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Vorwort

Obwohl die Kombination eines globalen Navigationssatellitensystems (GNSS) mit einem
inertialen Navigationssystem kein neues Konzept ist, durchlebt diese Technik derzeit dank der
Einführung von Mikrosystemen (MEMS) eine kleine Revolution. In der Tat ist die Anzahl
möglicher Anwendungen beruhend auf der Inertialtechnologie umgekehrt proportional zur
Grösse, zum Gewicht und zu den Kosten der Sensoren. Mit anderen Worten sind INS/GNSS
Systeme dank der MEMS Technologie nicht zwingend besser als ihre Vorgänger, jedoch sind
sie erheblich kleiner, leichter und billiger. Dies erklärt ihre vielfältige Anwendung, die weit
über ihr ursprüngliches Gebiet der Navigation hinaus reicht.

Trotz ihrer Beliebtheit stellt die Einführung von auf MEMS basierenden Inertialsensoren eine
beträchtliche Herausforderung hinsichtlich Modellierung und Schätzung ihres Fehlerverhaltens
dar. Die Dissertation von Yannick Stebler liefert eine sauber formulierte und originelle Antwort
auf die Problematik besserer Ansätze in Modellierung und Schätzung. Die Weiterentwicklung
etablierter Werkzeuge wie das der spektralen Leistungsdichte (PSD), der Allan Varianz oder des
EM-Algorithmus führte zur überraschenden Entdeckung eines neuen leistungsstarken Schätzers,
der in einer Tandem-Arbeit zwischen dem Autor und seinem ehemaligen Fachkollegen Stéphane
Guerrier (zur Zeit Doktorand an der Universität Genf) in die Praxis umgesetzt wurde. Die
Methode wurde auf den Namen "Generalized Method of Wavelet Moments"(GMWM) getauft.
Die GMWM Resultate zur Schätzung zusammengesetzter stochastischer Prozesse übertrumpfen
die Resultate, die auf dem IEEE Standard der Allan Varianz basieren. Die Anpassung der
Methode hat daher eine potentiell grosse Auswirkung auf verschiedenste Disziplinen ausgehend
von den Inertialsensoren, über die Biologie und Wirtschaft bis hin zu den Oszillatoren (zum
Beispiel Atom- oder Quartzuhren).

Hinter einer bedeutenden Entdeckung steht oft eine sehr einfache Idee. Dies trifft auch auf den
GMWM Schätzer zu, wenn die Gleichungen im Definitionsbereich der Wavelets ausgedrückt
werden. Seine Umsetzung ist jedoch sehr aufwendig und ist das Verdienst des Autors. Konkret
hat er die Leistung der Fehlermodellierung von gewissen Sensoren (oft klein und billig, aber
ungenau) an neue Grenzen gebracht. Jedenfalls geht die Tragweite dieser exzellenten Arbeit
weit über die praktische Anwendung der integrierten Navigation, wie sie hier präsentiert wird,
hinaus.

Dr. Jan Skaloud, MER Prof. Dr. Alain Geiger
Labor für Topometrie ETH Zürich
ETH Lausanne Präsident der SGK



Préface

Bien que la combinaison de systèmes de positionnement par satellites (GNSS) et de systèmes
de navigation inertielle (INS) ne soit pas nouvelle, cette technique subit actuellement une petite
révolution grâce à l’arrivée de systèmes micro-électro-mécaniques (MEMS). En effet, le nombre
d’applications possibles basées sur la technologie inertielle est inversement proportionnel à la
taille, au poids et au coût de ses capteurs. En d’autres termes, grâce à la technologie MEMS,
les systèmes INS/GNSS ne sont pas nécessairement plus performants que leurs prédécesseurs,
mais sont devenus bien plus petits, plus légers et meilleur marché. Cela a eu pour conséquence
d’étendre l’usage de tels systèmes bien au-delà de leur domaine d’origine qu’est la navigation.

Malgré leur popularité, l’arrivée des unités de navigation inertielle (IMU) basées sur les
récepteurs MEMS représente un défi considérable en matière de modélisation et d’estimation
de leurs erreurs. La thèse de Yannick Stebler apporte une réponse originale et bien formulée
à la problématique de trouver de meilleures approches de modélisation et d’estimation. Le
développement des outils existants tels que la densité spectrale de puissance (PSD), la variance
d’Allan ou l’algorithme espérance-maximisation (EM) a conduit à la surprenante découverte
d’un nouvel estimateur, baptisé méthode généralisée des moments d’ondelettes (GMWM). Sa
mise en oeuvre résulte d’une étroite collaboration entre l’auteur et son ancien collègue Stéphane
Guerrier (actuellement doctorant à l’Université de Genève). Pour l’estimation de modèles basés
sur une somme de processus stochastiques, le GMWM fournit de meilleurs résultats que le
procédé basé sur la variance d’Allan qui correspond actuellement au standard IEEE. Ainsi,
cette nouvelle technique pourrait avoir un fort impact dans de nombreuses disciplines, allant
des récepteurs inertiels à la biologie ou à l’économie, en passant par les oscillateurs (tels que
les horloges, atomiques ou quartz).

Derrière une découverte importante, il y a souvent une idée très simple et c’est le cas de
l’estimateur GMWM lorsque les équations sont exprimées dans le domaine des ondelettes. En
revanche, son implémentation est très complexe et sa réussite revient à l’auteur. Concrètement,
il a poussé la performance de la modélisation des erreurs de certains capteurs (souvent petits
et bon marché, mais imprécis) vers de nouvelles limites. Toutefois, la portée de cet excellent
travail s’étend bien au-delà son application à la navigation intégrée présentée ici.

Dr. Jan Skaloud, MER Prof. Dr. Alain Geiger
Laboratoire de Topométrie ETH Zürich
EPF Lausanne Président de la CGS



Foreword

Although the approach of integrating Global Navigation Satellite Systems (GNSS) with Inertial
Navigation Systems (INS) is not new, it currently undergoes a small revolution with the arrival
of Micro-Electro-Mechanical Systems (MEMS). Indeed, the number of possible applications
relying on inertial technology is inversely proportional to the size, weight and cost of its sensors.
In other words, thanks to MEMS the INS/GNSS systems are not necessarily more accurate in
comparison to its predecessors, but considerably smaller, lighter and cheaper. This explains its
widespread use, well beyond its original field of navigation.

Despite its popularity, the introduction of Inertial Measurement Units (IMU) based on MEMS
represents a considerable challenge in terms of modeling and estimating their behavior. The
dissertation of Yannick Stebler is a well-formulated and original response to such a dual quest of
finding better approaches in modeling and estimation. The process of extending well established
tools such as Power Spectral Density (PSD), Allan variance or Expectation-Maximization (EM)
lead to the surprising discovery of a new powerful estimator that was put in practice through
a tandem work between the author and its former colleague Stéphane Guerrier (currently a
doctoral student at the University of Geneva). The method was baptized as a Generalized
Method of Wavelet Moments (GMWM) and the results for estimating compound stochastic
processes obtained by the GMWM estimator are superior to the results of the well-accepted
IEEE standard of Allan variance. For this reason, the adaptation of the new method promises
a large potential impact across various disciplines ranging from inertial sensors, over biology
and economy up to all sorts of oscillators (like e.g. atomic or other clocks).

The main idea behind a noble discovery is often simple and this applies also to the GMWM
estimator when the equations are expressed in the wavelet domain. Its implementation is,
however, very involved and it goes to the credit of the author. It is an excellent work with an
influence reaching far beyond the discussed practical content of integrated navigation, where
it pushed the performance of estimation with the given sensors (often small, inexpensive but
imprecise) to new limits.

Dr. Jan Skaloud, MER Prof. Dr. Alain Geiger
Geodetic Engineering Laboratory ETH Zürich
EPF Lausanne President of SGC





Abstract

The challenge of estimating the position, velocity and orientation in space in a precise and
reliable way, at any time, with and without reception of satellite signals, is the core subject of
this dissertation. To this end, the use of Bayesian filters which fuse outputs from autonomous
inertial navigation with satellite positioning is a well-accepted and largely proven approach.
The quality of integrated systems is mainly driven by the errors affecting the inertial sensors.
This research intends to improve the navigation accuracy of INS/GNSS by proposing and
investigating novel approaches at two levels. First, a new estimation framework is developed
that allows to model complex composite stochastic processes. We consolidate the proposed
estimator on a theoretical basis and validate it through simulations and experiments. Results
show the ability of our method to estimate models for which other conventional approaches
(e.g. Allan variance and likelihood-based estimators) fail, thereby supporting the challenging
stage of navigation filter design. Second, we investigate filter designs accounting for inertial
sensor redundancy at observation and state levels. The benefits brought by such filters in terms
of navigation accuracy and adaptive modeling of sensor noise are discussed in the context
of experiments. For that purpose, a redundant MEMS-based inertial navigation system was
designed and operated on a vehicle. Compared to classical single-IMU based filters, we found
a significant bounding of the position, velocity and attitude error when operating redundant
inertial systems. Contrary to single-IMU/GNSS systems, the redundant configuration is able
to self-evaluate the level of system noise and thus to catch the effects of the dynamics. The
improved performance and robustness is attractive for many applications requiring reliable
and accurate trajectory determination.

Keywords: navigation, inertial navigation system, stochastic process, Kalman filter, signal pro-
cessing, error modeling, sensor redundancy, estimation methods, INS/GNSS integration,
MEMS, IMU.
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Introduction

Background

Navigation by means of Global Navigation Satellite Systems (GNSS) is nowadays a standard
approach for performing localization in outdoor environment. Conditions where satellite signals
are partially or completely unavailable severely degrade the performance of such systems.
Moreover, GNSS sensor bandwidth (typically below 10 Hz) may be too low for some application
and the tracking of satellites can be difficult to maintain in vibrating conditions. Also, no
information on attitude (e.g. for sensor orientation) is provided by GNSS. A well-accepted
and largely proven approach for improving navigation in such situations is to integrate GNSS
with inertial sensors. A conventional strapdown inertial measurement unit (IMU) is composed
of a triad of usually orthogonally mounted accelerometers and gyroscopes observing specific
force and angular rate or change, respectively. After initialization, these signals are integrated
with respect to time to yield velocity, position and attitude at high rate (typically, higher
than 50 Hz). This procedure is the core of a strapdown inertial navigation system (INS).
The combination of inertial navigation with GNSS is usually performed through bayesian
techniques among which the most popular is Kalman filtering. During periods of poor GNSS
signal quality or the total absence of its reception, inertial navigation operates in coasting mode,
i.e. the navigation states are determined independently from GNSS data. In such case, the
overall navigation performance becomes strongly dependent on the errors corrupting inertial
signals. These errors are integrated in the INS and their impact consequently grows with time.
Correct error modeling and estimation of the systematic components is thus very important
for improving navigation and correctly predicting its quality.

Objectives

This dissertation addresses the problem of estimating a navigation solution in terms of position,
velocity and attitude using noisy discrete-time signals observed by inertial sensors.

1
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Generally speaking, the design and operation of an INS requires two tasks:

• The modeling which is the process of approximating the underlying dynamics that
generates the clean (true) signal;

• The estimation in which all observations over a certain period of time are used to
approximate the current value of the underlying clean signal.

Both tasks are strongly interdependent. An accurate system model can be used for estimating
the signal. Conversely, if the true signal is available, it can be exploited for constructing an
accurate model of the system dynamics. However, neither the true model nor the clean signals
are usually available in the context of inertial navigation.

With this respect, this work focuses on the development of innovative methods for both tasks
by using two approaches:

1. The first is achieving correct a priori calibration of the individual accelerometers and
gyroscopes. Inertial sensors are corrupted by errors (e.g. scale factors, biases, drifts) of
deterministic and stochastic nature. Large part of the deterministic errors (e.g. axes
misalignment, temperature effects) is compensated through physical models during
calibration procedures. These error types and their calibration were investigated in
many works (see e.g. Fong et al. [2008], Titterton and Weston [1997]) and will not
be treated in this study. On the other hand, the stochastic errors contain components
which have random behavior or are too complicated to model deterministically (e.g.
dynamics-dependent errors, environmental changes, internal sensor noise). These types
of errors are modeled using stochastic processes in the navigation filter. The questions
of which stochastic processes to use for best describing the random part of the inertial
sensors behavior and the determination of the process parameters are the challenging
tasks of navigation filter design. The problem of estimating the stochastic process model
(from noisy data) is the first objective of this thesis, and will be referred to herein as the
stochastic modeling problem.

2. The second is the use of multiple IMUs mounted on the same strapdown platform. The
benefits of using redundant sensors were demonstrated in several recent studies Stebler
et al. [2011b], Waegli [2009], Waegli et al. [2010]. First, the noise level of the overall
system can be reduced and defective sensors detected as well as isolated. This improves
the accuracy of autonomous navigation, and hence system performance in GNSS-poor
conditions Waegli et al. [2010]. Second, the gyroscope and accelerometer noise levels
can be estimated directly from the data. This provides a better view on the reality
from which the estimation process can benefit. This is indeed an interesting feature
regarding the fact that sensor stochastic error modeling is often performed on error signal
acquired in static conditions in spite of the supposition that the error behavior may vary
as a function of environmental conditions applied to the sensors Guerrier [2009], such
as the temperature, electrical power, magnetic fields or the dynamics. Moreover, if no
reliable a priori calibration of the invidual sensors is available, the direct noise estimation
capability of systems based on multiple IMUs enables performing a continuous estimation
of the multiple IMU system noise level. Therefore, the second objective of the thesis is to
develop models accounting for redundancy in the inertial observations and evaluate the
different processing strategies.
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Overview

In the first part of the thesis we provide all the necessary concepts related to inertial navigation.
Particularly,

• Chapter 1 contains background material related to inertial navigation. Definitions of
the reference frames and notations connected to navigation theory are provided. We
develop the process of obtaining position, velocity and attitude information from inertial
observations, and introduce the concept of Kalman filtering and smoothing at the end of
the chapter.

• Chapter 2 discloses the main details of the Kalman filter developed in the framework of
this research. We pay special attention in describing the filter prediction and navigation
steps as well as alignment procedures.

• In Chapter 3, we introduce the most important concepts related to stochastic models
and define the processes, together with associated notations that are used throughout
the thesis.

In the second part of the thesis, we treat the stochastic modeling problem in the following
chapters:

• Chapter 4 presents the classical methods of stochastic model estimation that are used
within navigation community. The main limitations associated to these methods are
explained at the end of the chapter. By this means, we provide the justification for the
developments brought in the next two chapters.

• Chapter 5 proposes an innovative likelihood-based approach for estimating stochastic
models for which the previously introduced methods fail. The algorithm and the related
practical issues are described and its performance is tested on simulated as well as on
real data.

• A completely new estimation framework is introduced in Chapter 6. The theory related
to the construction of this estimator is developed and its performance demonstrated for
situations where all the other methods considered in this work, including the method
proposed in Chapter 5, are not able to provide an estimate.

• Chapter 7 is dedicated to the practical use of this new estimator presented in the
preceding chapter. Several inertial sensors are calibrated for stochastic errors by means
of the new estimator. The end of the chapter demonstrates the influence brought by
external factors such as vibrations on the sensor error behavior. This provides a strong
reason for employing redundant sensors operating simultaneously.

In the third part of the thesis, we investigate several means for handling the redundancy in
the inertial observations:

• Chapter 8 concentrates on the algorithmic aspects related to the processing of redundant
inertial observations. The end of this chapter is dedicated to the description of the
experimental setup realized in the framework of this thesis.

3
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• Chapter 9 is devoted to the presentation of results and discussion. Several tests conducted
by car enabled to highlight the advantage of using multiple inertial sensors for systems
of lower quality.

Finally, Chapter 10 draws conclusions from the conducted research work and gives recommen-
dations for future investigations.
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Preliminaries
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Chapter 1

Fundamentals of Integrated
Navigation

1.1 Introduction

As a prerequisite to further work, this chapter reviews the fundamentals of inertial navigation.
The related fundamental theory needs to be provided. By that, we define the notations and
conventions used in the thesis. The major part of this chapter is hence considered as background
material which is extensively based on Farrell [2008], Hofmann-Wellenhof et al. [2003], Tomé
[2002]. Additional references are mentioned throughout the text.

Since orientation of systems with respect to specific reference frames is fundamental in inertial
navigation, the three main methods of attitude parameterization are summarized in Section
1.2. Section 1.3 defines the various important reference frames along with the associated
transformations between them. In Section 1.4, we present the inertial sensor observation
model. Then, strapdown inertial mechanization theory is reviewed in Section 1.5. The dynamic
model in which inertial observations can be exploited to obtain position, velocity and attitude
information is analysed in Section 1.7. Section 1.8 introduces the concept of state space
augmentation which enables to account for sensor errors of time-correlated nature. Finally, the
way how inertial observations can be combined with external measurements supplied by one or
more independent sensors is briefly described in Section 1.9 (Kalman filter theory).

1.2 Attitude Representations

Navigation systems require the transformation of measured and computed quantities between
different reference frames. When a vector is represented relative to a specific reference frame,
the latter will be indicated by a superscript. For example, xp is the vector x represented with
respect to an arbitrary frame p, denoted p-frame. Several mathematical representations can be
used to define the attitude of a body with respect to a coordinate reference frame. In the sequel,
we consider three of them, namely the direction cosine matrix, Euler angles, and quaternions.
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1.2.1 Direction Cosine Matrix

A direction cosine matrix (DCM) is a matrix which transforms a vector representation from a
Cartesian frame p to another Cartesian frame q and is written as Cq

p where

xq = Cq
px

p. (1.2.1)

The matrix Cq
p is orthogonal and has the following properties:(

Cq
p

)T
Cq
p = Cq

p

(
Cq
p

)T
= I3×3 (1.2.2)

and

det
(
Cq
p

)
= 1 (1.2.3)

where I3×3 is the 3× 3 identity matrix, and det(·) is the determinant operator. Note that the
columns of Cq

p represent the unit vectors in p-frame axes projected along the q-frame axes.
In other words, the element of the ith row and jth column of Cq

p is the cosine of the angle
between the ith axis of the q-frame and the jth axis of the p-frame.

1.2.2 Euler Angles

The rotation from a p-frame to a q-frame can be performed by three sequential rotation
matrices, noted Cj(αj). The elementary rotation matrices are defined as follows:

C1(α1) =

 1 0 0
0 cosα1 sinα1

0 − sinα1 cosα1

 ,
C2(α2) =

 cosα2 0 − sinα2

0 1 0
sinα2 0 cosα2

 , (1.2.4)

C3(α3) =

 cosα3 sinα3 0
− sinα3 cosα3 0

0 0 1

 ,
for the Euler angles {αj : j = 1, 2, 3}. Each matrix Cj(αj) corresponds to an elementary
rotation of an arbitrary Cartesian frame about the xpj -axes (j = 1, 2, 3) by an angle αj . The
composed rotation is then given by the following product:

Cq
p = C3(α3) ·C2(α2) ·C1(α1). (1.2.5)

Similarly, the inverse transformation is yielded by

Cp
q =

(
Cq
p

)T
= CT

1 (α1) ·CT
2 (α2) ·CT

3 (α3). (1.2.6)

Note that if frames p and q are both right-handed or both left-handed Cartesian coordinate
frames, the Euler angles representation is equivalent to the DCM of Eq. (1.2.1).
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1.2.3 Quaternions

Instead of describing rotations between two frames using the Euler angles {αj}, quaternions
can be used with some advantages (see e.g. Altmann [1986]). A quaternion is a four-parameter
attitude representation method based on Euler’s theorem, which states that a transformation
from one reference frame to another can be performed by a single rotation of magnitude ||u||
about the vector u = [uX , uY , uZ ]T Tomé [2002]. The four elements of the quaternion, denoted
here by the symbol q, are functions of the vector u and the magnitude of rotation:

q =


q0

q1

q2

q3

 =


cos
(
||u||

2

)(
uX
||u||

)
sin
(
||u||

2

)(
uY
||u||

)
sin
(
||u||

2

)(
uZ
||u||

)
sin
(
||u||

2

)

 (1.2.7)

such that

||u|| =
√
u2
X + u2

Y + u2
Z . (1.2.8)

A quaternion q can be defined as a hypercomplex number which is the sum of a scalar part, q0,
and a vector part, denoted as q, i.e.

q = q0 + q. (1.2.9)

The vector q is an ordinary (3× 1) vector defined as

q = q1 · i + q2 · j + q3 · k (1.2.10)

where i, j and k denote the orthonormal basis which can be written as

i = [1, 0, 0]

j = [0, 1, 0]

k = [0, 0, 1].

(1.2.11)

Therefore, we have

q = q0 + q1 · i + q2 · j + q3 · k (1.2.12)

with q0, q1, q2, q3 being real numbers satisfying

q2
0 + q2

1 + q2
2 + q2

3 = 1, (1.2.13)

and i, j, k are such that

i2 = j2 = k2 = −1 (1.2.14)

and

i · j = −j · i = k

j · k = −k · j = i

k · i = −i · k = j.

(1.2.15)
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The operations of addition, substraction, and multiplication by a scalar are done in the
same manner as in vector algebra. The multiplication of q with another quaternion, p =
[p0, p1, p2, p3]T , denoted by the symbol ⊗, is defined by

q⊗ p = q0p0 − q1p1 − q2p2 − q3p3

+ (q0p1 + q1p0 + q2p3 − q3p2) · i
+ (q0p2 + q2p0 − q1p3 + q3p1) · j
+ (q0p3 + q3p0 + q1p2 − q2p1) · k.

Extensive details about quaternion algebra can be found in Altmann [1986], Tomé [2002]. The
relationship between the DCM, Cq

p, and its corresponding attitude quaternion, noted qqp, is

Cq
p =

 (q2
0 + q2

1 − q2
2 − q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) (q2
0 − q2

1 − q2
2 + q2

3)

 . (1.2.16)

1.2.4 Infinitesimal Rotation

Suppose that the angles {αj} in the elementary rotation matrices defined in Eq. (1.2.4) are
infinitesimal, and let δα = [δα1, δα2, δα3]T denote the infinitesimal rotation between frame p
and frame q. Then, cos(δαj) ≈ 1, sin(δαj) ≈ δαj , and δαiδαj ≈ 0 for i, j = 1, 2, 3.

Hence, Eq. (1.2.4) becomes

C1(δα1) =

 1 0 0
0 1 δα1

0 −δα1 1

 ,
C2(δα2) =

 1 0 −δα2

0 1 0
δα2 0 1

 , (1.2.17)

C3(δα3) =

 1 δα3 0
−δα3 1 0

0 0 1

 .
Note that these matrices are no longer orthogonal. Neglecting second- and higher-order terms,
the composed transformation may be approximated by

C3(δα3) ·C2(δα2) ·C1(δα1) = I− [δα×] (1.2.18)

where the notation [δα×] defines the (3× 3) skew-symmetric matrix built from vector δα, i.e.

[δα×] =

 0 −δα3 δα2

δα3 0 −δα1

−δα2 δα1 0

 . (1.2.19)

Furthermore, the order of rotation becomes irrelevant due to the structure of the infinitesimal
rotation matrix.
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1.2.5 Rotating Reference Frames

Reference frames may rotate arbitrarily with respect to one another. For example, the q-frame
may rotate with respect to the p-frame. It is necessary to calculate derivatives of attitude
representations for coordinate systems experiencing relative rotation.

Consider the vector ωqpq = [ω1, ω2, ω3]T representing the angular-rate vector of the q-frame
with respect to the p-frame expressed in the q-frame. If the rotation rate between the p-frame
and the q-frame is very small, it can be shown that the differential equation of orthogonal
transformations is given by Farrell [2008]

Ċq
p = Cq

pΩ
p
qp (1.2.20)

where Ωp
qp = [ωpqp×].

Similarly, the time-derivative of the Euler angles {αj} can be shown to be Tomé [2002]

α̇1 = [ω2 sin(α1) + ω3 cos(α1)] · tan(α2) + ω1 (1.2.21)
α̇2 = ω2 cos(α1)− ω3 sin(α1) (1.2.22)
α̇3 = [ω2 sin(α1) + ω3 cos(α1)] · sec(α2). (1.2.23)

Note that the Eq. (1.2.21-1.2.23) have a singularity at some orientations, specifically when α2

equals ±90 deg.

Finally, the quaternion qqp propagates in time in accordance to the following equation Tomé
[2002]:

q̇qb =
1

2
qqp ⊗

[
ωqpq
]
q

(1.2.24)

with [ωqpq]q being the quaternion equivalent of ωqpq, i.e. [ωqpq]q = 0 + ω1 · i + ω2 · j + ω3 · k.

1.3 Reference Frame Definitions

In this section, we define the reference frames and focus on the transformations between them.

1.3.1 The Inertial Frame (i-Frame)

The inertial frame, noted i-frame, is a nonaccelerating and nonrotating reference frame that is
at rest or subject to a uniform translational motion. In such a frame, the laws of Newtonian
mechanics are valid. Consider a point P located at a distance r from the origin of the i-frame.
Let r̈i and Fi be the acceleration and forces encountered by a body of mass mi along the three
axes of the i-frame, respectively. Newton’s second law can be written as

Fi = mir̈
i. (1.3.1)
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Figure 1.1: Equatorial coordinate systems (adapted from Hofmann-Wellenhof et al. [2003]).

If the body is subject to the gravitational acceleration represented by the vector ği, Eq. (1.3.1)
is extended to

mir̈
i = Fi +mgğ

i (1.3.2)

where mg is the gravitational mass. Applying Einstein’s principle of equivalence leads to
mi = mg = m. Replacing mi and mg by m in Eq. (1.3.2) and dividing both sides by m leads to

r̈i = f i + ği (1.3.3)

where f i denotes the specific force vector (force per unit mass).

An inertial system may be approximated by a so-called quasi-inertial system that is inertial
with respect to rotation and acceleration up to the measurement accuracy of the navigation
instrument. A quasi-inertial system is a geocentric system with celestial (space-fixed) orientation.
The accelerations occurring due to the fact that the Earth is orbiting the sun as well as the
rotation of the solar system with respect to the center of galaxy can be neglected for all
conventional inertial sensors as they are well below instrumental resolution and noise level.
Hence the following definition of the i-frame can be formulated.

Definition 1.3.1. An inertial frame is a celestial frame with origin at the center of mass of
the Earth, such that the xi1-axis points towards the vernal equinox and is, thus, the intersection
line between the equatorial and the ecliptic plane, the xi3-axis points towards the mean celestial
pole, and the xi2-axis completes the system to a 3D right-handed Cartesian system (see Figure
1.1).

The rotation of the e-frame with respect to the i-frame is given by

ωeie =
[

0 0 ωie
]T (1.3.4)

where ωie = 7.292115 · 10−5 rad/s is the magnitude of the rotation rate of the Earth1.

1Strictly speaking, ωie is not constant in time. However, we assume that ω̇ie ≈ 0, which is reasonable in the
context of navigation.
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1.3.2 The Earth Frame (e-Frame)

The Earth frame, denoted e-frame, is an Earth-Centered Earth-Fixed (ECEF) frame that is
defined as follows.

Definition 1.3.2. An Earth frame is an equatorial frame with origin at the center of mass
of the Earth, such that the xe1-axis points towards the Greenwich meridian, the xe3-axis points
towards the mean direction of the rotation axis of the Earth, and the xe2-axis completes the
system to a 3D right-handed Cartesian system.

Examples of important realizations are the International Terrestrial Reference Frame (ITRF)
and the World Geodetic System WGS-84 being the reference frame of the American Global
Positioning System (GPS).

As shown in Figure 1.1, the transformation from the e-frame to the i-frame is achieved by a
rotation about the x3-axis:

Ci
e = C3(−Θ0) (1.3.5)

where Θ0 is the hour angle, i.e. the product of Greenwich Sideral Time (GST) and ωie. Referring
to ECEF frames, a geocentric ellipsoid of revolution can be associated. Hence, a point can either
be expressed in terms of Cartesian coordinates (xe1, x

e
2, x

e
3), or by its ellipsoidal coordinates,

(φ, λ, h) with the latitude φ, the longitude λ, and the height h. The conversion from Cartesian
to ellipsoidal coordinates can be done as follows (see Figure 1.2):

xe =

 xe1
xe2
xe3

 =

 (RP + h) cos(φ) cos(λ)
(RP + h) cos(φ) sin(λ)[
RP (1− e2) + h

]
sinφ

 (1.3.6)

where RP is the prime vertical radius of curvature given by

RP =
a(

1− e2 sin2 ϕ
)1/2

. (1.3.7)

The quantities a and e are the semi-major axis and first numerical eccentricity of the reference
ellipsoid, respectively. The latter is given by

e2 =
a2 − b2

a2
. (1.3.8)

with b the semi-minor axis.

The inversion of Eq. (1.3.6) directly yields

λ = arctan

(
xe2
xe1

)
(1.3.9)

while the computation of φ and h requires two auxiliary quantities

p =
√

(xe1)2 + (xe2)2 = (RP + h) cos(φ), (1.3.10)

ψ = arctan

(
xe3 · a
p · b

)
(1.3.11)
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Figure 1.2: Cartesian and ellipsoidal coordinates (adapted from Hofmann-Wellenhof et al.
[2003]).

where p is the orthogonal distance of xe from the symmetry axis of the ellipsoid. The latitude
is then computed by

φ = arctan

(
xe3 + e′2b sin3(ψ)

p− e2a cos3(ψ)

)
(1.3.12)

where e′ is the second numerical eccentricity of the ellipsoid, given by

e′2 =
a2 − b2

b2
. (1.3.13)

Once φ is computed, the height can be obtained from Eq. (1.3.10) by

h =
p

cos(φ)
−RP . (1.3.14)

1.3.3 The Local-level Frame (l-Frame)

The local-level frame, noted l-frame, usually serves as a direct reference with respect to geodetic
observations. It can be defined anywhere on or near the surface of the Earth.

Definition 1.3.3. A local-level frame is a local geodetic frame with arbitrary origin, e.g. a
point on the Earth surface (topocenter), such that the xl1-axis points to North, the xl2-axis
points to East, and the xl3-axis points to the local nadir (down).

The NED frame (North-East-Down) is right-handed. The nadir direction of a point is defined
by its astronomical latitude and longitude, respectively noted Φ and Λ. If the astronomical
coordinates are replaced by the ellipsoidal latitude φ and longitude λ, the xl3-axis corresponds
to the ellipsoidal normal. For the purpose of navigation, the difference between astronomical
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Figure 1.3: ECEF and local-level frame (adapted from Hofmann-Wellenhof et al. [2003]).

and ellipsoidal local-level frames can often be neglected (see Section 1.5.4). The resulting frame
is called ellipsoidal tangential frame rather than local-level frame. Since the l-frame is singular
at the poles where the North direction cannot be defined, the wander frame is used in practice
(see e.g. Titterton and Weston [1997] for details about the wander frame).

To derive the orientation with respect to the right-handed ECEF frame (e-frame), the NED
frame is chosen as l-frame (see Figure 1.3). Given a point P with ellipsoidal latitude φ and
longitude λ, the frame xlj-axes (j = 1, 2, 3) expressed in the e-frame are denoted as ne, ee, and
de and are given by

de =

 − cos(φ) cos(λ)
− cos(φ) sin(λ)
− sin(φ)

 , ne = −∂de

∂φ
, ee = − 1

cos(φ)

∂de

∂λ
(1.3.15)

where ne and ee are deduced from de by partial derivatives. The rotation matrix Ce
l for the

coordinate transformation from the l-frame to the e-frame is

Ce
l =

 − sin(φ) cos(λ) − sin(λ) − cos(φ) cos(λ)
− sin(φ) sin(λ) cos(λ) − cos(φ) sin(λ)

cos(φ) 0 − sin(φ)

 . (1.3.16)

Note that since the origins of the e-frame and the l-frame are not identical, only difference
vectors may be transformed if Ce

l is solely used without shift vector.

1.3.4 The Navigation Frame (n-Frame)

The navigation frame, noted n-frame, can be defined as follows.

Definition 1.3.4. A navigation frame refers to the coordinate frame in which the INS is
mechanized.

In this study, the l-frame is chosen as n-frame for the mechanization of the strapdown INS.
The reasons for this choice are Tomé [2002]:

15



Fundamentals of Integrated Navigation

• Navigation information is most commonly required in terms of North, East, Down velocity
components and geographic coordinates which are directly obtained;

• The attitude of the vehicle with respect to l-frame is readily available;

• The representation of the Earth’s gravity is simplified (e.g. deflections of the vertical are
negligible and a normal gravity model can be used).

1.3.5 The Computer Frame (c-Frame)

The computer frame, noted c-frame, can be defined as follows.

Definition 1.3.5. The computer frame is the frame that the INS computer assumes to be the
true n-frame, i.e. the l-frame, with origin at the INS computed position.

Hence, the c-frame is generated by the navigation computer from the measurement data.
Because of numerical calculation errors, measurement errors and other errors, the c-frame will
differ in orientation from the true l-frame by three small independent rotations Gosiewski and
Ortyl [1998]. Consider δφ and δλ the errors in the computed geodetic latitude and longitude,
respectively. These errors can be projected onto the local North and vertical axes for a given
latitude φ, yielding the following rotation vector:

δθ =

 −δφ
δλ cos(φ)
−δλ sin(φ)

 . (1.3.17)

These rotations describe completely the difference in orientation of the computed c-frame in
relation to the true l-frame, and the corresponding DCM can be written as

Cc
l = I− [δθ×]. (1.3.18)

Figure 1.4 schematizes the relationships between c-frame and l-frame (i.e. n-frame).

1.3.6 The Body Frame (b-Frame)

The body frame, noted b-frame, can be defined as follows.

Definition 1.3.6. The body frame is a right-handed 3D Cartesian frame rigidly connected with
the moving object (e.g. vehicle) and is used to determine the relative orientation or attitude of
the object with respect to the chosen l-frame.

Usually, the origin of the b-frame is situated at a specific point within the object (e.g. center of
mass) and the axes coincide with the principal rotation axes of the object. The parameters
used to describe the three-dimensional attitude are often denoted roll , pitch, and yaw . Here,
we assume that the b-frame coincides with the orthogonal frame aligned with the roll, pitch,
and heading axes of a vehicle, i.e. the xb1-axis points forwards, the xb3-axis points down, and
the xb2-axis completes the system to a 3D right-handed Cartesian system.
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Figure 1.4: Relationships between l-frame (or n-frame), c-frame and p-frame.
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Figure 1.5: Rotations by yaw, pitch, and roll (adapted from Hofmann-Wellenhof et al. [2003]).

The transformation between the b-frame and the l-frame is usually described by three rotation
angles about the xlj-axes or the xbj-axes (j = 1, 2, 3). Here, we define the attitude for the
b-frame with respect to the l-frame by choosing the following order for the stepwise rotations
(see Figure 1.5):

Cb
l = C1(r) ·C2(p) ·C3(y) (1.3.19)

where r, p and y are the roll, pitch and yaw angles, respectively.

1.3.7 The Platform Frame (p-Frame)

The platform frame, noted p-frame, is the “analytic-platform” frame which can be defined as
follows.

Definition 1.3.7. The platform frame is the frame in which the transformed accelerations and
angular rates from the accelerometers and gyroscopes, respectively, are resolved.
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Fundamentals of Integrated Navigation

The inertial navigation computer estimates the rotational transformation , which under ideal
conditions, transforms vectors from the b-frame to the true l-frame (or n-frame). However,
because of computation errors, this function does not transform vectors to the l-frame but to
the p-frame. Hence,

Ĉl
b = Cp

b = Cp
lC

l
b. (1.3.20)

From Figure 1.4, it can be seen that the angles ψ = [ψN , ψE , ψD]T represent the difference in
orientation of the p-frame with respect to c-frame. Hence, assuming small attitude errors, we
have

Cp
c = I− [ψ×]. (1.3.21)

The orientation error of the p-frame with respect to the true l-frame is refered to as the ε angle
and is yielded by

Cp
l = I− [ε×]. (1.3.22)

Since Cp
l = Cp

cCc
l , we have

ε = ψ + δθ. (1.3.23)

1.4 Inertial Sensor Observation Model

Accelerometers and gyroscopes provide specific force and angular rate measurements, respec-
tively noted as f̆ b and ω̆bib. They are measured along and about three mutually orthogonal
axes, forming an IMU. Both signals are corrupted by errors ∆f b and ∆ωbib of deterministic and
stochastic nature, yielding the following model

f̆ b = f b + ∆f b (1.4.1)
ω̆bib = ωbib + ∆ωbib (1.4.2)

with their respective error terms

∆f b = Saf
b + Naf

b + ba + wa (1.4.3)
∆ωbib = Sgω

b
ib + Ngω

b
ib + bg + wg (1.4.4)

where S• is a diagonal matrix of scale factor errors, N• is a skew-symmetric matrix accounting
for cross-coupling errors, b• is the measurement bias, and w• includes remaining errors which
are treated as random errors (e.g. random bias), including correlated errors, random walk
and white noise. Given estimates of ∆f̂ b and ∆ω̂bib , the signal output by accelerometers and
gyroscopes can be written as

f̂ b = f̆ b + ∆f̂ b (1.4.5)
ω̂bib = ω̆bib + ∆ω̂bib. (1.4.6)

All the calibration error components defined in model (1.4.3) and (1.4.4) can be defined as
follows.

18



Local-level Strapdown Mechanization

Definition 1.4.1. The scale factor error, S•, can be defined as the ratio of a change in the
output to a change in the input intended to be measured, and is commonly expressed in parts
per million (ppm), or as a percentage figure for the classes of sensors of lower performance
Titterton and Weston [1997]. Scale factor errors may include a constant part which is dominant
under normal operating conditions, and varying parts that also depend on the dynamics. The
dominant part of these errors is usually determined in laboratory conditions, while the residual
is lumped into the random errors.

Definition 1.4.2. Cross-coupling errors, N•, arise through the non-orthogonality of the axes
defining the sensor frame. They may be expressed as ppm or a percentage of the applied measured
quantity. Under high dynamics, these errors become less significant and may be assigned to
random errors.

Definition 1.4.3. The measurement bias, b•, results from manufacturing imperfections in the
sensors and may include constant and time-variable parts. The latter account for unmodeled
effects (e.g. A/D quantization noise, residual temperature effects) and are usually modeled as
stochastic noise.

Each of the errors described will, in general, include systematic (fixed terms, and to a large
extent temperature induced variations) and random effects (switch-on to switch-on and in-run
variations) that can be compensated using deterministic and stochastic models, respectively.

