−1

ee ·A
)−1 ·AT ·Q−1

ee · l

ŝ = Qss ·Q−1
ee · (l−A · x̂)

n̂ = Qnn ·Q−1
ee · (l−A · x̂)

(4.96)

where:

Qee = Qss + Qnn (4.97)

Prediction of Field Functionals

The least-squares collocation is not only a powerful filtering technique which is able to
distinguish between the deterministic and the random parts of observations, it also permits
to predict, at any position ρ, any linear functional L of the fundamental field to which all
observables are related. In our case, in order to be able to compute the mean gravity along
the plumbline using Equation 4.79, it is necessary to predict the non-modeled potential
ΦδM only. From Equation 4.80 we can write:

Φ?
δM (ρ?) = â0 + â1 ·H(ρ?) + s?Φ(ρ?) (4.98)

where the superscript ? means that the corresponding quantity is not observed nor com-
puted using Equation 4.96 at ρ?. For p different positions and using the matrix formula-
tion, we have:

t?Φ = A?
Φ · x̂ + s?Φ (4.99)

or more explicitly: 
Φ?
δM (ρ?1)

...

Φ?
δM (ρ?p)

 =


1 H(ρ?1)
...

...

1 H(ρ?p)

 ·
â0

â1

+


s?Φ(ρ?1)

...

s?Φ(ρ?p)

 (4.100)

where only the vector s?Φ, containing the signals, is not yet available and can be determined
by:

ŝ?Φ = Qs?Φs ·Q−1
ee · (l−A · x̂) (4.101)
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with:

Qs?Φs =
1

σ2
0

·Cs?Φs (4.102)

where:

Cs?Φs =
(
Cs?ΦsΦ

Cs?Φsg

)

=


CΦΦ(ρ?1,ρ1Φ

) . . . CΦΦ(ρ?1,ρmΦ
) CΦg(ρ

?
1,ρ1g) . . . CΦg(ρ

?
1,ρmg)

...
. . .

...
...

. . .
...

CΦΦ(ρ?p,ρ1Φ
) . . . CΦΦ(ρ?p,ρmΦ

) CΦg(ρ
?
p,ρ1g) . . . CΦg(ρ

?
p,ρmg)


(4.103)

Final Remarks

The extension of the least-squares collocation model developed in this section to other
kinds of observables is, in principle, straightforward. Surface deflections of the vertical or
gradiometric observations are both also related to the potential through linear functionals.
Nevertheless, it is not guaranteed that the results become better by just adding supple-
mentary information. In fact, in the frame of this thesis, some rudimentary computations
which also included the surface deflection observations were not very successful. However,
it would be interesting for sure to investigate further along this way. In addition, the indi-
cators of precision which are provided by the least-squares collocation methodology have
also not been investigated, although it would be interesting to investigate their validity.
Nevertheless, as it will be shown, the quality of the predictions is realized by comparisons
with true values directly.

4.4.7 Comparisons of the Various Methods

In order to illustrate the different methods exposed in the previous sections for the com-
putation of the mean gravity along the plumbline, two revealing synthetic mass models
are used to generate theoretical mean gravity values and their corresponding true observa-
tions. We assume that the observations are carried out at the surface of a flat topography
(H(ρsurf) = 450 m), and inside a tunnel 150 meters below ground (H(ρ◦) = 300 m), along
a 1’200 m long profile, see Figures 4.6 and 4.9. In addition, we consider that the gravity
field contributions generated by the normal ellipsoid E◦ and all modeled masses M have
already been reduced from all available observations. Thus, the problem of the determina-
tion of the mean gravity along the plumbline gtot

ρsurf
ρ◦ can be reduced to the determination

of the mean gravity gδM
ρsurf
ρ◦ generated by the non-modeled masses δM .

In the following two examples the non-modeled masses are given by homogeneous si-
nusoidal prisms of density ρSIN = 500 kg

m3 as defined in Section 6.3. As it can be see in
Figures 4.6 and 4.9, the wavelength is equal to λSIN = 200 meters in both cases, and the
amplitudes ASIN are equal to 50 and 40 meters for the first case and second case, respec-
tively. Their bottom is delimited by a horizontal plane at H = 0, and their upper surface
by the sinusoidal surface. Along the axis perpendicular to the axis defined by the tunnel,
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topography

tunnel

gravity 
observation

gravity observation on topography

gravity observation in the tunnel

gravity observation on topography and in the tunnel

gravity observation on topography and in the tunnel
+ least-squares collocation

gravity observation on topography and in the tunnel
+ inversion + forward modeling 

Figure 4.4: Graphical representation of the non-modeled masses which generate changes in the
mean gravity along the plumbline that can be theoretically observed by the different strategies
exposed in this section.

the prism extends over 5 kilometers in both directions, see Figure 4.5.

Observations

In both cases, we assume that noise-free gravimetric observations are carried out on the
topography and inside the tunnel along the profile every 5 meters. In Figures 4.6 and 4.9,
the positions of the gravimetric observations are represented by the blue dots. The main
reason to work with noise-free observations is motivated by the fact that the objective is
to show the fundamental differences and artifacts inherent to the various methodologies
without the suspicion that they could come from some noise sources. Moreover, in order to
have a better idea of the variation of the gravity field between the tunnel and topography,
the gravity field component gz,δM (ρ) = −gδM (ρ) is shown in Figures 4.7 and 4.10.

Methods

The following methods are used for the computation of the mean gravity along the
plumbline:
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Figure 4.5: Perspective view of a sinusoidal prism used for the comparison of the different
methods for the computation of the mean gravity along the plumbline. The line in blue represents
the positions considered at the surface of the topography.

1. using the simulated non-modeled potential. According to Equation 4.69 we have:

gtrue
δM

ρsurf
ρ◦ = −ΦδM (ρsurf)− ΦδM (ρ◦)

∆H
ρsurf
ρ◦

(4.104)

which corresponds to the true mean gravity used as reference.

2. using only the observations on topography. From Equations 4.71 and 4.69 we have:

gsurf
δM

ρsurf
ρ◦ = gδM (ρsurf) (4.105)

3. using only the observations inside the tunnel. From Equations 4.74 and 4.69 we
have:

gtnl
δM

ρsurf
ρ◦ = gδM (ρ◦) (4.106)

4. using all observations. From Equations 4.76 and 4.69 we have:

gmean
δM

ρsurf
ρ◦ =

gδM (ρ◦) + gδM (ρsurf)

2
(4.107)

5. using all observations in a least-squares collocation estimation. According to Equa-
tion 4.99, a prediction of the non-modeled potential Φlsc

δM gives the possibility to
compute the mean gravity as follows:

glsc
δM

ρsurf
ρ◦ = −

Φlsc
δM (ρsurf)− Φlsc

δM (ρ◦)

∆H
ρsurf
ρ◦

(4.108)
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Case 1

In this case, the sinusoidal surface is centered at H = 200 meters, so that δM is located
completely below the tunnel (Figure 4.6). In this case, the gravitational potential between
the tunnel and the topography satisfies the Laplace equation and is therefore harmonic.
This means that according to the Stokes-Poincaré theorem (Torge and Müller , 2012), a
non-ambiguous downward continuation of the potential field is theoretically possible.

The results of the different methods are shown in Figure 4.8. By comparing to the true
mean gravity, we can see that the most accurate results are given by far, by the least-
squares collocation glsc

δM . At first glance, this is not surprising. In contrast to the other
methods, the least-squares collocation uses not only superposed observations in order to
compute the mean gravity at a single position, but all observations together. In addition,
since the Laplace equation is fulfilled, the downward continuation — or the estimation of
the potential field — can be realised by a projection on a set of appropriate harmonic basis
functions. But from another viewpoint, it might be surprising that it works so well consid-
ering that the least-squares collocation gives only optimal results if signals are Gaussian
distributed and if the theoretical covariance function fits the actual one. In this case, it is
obvious that both conditions are not fulfilled. Concerning the other methods, we can see
that gmean

δM recovers a correct signature but over-estimates the amplitude for the centered
mean gravity by a factor two compared to that given by gtrue

δM . Finally, the methods using
only one set of observations show that the errors in the estimation of the lateral variation
are smaller for gsurf

δM than for gtnl
δM . This can be explained by the fact that the gravity field

on the topography looks more like a Bouguer plate field than that inside the tunnel, see
Figure 4.7.
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Figure 4.6: Vertical profile of the non-modeled mass model δM and the positions of the gravi-
metric observations used in Case 1. The blue dots represent the positions of the observations.
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Vertical Gravity Acceleration Field

Figure 4.7: Simulated gravity field component gz,δM (ρ) = −gδM (ρ), generated by the non-
modeled mass δM in Case 1. The simulation was computed with the software QGravity. The
black dashed lines represent the tunnel.
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Figure 4.8: Mean gravity along the plumbline for Case 1, according to the different methods
exposed in Section 4.4.7.
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Case 2

In this second example, the sinusoidal surface is centered at H = 400 meters, so that
δM contains the tunnel but stays below the surface of topography (Figure 4.9). In this
case, the gravitational potential no longer satisfies Laplace equation and is therefore not
harmonic. A downward non-ambiguous continuation of the potential field is theoretically
not more possible.

The results of the different methods are shown in Figure 4.11. They demonstrate sev-
eral interesting non-intuitive aspects. Firstly, if we look at the absolute values provided
by the different methods, the superiority of glsc

δM and gmean
δM is evident and corresponds

to the common sense. In this case, two methods are able to estimate the mean gravity
with a relative accuracy of approximately 10 % whereas gsurf

δM and gtnl
δM lead to a relative

accuracy of 30 % only. Compared to the results obtained in Case 1, we clearly see a first
bad consequence of the presence of non-modeled masses inside the field which must be
estimated.

Secondly, if we look at the errors with respect to the centered values the comparisons
are more surprising. Now, the best estimation is given by gtnl

δM . This solution is the only
one which recovers the true signature with an acceptable amplitude. By contrast, all
other methods are not able to recover the true signature. They show a kind of opposite
phase shift which provokes a supplementary amplification of the errors. This effect is very
pronounced for gsurf

δM with amplitude errors larger than a factor 10. Concerning glsc
δM and

gmean
δM the amplitude errors stay approximately in the order of magnitude of the true value

but are also disappointing.
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Figure 4.9: Vertical profile of the non-modeled mass model δM and the positions of the gravi-
metric observations used in Case 2. The blue dots represent the positions of the observations.
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Vertical Gravity Acceleration Field

Figure 4.10: Simulated gravity field component gz,δM (ρ) = −gδM (ρ), generated by the non-
modeled mass δM in Case 2. The color scale is optimized to see the variations between the
tunnel and the topography. The red homogeneous field below the tunnel does not correspond to
a homogeneous gravity field. It means that the values are larger than 4.5 [mgal]. The simulation
was computed with the software QGravity. The black dashed lines represent the tunnel.
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Figure 4.11: Mean gravity along the plumbline, for Case 2, according to the different methods
exposed in Section 4.4.7.
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Concluding Remarks

As shown in examples, the quality of the determination of the mean gravity along the
plumbline is primary governed by the quality of the modeled masses situated between the
tunnel and the topography. This aspect is by far the most crucial one, since additional
and more accurate observations cannot help to make the determination of the gravity field
unambiguous. Furthermore, the unpredictable impact of non-modeled masses between
the tunnel and the topography can be limited using glsc

δM and gmean
δM . In addition, in

order to estimate the irreducible accuracy which can be realistically obtained without
supplementary geophysical or geological density field investigations, some gravity field
simulations must be computed. This can be done using some assumptions about the order
of magnitude and the size of the non-modeled masses.
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4.5 Alignment Accuracy of Geometric Determinations

In this section, the accuracy of the astronomical and gradiometric levelling are treated
separately, using Equations 4.12 and 4.43, in terms of alignment introduced in Section
2.1. The analyses focus on the accuracy of the determination of equipotential profiles
of S = 200 meters in length according to the alignment constraints given by the CLIC
studies. In order to simplify the models, we assume that εtot, gtot and dεtot

ds are directly
observed at regular a spacing ∆sobs and affected by systematic, random and correlated
noise as explained in Section 4.5.3. The omission errors due to the finite spacing between
the observations are neglected in the following simulations but treated in detail in Chapter
6.

4.5.1 Definition of the Misalignment Accuracy

In order to rigorously formulate the misalignment accuracy, it is necessary to define some
useful random variables. For a given observable model Σ(lobs,∆sobs), which contains the
noisy observables lobs and the spacing ∆sobs, the discretized equipotential profile ρ∼(s) is
represented by a random vector P(Σ), for which a single realization k is represented as
follows:

Pk(Σ) ≡
(
Ntot(s1 = 0) . . . Ntot

(
si = (i− 1) ·∆s

)
. . . Ntot(sn = 200)

)T
k

(4.109)

where s represents the curvilinear coordinate along the profile. The misalignment error
for a wavelength of 200 meters of Pk(Σ) is given by:

xk(Σ) =M200
? {Pk(Σ)} (4.110)

where xk(Σ) is a realization of the random variable X (Σ) which represents the misaligne-
ment error for a wavelength of 200 meters. Finally, the alignment accuracy σM(Σ) is
defined as:

σM(Σ) = x : P
(
X (Σ) ≤ x

)
= 0.68 (4.111)

which covers the same probability as the bilateral univariate Gaussian random variable
N (0, σ2) at one sigma (±1σ):

P
(
− σ ≤ N (0, σ2) ≤ +σ

)
= 0.68 (4.112)

In the case of fixing a confidence level 1 − α differing from 68%, the alignment accuracy
will be denoted by σ1−α

M(Σ) and corresponds to:

σ1−α
M(Σ) = x : P

(
X (Σ) ≤ x

)
= 1− α (4.113)

In an equivalent manner, we can say that σ1−α
M(Σ) is the (1− α)-quantile of X (Σ).

4.5.2 Monte-Carlo Simulation

Since the misalignment operator M has strong non-linear behaviors, the development of
a closed analytic formula of the probability density of the random variable X (Σ) is not
conceivable. Thus, it must be computed in an empirical way. In this thesis this is done
using Monte-Carlo simulations. The basic principle is very simple and consists of the
following steps (see Figure 4.12):
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1. simulate noisy observations from the error model of the observables Σ(lobs,∆sobs).

2. realize numerically a large9 number K of discretized equipotential profiles Pk(Σ),
from simulated noisy observations Σ.

3. for each profile k compute the misalignment:

xk(Σ) =M200
0 {Pk(Σ)} (4.114)

4. compute numerically the cumulative probability density function CDFX (Σ)(x) of
X (Σ) with all xk(Σ).

5. compute the empirical misalignment accuracy σ1−α
M(Σ) from the CDF FX (Σ)(x) using

a linear interpolation.

1.00

0.00

0.68

P
D

F

C
D

F

Figure 4.12: Schematic representation of the steps defined in Sections 4.5.1 and 4.5.2 for the
computation of the misalignment accuracy in geometric determinations with Monte-Carlo simula-
tions.

9In this thesis, if not mentioned, K=10’000.
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4.5.3 Generation of Noisy Observables

The generation of a noisy observable lobs(sj), at position sj is done by adding a noise-

free observable l̃obs(sj), computed from an error-free equipotential profile P̃ , and an error
δl(sj), computed from a pre-defined error model:

lobs(sj) = l̃(sj) + δl(sj) (4.115)

Noise-free Observables

The error-free equipotential profile is assumed to match exactly the normal equipotential
so that:

P̃ ≡
(
Ñtot(s1 = 0) = 0 . . . Ntot

(
si = (i− 1) ·∆s

)
= 0 . . . Ñtot(sn = 200) = 0

)T
(4.116)

which implies that the following noise-free observable l̃(sj) are equal to zero:

l̃(sj) = ε̃tot(sj) =
dε̃tot

ds
(sj) = 0 (4.117)

and the noise-free gravimetric observations are equal to the normal gravity:

l̃(sj) = g̃tot(Hj , sj) = γ(Hj) (4.118)

where Hj represents the orthometric height of a particular position on the plumbline
passing through sj .

General Observable Noise Model

The noise — or stochastic — model of the observations is the most important part of the
current analysis. There are many ways to model or represent noise. Here, δl(sj) is formed
by systematic, random and correlated noise as:

δl(sj) = δlBias + δlRnd Bias

+ δlDrift + δlRnd Drift

+ δlWhite + δlCorr

(4.119)

where:
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δlBias = A systematic non-calibrated bias.

δlRnd Bias = A systematic bias which is occurring randomly at each
realization of the full process. The randomness is mod-
eled by a Gaussian random bias stochastic process X Rnd Bias

parametrized by the standard deviation σRnd Bias.

δlDrift = A systematic non-calibrated drift, proportional to sj :

δlDrift(sj) = δ̇lDrift · sj (4.120)

where δ̇lDrift =
dδlDrift(sj)

ds is the constant drift parameter.

δlRnd Drift = A systematic drift, proportional to sj which is occurring
randomly at each realization of the full process. The ran-
domness is modeled by a Gaussian random drift stochastic
process X Rnd Drift parametrized by the standard deviation
σRnd Drift.

δlWhite = A non-correlated random noise modeled by a Gaussian white
noise stochastic process XWhite parametrized by the stan-
dard deviation σWhite.

δlCorr = A correlated random noise modeled by a first-order station-
ary Gaussian-Markov stochastic process X Corr parametrized
by the standard deviation σCorr and the correlation length
dCorr.

A formal description of these stochastic processes is given in Appendix D.
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4.5.4 Alignment Accuracy of Astrogeodetic Levelling

The following analyses are based each time on K = 10′000 Monte-Carlo generated equipo-
tential profiles Pastro(Σ).

Noise Model for Astrogeodetic Observations

Here we suppose that only εtot is observed at a regular spacing ∆sobs. According to
Equation 4.119, the observations are generated by taking into account the following noise
sources:

δεtot = δεBias︸ ︷︷ ︸
=0

+ δεRnd Bias︸ ︷︷ ︸
=0

+ δεDrift + δεRnd Drift

+ δεWhite + δεCorr

(4.121)

where:

δεBias Is not taken into account because a bias in εtot provokes a constant tilting of Pastro

but no misalignment.

δεRnd Bias Is not taken into account for the same reason as in the case of δεBias.

δεDrift This is a purely systematic noise effect which depends linearly on s. This kind of
systematic effect is very difficult to identify because it is, per definition, also constant
in time. We can imagine a large number of stationary phenomena coupled indirectly
with variables which change linearly with s that might provoke such effects. However,
in astrogeodetic observations the most likely might be due to stationary anomalous
refraction effects highly correleted with the topography or insufficient plumbline
curvature reductions highly correlated with the underground density field.

δεRnd Drift This systematic effect depends linearly on s, but it might take a different value
in repeated determination of Pastro separated in time. In opposition to δεDrift, it
renders possible an empirical estimation by repeated determination of Pastro. This
noise corresponds also to a correlated noise δεCorr with infinite correlation length. In
astrogeodetic observations, the most likely sources of this class of noise are similar
to those in δεDrift, with the difference that we consider that the effects are only
stationary during the observation time of Pastro.

δεWhite The sources of white noise in astrogeodetic observations are mainly due to the noise
in the astrometry caused by high frequency refraction signal in the atmosphere and
the noise generated by the tiltmeters. The determination of the level of white noise
can be evaluated and its impact is mitigated by repeated observations.

δεCorr The correlated noise models the impact of phenomena that generate noise having a
statistical behavior bounded by the white noise and the random bias.
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Computation of Pastro(Σ)

The observations generated at each discrete position sj (separated by ∆sobs), are firstly
predicted at each discrete position si (separated by ∆s = 10 m) by linear interpolation.
Finally, one realization of Pastro(Σ) is computed by a numerical solution of Equation 4.12
using a trapeze rule scheme for the integration:

Ntot(sii) =

ii∑
i=2

1

2
[εtot(si−1) + εtot(si)] ·∆s (4.122)

Summary of the Impact of Observable’s Noises on Misalignment

A summary of the various noises which generate a misalignment of 10 microns overs 200
meters is shown in Table 4.1. More detailed results can be found in the Appendix F.1.

Table 4.1: Summary of the alignment accuracy of astrogeodetic levelling. The maximal allowed
noises are given regarding to a misalignement of 10 microns over 200 meters for a level of confidence
1− α.

noise additional parameters depends depends max noise unit critical
on ∆sobs on α 68% 95%

δεBias — no no — — [arcsec] no
δεRnd Bias — no yes — — [arcsec] no

δεDrift — no no 0.07 0.06
[

arcsec
100 m

]
yes

δεRnd Drift — no yes 0.07 0.02
[

arcsec
100 m

]
yes

δεWhite ∆sobs = 10 m yes yes 0.09 0.06 [arcsec] yes
δεWhite ∆sobs = 40− 100 m yes yes 0.06 0.04 [arcsec] yes

δεCorr ∆sobs = 10 m, dCorr = 0 m yes yes 0.09 0.06 [arcsec] yes
δεCorr ∆sobs = 10 m, dCorr = 40 m yes yes 0.06 0.04 [arcsec] yes
δεCorr ∆sobs = 10 m, dCorr = 500 m yes yes 0.1 0.06 [arcsec] yes
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4.5.5 Alignment Accuracy of the Orthometric Corrections

The analyses of the alignment accuracy of the orthometric correction are divided into two
different parts. The first part E1 concerns the integral term of Equation 4.59, the second
part E2 the remaining terms:

Eb◦a◦ =

ˆ bsurf

asurf

gtot(ρsurf)− γ(ρ◦)

γ(ρ◦)
· dn︸ ︷︷ ︸

E1

+
gtot

asurf
a◦ − γ(a◦)

γ(a◦)
·∆Hasurf

a◦ −
gtot

bsurf
b◦
− γ(b◦)

γ(b◦)
·∆Hbsurf

b◦︸ ︷︷ ︸
E2

(4.123)

This separation is due to the fact that:

� E1 and E2 have a different error propagation behavior.

� E1 depends directly on dn, the change in height of topography.

� Unlike E2, the quantities in E1 are observables without ambiguities.

The analyses are based each time on K = 10′000 generated orthometric corrections profiles
PE1(Σ) and PE2(Σ).

Noise Model

It is assumed that gtot is directly observed, and gtot estimated by an arbitrary method, at
a regular spacing ∆sobs. According to Equation 4.119, the observed gravity observations
on topography gtot are generated by taking into account the following noise sources:

δgtot = δgBias︸ ︷︷ ︸
=0

+ δgRnd Bias︸ ︷︷ ︸
=0

+ δgDrift + δgRnd Drift

+ δgWhite + δgCorr

(4.124)

where:

δgBias Is not taken into account because a bias in gtot provokes a constant tilting on PE1

but no misalignment.

δgRnd Bias Is not taken into account for the same reason as for δgBias.

δgDrift This purely systematic noise effect depends linearly on s. In relative gravimetric
measurements, time drifts are common and could produce drifts which depend lin-
early on s, if the measurements are carried out sequentially along the profile.
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δgRnd Drift This systematic effect depends linearly on s but might take a different value in
repeated determinations of PE1 separated in time. For gravimetric observations,
the most likely sources of this class of noise are similar to those for δgDrift, with the
difference that we consider that the effects are only stationary during the observation
time of PE1.

δgWhite The sources of white noise in gravimetric observations on the surface of topography
are mainly due to high-frequency perturbations caused by traffic or wind.

δgCorr The correlated noise models the impact of phenomena that generate noise having a
statistical behavior bounded by the white noise and the random bias. For gravimetric
measurements, it could be generated by all systematic errors of the gravimeter which
are coupled with the local environment or which change slowly in time. For example,
errors in the scaling factor and changes of the hysteresis behavior of the instrument
can be imagined.

The mean gravity estimations gtot by:

δgtot = δgBias︸ ︷︷ ︸
=0

+ δgRnd Bias︸ ︷︷ ︸
=0

+ δgDrift︸ ︷︷ ︸
=0

+ δgRnd Drift︸ ︷︷ ︸
=0

+ δgWhite + δgCorr

(4.125)

δgBias Is not taken into account because a bias in gtot provokes no changes in PE2.

δgRnd Bias Is not taken into account for the same reason as for δgBias.

δgDrift Is not taken into account because a drift in gtot provokes a constant tilting on PE2

but no misalignment.

δgRnd Drift Is not taken into account for the same reason as for δgDrift.

δgWhite The source of white noise in the mean gravity is mainly due to the white noise
contained in the observations used for the determination of the mean gravity.

δgCorr The correlated noise models the impact of phenomena that generate noise having
a statistical behavior bounded by the white noise and the random bias. For the
mean gravity, the correlated noise is implicitly generated by the estimation process
of the mean gravity from observations and the intrinsic ambiguous nature of this
estimation. It is probably the most problematic noise source.

Computation of PE1(Σ) and PE2(Σ)

The observations generated at each discrete position sj (separated by ∆sobs) , are firstly
predicted at each discrete position si (separated by ∆s = 10 m) by linear interpolation.
In addition it is assumed that the topography is fixed at s1 with H surf

1 = 150 m and with
a slope of ∆n

∆s = +10% in order to have a non-zero and significant effect. The tunnel is
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fixed at H tnl
i = 0 m. One realization of PE1(Σ) is computed by a numerical solution of

Equation 4.59 using a trapeze rule scheme for the integration:

E1(sii) =

ii∑
i=2

1

2

[
gtot(H

surf
i−1, si−1)− γ(0)

γ(0)
+
gtot(H

surf
i , si)− γ(0)

γ(0)

]
·∆n (4.126)

Concerning the computation of PE2(Σ), it is assumed that the topography is fixed at
H surf
i = 150 m, without slope, in order to have a clear separation from E1. The tunnel is

fixed at H tnl
i = 0 m. One realization of PE2(Σ) is computed by:

E2(si) =
gtot(s1)− γ(0)

γ(0)
· (H surf

1 −H tnl
1 )− gtot(si)− γ(0)

γ(0)
· (H surf

i −H tnl
i ) (4.127)

Summary of the Impact of Observable’s Noises on Misalignment (PE1 and PE2)

A summary of the various noises which generate a misalignment of 10 microns overs 200
meters is shown in Table 4.2 and 4.3. More detailed results can be found in the Appendix
F.2.

Table 4.2: Summary of the alignment accuracy of the ortometric corrections PE1. The maximal
allowed noises are given regarding to a misalignement of 10 microns over 200 meters for a level of
confidence 1− α.

noise additional parameters depends depends max noise unit critical
on ∆sobs on α 68% 95%

δgBias — no no — — mgal no
δgRnd Bias — no yes — — mgal no

δgDrift ∆sobs = 10− 100 m no no 30 30 mgal
100 m no

δgRnd Drift ∆sobs = 10− 100 m no yes 30 15 mgal
100 m no

δgWhite ∆sobs = 10 m yes yes 4 3 mgal no
δgWhite ∆sobs = 40− 100 m yes yes 3 2 mgal no

δgCorr ∆sobs = 10 m, dCorr = 0 m yes yes 4 3 mgal no
δgCorr ∆sobs = 10 m, dCorr = 40 m yes yes 3 2 mgal no
δgCorr ∆sobs = 10 m, dCorr = 500 m yes yes 5 3 mgal no
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Table 4.3: Summary of the alignment accuracy of the ortometric corrections PE2. The maximal
allowed noises are given regarding to a misalignement of 10 microns over 200 meters for a level of
confidence 1− α.

noise additional parameters depends depends max noise unit critical
on ∆sobs on α 68% 95%

δgBias — no no — — mgal no
δgRnd Bias — no yes — — mgal no

δgDrift — no no — — mgal
100 m no

δgRnd Drift — no yes — — mgal
100 m no

δgWhite ∆sobs = 10 m yes yes 0.03 0.025 mgal no
δgWhite ∆sobs = 100 m yes yes 0.1 0.05 mgal no

δgCorr ∆sobs = 10 m, dCorr = 0 m yes yes 0.03 0.025 mgal no
δgCorr ∆sobs = 10 m, dCorr = 1 km yes yes 0.175 0.125 mgal yes
δgCorr ∆sobs = 10 m, dCorr = 16 km yes yes 0.5 0.8 mgal yes
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4.5.6 Alignment Accuracy of Gradiometric Levelling

The following analyses are based each time on K = 10′000 Monte-Carlo generated equipo-
tential profiles P(Σ).

Noise Model for Gradiometric Observations

Here we suppose that only ∆ΓStot,xx, denoted by ∆Γtot for the convenience, is observed at
a regular spacing ∆sobs. According to Equation 4.119, the observations are generated by
taking into account the following noise sources:

δ∆Γtot = δ∆ΓBias + δ∆ΓRnd Bias

+ δ∆ΓDrift + δ∆ΓRnd Drift

+ δ∆ΓWhite + δ∆ΓCorr

(4.128)

where:

δ∆ΓBias A systematic bias which might come from non-calibrated effects or systematic biases
in the reductions.

δ∆ΓRnd Bias A bias which is assumed to be constant for a single determination of P only. This
might occurs when the gradiometer is affected by a different bias at each start. An
other possibility might come from time varying environemental effects which can be
seen as constant during the duration of the observation of P , e.g., hydrogeological
changes.

δ∆ΓDrift As for astrogeodetic measurements, a systematic drift source might be of instrumen-
tal or environemental origin.

δ∆ΓRnd Drift As for astrogeodetic measurements, a random drift source might be of instrumental
or environemental origin.

δ∆ΓWhite Nowadays, regarding the performance of torsion balance measurements (Völgyesi ,
2001) and airborne gradiometric measurements (Jekeli , 2011) it might be possible
to achieve a white noise of the order of 1− 2 E.

δ∆ΓCorr As for astrogeodetic measurements, a correlated noise source might be of instrumen-
tal or environemental origin.

Computation of P(Σ)

The observations generated at each discrete position sj (separated by ∆sobs) , are firstly
predicted at each discrete position si (separated by ∆s = 10 m) by linear interpolation.
Afterwards, one realization of P(Σ) is computed by a numerical solution of Equation 4.43
in three steps. Firstly, ∆Γtot is converted into ε̇tot using a simplified form of Equation 4.40:

ε̇tot = −1

γ
·∆Γtot with: γ = 9.81

[m

s2

]
(4.129)
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Secondly, εtot is computed from Equation 4.42 using the trapeze rule for integration:

εtot(sii) =

ii∑
i=2

1

2
[ε̇tot(si−1) + ε̇tot(si)] ·∆s (4.130)

Finally, P(Σ) is computed as for the astrogeodetic levelling in Equation 4.122:

Ntot(sii) =
ii∑
i=2

1

2
[εtot(si−1) + εtot(si)] ·∆s (4.131)

Summary of the Impact of Observable’s Noises on Misalignment

A summary of the various noises which generate a misalignment of 10 microns overs 200
meters is shown in Table 4.4. More detailed results can be found in the Appendix F.3.

Table 4.4: Summary of the alignment accuracy of gradiometric levelling. The maximal allowed
noises are given regarding to a misalignement of 10 microns over 200 meters for a level of confidence
1− α.

noise additional parameters depends depends max noise unit critical
on ∆sobs on α 68% 95%

δ∆ΓBias ∆sobs = 10− 100 m no no 31 31 E no
δ∆ΓRnd Bias ∆sobs = 10− 100 m no yes 31 18 E no

δ∆ΓDrift ∆sobs = 10− 100 m no no 26 26 E
100 m no

δ∆ΓRnd Drift ∆sobs = 10− 100 m no yes 26 15 E
100 m no

δ∆ΓWhite ∆sobs = 10 m yes yes 100 58 E no
δ∆ΓWhite ∆sobs = 100 m yes yes 40 20 E no

δ∆ΓCorr ∆sobs = 10 m, dCorr = 0 m yes yes 100 58 E no
δ∆ΓCorr ∆sobs = 10 m, dCorr = 40 m yes yes 40 20 E no
δ∆ΓCorr ∆sobs = 10 m, dCorr > 100 m yes yes 30 15 E no
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4.6 Alignment Accuracy with Several Zenith Camera Systems

In the previous section, the alignment accuracy of the astrogravimetric levelling method
has been analysed in a systematic manner, with respect to different kinds of errors, treated
separately. Here, the analyses are less general but are governed by some present-day knowl-
edge about the noise sources entering the budget of modern astrogeodetic observations.
In addition, the analyses are extended to the explicit modeling of several zenith cameras
measuring in parallel. As we shall see, it increases not only the productivity, but permits
also to mitigate the impact of anomalous refraction, which is nowadays, the largest source
of error of standard astrogeodetic observations (Hirt , 2006, 2008).

4.6.1 Observation Setup and Noise Model

We consider nzc zenith cameras operating in parallel during ∆tobs hours on points which
follow, separated by a spacing ∆s, see Figure 4.13. After ∆tobs, these nzc deflections of
the vertical εtot, denoted ε, are grouped into the set DOVj :

DOVj ≡
{
ε1j , ε

2
j , ...ε

i
j , ε

nzc
j

}
(4.132)

We consider that the observations εij are affected by two different noise sources:

δεji = δεji White
+ δεjRnd Bias (4.133)

where the first δεji White
is a white noise, different for each camera, which models the pure

non-correlated part of the total error δεji . The second is a random bias δεjRnd Bias, com-
mon to the set DOVj , which models the anomalous refraction. Here it is assumed that
all zenith cameras, which are measuring in parallel, are affected by the same anomalous
refraction. This can be supported by the fact that the duration of the observations is not
too short, i.e., larger than 15 minutes, and that the stations are located at short distances
< 1 kilometer. Thus there is a good chance that the mean anomalous refraction behaves
similarly for each station.

Once a set DOVj has been carried out, the cameras are displaced to the next points,
with an overlap O with respect to the previous set DOVj , in order to make the acquisition
of the next set DOVj+1. The overlap is an integer which corresponds to the number of
stations of DOVj and DOVj+1, located at the same position. This procedure is repeated
nDOV times, until the whole profile has been observed.

4.6.2 Mathematical Models

Before applying Equation 4.122 of the astronomical levelling for the computation of Ntot, a

single deflection ε(sii) must be obtained from the sets
{
DOV1, ...,DOVnDOV

}
. This can be

done in several ways. Here two approach are described. The first is obvious and consists
in taking the average of the observations εij located at identical positions. The second way
is uncommon and consists in estimating a constant bias for each set DOVj .
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Figure 4.13: Schema of the observation setup with several zenith cameras operating in parallel.
Here, the number of available cameras is nzc = 4, the overlap O = 2 and the anomalous refraction
is assumed to be equal to 0 for the set DOVj .

Functional Model (without bias)

The observation equation of the first approach is given by:

εij(sii) + v̂εij(sii)
= ε̂(sii) (4.134)

where εij(sii) represents the observation of the zenith camera i of the set DOVj , located
at position sii. The quantity v̂εij(sii)

is the adjusted residual and the adjusted deflection of

the vertical is given by ε̂(sii). In matrix formulation we have:

l + v̂1 = A1 · x̂1 (4.135)

with:

l =



ε11(s1)
...

εnzc
1 (snzc)

ε12(snzc−O)
...

εnzc
2 (s2nzc−O)

...

εnzc
nDOV

(snε)



, v̂1 =



v̂ε11(s1)

...

v̂εnzc
1 (snzc )

v̂ε12(snzc−O)

...

v̂εnzc
2 (s2nzc−O)

...

v̂εnzc
nDOV (snε )



,A1 =


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. . .
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. . .
...
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. . .
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. . .
...

. . .
...

0 . . . 0 . . . 1 . . . 0

...
. . .

...
. . .

...
. . .

...

0 . . . 0 . . . 0 . . . 1



, x̂1 =



ε̂(s1)
...

ε̂(snzc)

ε̂(snzc−O)
...

ε̂(2snzc−O)

...

ε̂(snε)


(4.136)

where nε represents the number of points forming the astrogeodetic levelling profile.
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Functional Model (with bias)

The observation equation of the second approach is given by:

εij(sii) + v̂εij(sii)
= ε̂(sii) + b̂j (4.137)

where the bias b̂j is introduced as unknown parameter. In matrix formulation we have:

l + v̂2 = A2 · x̂2 (4.138)

with:

l =



ε11(s1)
...

εnzc
1 (snzc

)

ε12(snzc−O)
...

εnzc
2 (s2nzc−O)

...

εnzc
nDOV

(snε)



, v̂2 =


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...
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(4.139)

and:

A2 =
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, x̂2 =



ε̂(s1)
...

ε̂(snzc
)

ε̂(snzc−O)
...

ε̂(2snzc−O)

...

ε̂(snε)

b̂1

b̂2
...

b̂nDOV



(4.140)

Stochastic Model (with and without bias)

The stochastic model is identical for both approaches and assumes uncorrelated Gaussian-
distributed observations:

εij(sii) ∼ N
(
ε̌(sii), σ

2
ε

)
→ Cll = σ2

ε · I (4.141)

where ε̌(sii) represents the true deflection at sii and I the identity matrix.
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Parameter Estimation

The maximum likelihood unknown vectors x1,2 are given by the well-known least-squares
condition, and are estimated by:

x̂1,2 =
(
AT

1,2 ·Qll
−1 ·A1,2

)− ·AT
1,2 ·Qll

−1 · l (4.142)

where Qll = 1
σ2

0
·Cll, and the matrix operator ()− represents the Moore-Penrose pseudo-

inverse. Here, only the estimation of x2 needs the use of a generalized inverse. Because
all biases b̂j , are set as unknown parameters, its normal matrix is singular. This choice is
not relevant for misalignment analyses and corresponds to the solution which minimizes
xT2 · x2.

4.6.3 Monte-Carlo Simulation Scheme

In order to analyse the impact of different configurations on the misalignment, some Monte-
Carlo simulations are realized. In opposition to the previous simulations, the observations
are generated for a whole CLIC profile of 50 kilometers because the overlapping of the
different sets DOVj exceeds 200 meters. Moreover, the simulations are based on the
generation of a single profile instead of 10’000. This can be argued if the processes are
assumed to be ergodic. The simulations are based on the following steps:

1. Generate noisy observations according to Equation 4.133 to the predefined error
model and observation setting, as the spacing ∆s and the overlap O, over 50 kilo-
meters:

εji (sii) = δεji White
+ δεjRnd Bias (4.143)

where the white and the random bias noise is parametrized by its standard deviation
σWhite and σRnd Bias, respectively.

2. using Equation 4.142, compute the deflections of the vertical x̂1,2 at each point of

the profile, for both approaches, with and without the estimation of biases b̂j .

3. Realize numerically, the discretized equipotential profiles P1,2 using x̂1,2 and Equa-
tion 4.122.

4. Analyse P1,2 in terms of misalignment, especially the quantities M200
? {P1,2} from

which the empirical cumulative distributions CDF1,2 can be computed, with their
associated (1− α)-quantiles σ1−α

M{P1,2}.

5. The productivity is quantified by the number of working days needed for the ac-
quisition of the whole 50 kilometers profile. This indicator is denoted by #$ and
computed from the total number of clear sky hours Tobs needed for the whole profile,
assuming that in average, 8 hours per day are available for astrogeodetic observa-
tions.
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Table 4.5: Parameters and results of the simulations of astrogeodetic determinations of an equipo-
tential profile of 50 kilometers according to the two approaches described in Section 4.6.

nzc O σRnd Bias σWhite ∆tobs ∆s Tobs #$ σ0.68
M{P1} σ0.95

M{P1} σ0.68
M{P2} σ0.95

M{P2}

[#] [#] [arcsec] [arcsec] [hour] [m] [hour] [day] [µm] [µm] [µm] [µm]

2 1 0.08 0.03 2.0 50 2000 250.0 10.2 17.4 7.8 14.5
2 1 0.08 0.03 2.0 100 1000 125.0 8.0 13.1 5.4 9.6
2 1 0.08 0.05 1.0 50 1000 125.0 11.2 19.3 13.1 23.7
2 1 0.08 0.05 1.0 100 500 62.5 9.0 16.3 8.1 15.8

5 1 0.08 0.03 2.0 50 500 62.5 9.7 19.0 5.4 9.9
5 2 0.08 0.03 2.0 50 668 83.5 9.4 16.0 4.8 8.1
5 1 0.08 0.03 2.0 100 250 31.3 6.7 13.8 4.4 8.3
5 2 0.08 0.03 2.0 100 334 41.8 5.8 11.3 3.6 6.6
5 1 0.08 0.05 1.0 50 250 31.3 10.7 21.1 8.4 15.3
5 2 0.08 0.05 1.0 50 334 41.8 10.6 19.2 7.6 13.2
5 1 0.08 0.05 1.0 100 125 15.6 9.0 16.4 7.6 13.6
5 2 0.08 0.05 1.0 100 167 20.9 8.4 15.3 6.7 11.9

10 1 0.08 0.03 2.0 50 224 28.0 6.4 16.5 5.0 8.4
10 2 0.08 0.03 2.0 50 250 31.3 6.8 15.2 4.7 7.6
10 5 0.08 0.03 2.0 50 400 50.0 4.9 12.2 3.4 5.4
10 1 0.08 0.03 2.0 100 112 14.0 5.0 11.2 4.3 7.7
10 2 0.08 0.03 2.0 100 126 15.8 5.2 10.6 4.2 7.4
10 5 0.08 0.03 2.0 100 200 25.0 3.9 8.1 3.1 5.7
10 1 0.08 0.05 1.0 50 112 14.0 9.9 19.2 8.9 15.6
10 2 0.08 0.05 1.0 50 125 15.6 9.2 17.3 7.9 13.1
10 5 0.08 0.05 1.0 50 200 25.0 7.0 13.3 5.8 9.6
10 1 0.08 0.05 1.0 100 56 7.0 8.2 15.2 7.7 13.6
10 2 0.08 0.05 1.0 100 63 7.9 7.2 12.7 7.1 12.3
10 5 0.08 0.05 1.0 100 100 12.5 6.1 11.2 5.6 9.6

4.6.4 Results of the Simulations

The different sets of parameters and the results of the various simulations are listed in
Table 4.5. The standard deviation of the random biases, which model the anomalous
refraction, are fixed at σRnd Bias = 0.08 arcsec. This value is computed by:

σRnd Bias =
ARHirt

2.5
(4.144)

where ARHirt = 0.2 arcsec corresponds to the amplitude of the expected anomalous re-
fraction in zenith at periods of some hours, quantified by Hirt (2006) from high-quality
time series of deflections of the vertical data. The division by 2.5 is chosen in order to
generate 95% of δεjRnd Bias < ARHirt. The standard deviation of the white noise is fixed at
σWhite = 0.03 arcsec assuming an observation duration ∆tobs = 2 hours, or σWhite = 0.05
arcsec assuming an observation duration ∆tobs = 1 hour. These values are indirectly de-
rived from Hirt and Seeber (2008). The spacing is fixed at ∆s = 50 or 100, meters since
it no observable real anomalies of wavelength shorter than 100 or 200 meters can generate
significant misalignment signals larger than 10 micrometers, see Chapter 6.

In order to see the differences between the two approaches, two simulations are presented



132 Determination of Equipotential Surfaces

in detail in Figures 4.14 and 4.15.

Simulation 1

Table 4.6: Parameters and results of Simulation 1.

nzc O σRnd Bias σWhite ∆tobs ∆s Tobs #$ σ0.68
M{P1} σ0.95

M{P1} σ0.68
M{P2} σ0.95

M{P2}

[#] [#] [arcsec] [arcsec] [hour] [m] [hour] [day] [µm] [µm] [µm] [µm]

5 1 0.08 0.03 2.0 50 500 62.5 9.7 19.0 5.4 9.9

The parameters and the results of the first simulation are summarized in Table 4.6 and
shown in Figure 4.14. In this case, thanks to significant number of zenith cameras nzc = 5
operating in parallel, the misalignment over 200 meters, generated by the solution, which
estimates biases, is approximately two times smaller than the classical approach:

σ0.68
M{P1} = 9.7→ σ0.68

M{P2} = 5.4 [µm]

The price to pay for this short-wavelength improvements is the significant reduction of
accuracy for long wavelengths. This comes from the fact that the deflections adjusted to-
gether with the biases loose their absolute referencing with respect to the reference system
in favor of the relative accuracy. This is clearly shown in the upper-right plot of Figure
4.14, where the equipotential P1 stays closer to zero but contains more noise for short
periods than P2. This evidence appears equivalently in adjusted deflections shown in the
upper-left plot of Figure 4.14. In other words, we can also say that the second approach
acts like a filter, which reduces short period noise and generates long period correlated
noise.

Finally, we can say that compared to the case of measuring the whole profile with a
single zenith camera, the availability of five cameras increases both the productivity and
the achievable accuracy. According to the parameters given in Table 4.6, the whole CLIC
profile of 50 kilometers needs Tobs = 500 hours of clear night, corresponding to #$ = 62.5
field working days (8 hours per day).

Simulation 2

Table 4.7: Parameters and results of Simulation 2.

nzc O σRnd Bias σWhite ∆tobs ∆s Tobs #$ σ0.68
M{P1} σ0.95

M{P1} σ0.68
M{P2} σ0.95

M{P2}

[#] [#] [arcsec] [arcsec] [hour] [m] [hour] [day] [µm] [µm] [µm] [µm]

2 1 0.08 0.05 1.0 50 1000 125.0 11.2 19.3 13.1 23.7

The parameters and the results of the second simulation are summarized in Table 4.7
and shown in Figure 4.15. In this case, only two zenith cameras nzc = 2 are operating
in parallel and the second approach presents no advantages, for short as well as for long
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Figure 4.14: Results of Simulation 1. (Upper, left) adjusted deflections of the verticals. (Upper,
right) equipotential profiles. (Lower, left) misalignments M200

? {P1,2}. (Lower, right) histogram
and empirical cumulative distribution of M200

? {P1,2}.

wavelengths. Compared to the case of measuring the whole profile with a single zenith
camera, the availability of two zenith cameras mainly increases the productivity, but not
the achievable accuracy.
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Figure 4.15: Results of Simulation 2. (Upper, left) adjusted deflections of the verticals. (Upper,
right) equipotential profiles. (Lower, left) misalignments M200

? {P1,2}. (Lower, right) histogram
and empirical cumulative distribution of M200
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4.7 Cloud Cover in Geneva

This short section addresses an important practical aspect of astrogeodetic observations,
the estimation of the number of clear nights available during a given time span in Geneva.
It is obvious that this number depends strongly on the location and the time of the year.
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Figure 4.16: (Left) histogram of cloud cover in Geneva at 21:00, 00:00 and 03:00 UTC from
data between 1980 and 2014. (Right) probability of having a cloud cover ≤ than a given cover
(between 21:00 and 03:00 UTC). A night with a cover of 2

8 should be adequate for astrogeodetic
observations. Source of data: MeteoSwiss.