1.5 Local-level Strapdown Mechanization

1.5.1 Acceleration in an Arbitrary Frame

Let r be the vector from the i-frame origin to a point P . Using the Coriolis theorem Thornton
and Marion [2004], it can be shown that

r̈i = Ci
a

[
2Ωa

iav
a + Ωa

iaΩ
a
iar

a + Ω̇a
iar

a + r̈a
]

(1.5.1)

where ra represents the vector from an arbitrary frame (a-frame) origin to P , and Ωa
ia = [ωaia×].

Solving Eq. (1.5.1) for the second derivative of ra and using Eq. (1.3.3) yields

r̈a = Ca
b f
b + ğa − 2Ωa

iav
a −

(
Ωa
iaΩ

a
ia + Ω̇a

ia

)
ra. (1.5.2)

In the sequel, the navigation equations are derived for several choices of the a-frame before
moving to the l-frame.

1.5.2 Velocity Dynamics in i-Frame

If the a-frame is selected to be the i-frame, Eq. (1.5.2) becomes

r̈i = Ci
bf
b + ği(r). (1.5.3)
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1.5.3 Velocity Dynamics in e-Frame

If the e-frame is chosen, Eq. (1.5.2) reduces to

r̈e = Ce
bf
b + ğe(r)− 2Ωe

iev
e −Ωe

ieΩ
e
ier

e (1.5.4)

where Ωe
ie = [ωeie×]. The term 2Ωe

iev
e is the Coriolis acceleration that appears when the vehicle

moves with respect to a rotating reference frame, and Ωe
ieΩ

e
ier

e is the centrifugal acceleration
experienced by the vehicle due to the Earth rotation. Typically, ğe(r) and −Ωe

ieΩ
e
ier

e are
combined to form the local gravity vector ge, i.e.

ge = ğe(r)−Ωe
ieΩ

e
ier

e. (1.5.5)

Then, by substituting v̇e for r̈e and using Eq. (1.5.5), the acceleration vector v̇e developed in
the e-frame is

v̇e = Ce
bf
b + ge − 2Ωe

iev
e. (1.5.6)

1.5.4 Velocity Dynamics in l-Frame

Eq. (1.5.6) can be transformed into the l-frame by using the following relationship:

vle = Cl
ev

e (1.5.7)

where vle = [vN , vE , vD]T . Taking the time derivative of Eq. (1.5.7) yields

v̇le = Cl
b (Ωe

lev
e + v̇e) . (1.5.8)

Removing v̇e from the previous equation by using Eq. (1.5.7) and after some manipulation,
the final form of the navigation equation in the l-frame can be written as

v̇le = Cl
bf
b + gl −

(
Ωl
el + 2Ωl

ie

)
vle (1.5.9)

with Ωl
el = [ωlel×], Ωl

ie = [ωlie×] where

ωlie =
[
ωie cos(ϕ) 0 −ωie sin(ϕ)

]T and ωlel =
[
λ̇ cos(ϕ) −ϕ̇ −λ̇ sin(ϕ)

]T
. (1.5.10)

Both ϕ̇ and λ̇ are members of ṙle which will be defined by Eq. (1.5.12) below. The gl term is
given by

gl =
[
ξg −ηg g0 + ∆g

]T (1.5.11)

where ξ and η are the meridian and prime deflection of the vertical , respectively. The term g
is the sum of the gravity magnitude associated with the reference ellipsoid (normal gravity g0)
determined at height h, and the gravity anomaly ∆g. The normal gravity g0 can be calculated
using models such as proposed by Committee [1997]2.

2The use of more detailed gravity models is needed only for inertial sensors of high quality. Moreover, the
largest deflection encountered over the entire Earth is in the order of 1 arc-min. For increased accuracy, it
would be desirable to compensate for the deflection and gravity anomaly terms. In the absence of detailed
specifications, these terms are normally neglected and accepted as sources of error Jekeli [2000], Tomé [2002].
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Local-level Strapdown Mechanization

Figure 1.6: Strapdown inertial navigation system in l-frame.

1.5.5 Position Dynamics in l-Frame

The time derivative of the position states rle can be linked to vle through

ṙle = D−1vle (1.5.12)

where rle = [φ, λ, h]T , and the matrix

D−1 =

 1
RM+h 0 0

0 1
(RP+h) cosϕ 0

0 0 −1

 (1.5.13)

enables the velocity conversion from the cartesian (NED) to curvilinear coordinates. The
meridian radius of curvature is given by

RM =
a
(
1− e2

)(
1− e2 sin2(ϕ)

)3/2
(1.5.14)

where a and e were defined in Section 1.3.2, and the prime vertical radius of curvature, RP ,
was defined in Eq. (1.3.7).

1.5.6 Attitude Dynamics in l-Frame

In this study, the quaternion form is chosen for representing the attitude of a vehicle. The
reasons are:
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• It is computationally simpler than the DCM method;

• The singularity problem of the Euler angles representation is avoided.

The information about the vehicle’s attitude with respect to the l-frame is contained in the
quaternion qlb. According to Eq. (1.2.24), its time propagation is described by

q̇lb =
1

2
qlb ⊗

[
ωblb

]
q

(1.5.15)

where
[
ωblb
]
q
is the quaternion equivalent of

ωblb = ωbib −Cb
lω

l
il (1.5.16)

1.5.7 Summary

Finally, Eq. (1.5.12), (1.5.9) and (1.5.15) can be combined to form the state vector x in the
l-frame:

ẋl =

 ṙle
v̇le
q̇lb

 =

 D−1vle
Cl
bf
b −

(
2Ωl

ie + Ωl
el

)
vle + gl

1
2qlb ⊗

[
ωblb
]
q

 (1.5.17)

which expresses the first-order navigation equation in the l-frame. Figure 1.6 depicts the l-frame
mechanization in block diagram form.

1.6 Dynamic Systems

1.6.1 Continuous-Time Systems Models

The model for a finite-dimensional linear continuous-time system with stochastic inputs can
be written as

ẋ(t) = F(t)x(t) + G(t)w(t) + L(t)u(t)

z(t) = H(t)x(t) + v(t)
(1.6.1)

where x(t) is the (p× 1) system state vector at time t ∈ R+, z(t) is the (l × 1) measurement
vector, F(t) is the (p× p) time-varying dynamic coefficient matrix , G(t) is the (p× r) time-
varying process noise coupling matrix , w(t) is a (r × 1) random forcing function, L(t) is a
(p× r) time-varying input coupling matrix , u(t) is a (r × 1) deterministic input vector , v(t) is
a (l × 1) measurement noise vector and H(t) is the (l × p) time-varying measurement design
matrix which maps the true state space x(t) into the observed space. The initial state x(0)
is assumed to be a normal random vector with mean µ0 and covariance P0. The mean and
covariance of the random variables vectors w(t) and v(t) will be denoted

µw(t) = E [w(t)] = 0

cov (w(t),w(τ)) = Q(t)δ(t− τ)

µv(t) = E [v(t)] = 0

cov (v(t),v(τ)) = R(t)δ(t− τ).

(1.6.2)
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with δ(·) the Dirac delta function. Thus, the parameter set associated with the continuous
state space model is

θc = {F,L,G,H,Q,R,µ0,P0} . (1.6.3)

1.6.2 Discrete-Time State Space Notation

The equivalent linear discrete-time system model for the digital time sequence {tk : k ∈ Z+} is

xk = Φk−1xk−1 + Γk−1wk−1 +Λk−1uk−1

zk = Hkxk + vk
(1.6.4)

where Φk, the discrete form of F(t), will be called the state transition matrix and relates xk−1

to xk. The matrices Γk, Λk and Hk are the discrete forms of G(t), L(t) and H(t), respectively.
The initial state x0 is assumed to be a normal random vector with mean vector µ0 and (p× p)
initial covariance matrix P0. The mean and covariance of the random variables vectors wk

and vk will be denoted

µw = E [wk] = 0

cov (wk,wl) = Qkδ(tk − tl)
µv = E [vk] = 0

cov (vk,vl) = Rkδ(tk − tl)

(1.6.5)

with l ∈ Z+. The vector θ ∈ Θ is the set of time-invariant state space model parameters such
that

θ = {Φ,Λ,Γ,H,Q,R,µ0,P0}. (1.6.6)

When F(t) = F is a constant matrix, Φk−1 can be computed as

Φk−1 = eF∆tk (1.6.7)

where ∆tk = tk − tk−1 is the sampling period . Usually, Φk−1 is approximated by retaining the
first terms of the eF∆tk Taylor series expansion

Φk−1 ≈ I + F∆tk +
(F∆tk)

2

2!
+

(F∆tk)
3

3!
+ . . . (1.6.8)

The matrix Qk−1 must account for the integrated effect of w(t) by the system dynamics over
each sampling period. It can be shown (see e.g. Farrell [2008]) that the solution is

Qk−1 =

∫ tk

tk−1

Φ(tk, s)G(s)Q(s)GT (s)ΦT (tk, s)ds. (1.6.9)

For a small time interval ∆tk, Eq. (1.6.9) can be approximated to

Qk−1 ≈ GQGT∆tk. (1.6.10)
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1.7 System Error Dynamics

Errors limit the accuracy of the navigation solution provided by an INS. These can be divided
into three major groups:

• Initialization errors: information on initial conditions must be provided for position
and velocity, while that of attitude can be possibly estimated. The imperfections in the
initialization are propagated continuously from one estimate to the next;

• Inertial sensor errors : accelerometer and gyroscope signals are affected by different types
of errors (see Section 1.4) which will cause navigation errors;

• Computational errors: approximations and simplifications made in the implementation
of the navigation equations and round-off errors ultimately result in navigation errors.

How the first two types of errors affect the navigation solution with time is described by INS
error propagation models. These models, developed in the post World War II era, were used
first in the context of integration with satellite data, second for low-cost inertial sensors. Two
main approaches are used for the derivation of INS error models:

• The true frame approach (also known as phi-angle or perturbation approach) perturbs
the INS equations in the l-frame which has its origin at the true geographic location of
the INS;

• The computer frame approach (also known as psi-angle approach) perturbs the INS
equations in the c-frame which is the local-level north-pointing coordinate system with
its origin at the location computed by the INS.

It has been shown that both approaches are equivalent and provide identical results Benson
[1975]. The true frame perturbation approach will be used in this study for deriving the INS
error model.

Eq. (1.5.17) can be written as a nonlinear system of the form

ẋ(t) = f1 {[x1(t),x2(t)] , t} (1.7.1)

where x1(t) is the navigation state, and x2(t) is the vector containing the input forcing functions,
i.e. the inertial measurements f b and ωbib. Since x1(t) is unknown, it must be replaced by its
approximation:

x̂1(t) = x1(t)− δx1(t) (1.7.2)

where δx1(t) are called error states. Therefore, Eq. (1.7.1) becomes

˙̂x(t) = f1 {[x1(t)− δx1(t),x2(t)] , t} . (1.7.3)

Expanding Eq. (1.7.3) in a first order Taylor series yields

δẋ1(t) = ẋ1(t)− ˙̂x1(t) =
∂f1

∂x1
δx1(t) = F1(t)δx1(t). (1.7.4)
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where F1(t) is the dynamic coefficient matrix. Due to the errors corrupting inertial measurements
(see Eq. (1.4.2)), δẋ2(t) is usually modeled using the following state space model (we will come
to that in Section 1.8):

δẋ2(t) = F2(t)δx2(t) + G2(t)w(t) (1.7.5)

with w(t) being Gaussian white noise. Finally, the augmented state vector can be written by
combining Eq. (1.7.4) and (1.7.5), i.e.

δẋ(t) = F(t)δx(t) + G(t)w(t) (1.7.6)

where

δẋ(t) =

[
δx1(t)
δx2(t)

]
, (1.7.7)

F(t) =

[
F1(t) F12(t)

0 F2(t)

]
and G(t) =

[
0

G2(t)

]
. (1.7.8)

1.7.1 Attitude Error Model

The derivation of the attitude errors is simplified if using the DCM representation. Let
εl = [εN , εE , εD]T be the vector containing the misalignment errors from navigation l-frame
(see Figure 1.4). Then, Cl

b can be linked to its estimated quantity, denoted as Ĉl
b, through

Cl
b =

(
I + El

)
Ĉl
b (1.7.9)

where El =
[
εl×

]
. The Euler angles can be estimated by solving

˙̂
Cl
b = Ĉl

bΩ̂
b
lb (1.7.10)

with Ω̂b
lb =

[
ω̂blb×

]
. Two equations can be considered to obtain the rate of change of Ĉl

b. On
one hand, differentiating Eq. (1.7.9) yields

˙̂
Cl
b = Ċl

b − ĖlCl
b −ElĊl

b

= Ċl
b − ĖlCl

b −ElCl
bΩ

b
lb. (1.7.11)

On the other hand, Eq. (1.7.10) can be rewritten as

˙̂
Cl
b =

(
I−El

)
Cl
b

(
Ωb
lb − δΩb

lb

)
= Cl

bΩ
b
lb −Cl

bδΩ
b
lb −ElCl

bΩ
b
lb + ElCl

bδΩ
b
lb. (1.7.12)

From Eq. (1.7.11) and (1.7.12),

Ėl ≈ Cl
bδΩ

b
lbC

b
l (1.7.13)
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where second-order effects have been neglected. The vector form of this equation can be
expressed as

ε̇l = Cl
bδω

b
lb. (1.7.14)

The angular velocity of the b-frame with respect to the l-frame is given by

ω̂blb = ω̂bib − Ĉb
l ω̂

l
il. (1.7.15)

Linearizing this equation and assuming that ω̂qpq = ωqpq − δωqpq for any frame p and q gives

δωblb = δωbib −Cb
l δω

l
il + Cb

lE
lωlil (1.7.16)

where second order effects have been neglected. Substituting Eq (1.7.16) in Eq. (1.7.14) and
keeping the vectorial notation yields the final form of the attitude errors time derivative:

ε̇l = Cl
bδω

b
ib − δωlil − ωlil × εl. (1.7.17)

1.7.2 Velocity Error Model

From Eq. (1.5.9), we can write in vectorial form:

˙̂vne = Ĉl
bf̂
b −

(
ω̂lie + ω̂lil

)
× v̂le + ĝl

=
(
I−El

)
Cl
b

(
f b − δf b

)
−
(
ωlie − δωlie + ωlil − δωlil

)
×
(
vle − δvle

)
(1.7.18)

+ gl − δgl.

Assuming that δvle = vle − v̂le, the expression for the velocity errors time derivative is

δv̇le = −f l × εl −
(
ωlie + ωlil

)
× δvle −

(
δωlie + δωlil

)
× vle + Cl

bδf
b + δgl (1.7.19)

where f l is the specific force vector resolved in the l-frame, δf b are random specific force errors,
and δgl includes errors in the computed normal gravity due to position errors and the gravity
anomaly.

1.7.3 Position Error Model

Eq. (1.5.12) can be rewritten as follows:

vle = Dṙle (1.7.20)

whose linearized form is

δvle = Dδṙle + δDṙle. (1.7.21)

The matrix δD contains the effects of position errors. Therefore, the previous relation can be
reformulated as

δvle = Dδṙle + Drδr
l
e (1.7.22)
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with Dr given by:

Dr =

 0 0 φ̇

−λ̇ (RP + h) sin(φ) 0 λ̇ cos(φ)
0 0 0

 . (1.7.23)

Finally, solving Eq. (1.7.22) for δṙle yields the final form of the position error model:

δṙle = D−1δv̇le −D−1Drδr
l
e. (1.7.24)

1.7.4 True Frame INS Error Model

The combination of Eq. (1.7.17), (1.7.19) and (1.7.24) yields the first-order differential equations
in accordance with Eq. (1.7.6): δṙle

δv̇le
ε̇l

 =

 D−1δv̇le −D−1Drδr
l
e

−f l × εl −
(
ωlie + ωlil

)
× δvle −

(
δωlie + δωlil

)
× vle + Cl

bδf
b + δgl

Cl
bδω

b
ib − δωlil − ωlil × εl

 (1.7.25)

which can be further expanded in state space notation:

δẋl = Fδxl + Gw (1.7.26)

where δẋl represents the error in the nominal navigation state. Thus, δṙle
δv̇le
ε̇l

 =

 Frr Frv Frε

Fvr Fvv Fvε

Fεr Fεv Fεε

 δrle
δvle
εl

+

 0 0
Cl
b 0

0 Cl
b

[ δf b

δωbib

]
. (1.7.27)

The expanded error vector is

δxl =
[
δφ δλ δh δvN δvE δvD εN εE εD

]T
, (1.7.28)

w =
[
δf1 δf2 δf3 δω1 δω2 δω3

]T
. (1.7.29)

Each subcomponents of the F matrix are each matrices in R3×3:

Frr =

 0 0 −φ̇
RM+h

λ̇ tan(φ) 0 −λ̇
RP+h

0 0 0

 (1.7.30)

Frv = D−1 (1.7.31)
Frφ = 03×3 (1.7.32)

Fvr =


−
(

2ωie cos(φ) + λ̇
cos(φ)

)
vE 0 λ̇ sin(φ)

RP+h vE −
φ̇

RM+hvD

2ωie (vN cos(φ)− vD sin(φ)) + λ̇
cos(φ)vN 0 −λ̇

RP+h (vN sin(φ) + vD cos(φ))

2ωievE sin(φ) 0 λ̇ cos(φ)
RP+h vE + φ̇

RM+hvN + ∂g0

∂h



Fvv =


vD

RM+h −2
(
ωie + λ̇

)
sin(φ) φ̇(

2ωie + λ̇
)

sin(φ) vN tan(φ)+vD
RP+h

(
2ωie + λ̇

)
cos(φ)

−2φ̇ −2
(
ωie + λ̇

)
cos(φ) 0

 (1.7.33)

Fvφ = −[f l×] (1.7.34)
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Fφr =


ωie sin(φ) 0 λ̇ cos(φ)

RP+h

0 0 −φ̇
RM+h

ωie cos(φ) + λ̇
cos(φ) 0 −λ̇ sin(φ)

RP+h

 (1.7.35)

Fφv =

 0 −1
RP+h 0

1
RM+h 0 0

0 tan(φ)
RP+h 0

 (1.7.36)

Fφφ =


0 −

(
ωie + λ̇

)
sin(φ) φ̇(

ωie + λ̇
)

sin(φ) 0
(
ωie + λ̇

)
cos(φ)

−φ̇ −
(
ωie + λ̇

)
cos(φ) 0

 (1.7.37)

Three distinct frequencies characterize the navigation errors of this model:

• Schuler oscillation: the frequency of this oscillation is given by ωs =
√
g/R0, with g and

R0 being the mean gravity acceleration and the mean distance of the vehicle to the Earth
center, respectively. The period corresponds approximately to 84 minutes.

• Foucault oscillation: the frequency is given by ωie sin(φ), which corresponds to a period
of about 30 hours for moderate latitudes.

• 24-hours oscillation: this oscillation is directly linked to the Earth’s rotation.

These oscillations are important to consider in pure inertial navigation. However, their effect is
mitigated by INS/GNSS integration.

1.7.5 Computer Frame INS Error Model

As already mentioned, the INS error model can also be developed with respect to the c-frame.
Here, we refer the reader to Kong [2000], Scherzinger [1996] for its derivation and provide the
relationships without a proof.

In the c-frame representation, Ce
c, ωcie and ω

c
ic are known without error because the position and

velocity of the c-frame is known from the INS computer. Therefore, the following relationships
link the true l-frame to the c-frame (see Figure 1.4):

δvl = δvc − δθ × vc, (1.7.38)
δgl = δgc − δθ × gc, (1.7.39)
δωlie = −δθ × ωcie. (1.7.40)

The gravity error expressed in the c-frame can be shown to be

δgc ≈

 −ω2
sδrN

−ω2
sδrE

2ω2
sδrD

 . (1.7.41)
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Therefore, the resulting computer frame error model is δṙc

δv̇c

ψ̇

 =

 −ωcec × δrc + δvc

f c ×ψ − (2ωcie + ωcec)× δvc + δgc + Cp
bδf

b

− (ωcie + ωcec)×ψ −Cp
bδω

b
ib

 . (1.7.42)

The differences between the true frame and computer frame approaches are mainly in the
implementation aspects Shin [2005]:

• The dynamics of the position and velocity error in Eq. (1.7.42) do not depend on angular
rate errors caused by the Earth rate and transport rate mis-resolved by the c-frame
misalignment.

• The psi-angle dynamics (third line in Eq. (1.7.42)) is rate-stable, independent of all other
INS errors and driven only by the gyroscope error terms δωbib Shin [2005].

• The computer frame error model contains fewer terms and hence is easier to implement
in a Kalman filter.

Details on the resulting state space model can be found in Kong [2000], Shin [2005].

1.8 State Space Augmentation

Given the estimates of the calibration factors ∆f̂ b and ∆ω̂bib, it can be seen from Eq. (1.7.17)
and (1.7.19) that the attitude and velocity errors are driven by the uncalibrated portion of
gyroscope and accelerometer errors:

δf b = ∆f b −∆f̂ b, (1.8.1)
δωbib = ∆ωbib −∆ω̂bib. (1.8.2)

In cases where an error source has a significant impact on the navigation error, and it is possible
to estimate the parameters pertinent to describing the error sources, state augmentation can
be used. Consider that instrument errors can be modeled as

∆f b = Fvaxa + Gaνa (1.8.3)
∆ωbib = Fεgxg + Ggνg (1.8.4)

where νa and νg are Gaussian white noise vectors, and xa and xg are the vectors containing
calibration parameters describing different types of errors (see Section 1.4). By considering Eq.
(1.8.1) and (1.8.2), the dynamics of sensor errors can be written as

δf b = Fvaδxa + Gvaνa (1.8.5)
δωbib = Fεgδxg + Gεgνg (1.8.6)
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where δxa = xa − x̂a and δxg = xg − x̂g, with the associated differential equations:

δẋa = Faaδxa + Gawa (1.8.7)
δẋg = Fggδxg + Ggwg. (1.8.8)

With the above definitions, the state augmented version of Eq. (1.7.27) becomes:


δṙle
δv̇le
ε̇l

δẋa
δẋg

 =


Frr Frv Frε 0 0
Fvr Fvv Fvε Cl

bFva 0
Fεr Fεv Fεε 0 Cl

bFεg

0 0 0 Faa 0
0 0 0 0 Fgg



δrle
δvle
εl

δxa
δxg

+


0 0 0 0
Cl
b 0 0 0

0 Cl
b 0 0

0 0 Ga 0
0 0 0 Gg



−νa
νg
wa

wg


(1.8.9)

The choice of Faa and Fgg and the associated spectral densities of wa and wg (together
with their shaping matrices Ga and Gg) is specific to a sensor error model with the aim to
represent an accurate characterization of the error behaviour. Chapter 3 will describe typical
stochastic processes (or shaping filters) which can be used in δxa and δxg to model gyroscope
and accelerometer time-correlated errors.

1.9 Extended Kalman Filter

Generally, a non-controlled standalone INS provides solutions affected by time-dependent, time-
growing errors of usually large magnitude (with respect to GNSS positioning). For bounding
these drifts, external measurements are used. This combination of multiple sensor types is
achieved by an extended Kalman filter (EKF).

The nonlinear system and measurement relationship of the filter for discrete times {tk : k ∈ Z+}
is

xk = f (xk−1,uk−1) + Γk−1wk−1 (1.9.1)
zk = h (xk) + vk (1.9.2)

where f(·) and h(·) are known functions, wk and vk are zero mean Gaussian white noise vectors
with covariance matrix Qk and Rk, respectively. Γk represents the coupling between xk and wk,
and zk is the measurement vector. At the estimation time tk, the system is linearized around
the previous state estimate. The state and conditional covariance matrix P−k are extrapolated
using the transition matrix Φk−1:

x−k = f
(
x+
k−1,uk−1

)
(1.9.3)

P−k = Φk−1P
+
k−1Φ

T
k−1 + Γk−1Qk−1Γ

T
k−1 (1.9.4)
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where Φk−1 =
∂f(x∗k−1,uk−1)

∂x with the approximate x∗k−1 usually chosen to be f
(
x+
k−1,uk−1

)
.

The “−” and “+” superscripts respectively denote the predicted and updated variable. The
Kalman gain, and the updated state vector and covariance matrix are evaluated as

Kk = P−k HT
k

(
HkP

−
k HT

k + Rk

)−1
, (1.9.5)

P+
k = (I−KkHk) P−k , (1.9.6)

x+
k = x−k + Kk

[
zk − h

(
x−k
)]
, (1.9.7)

such that Hk =
∂h(x∗k)
∂x . Note that the difference zk − h

(
x−k
)
is known as the innovation

sequence, while zk − h
(
x+
k

)
is called the residual sequence. The initial conditions are

x0 = E [x(0)] , (1.9.8)
P0 = E [( x(0)− x0 )( x(0)− x0

)
T
]
, (1.9.9)

and it is assumed that E
[
wkv

T
j

]
= 0, ∀j, k ∈ Z+. Note that in the case of a continuous system

model (see Eq. (1.6.1)), F(t) = F =
[
∂f
∂x

]
x=x∗

.

1.10 Optimal Smoothing

In post-processing, the navigation performance can be improved by filtering in forward and
backward direction with respect to time. Both solutions can then be combined by optimal
smoothing. Two optimal smoothing algorithms are considered herein:

• The fixed-interval smoother combines forward and backward filtered solutions in the
least-squares sense Shin [2005], Waegli [2009]:

PN
k =

[
(P−1

f )k + (P−1
b )k

]−1
,

xNk = (xf )k + PN
k (P−1

b )k [(xb)k − (xf )k] ,
(1.10.1)

where (P•)k and (x•)k are, respectively, the covariance matrix and state vector at
digital times {tk : k = 1, . . . , N} issued from the forward (f index) and backward (b
index) filtering, and PN

k and xNk are the smoothed covariance matrix and state vector,
respectively.

• The Rauch-Tung-Striebel (RTS) algorithm Gelb [1974] which handles data processed in
a single direction (forward or backward):

PN
k = P+

k + Jk ·
[
PN
k+1 −P−k+1

]
· JTk , (1.10.2)

xNk = x+
k + Jk ·

[
xNk+1 − x−k+1

]
· JTk , (1.10.3)

with Jk = P+
k ·Φ

T
k ·
(
P−k+1

)−1.
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Chapter 2

Navigation Filter Implementation

2.1 Introduction

In this thesis, a loosely coupled EKF was adopted mainly because of its simplicity of implemen-
tation and its flexibility. However, the developed concepts can be transfered to other nonlinear
filters (e.g. unscented Kalman filter and particle filters), or more sophisticated integration
strategies such as closely or tightly coupled schemes when performing INS/GNSS integration.

This chapter discloses the main design details and intricacies of the navigation software
developed in the frame of this thesis. The state vector is introduced in Section 2.2, followed by
a detailed explanation of the algorithms used in the two fundamental stages of the Kalman
filter procedure, namely the filter prediction (Section 2.3) and filter update (Section 2.4) stages.
The initialization and the alignment procedures are explained in Section 2.5 and 2.6.

2.2 State Vector Definition

The complete state vector was defined in Eq. (1.8.9) and is detailed below:

δx =


δṙle
δv̇le
ε̇l

δẋa
δẋg

 (2.2.1)

where the navigation error states are

δrle =
[
δφ δλ δh

]T
, (2.2.2)

δvle =
[
δvN δvE δvD

]T
, (2.2.3)

εl =
[
εN εE εD

]T
. (2.2.4)
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Figure 2.1: Detailed loosely-coupled INS integration approach.

The states δxa and δxg account for accelerometer (a index) and gyroscope (g index) biases,
respectively. The implemented filter supports flexible introduction of multiple stochastic error
models characterizing time-correlated errors in sensors. Therefore,

δxa =


δf b1
δf b2
...

δf bJa

 and δxg =


δωbib,1
δωbib,2

...
δωbib,Jg

 (2.2.5)

where each (3 × 1) subvector δf bj for j = 1, . . . , Ja, and δωbib,j for j = 1, . . . , Jg, represents
respectively the accelerometer and gyroscope errors along the (xb1,xb2,xb3) axes, i.e.

δf bj =

 δf1,j

δf2,j

δf3,j

 and δωbib =

 δω1,j

δω2,j

δω3,j

 . (2.2.6)

Note that for simplification, it will be assumed that Ja = Jg = J in the sequel. In addition, for
the sake of readibility, only one process per sensor is assumed. Therefore, J = 1 and we have

δxa = δf b1 = δf b (2.2.7)

and

δxg = δωbib,1 = δωbib (2.2.8)

2.3 Filter Prediction Stage

For implementing a strapdown inertial navigation system, the navigation model given in Eq.
(1.5.17) needs to be solved. Since the underlying differential equations do not allow for an
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analytical solution, numerical integration algorithms need to be used. The problem can be
formulated as:{

ẋ = f(x,u, t) for t ∈ [t0, tf ]
x(t0) = x0

(2.3.1)

where x ∈ Rp is the (navigation) state vector and u ∈ Rm is the (inertial) observation vector.
Methods such as the Euler or Runge-Kutta methods are usually employed to compute a
numerical solution to this problem Jekeli [2000]. In this thesis, two integration algorithms are
considered. They are described in the following sections.

2.3.1 Classical Euler Integration Algorithm

The references Savage [1998a,b] precisely describe the design of an inertial navigation computer.
Here, the slightly simplified version of Tomé [2002] is summarized.

Attitude Integration

Eq. (1.5.15) can be further developed as follows:

q̇lb =
1

2
qlb ⊗

[
ωbib

]
q
− 1

2

[
ωlil

]
q
⊗ qlb. (2.3.2)

Consider the digital time sequence {tk : k ∈ Z+}. It can be shown that after discretization, the
orientation of the i-frame with respect to l-frame at epoch tk−1 can be propagated to the next
epoch tk by applying:

(qlb)k−1|k = (qlb)k−1|k−1 ⊗ (qbb)k−1|k (2.3.3)

(qlb)k|k = (qll)k|k−1 ⊗ (qlb)k−1|k. (2.3.4)

The quaternion (qbb)k−1|k expresses the rotation of the b-frame between two successive epochs
which is derived from the gyroscopes. It can be written as

(qbb)k−1|k =

 cos
(
||uk||

2

)(
uk
||uk||

)
sin
(
||uk||

2

)  (2.3.5)

where ||uk|| is the norm of vector uk = [u1, u2, u3]T that is obtained from the gyroscopes as
follows:

uk = u(tk) =

∫ tk

tk−1

u̇(t)dt ≈ (ωbib)k ·∆tk (2.3.6)

assuming no coning motion and a constant angular velocity, (ωbib)k , within the sampling period
∆tk = tk − tk−1. The quaternion (qll)k−1|k accounts for the angular rate of the l-frame relative
to the nonrotating i-frame, (ωlil)k, and can be expressed as a function of the rotation vector vk:

(qll)k|k−1 =

 cos
(
||vk||

2

)
−
(

vk
||vk||

)
sin
(
||vk||

2

)  . (2.3.7)
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The negative sign on vk accounts for the opposite phase sense of (qll)k|k−1, which describes the
relative motion of the l-frame at instant tk−1 with respect to instant tk. The vector vk can be
calculated as

vk = v(tk) ≈
∫ tk

tk−1

ωlil(t)dt ≈ (ωlil)k ·∆tk (2.3.8)

which is valid if (ωlil)k is considered as small and slowly changing over a typical tk−1 to tk
update cycle.

The qlb, qbb and qll quaternions are propagated at the same rate in this algorithm. However,
Savage [1998b] provides a more general algorithm in which qlb is not necessarily propagated
with the same rate as ωbib or ω

l
il.

Velocity Integration

The digital velocity integration algorithm is direcly formulated from Eq. (1.5.9) as

(vle)k = (vle)k−1 + (∆vlf )k + (∆vlg/c)k (2.3.9)

where

(∆vlf )k =

∫ tk

tk−1

Cl
bf
bdt ≈ (Cl

b)k|k−1 · (f b)k ·∆tk (2.3.10)

is the specific force increment during the period ∆tk = tk − tk−1, and

(∆vlg/c)k =

∫ tk

tk−1

[
gl −

(
2ωlie + ωlel

)
× vle

]
dt

≈
[
(gl)k −

(
2(ωlie)k + (ωlel)k

)
× (vle)k

]
·∆tk

(2.3.11)

is the gravity/Coriolis velocity increment. Note that (Cl
b)k|k−1 is the cosine matrix equivalent

of (qlb)k|k−1 which can be deduced from Eq. (2.3.4) as follows:

(qlb)k|k−1 = (qll)k|k−1 ⊗ (qlb)k−1|k−1. (2.3.12)

Position Integration

The digital integration algorithm for propagating rle is given by

(rle)k = (rle)k−1 +
1

2
· (D−1)k− 1

2

[
(vle)k + (vle)k−1

]
·∆tk (2.3.13)

where (D−1)k− 1
2
(see Eq. (1.5.13)) can be calculated using a simple linear extrapolation:

(D−1)k− 1
2
≈ (D−1)k−1 +

1

2

[
(D−1)k−1 − (D−1)k−2

]
. (2.3.14)
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2.3.2 Prediction-Correction Integration Algorithm

In the classical integration scheme, the filter predicts the state from one filter time tk−1 to
the next time tk by integrating the navigation states. Such type of computation in which the
estimation of xk depends only on one state xk−1 but with a same time interval between them
belongs to the class of one-step integrators. If an external aiding observation is available at
time tk, an optimal state is computed by blending the predicted state and the observation. In
practice however, the sampling of the inertial sensors and the aiding sensors may not necessarily
occur at the same time. Also, the IMU sampling frequency may not be perfectly constant over
time, or even worse, some data gaps may occur. This makes the integration step size, noted
as ∆tk = tk − tk−1, not constant and forbids the application of classical multistep integrators
like the Runge-Kutta algorithm. This scenario was handled by Rosales and Colomina [2005]
who proposed to use multistep and predictor-corrector methods for integrating the navigation
equations. For the sake of completeness, the fundamental idea behind these two methods is
given in the sequel. A detailed derivation can be found in Rosales and Colomina [2005].

Consider a continuous function f(·). Then it is shown in Rosales and Colomina [2005] that for
r ≥ 2,

x̂k+r = x̂k+r−1 + ∆t

r∑
j=0

βjf (x̂k+j ,uk+j , tk+j) (2.3.15)

where {βj : j = 0, 1, . . . , r} are coefficients that can be obtained by solving the integral

βj =

∫ 1

s=0

r∏
i=0,i 6=j

s− (r − j − 1)

i− j
ds. (2.3.16)

By setting βr 6= 0 and β0 = 0 in Eq. (2.3.15), one gets the Adams-Moulton methods. If βr = 0
and β0 6= 0, the Adams-Bashforth methods are obtained. Eq. (2.3.15) shows that the case
of the Adams-Moulton method is an implicit problem which can be solved by means of the
following iterative scheme:

x̂
(m+1)
k+r = x̂k+r−1 + ∆t

βrf (x̂
(m)
k+r,uk+r, tk+r

)
+

r−1∑
j=1

βjf
(
x̂

(m)
k+j ,uk+j , tk+j

) (2.3.17)

where m = 0, 1, 2, . . . is the iteration index. The initial state value x̂
(0)
k+r can first be computed

using the Adams-Bashforth formula (prediction step), and then x̂k+r is corrected using the
Adams-Moulton iterative scheme (correction step).

In Rosales and Colomina [2005] it is shown how to construct a variable step-size multistep
predictor-corrector in which the values of the coefficients {βj} account for a non-constant
sampling period ∆tk+1 = tk+1 − tk. In summary the variable step-size multistep predictor and
corrector can be written as

x̂k = x̂k−1 + ∆tk

r∑
j=1

(βr−j)kf(x̂k−j ,uk−j , tk−j) (2.3.18)

x̂k = x̂k−1 + ∆tk

r−1∑
j=0

(βr−j)kf(x̂k−j ,uk−j , tk−j), (2.3.19)
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respectively.

For example for the particular case of r = 4 which was treated by Rosales and Colomina [2005],
the variable step-size coefficients for the predictor are:

(β0)k =
ζk

12∆tk−1 (∆tk−1 + ∆tk−2) (∆tk−1 + ∆tk−2 + ∆tk−3)

(β1)k = − ξk
12∆tk−1∆tk−2 (∆tk−2 + ∆tk−3)

∆tk

(β2)k =
3∆t2k + 4∆tk (2∆tk−1 + ∆tk−2 + ∆tk−3) + 6∆tk−1 (∆tk−1 + ∆tk−2 + ∆tk−3)

12∆tk−2∆tk−3 (∆tk−1 + ∆tk−2)
∆tk

(β3)k = −
3∆t2k + 4∆tk (2∆tk−1 + ∆tk−2) + 6∆tk−1 (∆tk−1 + ∆tk−2)

12∆tk−3 (∆tk−2 + ∆tk−3) (∆tk−1 + ∆tk−2 + ∆tk−3)
∆tk

with

ζk = 3∆t3k + 4∆t2k (3∆tk−1 + 2∆tk−2 + ∆tk−3)

+ 6∆tk [∆tk−1 (3∆tk−1 + 4∆tk−2 + 2∆tk−3) + ∆tk−2 (∆tk−2 + ∆tk−3)]

+ 12∆tk−1 [∆tk−1 (∆tk−1 + 2∆tk−2 + ∆tk−3) + ∆tk−2 (∆tk−2 + ∆tk−3)]

ξk = 3∆t2k + 4∆tk (2∆tk−1 + 2∆tk−2 + ∆tk−3)

+ 6∆tk−1 (∆tk−1 + 2∆tk−2 + ∆tk−3) + 6∆tk−2 (∆tk−2 + ∆tk−3)

and for the corrector:

(β1)k =
3∆t2k + 4∆tk (2∆tk−1 + ∆tk−2) + 6∆tk−1 (∆tk−1 + ∆tk−2)

12 (∆tk + ∆tk−1) (∆tk + ∆tk−1 + ∆tk−2)

(β2)k =
∆t2k + 2∆tk (2∆tk−1 + ∆tk−2) + 6∆tk−1 (∆tk−1 + ∆tk−2)

12∆tk−1 (∆tk−1 + ∆tk−2)

(β3)k =
3∆tk − 2 (2∆tk + ∆tk−1 + ∆tk−2)

12∆tk−1∆tk−2 (∆tk + ∆tk−1)
∆t2k

(β4)k =
∆tk + 2∆tk−1

12∆tk−2 (∆tk−1 + ∆tk−2) (∆tk + ∆tk−1 + ∆tk−2)
∆t2k.

Now that all the elements are defined, we can construct the variable step-size multistep
predictor-corrector navigation computer.

Attitude Integration

We define the digital attitude field as

f(xk,uk, tk) =
1

2
(qlb)k ⊗

[
(ωblb)k

]
q

(2.3.20)

where (qlb)k = (qlb)k|k−1 = qlb(tk). The digital quaternion (qlb)k can be predicted from the
previous epoch tk−1 using the Adams-Bashforth method:

(qlb)
−
k = (qlb)

+
k−1 + ∆tk

r∑
j=1

1

2
(βr−j)k−j(q

l
b)

+
k−j ⊗

[
(ωblb)

+
k−j

]
q

(2.3.21)
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Figure 2.2: Principle of the multistep variable step-size prediction-correction integration
algorithm. The left part shows the integration step when no update has to be performed (i.e.
IMU observations are available at all epochs but possibly at different time-intervals). The right
part shows the situation where an update has to be done (the field has to be interpolated at
the epoch with missing IMU observation).

where

(ωblb)k = (ωbib)k − (Cb
l )k(ω

l
il)k (2.3.22)

and

(ωlil)k = (ωlie)k + (ωlel)k. (2.3.23)

The cosine matrix (Cb
l )k can be retrieved from (qlb)k. Then, the correction step can be performed

by the Adams-Moulton formula:

(qlb)
+
k = (qlb)

+
k−1 +∆tk

1

2
(βr)k(q

l
b)
−
k ⊗

[
(ωblb)

−
k

]
q

+

r−1∑
j=1

1

2
(βr−j)k−j(q

l
b)

+
k−j ⊗

[
(ωblb)

+
k−j

]
q


(2.3.24)

From Eq. (1.5.10), it can be seen that (ωlil)k = f
(
(rle)k, (v

l
e)k
)
. Hence, (ωblb)

−
k can be computed

using (rle)
−
k , (vle)

−
k and (qlb)

−
k from the predicted state.

Velocity Integration

We define the digital velocity field as

f(xk,uk, tk) = (Cl
b)k(f

b)k −
[
2(ωlie)k + (ωlel)k

]
× (vle)k + (gl)k (2.3.25)
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where (vle)k = vle(tk), (gl)k = gl(tk) and (Cl
b)k = (Cl

b)k|k−1. The digital velocity vector (vle)k
can be predicted from the previous epoch tk−1 using the Adams-Bashforth method:

(vle)
−
k = (vle)

+
k−1 + ∆tk

r∑
j=1

(βr−j)k−j(f
l)+
k−j +

r∑
j=1

(βr−j)k−j(∆vlg/c)
+
k−j (2.3.26)

where (∆vlg/c)k can be obtained from Eq. (2.3.11), and (f l)k = (Cl
b)kf

b
k. Then, the correction

step can be computed using the Adams-Moulton formula:

(vle)
+
k = (vle)

+
k−1 + ∆tk

(βr)k

[
(f l)−k + (∆vlg/c)

−
k

]
+

r−1∑
j=1

(βr−j)k−j(f
l)+
k−j

+

r−1∑
j=1

(βr−j)k−j(∆vlg/c)
+
k−j

 (2.3.27)

Again, (rle)
−
k , (vle)

−
k and (qlb)

−
k can be used to compute (f l)−k and (∆vlg/c)

−
k .

Position Integration

We define the digital position field as

f(xk,uk, tk) = (D−1)k(v
l
e)k (2.3.28)

such that (rle)k = rle(tk). The digital position vector (rle)k can be predicted from the previous
epoch tk−1 using the Adams-Bashforth method:

(rle)
−
k = (rle)

+
k−1 + ∆tk

r∑
j=1

(βr−j)k−j(D
−1)+

k−j(v
l
e)

+
k−j (2.3.29)

where (D−1)k can be computed using (rle)k and (vle)k in Eq. (1.5.13). Then, the correction
step can be obtained using the Adams-Moulton formula:

(rle)
+
k = (rle)

+
k−1 + ∆tk

(βr)k(D
−1)−k (vle)

−
k +

r−1∑
j=1

(βr−j)k−j(D
−1)+

k−j(v
l
e)

+
k−j

 . (2.3.30)

Filter Update

Assume that an external observation is available at digital time tk. The navigation state is
predicted from epoch tk−1 to tk using Eq. (2.3.21), (2.3.25) and (2.3.29). At this stage, two
cases may happen:

1. The inertial observations at time tk, i.e. f bk and (ωbib)k exist. Then the correction step
is performed by applying Eq. (2.3.24), (2.3.27) and (2.3.30), the field is computed for
epoch tk, and the filter is updated. After the update, the fields f(xk,uk, tk) for attitude,
velocity and position are recomputed using the updated state vector before pursuing
with the integration (see left part of Figure 2.2).
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Figure 2.3: Integration error comparison between the classical and the Adams-Bashforth
integration algorithm.

2. There are no inertial observations at time tk, i.e. f bk and (ωbib)k are missing. In this
case, x−k can be computed but not f(x−k ,uk, tk). This renders any further integration
step impossible. A solution to this problem is to estimate the field at update epoch by
rearranging Eq. (2.3.19) like

f(x−k , tk) =
1

(βr)k

x−k − x+
k−1

∆tk
−

r−1∑
j=1

(βr−j)kf(x+
k−j ,uk−j , tk−j)

 . (2.3.31)

By this way, the filter can pursuie by integrating the state from tk to tk+1 at the next
filter step (see right part of Figure 2.2).

Note that the order of the predictor-corrector is reset to one after each update. This is to avoid
computing a prediction/correction with large discontinuities due to state corrections in the
previous field.

Finally, the advantage of using higher-order integrators is depicted in the right panel of Figure
2.3. The full line represents the integration error occuring when processing noise-free simulated
inertial observations (here ∆tk was simulated as a constant) with the classical integrator while
the dashed line is the error occuring when using the fourth-order variable step-size multistep
prediction-correction algorithm.

2.4 Filter Update Stage

When an external measurement arrives, the difference zk − h(x̂−k ) is performed, the Kalman
gain Kk is computed using P−k , Hk and Rk, and the state vector is updated using Eq. (1.9.7).

In the sequel, the measurement models h(·) together with the Hk and Rk matrices are derived
for different kinds of external measurements.
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2.4.1 Absolute Position Update

In a loosely coupled scheme, GNSS receivers provide absolute curvilinar position measurements,
denoted as zr = [zφ, zλ, zh]T , which can be used to update the filter. Let ab be the lever-arm
vector of the GNSS antenna location with respect to the origin of the l-frame expressed in the
b-frame. Then,

al = Cl
ba
b =

[
aN aE aD

]T
. (2.4.1)

The measurement model can be written as

zr = rle + D−1Cl
ba
b + vr (2.4.2)

where vr is the measurement noise such that vr ∼ N (0,Rr). Linearizing Eq. (2.4.1) yields

Hr =
[

I3×3 + Da 03×3 −D−1[al×] 03×6

]
(2.4.3)

where the auxiliary matrix Da is given by

Da =

 0 0 0 −aN
(RM+h)2

aE tan(φ)
(RP+h) cos(φ) 0 −aE

(RP+h)2 cos(φ)

0 0 0

 . (2.4.4)

Assuming that σr = [σrN , σrE , σrD ]T is the position uncertainty expressed in Cartesian coordi-
nates (NED), the measurement noise matrix can be written as

Rr =


(

σrN
RM+h

)2
0 0

0
(

σrE
(RP+h) cos(φ)

)2
0

0 0 σ2
rD

 . (2.4.5)

2.4.2 Absolute Velocity Update

Considering that velocity measurements expressed in l-frame, denoted as zv = [zvN , zvE , zvD ]T ,
are available from a GNSS receiver, the associated measurement model is defined as

zv = vle + ωllb ×
(
Cl
ba
b
)

+ vv (2.4.6)

where vv is the measurement noise such that vv ∼ N (0,Rv), and

ωllb = Cl
bω

b
ib − ωlil. (2.4.7)

Linearizing Eq. (2.4.6) yields

Hv =
[

[al×]D1 I3×3 + [al×]D2 [al×]
(
Ωl
il + 2Ωb

lb

)
03×3 −[al×]Cl

b

]
(2.4.8)
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where Ωl
il = [ωlil×], Ωl

lb = [ωllb×]. The auxiliary matrices D1 and D2 are given by

D1 =


−ωie sin(φ) 0 −λ̇ cos(φ)

RP+h

0 0 φ̇
RM+h

−
(
ωie cos(φ) + λ̇

cos(φ)

)
0 λ̇ sin(φ)

RP+h

 , (2.4.9)

D2 =

 0 1
RP+h 0

−1
RM+h 0 0

0 − tan(φ)
RP+h 0

 . (2.4.10)

The measurement covariance matrix is given by

Rv =

 σ2
vN

0 0
0 σ2

vE
0

0 0 σ2
vD

 (2.4.11)

such that σv = [σvN , σvE , σvD ]T are the standard deviations associated to zv.

2.4.3 Update using Non-holonomic Constraints

If we assume that the vehicle does not jump off the ground or slide lateraly, its velocity towards
the xb2-axis and the xb3-axis is almost zero when xb1 is aligned with the forward motion. In this
respect, two pseudomeasurements can be built for updating the filter:

zh =

[
vb2
vb3

]
=

[
0
0

]
. (2.4.12)

The b-frame velocity, vb, can be estimated using

v̂b = h(x̂) =
(
Ĉl
b

)T
v̂le. (2.4.13)

It can be shown Shin and El-Sheimy [2001] that perturbating Eq. (2.4.13) yields, to the first
order,[

zv1

zh

]
− h(x̂) ≈ Cb

l δv
l
e −Cb

l [v
l
e×]εl + vh (2.4.14)

with vh ∼ N (0,Rh). Taking the second and third row of the above equation gives the linearized
model

Hh =

[
01×3 c12 c22 c32 −vDc22 + vEc32 vDc12 − vNc32 −vEc12 + vNc22 01×6

01×3 c13 c23 c33 −vDc23 + vEc33 vDc13 − vNc33 −vEc13 + vNc23 01×6

]
.

(2.4.15)

The measurement noise matrix Rh is a (2× 2) matrix defined as

Rh =

[
σ2
v2

0
0 σ2

v3

]
(2.4.16)

such that σh = [σv2 , σv3 ]T are the standard deviations associated to zh.
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2.4.4 Zero-Velocity Update

If the vehicle is stopped, all velocity components of the vehicle are zero. Therefore, the following
pseudomeasurements can be constructed:

zz =

 vN
vE
vD

 =

 0
0
0

 (2.4.17)

Hence, the model can be written as

h(x̂) = v̂le (2.4.18)

and its linearization yields

Hz =
[

03×3 I3×3 03×9

]
. (2.4.19)

The measurement noise matrix Rz is defined as

Rz =

 σ2
zN

0 0
0 σ2

zE
0

0 0 σ2
zD

 (2.4.20)

such that σz = [σzN , σzE , σzD ]T are the standard deviations associated to zz.

2.5 Static Coarse Alignment

Since an INS is a dead-reckoning system, the initial attitude matrix Cl
b at time t0 has to

be either known or determined. The coarse alignment is a procedure to estimate attitude
parameters approximately. When the IMU is not moving with respect to Earth surface, the
inertial sensors observe natural quantities such as local gravity, Earth rotation or local magnetic
field. For that, coarse alignment has to be performed while the vehicle is not moving. Therefore,
before describing the implemented static coarse alignment algorithms, a developed non-moving
period detection algorithm is presented.

2.5.1 Automatic Detection of Non-moving Periods

Discriminating moving from non-moving periods may be of interest for mainly two reasons:

• Several conventional coarse alignment techniques like leveling and gyrocompassing require
signals acquired in non-moving conditions to be operational.

• In many applications like car navigation, the vehicule may stop regularly. If pure inertial
navigation continues during these non-moving periods, large estimation errors may occur
since noise and residual time-correlated errors will be integrated. This is especially true
when using low-grade sensors or sensors mounted on vibrating platforms (like a car).
Therefore, the filter should be aware of such scenarios by changing its integration strategy
and bounding the error growth.
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Figure 2.4: INS coarse and fine alignment procedure assuming large initial heading error.

Once non-moving periods are detected, a filtering strategy needs to be set. For instance, the
filter is reset with coarse alignment algorithm or fed with pseudomeasurements like zero-velocity
updates (see Figure 2.4). Regarding this, consider the set of static segments {Si : i = 1, . . . , I}
with each having a time span of duration Di ≥ 0. If Di < T with T ≥ 0 a user-defined
threshold, then pseudomeasurements (e.g. zero-velocity, position fix) updates are activated. If
Di ≥ T , the EKF covariance matrix Pk is reset and the filter is put in coarse alignment. The
determination of the static segments {Si} has been implemented in a fully automatic way. In
the sequel, we propose two different algorithms which are selected depending on wether or not
GNSS observations are available.

GNSS-based Detector

If GNSS-based velocity measurements zv are available, a simple thresholding rule on the
measured speed can be setup. The value for the threshold depends on the noise level of the
velocity measurements, and must be carefully chosen according to the propagated error when
computing the speed signal. Figure 2.5 shows the speed signal computed from the measured
GPS velocity for a car trajectory. The gray circles are the speed values belonging to the
detected static segments {Si}, and the black triangles correspond to speed values in dynamic
segments. In this case, the decision threshold was set at 0.25 m/s.

Inertial-based Detector

Specific force and angular rate measurements could directly be used as signals on which
the inertial-based detector can work. We propose to adapt a feature extraction methodology
initially developed for audio signal processing like silence removal or content-based segmentation
Giannakopoulos [2009]. The general idea of the non-moving periods detector is a three-
stage processing: first, feature sequences from which moving and non-moving periods can be
discriminated are computed; second, decision thresholds are dynamically estimated; third, the
sequences are detected and extracted.
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Figure 2.5: Identified non-moving GNSS epochs using the GNSS-based detector. The speed
samples belonging to moving and non-moving periods are marked as black triangles and gray
circles, respectively. The decision threshold was set at a speed of 0.25 m/s.

Feature Extraction Let {yk : k = 1 . . . , N} be samples of the jerk signal. A short-term
processing technique is adopted for calculating the chosen inertial signal feature. Since jerk
signals coming from platforms subject to static and dynamic condition are non-stationary, we
divide the signal in non-overlapping or overlapping short-term frames. For each of these frames,
which can be assumed as “quasistationary”, we calculate the feature using windowing technique.
The latter is achieved by convolving {yk} with a window sequence {wk, k = 1, . . . , L} of length
L:

(yi)k = ykwk−i·S , i = 1, 2, . . . ,M (2.5.1)

where {(yi)k : k = 1, . . . , N} is the sample sequence of the ith frame, S is the frame step
(window shift). We use the rectangular window sequence which is defined as:

wl =

{
1, 0 ≤ l ≤ L− 1
0, elsewhere (2.5.2)

Each frame yi has been windowed, and hence is time limited. Since (yi)k is time limited to L
nonzero samples, we can sample (yi)k at these values, yielding the sequence {(yi)l : l = 1, . . . , L}.
The L value should be chosen large enough for the feature calculation stage to be reliable,
and short enough for the assumed stationarity to hold. The shift value S is associated to
the level of overlap. For each frame, the feature κi can be computed, yielding the sequence
{κi : i = 1, . . . ,M} with length M = N−S

L + 1. In audio processing, time domain features are
usually combined with features that contain frequency-related information. In our context, we
propose to adopt the same methodology by choosing the two following features for {κi}:

• Signal energy (time-domain). For each frame yi, the energy can be calculated using

Ei =
1

L

L∑
l=1

|(yi)l|2 . (2.5.3)
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This feature is often used for detecting silent periods in audio signals, which is a very
similar problematic to detecting non-moving periods in jerk signals. In the upper left
panel of Figure 2.6, the energy sequence of the jerk signal issued from the same dataset
as already used in Section 2.5.1 is shown. Comparing this to Figure 2.5 obviously reveals
that large variations in the energy signal are strongly related to moving periods. The
choice of this feature is motivated mainly for its simplicity and its excellent performance
in cases were the level of sensor noise is not very high (as it is the case for tactical- and
navigation-grade IMUs).

• Spectral centroid (frequency-domain). Let {(Yi)l : l = 1, . . . , L} be the sequence of
Discrete Fourier Transform coefficients of the ith short-term frame {(yi)l}, i.e.

{(yi)l} ←→ Yi(·). (2.5.4)

Then the spectral centroid , Ci, of yi is defined as the center of gravity of its spectrum,
i.e.,

Ci =

∑L
l=1 l · (Yi)l∑L
l=1(Yi)l

(2.5.5)

which is a measure of the spectral position. In the upper right panel of Figure 2.6, the
spectral centroid sequence is shown again for the same jerk signal. It is obvious that for
non-moving periods, the spectral centroid sequence has very low amplitude. The choice of
this feature was motivated by the fact that a signal containing components coming from
platform vibrations has a larger spectral centroid. This is due to the fact that signals
caused by vibrations contain higher frequencies than sensor noise.

Note that typical values for the window length L were set such that between 0.5 and 1.0
seconds of inertial samples were considered in each frame. The window shift S was chosen to
yield 50% overlap between successive frames.

Non-moving Periods Segments Detection Once both feature sequences are computed,
a simple threshold-based algorithm is applied for extracting the non-moving periods segments.
The empirical histogram is evaluated for both feature sequences. To yield better results, a
smoothing can be performed by low-pass filtering the feature sequence prior computing the
histogram. This is shown as the black lines in the upper two panels of Figure 2.6. Then, the
first two local maxima of each histogram, denoted as M1,s and M2,s for s = 1, 2, are detected
and the two thresholds Ts computed as a weighted average

Ts =
p ·M1,s +M2,s

p+ 1
for s = 1, 2 (2.5.6)

where weight p is user-defined. The thresholds are depicted as black horizontal lines in the two
upper panels of Figure 2.6. The two feature sequences are then thresholded, and the segments
are constructed by merging successive frames for which the respective feature values (for both
feature sequences) are below the computed thresholds.
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Figure 2.6: Identified non-moving periods using the inertial-based detector. The upper panels
show the linear jerk signal energy (left panel) and spectral centroid (right panel) from which
the decision threshold is computed (black horizontal lines). Both the original (gray curves) and
low-pass filtered (black curves) feature sequences are drawn. The lower panels depict the final
result on the complete jerk signal (left panel) and a close view on a period during which the
car was stopped (right panel). The epochs detected as belonging to moving and non-moving
periods are drawn in black and gray, respectively. Note that the jerk peaks in the detected
non-moving periods are due to parasite movements of the vehicle which can be filtered out.
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Figure 2.7: Identified non-moving GNSS epochs using the inertial-based detector. The left
panel shows the complete speed signal in which samples detected in non-moving and moving
periods are coded as gray circles and black triangles, respectively. The right panel provides a
close view on a period during which the car was stopped.

Results The result of the feature-based detection is illustrated in the lower panels of Figure
2.6. The panels show the jerk signal in which the non-moving periods are colored in gray, while
the regions containing dynamics are colored in black. In both panels of Figure 2.7, the GPS
speed measurements corresponding to detected non-moving and moving periods are color-coded
as gray circles and black triangles, respectively. The right panel provides a close view on a
detected non-moving period during which the car was stopped at a red light.

2.5.2 Static Self-Alignment using Accelerometers and Gyroscopes

In this approach, the coarse alignment is based on the principle that the accelerometers sense
only gravity gl, while the gyroscopes sense only the Earth rate in the b-frame, ωbie. For that, it
is assumed that initial position rle(t0) is known and that vle(t0) = 0 and v̇le(t0) = 0. Such an
alignment procedure can be formulated by the following relationship:[

−f b ωbib −f b × ωbib
]
tk

= Cl
b(t0)

[
−gl ωlie −gl × ωlie

]
t0
. (2.5.7)

Therefore, the initial attitude matrix can be estimated by

Cl
b(t0) =

[
−f b ωbib −f b × ωbib

]
tk
·
[
−gl ωlie −gl × ωlie

]−1

t0
(2.5.8)

Although it is clear from Eq. (2.5.8) that the coarse self-alignment could be done at each epoch
tk, more accurate results can be obtained by averaging the data over the detected non-moving
period, while estimating residual systematic errors. Note that the matrix on the right hand
side of Eq. (2.5.8) could be noninvertible if the observed angular rotation ωlie is close to zero
(i.e. close to poles).
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2.5.3 Static Alignment using Accelerometers and Magnetometers

In low-grade (e.g. MEMS-based) gyroscopes, the noise level may typically be superior to 0.1
deg/s/

√
Hz and the residual systematic errors as high as several deg/s. In such conditions, the

Earth rate cannot be sensed, and therefore the classical self-alignment technique presented in
the previous section cannot be applied. For this reason, Waegli [2009] proposed a modified
coarse alignment method using MEMS-based magnetometers. The principle is similar to the
alignment of a pair of vectors but magnetic field is used instead of Earth rotation. Such an
alignment method can be written as[

−f b mb −f b ×mb
]
tk

= Cl
b(t0)

[
−gl ml −gl ×ml

]
t0
. (2.5.9)

where mb are the magnetic measurements obtained from the magnetometers, and ml is the
Earth magnetic field deduced from any global or local reference model (e.g. the World Magnetic
Model (WMM) described in Anonymous). The initial attitude can be estimated by

Cl
b(t0) =

[
−f b mb −f b ×mb

]
tk
·
[
−gl ml −gl ×ml

]−1

t0
. (2.5.10)

Again, f b and mb observations can be averaged over a non-moving period to suppress the noise
level. Note that the matrix on the right hand side of Eq. (2.5.10) could be noninvertible if the
local magnetic field vector ml is close to zero (i.e. close to magnetic poles).

2.5.4 Quaternion Estimation Algorithm

The quaternion estimation (QUEST) algorithm exploits the Earth’s gravity and magnetic field
by minimizing the following cost function J(·) Wahba [1965], Waegli [2009]:

J
(
qbl

)
=

1

2

2∑
j=1

wk

(
bj −Cb

lnj

)2
(2.5.11)

with the condition
(
qbl
)T ⊗ qbl = 1, and wk being weights. The term bj with j = 1, 2 expresses

a measurement in the b-frame (i.e. magnetic observation mb or specific force f b), and nj a
corresponding reference value in the l-frame (i.e. ml or gl). Such a minimization problem
is known as Wahba’s problem Wahba [1965] and has the advantage of directly providing
unambiguous orientation.

An experimental evaluation of the orientation initialization performance based on the QUEST
algorithm and the method presented in Section 2.5.3 using MEMS-based sensors was done by
Waegli [2009] .

2.6 INS Fine Alignment

Once the coarse alignment is performed, the fine alignment refines the approximate attitude
by estimating misalignment angles in the EKF. Generally, fine alignment is achieved in-motion
assuming known initial attitude. A detailed review on the alignment methods can be found in
Kong [2000]. Here, we describe briefly the implemented algorithms.
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Basically, most in-motion alignment methods assume small initial misalignments, as it is the
case in models (1.7.25) and (1.7.42). However, the previous section mentioned that low-grade
IMUs have generally lower resolution than the observable quantity due to the Earth rate. In
such cases, the self-alignment will not work and external sensors such as magnetometers are
required. If they are not available or if the local magnetic deviations are too large (e.g. on
a machine), the initial misalignment may be large and the small angle assumption made in
models (1.7.25) and (1.7.42) is no longer valid. Note that similar conditions may occur also
for tactical-grade gyroscopes if the (static) averaging time is too short. We implemented two
approaches able to deal with large uncertainty in initial attitude.

2.6.1 Quaternion-based Large-angle Misalignment Algorithm

In the context of Skaloud et al. [2009], Tomé and Yalak [2008], an in-motion alignment technique
compatible with large misalignment angles has been developed. The algorithm is based on the
true frame approach and corrects the attitude quaternion at each EKF update stage. The a
priori estimated attitude quaternion (q̂lb)

−
k for digital times {tk : k ∈ Z+} is updated using the

a posteriori orientation errors estimate (ε̂l)+
k provided by the quaternion mechanization Tomé

and Yalak [2008]:

(q̂lb)
+
k =

[
(ε̂l)+

k

]
q
⊗ (q̂lb)

−
k (2.6.1)

where
[
(ε̂l)+

k

]
q
is the quaternion equivalent of the estimated attitude error angles, (ε̂l)+

k . After
coarse alignment, the filter is put in fine alignment mode using the following nonlinear large
attitude form for

[
(ε̂l]+k

)
q
:

[
(ε̂l)+

k

]
q

=

 cos
(
||εl||

2

)
εl

||εl|| sin
(
||εl||

2

)  . (2.6.2)

When the ε̂l angles diminish to one degree, the algorithm switches to the small angle approxi-
mation in which

(
(ε̂l)+

k

)
q
is approximated by

[
(ε̂l)+

k

]
q
≈

[ √
1− ||(ε̂l)+

k ||2
1
2(ε̂l)+

k

]
. (2.6.3)

In practice, the initial tilt angles are approximated in the coarse alignment stage and the initial
heading is set in the (−π,+π) range (see Figure 2.4). Most of the time, the large attitude
errors are corrected in a very short period of time (typically a few iterations).

2.6.2 Model for Large Misalignment Errors based on c-Frame Approach

In Kong et al. [1999], a general nonlinear c-frame approach that assumes large misalignment
angles has been proposed. They generalized the computer frame navigation model described in
Eq. (1.7.42), yielding the large attitude navigation error model: δṙc

δv̇c

ψ̇

 =

 −ωcec × δrc + δvc(
I−Cc

p

)
fp − (2ωcie + ωcec)× δvc + δgc + Cp

bδf
b

(I−Cp
c) · (ωcie + ωcec)−Cp

bδω
b
ib

 (2.6.4)

51



Navigation Filter Implementation

with

Cc
p = C1(ψN ) ·C2(ψE) ·C3(ψD). (2.6.5)

Let

sN = sin(ψN ), cN = cos(ψN )
sE = sin(ψE), cE = cos(ψE)
sD = sin(ψD), cD = cos(ψD)

(2.6.6)

Then, Eq. (2.6.5) becomes

Cc
p =

 cEcD − sEsNsD −cNsD sEcD + cEsNsD
cEsD + sEsNcD cNcD sEsD − cEsNcD
−sEcN sN cEcN


Two special cases are considered in Kong et al. [1999]:

• If ψN , ψE and ψD are small, then by using the infinitesimal rotation approximations
defined in Section 1.2.4, we get Cc

p ≈ I + [ψ×] and Cp
c ≈ I− [ψ×]. Substituting both

approximations into Eq. (2.6.4) yields the small angle model of Eq. (1.7.42).

• If ψD is large and ψN and ψE are both small, we are in the case of large uncertainty in
heading and low uncertainties in tilt angles. With this assumption, Cc

p is approximated
by

Cc
p =

 cD −sD ψEcD + ψNsD
sD −cD ψDsD − ψNcD
−ψE ψN 1

 , (2.6.7)

where, again, the approximations defined in Section 1.2.4 were used. Substituting this
matrix Cc

p into Eq. (2.6.4) yields the large heading uncertainty model.

In practice, the platform leveling is achieved using coarse alignment techniques in which tilt
angles are generally quite well approximated (even when using low-grade IMUs), and the
heading is arbitrarily fixed in the (−π,+π) range (see Figure 2.4). Then, the EKF is operated
based on model (2.6.4) in which approximation (2.6.7) is used, and at each filter update, the
ψ̂l estimation is used to rotate the c-frame to coincide with the p-frame. As stated by Kong
et al. [1999], the large heading errors are usually compensated in a short period of time. When
the misalignment angles are below one degree, the small angle model defined in Eq. (1.7.42),
or its equivalent true frame model (1.7.25), is used.
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Chapter 3

Stochastic Processes

3.1 Introduction

This chapter provides background information necessary to understand the notations, develop-
ments and analyses in forthcoming chapters. It is assumed that the reader is already familiar
with the basic concepts and therefore only the essential elements are provided. The content
of this chapter is extensively based on Gelb [1974], Hamilton [1994], and some additional
references mentioned throughout the text.

When acquiring or designing sensors, one naturally searches for the best sensors that achieve the
requirements in terms of aimed performance and costs. If the sensor manufacturers remove, to
the best extent possible, all predictable errors corrupting the sensor’s output (e.g cross-coupling
errors, temperature dependent errors), there are generally still remaining noncompensated
errors. These must be accomodated within the design of an integrated navigation system by
appropriate modeling of the stochastic process.

The concepts of stochastic process together with associated fundamental elements are defined
in Sections 3.2 and 3.3. The broad-band white noise is handled in Section 3.4 before moving to
the properties of linear systems driven by random signals in Section 3.5. Finally, we define in
Section 3.6 all the stochastic processes that will be used throughout the thesis.

3.2 Definition

Let t ∈ T denote the time. A stochastic process is defined as a real-valued function X(·)
such that for any fixed t, X(t) is a random variable. In particular, if T ⊆ R, then X(t) is a
continuous-time stochastic process. If T ⊆ Z, t is a sequence of times indexed by variable k,
noted {tk : k ∈ Z}, and X(·) becomes a sequence of random variables, {Xk : k ∈ Z}, recorded
at a sampling interval ∆t assumed to have time units (e.g. seconds).
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3.3 Stationarity, Autocorrelation Sequence and Power Spectral
Density Function

A discrete-time process {Xk : k ∈ Z} is said to be (weakly) stationary if it satisfies the following
two properties:

1. E [Xk] = µX for all k ∈ Z; i.e. the expected value of all components Xk in {Xk} is time
invariant; and

2. cov [Xk, Xk+τ ] = sX,τ for all k, τ ∈ Z; i.e. the covariance between any two components
Xk and Xk+τ is independent of time.

The sequence {sX,τ : τ ∈ Z} is called the autocovariance sequence which is symmetric about
τ = 0 in the sense that sX,−τ = sX,τ for all τ . The autocorrelation sequence (ACS), noted
{ρX,τ : τ ∈ Z}, can be defined as

ρX,τ = cor [Xk, Xk+τ ] =
sX,τ
sX,0

. (3.3.1)

Under the condition that
∞∑

τ=−∞
s2
X,τ <∞, (3.3.2)

the following relationship can be written:

SX(f) = ∆t
∞∑

τ=−∞
sX,τe

−i2πfτ∆t for |f | ≤ fN ≡
1

2∆t
(3.3.3)

where fN i the Nyquist frequency , ∆t = tk − tk−1 is the sampling interval, and SX(·) is the
Power Spectral Density (PSD) function. Standard Fourier analysis shows that {sX,τ} is the
inverse Fourier transform of SX(·):

sX,τ =

∫ fN

−fN
SX(f)ei2πfτ∆tdf, for τ ∈ Z. (3.3.4)

In particular, for τ = 0, the following fundamental result can be calculated:∫ fN

−fN
SX(f)df = sX,0 = var [Xk] , (3.3.5)

meaning that SX(·) decomposes the process variance with respect to frequency.

Note that we will designate ρX(τ) as the continuous equivalent of the ACS defined in Eq.
(3.3.1), i.e.

cor [X(t), X(t+ τ)] = ρX(τ) (3.3.6)

where t, τ ∈ R, and will be referred to as the autocorrelation function (ACF (ACF).
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3.4 White Noise

A stationary process of particular interest is the continuous white noise process, W (t). By
definition, the PSD of W (t) is constant:

SW (f) = q (3.4.1)

where q ∈ R+ is the amplitude of the continuous process PSD1. Then, by Eq. (3.3.1), the ACF
is

ρW (τ) = qδ(τ). (3.4.2)

Despite the fact that a white noise process can have any probability distribution, the Gaussian
distribution is often assumed.

The equivalent discrete-time white noise process {Wk : k ∈ Z} is the average of W (t) over a
small ∆t, i.e.

Wk =

∫ tk

tk−1

W (s)ds, with ∆t = tk − tk−1, (3.4.3)

and its ACS is

ρW,τ = σ2
W δτ (3.4.4)

where δτ is the dimensionless Kronecker delta function2. If the navigation system is based on
sensor error models which account for all known or predictable effects, then the remaining
residuals can be accurately modeled as the output of a discrete linear system driven by Gaussian
white noise input Wk. In such as case, Wk ∼ N

(
0, σ2

WN

)
.

3.5 Statistical Properties of Linear Systems with Random In-
puts

As discussed in Chapter 1, sensor biases are often modeled via the state augmentation approach.
Thus, linear stochastic systems forced by Gaussian white noise vector W (t) and providing
output X(t) are of special interest.

Consider a (deterministic) time-invariant, causal, linear system with stochastic input W (t) and
output X(t). Then,

X(t) =

∫ t

−∞
h(t− λ)W (λ)dλ (3.5.1)

can be seen as a filter in which h(·) is called the impulse response of the linear system. Using
our notation for Fourier transform pairs, we can write

h(·)←→ H(·) (3.5.2)
1Since δ(τ) has units of 1/sec = Hz, q has the units of W squared, divided by Hz.
2The dimension of σ2

W are the dimensions of Wk squared.
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where H(·) is called the transfer function. If W (t) is wide sense stationary, manipulation of Eq.
(3.5.1) leads to relationships between the continuous correlation function of W (t) and X(t)
Farrell [2008]:

ρWX(τ) =

∫ ∞
−∞

ρW (τ + λ)h(λ)Tdλ (3.5.3)

ρX(τ) =

∫ ∞
−∞

h(λ)ρWX(τ − λ)dλ. (3.5.4)

Note that ρWX(τ) is the continuous cross-correlation function defined by

cor [W (t), X(t+ τ)] = ρWX(τ) (3.5.5)

where t, τ ∈ R. The Fourier Transforms of Eq. (3.5.3) and (3.5.4) yield

SWX(f) = SW (f)H(f)∗ (3.5.6)
SX(f) = H(f)SW (f)H(f)∗ (3.5.7)

where H(·)∗ is the complex conjugate transpose of H(·), and SWX(·) is the cross-PSD function.
Eq. (3.5.7) can be exploited for finding a linear system realization H(·) which produces a given
colored noise process X(t) from a white noise input W (t) Farrell [2008].

3.6 Stochastic Error Models

3.6.1 Random Constant

A random constant can be generated as the output of an integrator with no input, but with an
initial condition X(t0), t0 ∈ R and variance P (0) = PX0 such that X(t0) ∼ N (µX0 , PX0). The
controlling differential equation is

Ẋ(t) = 0 (3.6.1)

starting from X(t0). Since the samples are constant in time, the ACF is given by

ρX(τ) = PX0 + µ2
X0

for τ ∈ R, (3.6.2)

and the PSD is

SX(f) =
(
PX0 + µ2

X0

)
δ(f). (3.6.3)

The equivalent discrete process is the sequence {Xk : k ∈ Z} such that

Xk+1 = Xk (3.6.4)

considering X0 ∼ N
(
µX0 , σ

2
RC

)
. Some parts of the sensor error (e.g. scale factor, switch-on to

switch-on nonrepeatability biases) can be modeled using random constant processes.
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3.6.2 Random Walk

A random walk is the output of an integrator driven by Gaussian white noise:

Ẋ(t) = W (t) for t ∈ R. (3.6.5)

Integrating this equation yields

X(t) =

∫ t

t0

W (s)ds (3.6.6)

with initial condition X(t0) and ACF ρW (τ) = q · δ(τ), t0, τ ∈ R. The random walk process is
not stationary. Thus, the ACF depends on both involved time instants (not only on the time
interval):

ρX(τ) =

{
q · (t− t0) if t+ τ ≥ t > t0
q · (t+ τ − t0) if t > t+ τ > t0

(3.6.7)

where q is the amplitude of the PSD of W (t). The variance of the random walk grows linearly
with time, implying

var [X(t)] = q · (t− t0). (3.6.8)

The equivalent discrete process is the sequence {Xk : k ∈ Z} such that

Xk+1 = Xk +Wk (3.6.9)

with Wk ∼ N
(
0, σ2

RW

)
, and σ2

RW = q · ∆t. Random walk processes are frequently used in
inertial navigation due to the time integration of sensor data. In case of an accelerometer,
white noise corrupting f b samples propagates as a random walk when the measurements are
integrated to obtain velocity. In case of a gyroscope, white noise in ωbib results in a random
walk of the attitude obtained by integrating the gyroscope measurements.

3.6.3 Exponentially Time-Correlated (First-Order Gauss-Markov) Process

These models are first order lags driven by Gaussian white noise W (t) of strength q described
by

Ẋ(t) = −βX(t) +W (t) for t ∈ R, (3.6.10)

where q = 2σ2
GMβ with β ∈ R+ assumed constant in time. The initial condition X(t0) can be

chosen to make the process stationary. The associated ACF decreases exponentially, i.e.

ρX(τ) = σ2
GMe

−β|τ | for τ ∈ R, (3.6.11)

where σ2
GM = var [X(t0)]. The PSD is given by

SX(f) =
2σ2

GMβ

4π2f2 + β2
. (3.6.12)
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The discrete version is the sequence {Xk : k ∈ Z} described by

Xk+1 = e−β∆tXk +Wk (3.6.13)

such that Wk ∼ N (0, qk) with

qk =
q

2β

[
1− e−2β∆t

]
(3.6.14)

and q/(2β) = σ2
GM . Gauss-Markov processes are frequently used to approximate a wide variety

of empirically observed band-limited (wide or narrow-band) noises. The parameter β reflects
the degree of correlation and can be seen as the inverse correlation time tc = 1/β. If tc is
large, the signal is highly correlated in time. If tc is near zero, the process looks like a random
constant. If tc is small, the signal quickly decorrelates and the process becomes similar to white
noise.

3.6.4 Quantization Noise

Quantization noise is due to the digital nature of the inertial sensor outputs. The PSD of this
particular process is given by

SX(f) = 4∆tQ2 sin2

(
πf

∆t

)
(3.6.15)

where Q is the quantization noise coefficient. The differential equation description of quantiza-
tion noise is expressed as follows Han and Wang:

X(t) = Q ·
√

∆t · U̇(t) (3.6.16)

where U(t) is a unit white noise. Therefore, the corresponding discrete sequence {Xk : k ∈ Z}
can be generated by discretizing Eq. (3.6.16).

3.6.5 Random Rate Ramp

The random rate ramp is a function which grows linearly with time. The growth rate is a
random variable with given probability density. Two states are necessary to control such
process:

Ẋ1(t) = X2(t)

Ẋ2(t) = 0
(3.6.17)

where X1(t) is the random ramp process, X2(t) is the slope of the ramp, and t ∈ R. The mean
square value of X1(t) grows parabolically with time, i.e. E

[
X2

1 (t)
]

= E
[
X2

2 (0)
]
· t2.