4.8 Concluding Remarks

The principal findings of this chapter concerns the analyses of the precision of the ge-
ometric determinations of equipotential surfaces with respect to the misalignment over
200 meters. In particular, performances which can be expected with the astrogravimetric
levelling were treated in details. It is well-known that the astrogravimetric levelling is
formed by two main parts. The first is given by the integration of surface deflections of
the vertical along the profile, the second by the orthometric correction. The precision of
the determination of the first part, called astrogeodetic part, is limited by the accuracy
of the deflections of the vertical, while the second part, called orthometric part, is mainly
limited by the precision of the determination of the mean gravity along the plumbline
which strongly depends on the knowledge of the density field between the surface of to-
pography and the location of the equipotential surface we want to determine.

According to the various Monte-Carlo simulations presented in this chapter, the feasi-
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bility of the determination of the astrogeodetic part with sufficient alignment accuracy
(compared to the constraints of CLIC) is demonstrated.

� If a single zenith camera is engaged for the measurements, the misalignment accuracy
of 10 microns over 200 meters is reached when deflections of the vertical measure-
ments — assuming a noise of 0.09 arcsec, free of correlations for distances between
0 and 300 meters — are carried out with a spacing of 10 meters. Assuming that a
single station needs 30 minutes, the whole profile can be measured in 2’500 hours of
clear night sky, which corresponds to 312.5 working days (8 hours per day). More-
over, according to Section 4.7, because approximately 75 days per year are suited
for astronomical observations in the region of Geneva, the campaign will last about
4.2 years! For a larger spacing of 50 meters, the noise must not exceed 0.06 arcsec,
free of correlations for distances between 0 and 75 meters. In this case, the duration
of a single observation must probably be increased to 2-3 hours and would not be
advantageous compared to the working days needed for the whole campaign.

� If several zenith camera systems are engaged in parallel, the performance of the
astrogeodetic determination increases with respect to productivity and alignment
accuracy. In particular, if an adequate observation setting is chosen, it may be
possible to reduce the impact of the anomalous refraction on the alignment. A
realistic configuration which consists of determining the deflections of the vertical
in parallel, with 5 zenith cameras during 2 hours on successive stations separated
by 50 meters and an overlap of one station, the alignment accuracy is expected at
about 5.4 microns. In addition, the whole profile can be measured in 62.5 working
days, less than 1 year.

Concerning the determination of the orthometric correction, it has been shown that only
the determination of the second part E2, which depends on the mean gravity along the
plumbline at each point of the profile, is critical and ambiguous. According to the results
of the Monte-Carlo simulations, for an equipotential surface located 150 meters below
the surface of topography, the mean gravity should be affected by a white noise larger
than 30 µgal, a correlated noise of 125 or 5’000 µgal if the correlation length is equal
to 1’000 or 16’000 meters, respectively. From this matter of fact, in opposition to the
astrogeodetic part, the correlated noise of the mean gravity is not directly related to the
noise of gravimetric observations10. The precision depends mainly on the knowledge of
the density field between the surface of topography and the location of the equipotential
surface, but also on the methodology used for the determination. It is obvious that the
methods based on observations carried out on the surface of topography as well as in
the tunnel are superior. In this chapter, two methods have been presented. The method
consisting of averaging superposed gravity measurements is certainly not as optimal as
the least-squares collocation approach, but has the benefit to be straightforward, without
needing to fix a subjective parameter, and to provide determinations which have limited
and predictable errors. Nevertheless, the estimation of the accuracy of the orthometric
correction achievable by a given method can only be analysed seriously by gravity field

10it would be if gravimetric measurements could be carried out along the whole plumbline between the
surface of topography and the equipotential.
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simulations. They do not allow better determinations but permit it to classify anomalies
which generate significant and/or observable signals. This kind of analyses is performed
in Chapter 6.
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Chapter 5

Computation of Gravitational Fields

This chapter presents the methods used for the computation of gravitational fields. It also
includes the description of the software QGravity developed in the frame of this thesis.
In theory, it exists two main approaches to compute the fields based on differential or the
integral formulation of the gravitational field respectively. The former consists in solving
Poisson’s partial differential equation:

∆Φgrav(r) = −4πG · ρ(r) (5.1)

the latter consists in integrating Newton’s gravitational potential.

In this thesis, all computations are based on the second approach. This is due to sev-
eral reasons. The main reason is due to the fact that, in the case of a Poisson solver, it is
necessary to define and to discretize the complete domain of interest before starting the
solver. The three-dimensional domain must include, in a continuous manner, the bodies
of interest, the positions where the field must be computed and the positions associated to
the boundary conditions. This is not only time-consuming but might also be problematic
concerning the memory allocation. Moreover, the results are always approximate due to
the mesh size. The advantage of this approach could be really interesting only, if the
domain is limited, if the density field of the bodies varies continuously and irregularly, and
if the field must be computed at all points of the domain. In contrary, the methods based
on the integral formulation do not need any domain to be defined and the computations
can be realized independently for each point of interest.

Formally, the problem to solve is as follows: given a body B, delimited by the surface ∂B,
which contains matter descripted by a density field ρ. Compute the gravitational scalar
potential Φgrav, the gravitational acceleration vector ggrav, and the tensor Γgrav, at a given
position vector r. The scalar potential is given by:

Φgrav(r) = +G ·
ˆˆˆ

B

1

|r− r′|
· ρ(r′) · dV (5.2)
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the acceleration vector is given by:

ggrav(r) = ∇Φgrav(r)

= −G ·
ˆˆˆ

B

r− r′

|r− r′|3
· ρ(r′) · dV

= −G ·


´́ ´

B
rx−r′x
|r−r′|3 · ρ(r′) · dV´́ ´

B

ry−r′y
|r−r′|3 · ρ(r′) · dV´́ ´

B
rz−r′z
|r−r′|3 · ρ(r′) · dV


(5.3)

and the gravitational tensor is given by:

Γgrav(r) = ∇ [∇Φgrav(r)] = ∇ggrav(r)

=
∂ggrav(r)

∂x
⊗ ex +

∂ggrav(r)

∂y
⊗ ey +

∂ggrav(r)

∂z
⊗ ez

= −G ·
ˆˆˆ

B
∇
[

r− r′

|r− r′|3

]
· ρ(r′) · dV

= −G ·
ˆˆˆ

B

∂
(

r−r′

|r−r′|3

)
∂x

· ρ(r′) · dV ⊗ ex

−G ·
ˆˆˆ

B

∂
(

r−r′

|r−r′|3

)
∂y

· ρ(r′) · dV ⊗ ey

−G ·
ˆˆˆ

B

∂
(

r−r′

|r−r′|3

)
∂z

· ρ(r′) · dV ⊗ ez

(5.4)

or more explicitly after developing the tensor products:

Γgrav(r) = +G ·


´́ ´

B
|r−r′|2−3·(rx−r′x)2

|r−r′|5 · dV 0 0´́ ´
B

−3·(rx−r′x)·(ry−r′y)

|r−r′|5 · dV 0 0´́ ´
B
−3·(rx−r′x)·(rz−r′z)

|r−r′|5 · dV 0 0



+G ·


0
´́ ´

B

−3·(ry−r′y)·(rx−r′x)

|r−r′|5 · dV 0

0
´́ ´

B

|r−r′|2−3·(ry−r′y)2

|r−r′|5 · dV 0

0
´́ ´

B

−3·(ry−r′y)·(rz−r′z)

|r−r′|5 · dV 0



+G ·


0 0

´́ ´
B
−3·(rz−r′z)·(rx−r′x)

|r−r′|5 · dV

0 0
´́ ´

B

−3·(rz−r′z)·(ry−r′y)

|r−r′|5 · dV

0 0
´́ ´

B
|r−r′|2−3·(rz−r′z)2

|r−r′|5 · dV



(5.5)
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5.1 Numerical Computation of the Gravitational Field

It is obvious that only a few bodies exist which have closed formulas for the computa-
tion of their gravitational field components. In the literature, under the keywords gravity
forward modeling, we can find various formulas associated to homogeneous simple bodies
as point mass, finite and infinite wire, homogeneous sphere, homogeneous spherical shell,
homogeneous cylinder, etc..., which are described by a few parameters and are simple to
be implemented in a software. In addition, also analytic formulas exist for the computa-
tion of more complex bodies as homogeneous rectangular or triangular prisms or arbitrary
shaped homogeneous polyhedra.

Here, only the formulas for the point mass, the homogeneous sphere and the homoge-
neous polyhedron are used and described. The point mass and the polyhedron formulas
are used for the modeling of gravitational effects of interesting bodies while the homoge-
neous sphere is mainly used for the validation of the polyhedron routines.

5.1.1 Point Mass

If the body B is modeled by a point mass of mass MB at position rB, the gravitational
scalar potential Φgrav, the gravitational acceleration vector ggrav, and tensor Γgrav, at a
given position vector r, are given by:

Gravitational Potential

Φgrav(r) = +
GMB

|r− rB|
if: r 6= rB (5.6)

Gravitational Acceleration

ggrav(r) = −GMB ·


rx−rxB
|r−rB|3
ry−ryB
|r−rB|3
rz−rzB
|r−rB|3

 if r 6= rB (5.7)

Gravitational Tensor

Γgrav(r) = −GMB ·


|r−rB|2−3·(rx−rxB

)2

|r−rB|5
−3·(ry−ryB

)·(rx−rx,B)

|r−rB|5
−3·(rz−rzB )·(rx−rx,B)

|r−rB|5
−3·(rx−rxB

)·(ry−ry,B)

|r−rB|5
|r−rB|2−3·(ry−ryB

)2

|r−rB|5
−3·(rz−rzB )·(ry−ry,B)

|r−rB|5
−3·(rx−rxB

)·(rz−rz,B)

|r−rB|5
−3·(ry−ryB

)·(rz−rz,B)

|r−rB|5
|r−rB|2−3·(rz−rzB )2

|r−rB|5


if r 6= rB

(5.8)



142 Computation of Gravitational Fields

5.1.2 Homogeneous Sphere

If the body B is modeled by a homogeneous sphere of radius RB, density ρB and centered
at position rB, the gravitational scalar potential Φgrav, the gravitational acceleration vector
ggrav, and tensor Γgrav, at a given position vector r, are given by:

Gravitational Potential

Φgrav(r) =


+G

4

3
πR3

BρB ·
1

|r− rB|
if: |r− rB| > RB

+2πGρB ·
(
R2

B −
|r− rB|2

3

)
if |r− rB| ≤ RB

(5.9)

Gravitational Acceleration

ggrav(r) =



−G4

3
πR3

BρB ·


rx−rxB
|r−rB|3
ry−ryB
|r−rB|3
rz−rzB
|r−rB|3

 if: |r− rB| > RB

−G4

3
πρB ·


rx − rxB

ry − ryB

rz − rzB

 if |r− rB| ≤ RB

(5.10)

Gravitational Tensor

Γgrav(r) = −G4

3
πR3

BρB ·


|r−rB|2−3·(rx−rxB

)2

|r−rB|5
−3·(ry−ryB

)·(rx−rx,B)

|r−rB|5
−3·(rz−rzB )·(rx−rx,B)

|r−rB|5
−3·(rx−rxB

)·(ry−ry,B)

|r−rB|5
|r−rB|2−3·(ry−ryB

)2

|r−rB|5
−3·(rz−rzB )·(ry−ry,B)

|r−rB|5
−3·(rx−rxB

)·(rz−rz,B)

|r−rB|5
−3·(ry−ryB

)·(rz−rz,B)

|r−rB|5
|r−rB|2−3·(rz−rzB )2

|r−rB|5


if |r− rB| > RB

(5.11)

and:

Γgrav(r) = −G4

3
πρB ·


1 0 0

0 1 0

0 0 1

 if |r− rB| ≤ RB (5.12)

5.1.3 Homogeneous Polyhedron

The modeling of bodies with homogeneous polyhedra is very useful. Compared to rectan-
gular prisms, it permits to model bodies with complicated shapes in a much better way.
For example, the modeling of the topography in 3D with rectangular prisms, based on a
digital terrain model (DTM), is not ideal, the discretization is not continuous, and not
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straightforward if the Earth’s curvature should be taken into account. In contrary, if the
topography if modeled by a polyhedron, the body is continuous and the consideration of
the Earth’s curvature is simply given, if the coordinates of the vertices are provided in
a 3D Cartesian coordinate system. In addition, once the topology of the polyhedron is
defined, the body can be deformed very easily by changing the coordinates of the vertices
only. This gives the possibility to automatically generate sequences of deformated versions
of a given body.

In the litterature, many publications deal with the computation of gravitational fields
of homogeneous polyhedra. The algorithms proposed by the various authors are not
equivalent and can be evaluated according to the following characteristics:

� homogeneous or linearly varying density.

� based on approximate methods or given by exact analytic formulas.

� cope with triangular meshes or with arbitrary polygonal meshes.

� gravitational functionals which can be computed (e.g., potential, acceleration vector
and tensor).

� allowed positions of the points to be computed (outside, inside or at the boudary of
the body).

� provide formulas for the treatment of singularities.

In Table 5.1, a non-exhaustive list of references is given together with some of their prin-
cipal characteristics. Regardless of the density model, it is obvious that the formulas
provided on the one hand by Petrovic (1996); Tsoulis and Petrovic (2001); Tsoulis (2012)
and on the other hand by D’Urso (2013, 2014) are superior to the other models, since they
give the possibility to compute all gravitational field functionals, at arbitrary positions,
using analytical formulas. However, because the formulas provided by D’Urso were only
published after the development of QGravity and since those ones provided by Petrovic
and Tsoulis are very comprehensive and easy to implement, the computations are solely
based on the publications of Petrovic (1996); Tsoulis and Petrovic (2001), summarized in
Tsoulis (2012).

Basically, the way used by Petrovic (1996) to find the formulas for all functionals of
the gravitational field is very elegant and is based on two subsequent applications of the
divergence theorem1 on simplified versions of Equations 5.2, 5.3 and 5.5 in order to trans-
form the volume integrals into line integrals which have analytic expressions for straight
line segments. The simplifications of Equations 5.2, 5.3 and 5.5 consists on the one hand
in assuming a constant density field ρB and on the other hand in defining the origin of

1also called the Green-Ostrogradski’s theorem, or the Gauss theorem.
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the coordinate system at the computation point r ≡ O:

Φgrav = +GρB ·
ˆˆˆ

B

1

|r′|
· dV

ggrav = +GρB ·


´́ ´

B
∂
∂x

(
1
|r′|

)
· dV

´́ ´
B

∂
∂y

(
1
|r′|

)
· dV

´́ ´
B

∂
∂z

(
1
|r′|

)
· dV



Γgrav = +GρB ·


´́ ´

B
∂2

∂x∂x

(
1
|r′|

)
· dV

´́ ´
B

∂2

∂x∂y

(
1
|r′|

)
· dV

´́ ´
B

∂2

∂x∂z

(
1
|r′|

)
· dV

´́ ´
B

∂2

∂y∂x

(
1
|r′|

)
· dV

´́ ´
B

∂2

∂y∂y

(
1
|r′|

)
· dV

´́ ´
B

∂2

∂y∂z

(
1
|r′|

)
· dV

´́ ´
B

∂2

∂z∂x

(
1
|r′|

)
· dV

´́ ´
B

∂2

∂z∂y

(
1
|r′|

)
· dV

´́ ´
B

∂2

∂z∂z

(
1
|r′|

)
· dV


(5.13)

Table 5.1: Non-exhaustive list of references to algorithms allowing the computation of gravita-
tional field functionals of an arbitrary shaped polyhedron.

references density formulas gravitational
functionnals

allowed
position

treatment of
singularities

Petrovic (1996); Tsoulis and
Petrovic (2001); Tsoulis (2012)

homog. exact Φ, g, Γ all yes

D’Urso (2013, 2014) homog. exact Φ, g, Γ all yes

Arnet (1992) homog. exact Φ, g, Γ all* no

Pohanka (1988) homog. approx g all yes

Pohanka (1998) linear approx g all yes

Hamayun et al. (2009) linear approx Φ all yes

Talwani and Ewing (1960) homog. approx gz external no

Tsoulis et al. (2009) homog. approx Cnm, Snm** external no

* spherical harmonic coefficients
of the gravitational potential.

** position inside the body not
allowed for the gravitational ten-
sor only.

Transformations of Volume Integrals into Surface Integrals

In the three-dimensional space R3, the divergence theorem is given by:ˆˆˆ
V

(∇ · u) · dV =

ˆˆ
∂V

(u · n) · dS (5.14)
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where V is a compact2 volume which has the piecewise smooth boundary ∂V . The vector
field u must be continuously differentiable in the neigborhood of V and n represents the
unit normal field of the boundary ∂V 3 pointing outward.

In order to apply Equation 5.14 to a particular integral given by Equation 5.13, it is
necessary to find a vector field u which has its divergence corresponding to the integrand.
For the potential, Petrovic (1996) found the following field:

uΦ =
r′

2|r′|
=⇒ ∇ · uΦ =

1

|r′|
(5.15)

for the acceleration vector Petrovic (1996) proposes:

ugx =
ex
|r′|

=⇒ ∇ · ugx =
∂

∂x

(
1

|r′|

)

ugy =
ey
|r′|

=⇒ ∇ · ugy =
∂

∂y

(
1

|r′|

)

ugz =
ez
|r′|

=⇒ ∇ · ugz =
∂

∂z

(
1

|r′|

)
(5.16)

and for the gravitational tensor:

uΓxx =
∂

∂x

(
ex
|r′|

)
=⇒ ∇ · uΓxx =

∂2

∂x∂x

(
1

|r′|

)

uΓyy =
∂

∂y

(
ey
|r′|

)
=⇒ ∇ · uΓyy =

∂2

∂y∂y

(
1

|r′|

)

uΓzz =
∂

∂z

(
ez
|r′|

)
=⇒ ∇ · uΓzz =

∂2

∂z∂z

(
1

|r′|

)

uΓxy = uΓyx =
∂

∂y

(
ex
|r′|

)
=⇒ ∇ · uΓxy =

∂2

∂x∂y

(
1

|r′|

)

uΓxz = uΓzx =
∂

∂z

(
ex
|r′|

)
=⇒ ∇ · uΓxz =

∂2

∂x∂z

(
1

|r′|

)

uΓyz = uΓzy =
∂

∂z

(
ey
|r′|

)
=⇒ ∇ · uΓyz =

∂2

∂y∂z

(
1

|r′|

)

(5.17)

2in Rn, compact means that the volume is closed and bounded.
3The boundary ∂V must be an orientable two-dimensional manifold.
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which permits to transform, with Equation 5.14, the volume integrals 5.13 into surface
integrals as follows:

Φgrav = +
GρB

2
·
ˆˆ

∂B

(
r′

|r′|
· n
)
· dS

ggrav = +GρB ·


´́
∂B

(
ex
|r′| · n

)
· dS

´́
∂B

(
ey
|r′| · n

)
· dS

´́
∂B

(
ez
|r′| · n

)
· dS



Γgrav = +GρB ·


´́
∂B

∂
∂x

(
ex
|r′|

)
· n · dS

´́
∂B

∂
∂y

(
ex
|r′|

)
· n · dS

´́
∂B

∂
∂z

(
ex
|r′|

)
· n · dS

´́
∂B

∂
∂y

(
ex
|r′|

)
· n · dS

´́
∂B

∂
∂y

(
ey
|r′|

)
· n · dS

´́
∂B

∂
∂z

(
ey
|r′|

)
· n · dS

´́
∂B

∂
∂z

(
ex
|r′|

)
· n · dS

´́
∂B

∂
∂z

(
ey
|r′|

)
· n · dS

´́
∂B

∂
∂z

(
ez
|r′|

)
· n · dS


(5.18)

Polyhedral Discretization of the Surface Integrals

The next step consists in formulating the surface integrals given in Equation 5.18 as a
function of the geometry defined by a polyhedron. It consists in replacing the general
boundary ∂B by a discretized polyhedral surface S, which is defined as the union of n
polygons Si:

∂B ≡ S =
n⋃
i=1

Si (5.19)

associated with their constant outer unit normal ni and their Hessian plane equation:

Si ≡ ni · r′ = hi (5.20)

where hi represents the signed orthogonal distance between the computation point r and
the plane defined by Si. Per definition, hi < 0 if r is inside the half-space defined by ni
and hi > 0 otherwise.

Now, Equation 5.18 can be reformulated when replacing ∂B is replaced by S. This makes
it possible to express the integral on ∂B by a discrete sum of surface integrals defined on
the polygons Si. And together with Equation 5.20, this permits to replace ni ·r′ by hi and
to take these out of the integral. Finally, since the scalar products (ex · ni), (ey · ni) and
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(ez · ni) are constant on a particular polygon Si, we have:

Φgrav = +
GρB

2
·
n∑
i=1

hi ·
ˆˆ

Si

1

|r′|
· dS

ggrav = +GρB ·


∑n

i=1 ex · ni ·
´́

Si
1
|r′| · dS∑n

i=1 ey · ni ·
´́

Si
1
|r′| · dS∑n

i=1 ez · ni ·
´́

Si
1
|r′| · dS



Γgrav = +GρB ·


∑n

i=1 ex · ni ·
´́

Si
∂
∂x

(
1
|r′|

)
· dS . . .

...∑n
i=1 ex · ni ·

´́
Si

∂
∂y

(
1
|r′|

)
· dS

∑n
i=1 ey · ni ·

´́
Si

∂
∂y

(
1
|r′|

)
· dS

...∑n
i=1 ex · ni ·

´́
Si

∂
∂z

(
1
|r′|

)
· dS . . .

. . .


(5.21)

which shows that the non-geometric quantities, which have still to be solved, are:

Ai =

ˆˆ
Si

1

|r′|
· dS (5.22)

and:

Bi =

ˆˆ
Si

∂

∂x

(
1

|r′|

)
·dS; Ci =

ˆˆ
Si

∂

∂y

(
1

|r′|

)
·dS; Di =

ˆˆ
Si

∂

∂z

(
1

|r′|

)
·dS (5.23)

which allows it to reformulate Equation 5.21 in a more compact way by:

Φgrav = +
GρB

2
·
n∑
i=1

hi ·Ai

ggrav = +GρB ·


∑n

i=1 ex · ni ·Ai∑n
i=1 ey · ni ·Ai∑n
i=1 ez · ni ·Ai



Γgrav = +GρB ·


∑n

i=1 ex · ni ·Bi
∑n

i=1 ey · ni ·Bi
∑n

i=1 ez · ni ·Bi∑n
i=1 ex · ni · Ci

∑n
i=1 ey · ni · Ci

∑n
i=1 ez · ni · Ci∑n

i=1 ex · ni ·Di
∑n

i=1 ey · ni ·Di
∑n

i=1 ez · ni ·Di



(5.24)

Transformations of Surface Integrals into Curvilinear Integrals

In the two-dimensional space R2, the divergence theorem is given by:

ˆˆ
S

(∇ · µ) · dS =

‰
∂S

(µ · η) · ds (5.25)
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where S is a region in R2 which has the piecewise smooth boundary curve ∂S . The
two-dimensional vector field µ must be continuously differentiable in the neighborhood of
S and η represents the outer unit normals at the boundary curve ∂S . In addition, the
curvilinear integral must be computed in the couterclockwise direction.

In order to apply Equation 5.25 to Equations 5.22 and 5.23 it is again necessary to find
2D vector fields which have divergences corresponding to the integrands of the Equations
5.22 and 5.23. In a first step, Petrovic (1996) defines a new coordinate system, with basis
vectors (eix, e

i
y, e

i
z) for each polygon Si. Basically it is so that the origin oSi is placed at the

orthogonal projection of the computation point r on the plane Si. And the basis vectors
are defined such that:

eiz = ni and eix ⊥ eiy ⊥ eiz (5.26)

and if the three-dimensional vector r′ is given in the new two-dimensional coordinate
system as:

ρ′ =

(r′ − oSi) · eix
(r′ − oSi) · eiy

 (5.27)

Petrovic (1996) proposes for Ai:

µAi =
ρ′

|r′|
+

h2
i · ρ′

|ρ′|2 · |r′|
=⇒ ∇ · µAi =

1

|r′|
(5.28)

which permits to transform, with Equation 5.25, the surface integrals of Equation 5.22
into curvilinear integrals as follows:

Ai =

‰
∂Si

(
ρ′

|r′|
+

h2
i · ρ′

|ρ′|2 · |r′|

)
· ηi · ds (5.29)

Concerning the surface integrals Bi,Ci,Di, the derivation of the vector fields are a little
bit more tricky. In fact, Petrovic (1996) decomposes the integrands in order to get:

Bi =

ˆˆ
Si

∂

∂x

(
1

|r′|

)
· dS

= −|ni × ex| ·
ˆˆ

Si

∂

∂xi

(
1

|r′|

)
· dS + ni · ex ·

ˆˆ
Si

∂

∂zi

(
1

|r′|

)
· dS

Ci =

ˆˆ
Si

∂

∂y

(
1

|r′|

)
· dS

= −|ni × ey| ·
ˆˆ

Si

∂

∂xi

(
1

|r′|

)
· dS + ni · ey ·

ˆˆ
Si

∂

∂zi

(
1

|r′|

)
· dS

Di =

ˆˆ
Si

∂

∂z

(
1

|r′|

)
· dS

= −|ni × ez| ·
ˆˆ

Si

∂

∂xi

(
1

|r′|

)
· dS + ni · ez ·

ˆˆ
Si

∂

∂zi

(
1

|r′|

)
· dS

(5.30)
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which implies the search for two vector fields common to all integrands Bi,Ci,Di:

µ1 =
1

|r′|

1

0

 =⇒ ∇ · µ1 =
∂

∂xi

(
1

|r′|

)

µ2 =
hi · ρ′

|ρ′|2 · |r′|
=⇒ ∇ · µ2 =

∂

∂zi

(
1

|r′|

) (5.31)

and permits the transformation of the surface integrals in Equation 5.23 into the following
curvilinear integrals:

Bi = −|ni × ex| ·
‰
∂Si

1

|r′|

1

0

 · ηi · ds+ ni · ex ·
‰
∂Si

hi · ρ′

|ρ′|2 · |r′|
· ηi · ds

Ci = −|ni × ey| ·
‰
∂Si

1

|r′|

1

0

 · ηi · ds+ ni · ey ·
‰
∂Si

hi · ρ′

|ρ′|2 · |r′|
· ηi · ds

Di = −|ni × ez| ·
‰
∂Si

1

|r′|

1

0

 · ηi · ds+ ni · ez ·
‰
∂Si

hi · ρ′

|ρ′|2 · |r′|
· ηi · ds

(5.32)

Polygonal Discretization of the Curvilinear Integrals

The last steps consists in the discretization of the curvilinear integrals and the analytic
solving of the resulting linear integrals. Here the polygonal boundaries ∂Si are replaced
by the union of m linear segments Lij :

Si ≡ Li =
m⋃
j=1

Lij (5.33)

and with the Hessian form of the equation of the line:

Lij ≡ ηij · ρ′ = hij (5.34)

where hij represents the signed orthogonal distance between the point ρ′ and the line
defined by Lij . Per definition, hij < 0 if ρ′ is inside the half-plane defined by ηij and
hij > 0 otherwise.

Now, similarly to the discretization of the surface integrals, Equations 5.29 and 5.32 can
be reformulate, when replacing ∂Si by Li. This renders possible to express the integral
on ∂Si by a discrete sum of linear integrals defined on the segments of lines Lij . Together
with Equation 5.34, this permits to replace ηij ·ρ′ by hij and take these out of the integral.
For the integral Ai this step is easy to follow and gives:

Ai =

m∑
j=1

{
hij ·
ˆ
Lij

1

|r′|
· ds+ h2

ihij ·
ˆ
Lij

1

|ρ′|2 · |r′|
· ds

}
(5.35)
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For the integrals Bi, Ci and Di the discretization is more complicated and Petrovic (1996)
gives finally:

Bi =
m∑
j=1

{
ηij · ex ·

ˆ
Lij

1

|r′|
· ds+ hihij · ni · ex ·

ˆ
Lij

1

|ρ′|2 · |r′|
· ds

}

Ci =
m∑
j=1

{
ηij · ey ·

ˆ
Lij

1

|r′|
· ds+ hihij · ni · ey ·

ˆ
Lij

1

|ρ′|2 · |r′|
· ds

}

Di =

m∑
j=1

{
ηij · ez ·

ˆ
Lij

1

|r′|
· ds+ hihij · ni · ez ·

ˆ
Lij

1

|ρ′|2 · |r′|
· ds

}
(5.36)

It appears that the four relations given in Equations 5.35 and 5.36 contain just the two
integrals:

L 1ij =

ˆ
Lij

1

|r′|
· ds and L 2ij =

ˆ
Lij

1

|ρ′|2 · |r′|
· ds (5.37)

which makes it possible to simplify Equations 5.35 and 5.36 in:

Ai =
m∑
j=1

{
hij ·L 1ij + h2

ihij ·L 2ij
}

Bi =
m∑
j=1

{
ηij · ex ·L 1ij + hihij · ni · ex ·L 2ij

}

Ci =

m∑
j=1

{
ηij · ey ·L 1ij + hihij · ni · ey ·L 2ij

}

Di =

m∑
j=1

{
ηij · ez ·L 1ij + hihij · ni · ez ·L 2ij

}

(5.38)

Final Analytical Formulas

If the origin oLij of the axis es is defined at the point defined as the orthogonal projection
of oSi on the line Lij , the integrals 5.37 can be written as a function of the signed distances
hi and hij by:

L 1ij =

ˆ s2ij

s1ij

1√
h2
i + h2

ij + s2
· ds and L 2ij =

ˆ s2ij

s1ij

1

(h2
ij + s2)

√
h2
i + h2

ij + s2
· ds

(5.39)
where s1ij and s2ij are the abscisse of the first and the second vertices of Lij . And their
analytic solutions are given by:

L 1ij = ln (s2ij + l2ij)− ln (s1ij + l1ij)

L 2ij =
1

hihij
·
[
arctan

(
his2ij

hijl2ij

)
− arctan

(
his1ij

hijl1ij

)] (5.40)
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where l1ij = |r′1ij | and l2ij = |r′2ij |. Finally, by introducing 5.40 into 5.38, and 5.38 in 5.24,
we have the analytical formulas for the gravitational potential, acceleration and tensor,
found by Petrovic (1996), for a homogeneous polyhedron:

Φgrav = +
GρB

2
·
n∑
i=1

hi ·
m∑
j=1

{
hij ·L 1ij + h2

ihij ·L 2ij
}

ggrav = +GρB ·


∑n

i=1 ex · ni ·
∑m

j=1

{
hij ·L 1ij + h2

ihij ·L 2ij
}

∑n
i=1 ey · ni ·

∑m
j=1

{
hij ·L 1ij + h2

ihij ·L 2ij
}

∑n
i=1 ey · ni ·

∑m
j=1

{
hij ·L 1ij + h2

ihij ·L 2ij
}


Γgrav = +GρB ·

∑n
i=1 ex · ni ·

∑m
j=1

{
ηij · ex ·L 1ij + hihij · ni · ex ·L 2ij

}
. . .

...
. . .


(5.41)

Figure 5.1: Vectorial and geometrical quantities in the derivation of the gravitational potential,
acceleration vector and tensor for a homogeneous polyhedron. The vectors and lines drawn in blue
belong to the plane defined by the polygon Si.
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Treatment of Singularities

In the previous developments, the problem of singularities has been neglected. However,
there are some configurations where the divergence theorem cannot be directly applied.
This happens when the derivatives of the vector fields u and µ are not continuous inside
the corresponding regions of integration. Thanks to the publication of Tsoulis and Petro-
vic (2001), the singularities occurring in the formulation of Petrovic (1996) have been
identified and treated in a proper way in order to provide a general formulation which is
appropriate for a software implementation, as it is well summarized in Tsoulis (2012) .

5.2 Development of QGravity

QGravity is a software developed in the frame of this thesis in order to compute gravita-
tional fields from density models. The decision to start an own development arose, when
looking at an existing software, who gives the possibility to compute the gravitational
potential, up to its second spatial derivatives of homogeneous polyhedral bodies, was not
satisfaying.

In the geophysical community there are several very efficient and powerful software pack-
ages which permit to generate complex density models. But unfortunately, because the
traditional gravity observable is provided by gravimeters, they only provide the possibility
to compute the vertical component gz of the acceleration vector. In addition, they usually
only provide interactive functionality, in contrast to batch processing, to generate density
models and to compute gravity fields.

Finally, there are many advantages of having the full control of the source code. In
our special case, we can mention that it permits to integrate optimal algorithms for the
generation of density models and the computation of gravity field components. And it
allows the integration of all pre-processing (such as coordinate transformations) in the
main code in order to avoid non-optimal external pre-processing routines (costly in term
of computer resources, e.g., pre-processing of millions of DTM4 points).

5.2.1 Software Overview

QGravity is a software with a GUI5 coded in C++. The GUI is based on the libraries of
Qt (Qt Company , 2014). The software is divided in four main parts which interact with
each other (see Figure 5.2):

1. Mass models

2. Geometric computations

3. Gravity fields

4. 3D visualization

4Digital terrain model.
5Graphical user interface
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In addition, a coordinate transformation pipeline can be defined and applied to the data
which are imported — or exported — from the different modules. This is mainly necessary
to apply some coordinate transformations to the raw data because they are usually not
given in 3D Cartesian coordinates, which are needed for the exact gravitational compu-
tations. Finally, all functionality provided by the GUI can be used for batch processing
using an appropriate script protocol.

Mass Models 

3D polyhedron Model (*.off)
DTM (*.asc, *.agr)

Import

Mass model from 2 tesselations 

Point masses (*.agr, *.xyz, *.bin)

Geometric primitives (globe, cuboid)
Generation

Gravity Fields 

Gravitational potential
Gravitational acceleration

Computed Components

Point masses

Gravitational tensor

Homogeneous polyhedron
Available Algorithms

Geometric Computations

3D surface (*.off)
DTM (*.asc, *.agr)

Import

Tesselation with boundary 

Point (*.agr, *.xyz, *.bin)

Generation

Profile of points
Grid of points

Export

Polyhedron (*.off) 
Mass model (*.qgr)

List of vertices (*.xyz, *.bin)

Export
3D surface (*.off) 
List of vertices (*.xyz, *.bin)

Polyline (*.lin)

Mass model (*.qgr)

3D tube of arbitrary section and path

Projection of points on faces

Import
Position (*.xyz)
Gravity field (*.gra)

Export
Gravity field (*.gra)

Batch processing

Planarity of faces of polyhedron
Geometrical & Topological Functions

Topological consistency of polyhedron
Center of mass and mass of polyhedron

3D Visualization (OpenGL)

Polyhedra (1 color coding per object)
Point masses (color coding on density)

Mass Models

Lines (1 color coding per group)
Faces (1 color coding per object)
Geometrical Objects

Gravitational Fields
All components as scalar field (color coding)

Points (1 color coding per group)

Gravitational acceleration as vector field
Gravitational potential as z-separation

Options
z-scaling
Transparency
Snapshots
Generation of animated sequences
Color settings

3D Navigation
Rotations
Translations
Zoom

Figure 5.2: Overview of the main structures and functionality implemented in the software
QGravity.

5.2.2 Coordinate Transformation Pipeline

The coordinate transformation pipeline allows to transform rigorously the coordinates
of points given in a specific system to an other system. The pipeline consists in the
application of four optional successive transformations:

1. projective coordinates6 to ellipsoidal coordinates7:

{East,North, hell} −→ {λ, φ, hell} (5.42)

6Swiss grid 03, Swiss grid 95 or French Lambert 93.
7Defined by the projection.
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2. ellipsoidal coordinates to geocentric Cartesian coordinates:

{λ, φ, hell} −→ {X,Y, Z} (5.43)

3. 3D similarity transformation of geocentric Cartesian coordinates:

{X,Y, Z} −→ {X2, Y2, Z2} (5.44)

4. geocentric Cartesian coordinates to topocentric coordinates:

{X2, Y2, Z2} −→ {y, x, z} (5.45)

The transformations are applied in this order when points or objects are imported, and in
the opposite order when points or objects are exported. In addition, each transformation
can be applied optionally in order to import and export data from various coordinate
systems with this transformation pipeline. The parameters of the pipelines are stored in
specific text files and they are applied, once they have been selected in the main menu
of QGravity. For example, the file which defines the transformation pipeline between the
Swiss grid 03 and the CCS8 (Jones, 2000) is defined as follows:

# Transformation pipeline parameters for QGravity #

##################################################

projection yes

LBh to XYZ yes

HELMERT 3D yes

XYZ to topo yes

--------------------------------------------------

proj name LV03

--------------------------------------------------

a datum proj 6377397.155

e2 datum proj 0.006674372230614

--------------------------------------------------

transl X m 626.447

transl Y m 45.100

transl Z m 378.788

rotX arcsec 0.000

rotY arcsec 0.000

rotZ arcsec 0.000

scale ppm 1.000

--------------------------------------------------

X0 datum 2 4395400.36378

Y0 datum 2 465785.056736

Z0 datum 2 4583458.22601

8CERN Coordinate System
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a datum 2 6378137.000

e2 datum 2 0.006694380023011

Xi0 datum 2 0.000

Eta0 datum 2 0.000

east 0 topoc 2000.00000

north 0 topoc 2097.79265

z 0 topoc 2433.66000

az 0 deg 34.000776

--------------------------------------------------

5.2.3 Mass Models

The mass model part contains the functionalities for the import, the generation and the
storage of the bodies, the gravity fields of which must be computed. Basically, there are
two kind of bodies which can be treated, point masses and homogeneous polyhedra. In
QGravity a MassModel object is a set of PointMass and Polyhedron objects.

A PointMass object is formed by a Vertex object in association with a Mass. A Polyhedron

is basically formed by a set of Face objects which are formed by a set of Vertex objects.
In addition, the attribute Density is associated to the geometry. Internally, a Polyhedron

is represented by a vector containing all Vertex objects and a vector containing all Face
objects which are related to the Vertex objects by indices. In addition, if the polyhedron
is seen from the outside, the indices of Vertex objects of a given Face object must be
given in a counterclockwise order. This implicitly gives the right direction of the normal
of faces, crucial for all computations.

Import

QGravity allows the import of various data sources:

3D polyhedron model (*.off) The Object File Format (OFF) is a standard common
ASCII format used for the exchange of the geometry of arbitrary 3D polyhedra. It has the
advantage of being very simply and easily editable. Moreover, the meshes have the same
structure as the Polyhedron objects in QGravity and render the creation of Polyhedron
objects in a straight forward way.

OFF

2452 2500

6.279052 0.000000 -99.802673

6.229540 0.786974 -99.802673

6.081784 1.561537 -99.802673

5.838115 2.311473 -99.802673

5.502375 3.024956 -99.802673
...
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4 0 1 51 50

4 1 2 52 51

4 2 3 53 52

4 3 4 54 53

4 4 5 55 54

4 5 6 56 55

4 6 7 57 56

4 7 8 58 57
...

Digital terrain model (*.asc, *.agr) One of the most common formats used for Digital
terrain models (DTM) is the ESRI ASCII raster format (*.asc, *.agr). It is a 2D+1
format which provides the heights of points on a regular grid. This regular grid represents
the horizontal positions in a predefined projection system. From this kind of data, the
creation a properly closed polyhedron in the Euclidean 3D Cartesian space needs to look
carefully at different geometrical aspects. Firstly, because the data only provides the
upper part of the geometry, it is necessary to define an appropriate floor and find a way to
link both parts. In QGravity the floor is defined as a surface of equal heights discretized
by a rectangular grid defined in the projection system of the DTM file. The number of
discretization points must be given explicitly and depends on the horizontal extension of
the DTM. Thus, because once the points are transformed into the 3D Cartesian system,
the points defining the floor are no longer on a plane but also have to approximate the
Earth curvature. Concerning the link between the upper part and the floor, four polygons
are sufficient in order to close the polyhedron (see Figure 5.3).

Figure 5.3: Polyhedron created with QGravity from a digital terrain model ESRI ASCII raster
format. Source of raw data: Swiss Federal Office of Topography.

QGravity provides a further way to import a DTM by creating a set of PointMass objects
instead of a single Polyhedron. In this case, each cell is discretized in the height component
by PointMass objects (see Figure 5.4). The position and the mass of these objects are



5.2 Development of QGravity 157

computed from adjacent four-sided polyhedra. The main interest of importing a DTM with
this method is that it permits to model complicated density variations in a straightforward
way.

Figure 5.4: Polyhedron created with QGravity from a digital terrain model ESRI ASCII raster
format. Source of raw data: Swiss Federal Office of Topography.

NCOLS 701

NROWS 481

XLLCORNER 550000.0

YLLCORNER 254000.0

CELLSIZE 25

NODATA VALUE -9999

353.4 353.4 352.6 351.7 350.9 350.0 349.7 349.2 342.5 338.3 335.6 332.9 . . .

355.6 355.4 354.5 353.7 352.8 351.9 351.2 348.6 341.9 338.0 335.4 333.2 . . .

357.9 357.3 356.5 355.6 354.2 352.4 350.6 346.0 340.5 337.9 335.5 333.0 . . .

360.1 359.0 357.2 355.4 353.6 351.8 349.9 344.1 339.5 337.5 335.2 333.2 . . .

361.3 359.1 357.2 355.4 353.5 351.6 349.4 344.8 340.5 338.0 335.5 333.0 . . .

362.6 359.1 357.3 355.4 353.5 351.8 350.6 347.9 343.4 339.4 336.9 334.4 . . .
...

Point masses (*.xyz) PointMass objects can be imported from an ASCII file (*.xyz)
which contains 5 columns:

1. Text identification

2. x-coordinate in meter

3. y-coordinate in meter

4. z-coordinate in meter

5. the mass in kilogram



158 Computation of Gravitational Fields

0 616025.000 92675.000 2725.000 333750000.000

1 616025.000 92675.000 2775.000 333750000.000

2 616025.000 92675.000 2825.000 333750000.000

3 616025.000 92675.000 2875.000 333750000.000

4 616025.000 92675.000 2925.000 333750000.000

5 616025.000 92675.000 2975.000 333750000.000

6 616025.000 92675.000 3025.000 333750000.000

7 616025.000 92675.000 3075.000 333750000.000

8 616025.000 92675.000 3125.000 333750000.000
...

Generation

The generation of bodies using various and specific methods is an essential part of this
thesis. It permits to simulate the gravitational field of uncommon objects with a high level
of automation and flexibility. Three features have been implemented in order to generate
Polyhedron objects:

Geometric primitives Two kinds of geometric primitives can generate Polyhedron ob-
jects: globes and four-sided cuboids. The main utility of creating this kind of simple
Polyhedron objects is related to the validation process of the complex algorithms imple-
mented in QGravity. In fact, because the homogeneous sphere has a well-known grav-
itational field in the whole space, the fields computed from a Polyhedron object which
approximate a sphere must converge to the exact solution when the discretization is re-
fined, as it is shown in Section 5.2.8.

Polyhedron from 2 tessellations The generation of Polyhedron objects using two tes-
sellations is a kind of surface reconstruction algorithm9 developed in the frame of this
thesis, which does not need the knowledge of the surface normal at each vertex. This
method is very powerful for the generation of 3D bodies when we dispose of three spe-
cific sets of Vertex objects. The first set, {Vertex}upper, represents a 2D+1 point cloud
which approximates the upper boundary of a given body. The second set, {Vertex}lower,
represents a 2D+1 point cloud which approximate the lower boundary of the same body.
The upper and lower parts of this body are discriminated by a common boundary curve,
represented by the third set {Vertex}boundary. In Figure 5.5 an example of the surface
reconstruction of the Lake of Geneva is shown.

Once the sets {Vertex}upper, {Vertex}lower and {Vertex}boundary are provided, two sep-
arate constrained Delaunay tessellations are processed. In QGravity, the very powerful
routines of Shewchuk (1996) and Shewchuk (2002) have been implemented to do this

9In the computational geometry community, the most famous 3D surface reconstruction algorithm is
the Poisson surface reconstruction algorithm, discovered by Kazhdan et al. (2006). It consists in generating
a mesh from 3D oriented vertices (the surface normals is known at each vertex).
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difficult task. The first tessellation, Tupper, is computed with the following input:

Tupper ≡

 {Vertex}upper

⋃
{Vertex}boundary , as vertices.

{Vertex}boundary , as boundary.
(5.46)

and the second tesselation, Tlower, is computed with the following input:

Tlower ≡

 {Vertex}lower

⋃
{Vertex}boundary , as vertices.

{Vertex}boundary , as boundary.
(5.47)

Finally, the Polyhedron object can be generated from the union of the two tessellations
using the common boundary (see Figure 5.6):

Polyhedron ≡ Tupper

⋃
Tlower (5.48)

Figure 5.5: Plane view (upper) and perspective view (lower) of the three sets used for the gener-
ation of a Polyhedron object. {Vertex}upper in blue, {Vertex}lower in green and {Vertex}boundary

in black. The z-component is scaled by a factor of 20 with respect to the x,y-components.
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Figure 5.6: (Upper) perspective view of the two tesselation Tupper and Tlower. (Lower) final
Polyhedron object. The z-component is scaled by a factor of 20 with respect to the x,y-components.

3D tube of arbitrary section and path This functionality is based on a three-dimensional
path r(s) and cross section ρ(s) in order to generate a Polyhedron object. The former
is given by the set r(s) ≡ {Vertex}path and the former by the set ρ(s) ≡ {Vertex}section.
As illustrated in Figures 5.7 and 5.8, the idea consists in constructing a closed tube of
constant cross section ρ(s) which follows the trajectory defined by the path r(s).

The tube is build by sequential extrude operations of ρ(s) along r(s). In order to do
this operation, it is necessary to transform the ρ(s) into a particular the local moving
frame {e1(s), e2(s), e3(s)} attached to r(s). There are several possibilities in order to
compute a local moving frame. For physical applications the most natural one is the
Frenet frame which has the particularities to be orthogonal, has e1(s) tangent to r(s) and
e2(s) pointing to the center of the local oscultating circle of r(s). In addition, the Frenet
frame is subjected to a non-zero torsion which would generate unwanted twists which neg-
atively affect both the orientation and the topology of the tube. From this point of view,
instead of the Frenet frame, a parallel transport moving frame is used. It is orthogonal
and has its first basis vector e1(s) also tangential to r(s). Moreover, e2(s) and e3(s) are
defined in such a way that the torsion is equal to zero everywhere (Hanson and Ma, 1995).
In addition, it is necessary to define a vector n, which defines a constant direction in space
to which e2(s) is always perpendicular. Formally, this particular parallel transport moving
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frame is defined by:

e1(s) =
dr(s)

ds

e2(s) =
n× e1(s)

|n× e1(s)|

e3(s) = e1(s)× e2(s)

(5.49)

where, in QGravity, n = ez.