The discrete sequence {Xk : k ∈ Z} can be obtained by

X1,k+1 = X1,k +X2,k ·∆t
X2,k+1 = X2,k

(3.6.18)

for k ∈ Z such that X1,0 ∼ N
(
µX1,0 , σ

2
RR,1

)
and X2,0 ∼ N

(
µX2,0 , σ

2
RR,2

)
. In the sequel, we

will denote the ramp slope as cRR = X2. Note that the random ramp is not a stationary
process.
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3.6.6 Bias Instability

The bias instability, also known as 1/f or flicker noise, models bias fluctuations in signals. The
PSD of a bias instability process X(t) is

SX(f) =

{ (
B2

2π

)
1
f if f ≤ f0

0 if f > f0

(3.6.19)

where B is the bias instability coefficient and f0 is the cutoff frequency Std 1293-1998 [1998].
Numerous approaches have been developed over the years to approximate 1/f noise. The most
common are ARMA-based models, wavelet analysis and first-order Gauss-Markov processes.
One way of obtaining a discrete sequence {Xk : k ∈ Z} of fluctuating bias is using

Xk+1 =

{
Wk+1 if mod(tk+1, TBI) = 0
Xk otherwise (3.6.20)

with TBI the period of the fluctuations, andWk ∼ N (0, σ2
BI). Electronics and other components

susceptible to random flickering generate noise of low-frequency nature which can be modeled
using a bias instability process.
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Chapter 4

Traditional Model Estimation
Techniques

4.1 Introduction

The purpose of this chapter is to discuss the instrument error terms in ∆f b and ∆ωbib defined
in Eq. (1.4.3) and (1.4.4). Sensors biases are usually modeled as stochastic processes using
states xa and xg in the augmented part of the navigation filter state space model. The choice
of the processes and the following determination of their parameters is part of the filter design
procedure.

In the sequel, the justification of the first part of this research is brought in Section 4.2
which demonstrates why designing a navigation filter is a non-trivial task. Section 4.3 sets
the assumptions on which the next chapters rely. The subsequent Sections 4.4, 4.5, 4.6 and
4.7, present the classical methods used within the navigation community for designing filters.
Finally, Section 4.8 concludes with the main limitations of these standard methods and provides
the motivation for the next two chapters.

4.2 The Challenge of Filter Design

4.2.1 Problem Statement

Consider the sequence {yk : k = 1, . . . , N} representing the observed one-dimensional non-
compensated error signal of an accelerometer or a gyroscope. This sequence can be seen
as a realization of an univariate Gaussian time series {Yk : k ∈ Z} that we assume to be
stationary1 and to which the conditional distribution F (Yk|Yk−1, Yk−2, . . . ,θ) with parameters
θ ∈ Θ ⊆ Rp is associated. Therefore,

Yk ∼ F (Yk|Yk−1, Yk−2, . . . ,θ) . (4.2.1)
1Yk can also be non-stationary but with stationary backward differences of order d. The first-order backward

difference of Yk is Y (1)
k = Yk − Yk−1 and the backward difference of order d is Y (d)

k = Y
(d−1)
k − Y (d−1)

k−1 .
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Figure 4.1: The filter design loop. In this thesis, the main focus is set on the elements enclosed
by the dashed line (adapted from Nelson [2000]).

Navigation filter design requires an answer to three questions which may have significant impact
on filter performance:

1. Which processes should be considered for building F (·) that best describes the underlying
dynamics of the observed sensor error sequence {yk}?

2. How can the parameters θ of the resulting model F (·) be accurately estimated?

3. How can the model be validated?

The first question refers to the model building problem, which aims at finding a plausible
model to be estimated. In the filter design context, the tradeoff between the accuracy of the
model with respect to the application and the increased computational load involved by the
augmented state must be taken into account by the designer at this stage.

The second question tackles the model estimation problem, which becomes nontrivial when
multiple processes are mixed. At this stage, a model estimation algorithm together with a cost
function must be chosen in order to select a model from the set and estimate its parameters.
This will be the core topic of this and the following two chapters.

The model validation step is a very challenging task in inertial navigation for several reasons.
First, only one realization of the trajectory is generally observed, making any statistical analysis
difficult or even impossible. Second, highly variable conditions (e.g. temperature changes or
vibrations) may largely affect the behavior of the sensors and thus change the underlying
error dynamics. Finally, an inadequate set of observations {yk} and/or too many states in
F (·) may result in a problem referred to as the observability problem. Although the system
dynamics and the observation models should reflect the real navigation situation by including a
representative number of states, the interrelationships within the dynamic model as well as the
external observations may affect the observability of these states Jekeli [2000]. In this thesis,
we validate models at observation level by comparing the noise structure between observed
signals and synthetic signals generated under F (θ̂), and at state level by analysing navigation
performance with respect to a reference when inertial navigation is operating in coasting mode.
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Figure 4.2: Simulation scenario demonstrating the impact of the inertial sensor calibration
quality on the filtered position obtained by the EKF using different models (see Table 4.1).
The results are presented on a two-dimensional planimetric frame (left panel), and separately
along planimetric and altimetric axes (right panel).

The three steps must inevitably be used within a filter design loop as represented in Figure
4.1. At each step, some prior knowledge from the designer (e.g. type of application, expected
sensor behavior) must be taken into account.

4.2.2 Importance of Filter Design

The quality of the sensor error modeling will directly influence the final estimated navigation
solution. To illustrate this statement, we emulated accelerometer and gyroscope signals (at 100
Hz) along a known trajectory followed by a car. Then, we corrupted them with some error
driven by a selected (known) model F (θ) which is the sum of a Gaussian white noise and a
first-order Gauss-Markov process:

xk+1 = e−β∆txk + wk, wk ∼ N (0, q)

yk = xk + vk, vk ∼ N (0, r)
(4.2.2)

with q = σ2
GM

(
1− e−2β∆t

)
, r = σ2

WN , and ∆t is the sampling interval. In this example, we
have θ = {β, σ2

GM , σ
2
WN}. We then used simulated GPS positions (1 Hz) as measurements

in an EKF to estimate the inertial sensor biases and calibrate the sensors. We artificially
introduced a GPS-free period of 50 seconds duration during which the position error growth
is solely driven by the inertial sensor errors that accumulate with time. This effect is shown
in Figure 4.2 for three scenarios (see also Table 4.1). In the first trajectory (solid line), we
introduced the correct and complete error model in the EKF. In the second trajectory (dotted
line), we used a wrong correlation time β, while in the third trajectory (dashed line), we didn’t
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Table 4.1: Parameter values used in the computation of the Kalman filter trajectory for the
three scenarios.

Sensor Scenario β σGM σWN

Accelerometers 1/s µg/
√
Hz µg/

√
Hz

Correct model 1.0 · 10−4 50.0 70.0
Wrong β 1.0 · 10−2 50.0 70.0
Without GM – – 70.0

Gyroscopes 1/s deg/s/
√
Hz deg/s/

√
Hz

Correct model 1.0 · 10−4 10.0 30.0
Wrong β 1.0 · 10−2 10.0 30.0
Without GM – – 30.0

include the Gauss-Markov process at all. From Figure 4.2, it can be seen that the calculated
trajectory is significantly better when using the correct model compared to the second and
third scenarios which mimic the situation in which the model’s parameters are unknown or
badly estimated. In these cases, the estimated trajectory deviates by about 60 meters from
the true one after 60 seconds, while this deviation is smaller than 10 meters when the correct
model is employed.

4.3 Assumptions

We are interested in estimating θ , the parameter vector that defines the model F (·) of the
underlying error components ∆f b and ∆ωbib in Eq. (1.4.3) and (1.4.4) affecting accelerometers
and gyroscopes. With this respect, we make the following assumptions:

• Considering Eq. (1.4.3) and (1.4.4), we restrict the problem to the modeling and the
estimation of the stochastic sensor behavior included in w•. For clarity reasons, we define
{yk : k = 1, . . . , N}, as the time series of samples contained in one single line of w•, i.e.
the error signal observed by one sensor;

• We restrict the set of possible models F (·) to linear combinations of independent stochastic
processes that are presented in Chapter 3. We refer to such models as composite Gaussian
processes which have the following definition.

Definition 4.3.1. A composite process is a sum of independent processes.

As already mentioned, issues like computational load or observability must be taken into
account when designing a navigation filter. We believe that this set of model structure
is fairly general to be used with a large class of sensors. In particular, combinations of
multiple first-order Gauss-Markov processes are of interest since they can approximate
many random processes Brown and Hwang [1997], Bryson [2002], Xing [2010].

In other words, we search for the optimal design of the augmented states in Eq. (1.8.9) by
choosing the type of processes δf bj and δωbib,j to put in δxa and δxg of Eq. (2.2.5). The next
sections describe standard engineering methods which are used to design such models.
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Figure 4.3: Autocorrelation sequence of the correlated part of a signal {yk} modeled as a
first-order Gauss-Markov process. The inverse correlation time parameter β can be deduced at
the e−1 point.

4.4 Signal Autocorrelation Method

Computing the ACS of the observed signal {yk : k = 1, . . . , N} may reveal the presence or
not of correlated noise. This modeling technique assumes the noise to be composed of an
uncorrelated and a correlated part which are commonly handled by models of the type of Eq.
(4.2.2). The procedure, described with a detailed example in Xing [2010], consists in low-pass
filtering {yk} to remove the uncorrelated part, and then fitting a model to the ACS of the
remaining correlated filter output. For example, Figure 4.3 illustrates the estimated ACS of
the correlated part of an {yk} sequence simulated under model (4.2.2) using β = 0.005 and
σGM = 0.005. The inverse correlation time β can be deduced from the normalized ACS using
Eq. (3.6.11) (i.e. σ = 1) at ρ̂y,1/β = e−1 ≈ 0.3679, and σ̂GM =

√
var [yk].

However, when several processes are superposed, the ACS does not always enable to clearly
separate them. The estimation of the model parameters becomes challenging or even impossible
in such cases.

4.5 Variance Methods

4.5.1 Allan Variance

The Allan variance was invented in 1966 by David Allan when he criticized the use of the
sample variance estimator in the context of non time series. He proposed the Allan variance
as an alternative theoretical measure of variability Allan [1966]. Although this method was
originally intended to study the stability of oscillators, it has been successfully applied to
problems dealing with a large number of different types of sensors, among which stands the
modeling of inertial sensor errors Guerrier [2009], Hou [2004], El-Sheimy et al. [2008], Strus
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et al. [2007], Xing and Gebre-Egziabher [2008]. In 1998, the IEEE standard put forward this
technique as a noise identification method to determine the characteristics of the underlying
random processes that perturb data The Institute of Electrical and Electronics Engineers Inc.
[2005].

Let Ȳk(τ) be the sample average of τ consecutive observations, i.e.

Ȳk(τ) =
1

τ

τ−1∑
j=0

Yk−j .

The Allan variance at scale τ , noted as σ2
Ȳ

(τ), aims to measure how much the sample average
Ȳk(τ) changes from one period of time to another. This quantity is defined as half the expectation
of squared differences between adjacent nonoverlapping Ȳ (τ):

σ2
Ȳ (τ) =

1

2
E
[(
Ȳk(τ)− Ȳk−τ (τ)

)2]
. (4.5.1)

Several estimators of the Allan variance, noted σ̂2
ȳ(τ), have been proposed. The asymptotically

most efficient among them has been proposed in Greenhall [1991] and can be computed from a
realization {yk : k = 1, . . . , N} using

σ̂2
ȳ(τ) =

1

2(N − 2τ + 1)

N∑
k=2τ

(ȳk(τ)− ȳk−τ (τ))2 . (4.5.2)

The Allan variance can be expressed in the frequency domain through the unique relationship
between σ2

Ȳ
(τ) and the PSD SY (·) of the intrinsic processes El-Sheimy et al. [2008]:

σ2
Ȳ (τ) = 4 lim

a→∞

∫ a

0
SY (f)

sin4(πfτ)

(πfτ)2
df (4.5.3)

where f is the frequency. Eq. (4.5.3) links the parameter vector θ to σ2
Ȳ

(τ). This relationship
originates from the known form of the PSD function characterizing different noise processes
which enables to express θ as a function of σ2

Ȳ
(τ). A detailed discussion on how to express this

link between θ and σ2
Ȳ

(τ) can be found in Hou [2004]. Linear regions in the log-log “sigma-tau”
plot, σȲ (τ) versus τ , are associated with regions of power-law behavior fα in SY (·), i.e. with
processes having a SY (·) of the form

SY (f) ∝ |f |α (4.5.4)

where α is a constant. In general, only five basic processes are considered with the Allan
variance: quantization noise, white noise (also known as angular random walk), bias instability
(also known as flicker noise), random walk (also known as rate random walk), and the random
rate ramp. Under these considerations, θ is usually estimated by performing linear regressions
on (visually) identified linear regions in the Allan variance curve plotted using logarithmic
scales. However, this method is only well defined for these few types of processes and it is not
clear how inference on θ can be made with this approach. Table 4.2 lists the theoretical values
of σ2

Ȳ
(τ) together with the slopes of the associated Allan variance curve.
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4.5.2 Hadamard Variance

The Hadamard variance, noted as σ2
H , was proposed in Baugh [1971] as a generalization of the

sample variance weighted with binomial coefficients:

σ2
H =

1

6
E
[(
Ȳk(τ)− 2Ȳk−τ (τ) + Ȳk−2τ (τ)

)2]
. (4.5.5)

Compared to the Allan variance, this approach has a higher spectral resolution and reduces
the uncertainty of long-term estimates of the Allan variance without increasing the length
of a data run. An estimator σ̂2

H of the Hadamard variance can be found from a realization
{yk : k = 1, . . . , N} by replacing the theoretical by the empirical expectation:

σ̂2
H =

1

6(N − 3τ + 1)

N∑
k=3τ

(ȳk(τ)− 2ȳk−τ (τ) + ȳk−2τ (τ))2 . (4.5.6)

A detailed description of the Hadamard variance can be found in Howe et al. [2005] which also
introduced a modified version of this method.

4.5.3 Total Variance

The total variance, noted σ2
T , was proposed in Howe [1995] as an estimator of the Allan variance

that has lesser mean square error than the standard unbiased estimator of Eq. (4.5.2). An
estimator of σ2

T is given by

σ̂2
T =

1

N − 1

N−1∑
n=1

[
1

2(N − 2τ + 1)

N∑
k=2τ

(ȳk,n(τ)− ȳk−τ,n(τ))2

]
considering the realization {yk : k = 1, . . . , N}. Note that σ̂2

T can be computationally very
intensive. Consequently, several faster methods have been proposed in Greenhall et al. [1999],
Percival [1997].

4.6 Power Spectral Density Method

The PSD analysis is a convenient method for analysing and characterizing signals, and for
stochastic modeling Std 952-1997 [1998]. It is especially well suited for analysing periodic or
aperiodic signals. Adapting Eq. (3.5.7) to a single-input, single-output linear system yields

SY (f) = |H(f)|2SW (f). (4.6.1)

Thus, for a sequence of white noise {Wk : k ∈ Z}, the resulting PSD directly gives the system
transfer function. Similarly to the Allan variance methods, noise coefficients of well defined
processes, usually random walk, flicker noise, white noise and quantization noise, can be
identified by linear regions in the f vs SY (f) log-log curve. The right panel of Figure 4.4
depicts slopes of commonly used noise processes in a one-sided PSD curve. Details on the way
how to estimate parameter values from the curve are given in Std 952-1997 [1998]. Note that
the PSD method cannot distinguish between the random walk and the rate ramp which have
both a slope of -2. Thus, the observed signal {yk : k = 1, . . . , N} must be detrended prior to
analysis (see Table 4.2).
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Figure 4.4: Typical slopes corresponding to commonly used noise models in Allan variance (left
panel) and PSD (right panel) curves. The process parameters can be estimated by fitting lines
over identified linear regions in the computed Allan variance/PSD sequence (using logarithmic
scales).

Table 4.2: Slopes in PSD and Allan variance ("AV" in the Table) log-log curves together with
Allan variance values of commonly used processes. Note: Rate ramp removed by regression or
by filtering (adapted from Guerrier et al. [2013]).

Process θ PSD Slope AV Slope AV Value

WN σ2
WN 0 −0.5 σ2

Ȳ
(τ) =

σ2
WN

τ

RW σ2
RW −2 0.5 σ2

Ȳ
(τ) =

(2τ2+1)σ2
RW

6τ ≈ σ2
RW τ
3

GM β, σ2
GM [−2, 0] [−0.5, 0.5] σ2

Ȳ
(τ) =

σ2
GM

β2τ

[
1− 1

2βτ

(
3− 4e−τβ + e−2βτ

)]
BI TBI , σ

2
BI −1 0 σ2

Ȳ
(τ) =

2σ2
BI ln 2
π

QN Q 2 −1 σ2
Ȳ

(τ) = 3Q2

τ2

RR cRR See note 1 σ2
Ȳ

(τ) =
c2RRτ

2

2
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4.7 Time Series Analysis Method

An alternative to the state space representation for linear systems is given by

yk =

p∑
j=1

ajyk−j +

q∑
j=1

bjuk−j + uk (4.7.1)

where uk represents the normally distributed residual at time tk ∈ Z, and the sequences
{aj : j = 1, . . . , p} and {bj : j = 1, . . . , q} are coefficients. If the generated {yk} is a stationary
sequence, such a model is called an Auto-Regressive Moving-Average (ARMA) process of order
p,q and will be noted ARMA(p,q) in this thesis. The way how to express an ARMA(·,·) model
in state space formulation can be found in many references such as Gelb [1974], Nassar et al.
[2004]. Two special cases can be derived from model (4.7.1):

• The Auto-Regressive (AR) process of order p, noted AR(p), which assumes that

yk =

p∑
j=1

ajyk−j + uk. (4.7.2)

The ACS of such a process can be shown to be Gelb [1974]

ρy,τ =

p∑
j=1

ajρy,τ−j for τ ∈ Z. (4.7.3)

The way how to express an AR(·) model in state space formulation can be found in
references like Gelb [1974], Nassar et al. [2004].

• The Moving Average (MA) process of order q, noted MA(q), which assumes that

yk = uk −
q∑
j=1

bjuk−j . (4.7.4)

This model always produces a stationary process. Assuming that

E [ukul] =

{
σ2
u if l = k,

0 if l 6= k,
(4.7.5)

then the corresponding ACS can be written as Gelb [1974]

ρy,τ =

{ (
−bk +

∑q−k
j=1 bjbk+j

)
· σ2

u for tk ≤ 0,

0 for tk > 0
(4.7.6)

for τ ∈ Z. Generally, the orders p and q are chosen using criterions such as the Akaike
Information Criterion (AIC) or the Bayesian Information Criterion (BIC). More details about
the AIC/BIC criterion will be given in Chapter 8. The coefficients {aj} and {bj} are estimated
using the Box–Jenkins methodology Box et al. [2011], or the Yule-Walker, covariance, or Burg’s
methods in the case of pure AR(·) processes Nassar [2003].

Although authors like Nassar [2003] successfully applied AR(·) models to inertial sensors, we
will not directly treat ARMA(·, ·) models and their associated estimation techniques in this
thesis since, as we will discuss later in Chapter 7, they can be well approximated by sums of
first-order Gauss-Markov processes.
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4.8 Limitations

4.8.1 Autocorrelation Method

Estimating parameters of composite processes might become difficult when using classical
calibration methods. Consider again the model (4.2.2) given as example in Section 4.2.2. Despite
its appearent simplicity, the estimation task for such a model is non-trivial. The low-pass filter
design required for isolating the correlated noise part when using the autocorrelation method
is often problematic. This is especially true in cases of more complex composite models like
sums of first-order Gauss-Markov processes.

4.8.2 PSD and Variance Methods

Although the Allan variance (and PSD) method is a well-established technique for identifying
processes and estimating their parameters by performing linear regression of (visually) identified
linear regions in such plots, it suffers from severe drawbacks:

• The Allan variance (and PSD) method works reasonably well only for processes which
are clearly identifiable and separable in the spectral domain and not subject to spectral
ambiguity Greenhall [1998]. However, it does not allow to directly read out the parameters
of a Gauss-Markov process as large values of β make this process similar to Gaussian
white noise, while small values of β approximate a random walk. Like the autocorrelation
method, both the Allan variance and PSD do not allow the estimation of sums of
Gauss-Markov processes.

• Inference (obtaining confidence intervals, tests, etc.) about the estimated parameters is in
many cases impossible. Indeed, the system parameters are indirectly estimated through
functions of coefficients estimated by linear regression (say β̂). The standard solution for
deriving the (asymptotic) distribution of θ̂ from the distribution β̂ is achieved through a
first order approximation. In statistics, this approach is called the delta method (see Shao
[2003] for details). In order to apply this method, it is required that the function β 7→ θ
is one-to-one and that β̂ is a consistent estimator. Unfortunately, this is generally not
the case here. Consequently, deriving the (asymptotic) distribution of θ̂ is not possible
in general.

• The conventional Allan variance methodology is limited to models composed of processes
characterized by linear regions in a “σȳ(τ) v.s. τ ” log-log plot and therefore this approach
is far from being general.

In practice, models like those presented in Section 4.2.2 are estimated through ad-hoc tuning,
by using available sensor specifications, or by experience Waegli and Skaloud [2007]. Recent
investigations like Xing and Gebre-Egziabher [2008] have studied this type of models and
proposed a methodology in which Gauss-Markov processes are used to overbound the sensor
error. But the success of this methodology was quite limited in our experience. The next section
describes another important drawback of the conventional Allan variance estimation method.
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4.8.3 Consistency of the Allan Variance Method

The important concept of consistency is defined as follows.

Definition 4.8.1. The consistency of an estimator can be defined as Shao [2003]

lim
N→∞

P
(
||θ̂ − θ||2 ≥ ε

)
= 0, ∀ε > 0. (4.8.1)

where N is the size of the sample on which the estimation was performed. The practical
signification of this limit is the following. Let θ̂N be an estimate based on a sample of length
N . Then, with an inconsistent estimator, there is no proof that

E
[
||θ̂N − θ||2

]
> E

[
||θ̂H·N − θ||2

]
for H > 1 (4.8.2)

and therefore the “quality” of the estimation may not increase with sample size N .

Consider a composite stochastic process Yk =
∑

m(Ym)k such that each (Ym)k belongs to
the set of models including the processes from the left panel of Figure 4.4 completed by
any ARMA(·, ·) process. Assume further that m ≥ 2 and that var [(Ym)k] > 0, ∀m. We are
interested in estimating the parameters of the processes (Ym)k belonging exclusively to the
set of the left panel of Figure 4.4 using the Allan variance method. We show in Guerrier et al.
that under these settings, the Allan variance estimation of the parameters of these processes is
not consistent. As consistency is the most important property that an estimator should own,
the application of the Allan variance is limited in such a case.

Assume for example that we observe a process {yk : k = 1, . . . , N} which is driven from the
following model

yk = (yRW )k + wk. (4.8.3)

Assume further that the process wk is independent of (yRW )k and let

θ =
{
σ2
WN , σ

2
RW

}
(4.8.4)

be the set of parameters that specifies the model. The theoretical Allan variance of this system
can be easily obtained from Table 4.2 and is given by

σ2
ȳ(τ) =

6σ2
WN +

(
2τ2 + 1

)
σ2
RW

6τ
(4.8.5)

whose logarithmic value log
(
σ2
ȳ(τ)

)
can be obtained in a typical Allan variance plot. However,

the true log
(
σ2
ȳ(τ)

)
value is unknown in practice and only its estimated quantity log

(
σ̂2
ȳ(τ)

)
is available. In this case, the Allan variance methodology would consist in applying a linear
regression on the j first scales in order to estimate σ2

WN , i.e

log
(
σ̂2
ȳ(τ)

)
= log

(
σ2
ȳ(τ)

)
+ ετ , τ = 1, ..., j. (4.8.6)

This concept is illustrated in Figure 4.5 showing the Allan variance sequence of a simulated
signal {yk : k = 1, . . . , N} with N = 10′000 issued from Eq. (4.8.3). In this case, linear
regression would be performed on the j = 5 first scales (dashed rectangle) for estimating σ2

WN .
Since we are interested in estimating σ2

WN , log
(
σ2
ȳ(τ)

)
in Eq. (4.8.6) is replaced by

log
(
σ2
ȳ(τ)

)
= log

(
σ2
WN

τ

)
= log

(
σ2
WN

)
− log (τ) . (4.8.7)
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Figure 4.5: Estimated Allan variance sequence of a simulated signal issued from a sum of
a white noise (with σ2

WN = 4) and a random walk (with σ2
RW = 0.01). Linear regression

is performed on the j = 5 first scales (comprised withing the dashed rectangle) in order to
estimate the white noise power σ2

WN .

Considering Eq. (4.8.6) and (4.8.7) and assuming that ετ are errors assumed to be iid with
expectation 0 and variance σ2

ετ , we can construct an estimator for σ2
WN as follows:

σ̂2
WN = exp

[
1

j

j∑
i=1

log
(
σ̂2
ȳ(i)

)
+ log(i)

]
. (4.8.8)

Serroukh et al. [2000] have proven the consistency (in probability) of the so-called MODWT
wavelet variance estimator (we will introduce it in Chapter 6) which implies the same property
for the Allan variance estimator. Therefore, we can study the consistency of this estimator:

plim
N→∞

σ̂2
WN = plim

N→∞
exp

[
1

j

j∑
i=1

log
(
σ̂2
ȳ(i)

)
+ log(i)

]
(4.8.9)

= exp

[
1

j

j∑
i=1

log
(
σ2
ȳ(i)

)
+ log(i)

]
(4.8.10)

where the second equality is justified by Shao [2003] (see Theorem 1.10, p. 59) and “plim” is
the probability limit operator denoting convergence in probability, i.e.

plim
N→∞

θ̂ = θ. (4.8.11)

Substituting Eq. (4.8.5) into Eq. (4.8.10) yields

σ̂2
WN = exp

[
1

j

j∑
i=1

log

(
σ2
WN

i
+

(2i+ 1)σ2
RW

6i

)
+ log(i)

]
. (4.8.12)

Now two cases can be investigated:
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Figure 4.6: Inconsistency of the Allan variance method. Result of the Allan variance based
estimation of σ2

WN (true value depicted as a black horizontal line) when performed on 500
signals composed of a white noise only (WN, three first boxplots) and 500 signals composed of
a white noise and a random walk (WN+RW, three next boxplots). Three signal lengths were
used: 1000 (first and fourth boxplot), 10’000 (second and fifth boxplot) and 100’000 (third and
sixth boxplot) samples. The bias in the σ̂2

WN estimates is clearly visible on the right part.

1. If σ2
RW = 0, we have from Eq. (4.8.12) that

plim
N→∞

σ̂2
WN = σ2

WN (4.8.13)

which demonstrates that σ̂2
WN is a consistent estimator of σ2

WN if and only if 2 σ2
RW = 0.

2. If σ2
RW > 0, then (2i+1)σ2

RW
6i > 0 in Eq. (4.8.12) and we have

plim
N→∞

σ̂2
WN = σ2

WN + c, with c > 0. (4.8.14)

This last inequality clearly proves that the conventional Allan variance methodology does
not provide a consistent estimator for σ2

WN when σ2
RW > 0.

This important result can be confirmed by further developing the example shown in Figure 4.5.
We simulated 500 signals {yk : k = 1, . . . , N} under two models: the first is a Gaussian white
noise process

yk = wk (4.8.15)

with σ2
WN = 4, while the second is a sum of a Gaussian white noise and a random walk, i.e.

yk = (yRW )k + wk (4.8.16)

2The if statement comes from Eq. (4.8.13) while the only if statement is a consequence of the uniqueness of
θ in Eq. (4.8.4).
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with σ2
RW = 0.01. Three values for N were used, namely N = 1′000, N = 10′000 and

N = 100′000. According to Figure 4.5, we computed the Allan variance sequence and performed
the linear regression on the j = 5 first scales for each of the simulated signal {yk} in order
to estimate σ̂2

WN . The results of the estimation are presented in the boxplots of Figure 4.6.
The true value of the white noise variance is drawn as a thick black horizontal line. The first
three boxplots show the 500 σ̂2

WN values when estimated on the j = 5 first scales of the Allan
variance sequence computed on signals issued from Eq. (4.8.15). This was done for the three
values of N . In accordance with Eq. (4.8.13), the estimates are clearly unbiased in all three
cases. However, the three next plots depict again the values of σ̂2

WN , but this time they were
estimated on the j = 5 first scales of the Allan variance based on signals issued from Eq.
(4.8.16). There is a clear bias for all three values of N . This confirms the result obtained in Eq.
(4.8.14) claiming that the Allan variance is an inconsistent estimator when several processes
are present.
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Chapter 5

Likelihood-based Modeling Approach

5.1 Introduction

Estimating the matrices belonging to the discrete state space model parameters defined in Eq.
(1.6.6) and repeated here:

θ = {Φ,Λ,Γ,H,Q,R,µ0,P0},

is in general quite challenging. The books Harvey [1991] and Durbin and Koopman [2012]
contain extensive accounts of state space models and their applications. For linear and/or
Gaussian state space models, the maximum likelihood estimator (MLE) is a natural choice for
the estimation of θ. Generally, the (log) likelihood function, noted

`(θ|yk,xk) = logL(θ|yk,xk) (5.1.1)

for {tk : k = 1, . . . , N}, xk as defined in Section 1.6, and yk the (l × 1) measurement vector1,
is a highly nonlinear and complicated function Shumway and Stoffer [2000]. Historically, the
Newton-Raphson algorithm was employed to successively update θ until the log likelihood was
maximized Gupta and Mehra [1974]. However, a conceptually simpler estimation procedure
was proposed in Shumway and Stoffer [1982] which relies on the Expectation-Maximization
(EM) algorithm originally developed in Dempster et al. [1977]. The EM is a procedure that
is guaranteed to converge to the MLE and is therefore often used when dealing with difficult
likelihood maximization. It is based on the idea of replacing a complex likelihood maximization
by a sequence of easier maximizations whose limit is the answer to the original problem Casella
and Berger [2002].

The EM approach is particularly suited to problems with missing data which often render
calculations cumbersome. With this approach, two different likelihood problems are considered.
The first is the problem we are interested to solve, namely the incomplete-data problem, while
the second is the problem that is actually solved by the EM, the so-called complete-data
problem. Suppose for the moment that we could observe the state vector xk in addition to the
observation sequence yk at digital times {tk : k = 1, . . . , N}. Then, the quantity `(θ|yk,xk)

1In this chapter, we use the notation y instead of z (see Section 1.6) to denote the measurement vector,
since it is the commonly used denomination in the statistics literature.
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could be easily maximized using results from the multivariate normal theory Shumway and
Stoffer [2000]. This maximization can be considered as the complete-data problem. However,
we do not have the complete data since the state vector xk is unobserved. Thus, we aim to solve
the incomplete-data problem. In this context, the EM algorithm offers an iterative method for
finding the MLE θ̂ by successively maximizing the conditional expectation of the complete
data likelihood. A more formal treatment of this method is given in the next section.

In the context of integrated navigation, the EM algorithm has mainly been used for obtaining
system process noise Q and measurement noise R in which all coefficients are estimated Huang
et al. [2007], Einicke et al. [2009]. However, when using the EM for the more complex state
space models describing stochastic error behaviour of inertial sensors, some coefficients in Q
and R must remain fixed. An example can be provided by the stochastic error model which is
composed of white noise, a first-order Gauss-Markov process, a random walk and a random
rate ramp process where elements of the state space transition matrix F must remain fixed
(e.g. the one coefficient of the random walk, and the null off-diagonal coefficients), and some
others can be freely estimated (e.g. the β parameter of the Gauss-Markov process).

In Section 5.2 we show how to adapt the classical EM algorithm, referred to as the unconstrained
EM , to constrain the state space model parameters. This adapted version will be referred to
as the constrained EM algorithm. Constraints allow estimating more complex stochastic error
models such as those typically used in navigation filters (see Section 3.6). In Section 5.3, we do
a critical analysis of its practical use in inertial navigation. In Section 5.4, we simulate realistic
examples for illustrating the algorithm performance. We then compare the results obtained by
the EM algorithms with the benchmark methods, i.e. the Allan variance, Hadamard variance
and total variance methods described in Chapter 4. Finally, an example with real data is
included in Section 5.5 to demonstrate the positive impact of the derived stochastic model on
the filtered trajectory. Identified limitations of the EM-based method are discussed in Section
5.6.

5.2 Expectation-Maximization Algorithm

5.2.1 The Likelihood Function

The log-likelihood of θ given yk and xk for k = 1, . . . , N is

`(θ|yk,xk) = −1

2
(x1 − µ0)T P−1

0 (x1 − µ0)

− 1

2

N∑
k=2

(xk −Φxk−1 − uk)
T Q−1 (xk −Φxk−1 − uk)

− 1

2

N∑
k=1

(yk −Hxk)
T R−1 (yk −Hxk)−

1

2
log |P0|

− 1

2
N log |Q| − 1

2
N log |R| − N

2
log 2π.

(5.2.1)

The objective of the EM algorithm is to find θ that maximizes `(θ|yk,xk). As xk is unobservable
in our case, it is replaced by the complete-data likelihood Ψ = E [`(θ|yk,xk)] whose entire
expression can be found in Holmes [2010], Shumway and Stoffer [1982].
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5.2.2 The Algorithm

The general principle of the EM algorithm is shown in Figure 5.1. The EM algorithm switches
iteratively between an Expectation (E-)step and a Maximization (M-)step McLachlan and
Krishnan [1997]. On the (j + 1)th iteration, the E- and M-steps are defined as follows:

E-Step Calculate Q
(
θ|θ(j)

)
, where

Q
(
θ|θ(j)

)
= E

[
`(θ(j)|yk,xk)

]
= Ψ(j) (5.2.2)

M-Step Choose θ(j+1) to be any value of θ ∈ Θ which belongs to:

θ(j+1) = argmax
θ∈Θ

Q
(
θ|θ(j)

)
(5.2.3)

The E- and M-steps are iteratively repeated until some convergence criterion is fulfilled. An
example of convergence test could be∣∣∣L(θ(j+1)|yk,xk

)
− L

(
θ(j)|yk,xk

)∣∣∣ < ε (5.2.4)

for some arbitrarily small ε McLachlan and Krishnan [1997].

In the E-step, the expected states, noted xNk , (as well as the associated covariance matrices,
noted PN

k ) are computed such that they could be considered fixed in the M-step where Ψ(j)

will be maximized. Therefore, the E-step requires computing:

xNk = E
[
xk|y1, . . . ,yN ,θ

(j)
]

(5.2.5)

PN
k = cov

[
xk|y1, . . . ,yN ,θ

(j)
]

(5.2.6)

PN
k,k−1 = cov

[
xk,xk−1|y1, . . . ,yN ,θ

(j)
]

(5.2.7)

which can be calculated using a Kalman smoother.

In the M-step, the parameter vector is updated to θ(j+1) by finding the parameters that
maximize Ψ(j) considering the values xNk , PN

k and PN
k,k−1 obtained in the E-step as fixed. For

doing that, the expression yielded by Ψ(j) is minimized by computing the partial derivatives
with respect to θ(j) and setting them to zero. The results of these derivatives for the classical
unconstrained case can be found in many articles like Holmes [2010], Shumway and Stoffer
[1982]. The work in Holmes [2010], Wu et al. [1996] provides the way of constraining coefficients
in the matrices belonging to the set θ. Let M be any matrix contained in the set θ with
fixed and p free elements (i.e. to be estimated). This matrix can be decomposed in matrices
containing the fixed and the free elements:

M = Mfixed + Mfree (5.2.8)

Let the vec(·) operator create a column vector from M by stacking the column vectors of

M =
[

m•,1 m•,2 m•,3
]

(5.2.9)

79



Likelihood-based Modeling Approach

Figure 5.1: General principle of the EM algorithm.

below one another:

vec(M) =

 m•,1
m•,2
m•,3

 . (5.2.10)

Eq. (5.2.10) can be rewritten as the following linear combination:

vec(M) = f + D ·m (5.2.11)

where f = vec(Mfixed) and D ·m = vec(Mfree) with m a (p× 1) vector containing the p free
values, and D a design matrix transforming m into vec(Mfree). To derive the update equations,
the likelihood has to be rewritten as a function of vec(M) where M can be any parameter
matrix for which the update equation is derived Holmes [2010]. Then, this result is rewritten
as a function of m using Eq. (5.2.11). The m vector is deduced by setting ∂Ψ/∂m = 0. Since
detailed derivations can be found in Holmes [2010], only the final results are given here. If we
set the following quantities:

P̃k = PN
k + xNk (xNk )T (5.2.12)

P̃k,k−1 = PN
k,k−1 + xNk (xNk−1)T (5.2.13)

we can write the update equations for estimating some individual parameters of θ contained in
Eq. (1.6.6) like:

• u update (unknown parameter Λ considered inside u in Eq. (1.6.4)):

u(j+1) = fu + Du ·mu (5.2.14)

with

mu =
1

N − 1

(
DT

uQ−1Du

)−1
DT

uQ−1
N∑
k=2

(
xNk −ΦxNk−1 − fu

)
(5.2.15)

• µ0 update (unknown parameter in Eq. (1.6.4)):

µ
(j+1)
0 = fµ0 + Dµ0 ·mµ0 (5.2.16)

with

mµ0 =
(
DT
µ0

(P0)−1Dµ0

)−1
DT
µ0

(P0)−1(xN1 − fµ0)
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• Φ update (unknown parameter in Eq. (1.6.4)):

vec
(
Φ(j+1)

)
= fΦ + DΦ ·mΦ (5.2.17)

with

mΦ =

(
N∑
k=2

DT
Φ(P̃k−1 ⊗Q−1)DΦ

)−1

DT
Φ

(
N∑
k=2

[
vec(Q−1P̃k,k−1)− (P̃k−1 ⊗Q−1)fΦ − vec(Q−1u(xNk−1)T )

])

• H update (unknown parameter in Eq. (1.6.4)):

vec
(
H(j+1)

)
= fH + DH ·mH (5.2.18)

with

mH =

(
N∑
k=1

DT
H(P̃k ⊗R−1)DH

)−1

DT
H

(
N∑
k=1

[
vec
(
R−1yk(x

N
k )T

)
− (P̃k ⊗R−1)fH

])
(5.2.19)

• Q update (unknown parameter in Eq. (1.6.4)):

vec
(
Q(j+1)

)
= fQ + DQ ·mQ (5.2.20)

with

mQ =
1

N − 1

(
DT

QDQ

)−1
DT

Q vec(S) (5.2.21)

and

S =
N∑
k=2

(
P̃k − P̃k,k−1Φ

T −ΦP̃k−1,k − xNk uT

−u(xNk )T + ΦP̃k−1Φ
T + ΦxNk−1u

TΦT + u(xNk−1)TΦT + uuT
)

• R update (unknown parameter in Eq. (1.6.4)):

vec
(
R(j+1)

)
= fR + RR ·mR (5.2.22)

with

mR =
1

N

(
DT

RDR

)−1
DT

R vec

(
N∑
k=1

(yk −HxNk )(yk −HxNk )T + HPN
k HT

)

The ⊗ symbol stands for the Kronecker product in this chapter. Note that as stated in Harvey
[1991], Holmes [2010], simultaneous estimation of µ0 and P0 makes the algorithm fail in
practice. Thus, as proposed in Harvey [1991], we kept P0 fixed at a small value. It is also
possible to remove −1

2 (x1 − µ0)T P−1
0 (x1 − µ0) from Eq. (5.2.1).
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5.2.3 Asymptotic Distribution of the MLEs

In the context of state space models, the MLE θ̂ is consistent and has an asymptotic normal
distribution given by

√
N
(
θ̂− θ

)
D−→

N→∞
N
(
0,J (θ)−1

)
(5.2.23)

where J (θ) is the asymptotic information matrix defined as

J (θ) = lim
N→∞

1

N
E
[
−∂

2`(θ|yk)
∂θ∂θT

]
. (5.2.24)

Moreover, the following theorem taken from Casella and Berger [2002] states that the EM
estimate, denoted as θ̂EM , tends to the MLE, denoted as θ̂ML.

Theorem 1. The sequence {θ̂(j)} satisfies

L
(
θ̂(j+1)|y

)
≥ L

(
θ̂(j)|y

)
(5.2.25)

with equality holding if and only if successive iterations yield the same value of the maximized
expected complete-data log likelihood, that is,

E
[
`
(
θ̂(j+1)|y,x

) ∣∣∣θ̂(j),y
]

= E
[
`
(
θ̂(j)|y,x

) ∣∣∣θ̂(j),y
]
. (5.2.26)

There are mainly three conditions for the results stated above to hold and can be found
in Caines [1987]. A full treatment of the necessary conditions for the consistency and the
asymptotic normality of MLEs can also be found in Caines [1987]. Note that in practice, these
conditions hold for the set of models considered in this thesis. In this research, we only provide
some crucial elements to establish these results, similarly as it is done in Shumway and Stoffer
[2000]. Indeed, it is necessary to assume that the absolute eigenvalues of the transition matrix
Φ are less than one. This assumption guarantees that the filter is stable. Moreover, the state
space model must be observable and controllable to ensure that the results given in Eq. (5.2.23)
and (5.2.24) hold.

5.3 Practical Issues

In general, the maximization of the likelihood of state space models is a difficult task due to
the highly nonlinear form of this function. Therefore, the use of the EM algorithm implies
three main issues:

1. The EM algorithm is a “hill-climbing” algorithm and can therefore converge to a local
maximum. This makes the method sensitive to initial conditions. In practice, diffusion
priors could be employed to perform some kind of pre-search of the parameter space.
Alternatively, the Allan, Hadamard and total variance methods could be used to obtain
an initial guess of some of the parameter values.
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2. In numerical applications of the EM algorithm, setting a proper stopping criterion is
crucial. The work of Dempster et al. [1977] showed that the EM algorithm is guaranteed
to converge to at least a local maximum. Thus, the convergence criterion mentioned
in Section 5.2.2 is in theory correct. In practice however, this is not feasible due to
numerical imprecision and the large number of iterations that is often required to reach
the maximum. A typical convergence criterion could be given by:

L
(
θ(j+1)|yk,xk

)
− L

(
θ(j)|yk,xk

)
0.5 · |L

(
θ(j+1)|yk,xk

)
+ L

(
θ(j)|yk,xk

)
|+ c

< ε

where the averaging in the denominator increases the statibility of the criterion, and
the c value is used to keep the criterion well behaved in the case where a fixed point is
reached.

3. Joint estimation of Φ, Q and u can sometimes lead to instabilities. In such situations,
the EM algorithm is very likely to diverge. For example, this situation could arise from
ridges in the likelihood surface of Φ vs. u and Φ vs. Q. In practice, it has been found that
eliminating the estimation of the u parameter in the EM by using classical least-squares
estimation largely improves the performance of the EM algorithm. However, this renders
the inference on θ improper since u is fixed (and thus viewed as true), which may bias
the estimation of the remaining parameters.

5.4 Performance Study through Simulations

Several simulation scenarios are performed to analyse the potential of employing the classical
and constrained EM algorithm for estimating parameters of composite stochastic processes.

Simulation 5.4.1. Let {yk : k = 1, . . . , N} be an observed signal from a process driven from
model F (θ) which is a sum of a random walk, white noise, and a random rate ramp (designated
WN-RW-RR in the sequel):

Yk = (YRW )k + (YRR)k +Wk, k ∈ Z

whereWk, (YRW )k and (YRR)k are defined in Table 3.1. A corresponding discrete time-invariant
state space model can be constructed as

xk = xk−1 + wk + (cRR∆t)

yk = xk + vk

such that wk ∼ N (0, q) with q = σ2
RW and vk ∼ N (0, r) with r = σ2

WN The task of the EM is
to estimate the following parameter set:

θ = {σ2
WN , σ

2
RW , cRR}.

This specific problem does not require any constraints on the state space parameters. Thus,
the Mfixed matrices will be null, which leads to the classical unconstrained EM algorithm
of Shumway and Stoffer [1982], and enables a complete comparison with the Allan variance
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Figure 5.2: Performance comparison between the EM algorithm started at good (EM ) and a bad
(EM ?) initial values, and the Allan variance technique (AV ) for 200 simulated signals issued
from a sum of a white noise, a random walk and a rate ramp process. The true parameters are
marked by horizontal lines (adapted from Stebler et al. [2011a]).

since all processes are clearly identifiable (see the left panel of Figure 4.4). We simulate 200
synthetic signals {yk} of length N = 6000 issued from the following true parameter set:

θ = {0.04, 4 · 10−4, 0.003}

To highlight the importance of the initialization, the EM algorithm was started at two different
initial values:

θ(0) = {0.25, 10−8, 0.0}
θ?(0) = {25, 100, 10}

where the second set θ?(0) contains values which are far away from θ. The EM estimates are
compared to what the Allan variance technique would provide by fitting lines on the linear
regions of the log-log plot which correspond to the white noise (slope is −1/2), random walk
(slope is 1/2) and random rate ramp (slope is 1) processes. Comparison of estimation is shown
in Figure 5.2 where the EM and EM ? columns correspond to the EM results when started at
θ(0) and θ?(0), respectively, and the horizontal lines represent the true parameter set θ.

In the first case (EM ), the solution clearly converged to the global maximum of the likelihood
function. The cRR parameter was also correctly estimated since it is not dependent on the
estimation of Φ (which is fixed). In the second case (EM ?), the estimation of σ2

WN and
σ2
RW (defining q and r) is clearly affected by a convergence to a wrong local maximum. The

performance of the Allan variance method for estimating σ2
WN is relatively similar to the EM

algorithm. However, the random walk and random rate ramp are often not well separable using
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Table 5.1: RMSE and relative RMSE (R-RMSE) of the EM, EM? and Allan variance estimators
for 200 simulated processes of size N = 6000 from model WN-RW-RR (adapted from Stebler
et al. [2012]).

EM EM? Allan Variance

RMSE R-RMSE RMSE R-RMSE RMSE R-RMSE

σ2
WN 7.67 · 10−4 1.92 · 10−2 4.02 · 10−2 1.00 9.09 · 10−4 2.27 · 10−2

σ2
RW 1.17 · 10−5 2.93 · 10−2 3.24 · 10−4 8.09 · 10−1 4.45 · 10−4 1.11
cRR 2.52 · 10−4 8.4 · 10−2 2.37 · 10−4 7.88 · 10−2 1.18 · 10−3 3.94 · 10−1

this method, because the fitted line slopes do not perfectly correspond to the correct values for
the respective processes.

The Root-Mean-Square Error (RMSE) as well as the relative RMSE (R-RMSE) of the three
estimation techniques used in this simulation are listed in Table 5.1. The EM approach
clearly yields the best results. Note that in Stebler et al. [2011a], we performed an additional
comparison with the Hadamard and total variances. In general, the total variance had a smaller
variance than the Allan and Hadamard variances. But the latter had a smaller bias than the
two other variance-based methods.

Simulation 5.4.2. Let {yk : k = 1, . . . , N} be an observed signal from a process driven from
model F (θ) which is a sum of white noise, a first-order Gauss-Markov process, and a random
rate ramp (designated as WN-GM-RR in the sequel):

Yk = (YGM )k + (YRR)k +Wk, k ∈ Z

where Wk, (YGM )k and (YRR)k are defined in Table 3.1. The corresponding discrete time-
invariant state space model is (to the first order)

xk = (1− β∆t)xk−1 + wk + (cRR∆t)

yk = xk + vk

such that wk ∼ N (0, q) with q = 2βσ2
GM and vk ∼ N (0, r) with r = σ2

WN . The task of the EM
is to estimate the parameter set

θ = {β, σ2
GM , σ

2
WN , cRR}

defining Φ,u,Q and R from the sequence {yk}. Like in Simulation 5.4.1, this problem does
not require any constraint on the state space model parameters, but this time, the Φ matrix
including the β value has to be estimated. This makes the global maximum search task in the
likelihood “surface” more difficult.

The EM algorithm was applied on 200 realizations of {yk} with N = 6000 issued from the
following parameters:

θ = {0.008, 0.25, 0.64, 10−3}.
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Figure 5.3: Performance comparison between the EM algorithm with prior estimation of cRR by
ordinary least-squares adjustment (EM ) and without (EM ?) for 200 simulated signals issued
from a sum of a white noise, a Gauss-Markov and a rate ramp process. The true values of the
parameters are marked by horizontal lines (adapted from Stebler et al. [2011a]).

The algorithm was started at the following initial parameter values:

θ(0) = {10−3, 1.0, 1.0, 0.0}.

To highlight the advantage of eliminating some parameters by other estimation techniques,
the EM algorithm was runned with estimating u (denoted EM ?), and with signal detrending
through least-squares adjustment prior to EM estimation (denoted EM ). The results are shown
in Figure 5.3. They are much better if u is correctly eliminated from the EM estimation using
data detrending, since the Φ and Q updates depend on u. The RMSE and R-RMSE values are
listed in Table 5.2 from which it can be deduced that the EM approach performed the best.

We now study the restitution of Allan variance plots by the parameter set θ̂ estimated via
EM. We selected randomly three from the 200 estimated parameters θ̂ for a case where u was

Table 5.2: RMSE and relative RMSE (R-RMSE) of the EM, and EM? estimators for 200
simulated processes of size N = 6000 from model WN-GM-RR (adapted from Stebler et al.
[2012]).

EM EM?

RMSE R-RMSE RMSE R-RMSE

βGM 2.44 · 10−3 3.05 · 10−1 7.47 · 10−3 9.33 · 10−1

σ2
GM 5.53 · 10−2 2.21 · 10−1 3.02 1.21 · 101

σ2
WN 1.26 · 10−2 1.97 · 10−2 1.3 · 10−2 2.03 · 10−2

cRR 5.49 · 10−4 5.49 · 10−1 1.68 · 10−3 1.68
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Figure 5.4: EM algorithm results for simulated signals containing a white noise, a Gauss-Markov
and a random ramp process. Each panel shows the Allan variance of one realization issued
from F (θ) (black curves) and 20 simulations driven from the corresponding F (θ̂) (gray curves)
model (adapted from Stebler et al. [2011a]).

removed by least-squares adjustment. We then computed the Allan variance for 20 realizations
issued from these two solutions θ̂ (thin curves in Figure 5.4) and compared them to the
respective two true signals {yk} (thick curves in Figure 5.4). It can be seen that the resulting
Allan variance sequences are fairly well contained in the 95% confidence interval associated
with Allan variance estimation of the true signals.

Simulation 5.4.3. Let {yk : k = 1, . . . , N} be an observed signal from a process driven from
model F (θ) which is a sum of white noise, a first-order Gauss-Markov process, a random walk
and a random rate ramp (designated as WN-GM-RW-RR in the sequel):

Yk = (YGM )k + (YRW )k + (YRR)k +Wk, k ∈ Z

where Wk, (YGM )k, (YRW )k and (YRR)k are defined in Table 3.1. This is modeled as a discrete
time-invariant state space model of the form (to the first order):

xk =

[
1− β∆t 0

0 1

]
xk−1 + wk +

[
0

cRR∆t

]
yk =

[
1 1

]
xk + vk

such that wk ∼ N (0,Q) with

Q =

[
2βσ2

GM 0
0 σ2

RW

]
and vk ∼ N (0, r) with r = σ2

WN . The goal is to estimate the parameter set

θ = {β, σ2
GM , σ

2
RW , σ

2
WN , cRR}
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Figure 5.5: Performance the EM algorithm for 200 simulated signals issued from a sum of a
white noise, a Gauss-Markov, a random walk and a random ramp process. The true values of
the parameters are marked by horizontal lines (adapted from Stebler et al. [2011a]).

from the observed {yk}. Such a problem typically requires that some coefficients in the involved
matrices must remain fixed while others must be estimated. For example, all coefficients in
Φ excepting 1− β∆t must remain fixed. In u, the first coefficient must stay null, while only
the diagonal of the Q matrix contains free elements. Since all the coefficients in H are fixed,
this matrix has not to be updated. We illustrate the performance of the EM by the same
procedure as for the previous simulation scenario. The signal {yk} is issued from the following
parameters:

θ = {0.008, 0.25, 10−8, 0.09, 10−4}.

The initial parameters where set to

θ(0) = {10−4, 10−6, 10−10, 2.5 · 10−7, 0}.

The results of the 200 runs are shown in Figure 5.5. Note that u has been estimated by
least-squares adjustement for improving the estimation of the remaining parameters in the EM.
The estimation appears to be seriously biased, specially for the inverse correlation time of the
Gauss-Markov process and for the random walk driving noise strength which are difficult to
separate in the spectral space. As for the previous scenario, we computed the Allan variance
for 20 realizations issued from two solutions θ̂ (see Figure 5.6). The effect of the bias in some
parameters is visible through the systematic overbounding in the middle part of the Allan
variance sequences.

5.5 Application on Real Data Set

Three hours long data were collected from a static tactical-grade IMU (IMAR-FSAS iMAR
GmbH [2009]) sampling at a frequency of 400 Hz in constant temperature conditions. In this
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Figure 5.6: Constrained EM algorithm results for simulated signals containing a white noise,
a Gauss-Markov, a random walk and a random ramp process. Each panel shows the Allan
variance of one realization issued from F (θ) (black curves) and 20 simulations driven from the
corresponding F (θ̂) (gray curves) model (adapted from Stebler et al. [2011a]).

application case, we will loop through the filter design loop described in Figure 4.1 in which
we use the EM algorithm at the model estimation stage.

5.5.1 Model Building

The Allan variance plots revealed that the gyroscope error signals are mainly composed of a
white noise and thus present no need for more sophisticated modeling. However, the Allan
variance plot of accelerometer errors (black curve in Figure 5.7 for the Y-axis accelerometer)
shows a more complex structure2. Note that the analyses are similar for the X- and Z-axis
sensors and are therefore not shown here. Since the slopes of the linear parts in the thick Allan
variance curve do not correspond to any of the theoretical processes depicted in the left panel
of Figure 4.4, we choose to model this error by superposing two first-order Gauss-Markov
processes and a white noise. Such a model can be written as

xk =

[
1− β1∆t 0

0 1− β2∆t

]
xk−1 + wk

yk =
[

1 1
]
xk + vk

(5.5.1)

such that wk ∼ N (0,Q) with

Q =

[
2β1σ

2
GM,1 0

0 2β2σ
2
GM,2

]
(5.5.2)

and vk ∼ N (0, r) with r = σ2
WN .

2The estimation was computed on a signal downsampled to 100 Hz for limiting computational load.
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Figure 5.7: Results of the estimation of two Gauss-Markov processes and a white noise applied
on the IMAR-FSAS Y-axis accelerometer error signal. The figure shows the Allan variance of
20 realizations issued from θ̂ (thin curves) and the Allan variance of the sensor signal (thick
curve) (adapted from Stebler et al. [2011a]).

5.5.2 Model Estimation

The goal is to estimate the parameter set

θ = {β1, β2, σ
2
GM,1, σ

2
GM,2, σ

2
WN}

from the signal {yk}. For that, we applied the EM algorithm on the previously built model
and obtained the following values:

θ̂ = {0.0004, 0.10, 4 · 10−8, 10−8, 3.6 · 10−5}

where the units of the β and variances are [1/s] and [(m/s2)2], respectively.

5.5.3 Model Validation

Validation at Observation Level

The quality of the estimation is illustrated in Figure 5.7 in which Allan variance plots of 20
realizations issued from the estimated θ̂ (thin curves) are compared with the one issued from
the sensor signal (thick curve). The estimated white noise power level appears to fit the real
signal (left part of the Allan variance curve). However, long-term errors modeled by the two
Gauss-Markov processes match the signal’s Allan variance sequence only approximately (right
part of the Allan variance curve). This can be explained by several reasons which highlight the
limitations of the constrained EM method on inertial sensors. First, the task of identifying the
Gauss-Markov parameters within a process containing much higher power of white noise is
difficult and induces very long convergence time. Second, accumulation of numerical imprecision
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in many iterations may influence the results if the parameters are of small magnitude (which
is the case here). Third, using longer time series would most likely improve the uncertainty of
the parameter estimation. However, this was not feasible due to memory limitations of the
computing hardware. Indeed, increasing the length of the analysed signal may improve the
observation of the underlying long-term processes (right part in the Allan variance plot). In
other words, since the 95% confidence intervals in this region will be decreased, the estimation
of the Gauss-Markov process parameters by the EM algorithm will be improved.

Validation at State Level

In the sequel, we analyse the impact of the estimated model on the INS/GNSS integration via
optimal forward Kalman filtering and backward smoothing. For that, the IMAR-FSAS IMU
was mounted together with a high-grade dual-frequency GPS receiver (JAVAD Delta) on a
car, and the motion was sampled at 100 Hz and 10 Hz, respectively. The carrier-phase GPS
observation were double-differenced in post-processing to yield high-precision (centimeter-level)
GPS positioning using a base GPS receiver (Topcon Hiper Pro) sampling at 10 Hz. These
have been combined with the inertial observation in the EKF. To highlight the impact of
proper stochastic modeling, we introduced artificially two outages in GPS solutions of different
duration, at times where good and reliable GPS solutions were available as reference. During
these outages, the navigation solution is solely dependent on inertial navigation, meaning
that the residual systematic errors affecting these signals are integrated with time. We then
recomputed the INS/GPS trajectory using the traditional IMAR-FSAS stochastic error model
provided by the manufacturer (velocity random walk < 50µg/

√
Hz)3, and compared it to the

EKF/smoothed solution using the EM-estimated accelerometer model (the same gyroscope
error model was used for both scenarios). In both cases we compare the positioning differences
with respect to the reference. This allows to compute the positioning error along each direction
in the l-frame (NED axes) by comparing both solutions with the reference trajectory (the one
without gap).

The first 20 seconds long outage has been introduced in a time during which the car was
turning in a roundabout. Figure 5.8 depicts the processed position differences along each axis
when using the traditional IMAR-FSAS model (full curves) and the new model (dotted curves).
Except for the East component, the new model significantly decreased the trajectory errors
based on inertial coasting during this period.

The second outage was longer (about 130 seconds) and affected a period in which the car was
moving on a straight road and its acceleration varied. As shown in Figure 5.8, the filtered
trajectory errors were better bounded at the end of this outage (by a factor of two to four)
when using the new model. Indeed, the maximum observed difference could be decreased from
23 meters to 10 meters along the North component, from −6 meters to −1.2 meters along the
East component, and from 16 meters to 4.2 meters along the vertical component.

Finally, the following two additional remarks can be made. First, a close view on θ̂ reveals
that the Gaussian white noise (i.e. the velocity random walk) is dominant. Second, converting
our estimated σ̂2

WN to the same units as the ones used by the manufacturer yields σ̂2
WN =

30 µg/
√
Hz (by considering a sampling frequency of 400 Hz). This result is in accordance with

the manufacturer’s specification for velocity random walk.
3We refer to iMAR GmbH [2009] for the complete IMAR-FSAS IMU specifications.
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Figure 5.8: Performance of the IMAR-FSAS accelerometer error model estimated by employing
the EM algorithm. The planimetric and altimetric errors are shown in the upper two and lower
two panels, respectively. The left and right columns correspond to the 20 seconds-long and 130
seconds-long GPS outage period, respectively. The performance of the EKF when based on the
manufacturer’s error model is represented by dotted gray curves, and by full black curves when
based on the model estimated by the EM algorithm (adapted from Stebler et al. [2011a]).
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5.6 Limitations

Although we demonstrated that an EM algorithm can successfully estimate parameters of
models for which the traditional Allan variance technique cannot be used, it only worked if
preceded by some a priori data processing like data detrending. Moreover, we also showed that
the EM method may converge to a local maximum if the initial values are “far" from the true
parameter values. Therefore, using diffusion priors for the search of parameter initial values
is recommended when applying this method in practice. The performed studies also revealed
an important limit of the proposed method. The maximization step can be very complex
and finding the MLE is not always a simple task. Moreover, the task becomes even more
challenging when the observed process size is large and the model is far more sophisticated.
Note also that, in contrast to the variance based methods, the EM based approach enables
computing confidence intervals for the estimated parameters. Nevertheless, as shown in the
lastly simulated example and the real application, the likelihood-based approach is still not
capable of estimating noise with very complex error structures.

The next chapter introduces a new estimation framework which can be applied on models for
which the Allan variance and MLE based estimators provide poor performance in practice.
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Chapter 6

Generalized Method of Wavelet
Moments

6.1 Introduction

In this chapter, we propose and evaluate a completely new framework, called the Generalized
Method of Wavelet Moments (GMWM), for estimating parameters of L independent stochastic
processes. Although the applicability of this work is general and therefore goes far beyond
integrated navigation, we stay in the context of modeling inertial sensors from which it
originated. The presented content is based on the work we published in Guerrier et al. [2013],
Stebler et al. [2012] as a new estimation method for the parameter vector θ that is based on
matching the empirical and model-based wavelet variances. We demonstrated the consistency of
our estimator in Guerrier et al. [2013] (see Theorem 1) together with the non-trivial conditions
that must be satisfied for the estimator to be consistent. In particular, we showed in Theorem 2
that for a model made of the sum of L independent processes, the consistency is satisfied. This
implies that for composite processes based on models considered in this thesis (i.e. Gaussian
white noise, random ramp, quantization noise, random walk and k <∞ autoregressive models
of order 1), our estimator is consistent.

We begin by introducing the notion of wavelet variance in Section 6.2. Then we derive our
estimator in Section 6.3 where we also prove its consistency. Similarly to the previous chapter,
we validate the estimator first using simulation studies in Section 6.4. The way how to implement
the algorithm will be discussed in Section 6.5 before concluding in Section 6.6. Note that no
real case scenario is studied in this chapter, since Chapter 7 will be entirely dedicated to this
task.

6.2 The Wavelet Variance

As pointed out by Percival and Guttorp [1994], the wavelet variance can be interpreted as
the variance of a process after it has been subject to an approximate bandpass filter. The
wavelet variance can be built using wavelet coefficients issued from a modified Discrete Wavelet
Transform (DWT)Mallat [1999], Percival and Walden [2000] called the Maximal Overlap DWT
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(MODWT) Greenhall [1991], Percival and Walden [2000]. The wavelet coefficients are built
using wavelet filters {h̃j,l : j = 1, . . . , J} which for j = 1 and for the MODWT satisfy

L1−1∑
l=0

h̃1,l = 0,

L1−1∑
l=0

h̃2
1,l =

1

2
and

∞∑
l=−∞

h̃1,lh̃1,l+2m = 0 (6.2.1)

where h̃1,l = 0 for l < 0 and l ≥ L1, L1 is the length of h̃1,l, m is a nonzero integer. Considering
the transfer function of h̃1,l as

H̃1(f) =

L1−1∑
l=0

h̃1,le
−i2πfl, (6.2.2)

the jth level wavelet filters {h̃j,l} of length Lj = (2j − 1)(L1 − 1) + 1 can be obtained by
computing the inverse discrete Fourier Transform of

H̃j(f) = H̃1(2j−1f)

j−2∏
l=0

ei2π2lf(L1−1)H̃1(1
2 − 2lf). (6.2.3)

The MODWT filter is actually a rescaled version of the DWT filter hj,l, i.e. h̃j,l = hj,l/2
j/2.

Filtering an infinite sequence {yk; k ∈ Z} using the wavelet filters {h̃j,k} yields the MODWT
wavelet coefficients

W j,k =

Lj−1∑
l=0

h̃j,lyk−l, k ∈ Z. (6.2.4)

We define the wavelet variance at dyadic scales τj = 2j−1, as the variances of the {W j,k}
sequences, i.e.

ν2(τj) = var
[
W j,k

]
. (6.2.5)

Note that the wavelet variances are assumed not to depend on time. The condition for this
property to hold is that the integration order d for the series {yk} to be stationary is such that
d ≤ L1/2 and {h̃j,l} is based on a Daubechies wavelet filter (see Daubechies [1992] and Percival
and Walden [2000], Chapter 8). This is due to the fact that Daubechies wavelet filters of width
L1 contain an embedded backward difference filter of order L1/2. In such a case, the series
of wavelet coefficients {W j,k} is stationary with PSD SWj (f) = |H̃j(f)|2SFθ

(f), where | · | is
denoting the modulus, and Fθ = F (θ). This means that the variance of wavelet coefficient
series is equal to the integral of the coefficients’ PSD Serroukh et al. [2000], i.e.

ν2(τj) =

∫ 1/2

−1/2
SWj (f)df =

∫ 1/2

−1/2
|H̃j(f)|2SFθ

(f)df. (6.2.6)

Hence, there is an implicit link between the wavelet variances and the parameters of the
data generating model F (θ). We exploit this connection when defining an estimator for θ,
namely by matching a sample estimate of the wavelet variances, ν2(τj), together with the
model-based expression of the wavelet variance given by the left handside of Eq. (6.2.6). For
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wavelet variances based on Haar wavelet filters (see Eq. (6.2.16) below) and for the Gaussian
white noise, random walk, rate ramp, quantization noise, AR(1), and ARMA(1,1) models, the
integral in Eq. (6.2.6) is solved and given in Table 6.1, based on the results of Zhang [2008].
Wavelet variances for other models can be computed using the same methodology1.

For a finite (observed) process {yk : k = 1, . . . , N}, the MODWT wavelet variance estimator
given by

ν̂2(τj) =
1

Mj

N∑
k=Lj

W 2
j,k (6.2.7)

with Wj,k =
∑Lj−1

l=0 h̃j,lyk−l, k ∈ (Lj ;N) and Mj = N − Lj + 1, is a consistent estimator
for ν2(τj). With this respect, Serroukh et al. [2000] show that under suitable conditions,√
Mj

(
ν̂2(τj)− ν2(τj)

)
is asymptotically normal with mean 0 and variance

SWj (0) = 2

∫ 1/2

−1/2
S2
Wj

(f)df = 2

∫ 1/2

−1/2
|Hj(f)|4S2

Fθ
(f)df. (6.2.8)

Eq. (6.2.8) can be estimated by means of

ŜWj (0) =

Mj∑
τ=−Mj

 1

Mj

N∑
k=Lj

Wj,kWj,k+|τ |

2

(6.2.9)

and the asymptotic properties of Eq. (6.2.9) are given in Percival and Walden [2000], page
312. These results were extended to the multivariate case in Guerrier et al. [2013] were we
demonstrated that under some regularity conditions, the asymptotic distribution of ν̂2 is given
by

√
N
(
ν̂2 − E{ν2}

) D7−−−−→
N→∞

N (0,Vν̂2) (6.2.10)

where

ν2 =
[
ν2(τj)

]
j=1,...,J

and ν̂2 =
[
ν̂2(τj)

]
j=1,...,J

. (6.2.11)

The matrix Vν̂2 has size (J × J) and is given by

Vν̂2 =

 σ2
1,1 · · · σ2

1,J
...

. . .
...

σ2
J,1 · · · σ2

J,J

 . (6.2.12)

The elements of Vν̂2 can be obtained through

σ2
ml = 2πSWmWl

(0), for m, l = 1, . . . , J (6.2.13)
1However, as it will be shown only later, the possibility of expressing these error models analyticaly in the

space of wavelet variances is not a necessary prerequisite for applying the new estimator.
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where

SWmWl
(f) =

1

2π

∞∑
τ=−∞

ρWmWl,τe
−ifτ . (6.2.14)

The estimation of σ2
ml is in general not straightforward. In Guerrier et al. [2013], we show that

under the assumption of a Gaussian process for {yk}, a suitable estimator is given by

σ̂2
ml =

1

2

M(Tml)∑
τ=−M(Tml)

 1

M(Tml)

∑
k∈Tml

Wm,kWl,k+τ

2

+
1

2

M(Tml)∑
τ=−M(Tml)

 1

M(Tml)

∑
k∈Tml

Wm,k−τWl,k

2
(6.2.15)

where Tml is the smallest set of time indices containing both the indices in Tm and Tl (see Eq.
(6.2.7)), and M(Tml) their number. Alternatively, when the process is not Gaussian or when
the sample size is very large as it is the case with the dataset analysed in Section 6.4 for which
the computation of Eq. (6.2.15) is infeasible, one can use a parametric bootstrap to estimate
cov

[
ν̂2(τm), ν̂2(τl)

]
. In such a scheme, Q samples of size N are simulated from F (θ̂) on which

Q wavelet variance sequences, ν̂2
q (τm) and ν̂2

q (τl) for q = 1, . . . , Q, are computed and σ2
ml is

estimated by their empirical covariance.

A particular choice for the wavelet filter is given by the Haar wavelet filter whose first DWT
filter (j = 1) is

{h1,0 = 1/
√

2, h1,1 = −1/
√

2} (6.2.16)

with length L1 = 2. If the process is stationary with backward differences of order d > 1 one
can use other wavelet filters such as Daubechies wavelet filters Daubechies [1992]. When the
wavelet variance is evaluated with Haar wavelet filters, it is actually equal to half the Allan
variance.

Chapter 4 highlighted the fact that the linear regression on identified linear regions of Allan
variance plots provides reasonably estimated parameters only for a limited number of processes
and is often biased. In the following Section, we propose instead a criterion based on a
standardized distance between sample and model based wavelet variance that provides consistent
estimators of the model’s parameters for a wide range of models.

6.3 GMWM estimator

6.3.1 Principle

We saw in Eq. (6.2.6) that the variance of a wavelet coefficient sequence is equal to the integral
of its PSD. Therefore, there exists a mapping

θ 7→ ν2(θ). (6.3.1)
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Such a mapping defines the theoretical wavelet variance implied by the parametric model F (θ).
We exploit the connexion between the wavelet variance and θ to define an estimator for θ
by trying in some sense to invert the relationship given in Eq. (6.3.1). This inverted map is
used to compute the estimator θ̂ = θ(ν̂2) where ν̂2 is the estimated wavelet variance. Finding
explicitly an inverse mapping is in general impossible since this mapping is in most cases
implicit. However, it is possible to invert the map in a specific point such as ν̂2 by calibrating
the value of θ in order to match ν2(θ) with its empirical counterpart ν̂2.

Therefore, we propose to estimate the model’s parameters using an estimator which combines
on the one hand the wavelet variance and on the other hand the Generalized Least-Squares
(GLS) principle, using the relationship given in Eq. (6.2.6). More precisely, we propose to find
θ̂ such that the wavelet variances implied by the model, say φ(θ), match the empirical wavelet
variances, say φ̂, and solve the following GLS optimization problem:

θ̂ = argmin
θ∈Θ

(
φ̂− φ(θ)

)T
Ω
(
φ̂− φ(θ)

)
(6.3.2)

in which Ω, a positive definite weighting matrix2, is chosen in a suitable manner (see below).
Eq. (6.3.2) defines the GMWM estimator. The vector φ(·) = [φj(·)]j=1,...,J is a binding function
between θ and ν2 such that φ(θ) = ν2, and φ̂ = ν̂2 and φ(θ̂) are two estimators.

As mentioned in the introduction of this chapter, we proved the consistency of θ̂ in Guerrier
et al. [2013]. Hence, θ̂ has the following distribution:

√
N ·

(
θ̂ − θ

)
D7−−−−→

N→∞
N
(
0,Vθ̂

)
(6.3.3)

where

Vθ̂ = BVφ̂BT (6.3.4)

and

B =
(
DTΩD

)−1
DTΩ. (6.3.5)

The matrix D is given by

D =
∂φ(θ)

∂θT
(6.3.6)

and Vφ̂ = Vν̂2 . When Ω = I, then

Vθ̂ =
(
DTD

)−1
DTVφ̂D

(
DTD

)−1
. (6.3.7)

The most efficient estimator is obtained by choosing Ω = V−1

φ̂
, leading then to

Vθ̂ =
(
DTV−1

φ̂
D
)−1

. (6.3.8)

In practice, the matrix D is computed at θ̂.
2Ω has to be positive definite in order to ensure the convexity of Eq. (6.3.2).
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Figure 6.1: Principle of the GMWM estimator (adapted from Genton and Ronchetti [2003])

Obviously, the number of scales J should be J ≥ p, with p the dimension of the parameter
vector θ, but at the same time, as will be discussed in Section 6.4 (see Simulation 6.4.3), a too
large J introduces variability in the estimator. In Guerrier et al., we propose a new method
for selecting the scales J which minimize the determinant of Vθ̂ and propose a method to
remove the finite sample bias of θ̂ using a simulation based approach. Note that when J > p,
i.e. the number of wavelet variances is greater than the dimension of the parameter vector θ,
the goodness-of-fit of the model F (θ) to the data can be assessed by testing the hypotheses
H0 : E

[
φ̂− φ(θ)

]
= 0, H1 : E

[
φ̂− φ(θ)

]
6= 0 using the χ2-test statistic

N ·
(
φ̂− φ(θ̂)

)T
V−1

φ̂

(
φ̂− φ(θ̂)

)
D7−−−−→

N→∞
χ2
J−p (6.3.9)

under H0 (see Hansen [1982]) and provided that p < J <∞. The investigation of the finite
sample properties of Eq. (6.3.9) are left for future research.

6.3.2 From the Generalized Method of Moments to Indirect Inference

The analytical expressions of the wavelet variances, ν2(θ), used in Eq. (6.3.2) using the Haar
wavelet filter defined in Eq. (6.2.16) can be computed for several well known models such as
AR(·), sums of AR(·), ARMA(·,·) and others using the general results of Zhang [2008] on the
Allan variance. In addition, the analytical wavelet variance of sums of independent processes
correspond to the sum of the wavelet variances of individual processes within the model. Indeed,

101



Generalized Method of Wavelet Moments

when the process is made up of the sum of independent processes, i.e. Yk =
∑

m(Ym)k, Eq.
(6.2.6) can be expanded to

ν2(τj) =

∫ 1/2

−1/2
|H̃j(f)|2

(∑
m

SYm(f)

)
df =

∑
m

ν2
m(τj) (6.3.10)

with SYm(·) the PSD and ν2
m(τj) the wavelet variance at scale τj of the sequence {(Ym)k}.

Therefore, when an analytical expression for ν2(θ) is available, the estimator defined in Eq.
(6.3.2) can be seen as a Generalized Method of Moments (GMM) estimator (see Hansen [1982]
for details).

As a possible extension of the GMWM when analytical expressions for φ(θ) in Eq. (6.3.2) are
too complicate to compute, one can resort to simulations to compute φ(θ) and hence place
the GMWM in the framework of indirect inference Gallant and Tauchen [1996], Gourieroux
et al. [1993], Smith [1993]. Basically, given a sample of observations {yk : k = 1, . . . , N} and
an hypothetical model F (θ), we can define φ̂j as the wavelet variance ν̂2(τj) estimated from
the sample using Eq. (6.2.7), and φ̂?j (θ) as the wavelet variance estimate ν̂2

?(τj) computed on a
simulated series

{y?k (θ) : k = 1, . . . , R ·N} , R ≥ 1 (6.3.11)

from F (θ). Alternatively, one can compute R wavelet variance estimates {ν̂2
r (τj) : r = 1, . . . , R}

on simulated series{
y
?(r)
k (θ) : k = 1, . . . , N

}
(6.3.12)

and obtain

ν̂2
?(τj) =

1

R

R∑
r=1

ν̂2
r (τj). (6.3.13)

Then φ̂ = [φ̂j ]j=1,...,J and φ̂?(θ) = [φ̂?j (θ)]j=1,...,J are used in Eq. (6.3.2) to obtain an estimate
θ̂ of θ, which properties are described in e.g. Gourieroux et al. [1993]. In particular, for R
sufficiently large, Vθ̂ ≈ BVφ̂BT . In that case, B can be computed numerically.

6.4 Simulations

This section is dedicated to the finite sample performance evaluation of the GMWM estimator
compared to the MLE and the least-squares estimator. The simulations are an extention of
the simulations presented in Chapter 5 and were taken from the work we published in Stebler
et al. [2012]. For the GMWM estimator, we consider for Ω in Eq. (6.3.2) the diagonal matrix
with diagonal elements given by the inverse of the sample variance estimates of the MODWT
using Eq. (6.2.9). Indeed, in our simulations, we found that choosing Ω = V−1

φ̂
may lead in

some cases to numerical instability, probably due to the estimation of the covariances using Eq.
(6.2.15). For optimizing (6.3.2), we use a quasi-Newton optimization method. For the MLE, we
use the EM algorithm together with the Kalman smoother as proposed in Chapter 5.
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Figure 6.2: Performance comparison between the GMWM (GW ) and the EM algorithm started
at good (EM ) and at bad (EM ?) initial values, and the Allan variance technique (AV ) for
200 simulated signals issued from a sum of a white noise, a random walk and a random ramp
process. The true parameters are marked by horizontal lines (adapted from Stebler et al.
[2012]).