Figure 5.7: Input data used for the generation of 3D tubes of arbitrary section and path.
(Right) the section ρ(s) approximated by {Vertex}section. (Right) the path r(s) approximated
by {Vertex}path.

Figure 5.8: 3D tube generated by the section and the path given in Figure 5.7.
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Geometrical & Topological Functions

In the perspective of the computation of the gravity field according to the formulas given
in Section 5.1.3, the class of objects which can be considered is restricted to closed oriented
manifolds. In our discretized case, it means that a Polyhedron object must be a closed
oriented manifold-mesh, or, according to Hoffmann (1989), a Polyhedron represented by
its boundary is also called: a manifold B-rep solid.

Now the question is how to be sure that a given Polyhedron object, generated or im-
ported by the various ways described above, is a valid closed oriented manifold-mesh?
The answer requires both, geometrical and topological validation procedures which are
largely treated in the geometrical computing community. The validation procedures and
algorithms which are proposed are more or less restrictive and depend on the definition
of what is a solid — or a polyhedron (Ledoux , 2013). A rigorous validation procedure is
given by Hoffmann (1989) in three steps based on geometrical and topological tests which
are beyond the scope of this thesis. A more practical description of a possible validation
procedure can be found in Ledoux (2013). This procedure is based on the international
standard ISO 1910710 which is based on hierarchical validation procedures. Objects with
the lowest dimension as vertices and edges are validated before the faces and the shell.
In a similar way, when only a closed composite surface is considered, Gröger and Plümer
(2011) propose a hierarchical validation procedure based on 13 axioms.

Topological consistency of polyhedron Concerning QGravity, an exhaustive and rig-
orous geometrical and topological validation has not been implemented. This is mainly
due to the complexity and the time which would have been consumed by this task. In
addition, in the case of a suspicious object, it is always possible to make an export and to
perform proceed the validation in an external software. Nevertheless, an important topo-
logical consistency test, which covers a large amount of possible topological error sources,
is implemented. It checks if any two adjacent faces have compatible orientation. This
is done by checking that for each edge Edgei(Vertex1, Vertex2), given by a start vertex
Vertex1 and on end vertex Vertex2, there exists one edge Edgej(Vertex2, Vertex1) which
contains the same vertices but in the opposite order.

Planarity of faces of polyhedron A Polyhedron object is supposed to have planar faces.
For a particular face, if the number of vertices is larger than 3, the orthogonal distance
between the middle plane of the polygon and all vertices are checked so that the maximal
value does not exceed a certain threshold. In the frame of this thesis, the limit is fixed at
0.01 meters.

Center of mass and mass of polyhedron The center of mass coordinates and the mass
of a Polyhedron object can be computed according to Mirtich (1996) who provides also
a c-code which was migrated to C++ and adapted to the data structure of QGravity.

10Geographic information – Spatial schema
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Export

The MassModel objects can be exported — or stored — in different file formats for further
utilization.

File format *.qgr This is a binary format created specifically in this thesis for the stor-
age of a MassModel object which can contain an arbitrary number of Polyhedron and
PointMass objects.

File format *.off See Section 5.2.3.

File format *.xyz See Section 5.2.3.

5.2.4 Geometric Computations

The geometric computation part contains the functionalities for the import, the generation
and the export of geometric objects. The main purpose of this part is to generate specific
Vertex objects for which the gravitational field must be computed. They are generated us-
ing various geometrical operations which are sometimes related to other geometric objects.
In QGravity three kind of geometric objects are available: Vertex, Vector, Polyline and
Face.

Import

The following files can be imported in order to generate geometric objects:

Surfaces (*.off) Compared to the import explained in Section 5.2.3, the Object File
Format (OFF) is not only reserved for the storage of polyhedra but also for arbitrary
non-closed surfaces. In QGravity a list of Face objects is generated when importing an
*.off file.

Digital terrain model (*.asc,*.agr) Here the ESRI ASCII raster format can be imported
as a list of Face or Vertex objects.

Point (*.xyz) A simple list of points can be imported as a list of Vertex objects.

Vector (*.vec) A list of vectors can be imported as a list of Vector objects. The ASCII
file format *.vec contains 7 columns defined as follows:

1. Text identification

2. x-coordinate of the position in meter

3. y-coordinate of the position in meter

4. z-coordinate of the position in meter

5. vx-component of the vector in meter
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6. vy-component of the vector in meter

7. vz-component of the vector in meter

0 0.252878000 -0.055721333 0.007564000 0.944801978 -0.314949797 0.090309729

1 0.248432333 -0.045806000 0.016476000 0.666637215 -0.246646983 0.703391846

2 0.243834333 -0.043640667 0.020519333 0.228209929 -0.124779121 0.965582932

3 0.250284667 -0.051260333 0.014404667 0.691658967 0.198972366 0.694275069

4 0.246126000 -0.056589000 0.014456667 0.060768494 -0.535409527 0.842403602

5 0.245525000 -0.064299667 0.003354667 0.454855373 -0.882888997 0.116677369

6 0.246641000 -0.058992333 0.000937667 -0.250161009 0.089299555 -0.964077310
...

Polyline (*.lin) A polyline can be imported as a Polyline object. The ASCII file format
*.lin is identical to the format *.xyz. The points are simply interpreted as forming a path
instead of individual positions.

Generation

In this section, five methods implemented in QGravity for generating geometrical objects
are exposed:

Profile of points This functionality permits to generate a list of Vertex objects, sepa-
rated by a constant distance, along an arbitrary 3D straight line defined by its start and
end positions.

Grid of points This functionality permits to generate a list of Vertex objects which
represents a sequence of regular grids. Any spacing, position and orientation of the grids
can be specified.

Tessellation with boundary A list of Face objects can be generated by a constrained
2D Delaunay tessellation. The input data are a point cloud and a boundary given by
two different lists of Vertex objects. The tessellation is processed using the (x, y)-
components. As for the generation of Polyhedron, the computation is done with the
routines of Shewchuk (1996) and Shewchuk (2002).

Projection of points on faces This functionality generates Vertex objects. They are
projections of predefined Vertex objects on a surface defined by a list of Face objects,
along ez. If it is necessary to project a point along the height component eH instead
of ez, a transformation pipeline can be applied before the projection in order to have ez
corresponding to eH .
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Normal vectors of faces This functionality generates Vector objects from a surface given
by a list of Face objects. For each Face object a Vector object is generated. The position
is the mean position of the Face object. The vector itself is the normalized normal vector
of the Face object.

Export

Every geometric object can be exported in the corresponding ASCII file format:

File format *.off See Section 5.2.4.

File format *.xyz See Section 5.2.4.

File format *.vec See Section 5.2.4.

File format *.lin See Section 5.2.4.

5.2.5 Gravity Fields

The gravity fields part contains the functionalities for the import, the computation and
the export of the gravity fields. In QGravity a gravity field is modeled by a GravityField

object which contains a list of Gravity objects. The object Gravity contains the compo-
nents of the position vector r and the values of the different components of the gravitational
field as described in Table 5.2.

Table 5.2: Components stored in an object Gravity.

index component symbol unit

1 identification ID string

2 position x [m]

3 position y [m]

4 position z [m]

5 gravitational potential Φgrav

[
m2

s2

]
6 gravitational acceleration gx,grav [mgal] =

[
m
s2

]
· 10−5

7 gravitational acceleration gy,grav [mgal]

8 gravitational acceleration gz,grav [mgal]

9 gravitational tensor Γxx,grav [E] =
[

1
s2

]
· 10−9

10 gravitational tensor Γyy,grav [E]

11 gravitational tensor Γzz,grav [E]

12 gravitational tensor Γxy,grav [E]

13 gravitational tensor Γxz,grav [E]

14 gravitational tensor Γyz,grav [E]
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Available Algorithms

The gravitational field components given in Table 5.2 are computed by the formulas given
in Section 5.1.1 for the PointMass objects. And for the Polyhedron objects the for-
mulas of Petrovic (1996) and Tsoulis and Petrovic (2001), exposed in Section 5.1.3, are
implemented.

Import and Export

Once MassModel objects have been defined, it is necessary to define at which positions the
gravitational field has to be computed. These positions can be imported from an *.xyz file.
After the computation, the gravitational field can be exported to the ASCII file format
*.gra. Each line corresponds to one position and each column contains the components
given in Table 5.2.

5.2.6 Batch Processing

In order to increase the automation of systematic computations and to allow for parallel
computations, the principal functionalities of QGravity for the generation of mass models
and for the computation of gravity fields can be executed in a batch processing mode.
Basically a batch process can be started from a shell as follows:

>> QGravity.exe FUNCTION input batch file.txt

where FUNCTION is a keyword which defines the function to be executed. According to
the particular FUNCTION, a simple ASCII file input batch file.txt containing all batch
processing commands must be given. A summary of all available FUNCTION is given in
Table G.1.

For example, using the function MASS2GRAVITY, for some points given in the file points.xyz,
we want to compute the gravitational field of two bodies B1 and B2, generated by:

� A body B1 of density ρB1 = 2670
[

kg
m3

]
given by the file body1.off.

� A body B2 of density ρB2 = 1000
[

kg
m3

]
which has to be generated by two tessella-

tions. The points of the upper and lower surfaces are given by the files upper.xyz and
lower.xyz. The points of the common boundary are given by the file boundary.xyz.

In addition, the results should be output into the file field.gra. Assuming that all files are
placed in a folder with the path c:\QGravity\data, the input file input batch file.txt

is defined as follows:

INPUT PATH

c:\QGravity\data
INPUT LIST PTS TO COMPUTE

\points.xyz
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INPUT OFF

\body1.off 2670.0

INPUT MASS FROM 2 TESSELATIONS

\lower.xyz \upper.xyz \boundary.xyz 1000.0

OUTPUT

\field.gra
END

5.2.7 3D Visualization

The development of the 3D visualization tool was initiated in order to increase the in-
teractivity and, most importantly, in order to undertake comfortable visual checks of the
various objects imported, generated and computed in QGravity. In addition, since the
objects which have to be rendered are usually formed of several thousand primitives, the
standard 3D visualization tools provided by standard software as Matlab are not powerful
enough. For these reasons, the tool is based on the open source library OpenGL11 which
permits high-performance hardware-accelerated rendering.

All objects described in the previous section can be visualized (see Figure 5.9). Depend-
ing on their geometrical properties, they can be rendered as solids, meshes, vectors or
points. The navigation in the 3D scene can be done easily by standard tools as rotations,
translations and zooming.

11Open Graphics Library.



168 Computation of Gravitational Fields

Figure 5.9: Print screen of the 3D visualization tool of QGravity which shows the gz,grav compo-
nent of the gravitational field generated by a human body. The body is actually a homogeneous

polyhedron of density ρ = 1000
[

kg
m3

]
.

5.2.8 Validation of the Polyhedron Algorithm

It is obvious that the validation of the algorithms implemented in QGravity for the com-
putation of gravity fields generated by a polhedron, described in Section 5.1.3, is a crucial
task. The validation can be done in several ways that are more or less reliable and more
or less time-consuming. In the literature we can find some authors comparing their results
with known analytic fields (Arnet , 1992; Tsoulis, 2012) or with fields which have already
been computed and published by other authors (D’Urso, 2013). Moreover, some valida-
tion procedures also tried to look at the results at some points which are critical in terms
of singularities (D’Urso, 2013; Tsoulis, 2012).

In this thesis, the validation is realized by comparing the analytic solution of the gravi-
tational field generated by a sphere S (Section 5.1.2) and the results of three different
polyhedra S25, S50 and S100, which approximate S with an increasing level of resolu-
tion. They approximate S with 25× 25, 50× 50 and 100× 100 meridians and parallels,
respectively. In order to validate the results inside and outside the body, the fields are
computed for points belonging to three different planes P−50, P0 and P+50, of 1000× 1000
meters extend (see Figure 5.10). The sphere has a radius of 100 meters and a density
ρ = 2670 kg

m3 . The comparisons are computed for each point and for each component of
the gravitational field. The relative errors ε are visualized in Figures H.1 to H.10 and a
summary is provided in Table 5.3. As expected, the results converge to the true values
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Figure 5.10: Representation of the objects used for the validation of the algorithms implemented
in QGravity for the computation of gravitational fields of homogeneous polyhedra.

with the square of the resolution.
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Table 5.3: Summary of the comparison between the gravity field generated by an analytic sphere
S and three different approximations S25, S50 and S100. The fields are computed for three different
planes P−50, P0 and P+50 (see Figure 5.10). The relative errors ε are given in percent. The fields
having no value are due to signals equal to zero which implies undefined relative errors.

component plane S25 S50 S100

ε min ε max ε ε min ε max ε ε min ε max ε
[%] [%] [%] [%] [%] [%] [%] [%] [%]

P−50 1.443 1.014 1.475 0.362 0.254 0.370 0.091 0.064 0.093
Φgrav P0 1.444 0.965 1.555 0.362 0.242 0.388 0.091 0.060 0.097

P+50 1.443 1.014 1.475 0.362 0.254 0.370 0.091 0.064 0.093

P−50 1.433 0.061 2.171 0.360 0.022 0.667 0.090 0.002 0.167
gx,grav P0 1.436 0.013 2.436 0.360 0.029 0.511 0.090 0.002 0.132

P+50 1.433 0.061 2.171 0.360 0.022 0.667 0.090 0.002 0.167

P−50 1.435 0.005 6.733 0.360 0.028 0.379 0.090 0.002 0.167
gy,grav P0 1.437 0.001 4.478 0.360 0.019 0.549 0.090 0.002 0.132

P+50 1.435 0.005 6.733 0.360 0.028 0.379 0.090 0.002 0.167

P−50 1.504 0.347 2.332 0.378 0.012 0.526 0.095 0.026 0.128
gz,grav P0 — — — — — — — — —

P+50 1.504 0.347 2.332 0.378 0.012 0.526 0.095 0.026 0.128

P−50 1.657 0.019 222.882 0.380 0.030 7.400 0.094 0.006 1.858
Γxx,grav P0 1.609 0.025 269.978 0.398 0.019 22.962 0.100 0.005 6.066

P+50 1.657 0.019 222.882 0.380 0.030 7.400 0.094 0.006 1.858

P−50 1.597 0.014 220.023 0.378 0.007 7.400 0.094 0.006 1.858
Γyy,grav P0 1.626 0.025 267.824 0.388 0.019 20.891 0.100 0.005 6.066

P+50 1.597 0.014 220.023 0.378 0.007 7.400 0.094 0.006 1.858

P−50 1.555 0.019 73.288 0.371 0.007 7.782 0.093 0.007 0.939
Γzz,grav P0 1.519 0.416 5.330 0.381 0.015 2.910 0.096 0.019 1.039

P+50 1.555 0.019 73.288 0.371 0.007 7.782 0.093 0.007 0.939

P−50 — 0.099 — — 0.018 — — 0.068 —
Γxy,grav P0 — 0.019 — — 0.070 — — 0.091 —

P+50 — 0.099 — — 0.018 — — 0.068 —

P−50 — 0.481 — — 0.369 — — 0.092 —
Γxz,grav P0 — — — — — — — — —

P+50 — 0.481 — — 0.369 — — 0.092 —

P−50 — 0.156 — — 0.178 — — 0.092 —
Γyz,grav P0 — — — — — — — — —

P+50 — 0.156 — — 0.178 — — 0.092 —



Chapter 6

Expected Gravity Field Signals and
Observability at Short Wavelengths

6.1 Introduction

This chapter contains some studies about gravity field signals which can be expected on
the Earth’s surface or in the near underground — at approximately hundred meters un-
derground — at very small wavelengths, from a couple of meters to some kilometers.
These studies have multiple objectives which are all related to the perspective of realizing
a straight line, using HLS systems, with a relative precision of ten micrometers over two
hundred meters.

The first objective is to estimate the geometrical consequences, on equipotential profiles,
of the different phenomena which affect the gravity field. Are they significant? Are they
negligible? When do they become problematic? A first trivial example is to consider
that a profile realized by a HLS can be assumed to be straight, without even taking into
consideration a basic spherical model for the Earth. Regarding the alignment constraints,
up to which wavelength can this model be assumed to be sufficient?

The second objective is to estimate the consequences of different phenomena on grav-
ity field observables and their respective reductions. Primary because the observations
are usually not carried out at the same positions as the equipotential profile which must
be determined. In addition, since the observations are not carried out at the same time,
time-varying phenomena can theoretically also introduce random, correlated and/or sys-
tematic errors.

But maybe the most important aspect is the introduction of the concept of observ-
ability. Here, the observability is always related to a certain methodology or strategy for
the determination of underground equipotential profiles. It consists in testing the ability
of this particular strategy, assuming error-free observations, to determine, with sufficient
accuracy, the geometry of the equipotential profile generated by a certain mass anomaly.
For example, the observability of the astrogravimetric levelling methodology is limited
by the fact that the orthometric corrections, even computed from error-free gravimetric
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observations, can only be theoretically determined in very special cases, see Section 4.4.2.
Furthermore, depending on the mass anomaly and the strategy for determining the mean
gravity along the plumbline, we saw that there are cases which are counterproductive.
Thus, given a certain mass anomaly, it is possible to simulate on the one hand the true
equipotential in the tunnel, and on the other hand, error-free observations of the deflection
of the vertical on the topography and gravimetric observations on the topography and in
the tunnel which can be used to compute the equipotential profile according to a given
strategy. Finally, the latter equipotential profile can be compared to the true one in order
to see if they match at a sufficient level of accuracy.

The main difficulty of this kind of analysis is related to the choice of the environments
which are considered. If the analyses are concentrated on a very precise emplacement,
the advantage is that it is possible to model several phenomena with very good, precise
and realistic a priori information as topography, geology, water table levels, etc... But on
the other hand, the results can always be suspected to be only reliable for the considered
emplacement and not very general. They are usually hardly transferable to different en-
vironmental conditions. In a diametrically opposite point of view, if the objective is to
produce very general and universal statements, it becomes very difficult to consider all
possibilities as it is hard to generate precise and useful predictions. For these reasons,
both of these complementary approaches are considered.

In the first section, a systematic and general analysis of expected signals generated by
underground anomalies is tempted. Afterwards, the analysis will focus in the vicinity of
Geneva along the projected emplacement of the futur CLIC facilities.

But first of all, it is necessary to recall some fundamental assumptions which are con-
sidered for the coming computations.

6.1.1 Shape of Fluid-Air Interface

We want to determine the time-dependent fluid-air interface of a HLS. We assume that
this interface corresponds to the particular equipotential profile of the gravity field at the
level of the HLS. This profile is a set of three-dimensional position vectors ρ∼(t) denoted
by {ρ∼(t)}. According to Equation 3.184, each vector ρ∼(t) can be expressed as the sum
of two vectors:

ρ∼(t) = ρ◦ + nΦtot(t) ·Ntot(t) (6.1)

where ρ◦ is the time-invariant position vector of the normal equipotential, nΦtot(t) is the
time-dependent normalized normal vector to the total equipotential surface at position
ρ◦ and Ntot(t) is the time-dependent geometrical separation between normal and the real
equipotential at position ρ◦

1.

According to the formulas given in Section 3.8.1, for a given starting position vector
ρ◦(λ, φ, h0) — or equivalently for a given normal potential U∼ — it is possible to compute
ρ◦ with an arbitrary good precision so that it can be considered as perfectly known.

1If ρ◦ ≡ position at mean sea level =⇒ Ntot(t) ≡ geoid undulation.
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Concerning the computation of the normalized normal vector nΦtot(t), according to Equa-
tion 3.183, it is theoretically necessary to know the total gravity vector gtot. Practically,
assuming that a first order linearization of the total potential Φtot is sufficient and that
the time variations of gtot are negligible2, we can replace nΦtot(t) by the time-invariant
normalized normal vector to the normal potential nU which is perfectly known — for the
same reason as for ρ◦.

Lastly, according to Equation 3.209, the geometrical separation Ntot(t) can be approx-
imated by:

Ntot(t) =
Φgrav,st(ρ◦)

|gtot(ρ◦)|
+

Φgrav,dyn(ρ◦, t)

|gtot(ρ◦)|
+
δΦcentr(ρ◦, t)

|gtot(ρ◦)|
+

Φtidal(ρ◦, t)

|gtot(ρ◦)|
(6.2)

which can also be written as:

Ntot(t) = Ngrav,st +Ngrav,dyn(t) + δNcentr(t) +Ntidal(t) (6.3)

6.1.2 Determination of Equipotential Surfaces

The observables presented in Section 4.2 can be carried out at different positions along
the plumbline passing through a particular ρ◦. Here, three different possibilities are con-
sidered:

1. ρ◦, the position where the normal potential is equal to the potential at the fluid-air
interface.

2. ρ∼, the position at the fluid-air interface of the HLS inside the tunnel.

3. ρsurf, the position on the Earth surface.

However, for the following analyses of observables, no distinction between observations
carried out at ρ◦ or ρ∼ are considered. In addition, it is assumed that gravimetric obser-
vations can be carried out at ρ◦ and ρsurf. By contrast, it is evident that astro-geodetic
observations can only be carried out on the Earth’s surface at ρsurf. This implies that we
can consider two main scenarios concerning the analyses of the determination of equipo-
tential profiles using observations.

1. The first scenario consists in assuming that only astro-geodetic observations are
carried out. In this case, it is assumed that the observations εtot(ρsurf) are reduced to
εtot(ρ◦) by known mass models only. The change in the equipotential profile between
a◦ and b◦ is computed according to Equation 4.12 by:

∆Ntot
b◦
a◦ = −

ˆ b◦

a◦

εtot(ρ◦) · ds (6.4)

On the one hand, non-modeled or badly modeled reductions δεtot = εtot(ρ◦) −
εtot(ρsurf) can be treated, as an additional correlated noise on εtot(ρ◦), for which

2as it will be demonstrated in this chapter.
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the impact on the misalignment can be analyzed using the simulations described in
Section 4.5. And on the other hand the impact on the misalignment can be analyzed
in a more direct manner by looking directly at the integrated δεtot which is equivalent
to the true orthometric correction term (see Equation 4.58).

2. The second scenario consists in assuming that astro-geodetic observations and gravi-
metric observations are carried out. The former on the Earth’s surface only (εtot(ρsurf)),
the latter on the Earth’s surface (gtot(ρsurf)) and inside the tunnel (gtot(ρ◦)). The
change in the equipotential profile between a◦ and b◦ is computed according to
Equation 4.59 by:

∆Ntot
b◦
a◦ = −

ˆ bsurf

asurf

εtot(ρsurf) · ds− Eb◦a◦ (6.5)

with the orthometric correction term:

Eb◦a◦ =

ˆ bsurf

asurf

gtot(ρsurf)− γ(ρ◦)

γ(ρ◦)
· dn

+
gtot(a◦)− γ(ρ◦)

γ(ρ◦)
·∆Hasurf

a◦ − gtot(b◦)− γ(ρ◦)

γ(ρ◦)
·∆Hbsurf

b◦

(6.6)

where the mean gravity gtot(a◦) and gtot(b◦) has to be computed using a predefined
more or less sophisticated estimation process exposed in Section 4.4.3.

6.1.3 Gravity Field Modeling for the Simulation of Stationary Mass Anomalies

In order to be able to directly use the formalism and the formulas provided in this thesis,
it is necessary to clarify some additional aspects. From a geological point of view, the
following simulations can be seen as a rigorous modeliing of an hypothetical Earth which
is formed by the union of a normal ellipsoid E0 and a stationary mass anomaly δM . From
a geodetic point of view, the total potential is simply given by:

Φtot(ρ) = U(ρ) + Φgrav,st(ρ)

= U(ρ) + ΦδM (ρ)
(6.7)

thus, gravimetric gtot and astrogeodetic observations εtot are given by:

gtot(ρ) = γ(ρ)− gz,δM (ρ)

≈ 9.81− 0.3 · 10−5 ·H(ρ)− gz,δM (ρ)

εtot(ρ) = − arctan

(
gx,δM (ρ)

gtot(ρ)

) (6.8)
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6.1.4 Outputs of the Simulations

The following output is computed given a specific mass anomaly, δM , and the set of
positions, {ρ◦,ρsurf}, for which observations are supposed to be carried out:

{δM ,ρ◦,ρsurf} →



Ntrue ≡ the true equipotential Ntot at tunnel level, Eq. 3.209.

Nquasi ≡ Ntot with εtot(ρsurf), Eq. 6.4.

Nsurf ≡ Ntot with εtot(ρsurf), gtot(ρsurf), Eq. 6.5, 4.71.

Ntnl ≡ Ntot with εtot(ρsurf), gtot(ρsurf), gtot(ρ◦), Eq. 6.5, 4.74.

Nmean ≡ Ntot with εtot(ρsurf), gtot(ρsurf), gtot(ρ◦), Eq. 6.5, 4.76.

Nlsc ≡ Ntot with εtot(ρsurf), gtot(ρsurf), gtot(ρ◦), Eq. 6.5, 4.69, 4.98.
(6.9)

where the differences between the output are mainly due to the different manner of com-
puting the mean gravity along the plumbline gtot which is the most crucial quantity used
for the computation of the orthometric corrections. Furthermore, except Ntrue, all other
quantities can be determined by real observations.

Thus, the equipotential profiles given in Equation 6.9 are analysed in terms of misaligne-
ments. On the one hand, the analysis of Ntrue permits to identify if a given mass anomaly
δM generates misalignements larger than 10 micrometers over 200 meters. This is done
by looking if:

max
[
M200

? {Ntrue}
]
≤ 10 [microns] (6.10)

On the other hand, the observability of a given strategy is tested by looking if the true
equipotential generated by a given mass anomaly δM can be determined by a given set
of observations and a specific strategy with sufficient accuracy. This is done by looking if:

max
[
M200

? {δNxxxx}
]
≤ 10 [microns] (6.11)

where:

δNxxxx = Nxxxx −Ntrue with:



δNquasi = Nquasi −Ntrue

δNsurf = Nsurf −Ntrue

δNtnl = Ntnl −Ntrue

δNmean = Nmean −Ntrue

δNlsc = Nlsc −Ntrue

(6.12)
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6.2 Normal Equipotential

The largest component responsible for the non-straightness of the geometry ρ∼ of grav-
ity equipotentials is, by far, due to the potential generated by the normal ellipsoid E◦.
The geometry of the normal equipotential ρ◦ is rigorously given in Section 3.8.1. How-
ever, in order to compute some order of magnitudes of misalignment generated by ρ◦, for
short wavelengths, it is reasonable to approximate the normal equipotential profile by the
following well-known linearized spherical approximation:

ρ◦(x) =


x

0

− x2

2R

 (6.13)

where x represents a topocentric horizontal coordinate and R ≈ 6′380′000 meters the Earth
radius. Thus, it is trivial to compute the misalignment errors generated by neglecting the
Earth’s normal curvature, for a given wavelength λ. Formally, using the misalignment
operator M, this is given by:

M?
0 {ρ◦} (6.14)

Figure 6.1 illustrates these misalignments for wavelengths between λ = 0.1 and λ = 1000
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Figure 6.1: Normal equipotential profile ρ◦(x) (upper) represented in a local topocentric system.
Misalignments generated by ρ◦ as a function of the wavelength λ (lower).

meters. In Table 6.1, some interesting points are listed. For example, we can see that
a hydrostatic water reference can realize a straight line — or a plane — at nanometer
level for wavelengths ≤0.3 meters. The micrometer level is guaranteed up to 8.8 meters,
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and 10 microns are reached already at approximately 27.7 meters. Finally, regarding the
alignment accuracy over 200 meters, we can see that the misalignmentM200

0 {ρ◦} reaches
522 micrometers, more than 50 times the objective of 10 microns. The latter finding is a
very trivial one but a first necessary justification of not considering the fluid-air interface
of a hydrostatic system as straight enough for the alignment of the CLIC.

Table 6.1: Misalignments generated by the normal equipotential as a function of the wavelength
λ.

λ ∆z Mλ
0 {ρ◦}

[m] [m] [µm]

0.3 −7 · 10−9 1.0 · 10−3

8.8 −6 · 10−6 1.0 · 100

27.7 −6 · 10−5 1.0 · 101

100.0 −8 · 10−4 1.3 · 102

200.0 −3 · 10−3 5.2 · 102

1000.0 −8 · 10−2 1.3 · 104
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6.3 Systematic Analysis of Lateral Varying Anomalies

The aim is to determine the order of magnitude and characteristics of the shape of under-
ground equipotential profiles exited by anomalous density fields which can be expected at
very high frequencies (λ ∼ 200 m). In addition, error-free gravimetric and astrogeodetic
deflection of the vertical observations are simulated on the surface of topography and in-
side a tunnel in order to test the strategies, exposed in Section 6.1.2, for the determination
of equipotential profiles in tunnels.

It is obvious that the exploration of all possible mass anomalies is hopeless. However,
firstly, we know that the endless space of mathematical possibilities and configurations
can be reduced by a priori realistic geological and topographical bounds. Subsequently,
by choosing extreme but realistic configurations, the analyses can pretend to encompass
most of the case which may arise in reality.

The following numerical simulations of the gravity field are based on homogenous poly-
hedra computed with QGravity. It is well known that only horizontal density variations
produce curvature variations of equipotentials. For this reason, a systematic analysis of
extreme – but geologically admissible – periodic anomalous density fields, which produce
modifications of the gravity field, is realized in order to approach the extremal bounds
which can be expected by unmodeled or unobservable phenomena. The density anomalies
are based on two classes of mass anomalies, connected slabs SLAB and sinusoidal prisms
SIN.

In order to illustrate the analysis of the consequences of SLAB and SIN anomalies on
the misalignment, four symptomatic cases (two per class) are exposed. The first demon-
strate that there exist SLAB and SIN which generate significant misalignments which can
be properly determined by astrogravimetric levelling. In opposition, the second two cases
show that there exist SLAB and SIN for which astro-gravimetric determinations cannot
help and more seriously, lead to totally wrong results. The anomalies analyzed in the first
cases are called observable by astrogravimetric levelling. The anomalies analyzed in the
second cases are called not observable. Finally, an attempt to systematically analyse
several representative SLAB and SIN is conducted in order to classify problematic and
non-problematic configurations without forgetting to quantify their consequences on the
misalignment.
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6.3.1 Connected Slab Anomalies SLAB

A connected slab anomaly is a homogeneous polyhedron represented as a function of some
parameters:

SLAB(H0SLAB, HSLAB,∆HSLAB, βSLAB, ρSLAB) (6.15)

with a fixed depth equal to 30 kilometers, a fixed foundation at height H0SLAB = 0 me-
ters, a variable height difference = ∆HSLAB of the slab, slope of the slab connection βSLAB,
height HSLAB and the density ρSLAB, as shown in Figure 6.2. The density of a SLAB rep-
resents the realistic density contrasts with respect to a mean rock density ρtopo = 2670 kg

m3

which can be expected in upper layers. The connected slab anomalies with their respective
variable parameters used for the simulations are listed in Table 6.2.

It is assumed that error-free observations are carried out every 10 meters inside a hor-
izontal tunnel, at H = 300 meters, and on the surface of a flat topography at H = 450
meters, for all anomalies for which HSLAB < 450 meters. When HSLAB ≥ 450 meters,
the upper boundary of the highest slab is considered as the topography itself and the
observations on the topography are simulated accordingly.

topography

tunnel

450 [m]

300 [m]

+/- 15 [km]

10 m
< 450 m

x
z

+

topography

tunnel

450 [m]

300 [m]

+/- 15 [km]

10 m
> 450 m

x
z

+

Figure 6.2: Schematic view of the parameters defining a slab anomaly
SLAB(H0SLAB, HSLAB,∆HSLAB, βSLAB, ρSLAB) with the definition of the topography for
HSLAB + ∆HSLAB < 450 meters (upper) and for HSLAB + ∆HSLAB ≥ 450 meters (lower).
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6.3.2 Sinusoidal Prism Anomalies SIN

A sinusoidal prism anomaly is a homogeneous polyhedron represented as a function of
some parameters:

SIN(H0SIN, HSIN, ASIN, λSIN, ρSIN) (6.16)

with a fixed depth equal to 10 kilometers, a foundation located at H0SIN = 0 or H0SIN =
−3′000 meters, and a variable amplitude = ASIN, wavelength λSIN, height HSIN and a
variable density ρSIN, as shown in Figure 6.3. The densities of the various SIN represent
realistic density contrasts with respect to a mean rock density ρtopo = 2670 kg

m3 which can
be expected in upper layers. The anomalies with their respective variable parameters used
for the simulations are listed in Table 6.5.

It is assumed that error-free observations are carried out every 10 meters inside a hor-
izontal tunnel at H = 300 meters and on a flat topography at H = 450 meters, for all
anomalies for which HSIN < 450 meters. When HSIN ≥ 450 meters, the sinusoidal up-
per boundary of SIN is considered as the topography itself and the observations on the
topography are simulated accordingly.

topography

tunnel

450 [m]

300 [m]

+/- 5 [km]

10 m

tunnel300 [m]

+/- 5 [km]

10 m

< 450 m

> 450 m

topography

x
z

x
z

Figure 6.3: Schematic view of the parameters defining a sinus anomaly
SIN(H0SIN, HSIN, ASIN, λSIN, ρSIN) with the definition of the topography for HSIN < 450 me-
ters (upper) and for HSIN ≥ 450 meters (lower).
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6.3.3 Misalignment Analyses due to SLAB Anomalies

A Significant Observable Anomaly

The anomaly SLAB(−3000 m,−2950 m,+3200 m,+45 deg,+500 kg
m3 ) produces significant

misalignments over 200 meters and can be determined by astrogravimetric levelling with
sufficient accuracy.

The anomaly, the different solutions of the equipotential profile and the differences with
respect to the true profile are shown in Figure 6.4.

In Figure 6.5, the misalignments of the true equipotential M?
? {Ntrue} are represented

as a function of the wavelength (middle), the position, and for the particular wavelength
equal to 200 meters M200

? {Ntrue} (lower). The latter shows clearly that this anomaly
cannot be neglected because it generates significant misalignments, larger than 10 mi-
crometers over 200 meters.

The remaining misalignments M?
? {δNmean} and M200

? {δNmean}, generated by the dif-
ference between the equipotential surface determined by astrogravimetric levelling Nmean

and the true equipotential Ntrue are shown in Figure 6.6. The latter shows clearly that it
is theoretically possible, in this specific case, to determine the equipotential profile with
sufficient accuracy when astrogeodetic deflections of the vertical and gravimetric measure-
ments are carried out on the topography and in the tunnel.
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Figure 6.4: (Upper) SLAB(−3000 m,−2950 m,+3200 m,+45 deg,+500 kg
m3 ) in black and

ρ◦,ρsurf in blue. (Middle) equipotential profiles Ntrue, Nquasi, Nsurf, Ntnl, Nmean). (Lower) equipo-
tential profile errors δNtrue, δNquasi, δNsurf, δNtnl, δNmean.
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A Significant Not Observable Anomaly =⇒ Significant Artifacts

As in the previous case, the anomaly SLAB(+0 m,+50 m,+200 m,+50 deg,+200 kg
m3 )

produces significant misalignments over 200 meters. However, it is shown that the various
astrogravimetric strategies proposed in this thesis are not able the determine the equipo-
tential profile with enough accuracy. Worse still, they produce significant artifacts.

The anomaly, the different solutions and the differences with respect to the true profile
are shown in Figure 6.7. It appears that all determinations generate larger signal-to-error
ratios compared to Ntrue (middle).

Regarding the misalignment over 200 meters, Figures 6.8 and 6.9 show clearly that the
true equipotential Ntrue cannot be observed with sufficient accuracy, and a maximal mis-
alignment is produced that is twice as large as if no determination would be tempted.
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Figure 6.7: (Upper) SLAB(+0 m,+50 m,+200 m,+50 deg,+200 kg
m3 ) in black and ρ◦,ρsurf in

blue. (Middle) equipotential profiles Ntrue, Nquasi, Nsurf, Ntnl, Nmean). (Lower) equipotential profile
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Systematic Analysis of SLAB Anomalies

In this section, several SLAB anomalies are analyzed:

Table 6.2: List of SLAB anomalies used for systematic analyses. Here an object SLABi does not
represents a single SLAB anomaly but represents a set of slab anomalies.

{SLAB} H0SLAB HSLAB ∆HSLAB βSLAB ρSLAB HSLAB + ∆HSLAB topography mass between
−H(ρ◦) ρ◦ → ρsurf

[m] [m] [m] [deg]
[

kg
m3

]
[m]

SLAB1 0 50 50 [0, 85] [50, 500] -200 flat no
SLAB2 0 50 150 [0, 85] [50, 500] -100 flat no
SLAB3 0 50 200 [0, 85] [50, 500] -50 flat no
SLAB4 0 50 250 [0, 85] [50, 500] 0 flat no
SLAB5 0 50 325 [0, 85] [50, 500] 75 flat yes
SLAB6 0 50 400 [0, 85] [50, 500] 150 flat yes
SLAB7 0 50 450 [0, 85] [50, 500] 200 flat/oblique yes
SLAB8 0 50 500 [0, 85] [50, 500] 250 flat/oblique yes

SLAB11 -3000 -2950 2750 [0, 85] [50, 500] -500 flat no
SLAB12 -3000 -2950 3150 [0, 85] [50, 500] -100 flat no
SLAB13 -3000 -2950 3200 [0, 85] [50, 500] -50 flat no
SLAB14 -3000 -2950 3250 [0, 85] [50, 500] 0 flat no
SLAB15 -3000 -2950 3325 [0, 85] [50, 500] 75 flat yes
SLAB16 -3000 -2950 3400 [0, 85] [50, 500] 150 flat yes
SLAB17 -3000 -2950 3450 [0, 85] [50, 500] 200 flat/oblique yes
SLAB18 -3000 -2950 3500 [0, 85] [50, 500] 250 flat/oblique yes

The results are presented in Tables 6.3 and 6.4, and in Figures 6.10 and 6.11.
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Table 6.3: Systematic misalignment analyses of SLAB1 → SLAB8. The maximal misalignments
larger than 10 microns are listed for Ntrue, δNquasi and δNmean only.

{SLAB} max
[
M200

? {Ntrue}
]

max
[
M200

? {δNquasi}
]

max
[
M200

? {δNmean}
]

best
> 10µm > 10µm > 10µm

ρSLAB, βSLAB, M200
? ρSLAB, βSLAB, M200

? ρSLAB, βSLAB, M200
?[

kg
m3

]
, [deg,deg], [µm]

[
kg
m3

]
, [deg,deg], [µm]

[
kg
m3

]
, [deg,deg], [µm]

SLAB1 X X X Nmean

SLAB2 500 [0,45] 10.5 X X Nmean

SLAB3

300 [0,60] 10.6
400 [0,75] 14.2
500 [0,80] 17.7

500 [0,50] 11.5 X Nmean

SLAB4

200 [0,60] 12.8
300 [0,75] 19.3
400 [0,80] 25.7
500 [0,80] 32.1

300 [0,60] 13.8
400 [0,70] 18.4
500 [0,75] 23.0

300 [0,10] 10.3
400 [0,40] 13.8
500 [0,50] 17.2

Nmean

SLAB5

200 [0,65] 18.8
300 [0,75] 28.2
400 [0,80] 37.8
500 [0,80] 46.9

200 [0,50] 14.0
300 [0,60] 20.9
400 [0,65] 27.9
500 [0,70] 34.9

200 [20,65] 13.0
300 [0,75] 19.4
400 [0,80] 25.9
500 [0,80] 32.4

Nmean

SLAB6

100 [0,15] 10.3
200 [0,60] 20.6
300 [0,70] 31.0
400 [0,75] 41.3
500 [0,80] 51.6

200 [10,55] 15.5
300 [0,65] 23.2
400 [0,70] 31.0
500 [0,70] 38.7

100 [45,45] 10.4
200 [25,65] 20.9
300 [0,75] 31.3
400 [0,80] 41.7
500 [0,80] 52.2

Nquasi

SLAB7

100 [0,20] 10.6
200 [0,60] 21.2
300 [0,70] 31.8
400 [0,75] 42.5
500 [0,80] 53.1

200 [0,60] 19.4
300 [0,65] 29.2
400 [0,70] 38.9
500 [0,75] 48.6

100 [50,50] 10.1
200 [30,70] 20.2
300 [0,75] 30.2
400 [0,80] 40.3
500 [0,80] 50.4

Nquasi

SLAB8

100 [0,20] 10.9
200 [0,55] 21.7
300 [0,65] 32.6
400 [0,75] 43.5
500 [0,75] 54.3

100 [30,45] 10.8
200 [0,60] 21.5
300 [0,65] 32.3
400 [0,70] 43.0
500 [0,75] 53.8

100 [50,50] 10.2
200 [0,65] 20.4
300 [0,75] 30.5
400 [0,80] 40.7
500 [0,80] 50.9

Nmean
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Figure 6.10: Representation of the misalignment analyses contained in Table 6.3 for Ntrue (upper)
and δNmean (lower) only. Each dot represents the results of a subset of SLABi(βSLAB) simulations.
A dot is positioned as a function of its density ρSLAB (x-axis) and its height separation with respect
to the tunnel (y-axis), HSLAB+∆HSLAB−H(ρ◦). A green dot means that the maximal misalignment
is smaller than 10 microns for all angles βSLAB. In opposition, the red dots represent SLAB which
contain maximal misalignments larger than 10 microns. They are scaled proportionally to the
maximal misalignment. In addition, the horizontal blue bar represents the angle βSLAB for which
the maximal misalignment is larger that 10 microns.
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Table 6.4: Systematic misalignment analyses of SLAB11 → SLAB18. The maximal misalignment
larger as 10 microns are listed for Ntrue, δNquasi and δNmean only.

{SLAB} max
[
M200

? {Ntrue}
]

max
[
M200

? {δNquasi}
]

max
[
M200

? {δNmean}
]

best
> 10µm > 10µm > 10µm

ρSLAB, βSLAB, M200
? ρSLAB, βSLAB, M200

? ρSLAB, βSLAB, M200
?[

kg
m3

]
, [deg,deg], [µm]

[
kg
m3

]
, [deg,deg], [µm]

[
kg
m3

]
, [deg,deg], [µm]

SLAB11

300 [0,65] 12.0
400 [0,75] 15.9
500 [0,80] 19.9

X X Nmean

SLAB12

200 [0,70] 14.8
300 [0,80] 22.1
400 [0,80] 29.5
500 [0,80] 36.9

500 [0,50] 11.2 X Nmean

SLAB13

200 [0,75] 18.9
300 [0,80] 28.4
400 [0,80] 37.8
500 [0,85] 47.3

400 [0,55] 13.1
500 [0,65] 16.4

X Nmean

SLAB14

100 [20,55] 12.2
200 [0,75] 24.3
300 [0,80] 36.5
400 [0,80] 48.7
500 [0,85] 60.8

200 [5,45] 12.4
300 [0,65] 18.5
400 [0,70] 24.7
500 [0,75] 30.9

300 [0,10] 10.5
400 [0,40] 14.0
500 [0,50] 17.5

Nmean

SLAB15

100 [0,60] 14.2
200 [0,75] 28.4
300 [0,80] 42.7
400 [0,80] 56.9
500 [0,85] 71.1

200 [0,55] 16.1
300 [0,65] 24.1
400 [0,70] 32.1
500 [0,70] 40.1

200 [20,65] 12.4
300 [0,75] 18.5
400 [0,80] 24.7
500 [0,80] 30.9

Nmean

SLAB16

100 [0,55] 14.5
200 [0,75] 28.9
300 [0,80] 43.4
400 [0,80] 57.8
500 [0,80] 72.3

200 [5,60] 17.7
300 [0,65] 26.6
400 [0,70] 35.5
500 [0,70] 44.4

100 [45,45] 10.3
200 [25,65] 20.6
300 [0,75] 31.0
400 [0,80] 41.3
500 [0,80] 51.6

Nquasi

SLAB17

100 [0,55] 14.3
200 [0,70] 28.5
300 [0,80] 42.6
400 [0,80] 57.1
500 [0,80] 71.3

100 [35,45] 10.6
200 [0,60] 21.2
300 [0,65] 31.8
400 [0,70] 42.4
500 [0,75] 53.0

100 [50,50] 10.0
200 [30,70] 20.0
300 [0,75] 30.0
400 [0,80] 40.0
500 [0,80] 50.0

Nmean

SLAB18

100 [0,50] 14.1
200 [0,70] 28.2
300 [0,75] 42.3
400 [0,80] 55.4
500 [0,80] 70.5

100 [0,45] 15.6
200 [0,60] 31.2
300 [0,65] 46.7
400 [0,70] 62.3
500 [0,75] 77.9

200 [0,65] 20.0
300 [0,75] 29.9
400 [0,80] 39.9
500 [0,80] 49.9

Nmean
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Figure 6.11: Representation of the misalignment analyses contained in Table 6.4 for Ntrue (upper)
and δNmean (lower) only. Each dot represents the results of a subset of SLABi(βSLAB) simulations.
A dot is positioned as a function of its density ρSLAB (x-axis) and its height separation with respect
to the tunnel (y-axis), HSLAB+∆HSLAB−H(ρ◦). A green dot means that the maximal misalignment
is smaller than 10 microns for all angles βSLAB. In opposition, the red dots represent SLAB which
contain maximal misalignments larger than 10 microns. They are scaled proportionally to the
maximal misalignment. In addition, the horizontal blue bar represents the angle βSLAB for which
the maximal misalignment is larger than 10 microns.
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6.3.4 Misalignment Analyses due to SIN Anomalies

A Significant Observable Anomaly

The anomaly SIN(+0 m,+150 m,+140 m, 850 m,+500 kg
m3 ) produces a significant mis-

alignment over 200 meters but can be determined with sufficient accuracy.

The anomaly, the different solutions of the equipotential profile and the differences with
respect to the true profile are shown in Figure 6.12.

The misalignments of the true equipotential M?
? {Ntrue} are represented as a function

of the wavelength (middle), the position, and for the particular wavelength equal to 200
meters M200

? {Ntrue} (lower) in Figure 6.13. The latter shows clearly that this anomaly
cannot be neglected, because it generates significant misalignments larger than 10 microm-
eters over 200 meters.

The remaining misalignments M?
? {δNmean} and M200

? {δNmean}, generated by the dif-
ference between the equipotential surface determined by astrogravimetric levelling Nmean,
and the true equipotential Ntrue are shown in Figure 6.14. The latter shows clearly that
it is theoretically possible to determine the equipotential profile with sufficient accuracy
when astrogeodetic deflections of the vertical and gravimetric measurements are carried
out on the topography and in the tunnel.
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(Middle) equipotential profiles Ntrue, Nquasi, Nsurf, Ntnl, Nmean). (Lower) equipotential profile er-
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A non-Significant non-Observable Anomaly =⇒ Significant Artifacts

On the one hand, the anomaly SIN(+0 m,+450 m,+100 m, 240 m,+200 kg
m3 ) produces

non-significant misalignment over 200 meters. But on the other hand, it also implies that
the various astrogravimetric strategies proposed in this thesis, give completely wrong re-
sults and produce significant artifacts.

The anomaly, the different solutions of the equipotential profiles and the differences with
respect to the true profile are shown in Figure 6.15 .

The misalignments of the true equipotential M?
? {Ntrue} are represented in figure 6.16,

as a function of the wavelength (middle), the position, and for the particular wavelength
equal to 200 meters M200

? {Ntrue} (lower). The latter shows clearly that this anomaly
generates non-significant misalignments, smaller than 10 micrometers, over 200 meters.

In Figure 6.17, the remaining misalignmentsM?
? {δNmean} andM200

? {δNmean}, generated
by the difference between the equipotential surface determined by observations Nmean and
the true equipotential Ntrue. The latter shows clearly that the determination Nmean is
wrong and cannot determine this equipotential profile with sufficient accuracy. In this
specific case, it may sound like a paradox, but a tentative of determining the equipotential
profile from observation is counterproductive! The unique source of errors comes from the
determination of the mean gravity along the plumbline as it can be expected and as it has
been explained in Section 4.4.3.
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Systematic Analysis of SIN Anomalies

In this section, several SIN anomalies are analyzed:

Table 6.5: List of SIN anomalies used for systematic analyses. Here an object SINi does not
represents a single SIN anomaly but represents a set of sinus anomalies.

{SIN} H0SIN HSIN ASIN λSIN ρSIN HSIN + ∆HSIN topography mass between
−H(ρ◦) ρ◦ → ρsurf

[m] [m] [m] [deg]
[

kg
m3

]
[m]

SIN1 0 150 10 [60,10000] [50,500] -140 flat no
SIN2 0 150 50 [60,10000] [50,500] -100 flat no
SIN3 0 150 100 [60,10000] [50,500] -50 flat no
SIN4 0 150 140 [60,10000] [50,500] -10 flat no

SIN5 0 200 10 [60,10000] [50,500] -90 flat no
SIN6 0 200 50 [60,10000] [50,500] -50 flat no
SIN7 0 200 75 [60,10000] [50,500] -25 flat no
SIN8 0 200 90 [60,10000] [50,500] -10 flat no

SIN9 0 250 10 [60,10000] [50,500] -40 flat no
SIN10 0 250 20 [60,10000] [50,500] -30 flat no
SIN11 0 250 30 [60,10000] [50,500] -20 flat no
SIN12 0 250 40 [60,10000] [50,500] -10 flat no

SIN13 0 300 10 [60,10000] [50,500] 10 flat yes
SIN14 0 300 50 [60,10000] [50,500] 50 flat yes
SIN15 0 300 100 [60,10000] [50,500] 100 flat yes
SIN16 0 300 140 [60,10000] [50,500] 140 flat yes

SIN17 0 375 10 [60,10000] [50,500] 85 flat yes
SIN18 0 375 25 [60,10000] [50,500] 100 flat yes
SIN19 0 375 50 [60,10000] [50,500] 125 flat yes
SIN20 0 375 70 [60,10000] [50,500] 145 flat yes

SIN21 0 450 10 [60,10000] [50,500] 160 sinus yes
SIN22 0 450 25 [60,10000] [50,500] 175 sinus yes
SIN23 0 450 50 [60,10000] [50,500] 200 sinus yes
SIN24 0 450 70 [60,10000] [50,500] 220 sinus yes

SIN25 0 800 10 [60,10000] [50,500] 510 sinus yes
SIN26 0 800 25 [60,10000] [50,500] 525 sinus yes
SIN27 0 800 50 [60,10000] [50,500] 550 sinus yes
SIN28 0 800 70 [60,10000] [50,500] 570 sinus yes

The results are presented in Tables 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12, and in Fig-
ures 6.18, 6.19, 6.20, 6.21, 6.22, 6.23 and 6.24.
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Table 6.6: Systematic misalignment analyses of SIN1 → SIN4. The maximal misalignments larger
than 10 microns are listed for Ntrue, δNquasi and δNmean only.

{SIN} max
[
M200

? {Ntrue}
]

max
[
M200

? {δNquasi}
]

max
[
M200

? {δNmean}
]

best
> 10µm > 10µm > 10µm

ρSIN, λSIN, M200
? ρSIN, λSIN, M200

? ρSIN, λSIN, M200
?[

kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

SIN1 X X X Nmean

SIN2 X X X Nmean

SIN3

300 [500,2000] 13.6
400 [400,3000] 18.1
500 [360,3000] 22.6

400 [450,1000] 13.3
500 [360,1000] 16.6

X Nmean

SIN4

200 [400,2000] 16.0
300 [300,3000] 24.0
400 [260,4000] 32.0
500 [240,6000] 40.1

200 [450,1000] 12.6
300 [320,1000] 18.9
400 [280,1000] 25.2
500 [240,2000] 31.5

400 [240,700] 12.5
500 [180,800] 15.6

Nmean

Table 6.7: Systematic misalignment analyses of SIN5 → SIN8. The maximal misalignments larger
than 10 microns are listed for Ntrue, δNquasi and δNmean only.

{SIN} max
[
M200

? {Ntrue}
]

max
[
M200

? {δNquasi}
]

max
[
M200

? {δNmean}
]

best
> 10µm > 10µm > 10µm

ρSIN, λSIN, M200
? ρSIN, λSIN, M200

? ρSIN, λSIN, M200
?[

kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

SIN5 X X X Nmean

SIN6
400 [500,1000] 11.4
500 [380,1000] 14.3

500 [400,800] 11.6 X Nmean

SIN7

300 [360,1000] 14.7
400 [300,2000] 24.5
500 [260,3000] 24.5

300 [380,900] 12.2
400 [300,1000] 16.2
500 [280,1000] 20.3

500 [300,400] 10.5 Nmean

SIN8

200 [400,1000] 13.0
300 [300,2000] 19.5
400 [260,3000] 26.0
500 [220,3000] 32.5

200 [450,750] 10.9
300 [300,1000] 16.4
400 [260,1000] 21.9
500 [220,1000] 27.3

400 [200,550] 12.2
500 [160,650] 15.2

Nmean
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Figure 6.18: Representation of the misalignment analyses contained in Table 6.6 for Ntrue (upper)
and δNmean (lower) only. Each dot represents the results of a subset of SINi(λSIN). A dot is
positioned as a function of its density ρSIN (x-axis) and its height separation with respect to the
tunnel (y-axis), HSIN +ASLAB −H(ρ◦). The position of the center of the sinus is represented by a
black line. A green dot means that the maximal misalignment is smaller than 10 microns for all
wavelengths λSIN. In opposition, the red dots represent SIN which contain maximal misalignments
larger than 10 microns. They are scaled proportionally to the maximal misalignment. In addition,
the horizontal blue bar represents the wavelength λSIN for which the maximal misalignment is
larger than 10 microns.
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Figure 6.19: Representation of the misalignment analyses contained in Table 6.7 for Ntrue (upper)
and δNmean (lower) only. Each dot represents the results of a subset of SINi(λSIN). A dot is
positioned as a function of its density ρSIN (x-axis) and its height separation with respect to the
tunnel (y-axis), HSIN + ASLAB −H(ρ◦). The position of the center of the sinus is represented by
a black line A green dot means that the maximal misalignment is smaller than 10 microns for all
wavelengths λSIN. In opposition, the red dot represents SIN which contain maximal misalignments
larger than 10 microns. They are scaled proportionally to the maximal misalignment. In addition,
the horizontal blue bar represents the wavelength λSIN for which the maximal misalignment is
larger than 10 microns.
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Table 6.8: Systematic misalignment analyses of SIN9 → SIN12. The maximal misalignment larger
as 10 microns are listed for Ntrue, δNquasi and δNmean only.

{SIN} max
[
M200

? {Ntrue}
]

max
[
M200

? {δNquasi}
]

max
[
M200

? {δNmean}
]

best
> 10µm > 10µm > 10µm

ρSIN, λSIN, M200
? ρSIN, λSIN, M200

? ρSIN, λSIN, M200
?[

kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

SIN9 X X X Nmean

SIN10 X X X Nmean

SIN11
400 [320,750] 11.8
500 [280,1000] 14.8

400 [360,500] 10.5
500 [280,650] 13.1

X Nmean

SIN12

300 [320,800] 12.6
400 [260,1000] 16.8
500 [220,1000] 21.0

300 [320,550] 11.2
400 [260,800] 14.9
500 [220,950] 18.6

400 [180,320] 11.6
500 [140,400] 14.5

Nmean

Table 6.9: Systematic misalignment analyses of SIN13 → SIN16. The maximal misalignment
larger than 10 microns are listed for Ntrue, δNquasi and δNmean only.

{SIN} max
[
M200

? {Ntrue}
]

max
[
M200

? {δNquasi}
]

max
[
M200

? {δNmean}
]

best
> 10µm > 10µm > 10µm

ρSIN, λSIN, M200
? ρSIN, λSIN, M200

? ρSIN, λSIN, M200
?[

kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

SIN13 X X
300 [320,360] 10.1
400 [200,450] 13.5
500 [180,500] 16.8

Nquasi

SIN14

200 [200,600] 14.2
300 [180,1000] 21.4
400 [140,1000] 28.5
500 [140,1000] 35.6

200 [220,400] 13.2
300 [180,650] 19.8
400 [140,800] 26.4
500 [140,950] 33.0

200 [200,650] 19.7
300 [160,1000] 29.6
400 [140,2000] 39.4
500 [120,2000] 49.3

Nquasi

SIN15

100 [300,400] 10.4
200 [180,1000] 20.9
300 [160,2000] 31.3
400 [140,3000] 41.8
500 [120,3000] 52.2

200 [200,650] 17.6
300 [160,1000] 26.4
400 [140,1000] 35.2
500 [120,1000] 44.0

200 [200,1000] 19.2
300 [160,2000] 28.7
400 [140,4000] 38.3
500 [120,5000] 47.9

Nquasi

SIN16

100 [260,550] 11.8
200 [180,1000] 23.7
300 [160,2000] 35.5
400 [140,4000] 47.3
500 [120,5000] 59.2

200 [200,1000] 17.2
300 [180,1000] 25.8
400 [140,2000] 34.4
500 [140,2000] 43.0

200 [260,550] 18.2
300 [180,1000] 27.2
400 [160,2000] 36.3
500 [180,7000] 46.4

Nquasi
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Figure 6.20: Representation of the misalignment analyses contained in table 6.8 for Ntrue (upper)
and δNmean (lower) only. Each dot represents the results of a subset of SINi(λSIN). A dot is
positioned in function its density ρSIN (x-axis) and its height separation with respect to the tunnel
(y-axis), HSIN+ASLAB−H(ρ◦). The position of the center of the sinus is represented by a black line
A green dot means that the maximal misalignment is smaller than 10 microns for all wavelengths
λSIN. In opposition, the red dots represents SIN which contains maximal misalignment larger
than 10 microns. They are scaled proportionally to the maximal misalignment. In addition, the
horizontal blue bar represents the wavelength λSIN for which the maximal misalignment is larger
that 10 microns.
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Figure 6.21: Representation of the misalignment analyses contained in Table 6.9 for Ntrue (upper)
and δNmean (lower) only. Each dot represents the results of a subset of SINi(λSIN). A dot is
positioned as a function of its density ρSIN (x-axis) and its height separation with respect to the
tunnel (y-axis), HSIN + ASLAB −H(ρ◦). The position of the center of the sinus is represented by
a black line A green dot means that the maximal misalignment is smaller than 10 microns for all
wavelengths λSIN. In opposition, the red dot represents SIN which contain maximal misalignments
larger than 10 microns. They are scaled proportionally to the maximal misalignment. In addition,
the horizontal blue bar represents the wavelength λSIN for which the maximal misalignment is
larger than 10 microns.
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Table 6.10: Systematic misalignment analyses of SIN17 → SIN20. The maximal misalignment
larger than 10 microns are listed for Ntrue, δNquasi and δNmean only.

{SIN} max
[
M200

? {Ntrue}
]

max
[
M200

? {δNquasi}
]

max
[
M200

? {δNmean}
]

best
> 10µm > 10µm > 10µm

ρSIN, λSIN, M200
? ρSIN, λSIN, M200

? ρSIN, λSIN, M200
?[

kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

SIN17 X X X Nmean

SIN18 X X X Nmean

SIN19

300 [450,1000] 11.9
400 [300,1000] 15.8
500 [260,1000] 19.8

X
400 [380,800] 12.9
500 [340,1000] 16.2

Nquasi

SIN20

200 [380,1000] 12.7
300 [260,1000] 19.0
400 [220,2000] 25.4
500 [200,2000] 31.7

400 [550,800] 10.7
500 [450,1000] 13.4

200 [320,850] 14.3
300 [240,1000] 21.4
400 [200,1000] 28.5
500 [180,1000] 35.7

Nquasi

Table 6.11: Systematic misalignment analyses of SIN21 → SIN24. The maximal misalignment
larger than 10 microns are listed for Ntrue, δNquasi and δNmean only.

{SIN} max
[
M200

? {Ntrue}
]

max
[
M200

? {δNquasi}
]

max
[
M200

? {δNmean}
]

best
> 10µm > 10µm > 10µm

ρSIN, λSIN, M200
? ρSIN, λSIN, M200

? ρSIN, λSIN, M200
?[

kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

SIN21 X X
400 [60,200] 12.7
500 [60,240] 15.9

Nquasi

SIN22 X
300 [200,450] 13.8
400 [160,600] 18.4
500 [140,700] 23.0

200 [60,240] 16.7
300 [60,300] 25.0
400 [60,360] 33.3
500 [60,380] 41.5

no determ.

SIN23 X

200 [200,550] 15.6
300 [160,800] 23.4
400 [140,1000] 31.2
500 300 39.0

100 [60,240] 16.3
200 [60,360] 32.6
300 [60,450] 48.9
400 [60,500] 65.2
400 [60,550] 81.4

no determ.

SIN24

300 [500,2000] 14.2
400 [450,3000] 18.9
500 [360,3000] 23.7

100 [280,450] 10.7
200 [180,950] 21.5
300 [140,1000] 32.2
400 [120,1000] 43.0
500 [120,1000] 53.7

50 [60,220] 14.0
100 [60,400] 27.9
200 [60,550] 55.9
300 [60,700] 83.8
400 [60,800] 111.8
500 [60,850] 139.7

no determ.
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Figure 6.22: Representation of the misalignment analyses contained in Table 6.10 for Ntrue

(upper) and δNmean (lower) only. Each dot represents the results of a subset of SINi(λSIN). A dot
is positioned as a function of its density ρSIN (x-axis) and its height separation with respect to the
tunnel (y-axis), HSIN + ASLAB −H(ρ◦). The position of the center of the sinus is represented by
a black line A green dot means that the maximal misalignment is smaller than 10 microns for all
wavelengths λSIN. In opposition, the red dot represents SIN which contain maximal misalignments
larger than 10 microns. They are scaled proportionally to the maximal misalignment. In addition,
the horizontal blue bar represents the wavelength λSIN for which the maximal misalignment is
larger than 10 microns.
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Figure 6.23: Representation of the misalignment analyses contained in Table 6.11 for Ntrue

(upper) and δNmean (lower) only. Each dot represents the results of a subset of SINi(λSIN). A dot
is positioned as a function of its density ρSIN (x-axis) and its height separation with respect to the
tunnel (y-axis), HSIN + ASLAB −H(ρ◦). The position of the center of the sinus is represented by
a black line A green dot means that the maximal misalignment is smaller than 10 microns for all
wavelengths λSIN. In opposition, the red dot represents SIN which contain maximal misalignments
larger than 10 microns. They are scaled proportionally to the maximal misalignment. In addition,
the horizontal blue bar represents the wavelength λSIN for which the maximal misalignment is
larger than 10 microns.
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Table 6.12: Systematic misalignment analyses of SIN25 → SIN28. The maximal misalignment
larger than 10 microns are listed for Ntrue, δNquasi and δNmean only.

{SIN} max
[
M200

? {Ntrue}
]

max
[
M200

? {δNquasi}
]

max
[
M200

? {δNmean}
]

best
> 10µm > 10µm > 10µm

ρSIN, λSIN, M200
? ρSIN, λSIN, M200

? ρSIN, λSIN, M200
?[

kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

[
kg
m3

]
, [m,m], [µm]

SIN25 X

100 [240,700] 12.5
200 [180,1000] 25.1
300 [140,2000] 37.6
400 [120,2000] 50.2
500 [120,2000] 52.7

50 [60,650] 61.9
100 [60,850] 123.9
200 [60,1000] 247.8
300 [60,1000] 371.7
400 [60,1000] 495.6
500 [60,1000] 619.5

no determ.

SIN26 500 [2000,5000] 12.4

100 [220,1000] 16.2
200 [160,2000] 32.4
300 [140,3000] 48.6
400 [120,4000] 64.8
500 [120,4000] 81.0

50 [60,950] 113.7
100 [60,1000] 227.4
200 [60,1000] 454.8
300 [60,2000] 682.1
400 [60,4000] 909.5
500 [60,6000] 1136.9

no determ.

SIN27

300 [2000,5000] 12.7
400 [2000,8000] 17.0
500 [2000,10000] 21.2

100 [220,1000] 17.6
200 [160,3000] 35.2
300 [140,4000] 52.7
400 [120,5000] 70.3
500 [120,6000] 87.9

50 [60,1000] 153.5
100 [60,1000] 307.1
200 [60,3000] 614.2
300 [60,6000] 921.3
400 [60,9000] 1228.3
500 [60,1000] 1535.1

no determ.

SIN28

200 [2000,5000] 13.5
300 [850,9000] 20.3
400 [750,10000] 27.0
500 [650,10000] 33.8

100 [220,1000] 17.8
200 [160,3000] 35.5
300 [140,5000] 53.3
400 [120,7000] 71.1
500 [120,8000] 88.8

50 [60,1000] 181.9
100 [60,2000] 363.7
200 [60,5000] 727.4
300 [60,10000] 1091.1
400 [60,10000] 1454.8
500 [60,10000] 1818.6

no determ.
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Figure 6.24: Representation of the misalignment analyses contained in Table 6.12 for Ntrue

(upper) and δNmean (lower) only. Each dot represents the results of a subset of SINi(λSIN). A dot
is positioned as a function of its density ρSIN (x-axis) and its height separation with respect to the
tunnel (y-axis), HSIN +ASLAB −H(ρ◦). The position of the center of the sinus is represented by a
black line. A green dot means that the maximal misalignment is smaller than 10 microns for all
wavelengths λSIN. In opposition, the red dots represent SIN which contain maximal misalignments
larger than 10 microns. They are scaled proportionally to the maximal misalignment. In addition,
the horizontal blue bar represents the wavelength λSIN for which the maximal misalignment is
larger than 10 microns.
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6.4 Topography

In this section, the analyses are focusing on the region of Geneva, in Switzerland, close to
the existing CERN facilities, where a location for the future CLIC is proposed Aicheler
et al. (2012). The collider consists of two main linear accelerators (both 24.65 kilometers)
which are laser straight but not collinear in the vertical plane. They have a crossing angle
of 20 milliradians, see Figure 1.3. The tunnels are situated at approximately 350 meters
in height above sea level. Both extremities are placed at 358.67 meters and the collision
point at 350.0 meters. This means that the tunnel which contains CLIC is laser straight
and is represented by two curved profiles in a Cartesian plot, if the y-axis corresponds
to the usual height component as it can be seen in Figure 6.25. Along the whole profile,
the tunnel is passing through minimal and maximal heights of about 343 and 359 meters,
respectively, and its mean height is around 347 meters. From this point of view, because
the height variations stay small along the profile, only the equipotential profile at H = 350
meters is considered.
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Figure 6.25: Longitudinal profile of CLIC (left) and the histogram of the height differences
between topography and a profile of constant height H = 350 meters.

6.4.1 Topography Anomalies TOPO

In the literature and in practice, the gravitational signals generated by topography are
computed in various ways. An exhaustive overview of all already proposed solutions is very
difficult and almost impossible to be done. These various approaches exist only because
the available computing power is still very low compared to the amount of data avail-
able for topography. From this point of view, it is impossible to numerically integrate the
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masses over the whole Earth with the level of detail provided by the modern digital terrain
models. Simplified formulas, data reductions, filtering techniques are therefore proposed
according to specific applications, causing at the same time artifacts and approximations,
advantages and drawbacks.

Nowadays, the most successful global forward gravitational topography computation is
probably due to the work of Hirt et al. (2014); Hirt (2013) which use adequately the ad-
vantages of several methods developed among others by Forsberg (1984). For local geoid
computations, for example in Switzerland (Marti , 1997), similar methods are used. They
always consist in defining a new discretization of topography for each computed point.
This approach is very efficient and has the advantage to provide different resolutions for
the near and far fields equivalently for all points. However, it can introduces some discon-
tinuities and artifacts which can be crippling for short wavelengths analysis. Especially
for the potential for which the dependency mitigates slowly. For this reason, in order to
ensure the continuity and the consistency of the fields and because only small wavelengths
are considered in this thesis, the effects due to topography are computed for all points
with a single mass model. This strategy is only possible thanks to the fact that the area
of our interest is limited to the region where the CLIC facilities are projected.

Concerning the following simulations, the choice of the digital terrain model was mainly
motivated by its availability for the region surrounding CLIC up to 100 kilometers. The
choice fell on the free digital terrain data set ASTER GDEM, provided by METI and
NASA, providing 30 meters resolution. Unfortunately, according to Rexer (2014), it is
probable that this choice is not optimal. The data set SRTM CGIAR-CSI3 seems to be of
better quality. However, since the data set is not used for reduction of real observations or
computation of real geoid, but for some preliminary feasibility analyses and simulations
of the determination of the gravity field, it can be considered that ASTER GDEM is suf-
ficient. Here, a topography anomaly is given by a single homogeneous polyhedron which
have a single variable parameter, its density ρTOPO:

TOPO(ρTOPO) (6.17)

Using QGravity, the polyhedron is generated from two tessellations, see Section 5.2.3.
The vertices of the upper tessellation Tsuperior approximate the actual topography with
decreasing resolution with respect to the horizontal distance to the CLIC profile. The
resolution is equal to 90 meters up to a distance of 20 kilometers from every points of the
CLIC profile, 300 meters up to 50 kilometers and 900 meters up to 100 kilometers as it
is represented in Figure 6.26. The vertices of the lower tessellation Tlower are given by a
regular 1 kilometer grid at H = 0 meters. The common boundary is given by the external
boundary of Tupper. For the upcoming simulations, it is assumed that error-free astro-
gravimetric observations have been carried out every 10 meters inside the CLIC tunnel at
H = 350 meters and on the topography. This is done for the following densities:

ρTOPO : {50, 100, 200, 300, 400, 500, 2670}
[

kg

m3

]
3by the Consortium for Spatial Information (CSI), Consultative Group for International Agricultural

Research (CGIAR).
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Figure 6.26: Overview map showing the different decreasing resolutions areas around CLIC (yel-
low) used for topographic mass models TOPO. Source of relief: Swiss Federal Office of Topography.

From this set, the anomaly TOPO(2670) is used in order to model the full signals expected
by topography, while the others, TOPO(50) → TOPO(500), are useful for analyzing the
consequences of non-modeled density contrasts in reductions and predictions.

6.4.2 Misalignment Analyses due to TOPO(2670) Anomaly

The results of the simulations of the mass anomaly TOPO(2670) are given in Figure 6.27.
They give some interesting orders of magnitudes of expected gravity signals along the
CLIC profile on topography and in the tunnel. It is not surprising that large variations of
DoVs and free-air anomalies are highly correlated with the local variation in topography.
In particular, the variations of plumbline curvature, with changes between −2 to +2 arcsec
over less than 1 kilometer, clearly highlight that the first 5 kilometres will be subjected to
the great difficulties.

In Figures 6.28 and 6.29, the expected misalignment Mλ
? {Ntrue} and Mλ

? {δNmean}
along the profile are given for the wavelengths λ = 100, 200 and 300 meters. The expected
misalignment Mλ

? {Ntrue} shows clearly that topography generates significant misalign-
ments over 200 meters from the beginning to the 18th kilometer approximately. However,
if the whole profile is considered, only 17.8% of the profile is affected by misalignments
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Figure 6.27: Results of the simulations of the mass anomaly TOPO(2670). (Upper, left) profile
along CLIC with topography and tunnel. (Middle, left) error-free deflections of the vertical on
topography and in the tunnel. (Lower, left) error-free free-air anomaly on the topography and
in the tunnel. (Upper, right) error-free curvature of plumbline. (Middle, right) equipotential
profiles in the tunnel. (Lower, right) Differences of the different strategies with respect to the true
equipotential surface Ntrue.

larger than 10 microns. This can be see in Figure 6.30 or in Table 6.13. Afterwards, they
stay always below 10 microns.

From this fact, it is now crucial to see, if these significant signals can be observed directly
with a sufficient accuracy. If so, the determination of the equipotential variations gen-
erated by topography could be theoretically determined directly without using any mass
model reductions. If not, some hypotheses about the masses are unavoidable for the de-
termination. This kind of quantification of observability is done by comparingMλ

? {Ntrue}
andMλ

? {δNmean}. This comparison is shown in Figure 6.30 and demonstrates that the de-
termination of the equipotential surface by the strategy Nmean is efficient (λ = 200 meters)
for the major part of the profile but remains ineffective for the first 5 kilometers. In this
region, the determination Nmean generates a misalignment which reaching 313.4 microns!
The reason for this inefficiency is due to the bad estimation of the mean gravity along
the plumbline, crucial for the determination of the orthometric corrections. Nevertheless,
for the wavelength λ = 200 meters, a determination according to Nmean can theoretically
reduces the part of misalignment larger than 10 microns, over the whole profile, from
17.8% (no determination) up to 7.9%, an improvement of +10.1%, see Table 6.13. If we
consider the misalignment for other wavelengths, it also can be seen that the efficiency of
the determination increases significantly with increasing wavelength. For λ = 100 meters,
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the improvement is negative −2.5%, while for λ = 300 meters, it reaches +30.1%. This
statement also can be confirmed by figure 6.31, where the misalignment Mλ

? {Ntrue} and
Mλ

? {δNmean} are superposed and compared.

Table 6.13: Statistics of Mλ
? {Ntrue} and Mλ

? {δNmean} due to TOPO(2670).

Mλ
? {Ntrue} Mλ

? {δNmean}
λ min max mean RMS ≤ 10[µm] min max mean RMS ≤ 10[µm] impr.

[m] [µm] [µm] [µm] [µm] [%] [µm] [µm] [µm] [µm] [%] [%]

100 0.0 19.4 1.7 3.4 97.2 0.0 158.8 2.9 9.9 94.7 -2.5
200 0.1 81.9 7.4 14.5 82.0 0.2 313.4 6.8 23.4 92.1 +10.1
300 0.1 186.9 17.0 33.3 60.2 0.3 523.8 11.5 43.2 90.3 +30.1
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Figure 6.28: Ntrue (upper) and Mλ
? {Ntrue} (lower) along the CLIC profile due to TOPO(2670).

The green-red bold line on top of the lower plot indicates the positions for which the determination
M200

? {Ntrue} < 10 microns (green), and where M200
? {Ntrue} ≥ 10 microns (red).
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Figure 6.29: δNmean (upper) and Mλ
? {δNmean} (lower) along the CLIC profile due to

TOPO(2670). The green-red bold line on top of the lower plot indicates the positions for which
the determinationM200
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Figure 6.30: Comparisons of the misalignment Mλ
? {Ntrue} (upper) and Mλ
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6.4.3 Misalignment Analyses due to TOPO(50)→ TOPO(500) Anomalies

The following analyses are useful in order to quantify expected gravity signals generated
by non-modeled density contrasts in topography. Because all gravity functionals are pro-
portional to density, every field quantity generated by TOPO(50) → TOPO(500) can be
directly computed from TOPO(2670). However, because the most important statements
are given regarding a threshold of 10 microns, it is still necessary to show explicitly the
statistics for each density. They are given in Table 6.14 and show that, for a wavelength
λ = 200 meters, no misalignments M200

? {Ntrue} larger than 10 micrometers are expected
up to a density contrast of 300 kg

m3 . Concerning the consequences for a determination

by Nmean, we can see that density contrasts smaller than 100 kg
m3 generate misalignment

M200
? {δNmean} which stay below 11.7 microns.

Table 6.14: Statistics of Mλ
? {Ntrue} and Mλ

? {δNmean} due to TOPO(50)→ TOPO(500).

Mλ
? {Ntrue} Mλ

? {δNmean}
λ min max mean RMS ≤ 10[µm] min max mean RMS ≤ 10[µm] impr.

[m] [µm] [µm] [µm] [µm] [%] [µm] [µm] [µm] [µm] [%] [%]

TOPO(50)

100 0.0 0.4 0.0 0.1 100.0 0.0 3.0 0.1 0.2 100.0 0.0
200 0.0 1.5 0.1 0.3 100.0 0.0 5.9 0.1 0.4 100.0 0.0
300 0.0 3.5 0.3 0.6 100.0 0.0 9.8 0.2 0.8 100.0 0.0

TOPO(100)

100 0.0 0.7 0.1 0.1 100.0 0.0 5.9 0.1 0.4 100.0 0.0
200 0.0 3.1 0.3 0.5 100.0 0.0 11.7 0.3 0.9 99.9 -0.1
300 0.0 7.0 0.6 1.2 100.0 0.0 19.6 0.4 1.6 99.2 -0.8

TOPO(200)

100 0.0 1.5 0.1 0.3 100.0 0.0 11.9 0.2 0.7 99.9 -0.1
200 0.0 6.1 0.6 1.1 100.0 0.0 23.5 0.5 1.8 99.3 -0.7
300 0.0 14.0 1.3 2.5 98.0 0.0 39.2 0.9 3.2 98.3 0.3

TOPO(300)

100 0.0 2.2 0.2 0.4 100.0 0.0 17.8 0.3 1.1 99.7 -0.3
200 0.0 9.2 0.8 1.6 100.0 0.0 35.2 0.8 2.6 98.4 -1.6
300 0.0 21.0 1.9 3.7 97.1 0.0 58.9 1.3 4.9 97.2 0.1

TOPO(400)

100 0.0 2.9 0.3 0.5 100.0 0.0 23.8 0.4 1.5 99.5 -0.5
200 0.0 12.3 1.1 2.2 98.4 0.0 47.0 1.0 3.5 97.7 -0.7
300 0.0 28.0 2.6 5.0 94.5 0.0 78.5 1.7 6.5 96.0 1.5

TOPO(500)

100 0.0 3.6 0.3 0.6 100.0 0.0 29.7 0.6 1.9 99.1 -0.9
200 0.0 15.3 1.4 2.7 97.8 0.0 58.7 1.3 4.4 97.1 -0.7
300 0.0 35.0 3.2 6.2 93.3 0.1 98.1 2.1 8.1 95.4 2.1
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Nevertheless, the regions of whichMλ
? {δNmean} ≥ 10 microns are restricted to the first 3

kilometers for TOPO(50)→ TOPO(500). For the rest of the profile, Mλ
3�49 {δNmean} are

negligible and stay below 3 microns, see Figure 6.32.
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the determinationM200

? {δNmean} < 10 microns (green), and whereM200
? {δNmean} ≥ 10 microns

(red)
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6.5 Time-Varying Centrifugal Effects

This section concerns the analysis of signals generated by the varying disturbing centrifu-
gal potential as presented in Section 3.8.2. According to Equation 3.174, the disturbing
centrifugal potential is defined as:

δΦcentr(ρ, t) = Φcentr(ρ, t)− Φcentr,ω0
(ρ) (6.18)

where the centrifugal potential terms on the right-hand side, in ITRS, are given by Equa-
tion 3.136:

Φcentr(ρ
ITRS, t) = +

1

2
·
{∣∣ωITRS

♁ (t)
∣∣2 · |ρITRS|2 −

(
ρITRS · ωITRS

♁ (t)
)2}

Φcentr,ω0
(ρITRS) = +

1

2
·
{
|ω0 · eITRS

z |2 · |ρITRS|2 − (ρITRS · ω0 · eITRS
z )2

} (6.19)

from which the change in the equipotential is given by Equation 3.209:

δNcentr(ρ
ITRS
◦ , t) =

δΦcentr(ρ
ITRS
◦ , t)

|gtot(ρITRS
◦ )|

(6.20)

The following analyses are based on a numerically computed global time series of the
disturbing centrifugal potential, between 1980 and 2013, from which the Earth rotation
vector time series ωITRS

♁ (t) is generated from the Earth orientation parameter data EOP 08

C04 (IAU1980), and shown in Figure 6.33, and with more details in Appendix B.
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Figure 6.33: Time series of the x-y-z components of the Earth rotation vector ωITRS
♁ generated

from the Earth orientation parameter data EOP 08 C04 (IAU1980).
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6.5.1 Global Variations

A typical mapping of the absolute variation of δNcentr is shown in Figure 6.34. Globally,
the amplitudes of the variation of the equipotential stay below 0.03 meters. In Geneva
at the location of CLIC, they stay below 0.015 meters and for the relative variations over
the whole CLIC profile, they reach only 0.1 millimeters, see Figure 6.35. The spatial
pattern is always formed by two maxima and minima located at approximately +50 and
-50 degrees of latitude. This is due to the fact that time series of the y-component of
the Earth rotation vector ωITRS

♁ is not centered and contains an offset of approximately
1 · 10−10 rad

s . Concerning the deflections of the vertical, the maximal variations are in the
order of 0.002-0-003 arcsec.

Figure 6.34: Typical equipotential δNcentr and deflections of the vertical (ξ, η) variations and due
to the disturbing centrifugal potential on the profile on 16.07.2002 at 12:00 UTC.

6.5.2 Misaligment Analyses for CLIC

If we look at the impact on misalignments for CLIC, we can see that they are by far
negligible. They have maximal values below 0.15 microns for all wavelengths λ ≤ 50 km,
see Figure 6.36. The maximal amplitude is generated by the pole wobble with a periodicity
of 420 days, see Table 6.15.
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Figure 6.35: (Upper) time series δNcentr generated by the disturbing centrifugal potential com-
puted for the position in the middle of the profile of CLIC, from 1980 to 2013, according to the
Earth orientation parameters time series EOP 08 C04 (IAU1980). (Lower) centered (left) and de-
trended (right) equipotential along the profile of CLIC at different epochs during a cycle of 420
days.

Table 6.15: List of the main periods of the components of the maximal misalignment
max [M?

? {δNcentr}] generated by the disturbing centrifugal potential on the profile of CLIC.

Rank Period Amplitude

[-] [day] [µm]

1 ∞ 0.100
2 430.0 0.028
3 364.8 0.016
4 2408.0 0.014
5 197.3 0.011
6 445.9 0.011
7 218.9 0.011
8 215.0 0.011
9 376.2 0.007
10 2006.6 0.006
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Figure 6.36: Time series (upper) and amplitude spectrum (lower) of the maximal misalignment
M?

? {δNcentr} generated by the disturbing centrifugal potential on the profile of CLIC, from 1980
to 2013, with the Earth orientation parameters time series EOP 08 C04 (IAU1980).
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6.6 Earth Tides

Since the signal of the Earth tides is treated abundantly in geodetic books and litera-
ture, only the computation of misalignments along the profile of CLIC are discussed in
this section. Concerning the problem of the tidal signals for the reduction of geodetic
observations, please refer to Section 4.4. As seen in Section 3.7.4, the tidal potential of a
deformable Earth can be computed on the one hand for positions fixed in space or on the
other hand for points fixed on the Earth’s surface. Here, only the latter case is argued.
From the potential given in Equation 3.157 the change in the equipotential is given by:

Ntidal(ρ
ITRS
◦ , t) =

Φtidal(ρ
ITRS
◦ , t)

|gtot(ρITRS
◦ )|

(6.21)

The analyses are based on a hourly time series between 2012 and 2013, computed with
the software ETERNA (Wenzel , 1993) provided by the International Center for Earth Tides
(ICET), for 20 positions uniformly distributed along the profile of CLIC. In Figure 6.37,
(upper) the time series of the absolute equipotential variations Ntidal for the position in the
middle of the profile of CLIC is shown. As expected the absolute changes can reach 0.3
meters. The centered and detrended variations along the profile are shown in Figure 6.37,
(lower) for a cycle of 12 hours. Finally, the consequences of the tides on the misalignments
are shown in Figures 6.38 and 6.39. They reach maximum 1.0 and 6.6 microns for the
wavelengths λ = 15 and λ = 48 km respectively. In addition, these misalignments occur
mostly with periodicities below 26 hours.
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Figure 6.37: (Upper) time series Ntidal generated by the tidal potential computed for the position
in the middle of the profile of CLIC, from 2012 to 2013, computed with the software ETERNA. (Lower)
centered (left) and detrended (right) equipotential along the profile of CLIC at different epochs
during a cycle of half a day of the 23.06.2012.
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Figure 6.38: Time series (upper) and amplitude spectrum (lower) of the maximal misalignment
M?

? {Ntidal} generated by the tidal potential on the profile of CLIC, from 2012 to 2013, computed
with the software ETERNA.

Table 6.16: List of the main periods of the components of the maximal misalignment
max [M?

? {Ntidal}] generated by the tidal potential on the profile of CLIC.

Rank Period Amplitude

[-] [hour] [µm]

1 ∞ 3.90
2 25.8 0.70
3 350.2 0.62
4 8.2 0.58
5 23.9 0.53
6 6.1 0.49
7 6.2 0.48
8 8.2 0.36
9 12.42 0.33
10 6.2 0.29
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Figure 6.39: Maximal misalignments max [M?

? {Ntidal}] generated by the tidal potential on the
profile of CLIC, as a function of the wavelength along the profile of CLIC.



222 Expected Gravity Field Signals and Observability at Short Wavelengths

6.7 Lake of Geneva

This section considers signals generated by the Lake of Geneva, mainly at the location of
the projected CLIC facilities. According to Graf (1983), the origin of the Lake of Geneva
seems to be due to several geological processes as fluvial erosion, tectonic deformation and
glacial remodeling. The water level is regulated in Geneva at approximately HLake = 372
meters, with variations of about 1.0 meter, see Figure 6.40. Its maximal depth is equal to
309.7 meters, the mean depth is equal to 152.7 meters, and it covers an area of 582 km2.
The lengths along the major and minor axis are equal to 72.3 km and 13.8 km respectively.
The volume reaches 89 km3 with a mean outflow of 240 m3

s . It is crossed by the Rhône
river from East to West.
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Figure 6.40: (Upper) time series of Lake of Geneva Level in Sécheron between 2007 and 2009.
(Lower) Amplitude spectrum. Source of data: Federal Office for the Environment FOEN.

From a geodetic point of view, the interesting aspects are related to the corresponding
gravity field generated by the lake. In Switzerland, the first considerations of lakes for
geoid computations can be found in Marti (1997). He considered stationary lake models
of density contrast equal to -1’670 kg

m3 with respect to topography, for the geoid compu-
tation based on the remove-restore technique. Here, the aim is to go a little further in
the modeling and to consider the Lake of Geneva as a time-varying body, and look at the
consequences on the time varying gravity field. Despite the fact that the surface of lakes
seems to vary in a very chaotic manner, it can be shown that the largest mass movements
satisfy simple laws which can be used to encompass the major phenomena. Here, the
surface of the lake is considered in two ways:

1. The overall rise and descent of the water surface. As we can see in Figure 6.40,
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the water level is regulated and variations of about 1.0 meters, once per year, are
expected.

2. Stationary waves or Seiches, established and observed by Forel (1895). Usually,
Seiches happen when a lake is exited by the friction of wind or storm on its surface.
In the Lake of Geneva, they have periods of some minutes up to approximately 74
minutes, the period of the uninodal longitudinal mode. The amplitudes are quite
small in the Lake of Geneva, usually smaller than 20 centimeters Bauer (1979). The
amplitude spectrum of Figure 6.40 shows several significant peaks which correspond
to normal modes of Seiches.

In the following section, the gravity field generated by the different mass models are
simulated on the one hand for gridded points in a square region encompassing CLIC at
H = 350 meters, and on the other hand, at the projected location of CLIC, at H = 350
meters and on the surface of topography as it is shown in Figure 6.41.

6.7.1 Overall Lake Level Variation

Here, two homogeneous polyhedra, noted LAKE371 and LAKE373, of density ρwater = 1′000
kg
m3 , are considered for the following simulations. They are both generated from two
tessellations where Tlower is given by the actual bathymetry of the Lake of Geneva. Tupper

is given by a horizontal plane, at HLake = 371.0 and HLake = 373.0 meters for LAKE371

and LAKE373, respectively. The height difference of 2 meters, twice the actual one, is
chosen in order to estimate the consequences of an extreme level change. Before analyzing
the consequence of the lake level change, let us begin with the computation of signals and
misalignments generated by the whole mass of the Lake of Geneva, seen as stationary.
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Figure 6.41: LAKE371. The z-component is scaled by a factor 40 with respect to x and y.
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Misalignment Analyses due to LAKE371

The consequences on the gravity field generated by LAKE371 are shown in Figures 6.42,
6.44 and 6.45. In Figure 6.42, the absolute variations of the equipotential surface in the
region of Geneva, at H = 350 meters, are represented and show that the lake provokes a
change of about 2 cm along the profile of CLIC. This can be better seen in Figure 6.44
where the equipotential profile along CLIC and its respective misalignments are repre-
sented. They reach maximal 3 and 10 microns for the wavelengths λ = 1.0 and λ = 2.4
km, respectively. For λ = 200 meters, the misalignment is negligible and the plumbline
curvature stays below 0.01 arcsec, see Figure 6.45.

Misalignment Analyses due to LAKE373 - LAKE371

The consequences of the gravity field generated by an overall lake level variation of 2 meters
are shown in Figures 6.43, 6.44 and 6.45. The gravity field representing the variation
is obtained by subtracting the gravity fields generated by LAKE373 and LAKE371. In
Figure 6.43, the absolute variations of the equipotential surface in the region of Geneva,
at H = 350 meters, are represented and show that an overall lake level variation of 2
meters provokes a change of about 0.4 mm along the profile of CLIC. In Figure 6.44, the
equipotential profile along CLIC and its respective misalignments are represented. They
reach maximal 1 and 10 microns for the wavelengths λ = 4.2 and λ = 15 km, respectively.
For λ = 200 meters, the misalignment is negligible and the plumbline curvature stay below
0.01 arcsec, see Figure 6.45. The latter value is computed from, on the one hand, the
predicted deflections of the vertical on the surface of topography generated by LAKE371,
and on the other hand with the deflections in the tunnel generated by LAKE373.
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Figure 6.42: Absolute variations of the equipotential surface in the region of Geneva generated
by the whole Lake of Geneva LAKE371.

Figure 6.43: Absolute variations of the equipotential surface in the region of Geneva generated
by an overall variation of the Lake of Geneva by 2 meters, LAKE373-LAKE371.
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Figure 6.44: (Upper, left) equipotential profile generated by the whole Lake of Geneva along
the CLIC profile. (Upper, right) misalignments M?

? {NLake}. (Lower, left) equipotential profile
generated by an overall variation of the Lake of Geneva by 2 meters along the CLIC profile.
(Lower, right) misalignments M?

? {∆NLake}.
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Figure 6.45: (Left) deflection of the vertical on the surface of topography generated by LAKE371

and deflection of the vertical in the tunnel generated by LAKE373, along the CLIC profile. (right)
curvature of the plumbline generated by LAKE371 and LAKE373.
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6.7.2 Seiches

From a physical point of view, since the vertical dimension of the Lake of Geneva is very
small compared to the horizontal ones, the shallow water equations, presented in Section
3.6.2, provide a very good hydrodynamic model. They parameterize the water by three
2D time-varying fields, the 2D field of water surface heights and the 2D velocity field. As
input they need the geometry of the basin, the initial state of the water and eventually
forcing terms. For example, in Bauer (1979), we can find several numerical hydrodynamic
simulations of the Lake of Geneva, forced by wind friction, based on the shallow water
equations, which reproduce observations of the lake level oscillations with good precision.

In order to generate homogeneous polyhedra for gravity field simulations, the most pre-
cise way to generate the surface of the Lake of Geneva at successive epochs, is certainly
provided by numerical simulations similar to those provided in Bauer (1979). However,
this solution has not been retained. Apart from the fact that such simulations are beyond
the scope of this thesis, the aim is to estimate some order of magnitude of extreme events
and a high accuracy is not needed. The privileged solution for generating the surface of
the Lake of Geneva is a mixture between some information provided by Bauer (1979),
and parts of the analytic solutions of the linear shallow water equations for rectangular
flat basins. In particular since there exist resonant modes, standing waves solutions are
provided.

Solution of the Linear Shallow Water Equation in Rectangular Basins

Basically, for a basin of length Lx, width Ly and a flat depth hr, the three 2D fields are
given by the superposition of normal modes of the linear shallow water equations:

h(x, y, t) =

∞∑
N=0

∞∑
M=0

hN,M (x, y, t)

vx(x, y, t) =
∞∑
N=0

∞∑
M=0

vx,N,M (x, y, t)

vy(x, y, t) =
∞∑
N=0

∞∑
M=0

vy,N,M (x, y, t)

(6.22)

where h represents the field of water surface heights and vx and vy the horizontal velocity
fields in x and y. The normal modes are given by:

hN,M (x, y, t) = AN,M · cos(kN · x) cos(kM · y) cos(kN,M · cr · t)

vx,N,M (x, y, t) = AN,M ·
g · kN
cr · k

· sin(kN · x) cos(kM · y) sin(kN,M · cr · t)

vy,N,M (x, y, t) = AN,M ·
g · kM
cr · k

· cos(kN · x) sin(kM · y) sin(kN,M · cr · t)

(6.23)

with:

kN =
πN

Lx
, kM =

πM

Ly
kN,M =

√
k2
N + k2

M , cr =
√
g · hr (6.24)
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and AN,M the initial height amplitude of the mode N,M and g the acceleration of gravity.
Equations 6.23 show time and space periodic features from which the modal period TN,M
is given by:

TN,M =
2π

kN,M · cr
(6.25)

For example, the periods related to a rectangular flat basin corresponding to the Lake of
Geneva, of dimensions: Lx = 75 km, Ly = 7 km and hr = 150 m, are listed in Table 6.17.

Table 6.17: Periods, in minutes, corresponding of the resonant modes of a rectangular flat basin
of Lx = 75 km, Ly = 7 km and hr = 150 m.

HH
HHHHM

N
0 1 2 3

0 ∞ 65.17 32.59 21.72
1 6.08 6.06 5.98 5.86
2 3.04 3.04 3.03 3.01
3 2.02 2.03 2.02 2.02

In particular, if we look at the period of the principal longitudinal mode T1,0 = 65.17
minutes, we can see that it corresponds approximately to the actual one, observed at
73.77 minutes, see Figure 6.40.