Similarly to the procedure used in Chapter 5, several simulations were performed to validate
our GMWM estimator. Composite stochastic processes which are assumed to have physically
meaningful units (e.g. deg/s, µg/s), associated with different models F (θ) of increasing
complexity were simulated with sampling interval ∆t. The GMWM approach was applied
to estimate θ and these results were compared to alternative estimation methods (i.e. Allan
variance and EM approaches).

Simulation 6.4.1. This simulation is the continuity of Simulation 5.4.1 (which was designated
WN-RW-RR) in which the following model F (θ) was used:

Yk = (YRW )k + (YRR)k +Wk, k ∈ Z.

Remember that the parameters to estimate are

θ = {σ2
WN , σ

2
RW , cRR}.

The values of θ(0) for the GMWM estimator were set to 1.0 and several tests revealed an
insensitivity of the estimator to the choice of θ(0) in terms of convergence. Figure 6.2 is the
continuity of Figure 5.2 in which we added the results obtained by the GMWM estimator.
Indeed, the GMWM algorithm converged correctly when initiated with θ?(0). The RMSE as
well as the R-RMSE of the GMWM method are listed in the left side of Table 6.2. These values
have to be compared to the Allan variance, EM, and EM? performance listed in Table 5.1. The
EM approach with θ(0) provides the best results but the GMWM is considerably better than
EM ? or the Allan variance based approach.
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Table 6.2: RMSE and relative RMSE (R-RMSE) of the GMWM estimator for 200 simulated
processes of size N = 6000 from model WN-RW-RR (adapted from Stebler et al. [2012]).

WN-RW-RR WN-GM-RR

RMSE R-RMSE RMSE R-RMSE

σ2
WN 8.59 · 10−4 2.15 · 10−2 1.38 · 10−2 2.15 · 10−2

σ2
RW 5.99 · 10−5 1.50 · 10−1 - -
cRR 5.29 · 10−4 1.76 · 10−1 1.81 · 10−4 1.81 · 10−1

βGM - - 3.31 · 10−3 4.14 · 10−1

σ2
GM - - 9.67 · 10−2 3.87 · 10−1

Simulation 6.4.2. This simulation is the continuity of Simulation 5.4.2 (which was designated
as GM-WN-RR) in which the following model F (θ) was used:

Yk = (YGM )k + (YRR)k +Wk, k ∈ Z

with the following parameters to estimate:

θ = {β, σ2
GM , σ

2
WN , cRR}.

Figure 6.3 compares the performance of the GMWM estimator against the constrained EM
(EM ?) and the constrained EM with prior removal of the drift through least-squares adjustment
(EM ), when applied on 200 simulated signals. The GMWM method was able to estimate
correctly θ without any prior manipulation (i.e. data detrending), which is a clear advantage
regarding inference on θ̂. Moreover, the performance of the GMWM estimator is comparable
to the EM approach (with prior drift removal) for β, σ2

GM and σ2
WN but is sensibly better

regarding cRR. RMSE and R-RMSE values are listed in the right part of Table 6.2 and have to
be compared with the results listed in Table 5.2. Note that the initial values in θ(0) were all
set to 1.0.

Simulation 6.4.3. Consider again the model F (θ) used in Simulation 6.4.2, i.e.

Yk = (YGM )k + (YRR)k +Wk, k ∈ Z

which has the following parameters:

θ = {σ2
WN , σ

2
GM , β, cRR}.

We are interested in estimating three (sub)models that we designate as

1. Model 1 : we set σ2
WN = cRR = 0, and hence we have Yk = (YGM )k;

2. Model 2 : we set cRR = 0, and hence we have Yk = (YGM )k +Wk;

3. Model 3 : the complete model, i.e. Yk = (YGM )k + (YRR)k +Wk.

We simulated 100 sequences {yk : k = 1, . . . , N} under Model 3 by using N = 6000, ∆t = 1
and

θ = {4, 16, 0.05, 0.005}.
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Figure 6.3: Performance comparison between the GMWM (GW ), the EM algorithm with prior
estimation of cRR by ordinary least-squares (EM ) and without (EM ?) for 200 simulated signals
issued from a sum of a white noise, a Gauss-Markov and a random ramp process. The true
values of the parameters are marked by horizontal lines (adapted from Stebler et al. [2012]).

For the Model 1 and Model 2, the parameters were constrained accordingly and not estimated.
For both the GMWM (simulation based or not) and the EM, the initial values for the
optimizations were set to

θ(0) = {1.0, 1.0, 1.0, 0.0}

which is relatively far away from the true values θ. We found that the choice for the starting
values is not a serious issue for the computation of the GMWM, except that starting far away
can make the computational time longer. The results are listed in Table 6.3 in terms of RMSE
and R-RMSE values obtained for each model by the GMWM and the EM estimator. Note
that we also tried a simulation-based version of the GMWM (see Section 6.3.2) with a value
of R = 100 and found that the RMSE are of the same order of magnitude as the RMSE
values obtained with analytical wavelet variances (results not presented here). The sample
wavelet variances were computed for J = 12 (< log(6000)/ log(2) ≈ 12.55) scales for all three
models. The results show that with respect to the simpler Model 1 and Model 2, the RMSE
values are lower for the EM than for the GMWM estimator, while the RMSE of the EM
explodes for Model 3. This last phenomena affects models with a drift component and was
investigated in Chapter 5 dedicated to the EM algorithm. When the EM behaves well (Model
1 and Model 2 ), it has a better performance in terms of RMSE than the GMWM estimator.
However, one can further improve the efficiency of the latter by decreasing the number of
scales J at which the wavelet variances are estimated. In this example J = 12 scales are used
to estimate two or three parameters. Now if more scales are added (supposing a larger N),
more variability is introduced in the GMWM estimator. The number of scales is obviously a
function of the number of parameters p, but their choice (among the possible ones) depends
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Table 6.3: RMSE and relative RMSE (R-RMSE) of the GMWM and EM estimators for 100
simulated processes of size N = 6000 from the models considered in Simulation 6.4.3 (adapted
from Guerrier et al. [2013]).

GMWM EM

RMSE R-RMSE RMSE R-RMSE

Model 1
σ2
GM 2.00 0.13 1.26 0.08
β 8.14 · 10−3 0.16 4.09 · 10−3 0.08

Model 2
σ2
GM 1.92 0.12 1.55 0.10
β 1.05 · 10−2 0.21 4.94 · 10−3 0.10

σ2
WN 0.13 0.03 0.14 0.04

Model 3
σ2
GM 0.96 0.06 74.57 4.66
β 4.63 · 10−3 0.09 0.04 0.85

σ2
WN 0.11 0.03 0.16 0.04
cRR 2.79 · 10−4 0.06 0.12 23.58

on the model. For example, consider the Model 2. A view on Figure 6.4 which depicts the
wavelet variance sequences of the complete model (Model 3 ) and of the invidual processes (rate
ramp, Gauss-Markov process), reveals that if the last three to four scales are ignored, then
the wavelet variances are still able to capture information about the Gauss-Markov and white
noise model components. Actually, removing the last four scales improves the efficiency of the
GMWM estimator in this case (results not shown here).

Simulation 6.4.4. Three mixed Gauss-Markov processes are impossible to discriminate using
the Allan variance method. Also, experiments revealed that the EM approach systematically
diverges in such complex scenarios. Therefore, an attempt to retrieve the correct values of
the individual model parameters is carried only with the GMWM estimation. The composite
stochastic process F (θ) (designated as GM-GM-GM) we wish to estimate can be expressed as

Yk =
3∑

m=1

(YGM,m)k, k ∈ Z

where (YGM,m)k is a first-order Gauss-Markov process with parameters

θ =
{
βm, σ

2
GM,m

}
m=1,2,3

.

Thus, the goal of this simulation is to estimate the following parameter set:

θ = {β1, σ
2
GM,1, β2, σ

2
GM,2, β3, σ

2
GM,3}.

To assess the performance of the GMWM in this context, 200 series {yk : k = 1, . . . , N} with
N = 106 were simulated under the following true parameter values:

θ = {0.008, 2.5 · 10−6, 0.05, 4.5 · 10−6, 2.0, 29.50 · 10−6}
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Figure 6.4: Haar wavelet variance sequence computed on the complete model composed of a
white noise, a Gauss-Markov and a random ramp process (Model 3 ) used in Simulation 6.4.3
(thick black line), and on the individual processes composing the model (adapted from Guerrier
et al. [2013]).

Figure 6.5 depicts the values θ̂ and reveals that the GMWM technique was able to retrieve
correctly the parameters of this complex model. The corresponding RMSE and R-RMSE values
are listed in Table 6.4. Again, the initial values of θ were all set to 1.0, and with exception of
two runs out of 200, the GMWM estimator converged (i.e. the success of convergence without
aiding was 99%). In these two cases, a grid search algorithm was employed to provide a “better”
initial guess of the initial θ to the GMWM and convergence occurred. Note also that the same
simulation was repeated by setting all initial parameters to various values, and no significant
difference was observed with respect to the results in Figure 6.5.

It should be mentioned that the composite process studied in Simulation 6.4.4, i.e. the sum
of three Gauss-Markov processes, can be reparameterized as an ARMA(3,2) process (see e.g.
Granger and Moris [1976], Terasvirta [1977]). Consequently, we could in principle estimate the
latter instead of the former. However, when one of the Gauss-Markov processes lies near a unit
root (as it is often the case with inertial sensors and in the simulation at hand), the estimation

Table 6.4: RMSE and relative RMSE (R-RMSE) of the GMWM estimator for 200 simulated
processes of size N = 106 from model GM-GM-GM (adapted from Stebler et al. [2012]).

Parameter RMSE R-RMSE

β1 6.62 · 10−4 8.28 · 10−2

σ2
GM,1 1.97 · 10−7 7.89 · 10−2

β2 2.19 · 10−3 4.38 · 10−2

σ2
GM,2 1.74 · 10−7 3.87 · 10−2

β3 9.05 · 10−3 4.53 · 10−3

σ2
GM,3 4.59 · 10−8 1.56 · 10−3

107



Generalized Method of Wavelet Moments

Figure 6.5: Performance of the GMWM algorithm for 200 simulated signals issued from a sum
of three Gauss-Markov processes. The true parameters are marked by horizontal lines (taken
from Stebler et al. [2012]).

of the associated ARMA(·, ·) model is rarely feasible. In addition, even if the estimation
of the ARMA(·, ·) model is possible, the results shall be inverted to a Gauss-Markov-like
representation since in many cases, and in particular in the simulation at hand, a sum of several
Gauss-Markov models explains better the real underlying process (see Kittel [1958], Drexler
[1992] for details). In order to recover the parameters of such a type of composite process from
an estimated ARMA(·, ·) process together with their standard errors, several conditions need
to be satisfied:

• The roots of the processes must lie outside the unit circle.

• The Jacobian matrix of the transformation between the two parametrizations must be
invertible in order to apply the delta method Rao [1973], Benichou and Gail [1989].

With the signals generated in this Section, both conditions were not satisfied. In that case at
least, estimating an ARMA(·, ·) process, converting the estimated model and performing an
inference on the sum of Gauss-Markov processes is infeasible.

6.5 Implementation

The complete GMWM estimation framework has been implemented in a C++ based software
optimized for handling very long signals (see Figure 6.6). The software takes as input files3

containing the sensor signals to model. After choosing settings related to the MODWT transform
3Different proprietary formats such as Applanix or XSens are supported.
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(upper left panel) such as the type of wavelet variance estimator, wavelet variance confidence
interval, wavelet filter (Haar, Daubechies), or boundary conditions handling during filtering, as
well as the computation of Vφ̂ (can be identity, diagonal or full), a model can be constructed
(upper right panel). Several stochastic processes for which an analytical expression for φ(θ) is
known can be selected. For each of them, user defined initial values as well as search boundaries
can be defined. Several optimizers can be chosen: simplex, quasi-Newton, conjugate-gradients,
constrained quasi-Newton, simulated annealing and Brent’s method. Once the optimization
is launched, the result of the wavelet variance curves matching can be inspected on a graph
(lower left panel). The black curve represents φ̂ computed on the sensor error signal, while the
red curve is φ(θ̂) estimated by the software. In addition, a processing report (lower right panel)
containing the parameter values together with the 95% confidence intervals and processing
settings can be generated and visualized.

Several issues related to the practical implementation of the GMWM framework will be
described in the sequel.

6.5.1 Optimizer Initialization

The core of the GMWM estimation concept is the solving of an optimization problem. Sensitivity
to initial values at which the optimizer starts is therefore a classical issue. We implemented
the following strategy that will be described shortly.

The GMWM minimization problem can geometrically be interpreted as a minimization of the
distance between the φ̂ and φ(θ̂) curves, considering weights Ω. However in cases were φ̂ has
strong variations over all scales τ , the optimizer rapidly converges to a good match at the left
part of the φ curve. This is due to the Ω weighting matrix which puts more importance on
wavelet variance of small scales. A simple geometrical reformulation of Eq. (6.3.2) of the form

θ̂(0) = argmin
θ∈Θ

κTκ (6.5.1)

where

κ =

[
1− φj(θ)

φ̂j

]
j=1,...,J

(6.5.2)

enables to ”flatten“ the curves and to significantly decrease the convergence time. Only few
iterations are then necessary to solve the original problem of Eq. (6.3.2).
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Figure 6.7: Estimated variances of ν̂2 with bootstrap (with B = 1000) and asymptotic
(theoretical) approaches as well as the variances implied by an homoscedastic model (taken
from Stebler et al. [2012]).

6.5.2 Note About the Wavelet Variance Covariance Estimation

This section presents a small simulation study that we published in Stebler et al. [2012] for
the aim of illustrating how “far” the matrix Vν̂2 is from σ2

ε I (which is a common assumption
in the standard Allan variance methodology). Indeed, B white noise processes, say {w(i)

k :
k = 1, ..., 1000, i = 1, ..., B} with unit variance were generated. The wavelet variances of each
process, denoted as ν̂2

(i), were estimated. Then, the empirical covariances (and correlations) of
ν̂2 were computed using

Σ̂B =
1

B − 1

B∑
i=1

(
ν̂2

(i) − ν̄
2
)(
ν̂2

(i) − ν̄
2
)T

where ν̄2 is the sample mean. For large B, the matrix Σ̂B is a fairly good approximation of
Vν̂2 and corresponds to the (parametric) bootstrap estimator of cov

[
ν̂2
]
. Figure 6.7 shows

the variances of ν̂2 (i.e. the diagonal of Vν̂2) estimated using the asymptotic formula version
defined in Eq. (6.2.15) and the bootstrap estimator Σ̂B. The variance (i.e. σ̂2

ε ) implied by the
model σ2

ε I is also depicted. As expected, the bootstrap and asymptotic estimators are very
close and therefore this demonstrates, at least in this example, the validity of Eq. (6.2.15).
In addition, these two estimates are very far from σ̂2

ε which illustrates the fact that standard
regression approach used in the Allan variance methodology is unsuitable in terms of efficiency.

Figure 6.8 presents the correlations estimated with the bootstrap and the asymptotic estimators
which are also very close. Note also that the wavelet variances are highly correlated between
neighboring scales. This confirms the inadequacy of the implicit model σ2

ε I.
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Figure 6.8: Comparison between the wavelet variance correlations estimated using a bootstrap
approach with B = 1000, on the left part, and theoretical correlations computed using Eq.
(6.2.15), on the right part (taken from Stebler et al. [2012]).

6.6 Conclusion

In this chapter, we presented a new estimator for the parameters of composite stochastic
processes which is consistent for the class made of the sum of M independent white noise,
random ramp, quantization noise, random walk and AR(1) (i.e. first-order Gauss-Markov)
processes withM <∞. The enlargement of this class involves verifying the conditions provided
in Theorem 2 and more generally in Theorem 1 of the study we published in Guerrier et al.
[2013] and is left for future research. As demonstrated in Stebler et al. [2012], the GMWM
has many advantages compared to existing alternative methods for applications in sensor
calibration.

Note that one could wonder why using wavelet variances in φ instead of the PSD for which a
similar estimation procedure could be used. We believe that the wavelet-based approach is
more suitable for the following reasons that we mentioned also in Guerrier et al. [2013]:

• Inference on the PSD would make the optimization of a least-squares type measure
(between the empirical and model based PSD) more difficult to solve when the PSD has
large variability over very narrow frequency bands. As shown in Percival and Walden
[2000], the wavelet coefficient at scale τj is associated with frequencies in the interval
[1/2j+1, 1/2j ] and Eq. (6.2.6) can be approximated by

ν2(τj) ≈ 2

∫ 1/2j

1/2j+1

SY (f)df. (6.6.1)

This means that the wavelet variance summarizes the information in the PSD using just
one value per octave frequency band. This property is particularly useful when the PSD is
relatively featureless within each octave band. In the case of the widely used pure power
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law processes (SY (f) ∝ |f |α) for example, from Eq. (6.6.1) one gets ν2(τj) ∝ τ−α−1
j ,

meaning that no information is lost when using the “PSD summary” given by the wavelet
variance.

• The computation of empirical wavelet variances is more straightforward than nonpara-
metric PSD. For example, the periodogram is an inconsistent estimator of SY (f) and can
be badly biased even for large samples sizes (because of the frequency leakage effects).
Therefore, more sophisticated PSD estimators and/or smoothing techniques such as
prewhitening or tapering shall be employed with a hope to approach the consistency
provided by the GMWM estimator.

• The PSD of two important processes in sensor error models, namely the random ramp
(drift) and the random walk, cannot be distinguished (both have slope of −2 in a log-log
representation of the PSD).

• The MODWT on which the wavelet variance computation is based requires a number
of multiplications of order N log2N , which is the same order as the widely used fast
Fourier transform algorithm. For this reason, the employment of wavelet variance does
not increase the computational burden.

In summary, we demonstrated that the GMWM estimator is able to handle complex error
models for which the Allan variance-based techniques failed and the EM algorithm did not
converge. We will further investigate its applicability in the context of inertial navigation.
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Chapter 7

Study of Stochastic Errors in Inertial
Sensors

7.1 Introduction

The aim of this chapter is to perform sensor calibration using the proposed GMWM framework
of Chapter 6. Its operation within a filter design loop is demonstrated on several IMUs belonging
to the tactical and low-grade classes. The first part of the chapter is dedicated to the modeling
of sensor error signals acquired in static laboratory conditions (Section 7.2). The performance
of the constructed models when operated within the Kalman filter is then evaluated in Section
7.3. The second part (Section 7.4) investigates the influence of the dynamics on the sensor
error behavior before drawing conclusions in Section 7.5.

7.2 Evaluation in Static Conditions

7.2.1 Error Signal Construction

Data were collected from a static Litton LN-200 tactical-grade IMU (sampling at 400Hz during
6 hours; see Figure 7.1), an XSens MTi-G MEMS-based IMU (sampling at 100Hz during 4
hours; see left panel of Figure 7.4), and an XSens MTx MEMS-based IMU (sampling at 100Hz
during 4 hours; see right panel of Figure 7.4). All devices operated under constant temperature
and stationary conditions. After mean removal, the observed signals {yk : k = 1, . . . , N} at
hand contain measurement errors driven by stochastic processes issued from an unknown model
F (θ). First, the GMWM estimator will be applied on accelerometer and gyroscope error signals
of each device. Second, the models are validated by simulating twenty realizations under θ̂,
computing their Haar wavelet variance, and comparing them to the Haar wavelet variance of
the signal under study. Note that exactly the same conclusion could be drawn by comparing the
Allan variance curves because of the linear relationship between the Haar wavelet variance and
the Allan variance. For each error signal under study, an analysis of what the Allan variance
calibration procedure would provide when applied on the signals is presented.
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Figure 7.1: Litton LN-200 tactical-grade IMU (taken from Litton Guidance and Control
Systems Division [1996]).

7.2.2 Tactical-Grade IMU (Litton LN-200)

Let the observed LN-200 gyroscope and accelerometer error signal both be designated as the
sequence {yk : k = 1, . . . , N} with N = 9′220′599 samples.

Model Building

Computation of the Haar wavelet variance (or Allan variance) curve on the (X-axis) gyroscope
error signal reveals the presence of a weakly correlated noise structure since the slope of the
curve lies near −1/2 (see black points in the left panel of Figure 7.2). However, the curve
signifcantly deviates from the theoretical Gaussian white noise shape at small scales (left side
of the plot). At this stage, the designer has the choice either to favor a simple Gaussian white
noise model of the type

Yk = Wk, for k ∈ Z (7.2.1)

or to account for this phenomena by choosing a more complex model. We choose to estimate
a first-order Gauss-Markov model with an expected very short correlation time (or large β
parameter value). The process will therefore be described by

Yk = (YGM )k, for k ∈ Z. (7.2.2)

The task of the GMWM estimator is to estimate the parameters

θ = {β, σ2
GM} (7.2.3)

from the observed gyroscope error signal {yk}.

By adopting the same methodology for the (X-axis) accelerometer, the Haar wavelet variance
curve computed on the signal (black points in the right panel of Figure 7.2) clearly reveals the
presence of quantization noise (left part of the curve), Gaussian white noise (middle part) and
a random walk (right part). Therefore, the model we choose is written as:

Yk = (YQN )k + (YRW )k +Wk, for k ∈ Z. (7.2.4)

The following parameter set has to be estimated:

θ = {Q, σ2
WN , σ

2
RW } (7.2.5)

from the observed signal {yk : k = 1, . . . , N}.
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Figure 7.2: Results of the Litton LN-200 accelerometer and gyroscope error modeling. The
upper panels depict wavelet variance sequences of the X-axis gyroscope (left panel) and
accelerometer (right panel) error signal (black circles) with associated 95% confidence intervals.
The wavelet variance sequences resulting from the estimated model and the sequences of 20
synthetic signals issued from the estimated model, are drawn as gray triangles and gray lines,
respectively. The black lines in the lower panels show the PSD of the gyroscope (left panel)
and accelerometer (right panel) error signals, and the gray lines correspond to the PSD of the
estimated model.
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Model Estimation

The GMWM estimator, was operated considering Ω in Eq. (6.3.2) as a diagonal matrix with
diagonal elements given by the inverse of the sample variance estimates of the MODWT using
Eq. (6.2.9). We used a quasi-Newton optimization method for solving the optimization problem
defined in Eq. (6.3.2).

Obviously, the white noise model estimation result obtained for the gyroscope signal employing
the GMWM estimator will be almost identical to what would be obtained when using Allan
variance-based analysis (not shown here). For the Gauss-Markov model, the values of the
estimated parameters are:

β̂ = 560.82 Hz
σ̂GM = 0.012 deg/s.

(7.2.6)

Since the LN-200 was sampling at 400 Hz, this process can be interpreted as a white noise with
level σ̂WN = 0.0005 deg/s/

√
Hz. Comparing this value to the manufacturer’s model Litton

Guidance and Control Systems Division [1996] specifying an angular random walk PSD level of
0.0006− 0.0025 deg/s/

√
Hz confirms the order of magnitude of our estimate. The result of the

wavelet variance matching defined in Eq. (6.3.2) can be visualized with the wavelet variance of
the estimated model (gray line with triangle markers in the left panel of Figure 7.2). It can be
seen that the model accounts for the curve deflection in the left side of the plot.

The parameter models obtained for the accelerometer are the following:

Q̂ = 0.19

σ̂WN = 15 µg/
√
Hz

σ̂RW = 5.4 · 10−4 µg/
√
Hz

(7.2.7)

Again, the estimation quality can visually be evaluated by checking the wavelet variance fit
between the estimated model (gray line with triangle markers) and the signal in the right panel
of Figure 7.2. Note that compared to the manufacturer’s model specifying a velocity random
walk PSD level of 50 µg/

√
Hz, the value of our estimated model, i.e. σ̂WN , is lower.

Model Validation

We validate the model at observation level by generating 20 synthetic signals {(y?j )k : k =

1, . . . , N ; j = 1, . . . , 20} issued from the estimated model F (θ̂). Then we compute the Haar
wavelet variances (or Allan variances) ν?j for each {(y?j )k} and plot them on the wavelet
variance plots of Figure 7.2 as gray lines. Although the confidence intervals associated to the ν?j
sequences are not drawn for clarity reasons, excepting a few realizations of the accelerometer
model, they all intersect with the signal wavelet variance confidence interval (black lines above
and below the black circles). A similar validation can be done by computing the PSD of the
error signals (gray lines in lower panels of Figure 7.2) and comparing them to the PSD of one
realization issued from the estimated model (black lines). Only one realization is drawn for
clarity reasons. For both, the gyroscope and the accelerometer, the PSD of the estimated model
matches fairly well the PSD associated to {yk}. Therefore, it can be assumed that correct
stochastic assumptions are done when designing a navigation filter with these models.
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Figure 7.3: Result of the XSens MTi-G accelerometer and gyroscope error modeling. The
upper panels depict the wavelet variance of the X-axis gyroscope (left panel) and accelerometer
(right panel) error signal (black circles) with associated 95% confidence interval, the wavelet
variance resulting from the estimated model (gray triangles), and the wavelet variance of 20
synthetic signals issued from the estimated model (gray lines). The black lines in the lower
panels show the PSD of the gyroscope (left panel) and accelerometer (right panel) error signals,
and the gray lines correspond to the PSD of the estimated models.
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Figure 7.4: XSens MTi-G (left panel) and MTx (right panel) MEMS-based IMUs (adapted
from XSens Technologies B.V [2009b,a]).

7.2.3 MEMS-Based IMU (XSens MTx/MTi-G)

Here, we observe signals from MEMS-based accelerometers and gyroscopes mounted in XSens
MTx and MTi-G IMUs that will be noted as {yk : k = 1, . . . , N} with N = 2′057′424 samples.

Model Building

Using the same methodology as above, a look on the wavelet variance curves for one (X-axis)
MTi-G gyroscope (upper left panel in Figure 7.3) and for one (X-axis) MTi-G accelerometer
(upper right panel in Figure 7.3) reveals the presence of correlated and uncorrelated noise. For
both signals, we used a model F (θ) composed of the following processes:

Yk =

M∑
m=1

(YGM,m)k +Wk, for k ∈ Z. (7.2.8)

where M was determined by going several times through the filter design loop (see Figure 4.1).
In each loop, the value of M was changed and the final model was accepted as a compromise
between the model complexity and the matching quality (goodness-of-fit). Therefore, a value
of M = 2 was chosen for the gyroscope, and M = 3 for the accelerometer model. Therefore,
we have the following parameters to estimate:

θ =
{
σ2
WN , βm, σ

2
GM,m

}
m=1,...,M

(7.2.9)

from the observed gyroscope and accelerometer error signal {yk}.

Model Estimation

The estimated model for the gyroscope has the following values:

σ̂WN = 0.032 deg/s/
√
Hz

β̂1 = 0.024 Hz

σ̂GM,1 = 7.63 · 10−4 deg/s/
√
Hz

β̂2 = 9.03 · 10−4 Hz

σ̂GM,2 = 8.64 · 10−4 deg/s/
√
Hz

(7.2.10)
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Evaluation in Static Conditions

The quality of the fit can be judged with the gray line with triangle markers in the upper left
panel of Figure 7.3. Despite the slight deviation from the first wavelet variance point of the
signal with respect to the model, the estimated model still overbounds the uncorrelated noise
level. Note that despite the difficulty to compare models, the angular random walk provided
by the manufacturer is 0.05 deg/s/

√
Hz XSens Technologies B.V [2009a].

For the accelerometer, the estimated model has the following parameter values:

σ̂WN = 85.5 µg/
√
Hz

β̂1 = 25.8 Hz
σ̂GM,1 = 143 µg

β̂2 = 0.04 Hz
σ̂GM,2 = 103 µg

β̂3 = 2.32 · 10−4 Hz
σ̂GM,3 = 900 µg

(7.2.11)

As an indication, the velocity random walk PSD level indicated by the manufacturer is 0.002
m/s2/

√
Hz XSens Technologies B.V [2009a] which is slightly higher than our estimated σ̂WN

value of 8.55 · 10−4 m/s2/
√
Hz. Similarly to the gyroscope, the short-term noise structure is

quite complex and none of the considered models in this thesis could easily approximate this.

Model Validation

In Figure 7.3, the PSD of one realization issue from the estimated model is depicted as a gray
line superposed to the signal PSD (black line) for both, the MTi-G gyroscope (lower left panel)
and the MTi-G accelerometer (lower right panel). The quality of the matching shows that
the spectral noise structure generated by both models correctly reproduces the sensors’ noise
shapes.

Until now, we assumed a unique model for all three sensors composing an IMU. To verify
this assumption, we individually modeled each of the three gyroscopes and accelerometers
composing an MTi-G and MTx IMU. In the upper panels of Figure 7.5, the three Haar
wavelet variance curves corresponding to the error signals of the gyroscopes (left panel) and
the accelerometers (right panel) from the MTi-G IMU are depicted as black lines. The gray
lines represent the Haar wavelet variance issued from the GMWM estimation. Since the order
of magnitude is clearly similar among each sensor type, the use of one single model per sensor
type in the filter design is relevant in this case. The same operation was repeated on the MTx
IMU and the results are shown in the lower panels of Figure 7.5. The same conclusions as for
the MTi-G can be drawn from these panels.

7.2.4 PSD Estimation Capability of the Wavelet Variance

In the conclusion of Chapter 6, Eq. (6.6.1) highlighted the fact that the wavelet variance
provides an octave-band estimate of the PSD. This was one reason to use the wavelet variance
signal instead of the PSD in cases where the PSD is relatively featureless. According to Percival
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Figure 7.5: Result of the GMWM modeling for the XSens MTi-G (upper panels) and the
MTx (lower panels) accelerometer and gyroscope error signals. For each IMU axis, the wavelet
variance sequences estimated on the original error signals are drawn as black circles (together
with the 95% confidence intervals). The wavelet variance sequences resulting from the estimated
models are drawn as gray lines with triangles. Note that the confidence intervals associated to
the model-based wavelet variances are not drawn for readibility reasons.
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and Walden [2000], as the width L of the wavelet filter {h̃l} used to form {h̃j,l} increases,
the approximation expressed in Eq. (6.6.1) improves because {h̃j,l} then becomes a better
approximation to an ideal band-pass filter. Therefore, by making the assumption that L is
chosen such that Eq. (6.6.1) is a reasonable approximation, it is possible to estimate SY (·) using
a function S̄Y (·) that is piecewise constant over octave bands

[
1

2j+1∆t
, 1

2j∆t

]
for j = 1, . . . , J .

Then, when 1
2j+1∆t

< f ≤ 1
2j∆t

, we assume

S̄Y (f) = Cj (7.2.12)

where Cj is a constant defined such that Percival and Walden [2000]∫ 1/(2j∆t)

1/(2j+1∆t)
SY (f)df =

∫ 1/(2j∆t)

1/(2j+1∆t)
S̄Y (f)df =

Cj
2j+1∆t

. (7.2.13)

From Eq. (6.6.1), we have

ν2(τj) ≈
Cj

2j∆t
(7.2.14)

and hence we can use Ĉj = 2j ν̂2(τj)∆t to estimate PSD levels. The upper panels of Figure 7.6
shows estimated PSD levels Ĉj plotted as a constant line over each octave band for the MTi-G
gyroscope and accelerometer, respectively. The full line corresponds to the Haar-based estimate,
while the dashed line represents the estimate using a higher order D(6) wavelet filter. In this
case, there is good agreement between the two PSD estimates over all frequencies, meaning
that the use of the Haar filter is sufficient. The well-known frequency leakage phenomenon
was also mentioned in Chapter 6. Therefore, we also plotted PSD estimates based upon the
leakage-prone periodograph (circles) and a multitaper estimator (asterisks) which should be
relatively free of leakage (for more details on periodogram and multitaper PSD estimators, see
Percival and Walden [2000]). In order to obtain the periodogram and multitaper PSD estimates,
we averaged the PSD estimates obtained at each Fourier frequency fk = k

N∆t , k = 1, 2, . . .
(gray line corresponding to the multitaper PSD estimate) over octave frequency bands, meaning
that each of the octave band averaged estimates is plotted versus the average of the Fourier
frequencies associated with the estimates. In this case, the Haar-based PSD estimate does not
suffer from frequency leakage which should be visible at the low power portion of the estimated
PSD (at high frequencies).

7.3 Influence on EKF Solution

7.3.1 Testing Models

As already mentioned in Section 4.2.1, validating and comparing different models on the state
level basis is extremely tricky. Issues like observability, non-modeled parasite signals generated
from the dynamics, or environmental condition variations may largely affect the output of the
navigation filter. Therefore, a statement telling that one model is in general more accurate
than another must be considered with caution. In this thesis, we chose to construct models on
signals sampled in static conditions and to validate them using tools such as wavelet variance
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Figure 7.6: Comparison of octave band PSD estimates for the XSens MTi-G gyroscope (left
panel) and accelerometer (right panel) error signal based on the periodogram, a multitaper
PSD estimate and Haar and D(6) wavelet variance estimates.

(or Allan variance) and PSD on the observation level. This means that the built model is valid
for the conditions at hand during calibration.

A navigation filter designer may be interested in analysing the effect of a constructed model
on a trajectory, independently from any unmodeled effects which were not experienced during
the calibration phase. In this way, the model can be tested under the aimed dynamics and
typical operation duration. Although the GMWM estimator opens the door to the estimation
of complex composite models such as sums of Gauss-Markov processes, they are not necessarily
observable under all dynamical conditions. Moreover, the duration of the trajectory may be
too short to estimate some processes with large correlation time. These two reasons may justify
choosing a simplified version of the model, i.e. removing some of the Gauss-Markov processes,
or lumping them together. Simulation provides a means for performing such an analysis. In
this respect, we use the following procedure:

1. An accurate navigation solution for a given trajectory is computed using signals from high-
grade sensors (typically tactical/navigation-grade IMUs, L1/L2 carrier-phase differential
GNSS positioning).

2. The real error signals acquired by the sensor under static conditions are added to synthetic
inertial signals emulated along the reference trajectory (note that the synthetic signal
matches the chosen reference perfectly; hence it contains no errors at all).

3. Artifical outages in GNSS position/velocity observations are added to the dataset which
is subsequently processed by INS/GNSS integration implementing a closed-loop EKF.

4. The qualily of the model is judged by analysing the actual navigation error as well as
the EKF-predicted accuracy during inertial coasting mode (i.e. periods with no external
aiding).
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Figure 7.7: Emulated trajectory issued from an ALS flight. The left panel shows the reference
trajectory with the three articial GNSS-free periods. The right panel provides a close view on
the third GNSS-free period, together with the estimated trajectory using Model 3.

7.3.2 Example: XSens MTi-G IMU operating on a Small Flying Platform

In this example, we assume the XSens MTi-G IMU, for which a model was constructed in
Section 7.2.3, to operate on a light flying platform such as an Unmanned Air Vehicle (UAV).
The target application is mapping using remote sensing sensors which must be accurately
georeferenced using the integrated inertial and geodetic-grade GNSS observations. Typical
mission durations are between 5 to 30 minutes. We are interested in studying the behavior
of the EKF operating in the aimed context with the given set of navigation sensors used for
georeferencing.

The left panel of Figure 7.7 shows an extract of a trajectory issued from a helicopter flight
performing Airborne Laser Scanning (ALS) Schaer et al. [2009]. There, the laser data were
georeferenced using a trajectory obtained by integrating observations from a tactical-grade
Litton LN-200 IMU and a Javad Legacy L1/L2 GNSS receiver (rover). The centimeter-level
accurate GNSS solution was obtained by carrier-phase differential post-processing of the rover
observation with a base GNSS receiver (Topcon Hiper Pro). Finally, the smoothed integrated
navigation solution provided the trajectory which will serve as a reference as well as a base for
emulation. We then emulated specific force and angular rate observations along this trajectory,
and corrupted them with the real error signal observed in (static) calibration (see Section
7.2.3).

We are now interested in comparing versions of the constructed model expressed by Eq. (7.2.8),
i.e.

• Model 1 : Yk = Wk, k ∈ Z. This model is computationaly the most efficient but does not
account for any correlated errors.

• Model 2 : Yk =
∑M

m=1(YGM,m)k + Wk, k ∈ Z, m = 1, . . . ,M with M = 1 for the
gyroscopes, and M = 2 for the accelerometers. Referring to Eq. (7.2.10), the correlated
gyroscope errors are modeled by YGM,1 with parameters σ̂2

GM,1 and β̂1. For the accelerom-
eter, the correlated errors are handled by the sum of YGM,1 and YGM,2 whose associated
parameters (σ̂2

GM,1, β̂1 and σ̂2
GM,2, β̂2) are given in Eq. (7.2.11).
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• Model 3 : complete model, i.e. with M = 2 for the gyroscopes and M = 3 for the
accelerometers. This model accounts for errors with short and long correlation times
given in Eq. (7.2.10) and (7.2.11), but is computationaly more demanding.

We introduce three artifical GNSS-free periods, each of 60 seconds duration. The first outage
occurs approximately 7 minutes after mission start, the second after 11 minutes and the third
after 15 minutes. The error growth during each outage can be visualized in Figure 7.8. Although
not clearly visible in the figure, a general view reveals that Model 2 performs only slightly
better than Model 1. All models perform similarly during the first outage, meaning that some
of the model parameters could not yet be correctly estimated by that time. However, after
being longer in mission, Model 3 clearly outperforms the two others. Regarding planimetric
positioning error (upper left panel), the improvement of Model 3 compared to Model 1 (and 2 )
is more than 30% for the second outage, and raises to around 60% at the third outage. The
right panel of Figure 7.7 shows a close view on the trajectory during this third GNSS-free
period. With respect to altimetric error, the upper right panel of Figure 7.8 indicates that
Model 3 always performed significantly better than Model 1 and 2. The lower left and right
panels show the North-axis velocity (East and vertical velocity have similar behavior) and
the roll angle (pitch and heading angles have similar behavior) errors, respectively. The same
conclusion as for the planimetry can also be drawn for the accuracy of velocity and attitude.
Beside navigation, the EKF-estimated covariance matrix Pk, k ∈ Z needs to be evaluated for
each model. Figure 7.9 depicts the true latitude error and North-axis velocity error, considering
that similar conclusions can be made from the other state variables. The estimated state
variables during the third outage period are depicted as thick black (Model 3 ) and lightgray
(Model 1 and 2 ) lines, surrounded by their estimated 3-σ error bounds (thiner lines with same
color) extracted from the diagonal of Pk. The true state is drawn as the thickest gray line.
From both panels it can be seen that the estimated precision encompasses the true error only
for the complete model, i.e. Model 3, while it is clearly underestimated with the two other
models.