Modified Rectangular Basin Solution for the Lake of Geneva

The solution retained for the generation of the surface of the Lake of Geneva is an adap-
tation of the formula of the height field of the rectangular basin. The adaptation is simple
and consists in replacing, in Equation 6.23, the terms which model the profile of the longi-
tudinal wave by the profile given by in Bauer (1979). In addition, the period is no longer
computed from the dimension of the basin but just taken from the observation. Only the
first longitudinal mode, of period T1,0 = 73.77 minutes, containing the major part of the
energy, is considered. The initial amplitude is fixed at 1.0 meters, an extreme case for the
Lake of Geneva. The equation for the surface of the Lake of Geneva is given by:

h(x, y, t) =

∞∑
N=0

∞∑
M=0

hN,M (x, y, t) =

1∑
N=0

0∑
M=0

hN,M (x, y, t) (6.26)

with:

hN,M (x, y, t) = BauerN,M (x) · cos(kM · y) cos

(
2π

TN,M
· t
)

(6.27)

where the function BauerN,M (x) represents the longitudinal profile given in Bauer (1979).
The first two modes are represented in Figure 6.46 (left), at t = 0 minutes.

Misalignment Analyses due to Seiches

The gravity fields generated by the Seiches model, given in the previous section, are
computed for epochs separated by 5 minutes, for a complete cycle of approximately 75
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Figure 6.46: Seiches profile, from Geneva (West) to Montreux (East) of the first (left) and second
(right) longitudinal mode at different epochs according to Bauer (1979).

minutes. Perspective views of the mass models, for a half-cycle, are shown in Figure
6.49, and the corresponding consequences on the variation of the equipotential surface at
H = 350 meters are shown in Figure 6.50. They show that the absolute variations are
of the order of some 0.1 mm. Concerning the effects on the profile of CLIC, Figure 6.47
confirms that the changes are very small and negligible. The maximal misalignments only
reach 0.07, 1.0 and 10.0 microns for the wavelengths λ = 1, λ = 5 and 20 km, respectively.
The absolute variations of the deflection of the vertical are in the order of some milliarcsec,
see Figure 6.48.



230 Expected Gravity Field Signals and Observability at Short Wavelengths

0 10 20 30 40
0

5

10

15

20

25

30
N=1 M=0 normal mode Misalignment along CLIC profile

Wavelength λ [km]

M
** {N

S
ei

ch
es

} [
m

ic
ro

ns
]

0 10 20 30 40 50
−30

−20

−10

0

10

20

30
N=1 M=0 normal mode NSeiches

Distance [km]

N
S

ei
ch

es
 [m

ic
ro

ns
]

0 min

(detrended)

5 min
10 min
15 min
20 min
25 min
30 min
35 min

Figure 6.47: (Left) equipotential profile generated by the first longitudinal normal mode (N =
1,M = 0) of an extreme Seiches event in the Lake of Geneva along the CLIC profile, at different
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Figure 6.48: Deflections of the vertical on the surface generated by the first longitudinal normal
mode (N = 1,M = 0) of an extreme Seiches event in the Lake of Geneva along the CLIC profile,
at different epochs, during a half-cycle.
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Figure 6.49: First longitudinal normal mode (N = 1,M = 0) of an extreme Seiches event in the
Lake of Geneva along the CLIC profile, at different epochs, during a half-cycle.
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Figure 6.50: Equipotential surface variations, at H = 350 meters, generated by the first longitu-
dinal normal mode (N = 1,M = 0) of an extreme Seiches event in the Lake of Geneva along the
CLIC profile, at different epochs, during a half-cycle.
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6.8 Concluding Remarks

The main findings of this chapter can be separated into two distinct parts. The first part
concerns the systematic analyses of lateral varying anomalies. The second part concerns
the analyses related to the CLIC profile situated in the region of Geneva. If nothing is
stated more precisely, the term significant signal is used instead of the misalignment larger
than 10 microns for a wavelength of 200 meters.

Lateral Varying Anomalies

The first conclusion is that it is very difficult to draw precise general conclusions from the
large amount of simulations performed in this chapter. However, we can still say that:

� Anomalies located entirely below the tunnel:

– can generate significant signals for density contrasts larger than 200 kg
m3 .

– of wavelengths between 220 and 6000 meters can generate significant anomalies.

– (connected slabs) are observable if gravimetric measurements are carried out
on the topography and in the tunnel.

– (sinus) are partially observable if gravimetric measurements are carried out on
the topography and in the tunnel. Large amplitude anomalies approaching the
tunnel to less than 10 meters are not observable.

� Anomalies with masses between the tunnel and a flat topography:

– can generate significant signals for density contrasts larger than 100 kg
m3 .

– of wavelengths between 120 and 5000 meters can generate significant anomalies.

– (connected slabs) are partially observable if gravimetric measurements are car-
ried out on the topography and in the tunnel. Anomalies of density contrast
larger than 200 kg

m3 are not observable.

– (sinus) are partially observable if gravimetric measurements are carried out on
the topography and in the tunnel. Anomalies of density contrast larger than
200 kg

m3 are not observable.

� Anomalies with masses between the tunnel and a non-flat topography (SIN25�28 not
considered):

– (connected slabs) can generate significant signals for density contrasts larger
than 100 kg

m3 .

– (sinus) can generate significant signals for density contrasts larger than 300 kg
m3 .

– of wavelengths between 360 and 3000 meters can generate significant anomalies
(for amplitudes larger than 100 meters).

– (connected slabs) are partially observable if gravimetric measurements are car-
ried out on topography and in the tunnel. Anomalies of density contrast larger
than 200 kg

m3 are not observable.
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– (sinus) are partially observable if gravimetric measurements are carried out on
the topography and in the tunnel. Anomalies with amplitudes larger than 50
meters and density contrast larger than 100 kg

m3 are not observable.

These findings can also be summarized as follows. The shorter wavelengths which can
generate significant signals is equal to 120 meters. This means that observations must be
carried out with a spacing shorter than 60 meters. In addition, the density field between
the tunnel and the topography must be known with a precision better than 100-200 kg

m3 .

CLIC Profile

The topographic masses generate significant signals for 17.8% of the profile, all located in
the first 17 kilometers. In addition it has been demonstrated that only 60% of these sig-
nals are directly observable by astrogravimetric levelling (with gravimetric measurements
carried out on the topography and in the tunnel). This means that 7.9% of the whole
profile, located in the first 4 kilometers, are not directly observable.

The analysis concerning the signals generated by non-modeled topographic density con-
trasts shows that no signals are generated for density contrasts lower than 300 kg

m3 . Nev-
ertheless, the first 3 kilometers still remain not observable and problematic for density
contrasts larger than 100 kg

m3 .

The impact of time-varying phenomena as the disturbing centrifugal potential and ex-
treme variations of the surface of the Lake of Geneva do not generate significant gravity
signals which must be modeled, for the equipotential as well for observations. Finally, the
impact of the Earth’s tides signals is small and can well be taken into account with the
standard existing models.



Chapter 7

Astrogeodetic Determination of
Deflections of the Vertical

This chapter deals with the astrogeodetic determination of deflections of the vertical. More
specifically, it looks at the determination of the direction of the local gravity acceleration
vector in the ITRS, being more fundamental than the deflection of the vertical itself. Ac-
cording to (Jekeli , 1999), the deflection of the vertical is defined as the angular difference
between the local gravity direction and a reference direction. This reference direction can
be the perpendicular to a reference ellipsoid or the direction of the normal gravity vector,
defining the Helmert and Molodensky deflections of the vertical, respectively. Rigorous
formulas and relations for the determination of equipotential profiles are given in Section
4.3.4.

After a short introduction to basic principles of astrogeodetic determinations of the lo-
cal gravity acceleration vector in the ITRS, two high-precision zenith camera systems are
presented. The first system DIADEM (Digital Astronomical Deflection Measuring Sys-
tem) was initially constructed within a collaborative project of ETH Zurich together with
the Geodetic Institute at the Leibniz University of Hannover. During more than three
decades, the system has been deployed in numerous countries in Europe and North Amer-
ica. Specially it was deployed in the astrogravimetric campaign TZ32 at CERN as exposed
in Chapter 8.

Based on the experiences gained with DIADEM, a second camera system CODIAC (Com-
pact Digital Astrometric Camera) has been designed, developed and manufactured at ETH
Zurich. As already DIADEM in 2011 (Smith et al., 2013) , the new system CODIAC has
been successfully deployed 2014 in the project Geoid slope validation survey (GSVS14) in
the state of Iowa, conducted by the US National Geodetic Survey (NGS) from NOAA.

7.1 Astrogeodetic Determination of the Local Gravity Unit Vec-
tor

Astrogeodetic determinations of the local gravity unit vector in the ITRS, denoted by
eITRS

gtot
, became possible at the moment when two elements reached sufficient accuracy.
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The first one was the prediction of topocentric apparent places of celestial bodies with
respect to a global Earth-fixed reference system. The second condition was fulfilled, when
directional observations of celestial bodies related to gravity became possible. Formally,
if the apparent place of a celestial body with respect to the ITRS, denoted by sITRS

? , is
known, a gravity-dependent directional observation is a function L of sG? , but expressed
in the local astronomical topocentric system G. The observation equations are based on
the following relation:

L (sG? ) = TGITRS(Φ,Λ) · sITRS
? (7.1)

with:

TGITRS(Φ,Λ) =


− sin Φ cos Λ − sin Φ sin Λ cos Φ

− sin Λ cos Λ 0

cos Φ cos Λ cos Φ sin Λ sin Φ

 (7.2)

where the unknown parameters are the astronomical longitude and latitude (Φ,Λ) which
completely define eITRS

gtot
by:

eITRS
gtot

= −


cos Φ cos Λ

cos Φ sin Λ

sin Φ

 (7.3)

In practice, the observation Equation 7.1 is not sufficient and must be completed because
real measurements are always affected by a variety of systematic errors. Some of them
are invariant during one or several nights and can be estimated by an appropriate calibra-
tion procedure (e.g. for zenith camera, scale factors and orientations of tiltmeters with
respect to the CCD camera, estimated within a celestial calibration procedure). Others
are assumed to be unchanged only during a single setup or even during some minutes (e.g.
zenith camera, absolute offset of tiltmeters). The modern acquisition setup, calibration
and data processing details are exposed in Hirt (2004), successfully taken over by Somieski
(2008) for the ETH system DIADEM, and summarized by Hirt (2010).

7.1.1 Topocentric Apparent Places of Celestial Bodies (Stars)

The computation of topocentric apparent places of celestial bodies, also called topocentric
proper direction (van Altena, 2012), is an ancestral challenge, still closely related to fun-
damental advances in theoretical and experimental physics. In fact, this very hard task
is directly related to ultimate definitions, formalization and realizations of space-time ref-
erence systems, transformations in-between, modeling of motion and propagation of elec-
tromagnetic signals between objects and observers. Modern atmosphere-free astrometric
computations are all based on the general relativistic framework and allow predictions at
µarcsec level (Klioner and Kopeikin, 1992; Klioner , 2002).

If we restrict the problem to the proper direction of a particular star, the aim is to
predict the topocentric proper direction sITRS

? of its incoming photons1, for an observer on

1It may be confusing and contradictory that we want to compute a topocentric proper direction in the
ITRS, and not in the local topocentric system. Here it is important to understand that topocentric signifies
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Earth, located at a known ITRS position ρITRS
obs , who reads the time tUTC

obs on his watch.
Assuming that the position of the star rICRS

? (tTT
0 ) is precisely known in the ICRS, at a

certain reference epoch2 tTT
0 , the following function has to be found:

sITRS
?

{
rICRS
? (tTT

0 ),ρITRS
obs , tUTC

obs

}
(7.4)

and according to Kaplan et al. (1989), this function can take the form:

sITRS
? (tTT

obs) = SITRS
GCRS(tTDB

obs ) · f
{
g
[
rICRS

?/obs
(tTDB

obs )
]}

(7.5)

where the barycentric vector of the star from which we subtracted the barycentric vector
of the observer3 is given by:

rICRS

?/obs
(tTDB

obs ) = rICRS
? (tTDB

0 ) + ṙICRS
? (tTDB

0 ) · (tTDB
obs − tTDB

0 )− rICRS
obs (tTDB

obs ) (7.6)

which is related to the known Earth-fixed geocentric position of the observer by:

rICRS
obs (tTDB

obs ) = rICRS

♁ (tTDB
obs ) + SITRST

GCRS (tTDB
obs ) · ρITRS

obs (7.7)

where:

only that we want to compute the proper direction for an observer fixed on the Earth’s surface and not at
geocenter. It does not mean that the axes are defined as a traditional local topocentric system. In fact,
the axes are defined to be parallel to the axes of ITRS.

2According to Kaplan (2005), for modern stars catalogs, the reference epoch tTT
0 is J2000.0 in the TT

timescale.
3This relation models the linear proper motion of the star as well as the classical yearly and daily

parallax.
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tTT
obs = epoch of observation in terrestrial time TT. The time TT

runs at the same rate as a time scale based on SI seconds
on the surface of the Earth.

tTDB
obs = epoch of observation in the barycentric dynamical time

TDB. The TDB is a correct timescale for equations of mo-
tion referred to the barycenter of the solar system (Kaplan,
2005).

tTDB
0 = reference epoch of the star catalog in TDB.

sITRS
? = atmosphere-free non-normalized topocentric proper direc-

tion vector of the star ? in the ITRS.

rICRS
? = position vector of the star in the ICRS.

ṙICRS
? = space motion vector of the star in the ICRS.

rICRS
obs = position vector of the observer in the ICRS.

rICRS
♁ = position vector of the geocenter in the ICRS.

ρITRS
obs = position vector of the observer in the ITRS.

SITRS
GCRS = Rotation matrix which transforms a vector given in the

GCRS into the ITRS.

g [...] = function which models the general relativistic gravitational
deflection of light.

f {...} = Lorentz transformation between BCRS (ICRS) and GCRS.
Models the aberration of light.

7.1.2 Atmospheric Refraction

For an observer located on the surface of the Earth, the topocentric proper direction sITRS
? ,

given in the previous section, is not yet the real apparent direction of the star. In fact, in
Equation 7.5, the interactions with the atmosphere are not considered. From a physical
point of view, the effect of the atmosphere on the apparent direction can be addressed
by two ways: the propagation of electromagnetic waves in a refractive medium and the
principle of Fermat. In the first approach, the apparent direction corresponds to the
perpendicular to the wavefront at the location of the observer, and for the second, light is
treated in the geometrical optics framework as rays for which trajectories satisfy paths of
stationary optical length with respect to variations of the path (Ghatak , 2005). The good
thing is, that both approaches lead to the same second order differential equation, called
eikonal, which gives, in an Euclidean system, for a particular wavelength λ, the trajectory
of a light ray path ρ as a function of the refractive index field nλ

(
ρ(s)

)
:

d

ds

[
nλ
(
ρ(s)

)
· dρ(s)

ds

]
= ∇nλ

(
ρ(s)

)
(7.8)
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where s represents the curvilinear coordinate along the trajectory. According to Wunderlin
(1979), Equation 7.8 is given in a more explicit form by:

d2ρ(s)

ds2
= ∇nλ

(
ρ(s)

)
− 1

nλ
(
ρ(s)

) · dnλ
(
ρ(s)

)
ds

· dρ(s)

ds
(7.9)

where the refractive index field is the ratio between the speed of light in vacuum c, and
in the medium vλ

(
ρ(s)

)
:

nλ
(
ρ(s)

)
=

c

vλ
(
ρ(s)

) (7.10)

In the optical range, the refractive index can be derived directly from a meteorological
field which comprises the temperature T (ρ), pressure p(ρ) and partial water vapor pres-
sure e(ρ) fields. According to Stone and Zimmerman (2011), formulas providing similar
precision of about 10−7 are given in Birch and Downs (1993) and Ciddor (1996). Once
the refractive index field nλ(ρ) is provided, the trajectory of a ray can be computed by
integrating Equation 7.8 or 7.9. For arbitrary complex fields nλ(ρ), a numerical integrator
has to be used. Otherwise, for simple cases as vertical stratified atmosphere models (e.g.
Geiger (1988)), analytic solutions can be found.

For the computation of the proper direction, the trajectory ρ(s) is not primarily of inter-
est. In fact, the proper direction is given by its tangential vector t(sobs) at the location of
the observer, see Figure 7.1. By definition, the tangential vector is given by:

t(sobs) =
dρ(s)

ds

∣∣∣∣
sobs

(7.11)

and the system of second order differential equations 7.9 can be reformulated as a system
of first order differential equations as follows:

dρ(s)

ds
= t(s)

dt(s)

ds
= ∇nλ

(
ρ(s)

)
− 1

nλ
(
ρ(s)

) · dnλ
(
ρ(s)

)
ds

· t(s)

(7.12)

which can be solved as a boundary or initial values problem.

Algorithm for Numerical Integration

In our case, we have two boundary conditions. The position of the observer ρITRS
obs and

the proper direction of the star in vacuum sITRS
? . A simple way to compute this boundary

value problem and finally t(sobs) is to solve Equation 7.12 as an initial value problem, and
iterate the initial proper direction until the proper direction in vacuum sITRS

? is reached.
If the vectors are given in the ITRS, the algorithm can proceed as follows:

1. for the iteration k, set the initial values to:
ρITRS
k (s = sobs) = ρITRS

obs

tITRS
k (s = sobs) =

sITRS
?

|sITRS
? |

(7.13)
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2. integrate Equation 7.12 until the limit of the tropopause (≈ H=12 km) is reached
=⇒ tITRS

k (s?).

3. compute the correction term for the initial direction by comparing the normalized
directions tITRS

k (s?) and sITRS
? :

δtITRS
k =

sITRS
?

|sITRS
? |

−
tITRS
k (s?)

|tITRS
k (s?)|

(7.14)

4. if the correction |δtITRS
k | is larger than a fixed abort criterion, the new initial direction

is set to:

tITRS
k+1 (s = sobs) = tITRS

k (sobs) + δtITRS
k (7.15)

and a new iteration is started. Otherwise, if the correction |δtITRS
k | is smaller than

the abort criterion, the final proper direction of the star is given by:

tITRS
? ≡ tITRS

k (sobs) (7.16)

Total Refraction Signal

The total signal generated by refraction on the proper direction is the directional difference
between the proper direction in vacuum sITRS

? and the proper direction after interaction
with the real atmosphere tITRS

? . Formally, it is given by:

δsITRS
refr,tot =

tITRS
?

|tITRS
? |

− sITRS
?

|sITRS
? |

(7.17)

Standard Refraction

We call standard refraction, the refraction generated by a standard atmosphere. Here,
the ICAO 1976 standard atmosphere (ICAO , 1976) provided by the International Civil
Aviation Organization (ICAO) is used. In Table 7.1, only the significant optical refracting
part of the standard atmosphere is shown.

region height H temperature T pressure p rel. hum.

[km] [ ◦C] [hPa] [%]

sea level 0 15.0 1013.25 0

troposphere 0 � 11 15.0− 6.5 ·H [km] 1013.25 ·
(

1− 6.5·H [km]
288.15

)5.2581

0

low stratosphere 11 � 20 -56.5 1013.25 ·
(

1− 6.5·H [km]
288.15

)5.2581

0

Table 7.1: Lowest parts of the ICAO 1976 standard atmosphere.

And the standard refraction is formally defined as:

δsITRS
refr,std =

tITRS
?

|tITRS
? |

∣∣∣∣
std

− sITRS
?

|sITRS
? |

(7.18)
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Figure 7.1: Computation of the refraction in the atmosphere.

Anomalous Refraction

According to Hirt (2006), anomalous refraction is defined as the part of astronomical (here
total) refraction which cannot be explained by radially symmetric refraction models. This
definition is univocal only if the radially symmetric refraction model is clearly defined,
which is not obvious if it depends on ground-based meteorological quantities. Here, the
anomalous refraction is simply and univocally defined as the difference between the total
and the standard refraction:

δsITRS
refr,anom = δsITRS

refr,tot − δsITRS
refr,std (7.19)

In zenith, while the standard refraction is equal to zero, the anomalous refraction is equal
to the total refraction. Moreover, it can be demonstrated that the anomalous refraction
is mainly driven by horizontal temperature gradients.

Estimation of Anomalous Refraction in Zenith with Ray Tracing in 3D Meteo Models

This section presents briefly some results of the first determination of the anomalous re-
fraction in zenith by ray tracing through a 3D numerical weather model. The motivation
for exploring this new approach comes principally from the conclusions reached by (Hirt ,
2004, 2006), who argues that the limiting accuracy factor of deflection of the vertical
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determinations, by modern zenith camera systems, is due to non-modeled anomalous re-
fraction signals. As usual in the case of such problems, the goal is to develop a method
allowing to model a significant part of the signal in order to perform useful reductions.
Here, the objectives are less ambitious, they are restricted to the computation of some
statistical quantities. This can be argued by the fact that time series of observed and
predicted anomalous refraction are difficult to generate. This requires high-quality obser-
vations of the deflection of the vertical and high-resolution 3D numerical weather models
at the same location and time. Since no homogeneous continuous deflections are available
in Switzerland, only anomalous refraction signals estimated from models are treated here
and compared to the amplitudes suggested by Hirt (2004).

The following estimations are computed by the software Ray Tracing developed in the
frame of this thesis. Based on the high-resolution COSMO-2 3D numerical weather model4

provided by MeteoSwiss and described in Doms and Schättler (2002), the numerical inte-
gration of the system 7.9 is performed with the Runge-Kutta DOPRI5 routine developed at
University of Geneva by Hairer and Wanner (1993) and translated from the programming
language FORTRAN to c++ by Ashby (2003). In order to take advantage of all variations of
the model, the maximal adaptive integration step is fixed to 20 meters. The formulas of
Birch and Downs (1993) are used for the computation of the index of refraction field for
a wavelength of 600 nm. A trilinear interpolation scheme is used for the estimation of the
field and its gradients at arbitrary positions.

In order to have a better idea of the resolution, the complexity of the model and the
variation of zenith anomalous refraction, profiles along the projected CLIC (see Figure
1.2) are represented in Figure 7.2. They show the refraction field and the evolution of
the anomalous refraction along zenith for six successive epochs, separated by one hour,
during a night of January 2008. They outline the location of air layers contributing to the
anomalous refraction. The layers higher than 3000 meters do not contribute significantly.

More quantitative results are shown in Figure 7.3. They result from ray tracing com-
putations based on hourly COSMO-2 fields, for three months, April, July and October,
in the year 2008. The mean values over one month and the hourly standard deviations
of anomalous refraction (only for nightly data) provide interesting aspects. As expected,
the statistical behavior of anomalous refraction depends strongly on the season and the
topographic relief. The anomalous refraction is stronger in summer time and in regions
along the boundaries between the Alps, basin and Jura. The reason is probably that these
regions are more exposed to the mixture of air masses than other regions. The monthly
systematic bias is mostly below 0.025 arcsec and the standard deviation varies between
0.1 and 0.3 arcsec, confirming the order of magnitude presented by Hirt (2006).

Due to the complexity of the refraction fields and the strong dependency of the refrac-
tion on the local temperature gradients, the generation of reliable epoch-wise predictions
might remain an utopic wish. Nevertheless, middle-waves (5-10 km) and middle-period
(2-3 hours) time-space estimations of anomalous refraction from numerical weather models

4The model COSMO-2 provides a horizontal resolution of 2.2 km, 60 layers with varying separations in
the vertical, and a resolution of 15 minutes in time.
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certainly deserves to be more systematically explored.

Figure 7.2: Refractive index field (color in ppm) and anomalous refraction in zenith along the
CLIC profile estimated with ray tracing and the COSMO-2 numerical weather model. In order
to represent the horizontal variations in refractive index field, at each height, the mean value is
subtracted from the actual one. The black line represents the evolution of anomalous refraction in
the vertical dimension, not the trajectories of light rays.
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Figure 7.3: (Left) monthly mean value of anomalous refraction estimated with ray tracing and
COSMO-2 numerical weather models. (Right) standard deviation of hourly data. Only nightly
data are used for the computations.
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7.2 The Digital Astronomical Deflection System DIADEM

The Digital Astronomical Deflection Measuring System (DIADEM) is a zenith camera
system developed at ETH Zurich in a fruitful collaboration with the Institut für Erdmes-
sung (IfE) at the Leibniz University of Hannover. While IfE designed the main part of
the mechanical components, some important supplements in mechanics and electronics
were carried out at ETH Zurich. The first version of the system denoted as Transportable
Zenitkamera TZK3 was imaging the stars onto analogue films (Bürki , 1989). During
about two decades the system TZK3 was deployed in numerous national and international
campaigns in Europe and North America. Several hard- and software components were
permanently re-designed in order to upgrade the system.

Thanks to the advent of suitable CCD cameras on the market, DIADEM was transformed
from an analogue to a digital system in the year 2000 Somieski (2008). This important
step helped not only to improve the system accuracy but also to significantly reduce the
time needed for the processing chain. While the evaluation of the analogue films requested
time consuming measurements on a dedicated measuring machine to determine the image
coordinates of the stars, the CCD technique delivers this information quasi online. Fur-
thermore the integration of precise tiltmeters for a better link to the local gravity direction
(plumb line) and the motorization of all moving elements helped to drastically increase
the level of system automation Hirt (2010). Last but not least the implementation of the
processing software AURIGA (Automatic Realtime Image Processing System for Geodetic
Astronomy) provided by C. Hirt contributed significantly to improve the performance of
the zenith camera system in terms of accuracy, efficiency, and reliability. The transforma-
tion from analogue to digital allowed to win almost one order of magnitude in precision
and accuracy for the determination of deflections of the vertical, from approximately 0.4
to 0.5 arcsec, for the first analogue generation, to 0.07-0.08 arcsec for the digital version.
The system was deployed during more than three decades, from 1982 until 2014, when the
last measurements were carried out in Austria. As described later, DIADEM has been
replaced by CODIAC, the new generation of digital zenith cameras.

7.2.1 Instrumental Design

At a first glance, the instrument consists of an optical system pointing to the zenith,
mounted on a turnable superstructure on which tiltmeters are fixed. The latest version of
DIADEM (2014) is presented in Figure 7.4.

Optical System

The optical system is formed by:

� 1 catadioptric telescope MIROTAR of 1020 mm focal length and aperture of 200
mm, providing a focal ratio of f/5.6 and a field of view of 3.6◦.

� 1 Apogee ALTA CCD camera with an array size of 2184x1472 pixels, providing a
field of view of approximately 0.85◦x0.57◦. The pixel size is equal to 6.8x6.8 microns
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and provides an angular resolution of 1.4 arcsec
pixel . The digital resolution is equal to 16

bits and the mechanical shutter can be remotely triggered with an LVTTL5 signal.

� 1 FLI PDF focuser with a resolution step of 1.25 microns and a range of 8.75 mm.

� 1 µblox GNSS receiver for the precise absolute timing of the CCD remote triggering.

Tiltmeters

Three pairs of tiltmeters are mounted on the superstructure of DIADEM:

� 2 Wyler Zerotronic mounted orthogonally on the superstructure. The measuring
range is about 1◦ and the precision is approximately 0.15 arcsec. The digitalization
is realized by the sensors themselves which send tilt measurements via a RS232
interface at a rate of approximately 2 Hz.

� 2x2 HRTM (High Resolution TiltMeters), manufactured by Lippmann company for
Geophysical Instruments, mounted orthogonally on the superstructure. The mea-
suring range is about 200 arcsec and the precision is approximately 0.05 arcsec. The
digitalization is realized with an external 16 bits digital acquisition board at a rate
of 100 Hz.

Mechanical Automation

The automation is guaranteed by 8 motors which allow to control the extention of the legs
for the setup, to level the system automatically with a precision better than 5 arcsec, and
to rotate the superstructure around its vertical axis. The major electronic components
are deported in an appropriate box placed close to the camera.

Software

The automatic acquisition comprising the levelling of the system, the focusing of the star
field, the data acquisition and the visual checking of the raw data is realized with the
LabView software DIADEM developed at ETH Zurich by (Somieski , 2008) and adapted
to the new sensors (CCD camera, DAQ HRTM, focuser) in the frame of the present thesis.
As mentioned previously, the data were processed with the software AURIGA.

5Low voltage TTL.
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Figure 7.4: The Digital Astronomical Deflection System DIADEM in its last version (2014).
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7.3 The Compact Digital Astrometric Camera CODIAC

The Compact Digital Astrometric Camera CODIAC is a new zenith camera system entirely
designed, developed and manufactured at the Institute of Geodesy and Photogrammetry
of ETH Zurich. The principal objective behind the development of a new system was
to replace the system DIADEM with a system of reduced size and costs, based on com-
mercial modern components, that provides the same level of accuracy as DIADEM. In
addition, it is designed with almost industrial standards in order to facilitate the use by
non-astrogeodetic experts, to increase the performance in terms of productivity, and if
necessary, to provide the possibility to build additional instruments.

7.3.1 Instrumental Design

As shown in Figure 7.5, the design is very similar to the system DIADEM. However,
the interfaces of CODIAC are drastically improved and permit a complete steering by a
single laptop connected to the intrument by only 2 USB cables. The main components
are described as follows:

Figure 7.5: Main components of the Compact Digital Astrometric Camera CODIAC

Optical System

The optical system is formed by:

� 1 Veloce RH 200AT Riccardi-Honders Astrograph of 600 mm focal length and a
aperture of 216 mm, providing a focal ratio of f/3.

� 1 FLI MicroLine ML8300 CCD camera with an array size of 3326x2504 pixels, pro-
viding a field of view of approximately 1◦43′x1◦17′. The pixel size is equal to 5.4x5.4
microns and provides an angular resolution of 1.86 arcsec

pixel . The digital resolution is
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Figure 7.6: CODIAC deployed on the roof of the Geodesy and Geodynamics Lab of ETH Zurich.

equal to 16 bits and the mechanical shutter can be remotely triggered with a TTL
signal.

� 1 FLI ATLAS focuser with a resolution step of 85 nm and a range of 8.9 mm.

� 1 µblox GNSS receiver for the precise absolute timing of the CCD remote triggering.

Tiltmeters

Two pairs of tiltmeters are mounted on the superstructure of CODIAC:

� 2 Wyler Zerotronic mounted orthogonally on the superstructure. The measuring
range is about 1◦ and the precision is approximately 0.15 arcsec. The digitalization
is realized by the sensors themselves which send tilt measurements via an RS232
interface at a rate of approximately 10 Hz.

� 2 HRTM (High Resolution TiltMeters), manufactured by Lippmann company for
Geophysical Instruments (Germany), mounted orthogonally on the superstructure.
The measuring range is about 200 arcsec and the precision is approximately 0.05
arcsec. The digitalization is done by the sensors themselves which send already
filtered tilt measurements via an RS232 interface at a rate of approximately 10 Hz.
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Mechanical Automation

The automation is guaranteed by 4 motors which allow to control the extention of the
legs for the setup, to level the system automatically with a precision better than 5 arcsec,
and to rotate the superstructure around its vertical axis. All electronic components are
integrated on the superstructure of the camera.

µController

CODIAC is equipped with a built-in 32 bit µController of type PIC 32. With this
µController it is possible to manage important tasks locally within the camera, thus re-
lieving the steering software. The µController is able to carry out an automatic leveling
of the camera in a closed-loop control by reading the inclination sensors and activating
the lifting cylinders until a predefined tolerance is reached. This independent capability
helps to accelerate the observation process and to relieve of the steering software. Further
tasks of the µController are the management of the power supply and the rotation of the
objective into its second face or any other heading. The steering laptop communicates
with the µController by means of a dedicated command set.

Softwares

The automatic acquisition comprising the levelling of the system, the focusing of the star
field, the data acquisition and the visual checking of the raw data is realized with a new
software QCodiac developed in Qt and c++ at ETH Zurich in the frame of the present
thesis. The final processing is still realized with the software AURIGA.

7.3.2 First CODIAC Validation in Corbin USA

The first validation of CODIAC was performed in summer 2014 in the training center of
the National Geodetic Survey (NGS) in Corbin USA. Standard measurements of approx-
imately 30 minutes for each station were carried out by non-expert instructed surveyors
at 6 stations separated by some 100 meters during 4 different nights. In order to estimate
the performance of the system in terms of precision and repeatability, each station was
re-observed several times. The results are listed in Table 7.2 and presented in Figure
7.7. Without going too much into details, each station shows a very good repeatability,
almost always better than 0.05 arcsec. In addition, since two independent tiltmeter sys-
tems are available on CODIAC, it is possible to analyze the precision of the tiltmeters’
contributions. They show excellent agreement in the order of 0.02-0.03 arcsec. To have a
better idea of the performance of CODIAC at small scales, the lower plot in Figure 7.7,
representing the deflections of the vertical reduced to the station center, seems to show
significant signals with very low amplitudes of approximately 0.1 arcsec.
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Table 7.2: Results of the deflections of the vertical determined by CODIAC in Corbin (USA).

Φ Λ ϕ (WGS84) λ (WGS84) ξ η vξ vη ξ, η,Lip.−Wyler

[deg min sec] [deg min sec] [deg min sec] [deg min sec] [arcsec] [arcsec] [arcsec] [arcsec] [arcsec] [arcsec]

west
+38 12 7.155 -77 22 23.208 +38 12 7.092 -77 22 26.832 +0.063 +2.848 +0.080 +0.036 +0.037 +0.007
+38 12 7.173 -77 22 23.142 +38 12 7.092 -77 22 26.832 +0.081 +2.900 +0.062 -0.016 -0.013 -0.036
+38 12 7.212 -77 22 23.071 +38 12 7.092 -77 22 26.832 +0.120 +2.955 +0.023 -0.071 -0.031 -0.029
+38 12 7.263 -77 22 23.111 +38 12 7.092 -77 22 26.832 +0.171 +2.924 -0.028 -0.040 +0.011 -0.035
+38 12 7.374 -77 22 23.279 +38 12 7.092 -77 22 26.832 +0.282 +2.792 -0.139 +0.092 -0.005 +0.009

+0.143 +2.884

center
+38 12 7.164 -77 22 20.700 +38 12 7.038 -77 22 24.420 +0.126 +2.923 +0.045 +0.028 -0.020 +0.004
+38 12 7.228 -77 22 20.561 +38 12 7.038 -77 22 24.420 +0.190 +3.032 -0.019 -0.081 +0.033 +0.046
+38 12 7.234 -77 22 20.731 +38 12 7.038 -77 22 24.420 +0.196 +2.899 -0.025 +0.052 +0.014 +0.020

+0.171 +2.951

north
+38 12 11.922 -77 22 20.545 +38 12 11.743 -77 22 24.247 +0.179 +2.909 +0.025 +0.017 -0.002 -0.023
+38 12 11.971 -77 22 20.504 +38 12 11.743 -77 22 24.247 +0.228 +2.942 -0.025 -0.017 +0.038 -0.006

+0.204 +2.926

south
+38 12 5.374 -77 22 20.727 +38 12 5.267 -77 22 24.485 +0.107 +2.953 -0.057 -0.010 +0.014 +0.001
+38 12 5.290 -77 22 20.658 +38 12 5.267 -77 22 24.485 +0.023 +3.007 +0.027 -0.064 -0.007 +0.019
+38 12 5.331 -77 22 20.885 +38 12 5.267 -77 22 24.485 +0.064 +2.829 -0.014 +0.115 -0.008 +0.010
+38 12 5.273 -77 22 20.686 +38 12 5.267 -77 22 24.485 +0.006 +2.985 +0.044 -0.042 +0.001 -0.005

+0.050 +2.944

east
+38 12 6.870 -77 22 9.430 +38 12 6.786 -77 22 13.404 +0.084 +3.123 +0.071 -0.034 +0.022 +0.012
+38 12 7.011 -77 22 9.515 +38 12 6.786 -77 22 13.404 +0.225 +3.056 -0.071 +0.034 +0.006 +0.017

+0.155 +3.090

cq4
+38 12 5.105 -77 22 20.498 +38 12 5.090 -77 22 24.215 +0.015 +2.921 +0.055 +0.026 +0.018 +0.014
+38 12 5.186 -77 22 20.440 +38 12 5.090 -77 22 24.215 +0.095 +2.967 -0.025 -0.020 +0.018 +0.006
+38 12 5.174 -77 22 20.493 +38 12 5.090 -77 22 24.215 +0.084 +2.925 -0.014 +0.022 +0.001 -0.024
+38 12 5.175 -77 22 20.429 +38 12 5.090 -77 22 24.215 +0.085 +2.975 -0.015 -0.028 +0.001 -0.081

+0.070 +2.947 +0.054 +0.052 +0.018 +0.028
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Figure 7.7: (Upper) deflections of the vertical determined by CODIAC in Corbin (USA). (Lower)
deflections of the vertical reduced to the station center.



Chapter 8

Astro-Gravimetric Campaign at
CERN (TZ32)

Thanks to the continuous development of astrogeodetic instruments at ETH Zurich and
the availability of a linear underground tunnel (TZ32, which is linked to the LHC, 850 m in
length, at a depth of 80 m) at CERN, see Figures 8.1 and 8.2, it was possible to perform
a very special gravity measurement campaign for the determination of a high-precision
underground equipotential profile. This determination is compared to a gravity model
based on a high-precision multi-resolution DTM combined with a bathymetric model of
Lake Geneva, near-field geological density data and a detailed 3D model of the tunnels
including TZ32 and LHC.

Deflections of the vertical were carried out every 10 m directly above the tunnel with the
Digital Astronomical Deflection Measuring System (DIADEM) from ETH Zurich. More-
over, gravimetric measurements were carried out with a Scintrex CG-5 relative gravimeter
every 10 m on the surface of the topography and inside the tunnel. They are linked to an
absolute gravimetric network determined with a Micro-g FG-5 absolute gravimeter pro-
vided by the Swiss Federal Office of Metrology (METAS).

After a brief description of the measurements, the complete mass model is exposed and
used for an analysis of observability of the equipotential profile by astro-gravimetric lev-
elling. It demonstrates that a direct determination, without mass model reductions, is
possible along TZ32. This allows to compare the astro-gravimetric determination of the
equipotential profile in the tunnel with a solution computed uniquely from the mass model.
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Figure 8.1: Map of the region near Geneva. The existing LHC and TZ32 tunnels are represented
in yellow. The points in red represent the location of the absolute gravimetric reference network.
Source of data: Swisstopo (DTM25, VECTOR200).
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Figure 8.2: Perspective view of the tunnels TZ32 and LHC with topography. Source of digital
surface model: système d’information du territoire à Genève (SITG).



8.1 Gravimetric Observations 255

8.1 Gravimetric Observations

In order to produce high-quality gravity measurement sets along the TZ32 profile on the
topography and in the tunnel, it is necessary construct a precise, stable and accessible
absolute gravimetric reference network, which is used for the calibration and for the pe-
riodic control of the relative gravimeter. In addition, since 3 mm in height represent 1
microgal change in gravity, it is also necessary to have a precise and homogeneous refer-
ence positioning network on topography and in the tunnel in order to measure the precise
location of gravimetric observations. During this campaign, both reference networks were
determined with sufficient accuracy and served as basis for all determinations.

Figure 8.3: (Left) Dr. Henri Baumann (METAS) in the LHCb cavern, preparing the Micro-g
FG-5 for data acquisition. (Right) The relative gravimeter Scintrex CG-5 in TZ32 during data
acquisition.

8.1.1 Absolute Gravimetric Reference Network

The absolute reference network is formed by 3 points chosen in stable and accessible
locations in the vicinity of the CERN installations in Prévessin. In Figure 8.1, the locations
of PREV, PT4 and LHCb are shown. In order to make possible a good determination
of the scale factor of the relative gravimeter, they span a contrast of approximately 30
mgal. All points were determined gratefully by METAS and its Micro-g FG-5 absolute
gravimeter. The acquisition time was of about 12 hours and the local vertical gradients
were determined by CG-5 measurements with superposed measurements separated by 1
meters. The observations used for the least-sqaures adjustment of the absolute reference
network are listed in table 8.1. The mathematical model of the Gauss-Markov adjustment
is based on a functional model which provide the following equations of observations:

∆gi + v̂∆gi = m̂ · ĝi + ĉ0

gi + v̂gi = ĝi
(8.1)
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Table 8.1: Observations integrated into the computation of the absolute reference network.

Pt type value ∆H ∂g
∂H reduced obs. σ∆gi/σgi

[mgal] [m] [mgal]
[m] [mgal] [mgal]

PREV ∆g 0 0 -0.258 0 0.003
PT4 ∆g -18.888 0 -0.298 -18.888 0.003
LHCb ∆g 11.427 0 -0.178 11.427 0.003

PREV g 980576.039 1.3 -0.258 980576.374 0.003
PT4 g 980557.105 1.3 -0.298 980557.493 0.003
LHCb g 980587.573 1.3 -0.178 980587.804 0.003

where the relative and absolute observations are given by ∆gi and gi, and their associated
residuals by v̂∆gi and v̂gi . The unknown parameters are the absolute value of gravity ĝi,
the scaling factor m̂ and the offset ĉ0 between the relative and the absolute gravimeter.
It is important to notice that in Equation 8.1, no time drifts are parameterized for the
relative measurements while the observations ∆gi come from the combination of several
adjustments of purely relative gravimetric networks which filtered out linear time drifts.
The final results of the adjustment are resumed in table 8.2 and shows that we can as-
sume that the points of the reference network are known with an accuracy better that 5
microgals.

Table 8.2: Adjusted parameters from the absolute gravimetric reference network.

unknown x̂i σxi unit

ĝPREV 980576.376 0.002 [mgal]
ĝPT4 980557.492 0.002 [mgal]
ĝLHCb 980587.803 0.002 [mgal]
ĉ0 979423.548 0.087 [mgal]
m̂ 0.999869 0.000151 [-]

8.1.2 Gravimetric Measurments along the TZ32 Profile

The relative gravimetric campaign took place along the axis of the TZ32, on topography
and in the tunnel, with a spacing of 10 meters. Depending on the instantaneous measure-
ment conditions (e.g. vibrations, wind), each point was observed once, one after the other,
between 2 and 5 minutes. In between, some points are re-observed in order to be able to
estimate the time drift. During the acquisition time, the position of the gravimeter is pre-
cisely determined with a total station previously positioned with respect to the reference
network. In addition, the first and the last measurement of a half-day are always done on
the absolute reference PREV.

The raw measurements carried out during 1 day are firstly pre-processed (outliers fil-
tering, etc...) and reduced from tides using the software ETERNA (Wenzel , 1993). The
final absolute gravity values are obtained by least-squares adjustment, where a linear time
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drift factor is estimated for each half-day. The accuracy of the final absolute values are
estimated to be in the order of 5-8 microgals. They are shown in Figure 8.4 and listed in
Tables I.1 and I.4.
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Figure 8.4: (Upper, left) profile along the TZ32 of the topography and the tunnel. (Left, lower)
absolute gravimetric observations on topography and in the tunnel. (Upper, right) free-air anoma-
lies. (Lower, right) detrended free-air anomalies differences between the values on the topography
and in the tunnel, and height differences.

8.2 Astrogeodetic Observations

The astrogeodetic deflection of the vertical were carried out every 10 meters along the TZ32
profile with the system DIADEM developed at ETH Zurich (Somieski , 2008). One of the
main difficulty in opposition to previous campaigns or standard modern measurements
(Voigt , 2013), comes from the necessity to install the instrument on a precise locations
along the TZ32 which are almost exclusively on soft ground. This can be potentially a
problem when the system is tilting too much during the measurements. It is well-known
that the performance of the system depends strongly on the absolute values of tiltmeter
measurements (Hirt , 2004). Intuitively it is easy to understand that all accelerations of
the system provoke also non-gravitational responses in the tiltmeters, in addition since
the synchronization of tiltmeter measurements and the image acquisition are not realized
on hardware level in DIADEM, the variation of tilt in time generate systematic errors in
proportion. Finally, small tiltmeters values are also proportionally less affected by the
uncertainty of the calibration parameters determined with the celestial calibration (Hirt ,
2008). For these reasons, the system developed by (Somieski , 2008) was upon other terms
augmented by a third pair of HRTM Lippmann tiltmeters in order to increase the relia-
bility and the precision of the unique link of the system to gravity.
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The problem of the transportation of DIADEM off-road was also an issue. Finally the
solution adopted can be see in Figure 8.5 and consisted into modify a trailer in order to
let the tripod legs pass through the floor and to permit driving to the points and deploy
the system without taking off the instrument from the trailer.

The acquisition of the 77 stations took place during 16 nights in total. One station mea-
surement results from approximately 60 individual solutions acquired during 45 minutes
approximately. The duration was larger than expected under normal condition because
the levelling process had to be started several times. The data were processed according
to the standard procedures, using the software of Dr. Christian Hirt, AURIGA, developed
during his thesis (Hirt , 2004) at the University of Hannover. The tides are corrected ac-
cording to (Voigt , 2013), but since the absolute deflection values are not really of interest
in this experiment, the corrections concerning the plate tectonics, proposed by Voigt were
not applied. The final deflections are shown in Figure 8.6. With respect to the difficult
conditions for acquisition, the achieved accuracy is between 0.06-0-08 arcsec, very close
to what can be expected for acquisition under normal conditions. This accuracy was only
possible to achieve when the camera was stabilized by putting conscientiously small blocks
of wood between the feet of the tripod and the ground. As we can see in Figure 8.7, the
three pairs of tiltmeters mounted on DIADEM agree mostly below 0.04 arcsec.

Figure 8.5: (Left) The astrogeodetic system DIADEM installed on the trailer for the field ex-
periments at CERN. (Right) Monique Dupont (CERN) and Sébastien Guillaume (ETH) during a
DIADEM data acquisition.
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Figure 8.6: (Upper, left) profile along the TZ32 of the topography and the tunnel. (Lower, left)
deflection of the vertical observations projected along the TZ32 profile. (Right) map representation
of the deflections of the vertical. The relief map was computed from DSM data provided by SITG.
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8.3 Mass Models

A precise 3D mass model for the TZ32 region is now presented. It is formed by a model
for topography, the lake of Geneva, near-field geological density contrasts and a detailed
3D model of the tunnels including TZ32 and LHC. The modeling is done in a rigorous
local Cartesian topocentric system, centered on the floor of the access well. The x-axis is
defined to be along the tunnel and the z-axis in zenith direction as shown in Figure 8.8.

y

z

x

TZ32

Figure 8.8: Topocentric TZ32 coordinate system.

8.3.1 Topography

The polyhedron is generated from two tessellations, see Section 5.2.3. The vertices of the
upper tessellation Tupper approximate the actual topography with a resolution decreasing
with the horizontal distance to the TZ32 profile. The resolution is equal to 2x2 meters up
to a distance of 500 meters (DTM, SITG), 8x8 meters up to 3 kilometers (DTM, SITG),
25x25 meters up to 10 kilometers (DTM, Swisstopo), 90x90 meters up to 50 kilometers
(DTM, ASTER) and 300x300 up to 100 kilometers (DTM, ASTER). The vertices of the
lower tessellation Tlower are given by a regular 1 kilometer grid at H = 0 meters. The
common boundary is given by the external boundary of Tupper. The density is fixed to
ρtopo =2’670 kg

m3 .

8.3.2 Lake of Geneva

The lake of Geneva is modeled by a homogeneous polyhedron of density ρlake =1’000 kg
m3

as shown in Figure 8.9.
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Figure 8.9: Lake of Geneva is modeled by a homogeneous polyhedron. The z-component is scaled
by a factor 20 with respect to x and y.

8.3.3 Near-Field Geology

The near-field geology is formed by three homogeneous polyhedrons which have the fol-
lowing density contrasts with respect to the density of topography:

1. quaternary sediments, ∆ρquaternary = −300 kg
m3 ,

2. the molasse basin, ∆ρmolasse = −200 kg
m3 ,

3. gompholite stone, ∆ρgompholite = −100 kg
m3 .

They are constructed according to data and maps collected in 1980 on the base of geological
soundings realized in the frame of the studies for the construction of the LEP tunnel. A
reproduction of a geological profile in the vicinity of the TZ32 tunnel is shown in Figure
8.11. In addition, the Table 8.3 gives a summary of density data observed by the sounding
L135.

LHC

LHC

LHC

TZ32

TZ32

TZ32

molasse basin

molasse basin

gompholite

quaternary sediments

Figure 8.10: Homogeneous polyhedra which model the near-field geology in the vicinity of the
TZ32.
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molasse basingompholite

quaternary sediments

limestones

Figure 8.11: Reproduction of a geological profile along the axis of TZ32.

Table 8.3: Density data from the geological sounding L135 located at: East=489’900,
North=125’690, H=527.231 meters (LV03).

H depth water
rock apparent density dry density grain density void ratio

[m] [m] [%]
[

kg
m3

] [
kg
m3

] [
kg
m3

]
[-]

513.231 14.0 6.7 2’450 2’330 2’720 0.166
488.231 39.0 3.3 2’600 2’520 2’750 0.093
485.231 42.0 6.0 2’470 2’330 2’770 0.189
480.231 47.0 4.5 2’570 2’460 2’770 0.126
469.231 58.0 2.6 2’550 2’490 2’750 0.106
462.231 65.0 6.4 2’490 2’340 2’770 0.184
450.231 77.0 1.0 2’630 2’600 2’740 0.052
446.531 80.7 8.2 2’410 2’230 2’760 0.237
435.231 92.0 2.7 2’580 2’510 2’740 0.091
429.231 98.0 3.6 2’560 2’470 2’740 0.109
428.231 99.0 4.0 2’530 2’430 2’740 0.126
420.231 107.0 1.0 2’650 2’620 2’740 0.044
415.231 112.0 1.8 2’650 2’570 2’740 0.066
409.731 117.5 1.2 2’610 2’580 2’740 0.062
405.831 121.4 10.6 2’320 2’100 2’780 0.335
402.431 124.8 5.5 2’550 2’420 2’780 0.150
399.231 128.0 4.4 2’570 2’460 2’780 0.129
396.231 131.0 1.3 2’670 2’640 2’740 0.040

8.3.4 Underground Infrastructure

The LHC and TZ32 tunnels are modeled rigorously, by homogeneous polyhedra of density
contrast ∆ρtunnels = −2′670 kg

m3 . The geometry of the tunnels and the access well are based
on the official construction plans available at CERN. In QGravity, the polyhedra could be
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generated in an easy manner using the functionnality ”3D tube of arbitrary section and
path”, see Section 5.2.3.

TZ32

LHC

Figure 8.12: Homogeneous polyhedra which model the underground infrastructure.
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8.4 Expected Gravity Fields and Observability

The expected gravity fields and the observability of the equipotential profile by astrogravi-
metric levelling are computed according to the principles exposed in Chapter 6.

8.4.1 Expected Gravity Field and Error-Free Observations

In a first step the equipotential profile in the TZ32 tunnel and error-free observables
(Figure 8.13) are computed with QGravity from the mass models exposed in Section 8.3.
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Figure 8.13: Results of the simulations of the mass models for the TZ32. (Upper, left) profile
along the TZ32 with topography and tunnel. (Middle, left) error-free deflections of the vertical
on the topography and in the tunnel. (Lower, left) error-free free-air anomaly on the topography
and in the tunnel. (Upper, right) error-free curvature of plumbline. (Middle, right) equipotential
profiles in tunnel. (Lower, right) Differences with respect to the true equipotential Ntrue for the
different strategies.

8.4.2 Expected Misalignments Generated by known Masses

The second step consists in determining the equipotential profile (at z = 0.000 ≡ H0 =
420.950 meters) from the error-free observations using a strategy of astrogravimetric lev-
elling. Finally, misalignment analyses are applied to both, the true equipotential profile
Ntrue (Figure 8.14) and the astrogravimetric equipotential error δNxxxx (Figures 8.15, 8.16
and 8.17).

The misalignements Mλ
? {Ntrue} generated by the mass models for the wavelengths λ =

100, 200 and 300 meters are shown in Figure 8.14. They are significant for all wave-
lengths and along the entire profile. In particular, for M200

? {Ntrue}, values between
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40 and 50 microns can be expected. In addition, it can be noted that Mλ
? {Ntrue} in-

creases more than proportionally with respect to λ. From λ = 200 → 300, we have
M200

? {Ntrue} ≈ 40→M300
? {Ntrue} ≈ 90 microns.
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Figure 8.14: Ntrue (upper) and Mλ
? {Ntrue} (lower) along the TZ32 profile due to known mass

models. The bold line on top of the lower plot indicates the positions for which the determination
M200

? {Ntrue} < 10 microns (green), and where M200
? {Ntrue} ≥ 10 microns (red).

8.4.3 Observability by Astrogravimetric Levelling

The observability of the equipotential profile simulated from the known mass models by
different astrogravimetric levelling strategies is shown in Figures 8.15, 8.16 and 8.17. As
expected, the best solution is given by Nmean, where the mean gravity along the plumbline
is observed on the topography and in the tunnel, and computed by a simple mean value
(Figure 8.17). Fortunately, this strategy seems to be able to observe directly the equipo-
tential profile in the tunnel without any mass model assumptions — or reductions. It
allows an independent comparison between the equipotential profile predicted from mass
models and that determined uniquely from astrogravimetric measurements.

Concerning the other strategies, the solution Nquasi, which consists of observing only
deflections of the vertical, permits also to observe the equipotential profile with sufficient
accuracy (Figure 8.15). However, this method is, from a conceptual point of view, not
satisfactory. It can only be used if all masses in the vicinity are reliably known, and if
the height difference between topography and the tunnel is shorter than 100 meters. And
for the standard strategy Nsurf, which consists in observing deflections of the vertical and
gravity on the topography only, Figure 8.15 shows clearly that this strategy is insufficient
over the major part of the profile.
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8.5 Predicted versus Observed Measurements

In Figures 8.18 and 8.19, the gravimetric and astrogeodetic observations are compared
with the predictions computed from the mass models. In order to be able to compare the
observations with the model, the gravimetric observations and predictions are reduced to
the first observation of the profile. For the deflections of the vertical, a similar reduction
is applied. In addition, some statistical indicators are given in Tables 8.4 and 8.5. They
show that the model agrees well with the observations. For the deflections, we can

Table 8.4: Statistics of the comparison between the observed and predicted gravimetric observa-
tions.

quantity min max mean std RMS

[mgal] [mgal] [mgal] [mgal] [mgal]

gobs(ρsurf)− gmodel(ρsurf) -0.378 0.000 -0.198 0.103 0.223
gobs(ρtnl)− gmodel(ρtnl) -0.339 0.000 -0.163 0.100 0.191
gobs(ρsurf)− gmodel(ρsurf), detrended -0.101 0.046 0.000 0.027 0.027
gobs(ρtnl)− gmodel(ρtnl), detrended -0.138 0.218 0.000 0.083 0.082

Table 8.5: Statistics of the comparison between the observed and predicted deflections of the
vertical.

quantity min max mean std RMS

[arcsec] [arcsec] [arcsec] [arcsec] [arcsec]

εx,obs(ρsurf)− εx,model(ρsurf) -0.166 0.262 0.055 0.083 0.099
εy,obs(ρsurf)− εy,model(ρsurf) -0.176 0.277 0.027 0.074 0.078
εx,obs(ρsurf)− εx,model(ρsurf), centered -0.208 0.152 0.000 0.072 0.072
εy,obs(ρsurf)− εy,model(ρsurf), centered -0.185 0.247 0.000 0.073 0.073

admit that the differences between the model and the observations are of the order of
magnitude of the expected accuracy of the astrogeodetic determination, i.e. 0.07-0.08
arcsec. Concerning the gravimetric measurements, disregarding the trend, the agreement
of the observations on the topography is of the order of 30 microgals, which is remarkable.
For the observations in the tunnel, the differences are larger and show significant non-
modeled signals of about 80 to 100 microgals, probably due to non-modeled masses close
to the tunnel. Here we see clearly the higher sensitivity of gravimetric observations with
respect to near-field anomalies and the absolute necessity of observing the gravity in the
tunnel, not only for the computation of the mean gravity, but also to be able to estimate
the accuracy and reliability of a given mass model. From this point, further investigations
could be done with the gravimetric signals in order to estimate possible realistic geological
mass anomalies which could generate these observations, and which can be finally used to
compute their consequence on the misalignment of the equipotential profile. Nevertheless,
as a first estimation of the order of magnitude of the consequence of these differences on
the determination of the equipotential profile, we can make the hypothesis that the error
on the mean gravity is of the same order as the discrepancies between the model and the
observations, i.e. about 100 microgals. We know from the analyses of the misalignment
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due to correlated noise for the orthometric corrections (see Section F.2.6, Figure F.13) that
no significant misalignments (> 10 microns) are generated when the correlation length of
the mean gravity is larger than 300 meters.

0 100 200 300 400 500 600 700 800 900
−8

−6

−4

−2

0

2

4

6

8

x [m]

g−
g su

rf(1
) [

m
ga

l]

TZ32 Gravimetric Observations (Observed and Modeled)

gsurf,obs
gsurf,model
gtnl,obs
gtnl,model

0 100 200 300 400 500 600 700 800 900

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x [m]

g ob
s−g

m
od

el
 [m

ga
l]

TZ32 Gravimetric Observations (Observed minus Modeled)

gsurf,obs − gsurf,model
gtnl,obs − gtnl,model
detrend(gsurf,obs − gsurf,model)
detrend(gtnl,obs − gtnl,model)

Figure 8.18: (Upper) observed and predicted gravimetric observations. (Lower) differences be-
tween observed and predicted gravimetric observations.
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Figure 8.19: (Upper) observed and predicted deflection of the vertical observations. (Lower)
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8.6 Computation of the Equipotential Profile in the Tunnel

Using the observations exposed in the previous section, the equipotential profile in the
TZ32 at H0 = 420.95 meters is determined using the strategies Nmean and Nquasi, without
any previous mass model reductions or filtering. In a first step, all observations are lin-
early interpolated along the profile for points spaced by 2 meters. In addition, since the
observed gravity in the tunnel is not located at H0 = 420.95 meters, the gravity at H0

along the profile are predicted using a simple linear extrapolation based on the vertical
gradient computed from the superposed observations on the topography and in the tunnel.

The results are shown in Figure 8.20. The equipotential profile and the orthometric
corrections are compared with the prediction based only on the mass models. The differ-
ences between the solutions Nmean and Nmodel stay between -12 and + 32 microns along
the 850 meters. The larger differences are concentrated between 450 and 500 meters and
can be observed in Nmean and Nquasi. This means that they are caused by the deflections
of the vertical observations. It is highly probable that this signal is not real but comes
from correlated errors in the astrogeodetic observations. In fact, the equipotential varies
between -12 and + 32 microns over a very short distance of 100 meters. And according
to the systematic analysis presented in Chapter 6, it is difficult to construct a realistic
anomaly which can generate a signals of this amplitude for so short wavelengths. Further-
more, in this region, the gravimetric observations match the prediction very well and do
not indicate a strong non-modeled anomaly. The optimal solution for a direct determi-
nation of the equipotential profile is certainly given when the observations are previously
appropriately filtered. The design of the filter could be based on the one hand on the
statistical error modeling of the instruments and on the other hand on the amplitude of
realistic expected signals given by systematic simulations and geological data. An other
way would be to improve the models by realistic inversion techniques which consider all
available gravity observables, gravimetric and deflection of the vertical data.

The misalignment analyses are shown in Figures 8.21, 8.22 and 8.23. As expected from
the observability analysis, the actual equipotential profile generates significant misalign-
ments M200

? {Nmean} reaching 40-50 microns. Concerning the analysis of the difference
Nmean − Nmodel in terms of misalignment, Figure 8.21 shows that Mλ

? {Nmean} is below
20 microns for the entire profile if the segment between 400 and 500 meters is not taken
into account.
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Figure 8.20: (Upper, left) observed and predicted equipotential profile in TZ32. The deflection
of the vertical are reduced to the first point. (Lower, left) difference between the observed and
the predicted equipotential profiles. (Upper, right) detrended observed and predicted orthometric
correction. (Lower, right) difference between the observed and the predicted orthometric correction.
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Figure 8.21: (Upper) equipotential profile Nmean. Misalignements Mλ
? {Nmean} for the wave-

lengths λ = 100, 200 and 300 meters.
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Chapter 9

Development of a Differential
Geodetic Interferometric
Deflectometer

This chapter is a reproduction of the peer-reviewed paper Guillaume et al. (2014b) pub-
lished by the author of this thesis.

9.1 Introduction

A new system for measuring underground variations of the deflection of the vertical is
presented. Based on geodetic and interferometric tilt measurements along a profile, it is
designed to finally determine variations of equipotential profiles to better than 10 µm over
200 m with respect to a straight line. In the first part of this chapter, the basic principle is
described and a mathematical model of the system is developed in order to estimate, using
Monte-Carlo simulations, theoretical precisions achievable by the system in various config-
urations. In the second part, the first 12 m long prototype, designed and assembled at the
European Organization for Nuclear Research (CERN) in Geneva, is presented. From the
first experiments, it is not yet possible to validate the concept, nevertheless they permit
us to identify the weaknesses which have to be solved in order to achieve the performance
anticipated.

The idea is to measure the direction of the vertical with respect to a perfect straight
line, with an accuracy better than 0.05 arcsec = 0.25 µrad, at different points along the
profile of the tunnel where the accelerator must be aligned. These measurements would
be carried out with an innovative new instrument named High-Precision Interferometric
Deflectometer.

The basic principle is to simultaneously measure the tilt of a moving platform placed
in a vacuum tube, with both an angular interferometer and a gravity sensitive inclinome-
ter. Assuming that both systems are rigidly fixed together, at any given position along the
profile the measurements should only differ by a constant initial offset, and the variation
of the direction of the vertical with respect to the straight line realized by the laser beams
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of the interferometric measurement system. We present the realization of a 12 m long
prototype assembled in the metrological calibration building of the survey section of the
Accelerators & Beams Physics group of the European Organization for Nuclear Research,
CERN, in Geneva. The calibration procedure and the first measurements are presented
and discussed.

9.2 Basic Principle

Inspired by Astronomical Levelling Hirt (2009), the principle is very simple. The idea
is to measure the variation of the direction of the vertical with respect to a straight
line at different places along a profile. Basically, the inclination in length of a moving
cart is measured on the one hand by a high-precision geodetic inclinometer and on the
other hand by an angular interferometer. The variation of the direction of the vertical is
simply the difference between the measurements carried out by both systems (see Figure
9.1). Although the analogy with astro-geodetic measurements, it is obvious that this new
system does not provide absolute deflections of the vertical – as with zenith camera systems
– but relative deflections with respect to the straight line defined by the laser beams of the
interferometer system. Due to the very high precision of the angular measurements which
are necessary for both systems, optimum observaton conditions along the profile have
to be fullfiled. As a first approximation, the precision of the geodetic tiltmeter should
not be dependent upon its place along the profile. In contrast, the performance of the
angular interferometer system is significantly dependent on the distance to the target.
This is mainly due to the influence of the air which produces refraction and scintillation,
degrading the precision. This implies that the moving cart must be enclosed by a vaccum
vessel so that the perturbations of the laser beams due to the atmosphere are almost
cancelled out.

laser source
laser receiver

angular
interferometer corner cube

reflectors
tiltmeter

straight line
reference

earth curvature

vacuum pipe

deflection of the vertical
with respect to straight linemoving platform

g

50 to 200 meters

angle measured
with interferometer

rail
g

Figure 9.1: Functional sketch of the High Precision Interferometric Deflectometer.
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9.3 Analysis of the Precision by Simulations

9.3.1 Mathematical Model

The raw observations consist of the angles measured by the angular interferometer, αIi (t),
and by the geodetic inclinometer, αGi (t), at time t, and at positions i = 1 . . . n+ 1, inside
the deflectometer. Assuming that they are both affected by a constant offset cI and cG

and a temporal linear drift mI and mG , we can write:

αIi (t) = cI +mI · t+ αCi (t) +N (0, σ2
αI )

αGi (t) = cG +mG · t+ αCi (t) + εi +N (0, σ2
αG )

(9.1)

where εi is the difference between the direction of the vertical of the first position i = 1
and the direction of the vertical at position i. The tilt of the moving cart with respect
to the direction of the vertical of the first position is represented by αCi (t). If we take the
difference between αGi (t) and αIi (t) we have:

αGi (t)− αIi (t)︸ ︷︷ ︸
αi(t)

= (cG − cI)︸ ︷︷ ︸
c

+ (mG −mI)︸ ︷︷ ︸
m

·t+ εi

+N (0, σ2
αI + σ2

αG︸ ︷︷ ︸
σ2
α

)
(9.2)

Now an equipotential profile of length S = 200 m could be determined using observations
carried out with a single deflectometer of length L which is displaced m times along the
profile so that a certain overlapping O = ]0; 1[ exists. Let us consider various overlapping
positions j = 1 . . .m of the deflectometer:

αji (t) = εji + cj +mj · t+N (0, σ2
α) (9.3)

Two consecutive observations i are separated by a space interval ∆s = L
n and a time

interval ∆t. Two consecutive deflectometer positions are separeted by ∆n = b(1−O) · nc
positions. Moreover, all positions inside the deflectometer are observed successively on the
outward and return journey of the cart so that the time drift factors mj can be estimated
(see Figure 9.2). From (9.3) we can write a linear system of equations in the form: l + v̂ = A · x̂

B · x̂ = t
(9.4)

where ľ represents the vector of the true observations; l ∼ N
(̌
l,Cll = σ2

0 ·Qll

)
is the

vector of observations; v̂ the vector of the estimated residuals; A the design matrix; x̂ the
vector of the estimated unknowns. Conditions between unknowns are expressed using the
matrix B and the vector t in order to fix the first constant offset to c1 = 0. In (9.5) and
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(9.6) a simple case is shown, when n = 4, m = 2 and O = 0.5⇒ ∆n = 2.

α1
1(0 ·∆t)

α1
2(1 ·∆t)

α1
3(2 ·∆t)

α1
4(3 ·∆t)

α1
5(4 ·∆t)

α1
5(5 ·∆t)

α1
4(6 ·∆t)

α1
3(7 ·∆t)

α1
2(8 ·∆t)

α1
1(9 ·∆t)

α2
1(0 ·∆t)

α2
2(1 ·∆t)

α2
3(2 ·∆t)

α2
4(3 ·∆t)

α2
5(4 ·∆t)

α2
5(5 ·∆t)

α2
4(6 ·∆t)

α2
3(7 ·∆t)

α2
2(8 ·∆t)

α2
1(9 ·∆t)


︸ ︷︷ ︸

l

;



1 0 0 0 0 0 0 1 0 0 ·∆t 0

0 1 0 0 0 0 0 1 0 1 ·∆t 0

0 0 1 0 0 0 0 1 0 2 ·∆t 0

0 0 0 1 0 0 0 1 0 3 ·∆t 0

0 0 0 0 1 0 0 1 0 4 ·∆t 0

0 0 0 0 1 0 0 1 0 5 ·∆t 0

0 0 0 1 0 0 0 1 0 6 ·∆t 0

0 0 1 0 0 0 0 1 0 7 ·∆t 0

0 1 0 0 0 0 0 1 0 8 ·∆t 0

1 0 0 0 0 0 0 1 0 9 ·∆t 0

0 0 1 0 0 0 0 0 1 0 0 ·∆t

0 0 0 1 0 0 0 0 1 0 1 ·∆t

0 0 0 0 1 0 0 0 1 0 2 ·∆t

0 0 0 0 0 1 0 0 1 0 3 ·∆t

0 0 0 0 0 0 1 0 1 0 4 ·∆t

0 0 0 0 0 0 1 0 1 0 5 ·∆t

0 0 0 0 0 1 0 0 1 0 6 ·∆t

0 0 0 0 1 0 0 0 1 0 7 ·∆t

0 0 0 1 0 0 0 0 1 0 8 ·∆t

0 0 1 0 0 0 0 0 1 0 9 ·∆t


︸ ︷︷ ︸

A

;



ε1

ε2

ε3

ε4

ε5

ε6

ε7

c1

c2

m1

m2


︸ ︷︷ ︸

x

(9.5)

B =
(

0 0 0 0 0 0 0 1 0 0 0
)

; t =
(

0
)

(9.6)

The maximum likelihood solution of (9.4) can be found when Möser et al. (2000):

v̂T ·Q−1
ll · v̂ + 2 · kT (B · x̂− t)→ min (9.7)

or:  x̂

k

 =

 AT ·Q−1
ll ·A BT

B 0

−1 AT ·Q−1
ll · l

t



=

 Qx̂x̂ · · ·

· · · · · ·

 AT ·Q−1
ll · l

t


(9.8)

where the variance-covariance matrix of x̂ can be computed by Cx̂x̂ = σ2
0 ·Qx̂x̂.
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Finally, the variation of the equipotential profile ∆NrK
rbeg

between the beginning rbeg

and the position rK with respect to the straight line can be computed as:

∆NrK
rbeg

= −
ˆ rK

rbeg

ε · ds ∼= −
K∑
k=1

εk ·∆s (9.9)

and the path P∆N representing the equipotential profile can be computed with:

P∆N ≡∆N = F · x̂ (9.10)

with:

F = −∆s ·



1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0


(9.11)

The probability density of P∆N can be computed with the variance-covariance propagation
law:

P∆N ∼ N
(
∆N, σ2

0 · F ·Qx̂x̂ · FT
)

(9.12)
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Figure 9.2: The mathematical modelling of the High Precision Interferometric Deflectometer.
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9.3.2 Monte-Carlo Simulations

In Equation 9.12 the probability density of ∆N can be computed analytically if Cll, A
and B are known, see Equation 9.8. This gives the uncertainty with respect to the straight
line reference in an absolute way. Nevertheless, in our application, we are not interested in
the probability density of the absolute value of ∆N but in the probability density of the
misalignment produced by the system. This density is represented by the random variable
X . Because of the non-linear behaviour of the misalignment operatorM, it is not possible
to compute it analytically. However, it is possible to estimate it in an empirical way, us-
ing Monte-Carlo simulations. The simulations are computed according to the parameters
given in Table 9.1.

Basically, for one set of parameters p(σα, L,O), and using the operator M introduced
in Section 2.1, the kth realization of Xp can be formulated as xk = M200

0 {∆Nk}. If we
produce K realizations of Xp, it is now possible to compute empirically the cumulative
distribution function (CDF) FXp(x) = P (Xp ≤ x). Finally, we define:

σMp = x : P (Xp ≤ x) = 0.68 (9.13)

which covers the same probability as the bilateral univariate Gaussian CDF at one sigma
(±1σ):

P
(
−σ ≤ N (0, σ2) ≤ +σ

)
= 0.68 (9.14)

The results of K = 2000 simulations for all combinations p(σα, L,O) given in Table
9.1 can be seen in Figure 9.3 and give a better idea of the theoretical alignment accuracies
which can be expected in various combinations.

Table 9.1: Monte-Carlo simulation parameters

variable type value

αji observation formed by Equation 9.3

εji unknown 0.0 [arcsec]
cj unknown 0.0 [arcsec]
mj unknown 1.0 [ arcsec

hour ]
N
(
0, σ2

α

)
random nbr. RN

(
0, σ2

α

)
σα constant 0.02...0.10 [arcsec]
∆t constant 5.0 [min]
L constant 50,100,150,200 [m]
∆s constant 10 [m]
O constant 25%, 50%, 75%
m constant : L+ (m− 1) ·∆s > 200 [m]
∆N path simulated by Equation 9.8 and 9.10

Moreover, for every combination (L,O), a first estimation of the duration of the ob-
servation can be predicted. In Table 9.2, T j = [2 · (n+ 1)− 1] ·∆t represents the duration
of the observations of the deflectometer at one position j. This value gives an important
order of magnitude for the time for which the temporal drift of the sensors must have a
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Figure 9.3: Simulated alignment accuracy of an equipotential profile of 200 m length deter-
mined by overlapping deflectometers of different length L, different overlapping O and different
measurement noise σα.

linear behaviour, modelled by mj · t.

The approximate total time which would be necessery to observe a profile of 200 m is
represented by Ttot = m · T j + (m − 1) · Tdisp assuming that Tdisp = 5 [hours] represents
the duration which is needed to displace the deflectometer from a position j to j+1. This
value gives a first estimation of the productivity obtained by a certain set of parameters.

9.4 Development of the first Prototype

A first prototype, 12 m in length, was designed and assembled in the metrological cali-
bration building of the survey section of the Accelerators & Beams Physics group of the
European Organization for Nuclear Research, CERN, in Geneva. This instrument must
meet several challenges. Firstly, it should demonstrate the technical feasibility of mak-
ing angular interferometric and geodetic measurements in a vacuum vessel on a moving
cart operated externaly to the vessel. Secondly, the accuracy of the system in terms of
systematic and random noise and its stability over time should be demonstrated.
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Table 9.2: Estimated duration of the observations for a profile of 200, m where ∆s = 10 m. The
number of positions m is determined so that the total length of the profile which is determined, is
strictly greater than 200 m.

L O n m T j Ttot

[m] [%] # # [min] [hours]

50 25% 5 7 55 36.4
50 50% 5 9 55 48.3
50 75% 5 17 55 95.6
100 25% 10 3 105 15.3
100 50% 10 4 105 22.0
100 75% 10 7 105 42.3
150 25% 15 2 155 10.2
150 50% 15 2 155 17.8
150 75% 15 3 155 11.8
200 25% 20 2 205 11.8
200 50% 20 2 205 11.8
200 75% 20 2 205 11.8

9.4.1 Main Components

The main components of the prototype are described in Table 9.3. They consist of a
vacuum tube, in which a cart can be manually displaced with a crank, on a monorail.
The tilt of the cart can be controlled by two stepping motors. This is essential for the
realization of the calibration in vacuum and to ensure the levelling of the cart over the
entire length of the deflectometer. The tolerence for the levelling is fixed to 5 arcsec in
order to make systematic errors due to the calibration and crosswise tilt negligible. Two
single-axis geodetic inclinometers, one arranged along and the second transverse to the
direction of displacement and the double corner cube of the angular interferometer are
mounted on the cart.

9.4.2 Calibration Process

The calibration consists of the determination of the scale factor of the geodetic inclinometer
with respect to the angular interferometer. This can be achieved by making measurements
in vacuum, for different tilt angles of the cart (see Figure 9.4). Considering that the
measurements are carried out at a fixed positon in the tube (i = 1), the interferometric
measurements are taken as reference, and that the geodetic inclinometer G is affected by
a scaling factor sG , Equation 9.2 can be reformulated as:

αG1 (t) =
αI1 (t)

sG
+
c+ ε1
sG

+
m

sG
· t+

N
(
0, σ2

α

)
sG

(9.15)

or:

αG(t) = αI(t) · scal + ccal +mcal · t+N
(

0, σ2
α
∼=
σ2
α

sG

)
(9.16)

where sG = s−1
cal .
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Table 9.3: Main Components of the Prototype Deflectometer

Component Origin Description

Vacuum CERN length: 12 [m]
Tube rail tilt: ±200 [arcsec]

diameter: 225 [mm]
pressure: 10−2 [mbar]
porthole: 60 [mm]
electric: 3 · 10 [pin]
interface

Movable CERN displ.: manual
cart ETHZ tilt corr.: 2 step motors

range: ±0.25 [deg]
resol.: 0.2 [arcsec]

Angular HP type: heterodyne
Interfero. Agilent range: ±30 [deg]

resol.: 5 · 10−3 [arcsec]
inter-beam: 32.61 [mm]
aquis. rate 10 [Hz]
filtering none

Geodetic Lippmann type: 1-axis pendulum
Tiltmeter HRTM range: ±200 [arcsec]

resol.: 1 · 10−3 [arcsec]
aquis. rate 1000 [Hz]
filtering: 1.0 [Hz]

Assuming that l ∼ N
(̌
l,Cll

)
and Cll = σ2

α · I, affect only the geodetic observations
αG(t), and further that observations are carried out at N different epochs, then we can
write the linear system of equations as:

l + v̂ = A · x̂ (9.17)

with:

l =


αG(t1)

...

αG(tN )

 ; A =


αI(t1) 1 t1

...
...

...

αI(tN ) 1 tN

 ; x̂ =


scal

ccal

mcal

 (9.18)

which can be solved according to (9.8). The results of a calibration process is summarized
in Table 9.4. It shows that the calibration process in vacuum is successful and permits
an estimation of the scale factor scal with a precision of 0.1% which corresponds to a
systematic error of ∼ 0.01 arcsec if we measure tilts smaller than 10 arcsec which can be
easily achieved by the levelling process of the cart.
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Figure 9.4: Time series of the Lippmann tiltmeter and the HP Agilent angular interferometer
for the calibration.

Table 9.4: Deflectometer Calibration Process Results

parameter value unit

# observations 2 · 11 = 22
# unknowns 3
# conditions 0
# outliers 0
# redundancy 19
duration ∼ 42 [min]

scal 0.9978± 0.001 [-]
ccal 0.2676± 0.047 [arcsec]
mcal 9.2805−5 ± 0.002 [arcsec]/[min]

9.4.3 Measurement of a Profile

Finally, the validation of the system can only be done by determining deflections along the
deflectometer which should match those predicted from a simple spherical Earth model.
In this example, the aim is to determine deflections at 0, 5 and 10 m using observations
carried out at the following sequence of distance:

0→ 5→ 10→ 5→ 0→ 5→ 10→ 5→ 0 [m] (9.19)

After levelling, the observations were carried out over 5 min with an aquisition rate
of ∼ 2 Hz. The raw data, which represent αGi (t) and αIi (t), can be seen in Figure 9.5.
In Figure 9.6, we can see the time series of α1

i (t) obtained from (9.2). At this stage, the
observations α1

i (t) are averaged before forming the matrix according to (9.5) and the final
adjustment.
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Figure 9.5: Raw time series of the Lippmann tiltmeter and the HP Agilent angular interferometer
at 0, 5 and 10 m.

0 20 40 60 80 100 120 140
−0.5

0

0.5

1

1.5

time [min]

til
t [

ar
cs

ec
]

 

 

αi
1 (t)

mean αi
1 (t)

0 [m]
5 [m]

10 [m]

position :

position :
position :

Figure 9.6: Time series of the difference between Lippmann tiltmeter and the HP Agilent angular
interferometer at 0, 5 and 10 m.

Theoretically, after adjustment and according to Section 9.3.1, the deflections ε1i should
only contain the signal from the variation of the direction of the vertical, approximately
0.16 and 0.32 arcsec at s = 5 and s = 10 m distances, respectively. These values can be
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Figure 9.7: Adjusted deflections and residuals compared to deflections from a spherical model of
the Earth.

Table 9.5: Adjustment of the Measurements along the Profile

parameter value unit

# observations 9
# unknowns 5
# conditions 1
# outliers 1
# redundancy 5
duration ∼ 140 [min]

ε11, 0 [m] 0.000± 0.1 [arcsec]
ε12, 5 [m] −0.157± 0.1 [arcsec]
ε13, 10 [m] −1.201± 0.1 [arcsec]

c1 0.000± 0.0 [arcsec]
m1 0.005± 0.001 [arcsec]/[min]

derived from a simple spherical Earth model as:

ε(s) [arcsec] =
s [m]

R [m]
· 180

π
· 3600 ∼= 0.032

[arcsec]

[m]
· s [m] (9.20)

where s represents the horizontal distance from the first position of the cart and R =
6′380′000 m the radius of the Earth. Unfortunately, see Figure 9.7 and Table 9.5, only the
deflections at 0 and 5 m seem to be gouverned by the deflections predicted by a spherical
Earth model. At 10 m a systematic effect is most likely. In fact, both measurements
carried out at this position are consistent.
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9.5 Conclusion

We investigated the possibility of determining underground variation in the direction of
the vertical by introducing a new measurement system called High Precision Interfero-
metric Deflectometer. The simulations show that the system, in various configurations, is
conceptually capable of determining underground equipotential profiles for wavelength of
200 m at a level of precision better than 10 µm.

However, from the first experiments it is clear that the prototype instrument does
not yet demonstrate the feasibility of the approach system, but does allow to identify the
evident weak points which still have to be improved. The next step will be to install an
alternative angular interferometer and to improve the automation of the deflectometer in
order to identify systematic effects and their origin.
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Chapter 10

Conclusions and Outlooks

The major aim of this thesis is to demonstrate the feasibility and propose a realistic practi-
cal strategy for the determination of underground equipotential profiles, with an accuracy
of 10 microns over 200 meters, in the perspective of the alignment of the future linear col-
lider CLIC based on hydrostatic levelling systems (HLS). The feasibility is demonstrated
and a practical strategy for the determination is proposed. For this, several theoretical
aspects have been revisited in order to quantify some physical and computational ap-
proximations which are often implicitly assumed in Geodesy. The feasibility studies rely
on new alignment accuracy analyzes of astrogravimetric levelling, based on Monte-Carlo
simulations. Furthermore, they are also based on the estimation of signals expected at
short-wavelengths, generated by lateral varying anomalies, and on the new concept of
observability which permits to predict if a certain part of a profile can be determined,
with sufficient accuracy, by observations only. All numerical gravity field simulations have
been performed with a new software developed as part of this thesis, called QGravity,
which permits to generate mass models in various and flexible ways, to compute all grav-
itational functionals up the order 2 and to visualize the results in real-time. The methods
and concepts developed in this thesis are successfully applied for the determination of an
equipotential profile situated in an existing tunnel of 850 meters in length at CERN in
Geneva. Finally, a new ambitious system for measuring underground variations of the
vertical is presented.

Theoretical Findings

The Newtonian framework is suitable considering the alignment objectives of CLIC.
The maximal misalignment generated by the discrepancies between the classical and gen-
eral relativity framework is equal to 1 microns for wavelengths larger than 4’000 kilometers.

The fluid-air interface in a HLS can be approximated with sufficient accuracy by the
apparent equipotential surface of the gravity field. The non-irrotational Eulerian acceler-
ation term can be neglected. Maximal amplitudes occur at daily periods with horizontal
amplitudes of about 10−9 m

s2 and produce, for an HLS of 200 meters, non-hydrostatic water
level changes below 1 micrometer.

The geometry of equipotential surfaces formed by the geometry of the normal po-
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tential and the geometric separation related to the disturbing potential can be computed
with sufficient accuracy by the first order Brun’s approximation. Furthermore, an alter-
native first order Brun’s approximation, a function of gravity field quantities given at a
fixed position in space, is presented.

Geometric determinations of equipotential profiles are revisited. Rigorous formulas
are presented for the computation of deflections of the vertical and terrestrial gradiometric
observations. The problem of the temporal and spatial reductions of observations and the
gravity field is presented in a systematic and general way. In particular, the determina-
tion of the mean gravity along the plumbline is discussed. Existing and new formulas
based on gravimetric observations on the topography and in the tunnel are analyzed from
theoretical and practical points of view. Based on two symptomatic realistic examples,
the limitations and artifacts of the various methods are exposed. They show that the
presence of non-modeled masses between the surface of topography and the tunnel can
generate completely wrong determinations, even if gravimetric measurements are carried
out at both places.

Alignment Accuracy of Astrogravimetric Levelling

With current technologies, the astrogravimetric levelling, is able to determine equipotential
profiles with alignment accuracies better than 10 microns over 200 meters. The limiting
precision factor of the astrogeodetic part is generated by the anomalous refraction. It
is proven that the impact of anomalous refraction, if it acts like a random bias, can be
reduced, when several cameras are deployed simultaneously on adjacent stations and when
the different acquisition sets overlap. A complete mathematical model is presented, which
allows to unbiased raw deflections of the vertical and permits to significantly increase the
determination of short-wavelength equipotential profiles. Concerning the accuracy of the
determination of the orthometric correction, the simulations demonstrate that the limiting
factor is the mean gravity along the plumbline which should not be affected by white noise
larger than 30 µgal and correlated noise of 125 or 5’000 µgal for correlation lengths of 1’000
and 16’000 meters, respectively.

Expected Signals and Observability

The main general findings are that only lateral density contrasts (≤ 500 kg
m3 ) of wave-

lengths larger than 120 meters can generate misalignment signals in equipotential profiles
larger than 10 microns over 200 meters. It follows that observations must be carried out
with a spacing shorter than 60 meters. In addition, the observability is only limited by
the precision of the determination of the mean gravity along the plumbline. All mass
anomalies below the tunnel (and 50 meters below) generate signals which are observable
by astrogravimetric levelling. The rest of the masses must be known with a precision
better than 100-200 kg

m3 with a resolution of approximately 100 meters.

Significant signals along the CLIC profile due to topography are expected for the
first 17 kilometers only, which represent 17.8% of the whole profile. In addition, 60%
of these significant signals are directly observables. The first 3 kilometers remain not
observable even after reductions. In this part, the density field between the surface of
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topography and the tunnel must be know with a precision better than 100 kg
m3 . Concern-

ing the time-varying phenomena, only the Earth’s tide signals must be considered. The
existing Earth’s tide models are sufficient. The disturbing centrifugal potential and the
variation of the surface of the Lake of Geneva can be neglected.

Strategy for the Determination of Underground Equipotential Surfaces

The determination is based on the combination of modern astrogravimetric levelling and a
forward modeling of the gravity field based on known density fields. The following recom-
mendations are only valid for the projected emplacement of CLIC in the region of Geneva.

The astrogravimetric levelling part is based on the astrogeodetic determination of
deflections of the vertical and gravimetric measurements along the profile. The astro-
geodetic part needs 5 zenith cameras working in parallel during 2 hours on successive
points separated by 50 meters. In addition, in order to reduce the impact of anomalous
refraction, the different sets must have an overlap of 1 point. With this configuration, the
whole 50 kilometers profile can be carried out in less than 1 year, and the misalignment
over 200 meters, at 68% confidence level, is predicted at 5.4 microns. The gravimetric
measurements must be carried out on the surface of the topography and in the tunnel,
with a spacing of 10-20 meters. Based on a precise absolute gravimetric reference net-
work, they can be observed with precise relative gravimeters with a precision better than
10 µgal. The positioning of the gravimeters must be performed with an accuracy better
than 1 centimeter. With this setting, the gravimetric measurements can be carried out by
a single crew (1 gravimeter) in less than 1 year.

The forward modeling part is based on known density fields. This part is crucial
for the reduction and the prediction of the gravity field generated by the density field be-
tween the surface of topography and the tunnel. It is mandatory to provide a density field
model between the surface of topography and approximately 50 meters below the tunnel,
with an accuracy of 100 to 200 kg

m3 , for wavelengths between 200 meters and 3 kilometers
along the profile. The density fields can be obtained from existing geological underground
maps and soundings, new soundings and/or gravity inversions. Particular care must be
taken for the precise determination of the density field of the first 3 kilometers of the CLIC
profile.

The computation of the equipotential profiles is performed with the formulas of
the astrogravimetric levelling based on the remove and restore technique. The astrogeode-
tic part is computed from adjusted deflections of the vertical observations. In order to
reduce the impact of anomalous refraction, the raw astrogeodetic observations are adjusted
according to the approach, which estimates biases between overlapping sets. For the or-
thometric correction, the mean gravity along the plumbline is obtained by the remove and
restore technique. However, it is predicted differently along the profile, depending on the
results of the observability analysis. For segments for which the observability is attested,
the reduced mean gravity is computed by averaging superposed gravimetric observations.
For the segments for which the observability is not attested, the mean gravity along the
plumbline is computed by averaging superposed gravimetric observations which are pre-
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viously low-pass filtered. The filter cutoff of approximately 5-6 kilometers can be derived
from the observability analysis directly.

Validation of the Strategy by the Astrogravimetric Campaign at CERN (TZ32)

The main findings resulting from the campaign are that astrogeodetic determinations of
the deflections of the vertical on soft ground are possible with the same level of precision
as in the case of standard measurements, at about 0.07-0.08 arcsec. The combination of
an absolute and precise reference gravity network, the measurements of a modern CG-5
relative gravimeter and a precise geodetic network, for the positioning, provide an absolute
accuracy better than 10 µgal for underground and surface gravity observations. The
predictions of the gravity field, performed by QGravity, based on a precise 3D density
models are in very good agreement with the observations with an RMS of 0.07 arcsec and
80 µgal for astrogeodetic and gravimetric measurements, respectively. The discrepancies
between the equipotential profile determined on the one hand by astrogravimetric levelling
and on the other hand by the mass models only, generate misalignments over 200 meters
which are mainly below 20 microns. This demonstrates that the observations as well the
whole simulation chain are correct and agree on a very precise level.

Differential Geodetic Interferometric Deflectometer

The basic principle and the first analyses of the precision of the differential geodetic inter-
ferometric deflectometer demonstrates that this system is potentially very promising for
direct underground determination of short-wavelength equipotential profiles. In addition,
a first prototype of 12 m length was designed, constructed and first measurements have
been performed. Unfortunately, the first results show that the expected accuracy is not yet
obtained and that further investigations must be performed in order to reduce systematic
effects of at least one order of magnitude.

Outlooks

The main topics to be investigated in future are ranked in order of priority:

� Investigations with respect to anomalous refraction in astrogeodetic observations.
Using at least two identical zenith camera systems, as for example the new system
CODIAC, the anomalous refraction can be investigated in terms of correlations at
short distances. The aim would be to prove that it is possible to model anomalous
refraction as random bias for parallel observations separated by several hundred
meters. In addition, the anomalous refraction can be investigated using ray tracing
predictions in precise 3D meteo models. And if time series from a permanent zenith
camera are available, it will be possible to see if corrections computed from numerical
models are sufficiently accurate in order to be applied to the observations.

� investigations in the development of the differential interferometric deflectometer.
Using different techniques for the measurement of the angle of the chariot with
respect to a straight line and with a better automation of the measurement process,
the systematic effects can be investigated.



291

� Investigations in the determination of the mean gravity along the plumbline from
gravity observables. This subject is very difficult because it is directly related to the
theories of gravimetric inversions. However, theoretical and computational develop-
ments which could determine the boundaries of the space of realistic density fields
which generate a particular set of gravity observables would definitively help the un-
derstanding and the bounding of underground equipotential surface determination.

� Investigations in the determination and modeling of 3D underground density fields.
In collaboration with geologist and geophysicist, it is necessary to investigate the
most appropriate ways in order to determine near-field underground density fields
by alternative methods.

� Investigations of alternative underground equipotential surface determination. Once
a laser alignment system will be able to reach performances approaching 10 microns
over 200 meters, it will be possible to determine underground equipotential profiles
in combination with a HLS in a very straightforward way. And comparisons with
astrogravimetric determinations could serve to validate both techniques in a very
independent manner.
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France.

Becker, F., W. Coosemans, and M. Jones (2002), Consequences of perturbations of the
gravity field on hls measurements, Proceedings of the 7th International Workshop on
Accelerator Alignment (IWAA 2002).

Birch, K. P., and M. J. Downs (1993), An updated edlén equation for the refractive index
of air, Metrologia, 30 (3), 155.

Blakely, R. J. (1996), Potential Theory in Gravity and Magnetic Applications, Cambridge
University Press.
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Hirt, C. (2008), Zur Berücksichtigung von Scherung und Umschlagwinkel bei der Nei-
gungsmessung mit zweiachsigen Neigungssensoren, Zeitschrift für Vermessungswesen
(zfv), (133), 266–273.

Hirt, C. (2009), Hochauflösende astrogeodätische Bestimmung von Geoid- und Aequipo-
tentialprofilen mit Submillimetergenauigkeit für die Vermessung von Teilchenbeschleu-
nigern, AVN Allgemeine Vermessungs-Nachrichten, 02/2009.

Hirt, C. (2010), Modern determination of vertical deflections using digital zenith cameras,
Journal Surveying Engineering, 136 (1), 1–12.

Hirt, C. (2013), Rtm gravity forward-modeling using topography/bathymetry data to
improve high-degree global geopotential models in the coastal zone., Marine Geodesy,
36 (2), 1–20, doi:DOI: 10.1080/01490419.2013.779334.

Hirt, C., and G. Seeber (2008), Accuracy analysis of vertical deflection data observed
with the Hannover Digital Zenith Camera System TZK2-D, Journal of Geodesy, 82 (6),
347–356.

Hirt, C., M. Kuhn, S. Claessens, R. Pail, K. Seitz, and T. Gruber (2014), Study of the
earth’s short-scale gravity field using the ertm2160 gravity model, Computers & Geo-
sciences, 73, 71–80, doi:doi: 10.1016/j.cageo.2014.09.00.

Hoffmann, C. M. (1989), Geometric and Solid Modeling: An Introduction, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

Hofmann-Wellenhof, B., and H. Moritz (2005), Physical Geodesy, SpringerWienNewYork.

ICAO (1976), ICAO Standard Atmosphere 1976.

Jekeli, C. (1999), An analysis of vertical deflections derived from high-degree spherical
harmonic models, Journal of Geodesy, 73 (1), 10–22, doi:10.1007/s001900050213.

Jekeli, C. (2001), Inertial Navigation Systems with Geodetic Applications, Walter de
Gruyter.

Jekeli, C. (2007), 100 Years of Gravity Gradiometry, in lecture presented in Geological
Science 781, Gravimetry, Division of Geodesy and Geospatial Science, School of Earth
Sciences, Ohio State University.