At this stage, the filter can be optimized with the following recommendations:

• The first Gauss-Markov process, i.e. (YGM,1)k, can safely be neglected, since it brings no
significant improvement over Model 1.

• If Model 1 or Model 2 is chosen, the suppression of the model(s) accounting for long-term
correlated errors, i.e. (YGM,1)k and/or (YGM,2)k, may be compensated by augmenting
the white noise level in Wk. This will improve the correspondance between the estimated
filter precision with the real error.

Note that this example highlights again the difficulty of designing a filter using conclusions
issued from a single realization. Although the recommendations listed above are certainly valid
for the given scenario, they may change when the filter is submitted to a different dynamics
(e.g. ground-based or pedestrian navigation). This indicates that a navigation filter should be
designed according to a given operation context.
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Figure 7.8: Navigation performance achieved by an XSens MTi-G device operated on an
emulated trajectory with three GNSS-free periods. The upper panels show planimetric (left)
and altimetric (right) positioning errors, while the lower panels depict North-axis velocity error
(left) and roll angle error (right) for three tested models.

Figure 7.9: Estimated Latitude (left panel) and North-axis velocity (right panel) using three
versions of the constructed model, together with the estimated 3-σ confidence levels.
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7.4 Influence of Dynamics on Sensor Errors

In the preceding sections, we assumed no influence of the dynamics in the construction of the
models. The sensor error signals were acquired in static laboratory conditions and the resulting
models were hence validated for such conditions. In other words, these models accounted for
the internal sensor errors, but not for the possible modifications caused by the motion (e.g.
vibrations). Effects like vibrations or scale-dependent errors may further affect the sensor error
behavior. Furthermore, (random) constant biases were not considered up to this moment. This
section is dedicated to the analysis of sensor error signals acquired in moving conditions. We
show how to construct these error signals and verify their potential dependency on vehicle
dynamics.

7.4.1 Error Signal Construction

The sensor error signal is computed with respect to a navigation-grade IMU operated on the
same platform as the sensor under test. Here, the tested IMU is the XSens MTx IMU which was
previously studied. The IMU was mounted together with the Ixsea AIRINS navigation-grade
IMU, considered as a true reference. Hence, the XSens MTx error signal generation requires
the less straightforward definition and calibration of the following relationships: the spatial
offset between both triads forming the IMUs, and the time alignment of both devices to a
common reference. These two aspects will be treated in the sequel.

Space Alignment

Consider the reference IMU, noted R-IMU, and the IMU under study, noted S-IMU, rigidly
mounted on the same platform. Assume that b-frame is equivalent to the R-IMU instrumental
frame, and that the S-IMU provides observations in his instrumental s-frame. The b-frame and
s-frame origins are separated by a vector rbb→s, called inter-IMU leverarm, and their relative
orientation is expressed by the Cs

b DCM, called inter-IMU boresight. The relationship between
Cs
b and the estimated boresight, denoted as Ĉs

b, may be expressed in terms of misalignment
errors as

Cs
b = (I + Ψ) Ĉs

b (7.4.1)

where Ψ =
[
ψbb→s×

]
contains the misalignment error angles ψbb→s = [ψ1, ψ2, ψ3]T between the

b-frame and the s-frame.

The S-IMU observations ωsis and f s must be corrected by boresight Cs
b and lever-arm rbb→s

effects. Both quantities can either be known a priori or estimated. For the latter case, the
estimation should ideally be done in laboratory conditions using controlled machines (e.g. a
rotating table). However, for cases were no such infrastructure is available, Cs

b and rbb→s may
be estimated by using directly the vehicle on which the sensors are mounted. With this respect,
two EKF-based estimation techniques will be presented here.
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Boresight Estimation through Attitude Update This method, also used in Waegli
[2009], estimates Cs

b in the S-IMU/GNSS filter by employing attitude updates provided by
the R-IMU/GNSS processed solution. Indeed, the S-IMU/GNSS EKF can be fed with zϕ
measurements issued from the R-IMU/GNSS filter, i.e.

zϕ =
[
zr zp zy

]T (7.4.2)

where zr, zp, zy are roll, pitch and yaw observations, respectively. If again the same assumption
of small ψ1, ψ2 and ψ3 angles is done, the measurement model can be expressed as:

zϕ = h(xc) + vϕ ≈ (I−Ψ)ϕ+ vϕ (7.4.3)

where xc = ϕ are the augmented states such that ϕ = [r, p, y]T is the vector containing the
attitude angles estimated in the S-IMU/GNSS EKF1. Linearized the model expressed in Eq.
(7.4.3) yields the following observation design matrix:

Hϕ =
[

03×6 (I3×3 −Ψ) 03×6 [εl×]
]
. (7.4.4)

If the S-IMU is of poor quality, the solution provided by the S-IMU/GNSS filter may be
considerably affected by the imperfections of initialization stage. Therefore, working with the
R-IMU/GNSS filter as described further may be advantageous.

Boresight and Lever-arm Estimation through Inertial Measurement Aiding This
method enables joint Cs

b and rbb→s estimation by feeding the R-IMU/GNSS filter with the less
precise ωsis and f s measurements. The relation between ωsis and ω

b
ib is given by

ωsis = Cs
bω

b
ib (7.4.5)

which is true under the conditions that Ċs
b = 0 and ṙbb→s = 0. If Ωs

is = [ωsis×] and Ωb
ib =

[
ωbib×

]
,

Eq. (1.5.2) enables to deduce the relation between f b and f s by considering the s-frame as the
a-frame:

f s = Cs
b

(
f b + Ω̇b

ibr
b
b→s + Ωb

ibΩ
b
ibr

b
b→s

)
(7.4.6)

in which Ω̇b
ibr

b
b→s and Ωb

ibΩ
b
ibr

b
b→s represent centrifugal and Coriolis forces, respectively.

Under the condition that ψ1, ψ2 and ψ3 are small, we have Cs
b ≈ I−Ψ. By denoting ωsis and

f s respectively as zω and zf , the linearized measurement models given in Eq. (7.4.5) and (7.4.6)
are

zω = h(xc) + vω ≈ Ωb
ibψ

b
b→s + vω (7.4.7)

and

zf = h(xc) + vf

≈ −
(

[f b×] + Ωb
ibΩ

b
ib[r

b
b→s×] + Ω̇b

ib[r
b
b→s×]

)
ψbb→s + Cs

b

(
Ωb
ibΩ

b
ib + Ω̇b

ib

)
δrbb→s + vf

(7.4.8)

1These values are obtained from qlb estimated in the state vector.
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Figure 7.10: Result of a joint inter-IMU leverarm (left panel) and boresight (right panel)
estimation using emulated IMUs. The true values are shown as gray lines.

where

xc =
[ (
ψbb→s

)T (
rbb→s

)T ]T (7.4.9)

are the augmented calibration states. The design matrix Hf for the whole state vector can be
deduced from Eq. (7.4.7) and (7.4.8), yielding

Hf =

[
03×15 Ωb

ib 03×3

03×15 −[f b×]−Ωb
ibΩ

b
ib[r

b
b→s×]− Ω̇b

ib[r
b
b→s×] Cs

b

(
Ωb
ibΩ

b
ib + Ω̇b

ib

) ] . (7.4.10)
An illustrative example is shown in Figure 7.10 in which the boresight angles between an
emulated low-grade and a tactical-grade IMU has been estimated using inertial measurements
of the former to feed the EKF of the latter (forward filtering solution). The true boresight
parameters rbb→s and Cp

b are depicted as thick gray lines. The augmented states ψbb→s and
rbb→s are driven by the following Gauss-Markov processes:

ψ̇bb→s = βψψ
b
b→s + wψ (7.4.11)

ṙbb→s = βrr
b
b→s + wr (7.4.12)

where βψ and βr are (3× 1) vectors containing the inverse correlation times set to large values
(i.e. are practically random constants), and wψ and wr are the PSD levels of the processes
associated to the boresight and leverarm states, respectively. The filter was initialized with
null values for both, boresight and leverarm states. The convergence time to the true values
last a few seconds only. Figure 7.11 depicts the estimated smoothed inter-IMU angles ψbb→si
with i = 1, 2 for two XSens MTx IMUs (measuring in their respective si instrumental frame)
with respect to the reference signals provided by a navigation-grade IMU (Ixsea Airins). The
data were collected on a vehicle during a 15 minutes long trajectory. The final boresight angles
are estimated as a weighted mean (considering the smoothed variances).
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Figure 7.11: Result of the inter-IMU boresight angle estimation for two XSens MTx IMUs
using inertial measurements from an Ixsea Airins navigation-grade IMU.

Time Alignment

The samples of the R-IMU and S-IMU shall be tied to a common absolute time frame. For
that, GPS time can be used. We will see later in Chapter 8 (Section 8.6) how inter-IMU time
synchronization can be realized.

Once the data are aligned in space and time, the dynamic sensor error is considered as the
difference between the transformed S-IMU signals and the corresponding R-IMU signals.

7.4.2 Dynamic Error Signal Analysis for MEMS-Based IMUs

The XSens MTx gyroscope and accelerometer error signals obtained by the described method-
ology are shown in the upper two panels of Figure 7.12. Note that only the Z-axis is shown,
since similar results were obtained for the remaining two axes. A first view on the gyroscope
error signal (left panel) reveals no clear dependency on dynamics. This gives confidence in the
estimated boresight angles as well as the time synchronization between both IMUs.

However, in Figure 7.13 we plotted the angular rate errors against the angular rate (upper left
panel), the angular acceleration ω̇bib (upper right panel), and the angular jerk ω̈bib (lower left
panel). Although there is no dependency of the gyroscope errors with angular rate, there is
some correlation with angular acceleration and jerk since a trend can be identified from the
graphs.

We now compare the structure of the gyroscope error signal acquired in dynamic conditions
with its counterpart signal acquired in static conditions whose wavelet variance was drawn
in the lower left panel of Figure 7.5 (black circles). As mentioned in Section 7.2.3, a unique
model can be assumed for all three axes of the XSens MTx IMU. The resulting model is of the
type given in Eq. (7.2.8) with M = 2 and its parameter values together with the associated
95% confidence intervals are listed in Table 7.1 in the static model column. We build a model
on the dynamic error signal using the GMWM estimator with the intention of comparing the
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Figure 7.12: Typical XSens MTx gyroscope (left panel) and accelerometer (right panel) error
signals computed from the reference IMU under dynamics.
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Figure 7.13: Correspondance between the “true” error signal constructed for a XSens MTx
gyroscope under dynamics, and angular rate (upper left panel), angular acceleration (upper
right panel), and angular jerk (lower left panel). The lower right panel depicts the wavelet
variance sequence computed on the gyroscope error signal acquired in moving conditions (black
circles), together with the wavelet variance issued from an estimated model (see Table 7.1).
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Table 7.1: Comparison between the XSens MTx gyroscope model constructed on a signal
acquired in non-moving conditions (static model) and in moving conditions (dynamic model).

Process Parameter Unit Static Model Dynamic Model

White Noise σ2
WN (deg/s)2 0.50552± 0.00035 0.65382± 0.00001

Gauss-Markov β1 1/s 0.00492± 0.01892 0.00155± 0.00082
σ2
GM,1 (deg/s)2 0.00142± 0.00001 0.00981± 0.00005

Gauss-Markov β2 1/s 113.51523± 0.00404 1.68012± 0.04980
σ2
GM,2 (deg/s)2 0.05528± 0.00051 0.00168± 0.00005

−4 −3 −2 −1 0 1 2 3 4 5
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2
Z−Accelerometer True Error vs. Linear Acceleration

Acceleration Errors (m/s2)

Li
ne

ar
 A

cc
el

er
at

io
n 

(m
/s

2 )

−8 −6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

8
Z−Accelerometer True Error vs. Linear Jerk

Acceleration Errors (m/s2)

Li
ne

ar
 J

er
k 

(m
/s

3 )

Figure 7.14: Typical correspondance between XSens MTx specific force error (with respect to
reference IMU), and linear acceleration (left panel) and jerk (right panel).

structure of the noise and its level with the static model. The result of the modeling is shown
in the lower right panel of Figure 7.13 in which we draw the wavelet variance curve of the
gyroscope dynamic error signal (dashed black line with black circles) and the wavelet variance
of the estimated model (gray curve). The model which best suites the signal is of the same
type as the model defined in Eq. (7.2.8). After trying several values of M , the best results (in
terms of goodness-of-fit) were again obtained with M = 2. In Table 7.1, we show the values
of the estimated model parameters for the model constructed in dynamic conditions in the
dynamic model column. Comparing both columns indicates that the dynamics has not changed
significantly the gyroscope noise structure, i.e. that the filter can run with the same error
model, independently from the vehicle dynamics. However, the magnitude of the Gaussian
white noise level as well as the Gauss-Markov driving noise level change significantly. This is
also the case for the inverse correlation times of both Gauss-Markov processes which differ
significantly in magnitude. However, this difference could be well caused by the relatively short
dynamic error signal used to compute the wavelet variance. Regarding the accelerometer error,
the right panel of Figure 7.12 clearly indicates the effect of the platform vibrations through
important variations of the error levels. Obviously, computing the wavelet variance on such a
signal makes not much sense. In Figure 7.14, we plotted the accelerometer errors against the
linear acceleration (left panel) and linear jerk (right panel). Similarly to the gyroscope, a clear
correlation between the error signal and the linear acceleration and jerk can be read from the
trend in both panels.
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The results obtained in this section confirm the work of Wis and Colomina [2010] in which a
similar preliminary analysis was performed using a IMAR INAV-FJI-IDEG-00 reference IMU
for studying a Litton LN-200 IMU and a Systron Donner Motionpak II MEMS-based IMU.
They proposed then introducing jerk components in the sensor error models, i.e in ∆ωbib and
∆f b in our case. In this research, we will not deal with such kinds of models. Instead, we will
use the approach of trying to estimate the true (dynamical) errors by introducing redundancy
in the navigation system through the use of multiple inertial sensors operating at the same
time on the same platform. From these redundant sensors, residuals can be observed, estimated
and included in an adaptive filtering scheme, for example. This will be the subject treated in
the third part of this thesis.

7.5 Conclusion

In this second part of the thesis, we mainly focused on the navigation filter design task, i.e. the
modeling of sensor errors. Its importance in terms of final navigation accuracy has been proved
using simulated and real data sets. The severe limitations of the existing methods for modeling
stochastic errors have been highlighted and two new methodes were proposed in this respect.
The first is an adaptation of the likelihood-based EM algorithm to the context of inertial
sensors. We showed how to modify the classical (unconstrained) form of the EM algorithm
for estimating models such as first-order Gauss-Markov processes. This method enabled to
estimate models for which the classical Allan variance technique could not be applied. However,
computational drawbacks as well as convergence to wrong solutions inherent to likelihood-based
methods are the main drawbacks of this approach. Then, we developed a new theory and
implemented a completely new estimation framework, called GMWM, for which we proved the
asymptotic consistency. This new method enabled to estimate very complex stochastic models
such as composite stochastic processes in a few seconds only. Moreover, confidence intervals
could be computed for each estimated parameter using this approach. Finally, we attempted
to analyse the influence of platform dynamics on the sensor error behavior. For that, we built
a complex experimental setup for generating error signals acquired while the vehicle was in
motion. The analysis revealed the dependency of the error to some dynamics quantities such
as linear and angular jerk. Although we demonstrated that a single error model accounting for
static and dynamic conditions could be afforded for the gyroscopes, the accelerometer error
level varied significantly with dynamics mainly due to parasite signals such as vibrations. This
motivated the attempt to estimate this error signal in dynamic conditions by using multiple
inertial sensors. This will be the subject of the next part of the thesis.
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Part III

Redundancy in Inertial Observation
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Chapter 8

Estimation Concepts with Redundant
Inertial Sensors

8.1 Introduction

The investigations made in Section 7.4 indicated the influence of the encountered dynamics
on the sensor error behavior. Parasite signals affecting the platform motion (e.g. vibrations)
make the sensor noise level vary in time (mainly for accelerometers). These nondesired signals
cannot be investigated in laboratory conditions as they vary according to the type of vehicle
and the environmental conditions. However, the use of multiple inertial sensors experiencing
the same conditions introduces the necessary measurement redundancy into the system for
estimating these types of effects.

Redundancy in inertial sensors improves the navigation performance on several levels:

1. The level of sensor noise can be estimated directly from the data and provide hence a
better view on the reality.

2. The noise level of the overall system can be reduced.

3. Defective sensors can be detected and isolated via Fault Detection and Isolation (FDI)
procedures.

4. A more accurate navigation solution (mainly the attitude) can be achieved.

With respect to the first and second point, the recent investigations of Stebler et al. [2011b],
Waegli et al. [2010] developed modeling concepts accounting for varying noise levels. The
authors were mainly motivated by the fact that stochastic errors may vary as a function of
environmental conditions applied to the sensors, i.e. temperature, electrical power, magnetic
fields Guerrier [2009], or the dynamics. To which extent this statement is realistic can be
deduced from Figure 8.1. This figure depicts (in gray) the true XSens MTx accelerometer (left
panel) and gyroscope (right panel) error signal constructed in Section 7.4. The varying noise
level can be deduced from the plotted residuals (i.e. deviations from the estimated mean signal
using multiple MTx devices by a process discussed later in the chapter) shown as a black line
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Figure 8.1: Comparison between the residuals estimated from three XSens MTx IMUs, and
the true acceleration error (left panel) and angular rate error (right panel) with respect to a
reference IMU.

in the respective panels. Two preliminary statements can be brought at this point. First, the
magnitude of the estimated noise level is realistic in the case of the gyroscope but not so for
the accelerometers whose output is prone to vibrations. Second, the general structure of the
error signal is clearly captured by both estimated residuals signals. Although less visible, the
confirmation of the similarity between the gyroscope true error and the estimated residuals
is brought in the left panel of Figure 8.2. In this panel, the estimated residuals are plotted
against the true error signal. A clear correlation can be deduced from the trend of the cloud.
Regarding these observations, Guerrier [2009] proposed two methods. The first assumed that all
sensors have the same variance which remains constant over a certain time interval. The second
used ARMA(·, ·) models, introduced in Chapter 4 (Section 4.7), for modeling the correlated
part of the noise, and Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH)
models for continuously estimating the residual variance for each individual sensor. Both
strategies enabled to compute a so-called synthetic IMU (sometimes also termed virtual IMU )
by introducing measurement weights for reducing the noise level in the resulting system.

With respect to the previously mentioned third advantage, Guerrier et al. [2012] also investigated
several FDI procedures applied on MEMS-based redundant IMUs. Guerrier [2009], Guerrier
et al. [2012] demonstrated the conditions for optimal configuration of multiple IMU triads. Note
that already in 1974, Pejsa [1974], followed by Sturza [1988a,b] in the late eighties, investigated
FDI procedures by studying optimal geometries for the sensor spatial distribution.

The last point (4.) was extensively studied by Bancroft [2009], Waegli et al. [2008], Waegli
[2009] who tested different INS/GNSS integration schemes based on redundant low-grade
(MEMS-based) IMUs. The tested schemes were initially proposed in 2003-2004 by Colomina
et al. [2003, 2004a,b] who developed several levels on which redundancy can be generated in
inertial navigation, mainly for the fields of remote sensing and photogrammetry in which more
precise inertial sensors are operated. Note also that a review of multisensor fusion methodologies
(mainly for aircraft navigation systems) dated from 2005 can be found in Allerton and Jia
[2005].

The content of this chapter stems mainly from the work of Colomina et al. [2004a,b] where
different architectures for realizing and processing redundant inertial data are proposed. We
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Figure 8.2: Estimated angular rate residuals versus angular rate error (left panel), and autocor-
relation sequence of the accelerometer error computed on a static (gray curve) and dynamic
(black curve) portion of the signal.

start from these redundancy schemes and go further by developing each of them while paying
special attention to implementation and operational aspects. In Section 8.2 we expose the
general frame of inertial redundancy according to Colomina et al. [2004a,b] before moving to
Section 8.3 in which we describe what assumptions we made in this work. Both Sections 8.4
and 8.5 investigate algorithms working at two different levels of redundancy. Following the
software aspects, we describe the hardware realization in Section 8.6 which offers a smooth
transition to Chapter 9 dedicated to the operation and tests of these concepts. Note that we
do not treat FDI aspects in this thesis and refer to Guerrier et al. [2012] for more details about
this topic.

8.2 Redundancy in Inertial Navigation

A conventional IMU contains six sensors to measure six unknowns: three collocated accelerom-
eters and three gyroscopes, arranged in an orthogonal triad. With this respect, redundancy
can be realized at two levels Colomina et al. [2004a,b]:

• More than three gyroscopes and three accelerometers are packaged in a single unit. Such
a type of unit will be referred to as redundant IMU (RIMU). The relative orientation
between the individual sensors and the instrumental frame is assumed to be known.

• Several conventional IMUs are operated at the same time on the same platform. We will
designate this type of redundancy by distributed IMUs (DIMU). However, issues such as
relative spatial alignment, i.e. leverarm and orientation, and time alignment between the
individual IMUs have to be considered.

RIMU or DIMU provide data which have to be processed with algorithms accounting for
redundancy. Basically, redundancy can be treated at two stages Colomina et al. [2004a,b]:

• At observation space: the observations are blended in order to construct an imaginary, non-
redundant IMU aligned to an instrumental frame. The resulting data, named synthetic
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IMU, can be treated using conventional mechanization algorithms described in Chapters
1 and 2.

• At state space: the navigation software has to be modified to account for the redundant
observations. Regarding this, there are two possibilities. Either the single-IMU mechaniza-
tion equations developed in Chapters 1 and 2 are modified to account for the redundant
observations, or the filter state is augmented to model the relative geometry between
the individual IMUs. The first possibility will be called the extended mechanization and
assumes knowledge of the relative geometry. Hence it can be applied on data issued
from RIMU or DIMU. The second possibility will be designated as the geometrically-
constrained navigation which is of particular interest for DIMU with poorely known
relative orientation.

Now once the big picture on the inertial redundancy concept has been underlined, the general
assumptions made throughout the third part of the thesis can be described.

8.3 Assumptions

Consider R IMUs rigidly mounted on a common platform and time-synchronized with respect
to a common time-base. The associated instrumental frame of the i-th IMU is designated as
the si-frame, for i = 1, . . . , R. The specific force and angular rate measurements provided by
the i-th IMU are noted as f si and ωsiisi , respectively.

We make the following assumptions:

1. Between each pair of sensors (x, y), we assume

ṙxx→y = 0

Ċy
x = 0

(8.3.1)

with x, y ∈ {si : i = 1, . . . , R} such that x 6= y. The quantity rxx→y is the leverarm vector
relating the origin of frame x to frame y expressed in frame x, and Cy

x expresses the
relative orientation of frame x with respect to frame y. In other words, Eq. (8.3.1) states
that all the conventional IMUs composing the DIMU are mounted on a common rigid
platform, meaning that the relative alignment between the individual IMUs is not varying
in time. By definition, the conditions in Eq. (8.3.1) are always satisfied for RIMUs.

2. All the conventional IMUs forming the DIMU are of the same type. This means that
they contain accelerometers and gyroscopes of the same type and hence are theoretically
expected to provide identical performance. Similarly, this condition should always be
fullfilled in RIMUs.

3. All the conventional IMUs forming the DIMU have been subject to calibration procedures
accounting for systematic effects due to internal axis-misalignments or temperature
dependencies. In other words, N•, and the deterministic parts in b• and S• in Eq.
(1.4.3) and (1.4.4) have been estimated (see Section 1.4). Hence, data coming from each
conventional IMU are supposed to be free of these effects.
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8.4 Redundancy in Observation Space

Inertial data provided by the conventional IMUs are brought into a synthetic IMU computer.
This computer is in charge of processing an IMU (with three orthogonal axes) whose virtual
instrumental frame is aligned with b-frame. Let ak, gk be (3R× 1) vectors containing specific
force and angular rate signals provided at digital times {tk : k ∈ Z}, respectively, by R
orthogonal triads of accelerometers and gyroscopes, i.e.

ak =

 f s1k
...

f sRk

 and gk =

 (ωs1is1)k
...

(ωsRisR)k

 (8.4.1)

where f sik and (ωsiisi)k for i = 1, . . . , R are the specific force and angular rate of the i-th IMU.
The synthetic accelerometer and gyroscope data vectors at time tk, respectively noted f bk and
(ωbib)k, have size (3× 1) and can be constructed using

f bk = Πaak

(ωbib)k = Πggk
(8.4.2)

where Πa and Πg in Eq. (8.4.2) are orthogonal projectors given by

Π• =
(
HT
•W•H•

)−1
HT
•W•. (8.4.3)

in which symbol • can either be a (accelerometers) or g (gyroscopes). The matrix H• rotates
the data from the individual triads to the b-frame:

H• =

 Cs1
b(1)
...

CsR
b(R)

 , (8.4.4)

assuming that the gyroscopes and accelerometers are mounted on the same triads, i.e. Ha = Hg.
The matrix W• is a matrix which weights the individual devices in the computation of the
synthetic IMU. The resulting synthetic gyroscope and specific force observations, denoted by
ωbib and f b, respectively, can then be introduced in the conventional (i.e. single-IMU based)
navigation filter.
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In the sequel, we provide a generalized description of the notion of synthetic IMU as suggested
in Colomina et al. [2004a] and go further by proposing two methods of computing weights W•.

8.4.1 Synthetic IMU

Let {(Yi,j)k : k ∈ Z ; i = 1, . . . , R ; j = 1, 2, 3} be a random variable corresponding to the signal
recorded at digital times {tk : k ∈ Z} by sensors i on the axis j and let {(yi,j)k : k =
1, . . . , N ; i = 1 . . . , R ; j = 1, 2, 3} denote its realization. Therefore, (yi,j)k is any element of
either vector abk or g

b
k which are the vectors containing the rotated1 individual IMU observations,

noted f
b(i)
k and (ω

b(i)
ib )k , i.e.

abk =

 f
b(1)
k
...

f
b(R)
k

 and gbk =

 (ω
b(1)
ib )k
...

(ω
sb(R)
ib )k

 . (8.4.5)

A quite natural error model for (Yi,j)k can be written as

(yi,j)k = µj,k + (εi,j)k (8.4.6)

where µj,k denotes the true signal that should be observed at digital time tk on the j-th axis
of the si-frame, and (εi,j)k the corresponding error. If we assume that (εi,j)k

iid∼ N (0, σ2), then
a natural estimator for µj,k is simply

µ̂j,k =
1

R

R∑
i=1

(yi,j)k (8.4.7)

and we have that

µ̂j,k ∼ N
(
µj,k,

σ2

R

)
. (8.4.8)

Of course, µ̂k = [µ̂1,k, µ̂2,k, µ̂3,k]
T is equivalent to (ωbib)k or f bk from Eq. (8.4.2). Eq. (8.4.7)

computes an unweighted synthetic IMU by simply averaging the i accelerometers and i
gyroscopes by assigning equal weights to each individual sensor.

However, the investigations in Stebler et al. [2011b], Waegli et al. [2010] revealed that the
assumption of giving equal weights to all sensors is not realistic since the noise power can vary
across sensors and in time. This was confirmed in the left panel of Figure 8.1 showing the
accelerometer error signal acquired in dynamical conditions (see Chapter 7). It clearly reveals
that noise level is non-constant.

This simple model expressed in Eq. (8.4.8) can be extended in various ways. For example, if
we relax the assumption that the sensors have the same variance, and hence the same weight
in the computation of µ̂j,k, and assume that (εi,j)k

iid∼ N (0, σ2
i ), the estimation of µj,k becomes

far more complex. Let θ ∈ Θ ⊆ R3N+R be defined as

θ =
[
µ1,1 . . . µ3,N γ1 . . . γR

]T (8.4.9)
1The sensor frame of each IMU is supposed to be aligned with the b-frame using rxx→y and Cy

x which are
either known or were previously estimated.
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where, for notational simplicity, γi = σ2
i . The problem of computating a synthetic IMU in

which the individual sensors are weighted according to their noise level requires the estimation
of θ. The MLE for θ is defined as

θ̂ = argmax
θ∈Θ

` (θ|y) . (8.4.10)

Unfortunately, the maximization problem expressed by Eq. (8.4.10) is numerically challeng-
ing and therefore often difficult to perform in practice. However, by making the additional
assumption that the function −` (θ|y) is convex in θ (i.e. there is a unique minimum and no
local maxima), we may solve Eq. (8.4.10) iteratively using the coordinate descent algorithm
(see e.g. Brent [2002]). This procedure finds the minimum of a function by line search along
each coordinate direction at the current point in each iteration. This implies that we will solve
iteratively the following problems:

µ̂
(m)
1,1 = argmax

µ1,1∈R
`
(
µ1,1|y, µ̂(m−1)

1,2 , ..., µ̂
(m−1)
3,N , γ̂

(m−1)
1 , ..., γ̂

(m−1)
R

)
...

µ̂
(m)
3,N = argmax

µ3,N∈R
`
(
µ3,N |y, µ̂(m)

1,1 , ..., µ̂
(m)
3,N−1, γ̂

(m−1)
1 , ..., γ̂

(m−1)
R

)
γ̂

(m)
1 = argmax

γ∈R+

`
(
γ1|y, µ̂(m)

1,1 , ..., µ̂
(m)
3,N , γ̂

(m−1)
2 , ..., γ̂

(m−1)
R

)
...

γ̂
(m)
R = argmax

γ∈R+

`
(
γ1|y, µ̂(m)

1,1 , ..., µ̂
(m)
3,N , γ̂

(m)
1 , ..., γ̂

(m)
R−1

)

(8.4.11)

were m = 0, 1, 2, . . . is the mth iteration. Moreover, it is easy to show that for k = 1, . . . ., N ,
axes j = 1, 2, 3 and sensors i = 1, . . . , R we have

µ̂
(m)
j,k =

∑R
i=1

(yi,j)k

γ̂
(m−1)
i∑R

i=1
1

γ̂
(m−1)
i

,

γ̂
(m)
i =

1

3N

3∑
j=1

N∑
k=1

(
(yi,j)k − µ̂

(m)
j,k

)2
.

(8.4.12)

Eq. (8.4.12) expresses the computation of a synthetic averaged sensor µ̂(m)
j,k in which each

individual device is weighted by γ̂(m)
i . We will designate such a type of IMU as a weighted

Synthetic IMU . As µ̂(m)
j,k only depends of the estimated variances from the previous iteration,

we only have to initialize the values in γ(0)
i . A natural choice for that is γ(0)

i = γ0 for i = 1, ..., R

in which case µ̃(0)
j,k reduces to µ̂j,k defined in Eq. (8.4.7), i.e. the unweighted synthetic IMU. This

iterative procedure guarantees to obtain the MLE provided the function −` (θ|y) is convex. In
the sequel, we study two forms of weighted synthetic IMU computers in which we not only
assume that the weights vary according to the sensor, but also with time (i.e. σ2

i,k).
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8.4.2 ARMA-GARCH based Synthetic IMU Computer

In the second part of this thesis (see also El-Sheimy et al. [2008], Guerrier [2009], Hou [2004],
Waegli et al. [2010]), we demonstrated the presence of colored noise in MEMS-based inertial
sensors. This directly contradicts that (εi,j)k

iid∼ N (0, σ2
i ). In the case of inertial sensors,

ARMA(·, ·) models seem to quite well approximate the autocorrelated noise components when
forming the synthetic observations Nassar [2003], Nassar et al. [2004], Park and Gao [2006].
Nevertheless, it was shown in Waegli et al. [2010] that, when applied on inertial sensor error
signals, ARMA(·, ·) residuals are not iid distributed as they are not homoskedastic. The
variance of the residuals varies in time and, hence, needs to be estimated. GARCH(·, ·) models,
introduced in Bollerslev [1986], offer a suitable solution for such a problem. Therefore, we will
consider an ARMA(pi,j , qi,j) - GARCH(ri,j , si,j) model to describe y.

We write the ARMA(pi,j , qi,j) - GARCH(ri,j , si,j) model as:

yk = µj,k + εk

εk = νk +

pi,j∑
g=1

agεk−g +

qi,j∑
g=1

bguk−g +
√
γkuk

γk = c0 +

ri,j∑
g=1

cgu
2
k−g +

si,j∑
g=1

dgγk−g

uk
iid∼ N (0, 1)

(8.4.13)

were {ag : g = 1, . . . , pi,j} and {bg : g = 1, . . . , qi,j} are the ARMA(·, ·) coefficients (see
Chapter 4, Section 4.7), and {cg : g = 0, . . . , ri,j} and {dg : g = 1, . . . , si,j} are the GARCH(·, ·)
coefficients. For the sake of readibility, we omitted some i, j indices in Eq. (8.4.13) and did the
following notation simplifications:

(yi,j)k = yk, (ai,j)g = ag, (bi,j)g = bg, (εi,j)k = εk, (νi,j)k = νk

(ui,j)k = uk, (ci,j)k = ck, (γi,j)k = γk, (di,j)k = dk.
(8.4.14)

For the moment assume that the orders of the ARMA(·, ·) and GARCH(·, ·) models, i.e. the
values of pi,j , qi,j , ri,j and si,j , are known, and let θ ∈ Θ ⊆ Rz be the vector of parameters
associated to model (8.4.13). Of course we may write again the following optimization problem

θ̂ = argmax
θ∈Θ

` (θ|y)

but the maximization of ` (θ|y) can be very difficult in practice. Hopefully, by making again
the assumption that −` (θ|y) is convex in θ we may use an approach called the block coordinate
descent algorithm. This algorithm is very similar to the standard coordinate descent method
except that parts of θ (not necessarily of dimension 1) are iteratively optimized. A natural
choice for the part of θ to be optimized is every µj,k, the parameters of each ARMA(·, ·) model,
denoted as ζi,j , and the parameters of each GARCH(·, ·) model, denoted as ϑi,j . Therefore, we
have

ζi,j =
[

(ai,j)1 . . . (ai,j)pi,j (bi,j)1 . . . (bi,j)qi,j
]T

ϑi,j =
[

(ci,j)1 . . . (ci,j)ri,j (di,j)1 . . . (di,j)si,j
]T (8.4.15)
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and the following iterative problems:

µ̂
(m)
1,1 = argmax

µ1,1∈R
`
(
µ1,2|y, µ̂(m−1)

1,2 , ..., µ̂
(m−1)
3,N , ζ

(m−1)
1,1 , ...,ϑ

(m−1)
R,3

)
...

µ̂
(m)
3,N = argmax

µ3,N∈R
`
(
µ3,N |y, µ̂(m)

1,1 , ..., µ̂
(m)
3,N−1, ζ

(m−1)
1,1 , ...,ϑ

(m−1)
R,3

)
ζ̂

(m)
1,1 = argmax

ζ1,1∈A
`
(
ζi,j |y, µ̂(m)

1,1 , ..., µ̂
(m)
3,N , ζ

(m−1)
2,1 , ..., ζ

(m−1)
R,3 ,ϑ

(m−1)
1,1 , ...,ϑ

(m−1)
R,3

)
...

ζ̂
(m)
R,3 = argmax

ζR,3∈A
`
(
ζi,j |y, µ̂(m)

1,1 , ..., µ̂
(m)
3,N , ζ

(m)
1,1 , ..., ζ

(m)
R,2 ,ϑ

(m−1)
1,1 , ...,ϑ

(m−1)
R,3

)
ϑ̂

(m)
1,1 = argmax

ϑ1,1∈B
`
(
ϑ1,1|y, µ̂(m)

1,1 , ..., µ̂
(m)
3,N , ζ

(m)
1,1 , ..., ζ

(m)
R,2 ,ϑ

(m−1)
2,1 , ...,ϑ

(m−1)
R,3

)
...

ϑ̂
(m)
R,3 = argmax

ϑR,3∈B
`
(
ϑR,3|y, µ̂(m)

1,1 , ..., µ̂
(m)
3,N , ζ

(m)
1,1 , ..., ζ

(m)
R,2 ,ϑ

(m)
1,1 , ...,ϑ

(m)
R,2

)
.

(8.4.16)

A closed form formula for the estimator µ̂(m)
j,k with k = 1, . . . , N , for axes j = 1, 2, 3 and sensors

i = 1, . . . , R is given by

µ̂
(m)
j,k =

∑R
i=1

(yi,j)k−(η̂i,j)
(m−1)
k

γ̂
(m−1)
i∑R

i=1
1

γ̂
(m−1)
i

(8.4.17)

where

(η̂i,j)
(m−1)
k = E

[
εk|ε̂

(m−1)
k−1 , ..., ε̂

(m−1)
1 , ζ̂

(m)
i,j

]
= ν̂

(m−1)
k +

pi,j∑
g=1

â(m−1)
g ε

(m−1)
k−g +

qi,j∑
g=1

b̂(m−1)
g û

(m−1)
k−g .

(8.4.18)

Again, some i, j indices were omitted in the above relation according to Eq. (8.4.14). Eq. (8.4.17)
and (8.4.18) express the final form of the ARMA-GARCH based synthetic IMU computer in
which individual sensor weights γ(m)

i are computed by the GARCH(·, ·) model. There exist
no closed form expression for ζ̂(m)

i,j and ϑ̂(m)
i,j but it can be shown that ζ̂(m)

i,j is equivalent
to the MLE of an ARMA(·, ·) model with iid normally distributed residuals computed on
(yi,j)k− µ̂

(m)
j,k . It can also be shown that ϑ̂(m)

i,j is equivalent to the MLE of a GARCH(·, ·) model

with Gaussian innovations based on the observations (yi,j)k = µ̂
(m)
j,k − (η̂i,j)

(m)
k . For details of

the MLE of ARMA(·, ·) and GARCH(·, ·) models, we refer to Hamilton [1994].

A natural choice for the initial values of θ̂(0) is µ̂(0)
j,k = µ̂j,k (i.e. the unweighted synthetic IMU

defined in Eq. (8.4.7)), ν̂(0)
i,j = 0, (âi,j)

(0)
g = 0, (b̂i,j)

(0)
g = 0, (ĉi,j)

(0)
0 = γ̂

(∞)
i (where γ̂(∞)

i denotes

the values of γ̂i at convergence of the algorithm defined in Eq. (8.4.12)), (ĉi,j)
(0)
g = 0 and
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(d̂i,j)
(0)
g = 0. Similarly to the previous section, the iterative approach defined in Eq. (8.4.16)

should be repeated until convergence of θ̂(m) is achieved.