BIBLIOGRAPHY 297

Jekeli, C. (2011), Encyclopedia of Solid Earth Geophysics, chap. Gravity, Gradiometry,
Springer-Verlag Berlin Heidelberg.

Jones, M. (2000), Geodetic definition (datum parameters) of the CERN coordinate sys-
tem, Tech. rep., EST-SU Internal Note, EDMS Document No. 107906, CERN, Geneva,
Switzerland.

Kaplan, G., J. Bangert, J. Bartlett, W. Puatua, and A. Monet (2009), User’s Guide to
NOVAS 3.0, USNO Circular 180 (Washington, DC: USNO).

Kaplan, G. H. (2005), The IAU Resolutions on Astronomical Reference Systems, Time
Scales, and Earth Rotation Models : Explanation and Implementation, United States
Naval Observatory Circular ; no 179., Washington : U.S. Naval Observatory, 2005.

Kaplan, G. H., J. A. Hughes, P. K. Seidelmann, C. A. Smith, and B. D. Yallop (1989),
Mean and apparent place computations in the new IAU system. III - Apparent, topocen-
tric, and astrometric places of planets and stars, The Astronomical Journal, 97, 1197–
1210, doi:10.1086/115063.

Kazhdan, M., M. Bolitho, and H. Hoppe (2006), Poisson surface reconstruction, in Pro-
ceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06, pp.
61–70, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland.

Klioner, S. A. (2002), Relativistic modelling of positional observations with microarcsecond
accuracy, EAS Publications Series, 2, 93–106, doi:10.1051/eas:2002008.

Klioner, S. A., and S. M. Kopeikin (1992), Microarcsecond astrometry in space: Relativis-
tic effects and reduction of observations, The Astronomical Journal.

Kopeikin, S. (1991), Relativistic manifestations of gravitational fields in gravimetry and
geodesy., Manuscr.Geod., 16, 301–312.

Kopeikin, S., M. Efroimsky, and G. Kaplan (2011), Relativistic Celestial Mechanics of the
Solar System, John Wiley & Sons, Hoboken.

Lautrup, B. (2005), Physics of Continuous Matter: Exotic and Everyday Phenomena in
the Macroscopic World, Institute of Physics.

Ledoux, H. (2013), On the validation of solids represented with the international stan-
dards for geographic information, Computer-Aided Civil and Infrastructure Engineering,
28 (9), 693–706, doi:10.1111/mice.12043.

Limpach, P. (2009), Sea surface topography and marine geoid by airborne laser altime-
try and shipborne ultrasound altimetry in the Aegean Sea, Ph.D. thesis, Diss., Eid-
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Appendix A

Transformation between Celestial
and Terrestrial Reference Systems

Nowadays, for practical applications, there are mainly two conventional procedures to
transform a vector ρGCRS given in the geocentric celestial reference system (GCRS)1 into
a vector ρITRS given in a terrestrial reference system (ITRS):

1. The transformation according to the IAU2 1980 resolutions.

2. The transformation according to the IAU 2006/2000 resolutions.

However, assuming that the Earth rotation parameters (EOP) provided by the IERS3 are
correctly implemented, the transformations according to IAU 1980 and IAU 2006/2000
resolutions are equivalent. The principal differences are only visible at intermediate steps of
the transformation. In the modern version, IAU 2006/2000, polar motion and precession-
nutation are properly separated (Voigt , 2013).

A.1 Transformation according to the IAU 1980 resolutions

According to McCarthy (1996), a position vector ρGCRS, given in the GCRS, can be trans-
formed into the ITRS by:

ρITRS(t) = R2(−xp) ·R1(−yp) ·R3(GAST) ·N(δ∆ε, δ∆ψ, t) ·P(t) · ρGCRS(t) (A.1)

where:

1Geocentric Celestial Reference System. A special case of a Celestial Reference System which has its
origin at the center of mass of the Earth and not at the center of mass of the solar system as the ICRS.

2International Astronomical Union
3International Earth Rotation and Reference Systems Service
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ρITRS [m] = vector in terrestrial reference system.

ρGCRS [m] = vector in geocentric celestial reference system.

Ri = rotation matrices around the axis ei.

GAST [s] = Greenwich apparent sidereal time. Function of ∆UT1 and
δ∆ψ

N = nutation rotation matrix.

P = precession rotation matrix.

xp, yp [arcsec] = polar motion provided by IERS, see A.1.1.

δ∆ε, δ∆ψ [arcsec] = correction terms for the nutation, in obliquity and longitude,
provided by IERS.

∆UT1 [s] = UT1-UTC difference between UTC and UT1 provided by
IERS, see A.1.2.

A.1.1 Polar Motion including Diurnal and Sub-Diurnal Periods

According to Petit and Luzum (2010), the pole coordinates (xp, yp) appearing in Equation
A.1 can be computed as follows:

(xp, yp) = (x, y)IERS + (∆x,∆y)
ocean tides

+ (∆x,∆y)
libration

(A.2)

where (x, y)IERS represents the traditional pole coordinates provided by the IERS data cen-
ter with a time interval of one day. The term (∆x,∆y)

ocean tides
represents the diurnal and

semi-diurnal variations of the pole caused by ocean tides. The last term (∆x,∆y)
libration

corresponds to celestial motions with periods less than two days which are not modeled
in the nutation model.

For numerical computations, the first term (x, y)IERS is directly given in listings provided
by the IERS data center (e.g. EOP 08 C04 (IAU1980)). The second (∆x,∆y)

ocean tides
and

third (∆x,∆y)
libration

term can be computed by the routine INTERP.f of the IERS EOP
Product Center.

A.1.2 Earth Rotation Angle including Diurnal and Sub-Diurnal Periods

Concerning the Earth rotation angle, the procedure to obtain diurnal and sub-diurnal val-
ues for ∆UT1 or LOD4 is similar to for the pole coordinates (xp, yp). The usual corrections
∆UT1IERS or LODIERS provided by the IERS data center are refined by the ocean tides
and libration terms as follows:

∆UT1 = ∆UT1IERS + δ∆UT1ocean tides + δ∆UT1libration (A.3)

or
LOD = LODIERS + ∆LODocean tides + ∆LODlibration (A.4)

4the LOD, or length of day, represents the difference between the astronomically determined duration
of the day and 86400 SI seconds



A.2 Transformation using Axis Vectors 303

A.2 Transformation using Axis Vectors

There is an other possibility to write Equation A.1 in a purely kinematic way, without
worrying about physical phenomena. This can be done, if we just consider that the product
of the matrices:

SITRS
GCRS = R2(−xp) ·R1(−yp) ·R3(GAST) ·N(δ∆ε, δ∆ψ, t) ·P(t) (A.5)

can be resumed in a single orthogonal rotation matrix SITRS
GCRS which contains the unit

vectors of the ITRS axes eGCRS
ITRSi in the GCRS system.

ρITRS(t) = SITRS
GCRS(t) · ρGCRS(t) (A.6)

with:

SITRS
GCRS(t) =


eGCRST

ITRSx (t)

eGCRST

ITRSy (t)

eGCRST

ITRSz (t)

 (A.7)

and for the inverse transformation, from ITRS to GCRS we simply have:

ρGCRS(t) = SITRST

GCRS (t) · ρITRS(t) = SGCRS
ITRS (t) · ρITRS(t) (A.8)

with:
SGCRS

ITRS (t) =
(
eGCRS

ITRSx(t) eGCRS
ITRSy(t) eGCRS

ITRSz(t)
)

(A.9)
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Appendix B

Numerical Computation of the
Earth’s Rotation Vector

In the frame of this thesis, a precise time series of the Earth’s rotation vector ω♁ and
its time derivative ω̇♁ are computed numerically using the IAU 1980 resolutions transfor-
mation together with the EOP provided by IERS. They are computed using the libraries
NOVAS-C (Kaplan et al., 2009) together with the long-term Earth orientation data EOP

08 C04 (IAU1980) of IERS, between 1980 and 2013, with a time interval of one hour, in
ITRS and GCRS. Moreover it is important to note that the sub-daily values of the EOP
parameters are interpolated piecewise linearly, since they are only given at daily time in-
terval.

B.1 Earth’s rotation vector in ITRS

In the terrestrial reference system, the Earth’s rotation vector ωITRS
♁ can be computed

with polar motion and LOD by:

ωITRS

♁ (t) = ω♁(t) ·


+xp(t)

−yp(t)√
1− x2

p(t)− y2
p(t)

 (B.1)

and, according to Aoki et al. (1982), the Earth’s rotation velocity ω♁ can be computed
from LOD by:

ω♁(t) = [72921151.467064− 0.843994809 · LOD(t)] · 10−12 (B.2)

where:
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ωITRS
♁

[
rad
s

]
= Earth’s rotation vector in the terrestrial reference system.

ω♁

[
rad
s

]
= Earth’s rotation velocity in the terrestrial reference system;

which can be computed from the Length of Day (LOD) pro-
vided by IERS according to Equation B.2.

xp, yp [rad] = polar motion provided by IERS.

LOD [ms] = Length of day provided by IERS.

B.1.1 Time Series and Spectral Analysis

The time series and the amplitude spectrum of ωITRS
♁ (t) are shown in Figures B.1 and

B.2. Concerning the spectral analyses, the components
(
ωITRS

♁x , ωITRS
♁y

)
are decomposed into

prograde and retrograde motions. The component ωITRS
♁z is decomposed with a standard

FFT. Finally, the periods of the 10 largest amplitudes are listed in Table B.1.

Table B.1: List of the periods of the 10 largest amplitudes of the components of the Earth’s
rotation vector ωITRS

♁ (t) computed numerically from a times series based on the dataset EOP 08

C04 (IAU1980) of IERS from 1980 to 2013.

ωITRS
♁x , ωITRS

♁y ωITRS
♁x , ωITRS

♁y ωITRS
♁z

Prograde Retrograde

Rank Period Amplitude Period Amplitude Period Amplitude

[-] [day]
[

rad
s

]
[day]

[
rad
s

]
[day]

[
rad
s

]
1 430.499 4.907 · 10−11 6026.979 2.968 · 10−12 12053.917 5.962 · 10−13

2 365.271 2.943 · 10−11 12053.958 2.547 · 10−12 6026.958 3.763 · 10−13

3 446.443 2.323 · 10−11 4017.986 1.559 · 10−12 365.270 3.287 · 10−13

4 482.158 8.049 · 10−12 3013.490 1.510 · 10−12 182.635 2.793 · 10−13

5 12053.958 7.711 · 10−12 365.271 1.482 · 10−12 4017.972 2.643 · 10−13

6 463.614 7.449 · 10−12 2410.792 1.089 · 10−12 13.667 2.236 · 10−13

7 401.799 7.423 · 10−12 1339.329 1.061 · 10−12 3013.479 1.834 · 10−13

8 415.654 6.708 · 10−12 1506.745 7.603 · 10−13 13.636 1.668 · 10−13

9 388.837 5.499 · 10−12 182.636 5.777 · 10−13 13.651 1.551 · 10−13

10 376.686 3.660 · 10−12 803.597 5.496 · 10−13 0.518 1.429 · 10−13

B.2 Earth’s rotation vector in GCRS

In the geocentric celestial reference system, the Earth’s rotation vector ωGCRS
♁ can be

computed by transforming the Earth’s rotation vector ωITRS
♁ given in ITRS with Equation

A.8:

ωGCRS

♁ (t) = SGCRS
ITRS (t) · ωITRS

♁ (t) (B.3)

where:
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ωGCRS
♁

[
rad
s

]
= Earth’s rotation vector in the geocentric celestial reference

system.

ωITRS
♁

[
rad
s

]
= Earth’s rotation vector in the terrestrial reference system.

SGCRS
ITRS = Transformation matrix from ITRS to GCRS.

B.3 Time derivative of the Earth’s rotation vector in GCRS

In the geocentric celestial reference system, at time ti, the time derivative of the Earth’s
rotation vector ω̇GCRS

♁ can be computed numerically from the Earth’s rotation vector in
GCRS ωGCRS

♁ by:

ω̇GCRS

♁ (ti) ∼=
ωGCRS

♁ (ti+1)− ωGCRS
♁ (ti)

ti+1 − ti
(B.4)

where:

ω̇GCRS

♁

[
rad
s2

]
= Time derivative of the Earth’s rotation vector in the geocen-

tric celestial reference system.

ωGCRS
♁

[
rad
s

]
= Earth’s rotation vector in the geocentric celestial reference

system.

B.3.1 Time Series and Spectral Analysis

The time series and the amplitude spectrum of ω̇GCRS

♁ (t) are shown in Figures B.4 and
B.5. Concerning the spectral analyses, the components

(
ω̇ITRS

♁x , ω̇GCRS
♁y

)
are decomposed into

prograde and retrograde motions. The component ω̇GCRS
♁z is decomposed with a standard

FFT. Finally, the periods of the 10 largest amplitudes are listed in Table B.2.

Table B.2: List of the periods of the 10 largest amplitudes of the components of the time derivative
of the Earth’s rotation vector ω̇GCRS

♁ (t) computed numerically from a times series based on the
dataset EOP 08 C04 (IAU1980) of IERS from 1980 to 2013.

ω̇GCRS
♁x , ω̇GCRS

♁y ω̇GCRS
♁x , ω̇GCRS

♁y ω̇GCRS
♁z

Prograde Retrograde

Rank Period Amplitude Period Amplitude Period Amplitude

[-] [day]
[

rad
s2

]
[day]

[
rad
s2

]
[day]

[
rad
s2

]
1 13.666 1.362 · 10−16 6026.979 2.808 · 10−17 12053.916 2.411 · 10−19

2 13.651 8.834 · 10−17 27.583 8.518 · 10−18 13.651 1.331 · 10−19

3 182.636 7.730 · 10−17 27.520 8.011 · 10−18 6026.958 1.267 · 10−19

4 13.635 6.407 · 10−17 12053.958 7.676 · 10−18 13.666 1.082 · 10−19

5 13.682 3.646 · 10−17 13.636 5.456 · 10−18 4017.972 6.933 · 10−20

7 9.131 3.468 · 10−17 13.667 5.029 · 10−18 3013.479 5.286 · 10−20

6 13.697 2.082 · 10−17 4017.986 5.015 · 10−18 2410.783 4.206 · 10−20

8 13.713 1.454 · 10−17 27.458 4.968 · 10−18 179.909 3.987 · 10−20

9 13.620 1.439 · 10−17 13.651 3.824 · 10−18 2008.986 3.507 · 10−20

10 13.604 1.284 · 10−17 182.636 3.516 · 10−18 185.444 3.461 · 10−20
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B.4 Time derivative of the Earth’s rotation vector in ITRS

The time derivative of the Earth’s rotation vector in the terrestrial reference system ω̇ITRS

♁

can be computed by transforming ω̇GCRS

♁ into the ITRS according to Equation A.6:

ω̇ITRS

♁ (ti) ∼= SITRS
GCRS(ti) · ω̇GCRS

♁ (ti) (B.5)

where:

ω̇ITRS

♁

[
rad
s2

]
= Time derivative of the Earth’s rotation vector in the terres-

trial reference system.

ω̇GCRS

♁

[
rad
s2

]
= Time derivative of the Earth’s rotation vector in the geocen-

tric celestial reference system.

SITRS
GCRS = Transformation matrix from GCRS to ITRS.

B.4.1 Time Series and Spectral Analysis

The time series and the amplitude spectrum of ω̇ITRS

♁ (t) are shown in Figures B.6 and
B.7. Concerning the spectral analyses, the components

(
ω̇ITRS

♁x , ω̇ITRS
♁y

)
are decomposed into

prograde and retrograde motions. The component ω̇ITRS
♁z is decomposed with a standard

FFT Finally, the periods of the 10 largest amplitudes are listed in table B.3.

Table B.3: List of the periods of the 10 largest amplitudes of the components of the time derivative
Earth’s rotation vector ω̇ITRS

♁ (t) computed numerically from a times series based on the dataset
EOP 08 C04 (IAU1980) of IERS from 1980 to 2013.

ω̇ITRS
♁x , ω̇ITRS

♁y ω̇ITRS
♁x , ω̇ITRS

♁y ω̇ITRS
♁z

Prograde Retrograde

Rank Period Amplitude Period Amplitude Period Amplitude

[-] [day]
[

rad
s2

]
[day]

[
rad
s2

]
[day]

[
rad
s2

]
1 430.500 8.265 · 10−18 0.99727 2.275 · 10−16 0.99726 3.605 · 10−22

2 365.273 5.888 · 10−18 1.07577 1.366 · 10−16 1.07576 2.246 · 10−22

3 446.444 3.811 · 10−18 1.07586 8.792 · 10−17 0.99496 1.542 · 10−22

4 401.800 1.316 · 10−18 1.00274 7.730 · 10−17 1.07586 1.346 · 10−22

5 482.160 1.235 · 10−18 1.07596 6.400 · 10−17 1.00274 1.195 · 10−22

6 463.615 1.196 · 10−18 1.07567 3.645 · 10−17 1.07318 1.076 · 10−22

7 415.655 1.145 · 10−18 1.11953 3.465 · 10−17 1.07595 9.630 · 10−23

8 388.839 1.001 · 10−18 0.99710 2.830 · 10−17 0.99455 9.202 · 10−23

9 376.687 7.259 · 10−19 1.07557 2.081 · 10−17 1.07308 7.073 · 10−23

10 182.636 5.041 · 10−19 1.07548 1.453 · 10−17 0.99504 6.985 · 10−23
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Figure B.1: Time series of the x-y-z components of the Earth’s rotation vector ωITRS
♁ .
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Figure B.2: Amplitude spectrum of the Earth’s rotation vector ωITRS
♁ shown in Figure B.1. The

vectorial time series formed by the components
(
ωITRS

♁x , ωITRS
♁y

)
is decomposed into prograde (upper)

and retrograde (middle) periods. The time series of the component ωITRS
♁z is decomposed by a 1D

FFT (lower).
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Figure B.4: Time series of the x-y components of the time derivative of the Earth’s rotation
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Figure B.5: Amplitude spectrum of the time derivative of the Earth’s rotation vector ω̇GCRS

♁
shown in Figure B.4. The vectorial time series formed by the components

(
ω̇GCRS

♁x , ω̇GCRS
♁y

)
is

decomposed into prograde (upper) and retrograde (lower) periods.
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Figure B.7: Amplitude spectrum of the time derivative of the Earth’s rotation vector ω̇ITRS

♁ shown
in Figure B.6. The vectorial time series formed by the components

(
ω̇ITRS

♁x , ω̇ITRS
♁y

)
is decomposed

into prograde (upper) and retrograde (lower) periods.



Appendix C

Conversion between Geodetic and
Ellipsoidal Coordinates

Here closed formulas for the conversion between geodetic and ellipsoid coordinates are
given. They are transcribed from Featherstone and Claessens (2008) with the difference
that, in this thesis, β is defined as the ellipsoidal latitude and not as the ellipsoidal co-
latitude. where:

λ, ϕ, h [deg] , [m] = Geodetic longitude, latitude and height.

λ, β, u [deg] , [m] = Ellipsoidal longitude, latitude and third parameter.

a, b [m] = Semi-major and semi-minor axis of the ellipsoid of revolu-
tion.

C.1 Geodetic to Ellipsoidal Coordinates (λ, ϕ, h)→ (λ, β, u)

� Ellipsoidal longitude λ:
λ = λ (C.1)

� Ellipsoidal third parameter u:

u =

{
1

2

[
(Rn + h)2 cos2 ϕ+

[
Rn(1− e2) + h

]2
sin2 ϕ− E2

]

+

√
1

4

[
E2 − (Rn + h)2 cos2 ϕ− [Rn(1− e2) + h]2 sin2 ϕ

]2

+E2 [Rn(1− e2) + h]2 sin2 ϕ
} 1

2

(C.2)

� Ellipsoidal latitude β:
if ϕ < 45 : β = 90− arcsin

[
(Rn + h) cosϕ√

u2 + E2

]

if ϕ ≥ 45 : β = 90− arccos

[
(Rn(1− e2) + h) sinϕ

u

] (C.3)
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with:

e =

√
a2 − b2
a

E =
√
a2 − b2

Rn =
a√

1− e2 sin2 ϕ

(C.4)

C.2 Ellipsoidal to Geodetic Coordinates (λ, β, u)→ (λ, ϕ, h)

� Geodetic longitude λ:

λ = λ (C.5)

� Geodetic latitude ϕ:

ϕ = 2 · arctan

(
u cosβ

F +
√
F 2 + u2 cos2 β

)
(C.6)

� Geodetic height h:

h =
u cosβ

sinϕ−Rn(1− e2)
(C.7)

with:

e =

√
a2 − b2
a

E =
√
a2 − b2

Rn =
a√

1− e2 sin2 ϕ

(C.8)
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and:

M =
(1− e2)u2 cos2 β

a2

N =
(u2 + E2) sin2 β

a2

K =
M +N − e4

6

O =
e4 ·M ·N

4K3

L =
(

1 +O +
√

2O +O2
) 1

3

H =K

(
1 + L+

1

L

)
I =
√
H2 + e4M

J =
e2

2I(H + I −M)

G =
√
H + I + J2 − J

F =
G
√
u2 + E2 sinβ

G+ e2

(C.9)
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Appendix D

Very Short Introduction to
Stochastic Processes

D.1 Stochastic Processes

The usual way to describe the behavior of noise is to consider that it is formed by a single
or by the sum of stochastic processes, which associate random variables and deterministic
parameters like a time or space coordinate (Jekeli , 2001). A stochastic process can be
represented by a random vector X (s), here as a function of the position s, where each
single element is a random variable Xsi of a given probability density function (PDF)
fXsi (x):

X (s) =



Xs1
...

Xsi
...

Xsn


(D.1)

The dependence in space s — or the statistical relation between two individual random
variables Xsi and Xsj is given by the autocovariance function CX (si, sj). If the process is
stationary, the covariances between two points do not depend on their absolute position
but just on their separation ∆s = |sj − si|. In this case, we can define CX (∆s) as:

CX (∆s) = E [(X (s)− µX ) · (X (s+ ∆s)− µX )]

=

ˆ +∞

−∞

ˆ +∞

−∞
[xs − µX ] · [xs+∆s − µX ] · fX

(
xs, xs+∆s

)
· dxsdxs+∆s ∀s

(D.2)

In addition, if we consider a finite and discrete representation of the stochastic process,
where the individual elements i, j are separated by ∆sij , the covariance function CX (∆s)
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can be represented by the covariance matrix:

CX =



CX (∆s11) . . . CX (∆s1i) . . . CX (∆s1n)
...

. . .
...

. . .
...

CX (∆si1) . . . CX (∆sii) . . . CX (∆sin)
...

. . .
...

. . .
...

CX (∆sn1) . . . CX (∆sni) . . . CX (∆snn)


(D.3)

The derivation of CX (∆s) can be done in various ways: by empirical estimation or based
on some theoretical assumptions. A famous theoretical way is given by solving a stochastic
differential equation. If we restrict ourselves to the class of linear stochastic differential
equations, we can find different well-known processes that are of first importance in this
thesis.

D.2 Gaussian Random Bias Process

According to Jekeli (2001), a Gaussian random bias process is described by the following
first-order stochastic differential equation:

dX Rnd Bias(s)

ds
= 0 (D.4)

associated with the initial condition:

X Rnd Bias(0) = N (0, σ2
Rnd Bias) (D.5)

where N is a Gaussian random variable. The autocovariance function is given by:

CXRnd Bias
(∆s) = σ2

Rnd Bias (D.6)

D.3 Gaussian Random Drift Process

A Gaussian random drift process is described by the following first-order stochastic dif-
ferential equation:

dX Rnd Drift(s)

ds
= α (D.7)

associated with the initial condition:

X Rnd Drift(0) = 0 and α = N (0, σ2
Rnd Drift) (D.8)

where N is a Gaussian random variable.



D.4 White Noise Process 319

D.4 White Noise Process

According to Jekeli (2001), a white noise process is described as follows:

XWhite(s) = N (0, σ2
White) (D.9)

The autocovariance function is given by:

CXWhite
(∆s) = σ2

Whiteδ(∆s) (D.10)

where δ(∆s) is the Dirac delta distribution centered at the origin.

D.5 First-Order Gauss-Markov Processes

A Gauss-Markov process of order n is associated with the a linear stochastic differential
equation of order n. It has the advantage to be completely described statistically ,by its
autocovariance function which is given by a closed formula. If we look at the first order
(n=1), according to Gelb et al. (1974), the process is modeled by a first-order stochastic
differential equation as follows:

dX Corr(s)

ds
= −β ·X Corr(s) + XWhite(s) (D.11)

where XWhite(s) is a white noise process and β ≥ 0 represents the inverse of the correlation
length dCorr = 1

β . In opposition to the random walk process, the initial condition is chosen
in a way so that the stochastic process becomes stationary which ensures a time-invariant
expectation and allows for a possible covariance function depending on ∆sij (Jekeli , 2001):

CXCorr
(∆s) = σ2

Corr · e−β|∆s| (D.12)

Here, it is important to understand that, if we set β = 0, we do not obtain a random
walk process as might be suggest Equation D.11. In fact, we obtain a white noise process
XWhite. In the case, where β →∞, the Gaussian-Markov process converges to a Gaussian
random bias process X Rnd Bias.

D.6 Gaussian Random Walk Process

The Gaussian random walk process is not directly used in order to generate noisy ob-
servations. However, it is generated indirectly with the computation of the equipotential
profiles from astrogeodetic white noise observations. From this point of view, it is interest-
ing to look at its formulation in terms of stochastic processes. According to Jekeli (2001),
a Gaussian random walk process — also called Brownian motion process — is described
by the following first-order stochastic differential equation:

dX Rnd Walk(s)

ds
= XWhite(s) (D.13)

associated with the initial condition:

X Rnd Walk(0) = 0 (D.14)
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This equation can be solved by integrating D.13:

X Rnd Walk(s) =

ˆ s

0
XWhite(s

′) · ds′ (D.15)

but does not results in a stationary process. Thus, the autocovariance function cannot be
given as a function of the relative distance ∆s but as a function of the absolute positions
si and sj as follows:

CXRnd Walk
(si, sj) =

 σ2
Rnd Walk · (si − s0), if sj ≥ si > t0

σ2
Rnd Walk · (sj − s0), if si ≥ sj > t0

(D.16)



Appendix E

Very Short Introduction to
Monte-Carlo Simulations

The basic principle of Monte Carlo simulations is inspired by the relative frequency defi-
nition of probabilities. In this definition, probabilities are computed empirically by repro-
ducing many times an experiment and then count the number of occurrences which fulfill
a certain event.

In this section, we will focus on the application of Monte Carlo simulations applied to
random variables. The objectives are:

� to generate uniform random numbers.

� to generate, empirically, realizations of arbitrary random PDF or CDF from a uni-
form random generator.

� to empirically compute functions of arbitrary PDF or CDF.

E.1 Uniform Random Generator

A uniform random number generator generates a sequence of uncorrelated uniformly dis-
tributed numbers

[
RNU

1 , RN
U
2 , ..., RN

U
n

]
in the interval [0, 1]. There are two principal

methods to do this: physical and computational methods.

E.1.1 Physical Methods

Physical random generators can generate real random numbers. They are based on quan-
tum physical phenomena which are conceptually unpredictable. Radioactive decay, ther-
mal noise, shot noise, clock drifts can be used as sources of randomness. Nevertheless,
additional processing must usually be applied to get a really uniform distribution.

E.1.2 Computational Methods

Computational methods are based on algorithms which generate a sequence of pseudo-
random numbers. Usually, the algorithms are recurrent and use the previous number to
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generate the next one. This implies that two sequences are identical when the algorithm
starts with the same initial value. One of the most common algorithm is the linear
congruential generator :

RNU
n+1 = (a ·RNU

n + b) mod m (E.1)

An example of 1000 uniformly distributed random numbers generated with Equation E.1
can be see in Figure E.1. An important property of pseudo-random number generators is
the period. It gives the length of the sequence which can be generated before repeating
itself. For example, in Matlab, the function rand has a period of 21492.
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Figure E.1: Time series of 1000 uniformly distributed random numbers generated with the linear
congruential generator, a = 75, b = 0, m = 231 − 1 (top). Histogram of the time series (bottom
left). Sample autocorrelation function of the time series (bottom right).

E.2 Generation of Uncorrelated Random Variables

A sequence of random numbers
[
RNU

1 , RN
U
2 , ..., RN

U
i , ..., RN

U
n

]
generated from a uniform

random number generator can be transformed into a sequence of random numbers which
has the properties of an arbitrary random variable X. In the literature, we can find several
methods for generating random variables, for example the inverse-transform method, the
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alias method, the composition method and the acceptance-rejection method. In this script,
only the inverse-transform method is explained. This method has the advantage to be
general, very intuitive and easy to implement.

E.2.1 The Inverse-Transform Method

The goal is to transform a uniform random variable U into an other arbitrary random
variable X with a known CDF FX . Basically, thanks to the fact that FX(x) is non-
decreasing and FU (u) a uniform CDF in the interval [0, 1], it is possible to prove that:

u = FX(x) (E.2)

or
x = F−1

X (u) (E.3)

Applied to realizations generated by a uniform random generator we have:

RNX
i = F−1

X (RNU
i ) (E.4)

where RNU
i is a uniform random number, and RNX

i is a random number which follows
the distribution of X, see Figure E.2. If u = FX(x) is known analytically and F−1

X (u) can
be found explicitly, we can directly apply Equation E.4 to get RNX

i .

In the case, where FX(x) is not know analytically or F−1
X (x) cannot be given by an analytic

function but numerically by two monotonic non-decreasing series of m real values:

x ∼= [x1, x2, ..., xk, ..., xm] (E.5)

FX(x) ∼= [FX(x1), FX(x2), ..., FX(xk), ..., FX(xm)] , (E.6)

RNX
i corresponds to the xk such that:

F (xk−1) < RNU
i ≤ F (xk) (E.7)

which can simply be found by a linear search on [FX(x1), FX(x2), ..., FX(xk), ..., FX(xm)].

Example We want to generate a sequence of 10000 uncorrelated realizations of a random
variable X which has a PDF given by:

fX(x) =



0 if x < 0

sin2(x) · e−0.2·x´ 2π
0 sin2(t) · e−0.2·t · dt

if 0 ≤ x ≤ 2π

0 if x > 2π

(E.8)

To do this, we proceed using the following steps:

1. Discretize x in the sequence x ∼= [0, 0.05, 0.1, ..., 2π].

2. Compute the discrete PDF fX(x).
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1

0

F  (RN )
X

-1

i
RN i

U

U

RN i
X

Figure E.2: Principle of the inverse-transform method for the generation of realizations of arbi-
trary random variables.

3. Compute the discrete CDF FX(x).

4. Compute a sequence of n = 10000 uniform random numbers RNU
i with Equation

E.1.

5. Generate the sequence of n = 10000 random numbers RNX
i with Equation E.7.

The result of the generation of the sequence RNX
i can be see in Figure E.3.

E.3 Generation of Correlated Random Variables

In the previous section, we have seen how to generate uncorrelated realizations of random
variables of arbitrary distributions. Here, we want to see how to generate realizations of
a correlated random vector when we know the distributions of every single variable, the
expectation and the variance-covariance matrix of the random vector.

The generation of realizations of a random vector X = (X1, X2, ..., Xn)T is possible if
we know:

� its expectation E [X] = µX .

� its variance-covariance matrix E
[
(X − µX) · (X − µX)T

]
= Kxx.

� the distribution of each single random variable X1, X2, ..., Xn.

The principle is to generate a realization of a random vector Y based on the distribution
of uncorrelated single random variables X1, X2, ..., Xn, which are centered and normalized.
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Figure E.3: Theoretical PDF and CDF computed from Equation E.8 (top). Empirical PDF and
CDF computed from the sequence of random numbers generated by the inverse-transform method
(bottom).

This implies that Kyy = I:

RNY =



RN
X1
1 −µX1
σX1

RN
X2
1 −µX2
σX2

...

RNXn
1 −µXn
σXn


(E.9)

which can be transformed into the vector RNX with

RNX = L ·RNY + µX (E.10)

L can be computed with the eigendecomposition of Kxx

L = U ·
√

Λ (E.11)

where U represents the matrix of the normalized eigenvectors, and Λ the diagonal matrix
containing the eigenvalues of Kxx. This can be proven when we apply the law of variance-
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covariance propagation to Equation E.10:

Kxx = L ·Kyy · LT

= L · I · LT

= L · LT

(E.12)

If we are able to find a matrix L which fulfills Equation E.12, RNX will have its variance-
covariance matrix like Kxx. This can be done with the eigendecomposition of Kxx. In
fact, we know that Kxx is a positive definite symmetric matrix which can be decomposed
as follows:

Kxx = U ·Λ ·UT

= U ·
√

Λ ·
√

Λ ·UT

= U ·
√

Λ ·
√

Λ
T
·UT

=
(
U ·
√

Λ
)

︸ ︷︷ ︸
L

·
(
U ·
√

Λ
)T

︸ ︷︷ ︸
LT

(E.13)

Another possibility to compute L is the Cholesky decomposition of Kxx.

E.3.1 Example

In this example (see Figures E.4, E.5 and E.6) we want to generate n = 1000 realizations
of a colored Gaussian noise which can be modeled as random vectorX = (X1, X2, ..., Xn)T

with the following properties:

� all random variables X1, X2, ..., Xn are Gaussian ∼ N (0, 1).

� the correlation ρij between two random variables i, j can be computed with: ρij =
sin(d)
d , d = 0.5 · |i− j|.

E.4 Monte Carlo Simulations

The computation of PDF and CDF with the Monte Carlo method is trivial and powerful.
It gives the possibility to simulate PDF and CDF of systems exited by random variables.
This is very useful for non-linear systems or when the stochastic behavior of the input is
not Gaussian. Usually, a simulation can be divided into the following steps:

1. Create a deterministic model y = f(x) which relates an input vector x = (x1, x2, ..., xn)T

to an output vector y = (y1, y2, ..., ym)T .

2. Assign a random vector X to x, with its PDF or CDF.

3. Generate a realization of X, RNX
i .
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Figure E.4: Correlation function (left) and covariance matrix (right) of the first 100 elements of
Kxx.
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Figure E.5: RNY plotted as time series (top), as empirical PDF (bottom left) and its autocor-
relation function (bottom right).

4. Evaluate the model RNY
i = f(RNX

i ) and store the results as RNY
i .

5. Repeat steps 3 and 4 for i = 1...k.
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Figure E.6: RNX plotted as time series (top), as empirical PDF (bottom left) and its autocor-
relation function (bottom right).

6. Analyze the results using empirical PDF and CDF, summary statistics, confidence
intervals, etc.
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Figure E.7: Overview of a Monte Carlo simulation.



Appendix F

Results of the Simulations:
Alignment Accuracy of Geometric
Determinations

F.1 Astrogeodetic Levelling

F.1.1 Misalignment due to Drift Noise

Here, the misalignment due to a deterministic drift noise is analysed by estimating:

σ1−α
M(ΣDrift)

with: ΣDrift = (δεDrift,∆sobs) (F.1)

for various δ̇εDrift and ∆sobs. As can be seen in Figure F.1, the misalignments are indepen-
dent of the number of observations carried out along the profile and independent of the
confidence level 1−α. In the prospect of a misalignment accuracy of 10 microns over 200
meters, the maximally systematic drift δ̇εDrift allowed is of about 6.5 · 10−4 arcsec

m which
represents equivalently 0.065 arcsec over 100 meters.

F.1.2 Misalignment due to Random Drift Noise

Here, the misalignment due to a random drift noise is analysed by estimating:

σ1−α
M(ΣRnd Drift)

with: ΣRnd Drift = (δεRnd Drift,∆sobs) (F.2)

for various σDrift and ∆sobs as it can be seen in Figure F.2. Here the misalignments are also
independent from the number of observations along the profile but not from the confidence
level 1− α . In the prospect of a misalignment accuracy of 10 microns over 200 meters at
68% confidence level, the maximally allowed random drift noise is about 6.5 · 10−4 arcsec

m
which represents equivalently 0.065 arcsec over 100 meters.

F.1.3 Misalignment due to White Noise

Here, the misalignment due to a white noise is analysed by estimating:

σ1−α
M(ΣWhite) with: ΣWhite = (δεWhite,∆sobs) (F.3)
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Results of the Simulations: Alignment Accuracy of Geometric

Determinations

15 15

20 20

30 30

40 40

50 50

60 60

70 70

80 80

90 90

10 10

Deterministic Drift Noise Misalignment (68%) S=200 [m]

 [m]

   
   

 [a
rc

se
c/

m
]

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6
x 10−3

5 5

15 15

20 20

30 30

40 40

50 50

60 60

70 70

80 80

90 90

10 10

Deterministic Drift Noise Misalignment (95%) S=200 [m]

 [m]
   

   
 [a

rc
se

c/
m

]

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6
x 10−3

Figure F.1: Misalignment σ0.68
M(ΣDrift) (left) and σ0.95

M(ΣDrift) (right), in microns, as a function of

the drift δ̇εDrift and the distance between stations ∆sobs.
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Figure F.2: Misalignment σ0.68
M(ΣRnd Drift) (left) and σ0.95

M(ΣRnd Drift) (right), in microns, as a function
of σRnd Drift and the distance between stations ∆sobs.

for various σWhite and ∆sobs as shown in Figure F.3. In the prospect of a misalignment
accuracy of 10 microns over 200 meters at 68% confidence level, the maximally allowed
white noise is about 0.09 arcsec. Regardless of the reduction of the observations, this
kind of accuracy is accessible to modern zenith cameras. In this case, it is supposed that
an observation is carried out every 10 meters. In addition, it is interesting to note that
the incidence of increasing the distance between the observations ∆sobs is significant up to
∆sobs = 40 meters only. For larger spacings 40 ≤ ∆sobs ≤ 100 meters, the white noise must
not exceed 0.06 arcsec. Concerning the transition to the confidence level 1 − α = 95%,
we would expect to have a proportionality factor of ≈ 2 compared to the results for
1 − α = 68%. Actually we find a factor approching 1.5 which comes from the fact that
the PDF of the misalignment random variable decreases faster than the Gaussian PDF.
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Figure F.3: Misalignment σ0.68
M(ΣWhite) (left) and σ0.95

M(ΣWhite) (right), in microns, as a function of
σWhite and the distance between stations ∆sobs.

F.1.4 Misalignment due to Correlated Noise

Here, the misalignment due to a correlated noise is analysed by estimating:

σ1−α
M(ΣCorr)

with: ΣCorr = (δεCorr,∆sobs) (F.4)

for various σCorr, dCorr and ∆sobs as shown in Figures F.4, F.5, F.6 and F.7. In Figures F.4
and F.5, the spacing between the observations is fixed to ∆sobs = 10 meters. The data are
identical. Only the horizontal scale is different to better show the behavior at short and
large correlation lengths dCorr, respectively. As regards Figures F.6 and F.7, the spacing
between the observations is fixed to ∆sobs = 20 and ∆sobs = 40 meters.

Concerning the dependency on the correlation length, we find an identical misalignment
to that generated by white noise for dCorr = 0, see Figure F.4. On the other side, when
dCorr → ∞, the correlated noise behaves like a random bias which has less and less im-
pact on the misalignment, see Figure F.5. In between, we can clamp that there are two
different regions, the first R− where the correlations act negatively on the accuracy of
the alignment, the second one R+ where the correlation acts positively, see Table F.1. In
addition, the worst case happens for dCorr = 40 meters regardless of the separation ∆sobs.

Table F.1: Regions where the correlations act negatively R− and positively R+ on the accuracy
of the alignment.

∆sobs σCorr : σ0.68
M(ΣCorr) = 10 µm R− min {R−} R+

[m] [arcsec] [m] [m] [m]

10 0.09 [0, 300] 40 [300,∞[
20 0.07 [0, 150] 40 [150,∞[
40 0.06 [0, 75] 40 [75,∞[
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Figure F.4: Misalignment σ0.68
M(ΣCorr) (left) and σ0.95

M(ΣCorr) (right), in microns, as a function of
σCorr and the correlation length dCorr. The spacing between the observations is fixed to ∆sobs = 10
meters.
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Figure F.5: Misalignment σ0.68
M(ΣCorr) (left) and σ0.95

M(ΣCorr) (right), in microns, as a function of
σCorr and the correlation length dCorr. The spacing between the observations is fixed to ∆sobs = 10
meters.
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Figure F.6: Misalignment σ0.68
M(ΣCorr) (left) and σ0.95

M(ΣCorr) (right), in microns, as a function of
σCorr and the correlation length dCorr. The spacing between the observations is fixed to ∆sobs = 20
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Figure F.7: Misalignment σ0.68
M(ΣCorr) (left) and σ0.95

M(ΣCorr) (right), in microns, as a function of
σCorr and the correlation length dCorr. The spacing between the observations is fixed to ∆sobs = 40
meters.
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F.2 Alignment Accuracy of the Orthometric Corrections

F.2.1 Misalignment due to Drift Noise (E1)

Here, the misalignment due to a deterministic drift noise is analysed by estimating:

σ1−α
M(ΣDrift)

with: ΣDrift = (δgDrift,∆sobs) (F.5)

for various δ̇gDrift and ∆sobs. As shown in Figure F.8, the misalignments are independent
from the number observations carried out along the profile and independent of the con-
fidence level 1 − α. In the prospect of a misalignment accuracy of 10 microns over 200
meters, the maximally systematic drift δ̇gDrift allowed is about 30.0 µgal

m which represents
equivalently 3.0 mgal over 100 meters.
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Figure F.8: Misalignment σ0.68
M(ΣDrift) (left) and σ0.95

M(ΣDrift) (right), in microns, as a function of

the drift δ̇gDrift and the distance between stations ∆sobs.

F.2.2 Misalignment due to Random Drift Noise (E1)

Here, the misalignment due to a random drift noise is analysed by estimating:

σ1−α
M(ΣRnd Drift)

with: ΣRnd Drift = (δgRnd Drift,∆sobs) (F.6)

for various σDrift and ∆sobs. This can be seen in Figure F.9. Here the misalignments
are also independent from the number of observations along the profile but not from the
confidence level 1−α . In the prospect of a misalignment accuracy of 10 microns over 200
meters, the maximally allowed drift noise is about 30.0 µgal

m which represents equivalently
3.0 mgal over 100 meters.

F.2.3 Misalignment due to White Noise (E1)

Here, the misalignment due to a white noise is analysed by estimating:

σ1−α
M(ΣWhite) with: ΣWhite = (δgWhite,∆sobs) (F.7)
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Figure F.9: Misalignment σ0.68
M(ΣRnd Drift) (left) and σ0.95

M(ΣRnd Drift) (right), in microns, as a function
of σRnd Drift and the distance between stations ∆sobs.

for various σWhite and ∆sobs as depicted in Figure F.10. In the prospect of a misalignment
accuracy of 10 microns over 200 meters at 68% confidence level, the maximally allowed
white noise is about 3.0 − 4.0 mgal. Regarding the white noise level, of about 5 µgal,
expected in gravimetric measurements, we can consider that the effects due to white noise
can be completely neglected for the determination of E1.
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Figure F.10: Misalignment σ0.68
M(ΣWhite) (left) and σ0.95

M(ΣWhite) (right), in microns, as a function of
σWhite and the distance between stations ∆sobs.

F.2.4 Misalignment due to Correlated Noise (E1)

Here, the misalignment due to a correlated noise is analysed by estimating:

σ1−α
M(ΣCorr)

with: ΣCorr = (δgCorr,∆sobs) (F.8)

for various σCorr and dCorr. The spacing between the observations is fixed at ∆sobs = 10
meters as shown in Figure F.11. Concerning the dependency on the correlation length,
we find an misalignment identical to that generated by white noise for dCorr = 0. On the



336
Results of the Simulations: Alignment Accuracy of Geometric

Determinations

other side, when dCorr → ∞, the correlated noise behaves like a random bias which has
less and less impact on the misalignment. Regarding the correlated noise level < 20 µgal,
expected in gravimetric measurements, we can consider that the effects due to correlated
noise can also be completely neglected for the determination of E1.
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Figure F.11: Misalignment σ0.68
M(ΣCorr) (left) and σ0.95

M(ΣCorr) (right), in microns, as a function of
σCorr and the correlation length dCorr. The spacing between the observations is fixed to ∆sobs = 10
meters.

F.2.5 Misalignment due to White Noise (E2)

Here, the misalignment due to a white noise is analysed by estimating:

σ1−α
M(ΣWhite) with: ΣWhite = (δgWhite,∆sobs) (F.9)

for various σWhite and ∆sobs. The results can be seen in Figure F.12. In the prospect
of a misalignment accuracy of 10 microns over 200 meters at 68% confidence level, the
maximally allowed white noise is about 30.0 µgal for a spacing ∆s = 10 meters. For larger
spacings, it could be surprising that the maximal allowed white noise level increase. This
is just due to the fact that, for a flat topography, the determination of E2, at a given
position, depends only on the local gtot. Increasing the number of gtot along a profile
reduce the omission errors but not the accuracy of the determination of E2.

F.2.6 Misalignment due to Correlated Noise (E2)

Here, the misalignment due to a correlated noise is analysed by estimating:

σ1−α
M(ΣCorr)

with: ΣCorr = (δgCorr,∆sobs) (F.10)

for various σCorr and dCorr. The spacing between the observations is fixed at ∆sobs = 10
meters. The results can be seen in Figures F.13 and F.14 (the figures differ in horizontal
and vertical scales). Concerning the dependency on the correlation length, we find a
misalignment identical to that the one generated by white noise for dCorr = 0. On the
other side, when dCorr → ∞, the correlated noise behaves like a random bias which has
less and less impact on the misalignment. Moreover, we can see that the maximally
allowed correlated errors in gtot increase with dCorr. For dCorr = 1000 meters the maximally
correlated error is about 125 µgal and reaches about 500 µgal for dCorr = 16′000 meters.
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Figure F.12: Misalignment σ0.68
M(ΣWhite) (left) and σ0.95

M(ΣWhite) (right), in microns, as a function of
σWhite and the distance between stations ∆sobs.
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Figure F.13: Misalignment σ0.68
M(ΣCorr) (left) and σ0.95

M(ΣCorr) (right), in microns, as a function of
σCorr and the correlation length dCorr. The spacing between the observations is fixed to ∆sobs = 10
meters.
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M(ΣCorr) (right), in microns, as a function of
σCorr and the correlation length dCorr. The spacing between the observations is fixed to ∆sobs = 10
meters.
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F.3 Alignment Accuracy of Gradiometric Levelling

F.3.1 Misalignment due to Bias Noise

Here, the misalignment due to a deterministic bias noise is analysed by estimating:

σ1−α
M(ΣBias)

with: ΣBias = (δ∆ΓBias,∆sobs) (F.11)

for various δ∆ΓBias and ∆sobs. As shown in Figure F.15, the misalignments are indepen-
dent from the number observations carried out along the profile and independent of the
confidence level 1−α. In the prospect of a misalignment accuracy of 10 microns over 200
meters, the maximally allowed systematic bias δ∆ΓBias is about 31 E.
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Figure F.15: Misalignment σ0.68
M(ΣBias) (left) and σ0.95

M(ΣBias) (right), in microns, in function of the
bias δ∆ΓBias and the distance between stations ∆sobs.

F.3.2 Misalignment due to Random Bias Noise

Here, the misalignment due to a random bias noise is analysed by estimating:

σ1−α
M(ΣRnd Bias)

with: ΣRnd Bias = (δ∆ΓRnd Bias,∆sobs) (F.12)

for various σRnd Bias and ∆sobs. As shown in Figure F.16, the misalignments are also
independent from the number of observations along the profile but not from the confidence
level 1 − α. In the prospect of a misalignment accuracy of 10 microns over 200 meters,
the maximally allowed standard deviation of a random bias σBias is about 31 E.

F.3.3 Misalignment due to Deterministic Drift Noise

Here, the misalignment due to a deterministic drift noise is analysed by estimating:

σ1−α
M(ΣDrift)

with: ΣDrift = (δ∆ΓDrift,∆sobs) (F.13)

for various δ∆ΓDrift and ∆sobs. As Figure F.17 shows, the misalignments are independent
from the number observations carried out along the profile and independent of the con-
fidence level 1 − α. In the prospect of a misalignment accuracy of 10 microns over 200
meters, the maximally allowed drift δ∆ΓDrift is about 0.26 E

m .
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Figure F.16: Misalignment σ0.68
M(ΣBias) (left) and σ0.95

M(ΣBias) (right), in microns, as a function of
σBias and the distance between stations ∆sobs.
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Figure F.17: Misalignment σ0.68
M(ΣDrift) (left) and σ0.95

M(ΣDrift) (right), in microns, as a function of
δ∆ΓDrift and the distance between stations ∆sobs.

F.3.4 Misalignment due to Random Drift Noise

Here, the misalignment due to a random drift noise is analysed by estimating:

σ1−α
M(ΣRnd Drift)

with: ΣRnd Drift = (δ∆ΓRnd Drift,∆sobs) (F.14)

for various σRnd Drift and ∆sobs. As Figure F.18 shows, the misalignments are also inde-
pendent from the number of observations along the profile but not from the confidence
level 1 − α. In the prospect of a misalignment accuracy of 10 microns over 200 meters,
the maximally allowed drift σRnd Drift is about 0.26 E

m .

F.3.5 Misalignment due to White Noise

Here, the misalignment due to a white noise is analysed by estimating:

σ1−α
M(ΣWhite) with: ΣWhite = (δ∆ΓWhite,∆sobs) (F.15)
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Figure F.18: Misalignment σ0.68
M(ΣRnd Drift) (left) and σ0.95

M(ΣRnd Drift) (right), in microns, as a func-
tion of σRnd Drift and the distance between stations ∆sobs.

for various σWhite and ∆sobs (see Figure F.19). In the prospect of a misalignment accuracy
of 10 microns over 200 meters at 68% confidence level, the maximally allowed white noise
is about 100 E for ∆sobs = 10 meters and of about 40 E for ∆sobs = 100 meters.
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Figure F.19: Misalignment σ0.68
M(ΣWhite) (left) and σ0.95

M(ΣWhite) (right), in microns, as a function of
σWhite and the distance between stations ∆sobs.

F.3.6 Misalignment due to Correlated Noise

Here, the misalignment due to a correlated noise is analysed by estimating:

σ1−α
M(ΣCorr)

with: ΣCorr = (δ∆ΓCorr,∆sobs) (F.16)

for various σCorr, dCorr and ∆sobs (see Figure F.20).
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Table G.1: List of available batch functionalities implemented in QGravity.

FUNCTION Description

AGR2BIN Import an AGR file and export the corresponding 3D points in
a binary *.bin file. This function is useful for the generation of
multi-resolution digital terrain models.

IMPORT EXPORT Import points and export the same points passing through the
coordinate transformation pipelines. This function is useful for
transforming points from one reference system to another.

MULTI RESOLUTION POINTS Given a set of points, select and export the points of this set which
are inside a region defined by a rectangular band. This function
is useful for the creation of multi-resolution point clouds.

MULTI RESOLUTION MASS Create a polyhedron from 2 tessellations. The points of the upper
surface are given by link to a MULTI RESOLUTION POINTS input
file. The points of the lower surface are given by a link to a
binary point file *.bin.

MASS FROM 2 TESSELATIONS Create a polyhedron from 2 tessellations. The points of the com-
mon boundary, the upper and the lower surface are given by link
to binary point files *.bin.

MASS FROM PRIMITIVE TUBE Create a polyhedron using the functionality: 3D tube of arbitrary
section and path. The path and the section are given by a link to
*.xyz files.

MASS FROM OFF Create a polyhedron from a *.off file.

REPLACE DATA Given two sets of points and a closed boundary, this function re-
place the points of the first set which are inside the boundary
by the points of the second set which are also inside the bound-
ary. This functionality is useful when it is necessary to update
DTM (lake and sea are usually given by their water surface) with
bathymetric data.

MASSMODELS PROPERTIES Compute the volume, the mass and the center of mass of a poly-
hedron create by one of the function MULTI RESOLUTION MASS,
MASS FROM 2 TESSELATIONS, MASS FROM PRIMITIVE TUBE and
MASS FROM OFF, or by the importation of a *.qgr mass model file.

MASSMODEL TO GRAVITY Compute the gravitational field at points given by a *.xyz file,
generated by one or several mass models generated by one of the
function MULTI RESOLUTION MASS, MASS FROM 2 TESSELATIONS,
MASS FROM PRIMITIVE TUBE and MASS FROM OFF, or by the import
of *.qgr or *.xyz mass model files. This is the most important and
useful function which permit to compute gravitational fields with
a high level of automation.
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Figure H.1: Gravitational potential Φgrav of S and the respective relative errors of the fields
S25, S50 and S100 computed with QGravity.
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Figure H.2: Gravitational acceleration gx,grav of S and the respective relative errors of the fields
S25, S50 and S100 computed with QGravity.
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Figure H.3: Gravitational acceleration gy,grav of S and the respective relative errors of the fields
S25, S50 and S100 computed with QGravity.
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Figure H.4: Gravitational acceleration gz,grav of S and the respective relative errors of the fields
S25, S50 and S100 computed with QGravity.
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Figure H.5: Gravitational tensor Γxx,grav of S and the respective relative errors of the fields S25,
S50 and S100 computed with QGravity.
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Figure H.6: Gravitational tensor Γyy,grav of S and the respective relative errors of the fields S25,
S50 and S100 computed with QGravity.

−600

−400

−200

0.2

0.4

0.6

0.02

0.04

0.06

2

4

6

8

x 10−3

−600

−400

−200

0.01

0.02

0.03

0.04

0.05

0.005
0.01
0.015
0.02
0.025

2

4

6

8

10
x 10−3

−600

−400

−200

0.2

0.4

0.6

0.02

0.04

0.06

2

4

6

8

x 10−3

Γzz [E] rel.err. [-] rel.err. [-] rel.err. [-]

Γzz [E] rel.err. [-] rel.err. [-] rel.err. [-]

Γzz [E] rel.err. [-] rel.err. [-] rel.err. [-]

Figure H.7: Gravitational tensor Γzz,grav of S and the respective relative errors of the fields S25,
S50 and S100 computed with QGravity.
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Figure H.8: Gravitational tensor Γxy,grav of S and the respective relative errors of the fields S25,
S50 and S100 computed with QGravity.
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Figure H.9: Gravitational tensor Γxz,grav of S and the respective relative errors of the fields S25,
S50 and S100 computed with QGravity.
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Figure H.10: Gravitational tensor Γyz,grav of S and the respective relative errors of the fields
S25, S50 and S100 computed with QGravity.
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Table I.1: Gravimetric measurements in the tunnel along the TZ32.

Topo TZ32 LV03 WGS84

No y x z East North H λ φ h gobs

[m] [m] [m] [m] [m] [m] [deg] [deg] [m] [mgal]

1 0.061 67.278 0.318 490’498.416 125’063.357 421.268 6.0182097 46.2680553 473.69 980578.497
2 0.045 77.394 0.347 490’491.506 125’070.745 421.297 6.0181183 46.2681206 473.72 980578.454
3 -0.017 87.441 0.386 490’484.609 125’078.052 421.337 6.0180272 46.2681852 473.76 980578.419
4 0.020 97.419 0.521 490’477.832 125’085.374 421.472 6.0179375 46.2682499 473.89 980578.384
5 0.035 107.437 0.672 490’471.011 125’092.712 421.623 6.0178474 46.2683148 474.04 980578.349
6 0.063 117.359 0.834 490’464.266 125’099.989 421.785 6.0177582 46.2683792 474.20 980578.304
7 0.095 127.348 0.996 490’457.478 125’107.317 421.947 6.0176684 46.2684440 474.37 980578.263
8 0.120 137.358 1.162 490’450.670 125’114.656 422.113 6.0175784 46.2685089 474.53 980578.218
9 0.160 147.359 1.317 490’443.879 125’121.998 422.269 6.0174886 46.2685738 474.69 980578.155

10 0.142 157.363 1.471 490’437.045 125’129.303 422.423 6.0173982 46.2686384 474.84 980578.114
11 0.096 167.364 1.641 490’430.190 125’136.586 422.593 6.0173076 46.2687028 475.01 980578.044
12 0.115 177.356 1.802 490’423.390 125’143.907 422.754 6.0172177 46.2687675 475.17 980577.990
13 0.098 187.359 1.968 490’416.557 125’151.212 422.921 6.0171274 46.2688321 475.34 980577.926
14 0.101 197.372 2.117 490’409.730 125’158.538 423.070 6.0170371 46.2688969 475.49 980577.863
15 0.078 207.376 2.279 490’402.892 125’165.840 423.232 6.0169467 46.2689614 475.65 980577.823
16 0.120 217.283 2.426 490’396.168 125’173.114 423.380 6.0168578 46.2690258 475.80 980577.784
17 0.159 227.314 2.596 490’389.355 125’180.478 423.550 6.0167677 46.2690909 475.97 980577.755
18 0.087 237.285 2.755 490’382.503 125’187.721 423.709 6.0166771 46.2691549 476.13 980577.712
19 0.095 247.212 2.916 490’375.739 125’194.988 423.871 6.0165877 46.2692192 476.29 980577.663
20 0.100 257.222 3.060 490’368.917 125’202.314 424.015 6.0164975 46.2692839 476.43 980577.614
21 0.114 267.128 3.220 490’362.172 125’209.568 424.176 6.0164083 46.2693481 476.59 980577.558
22 0.116 277.154 3.376 490’355.337 125’216.903 424.332 6.0163179 46.2694129 476.75 980577.500
23 0.098 287.195 3.534 490’348.476 125’224.235 424.490 6.0162272 46.2694778 476.91 980577.447
24 0.094 297.205 3.693 490’341.647 125’231.554 424.650 6.0161369 46.2695425 477.07 980577.378
25 0.067 307.146 3.842 490’334.849 125’238.806 424.799 6.0160471 46.2696066 477.22 980577.348
26 0.055 317.139 4.008 490’328.025 125’246.108 424.966 6.0159568 46.2696712 477.38 980577.295
27 0.064 327.167 4.168 490’321.194 125’253.448 425.126 6.0158665 46.2697361 477.54 980577.258
28 0.095 337.150 4.327 490’314.409 125’260.771 425.286 6.0157768 46.2698008 477.70 980577.215
29 0.066 347.148 4.486 490’307.569 125’268.064 425.445 6.0156864 46.2698653 477.86 980577.138
30 0.068 357.150 4.641 490’300.751 125’275.381 425.601 6.0155962 46.2699300 478.02 980577.087
31 0.097 366.965 4.811 490’294.079 125’282.580 425.772 6.0155080 46.2699936 478.19 980577.029
32 0.055 397.178 5.276 490’273.445 125’304.650 426.238 6.0152352 46.2701888 478.65 980576.886
33 0.075 407.241 5.464 490’266.597 125’312.024 426.427 6.0151446 46.2702540 478.84 980576.828
34 0.034 417.128 5.619 490’259.825 125’319.227 426.583 6.0150551 46.2703177 479.00 980576.765
35 0.010 427.200 5.774 490’252.939 125’326.578 426.738 6.0149640 46.2703826 479.15 980576.705
36 0.039 437.190 5.939 490’246.148 125’333.905 426.904 6.0148742 46.2704474 479.32 980576.636
37 0.015 447.155 6.096 490’239.335 125’341.177 427.062 6.0147842 46.2705117 479.48 980576.551
38 0.039 457.137 6.251 490’232.546 125’348.494 427.217 6.0146944 46.2705764 479.63 980576.475
39 0.024 467.049 6.389 490’225.776 125’355.734 427.356 6.0146049 46.2706404 479.77 980576.399
40 0.008 477.062 6.560 490’218.936 125’363.047 427.528 6.0145144 46.2707051 479.94 980576.338
41 0.010 487.090 6.724 490’212.099 125’370.383 427.693 6.0144240 46.2707700 480.11 980576.278
42 0.017 497.022 6.880 490’205.332 125’377.652 427.849 6.0143346 46.2708342 480.26 980576.207
43 0.010 507.026 7.019 490’198.504 125’384.965 427.989 6.0142443 46.2708989 480.40 980576.150
44 0.031 517.050 7.198 490’191.684 125’392.311 428.169 6.0141541 46.2709638 480.58 980576.058
45 0.036 527.039 7.363 490’184.875 125’399.620 428.335 6.0140641 46.2710285 480.75 980576.000
46 0.070 537.053 7.514 490’178.072 125’406.968 428.487 6.0139741 46.2710935 480.90 980575.929
47 0.080 547.038 7.677 490’171.270 125’414.278 428.650 6.0138842 46.2711581 481.06 980575.862
48 0.078 557.055 7.835 490’164.438 125’421.604 428.809 6.0137938 46.2712229 481.22 980575.787
49 0.055 567.038 7.995 490’157.613 125’428.890 428.970 6.0137036 46.2712873 481.38 980575.706
50 -0.002 577.032 8.163 490’150.757 125’436.161 429.139 6.0136129 46.2713515 481.55 980575.649
51 0.045 587.031 8.319 490’143.973 125’443.506 429.296 6.0135232 46.2714165 481.71 980575.595
52 -0.012 597.018 8.486 490’137.121 125’450.772 429.464 6.0134326 46.2714807 481.88 980575.529
53 0.063 607.007 8.643 490’130.363 125’458.129 429.622 6.0133433 46.2715458 482.04 980575.470
54 0.077 617.154 8.802 490’123.454 125’465.561 429.782 6.0132519 46.2716115 482.20 980575.409
55 0.111 627.145 8.975 490’116.666 125’472.891 429.956 6.0131621 46.2716763 482.37 980575.355
56 0.071 637.158 9.136 490’109.809 125’480.188 430.118 6.0130715 46.2717408 482.53 980575.298
57 0.078 647.153 9.316 490’102.998 125’487.503 430.299 6.0129814 46.2718055 482.71 980575.232
58 0.047 657.137 9.440 490’096.168 125’494.785 430.424 6.0128911 46.2718699 482.84 980575.179
59 0.077 667.421 9.599 490’089.176 125’502.327 430.584 6.0127986 46.2719366 483.00 980575.118
60 0.044 677.402 9.750 490’082.346 125’509.604 430.736 6.0127083 46.2720009 483.15 980575.096
61 0.101 687.351 9.906 490’075.603 125’516.921 430.893 6.0126191 46.2720656 483.31 980575.049
62 0.070 697.384 10.071 490’068.738 125’524.237 431.059 6.0125284 46.2721303 483.47 980575.001
63 0.039 707.417 10.236 490’061.874 125’531.555 431.225 6.0124376 46.2721950 483.64 980574.963
64 0.025 717.798 10.391 490’054.785 125’539.139 431.381 6.0123439 46.2722620 483.79 980574.882
65 0.051 727.782 10.562 490’047.995 125’546.459 431.554 6.0122541 46.2723268 483.97 980574.848
66 0.037 737.782 10.713 490’041.167 125’553.763 431.706 6.0121638 46.2723913 484.12 980574.794
67 0.092 747.769 10.881 490’034.396 125’561.105 431.875 6.0120743 46.2724563 484.29 980574.724
68 0.153 757.723 11.042 490’027.653 125’568.428 432.037 6.0119851 46.2725210 484.45 980574.656
69 0.112 767.750 11.204 490’020.785 125’575.734 432.200 6.0118943 46.2725856 484.61 980574.588
70 0.151 777.775 11.363 490’013.977 125’583.093 432.360 6.0118042 46.2726507 484.77 980574.520
71 0.087 787.708 11.528 490’007.157 125’590.315 432.527 6.0117141 46.2727145 484.94 980574.443
72 0.089 797.739 11.687 490’000.318 125’597.653 432.687 6.0116236 46.2727794 485.10 980574.362
73 0.109 807.718 11.851 489’993.528 125’604.966 432.852 6.0115338 46.2728441 485.26 980574.279
74 0.082 817.610 12.016 489’986.762 125’612.182 433.018 6.0114444 46.2729079 485.43 980574.188
75 0.084 827.581 12.189 489’979.964 125’619.476 433.193 6.0113545 46.2729723 485.60 980574.075
76 0.104 837.577 12.342 489’973.163 125’626.801 433.347 6.0112645 46.2730371 485.76 980573.992
77 0.068 847.566 12.479 489’966.324 125’634.083 433.485 6.0111741 46.2731015 485.90 980573.903
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Table I.2: Gravimetric measurements on topography along the TZ32.

Topo TZ32 LV03 WGS84

No y x z East North H λ φ h gobs

[m] [m] [m] [m] [m] [m] [deg] [deg] [m] [mgal]

1 -0.005 67.239 68.588 490’498.395 125’063.282 489.538 6.0182094 46.2680546 541.96 980572.357
2 0.004 77.348 68.807 490’491.508 125’070.683 489.757 6.0181184 46.2681201 542.18 980572.310
3 0.011 87.386 69.083 490’484.668 125’078.029 490.034 6.0180279 46.2681850 542.45 980572.273
4 -0.060 97.414 69.336 490’477.778 125’085.316 490.287 6.0179369 46.2682494 542.71 980572.220
5 -0.075 107.392 69.533 490’470.962 125’092.604 490.484 6.0178468 46.2683139 542.90 980572.173
6 -0.141 117.298 69.779 490’464.160 125’099.804 490.730 6.0177568 46.2683775 543.15 980572.120
7 -0.051 127.218 70.058 490’457.460 125’107.122 491.009 6.0176682 46.2684422 543.43 980572.043
8 0.232 137.276 70.364 490’450.809 125’114.671 491.315 6.0175802 46.2685091 543.73 980571.992
9 0.039 147.232 70.881 490’443.878 125’121.821 491.833 6.0174886 46.2685722 544.25 980571.866

10 0.181 157.257 71.194 490’437.146 125’129.251 492.146 6.0173996 46.2686380 544.56 980571.826
11 -0.093 167.310 71.501 490’430.090 125’136.417 492.453 6.0173064 46.2687013 544.87 980571.804
12 -0.034 177.329 71.939 490’423.302 125’143.785 492.891 6.0172166 46.2687664 545.31 980571.705
13 0.035 187.249 72.373 490’416.587 125’151.087 493.326 6.0171278 46.2688310 545.74 980571.626
14 -0.004 197.314 72.821 490’409.695 125’158.423 493.774 6.0170367 46.2688959 546.19 980571.551
15 0.031 207.302 73.408 490’402.910 125’165.752 494.361 6.0169470 46.2689607 546.78 980571.433
16 0.012 217.157 73.962 490’396.176 125’172.947 494.916 6.0168579 46.2690243 547.33 980571.347
17 0.068 227.303 74.574 490’389.298 125’180.406 495.528 6.0167670 46.2690902 547.95 980571.224
18 0.056 237.268 75.180 490’382.494 125’187.687 496.134 6.0166770 46.2691546 548.55 980571.129
19 0.222 247.182 75.574 490’375.854 125’195.051 496.529 6.0165892 46.2692198 548.95 980571.040
20 0.107 257.201 76.112 490’368.938 125’202.301 497.067 6.0164978 46.2692838 549.48 980570.938
21 -0.077 267.092 76.527 490’362.059 125’209.409 497.483 6.0164069 46.2693467 549.90 980570.867
22 0.151 277.252 76.935 490’355.298 125’216.997 497.891 6.0163174 46.2694138 550.31 980570.787
23 0.172 287.164 77.429 490’348.554 125’224.260 498.385 6.0162282 46.2694780 550.80 980570.697
24 0.070 297.143 77.944 490’341.674 125’231.489 498.901 6.0161373 46.2695419 551.32 980570.608
25 0.063 307.057 78.315 490’334.909 125’238.736 499.272 6.0160479 46.2696060 551.69 980570.533
26 0.256 317.051 78.535 490’328.235 125’246.178 499.493 6.0159595 46.2696718 551.91 980570.487
27 0.012 327.108 78.652 490’321.199 125’253.367 499.610 6.0158666 46.2697353 552.03 980570.459
28 0.061 337.124 78.764 490’314.404 125’260.727 499.723 6.0157767 46.2698004 552.14 980570.418
29 0.066 347.070 78.820 490’307.626 125’268.005 499.779 6.0156871 46.2698648 552.20 980570.407
30 0.060 357.107 78.860 490’300.777 125’275.342 499.820 6.0155966 46.2699297 552.24 980570.415
31 0.398 366.650 79.086 490’294.517 125’282.552 500.047 6.0155137 46.2699935 552.46 980570.349
32 0.087 397.057 79.616 490’273.554 125’304.580 500.578 6.0152366 46.2701882 552.99 980570.252
33 0.007 407.160 79.906 490’266.606 125’311.915 500.869 6.0151448 46.2702530 553.28 980570.198
34 -0.344 416.926 80.467 490’259.690 125’318.818 501.431 6.0150534 46.2703140 553.85 980570.078
35 -0.023 427.077 80.760 490’253.003 125’326.462 501.724 6.0149649 46.2703816 554.14 980570.023
36 -0.128 434.329 81.578 490’247.980 125’331.695 502.543 6.0148985 46.2704279 554.96 980569.811
37 0.014 447.133 81.890 490’239.353 125’341.157 502.856 6.0147844 46.2705116 555.27 980569.808
38 0.137 457.283 82.604 490’232.521 125’348.665 503.570 6.0146940 46.2705780 555.99 980569.696
39 -0.141 467.054 83.338 490’225.655 125’355.622 504.305 6.0146034 46.2706394 556.72 980569.584
40 -0.210 476.997 84.250 490’218.825 125’362.847 505.218 6.0145131 46.2707033 557.63 980569.412
41 -0.241 487.030 84.900 490’211.960 125’370.164 505.869 6.0144223 46.2707680 558.28 980569.295
42 0.231 496.914 85.817 490’205.565 125’377.715 506.786 6.0143376 46.2708349 559.20 980569.114
43 -0.134 507.056 86.573 490’198.383 125’384.884 507.543 6.0142427 46.2708982 559.96 980568.973
44 -0.154 517.059 87.217 490’191.547 125’392.186 508.188 6.0141524 46.2709627 560.60 980568.849
45 -0.101 527.016 87.739 490’184.796 125’399.505 508.711 6.0140631 46.2710274 561.13 980568.753
46 0.092 536.676 88.278 490’178.350 125’406.703 509.251 6.0139778 46.2710911 561.67 980568.654
47 -0.389 547.096 88.524 490’170.892 125’413.996 509.497 6.0138793 46.2711555 561.91 980568.602
48 -0.221 557.011 88.849 490’164.254 125’421.363 509.823 6.0137915 46.2712207 562.24 980568.550
49 -0.039 567.022 89.106 490’157.560 125’428.808 510.081 6.0137029 46.2712865 562.50 980568.511
50 0.016 577.019 89.340 490’150.783 125’436.158 510.316 6.0136133 46.2713515 562.73 980568.469
51 0.074 587.006 89.598 490’144.016 125’443.502 510.575 6.0135238 46.2714165 562.99 980568.415
52 0.101 596.953 89.832 490’137.253 125’450.796 510.810 6.0134344 46.2714810 563.22 980568.382
53 -0.221 607.026 90.063 490’130.148 125’457.944 511.042 6.0133405 46.2715441 563.46 980568.347
54 -0.199 617.070 90.389 490’123.315 125’465.305 511.369 6.0132502 46.2716092 563.78 980568.298
55 0.028 627.088 90.698 490’116.649 125’472.787 511.679 6.0131619 46.2716754 564.09 980568.235
56 -0.130 637.114 91.112 490’109.697 125’480.012 512.094 6.0130701 46.2717392 564.51 980568.151
57 -0.010 647.061 91.576 490’103.002 125’487.370 512.559 6.0129815 46.2718043 564.97 980568.061
58 -0.229 657.121 92.031 490’095.982 125’494.579 513.015 6.0128887 46.2718680 565.43 980567.978
59 -0.373 667.397 92.467 490’088.869 125’501.996 513.452 6.0127947 46.2719336 565.87 980567.885
60 0.019 677.311 92.839 490’082.395 125’509.515 513.825 6.0127090 46.2720001 566.24 980567.802
61 0.146 687.577 93.499 490’075.488 125’517.110 514.486 6.0126176 46.2720673 566.90 980567.668
62 0.075 697.709 94.277 490’068.527 125’524.472 515.265 6.0125256 46.2721324 567.68 980567.509
63 0.353 707.532 94.581 490’062.032 125’531.846 515.570 6.0124396 46.2721976 567.98 980567.443
64 -0.189 717.708 94.899 490’054.696 125’538.920 515.889 6.0123428 46.2722601 568.30 980567.377
65 0.101 726.983 95.249 490’048.583 125’545.901 516.240 6.0122619 46.2723219 568.65 980567.304
66 0.035 737.765 95.587 490’041.182 125’553.742 516.580 6.0121640 46.2723912 568.99 980567.232
67 0.456 747.745 95.953 490’034.685 125’561.329 516.947 6.0120780 46.2724583 569.36 980567.156
68 -0.068 757.731 96.348 490’027.492 125’568.275 517.343 6.0119830 46.2725196 569.76 980567.069
69 -0.102 767.637 96.756 490’020.713 125’575.498 517.752 6.0118934 46.2725835 570.16 980566.982
70 0.351 777.703 97.174 490’014.180 125’583.169 518.171 6.0118069 46.2726514 570.58 980566.887
71 0.057 787.694 97.676 490’007.152 125’590.276 518.675 6.0117140 46.2727142 571.09 980566.788
72 0.059 797.658 98.124 490’000.359 125’597.566 519.124 6.0116242 46.2727786 571.54 980566.702
73 0.094 807.692 98.608 489’993.542 125’604.928 519.609 6.0115340 46.2728437 572.02 980566.607
74 0.008 817.767 99.125 489’986.609 125’612.239 520.127 6.0114424 46.2729084 572.54 980566.516
75 0.053 827.543 99.644 489’979.976 125’619.419 520.648 6.0113547 46.2729719 573.06 980566.422
76 0.175 837.537 100.201 489’973.249 125’626.812 521.206 6.0112657 46.2730372 573.62 980566.317
77 -0.037 847.433 100.655 489’966.347 125’633.906 521.661 6.0111745 46.2730999 574.07 980566.245
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Table I.3: Surface deflections of the vertical measurements along the TZ32.

Topo TZ32 LV03 WGS84 UTC

No y x z East North H εx εy [dd.mm.yyyy

[m] [m] [m] [m] [m] [m] [arcsec] [arcsec] HH:MM]

1 1.565 67.489 69.873 490’499.373 125’064.536 490.823 -12.959 -0.117 18.08.2009 21:27
2 -0.210 77.091 70.062 490’491.527 125’070.349 491.012 -12.975 -0.119 18.08.2009 22:25
3 -0.288 86.092 70.342 490’485.332 125’076.879 491.293 -12.972 -0.181 18.08.2009 23:18
4 -0.064 97.364 70.635 490’477.809 125’085.277 491.586 -13.019 -0.128 19.08.2009 00:08
5 -0.068 107.421 70.827 490’470.948 125’092.629 491.778 -13.123 -0.099 19.08.2009 22:12
6 -0.034 117.381 71.046 490’464.181 125’099.937 491.997 -13.079 -0.149 19.08.2009 23:00
7 -0.053 127.329 71.401 490’457.383 125’107.201 492.352 -13.249 -0.172 19.08.2009 23:47
8 0.107 137.518 71.707 490’450.552 125’114.762 492.658 -13.097 -0.119 20.08.2009 00:42
9 0.212 147.302 72.140 490’443.957 125’121.990 493.092 -13.133 0.013 20.08.2009 01:46

10 0.273 157.384 72.503 490’437.127 125’129.406 493.455 -13.319 0.010 26.08.2009 20:58
11 0.210 167.643 72.829 490’430.085 125’136.866 493.781 -13.241 0.016 27.08.2009 22:40
12 0.230 177.411 73.280 490’423.439 125’144.025 494.232 -13.279 0.081 27.08.2009 23:37
13 0.060 187.412 73.691 490’416.494 125’151.224 494.644 -13.320 0.047 28.08.2009 00:21
14 0.080 197.667 74.186 490’409.516 125’158.738 495.139 -13.396 0.009 28.08.2009 01:12
15 0.044 207.380 74.700 490’402.866 125’165.817 495.653 -13.457 -0.016 28.08.2009 01:52
16 0.087 217.625 75.316 490’395.912 125’173.340 496.270 -13.326 0.009 28.08.2009 02:40
17 0.026 227.283 75.879 490’389.281 125’180.363 496.833 -13.381 0.027 28.08.2009 03:26
18 0.162 237.128 76.473 490’382.667 125’187.657 497.427 -13.360 -0.031 30.08.2009 20:34
19 0.178 247.071 76.921 490’375.899 125’194.940 497.876 -13.437 -0.065 30.08.2009 21:18
20 0.071 257.110 77.369 490’368.974 125’202.210 498.324 -13.385 -0.017 30.08.2009 21:55
21 0.141 267.103 77.798 490’362.211 125’209.566 498.754 -13.440 0.051 30.08.2009 22:38
22 0.017 276.973 78.215 490’355.390 125’216.701 499.171 -13.590 0.105 30.08.2009 23:49
23 0.023 287.155 78.745 490’348.451 125’224.152 499.701 -13.444 0.008 31.08.2009 00:29
24 0.099 297.206 79.282 490’341.652 125’231.555 500.239 -13.553 0.043 31.08.2009 01:07
25 -0.031 307.192 79.607 490’334.748 125’238.770 500.564 -13.567 0.100 31.08.2009 01:44
26 -0.189 317.151 79.820 490’327.841 125’245.947 500.778 -13.677 0.110 31.08.2009 02:22
27 -0.796 327.102 79.925 490’320.612 125’252.811 500.883 -13.620 0.206 31.08.2009 03:00
28 -1.569 337.111 79.951 490’313.221 125’259.605 500.910 -13.685 0.104 31.08.2009 03:59
29 -1.556 347.257 80.042 490’306.312 125’267.035 501.001 -13.684 0.171 31.08.2009 20:48
30 -0.004 356.373 80.193 490’301.231 125’274.761 501.153 -13.593 0.182 31.08.2009 21:34
31 0.127 363.831 80.297 490’296.241 125’280.305 501.257 -13.706 0.075 31.08.2009 22:16
32 0.196 400.185 80.983 490’271.500 125’306.942 501.946 -14.066 0.366 01.09.2009 00:14
33 -0.069 407.155 81.242 490’266.554 125’311.859 502.205 -14.002 0.189 01.09.2009 01:13
34 -0.108 419.614 81.945 490’258.029 125’320.945 502.909 -14.013 0.201 01.09.2009 01:55
35 -0.139 432.027 82.913 490’249.542 125’330.003 503.878 -14.063 0.092 01.09.2009 02:37
36 0.141 442.131 82.980 490’242.856 125’337.584 503.945 -14.040 0.161 01.09.2009 03:21
37 -0.083 452.071 83.528 490’235.914 125’344.702 504.494 -14.062 0.109 07.09.2009 20:15
38 0.058 462.164 84.270 490’229.135 125’352.181 505.237 -14.099 0.100 07.09.2009 21:05
39 -0.081 472.183 85.175 490’222.201 125’359.414 506.142 -14.064 0.070 07.09.2009 21:41
40 -0.015 481.968 85.881 490’215.577 125’366.615 506.849 -14.045 0.112 07.09.2009 22:27
41 -0.054 491.894 86.670 490’208.780 125’373.848 507.639 -13.987 0.144 07.09.2009 23:15
42 -0.111 502.016 87.544 490’201.836 125’381.214 508.514 -14.058 0.183 07.09.2009 23:56
43 0.056 511.901 88.227 490’195.217 125’388.557 509.198 -14.142 0.143 08.09.2009 00:47
44 0.031 521.902 88.791 490’188.380 125’395.854 509.762 -14.111 0.217 08.09.2009 20:12
45 -0.088 531.973 89.419 490’181.425 125’403.140 510.391 -14.332 0.262 08.09.2009 20:58
46 -0.278 541.974 89.643 490’174.467 125’410.325 510.616 -14.109 0.055 08.09.2009 21:50
47 -0.120 552.143 90.008 490’167.647 125’417.871 510.982 -14.140 0.124 08.09.2009 22:37
48 -0.208 562.504 90.311 490’160.518 125’425.389 511.286 -14.290 0.223 08.09.2009 23:26
49 -0.299 572.096 90.552 490’153.910 125’432.342 511.528 -14.360 0.267 09.09.2009 00:06
50 -0.290 582.168 90.814 490’147.049 125’439.716 511.791 -14.344 0.234 09.09.2009 00:58
51 -0.283 591.906 91.003 490’140.413 125’446.842 511.980 -14.459 0.133 09.09.2009 01:46
52 -0.152 601.897 91.256 490’133.696 125’454.240 512.234 -14.443 0.233 09.09.2009 02:26
53 -0.090 611.994 91.551 490’126.856 125’461.667 512.530 -14.412 0.213 09.09.2009 03:08
54 0.035 621.995 91.871 490’120.128 125’469.067 512.851 -14.495 0.367 27.10.2009 18:46
55 -0.155 632.165 92.312 490’113.054 125’476.375 513.293 -14.554 0.394 27.10.2009 19:28
56 -0.087 641.974 92.680 490’106.415 125’483.596 513.662 -14.540 0.320 27.10.2009 20:29
57 0.026 652.198 93.098 490’099.526 125’491.152 514.081 -14.618 0.301 27.10.2009 21:20
58 0.045 662.051 93.585 490’092.820 125’498.371 514.569 -14.642 0.361 27.10.2009 21:57
59 -0.032 672.427 94.003 490’085.688 125’505.908 514.988 -14.609 0.234 27.10.2009 22:33
60 0.112 683.064 94.443 490’078.541 125’513.786 515.430 -14.510 0.249 29.10.2009 18:35
61 0.015 692.296 95.246 490’072.174 125’520.472 516.234 -14.613 0.287 29.10.2009 19:18
62 -0.146 702.435 95.892 490’065.143 125’527.778 516.881 -14.674 0.308 29.10.2009 19:56
63 -0.017 712.341 96.057 490’058.482 125’535.112 517.047 -14.696 0.297 29.10.2009 20:35
64 0.022 722.776 96.434 490’051.394 125’542.770 517.425 -14.693 0.381 29.10.2009 21:18
65 -0.022 732.812 96.761 490’044.519 125’550.081 517.753 -14.811 0.331 29.10.2009 22:15
66 0.001 742.640 97.066 490’037.834 125’557.284 518.059 -14.827 0.310 06.10.2010 23:13
67 0.100 752.622 97.464 490’031.100 125’564.653 518.458 -14.851 0.282 06.10.2010 22:38
68 0.103 762.665 97.890 490’024.253 125’572.001 518.886 -14.882 0.297 06.10.2010 22:01
69 0.128 772.685 98.285 490’017.439 125’579.347 519.282 -14.854 0.216 06.10.2010 21:27
70 0.258 782.580 98.742 490’010.787 125’586.673 519.740 -14.814 0.320 06.10.2010 20:51
71 0.292 791.646 99.099 490’004.629 125’593.327 520.098 -14.970 0.314 06.10.2010 20:09
72 0.155 802.715 98.162 489’996.980 125’601.330 519.163 -15.030 0.163 06.10.2010 19:36
73 0.850 812.822 98.748 489’990.597 125’609.195 519.750 -15.133 0.344 28.09.2010 22:56
74 0.882 822.430 99.315 489’984.069 125’616.245 520.318 -15.196 0.373 28.09.2010 22:20
75 0.418 831.690 99.802 489’977.415 125’622.701 520.806 -15.218 0.330 28.09.2010 21:37
76 -0.341 841.803 100.310 489’969.963 125’629.581 521.316 -15.228 0.399 28.09.2010 20:37
77 -0.581 857.606 102.569 489’959.012 125’640.975 523.577 -15.271 0.333 28.09.2010 19:56
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Table I.4: Surface deflections of the vertical measurements along the TZ32.

WGS84 ITRS WGS84 UTC

No λ φ h Λ Φ η ξ [dd.mm.yyyy

[m] [m] [m] [m] [m] [arcsec] [arcsec] HH:MM]

1 6.0182297 46.2680755 541.381 6.0218231 46.2654678 8.942 -9.388 18.08.2009 21:27
2 6.0181266 46.2681265 541.570 6.0217209 46.2655152 8.945 -9.401 18.08.2009 22:25
3 6.0180447 46.2681842 541.851 6.0216362 46.2655615 8.938 -9.442 18.08.2009 23:18
4 6.0179583 46.2682449 542.086 6.0215607 46.2656237 8.965 -9.436 19.08.2009 00:08
5 6.0178545 46.2683235 542.337 6.0214761 46.2656863 9.013 -9.494 19.08.2009 22:12
6 6.0177651 46.2683881 542.555 6.0213840 46.2657501 9.006 -9.497 19.08.2009 23:00
7 6.0176752 46.2684524 542.910 6.0213417 46.2657759 9.124 -9.635 19.08.2009 23:47
8 6.0175848 46.2685192 543.216 6.0212060 46.2658834 9.012 -9.489 20.08.2009 00:42
9 6.0174980 46.2685830 543.687 6.0211790 46.2659639 9.161 -9.429 20.08.2009 01:46

10 6.0174044 46.2686525 544.005 6.0211339 46.2659948 9.281 -9.568 26.08.2009 20:58
11 6.0173142 46.2687147 544.339 6.0210243 46.2660761 9.233 -9.499 27.08.2009 22:40
12 6.0172264 46.2687780 544.790 6.0209629 46.2661444 9.299 -9.481 27.08.2009 23:37
13 6.0171346 46.2688416 545.202 6.0208725 46.2661935 9.302 -9.533 28.08.2009 00:21
14 6.0170424 46.2689080 545.697 6.0207876 46.2662371 9.320 -9.615 28.08.2009 01:12
15 6.0169545 46.2689706 546.211 6.0207126 46.2662830 9.352 -9.675 28.08.2009 01:52
16 6.0168625 46.2690371 546.828 6.0205908 46.2663805 9.278 -9.564 28.08.2009 02:40
17 6.0167749 46.2690992 547.391 6.0205234 46.2664350 9.329 -9.591 28.08.2009 03:26
18 6.0166874 46.2691637 547.985 6.0204150 46.2664924 9.276 -9.617 30.08.2009 20:34
19 6.0165979 46.2692281 548.434 6.0203267 46.2665350 9.280 -9.695 30.08.2009 21:18
20 6.0165064 46.2692923 548.882 6.0202376 46.2666189 9.285 -9.624 30.08.2009 21:55
21 6.0164169 46.2693574 549.312 6.0201891 46.2666861 9.387 -9.617 30.08.2009 22:38
22 6.0163268 46.2694204 549.729 6.0201610 46.2667295 9.542 -9.687 30.08.2009 23:49
23 6.0162351 46.2694863 550.259 6.0199967 46.2668059 9.361 -9.650 31.08.2009 00:29
24 6.0161452 46.2695518 550.797 6.0199643 46.2668561 9.504 -9.704 31.08.2009 01:07
25 6.0160539 46.2696155 551.122 6.0198825 46.2669283 9.528 -9.674 31.08.2009 01:44
26 6.0159627 46.2696790 551.336 6.0198303 46.2669718 9.625 -9.746 31.08.2009 02:22
27 6.0158673 46.2697395 551.441 6.0197126 46.2670622 9.569 -9.638 31.08.2009 03:00
28 6.0157699 46.2697994 551.468 6.0196310 46.2670892 9.609 -9.757 31.08.2009 03:59
29 6.0156785 46.2698651 551.559 6.0195531 46.2671684 9.642 -9.708 31.08.2009 20:48
30 6.0156108 46.2699337 551.711 6.0194603 46.2672572 9.580 -9.635 31.08.2009 21:34
31 6.0155448 46.2699828 551.815 6.0194059 46.2672630 9.609 -9.791 31.08.2009 22:16
32 6.0152177 46.2702183 552.504 6.0192603 46.2674829 10.060 -9.847 01.09.2009 00:14
33 6.0151524 46.2702617 552.763 6.0190888 46.2675051 9.796 -9.924 01.09.2009 01:13
34 6.0150397 46.2703420 553.467 6.0190199 46.2675853 9.905 -9.924 01.09.2009 01:55
35 6.0149275 46.2704221 554.436 6.0188755 46.2676408 9.825 -10.013 01.09.2009 02:37
36 6.0148390 46.2704892 554.503 6.0188171 46.2677194 9.900 -9.971 01.09.2009 03:21
37 6.0147473 46.2705520 555.052 6.0187133 46.2677679 9.869 -10.023 07.09.2009 20:15
38 6.0146577 46.2706182 555.795 6.0186084 46.2678250 9.831 -10.056 07.09.2009 21:05
39 6.0145660 46.2706821 556.700 6.0185194 46.2678899 9.838 -10.052 07.09.2009 21:41
40 6.0144784 46.2707458 557.407 6.0184270 46.2679658 9.826 -10.008 07.09.2009 22:27
41 6.0143886 46.2708097 558.197 6.0183459 46.2680472 9.848 -9.945 07.09.2009 23:15
42 6.0142968 46.2708748 559.072 6.0182764 46.2681059 9.903 -9.968 07.09.2009 23:56
43 6.0142092 46.2709398 559.756 6.0182051 46.2681461 9.944 -10.057 08.09.2009 00:47
44 6.0141188 46.2710043 560.320 6.0181347 46.2682312 9.993 -9.983 08.09.2009 20:12
45 6.0140269 46.2710687 560.949 6.0181108 46.2682602 10.163 -10.110 08.09.2009 20:58
46 6.0139350 46.2711321 561.174 6.0179009 46.2683282 9.869 -10.094 08.09.2009 21:50
47 6.0138448 46.2711989 561.541 6.0178307 46.2684021 9.919 -10.069 08.09.2009 22:37
48 6.0137506 46.2712653 561.844 6.0178074 46.2684577 10.095 -10.108 08.09.2009 23:26
49 6.0136632 46.2713268 562.086 6.0177523 46.2685133 10.176 -10.129 09.09.2009 00:06
50 6.0135725 46.2713920 562.349 6.0176511 46.2685756 10.150 -10.139 09.09.2009 00:58
51 6.0134848 46.2714550 562.538 6.0175484 46.2685961 10.112 -10.292 09.09.2009 01:46
52 6.0133959 46.2715204 562.792 6.0175233 46.2686843 10.271 -10.210 09.09.2009 02:26
53 6.0133055 46.2715861 563.088 6.0173939 46.2687524 10.174 -10.201 09.09.2009 03:08
54 6.0132165 46.2716515 563.409 6.0173720 46.2688323 10.341 -10.149 27.10.2009 18:46
55 6.0131230 46.2717161 563.851 6.0173091 46.2688911 10.417 -10.170 27.10.2009 19:28
56 6.0130352 46.2717799 564.220 6.0171803 46.2689440 10.315 -10.209 27.10.2009 20:29
57 6.0129441 46.2718468 564.639 6.0171186 46.2689886 10.388 -10.289 27.10.2009 21:20
58 6.0128554 46.2719106 565.127 6.0170538 46.2690596 10.447 -10.264 27.10.2009 21:57
59 6.0127611 46.2719772 565.546 6.0169175 46.2691081 10.343 -10.329 27.10.2009 22:33
60 6.0126666 46.2720469 565.988 6.0167927 46.2692003 10.268 -10.248 29.10.2009 18:35
61 6.0125825 46.2721060 566.792 6.0167545 46.2692464 10.382 -10.294 29.10.2009 19:18
62 6.0124895 46.2721705 567.439 6.0166818 46.2693030 10.432 -10.323 29.10.2009 19:56
63 6.0124014 46.2722354 567.605 6.0166005 46.2693611 10.449 -10.347 29.10.2009 20:35
64 6.0123077 46.2723031 567.983 6.0165265 46.2694454 10.498 -10.288 29.10.2009 21:18
65 6.0122168 46.2723677 568.311 6.0164585 46.2694771 10.555 -10.406 29.10.2009 22:15
66 6.0121284 46.2724314 568.617 6.0163642 46.2695335 10.541 -10.433 06.10.2010 23:13
67 6.0120393 46.2724966 569.016 6.0162736 46.2695885 10.537 -10.469 06.10.2010 22:38
68 6.0119488 46.2725615 569.444 6.0161932 46.2696500 10.562 -10.481 06.10.2010 22:01
69 6.0118587 46.2726265 569.840 6.0160748 46.2697048 10.491 -10.518 06.10.2010 21:27
70 6.0117707 46.2726913 570.298 6.0160089 46.2697979 10.546 -10.416 06.10.2010 20:51
71 6.0116893 46.2727501 570.656 6.0159657 46.2698242 10.641 -10.533 06.10.2010 20:09
72 6.0115882 46.2728208 569.721 6.0158419 46.2698542 10.585 -10.680 06.10.2010 19:36
73 6.0115036 46.2728905 570.308 6.0158348 46.2699382 10.778 -10.628 28.09.2010 22:56
74 6.0114172 46.2729528 570.876 6.0157742 46.2699935 10.842 -10.654 28.09.2010 22:20
75 6.0113294 46.2730098 571.364 6.0156774 46.2700376 10.820 -10.700 28.09.2010 21:37
76 6.0112312 46.2730704 571.874 6.0156160 46.2701098 10.911 -10.658 28.09.2010 20:37
77 6.0110864 46.2731711 574.135 6.0154603 46.2701890 10.884 -10.736 28.09.2010 19:56
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