In practice the order values of the ARMA(·, ·) and GARCH(· · · , ·) models, i.e. the pi,j , qi,j ,
ri,j and si,j values, are unknown. We propose here an ad-hoc approach for finding reasonable
values for these coefficients, although it is not a real-time procedure.

Algorithm 8.4.1. This procedure enables to find values for pi,j , qi,j , ri,j and si,j :

1. Compute a reasonable estimates of µj,k. For example, we may use the unweighted synthetic
sensor µ̂j,k defined in Eq. (8.4.7) or µ̂(∞)

j,k defined as the values of µ̂j,k at convergence of
Eq. (8.4.12).

2. Estimate for each sensor i = 1, . . . , R and each axis j = 1, 2, 3 all possible ARMA(·, ·)
models, by assuming iid normally distributed residuals. For that, use

(yi,j)k − µ̂j,k or (yi,j)k − µ̂
(∞)
j,k (8.4.19)

satisfying 0 ≤ pi,j ≤ pmax and 0 ≤ qi,j ≤ qmax.

3. Select the values of pi,j and qi,j such that they minimize a prediction criterion such as
the AIC (proposed in Akaike [1974]) or the BIC (proposed in Schwarz [1978]), i.e.

[p̂i,j q̂i,j ] = argmin
0≤pi,j≤pmax
0≤qi,j≤qmax

f (N) (pi,j + qi,j + 1)− 2`?pi,j ,qi,j (8.4.20)

where `?pi,j ,qi,j denotes the log-likelihood associated to the ARMA(pi,j , qi,j) model based
on the sequences of Eq. (8.4.19) and f (N) is a penalty function. By taking f (N) = 2,
the vector [p̂i,j q̂i,j ] defined in Eq. (8.4.20) corresponds to the values of pi,j and qi,j
that minimize the prediction error measured by the AIC, while using f (N) = log (N)
corresponds to the BIC.

4. Compute the residuals of the ARMA(·, ·) models for i = 1, . . . , R and j = 1, 2, 3 with
orders defined by Eq. (8.4.20). Estimate for each set of residuals all possible GARCH(·, ·)
models, assuming Gaussian innovations, satisfying 0 ≤ ri,j ≤ rmax and 0 ≤ si,j ≤ smax,
and select the values of ri,j and of si,j as the results of

[r̂i,j ŝi,j ] = argmin
0≤ri,j≤rmax
0≤si,j≤smax

f (N) (ri,j + si,j + 1)− 2`◦ri,j ,si,j (8.4.21)

where `◦ri,j ,si,j denotes the log-likelihood associated to the GARCH(ri,j , si,j) based on
residuals of the ARMA(·, ·) models selected by Eq. (8.4.20) and f (N) is the same penalty
function that was used in Eq. (8.4.20).

Choosing between the AIC and BIC, or another criterion with similar properties, is a non-trivial
task. For example if we assume that the true model is of finite dimension and is included
among the candidate models, then the BIC should be preferred since it is a consistent criterion
(i.e. it will select the true model with a probability approaching 1 as N → ∞). However, if
we assume that the true model is of infinite dimension or that this model is not included in
the set of candidate models, then the AIC should be preferred. Indeed, the AIC is an efficient
criterion, meaning that it will select the “closest” model to the true underlying (generating)
model.
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8.4.3 Markovian Regime-Switching based Synthetic IMU Computer

While in Section 8.4.2 as well as in Stebler et al. [2011b], Waegli et al. [2010] GARCH(·, ·)
models were introduced as a direct noise estimation technique for synthetic IMUs able to
estimate changes of sensor variances, a single ARMA(·, ·) model was used for modeling the
autocorrelated signal part. We can now go further by treating the case where the structure of
the inertial sensor error correlation varies in time. The right panel of Figure 8.2 depicts the
estimated ACS of two portions of the accelerometer error signal drawn in the left panel of
Figure 8.1. The two portions correspond to time intervals during which the vehicule was not
moving (gray curve in ACS plot) and moving (black curve in ACS plot). From the two curves,
different time correlations may be suspected. Accounting for such effects could be performed by
using two sets of coefficients for modeling the autocorrelated part. This section deals with such
issues using Markov Regime-Switching models (MRS). We introduce them as an alternative
to the ARMA(·, ·)-GARCH(·, ·) modeling procedure, as an attempt to account not only for
time-varying noise levels, but also for varying time correlations in the noise signal.

The problem of modeling changes in regimes (sometimes also called states) in time series has
been of interest in many different fields. It has, for example, been used in medicine to model
influenza epidemics Martínez-Beneito et al. [2008] or in economics with U.S. gross national
product Hamilton [1989], McCulloch and Tsay [1993]. In the context of state space models,
Shumway and Stoffer [1991] applied successfully this approach for the tracking of large numbers
of moving targets. Roughly speaking, regime-switching models can be distinguished between
two principle classes:

1. Models which assume that the regimes can be characterized by an observed variable.
Therefore, the regimes are purely deterministic, given a realization of the observed
variable on which the regime depends. Threshold Auto-Regressive models (TAR) proposed
by Tong and Lim [1980] are examples of such models.

2. Models which assume that the regimes are not observed, but can be determined by an
underlying unobserved stochastic process. This implies that the regimes are of stochastic
nature. Markov-Switching models advocated by Hamilton [1989] are an example of models
among which some are governed by a first-order Markov process. Detailed reviews of
these models can, for example, be found in Franses and Van Dijk [2000], Hamilton [1994],
Shumway and Stoffer [2000]

Formally, we will consider the following MRS model for digital times {tk : k = 1, . . . , N}:

yk = µj,k + εk

εk =

S?i,j∑
s=1

I(Sk=s)

νs,k +

ds∑
g=1

ag,s εk−g + σs uk


I(Sk=s) =

{
1 if Sk = s
0 if Sk 6= s

uk
iid∼ N (0, 1)

(8.4.22)
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where Si,j is a random variable denoting the current regime such that Si,j ∈
{

1, ..., S?i,j

}
with

S?i,j denoting the number of regimes present in sensor i on axis j. Note that some i, j indices
were omitted for readibility reasons and therefore,

(yi,j)k = yk, (ai,j)g,s = ag,s, (εi,j)k = εk, (νi,j)s,k = νs,k, (di,j)s = ds

(σi,j)s = σs, (ui,j)k = uk, (Si,j)k = Sk.
(8.4.23)

have to be considered in Eq. (8.4.22). The second equation in Model (8.4.22) models the
residuals εk as an AR(ds) process (see Chapter 4, Section 4.7) whose order {ds : s = 1, . . . , S?i,j}
and coefficients {ag,s : g = 1, . . . , ds ; s = 1, . . . , S?i,j} change according to regime Sk. To define
completely model (8.4.22), the properties of the regime’s process Sk need to be specified. We
will assume that Sk is a first-order Gauss-Markov process as advocated in Hamilton [1989].
This implies that the current regime (i.e. Sk) only depends on the regime one period ago (i.e.
Sk−1). Therefore, such a model is completely defined with 3R transition matrices Pi,j which
contain the probabilities of moving from one regime to the other for each sensor i and each
axis j, i.e.

Pi,j =
[
pi,jl,h

]
l=1,...,S?

i,j
h=1,...,S?

i,j

where

pi,jl,h = P (Sk = l|(Sk−1 = h) . (8.4.24)

Now, we let θ ∈ Θ ⊆ Rv be the vector of parameters associated to model (8.4.22). Then, we
aim to maximize the likelihood function ` (θ|y) to obtain the point estimate θ̂. Of course,
this problem is quite complex. Therefore, we will consider for the moment a simpler problem.
Assume that the values of µj,k are known. Then we could directly observe εk which considerably
simplifies our problem. Assuming further that the number of regimes S?i,j and the AR(·) order
ds are either known or fixed (i.e. not estimated from the data), we may use the method
proposed by Hamilton [1989] to estimate the remaining unknown parameters of Eq. (8.4.22).
More precisely, these unknown parameters are

θ? =
[

(ν1,1)1 . . . (νN,3)S?N,3 (a1,1)1,1 . . . (a(dN,3)S?
N,3

,N )3,S?N,3
(σ1,1)1 . . . (σN,3)S?N,3

]T
(8.4.25)

and its estimation will be explained in the sequel.

Since we do not observe the regimes directly, the inference on the current state at time tk
for the sensor i on the axis j is performed through the observed behaviour of yk. Indeed, the
estimated probability of being in a given regime can be obtained as

ξi,js|k = P (Sk = s|Ωk,θ
?,µ) (8.4.26)

where Ωk denotes the information set at digital times {tk : k = 1, . . . , N} and

µ =
[
µ1,k µ2,k µ3,k

]T
.
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If the system is in the regime s, then its density at time tk is given by

ηi,js|k = f (yk|Sk = s,Ωk−1,θ
?,µ)

=
1√

2πσs
exp

−
(
yk − µj,k − νs −

∑ds
g=1 ag,s yk−g

)
2σ2

s

2
 (8.4.27)

where notation simplifications have been done according to Eq. (8.4.23), and the following
additional simplifications

pi,jl,h = pl,h, ξi,js|k−1 = ξs|k−1, and ηi,js|k = ηs|k. (8.4.28)

are applied in the sequel. Despite the fact that the true current system regime is unknown,
using the Bayes theorem enables to write the density of yk as

f(yk|Ωk−1,θ
?,µ) =

S?i,j∑
l=1

S?i,j∑
h=1

pl,h · ξl|k−1 · ηh|k. (8.4.29)

The result of Eq. (8.4.29) allows to compute the updated regime probability, i.e.

ξs|k =

∑S?i,j
l=1 pl,h · ξl|k−1 · ηh|k
f(yk|Ωk−1,θ?)

. (8.4.30)

The log-likelihood of Model (8.4.22) is defined as

` (θ?|y,µ) =

R∑
i=1

3∑
j=1

(
log f (y1|θ?,µ) +

N∑
k=2

log f (yk|Ωk−1,θ
?,µ)

)
. (8.4.31)

By executing Eq. (8.4.27), (8.4.29) and (8.4.30), we can evaluate the approximate log-likelihood
of the observed data as

`? (θ?|y?,µ) =

R∑
i=1

3∑
j=1

N∑
k=2

log f (yk|Ωk−1,θ
?,µ) (8.4.32)

where y? = {(yi,j)k : k = 2, . . . , N ; i = 1, . . . , R; j = 1, 2, 3} by arguing that ` (θ?|y,µ) defined
in Eq. (8.4.31) and `? (θ?|y?,µ) defined in Eq. (8.4.32) are extremely close in large samples.
Beside the computation of `? (θ?|y?,µ), the initial ξs|0 are required for all possible s, i and j.
Several options are available for this starting value. Assuming the Markov chain to be ergodic,
the unconditional probability can be used to find ξs|0 (see e.g. Hamilton [1994] for more details).
Alternatively, one could simply set ξs|0 = 1/S?i,j for all s, i and j. Therefore, an estimate of θ
can be obtained numerically by solving the following problem:

θ̂? = argmax
θ?∈Θ?

`? (θ?|y?,µ) . (8.4.33)

Alternatively, Hamilton [1989] proposed an iterative procedure which can be used to find θ̂?.
Such approach is in general more stable and less computationally intensive than solving Eq.
(8.4.33). It turns out that this procedure is an application of the EM algorithm developed by
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Dempster et al. [1977]. The idea of Hamilton’s approach is to express some portions of θ?

as functions of θ̂? and then, given starting values for the parameters, to compute iteratively
each portion of θ? until convergence occurs. Note that once θ̂? has been computed, we can
compute forecasted and smoothed inferences for the regimes. This allows to compute (smoothed)
probabilities for the sensor i on the axis j at digital time tk to be in the regime s. An efficient
algorithm to compute these probabilities has been proposed in Kim [1994] and complete
discussion on the subject can be found in Hamilton [1994].

We may now relax the assumption that µ is known. Similarily to what was done in the previous
section, the block coordinate descent algorithm can be used to solve

θ̂ = argmax
θ∈Θ

`◦ (θ|y) (8.4.34)

where `◦ denotes the likelihood of Model (8.4.22). A natural choice for the part of θ to be
optimized is each µj,k and θ?. Therefore, we have the following iterative problems:

µ̂
(m)
1,1 = argmax

µ1,1∈R
`
(
µ1,1|y, µ̂(m−1)

1,2 , . . . , µ̂
(m−1)
3,N , (θ̂?)(m−1)

)
...

µ̂
(m)
3,N = argmax

µ3,N∈R
`
(
µ3,N |y, µ̂(m)

1,1 , . . . , µ̂
(m)
3,N−1, (θ̂

?)(m−1)
)

(θ̂?)(m) = argmax
θ?∈Θ?

`?
(
θ?|y?, µ̂(m)

1,1 , . . . , µ̂
(m)
3,N

)
(8.4.35)

were m = 0, 1, 2, . . . is the mth iteration. Fortunately, µ̂(m)
j,k can be obtained analytically as

µ̂
(m)
j,k =

∑R
i=1

(yi,j)k−(κi,j)
(m−1)
k

γ
(m−1)
i∑R

i=1
1

γ
(m−1)
i

(8.4.36)

where

(κi,j)
(m−1)
k = E

[
εk|εk−1, . . . , ε1, (θ̂

?)(m−1)
]

(γi,j)
(m−1)
k = var

[
εk|εk−1, . . . , ε1, (θ̂

?)(m−1)
]
.

(8.4.37)

These quantities can be estimated as

(κ̂i,j)
(m−1)
k =

S?i,j∑
s=1

ξ̂(m−1)
s|k

ν̂(m−1)
s,k +

ds∑
g=1

â(m−1)
g,s

(
yk − µ̂

(m−1)
j,k

)
(γ̂i,j)

(m−1)
k =

S?i,j∑
s=1

ξ̂
(m−1)
s|k (σ̂2

k)
(m−1).

(8.4.38)

By using in Eq. (8.4.36) the estimates for (κi,j)
(m−1)
k and (γi,j)

(m−1)
k defined in Eq. (8.4.38),

one can compute µ̂(m)
j,k and solve (8.4.35) iteratively until convergence. For this model the choice
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of θ̂(0) might be slightly more difficult than for the previous models. We recommend to use
µ̂

(0)
j,k = µ̂j,k (where µ̂j,k is defined in Eq. (8.4.7)) and use any plausible starting values for θ? (0).

Finally, in practice the values of S?i,j and ds are unknown and should somehow be determined
for the data at hand. We propose here to use the same kind of procedure as proposed in
Algorithm 8.4.1 (see Section 8.4.2).

Algorithm 8.4.2. This procedure enables to find values for S?i,j and ds:

1. Compute a reasonable estimates of µj,k. For example, use µ̂j,k defined in Eq. (8.4.7) or
µ̂

(∞)
j,k defined as the values of µ̂j,k at convergence of Eq. (8.4.12).

2. Estimate for each values of i = 1, . . . , R and j = 1, 2, 3 all possible MRS AR(·) models
based on (yi,j)k− µ̂j,k (or on (yi,j)k− µ̂

(∞)
j,k ) satisfying 0 ≤ ds ≤ dmax and 1 ≤ S?i,j ≤ s?max.

3. Select values for ds and S?i,j such that they minimize[
d̂s Ŝ

?
i,j

]
= argmin

0≤ds≤dmax
1≤S?i,j≤s?max

f (N) (ds + 2)S?i,j − 2`?ds,S?i,j (8.4.39)

where `?ds,S?i,j denotes the log-likelihood as defined in Eq. (8.4.32) associated to an MRS
AR(·) process with values ds and S?i,j and assuming the values of µ to be known. For the
penalty function f (N) we recommend using either f (N) = 2 or f (N) = log (N) which
respectively correspond to the AIC and the BIC. The resulting values for S?i,j (and ds)
should however be considered with caution has it was reported in Smith et al. [2006] that
the AIC tends to retain too many states and variables while the BIC underestimates the
correct number of states. Therefore, the selection performance of S?i,j and ds might be
improved by using the Markov Switching Criterion (MSC) in which f (N) (ds + 2)S?i,j
from Eq. (8.4.39) is replaced by a more suitable quantity (see Smith et al. [2006] for
details).

8.4.4 Extended Kalman Filtering using a Synthetic IMU

Several remarks can be made when using a synthetic IMU in a navigation filter:

1. Theoreticaly, the residuals {εk : k = 1, . . . , N} of models (8.4.13) and (8.4.22) are
supposed to be i.i.d. such that uk ∼ N (0, 1) if the true model parameters are known.
This would imply that the resulting synthetic IMU signals are perfectly whitened when
introduced into the EKF, and thus no additional error states are required in the filter. In
practice however, the true model (ARMA-GARCH and MRS) parameters are unknown
and hence must be estimated. The resulting estimation error implies that the estimated
residuals ε̂k are not i.i.d., meaning that some correlation may still be present. Moreover,
if the constant νk is not estimated, the estimated residuals may also contain a bias. These
two issues can be handled in the EKF by augmenting the state vector with additional
error states as a random bias or a first-order Gauss-Markov process for example. Note
that if the parameters of the ARMA(·, ·)-GARCH(·, ·) and the MRS are unknown (and
hence have to be estimated), the computation of the synthetic IMU is only feasible in
post-processing procedures.
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Figure 8.3: Principle of mechanization based on a synthetic IMU.

Table 8.1: Summary of the main differences between the ARMA-GARCH based and the MRS
based synthetic IMU computer.

ARMA-GARCH MRS

Effort to automate parameter estimation and model selection – –
Computational effort – –
The volatility of each sensor is modeled + +
Predictable part of the errors can be linked to dynamical condition – +
Residual level can be linked to dynamical condition + +
Quality of the variance modeling + –
Quality of the auto-regressive noise component modeling – +

2. Synthetic IMU computers deliver time-variant gyroscope and accelerometer noise levels
which can be used in the Qk system noise matrix of the EKF, thus making the stochastic
model in the navigation filter adapt to reality.

The principle of the integrated navigation in which a synthetic IMU computer is used is
schematized in Figure 8.3. Note that individual accelerometer and gyroscope biases cannot
be estimated and fed back to the corresponding sensors. Table 8.1 summarizes the main
differences between the ARMA-GARCH and MRS synthetic IMU computer and can be seen
as an extension of the study proposed in Stebler et al. [2011b], Waegli et al. [2010].

The benefits of the ARMA-GARCH method might be larger when the noise level of the inertial
sensors varies significantly in time and among the sensors. On the other side, the benefits of
the MRS method might be larger if the noise correlation structure is suspected to change over
time. If none of these features are fullfilled, the unweighted synthetic IMU may be sufficient.

8.5 Redundancy in State Space

As mentioned in Section 8.2, redundancy can be handled also at the state level. In this section,
we first describe how to implement a generalized filter based on extended mechanization
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equations. In the context of integrated inertial navigation, we will call it the generalized EKF .
Then we develop another approach for multiple IMU integration in which the navigation
solutions of individual IMUs are estimated separately and the results are compared at regular
time intervals. Such a filter will be referred to as the geometrically-constrained EKF .

8.5.1 Extended Mechanization

System error dynamics

The alignment of the redundant signals in the b-frame can be performed directly at mecha-
nization level. Consider again the (3R× 1) vectors a and g of Eq. (8.4.1) which contain the
rotated specific force and angular rate signals of each conventional IMU. Their corresponding
errors are written as

δxa =

 δf s1

...
δf sR

 and δxg =

 δωs1is1
...

δωsRisR

 . (8.5.1)

When accounting for R IMUs, the attitude error model which was defined for a single IMU
mechanization in Eq. (1.7.14) becomes

ε̇l = Cl
bΠgδxg − δωlil − ωlil × εl (8.5.2)

where Πg was defined in Eq. (8.4.3). Note that ωblb expressed in Eq. (1.5.16) is modified as

ωblb = Πgg −Cb
lω

l
il. (8.5.3)

The modified velocity equation given in Eq. (1.5.9) becomes

v̇le = Cl
bΠaa+ gl −

(
ωlel + 2ωlie

)
× vle (8.5.4)

from which the velocity error model can be deduced as

δv̇le = −
(
Cl
bΠaa

)
×εl−

(
ωlie + ωlil

)
×δvle−

(
δωlie + δωlil

)
×vle+Cl

bΠaδxa+δgl. (8.5.5)

were Πa was defined in Eq. (8.4.3). The position error model defined in Eq. (1.7.24) remains
unchanged. Therefore, the final redundant INS error model can be written as δṙle
δv̇le
ε̇l

 =

 D−1δv̇le −D−1Drδr
l
e

−
(
Cl
bΠaa

)
× εl −

(
ωlie + ωlil

)
× δvle −

(
δωlie + δωlil

)
× vle + Cl

bΠaδxa + δgl

Cl
bΠgδxg − δωlil − ωlil × εl


(8.5.6)

which can be further expanded in state space notation:

δẋl = Fδxl + Gq (8.5.7)
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Figure 8.4: Principle of the generalized extended Kalman filter based on the extended mecha-
nization.

where δẋl represents the error in the nominal navigation state. Thus, the state augmented
version is

δṙle
δv̇le
ε̇l

δẋa
δẋg

 =


Frr Frv Frε 0 0
Fvr Fvv Fvε Cl

bΠa 0
Fεr Fεv Fεε 0 Cl

bΠg

0 0 0 Faa 0
0 0 0 0 Fgg



δrle
δvle
εl

δxa
δxg



+


0 0 0 0

ΠaC
l
b 0 0 0

0 ΠgC
l
b 0 0

0 0 Ga 0
0 0 0 Gg



−νa
νg
wa

wg

 .
(8.5.8)

where the other elements of the model were defined in Chapter 1 (see Section 1.7.4). From Eq.
(8.5.8) it can be seen that biases of each individual IMU can be modeled in the augmented
part of the state.

Generalized Extended Kalman Filter

The filter prediction stage developed in Section 2.3 has to be modified as follows. The classical
strapdown mechanization algorithm remains identical with the exception of Eq. (2.3.6) and
(2.3.10) which become

uk =

∫ tk

tk−1

u̇(t) dt ≈ Πg · gk ·∆tk (8.5.9)

and

(∆vlf )k =

∫ tk

tk−1

Cl
bΠaa dt ≈ (Cl

b)k ·Πa · ak ·∆t, (8.5.10)
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respectively, with ∆tk = tk − tk−1, (Cl
b)k = (Cl

b)k|k−1 and digital times {tk : k = 1, . . . , N}.
The field computations in the prediction-correction integration algorithm of Section 2.3.2 must
account for redundancy thanks to the following modifications. The digital attitude field of Eq.
(2.3.20) remains the same except that

(ωblb)k = Πg · gk − (Cb
l )k(ω

l
il)k (8.5.11)

has to be considered. The digital velocity field defined in Eq. (2.3.25) is transformed to

f(xk,uk, tk) = (Cl
b)k ·Πa · ak −

[
2(ωlie)k + (ωlel)k

]
× (vle)k + (gl)k (8.5.12)

while the position field of Eq. (2.3.28) remains unchanged.

In the filter update stage described in Section 2.4, the linearized absolute position update
model of Eq. (2.4.3) accounting for redundancy is given by

Hr =
[

I3×3 + Da 03×3 −D−1[al×] 03×3R

]
(8.5.13)

while the linearized absolute velocity update model given in Eq. (2.4.8) becomes

Hv =
[

[al×]D1 I3×3 + [al×]D2 [al×]
(
Ωl
il + 2Ωb

lb

)
03×3R −[al×]Cl

bΠa

]
. (8.5.14)

The principle of the extended navigation is schematized in Figure 8.4. Note that as already
mentioned, the sensor biases can be estimated for each individual gyroscopes and accelerometer.
Hence, in contrary to the synthetic IMU approach, the generalized EKF architecture allows
that the modeled errors are fed back into the individual sensors.

8.5.2 Geometrically-Constrained Navigation

System error dynamics

Consider again R IMUs. They can be processed using separate blocks, each based on a single
IMU mechanization and a particular value (xl)(i) for the ith block with i = 1, . . . , R. Let C be
defined as a matrix whose rows consist of all possible combinations of the R IMUs, i.e. the
elements of the sequence {1, 2, . . . , R}, taken two elements at a time. Therefore, C has size(

R!
((R˘2)!2!) × 2

)
. For example, C is given by

C =

 1 2
1 3
2 3

 (8.5.15)

when considering R = 3. The inertial navigation model associated to the ith block is given by

(ẋl)(i) =


(ṙle)

(i)

(v̇le)
(i)

q̇lsi
ṙsisi→sj
Ċsi
sj

 =



D−1
(i) (vle)

(i)

Cl
sif

si −
[
2(ωlie)

(i) + (ωlel)
(i)
]
× (vle)

(i) + (gl)(i)

1
2qlsi ⊗

[
ωsilsi

]
q

0
0

 (8.5.16)
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where rsisi→sj is the leverarm vector relating the origin of the si-frame with all frames sj such
that the frame pairs (si, sj) are the lines of C starting with i. Taking again the example in Eq.
(8.5.15) and i = 1, we have the following pairs (s1, s2) and (s1, s3) in (xl)(i). The matrix C

sj
si

expresses the relative misalignment between si-frame and sj-frames.

Considering no correlation between blocks, the error state space model becomes
(δẋl)(1)

(δẋl)(2)

...
(δẋl)(R)

 =


F(1) 0 0 · · · 0

0 F(2) 0 · · · 0
...

...
...

...
...

0 0 0 0 F(R)

+


G(1) 0 0 · · · 0

0 G(2) 0 · · · 0
...

...
...

...
...

0 0 0 0 G(R)




q(1)

q(2)

...
q(R)


(8.5.17)

where each error state vector (δẋl)(i), i = 1, . . . , R is expressed in its augmented form (see Eq.
(1.7.27)) as

(δṙle)
(i)

(δv̇le)
(i)

(ε̇l)(i)

δẋ
(i)
a

δẋ
(i)
g

δṙsisi→sj
ψ̇sisi→sj


=



F
(i)
rr F

(i)
rv F

(i)
rε 0 0 0 0

F
(i)
vr F

(i)
vv F

(i)
vε Cl

siF
(i)
va 0 0 0

F
(i)
εr F

(i)
εv F

(i)
εε 0 Cl

siF
(i)
εg 0 0

0 0 0 F
(i)
aa 0 0 0

0 0 0 0 F
(i)
gg 0 0

0 0 0 0 0 Frij 0
0 0 0 0 0 0 Fψij





(δrle)
(i)

(δvle)
(i)

(εl)(i)

δx
(i)
a

δx
(i)
g

δrsisi→sj
ψsisi→sj



+



0 0 0 0 0 0
Cl
si 0 0 0 0 0

0 Cl
si 0 0 0 0

0 0 G
(i)
a 0 0 0

0 0 0 G
(i)
g 0 0

0 0 0 0 Grij 0
0 0 0 0 0 Gψij





−ν(i)
a

ν
(i)
g

w
(i)
a

w
(i)
g

wri

wψi


.

(8.5.18)

The elements of the upper part of the model are given in Section 1.7.4, considering the states
associated to each block i, and Cl

b = Cl
si . Although supposed to be constant (see Eq. (8.5.16)),

we model the inter-IMU leverarm error state δrsisi→sj as a first-order Gauss-Markov process with
inverse correlation time tc = 1/β “fixed” to infinity. Regarding inter-IMU misalignment angles,
we supposed that initial approximations of C

sj
si are available. This enables the small angles

approximation of C
sj
si ≈ I− [ψsisi→sj×] according to Eq. (1.2.18) in which ψsisi→sj represent the

misalignment angles between the si-frame and the sj-frames expressed in the si-frame.

Geometrically-Constrained Extended Kalman Filter

An EKF based on the developed dynamic model can be designed, with the particularity that
it can be fed not only with external measurements (e.g. absolute position or velocity), but also
with pseudo-measurements expressing the relative alignment between the individual IMUs kept
as a constant. The resulting geometrically-constrained EKF principle is schematized in Figure
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Figure 8.5: Principle of the geometrically-constrained extended Kalman filter.

8.5. As in the case of the generalized EKF, the geometrically-constrained EKF allows estimating
the individual sensor biases and detecting defective sensors. The strapdown mechanization
algorithms for each block i are identical to the single-IMU algorithms described in Chapter 2.
In the sequel, we develop the associated (pseudo-)measurement models.

Relative Coordinate Update The relative position measurement model at digital time
{tk : k ∈ Z} between IMUs i and j can be written as

0− ν(ij)
k = (rle)

(i)
k + (D−1)

(i)
k (Rl)

(i)
k − (rle)

(j)
k (8.5.19)

where ν(ij)
k are residuals modeled as white noise, and (Rl)

(i)
k =

[
(Cl

si)k(r
si
si→sj )k×

]
. Lineariza-

tion of this equation yields the following design matrix:

H
(ij)
k =

[
I + (Da)

(i)
k 03×3 −(D−1)

(i)
k (Rl)

(i)
k 03×Zia 03×Zig (D−1)

(i)
k (Cl

si)k 03×3 · · ·

· · · −I3×3 03×3 03×3 0
3×Zja 0

3×Zjg 03×3 03×3

]
(8.5.20)

where Z•• are the number of error states associated to the accelerometers (a) and gyroscopes
(g) biases in the ith and jth block, and the auxiliary matrix D

(i)
a is given in Eq. (2.4.4) in

which (xl)(i) is considered. Note that the first half of the design matrix H
(ij)
k corresponds to

the (δxl)(i) state while the second half is aligned on the (δxl)(j) state.

Relative Velocity Update The relative velocity measurement model at digital time {tk :
k ∈ Z} between IMUs i and j can be written as

0− ν(ij)
k = (vle)

(i)
k + (Ωl

lsi
)k(C

l
si)k(r

si
si→sj )k − (vle)

(j)
k (8.5.21)
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where again ν(ij)
k are residuals modeled as white noise and (Ωl

lsi
)k =

[
(ωllsi)k×

]
with

(ωllsi)k = (Cl
si)k(ω

si
isi

)k − (ωlil)
(i)
k . (8.5.22)

After linearization, the design matrix becomes:

H
(ij)
k =

[
(Rl)

(i)
k (D1)

(i)
k I + (Rl)

(i)
k (D2)

(i)
k (Rl)

(i)
k

[
(Ωl

il)k + 2(Ωl
lsi

)k
]

03×Zia 03×Zig

(Ωl
lsi

)k(C
l
si)k 03×3 . . . 03×3 −I 03×3 0

3×Zja 0
3×Zjg 03×3 03×3

]
(8.5.23)

with auxiliary matrices

D
(i)
1 =

(
∂Ωl

il

∂rle

)(i)

and D
(i)
2 =

(
∂Ωl

il

∂vle

)(i)

(8.5.24)

as given in Eq. (2.4.9) and (2.4.10).

Relative Orientation Update The relative orientation measurement model at digital time
{tk : k ∈ Z} between IMUs i and j can be expressed as:

03×3 − V (ij) = I3×3 −
[
(Cl

si)k

]T
(Cl

sj )k(C
sj
si )k (8.5.25)

where V (ij)
k is a 3× 3 diagonal matrix containing normaly distributed residuals and (C

sj
si )k is

obtained from (ψsisi→sj )k. The analytically linearized expression of Eq. (8.5.25) is long and not

that straightforward. An alternative for obtaining H
(ij)
k is numerical differentiation.

8.6 Realization of Distributed IMU

We built a DIMU composed of three XSens MTx IMUs and one XSens MTi-G IMU sampling
at 100 Hz. The latter includes a L1 GPS receiver. Also, the gyroscopes of this IMU are not
of the same type as the ones packaged in the MTx devices. In order to respect the third
assumption in Section 8.3, only the inertial observations sensed by the MTx IMUs will be
used in the processing. The three MTx units are connected to a XBus Master unit which is
responsible for powering and triggering the individual IMUs, as well as for transmitting the
data to a Personal Computer (PC). The four IMUs were mounted on a tetrahedron whose
shape is known and corresponds to the optimal geometry for which the information volume is
highest. More details regarding this setup can be found in Waegli [2009].

All devices sample in a common time frame. Similarily to the setup described in Section
7.4.1 of Chapter 7, the GPS clock contained in the MTi-G device yields access to a globally
available timing and synchronization framework, the GPS time. An experimental setup was
built such that all individual MTx IMUs sample simultaneously in time. With this respect, we
implemented a real-time C++ based DIMU datalogger in which two synchronization strategies
have been considered:
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• The Software Synchronization mode in which time synchronization is performed by
using the Operating System (OS) time {tOSk : k = 1, 2, . . .} as a timing base. The time
offset between GPS time {tGPSm : m = 1, 2, . . .} and the OS time, denoted ∆tOS,GPS , is
continuously estimated at each GPS package arrival to calibrate the IMU package time
{tIMU
k : k = 1, 2, . . .} based on the IMU sample counter interval. The synchronized time
{tk : k = 1, 2, . . .} can then be computed as

tk = tIMU
k + tOSk + ∆tOS,GPS (8.6.1)

where ∆tOS,GPS is estimated at each GPS packet arrival using ∆tOS,GPS = tGPSm − tOSk .
Note that due to the low bandwith featuring GNSS sensors, the m cycle is usually much
slower than the k cycle. However, relying on data packets arrivals can be problematic
due to variable processing speeds and transmission of the IMU packets on the sensor end.
Furthermore, indeterminate timing behaviors from software-based synchronization on a
non-real-time OS can induce timing errors higher than ten milliseconds Perry and Childs
[2009].

• The Hardware Synchronization mode in which a periodic Transistor-Transistor-Logic
(TTL) pulse (1 PPS) delivered by the GPS receiver serves as base for the measurements.
This pulse is aligned to GPS time. The PPS signal is brought as input through a
manufactured cable to the XBus Master as a scale that aligns the triggering of all MTx
IMUs (i.e. their internal sensors). The absolute timing of the IMU messages is performed
by the DIMU datalogger which exploits available GPS time messages and the guaranteed
(by hardware) synchronous triggering of MTx internal sensors.

The precision of the relative timing is depicted in both panels of Figure 8.6 representing
measured sampling periods ∆tk = tk − tk−1 for digital times {tk : k = 1, . . . , N} . The black
curves with circles represent the measured sampling periods belonging to the MTi-G IMU. The
gray curve shows the measured sampling interval belonging to one of the MTx devices forming
the DIMU (gray curve). All devices sampled at 100 Hz. The upper and lower panels show results
provided by the DIMU datalogger running in software and hardware synchronization mode,
respectively. Despite the MTi-G uses its GPS to correct its internal clock bias, some jittering
is observed from the deviations around the theoretical sampling period of 10 milliseconds. The
sampling intervals of the MTx IMU match perfectly the ones belonging to the MTi-G (lower
panel), which is not the case when using the software synchronization mode (upper panel).
Although not shown here, this was also the case for all the remaining MTx devices forming
the DIMU. From these results, it can safely be concluded that the relative timing capability
is achieved with an acceptable precision (estimated below 1 millisecond) when performing
hardware synchronization.
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Figure 8.6: DIMU datalogger relative timing capability in software (upper panel) and hardware
(lower panel) synchronization mode. Note the jittering affecting the MTi-G internal clock which
enables to highlight the perfect alignment in hardware synchronization mode.
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Chapter 9

Redundant INS/GPS Performance

9.1 Introduction

This chapter discusses the typical results obtained from the realized MEMS-based DIMU
introduced in Chapter 8 and processed with the implemented redundant navigation filters.
Since urban environment provides challenging conditions for integrated navigation, all the
selected experiments presented in this chapter are issued from datasets collected with a car.
Indeed, an inertial platform mounted on a car is subject to low dynamics (e.g. along the pitch
and yaw vehicle axes) as well as to abrupt changes in dynamics (e.g. due to stops at crossroads).
Moreover, a car may pass through tunnels, urban corridors and forests where the reception of
GNSS signals is either not possible or of low quality. These elements may result in conditions
in which the navigation quality may benefit from the employment of augmented redundant
INS.

In Section 9.2, we present the experimental setup we designed for collecting reference and
DIMU data with a car. Section 9.3 is dedicated to the description of the selected compaigns.
Then we analyse the performance of the EKF based on different synthetic IMU computers
in Section 9.4, and of the geometrically-constrained EKF in Section 9.5. Finally, an overall
performance comparison is proposed in Section 9.6.

9.2 Experimental Setup

Since performance evaluation requires the existence of a reference, a system of considerably
superior quality was operated and its output considered as the “truth” for comparison. The
experimental setup from which observations were collected is depicted in Figure 9.1. In the
sequel, we provide details on each of the delimited subsystems.

9.2.1 High-Grade (Reference) Navigation System

The high-precision navigation system is composed of a navigation-grade IMU (Ixsea Airins
sampling at 100 Hz) and a geodetic-grade L1/L2 GPS/Glonass rover receiver (JAVAD Alpha
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Figure 9.1: Instrumental setup used for evaluating the DIMU performance.

sampling at 10 Hz) connected to a L1/L2/Glonass active antenna (JAVAD Legacy). A L1/L2
GPS/Glonass receiver (Topcon Hiper Pro sampling at 10 Hz) is setup as base station for
differential processing. A hardware synchronization scheme aligns the Airins time frame
with GPS time using the PPS signal output from the Alpha receiver. Finally, a specially
developed C++ based datalogger, designated as Airins Logger, tags the raw Airins samples
with GPS time in real-time. The base and rover GPS receivers are combined to compute a
post-processed double-differenced Carrier-Phase (CP) solution which feeds a single-IMU based
INS/GNSS EKF. The reference navigation solution is then obtained using a smoother which
combines forward and backward EKF solutions (see Chapter refch:fundamentals of integrated
navigation).

9.2.2 Redundant (MEMS-based) Inertial Navigation System

The navigation system under test comprises two DIMUs of the type described in Section 8.6
(see right image in Figure 9.2). Hence, eight MEMS-based IMUs (two XSens MTi-G and six
XSens MTx sampling at 100 Hz) mounted on two regular tetrahedrons with known geometry
are forming the redundant MEMS-based INS. However, from the six XSens MTx units, two
were identified to be badly calibrated for constant systematic errors and contained sensors
with higher noise level. Since both were mounted on the same tetrahedron, we consider each
DIMU as a separate system, meaning that all comparisons will be done using the correctly
calibrated DIMU.
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Figure 9.2: Navigation sensor platform mounted on the roof of the car (left picture) and view
on the skew-redundant XSens inertial sensors forming the realized DIMU (right picture).

9.3 Campaign Description

Several runs were performed with a car in urban and sub-urban conditions. A rigid metallic
platform on which both, the high-grade and MEMS-based redundant INS described in the
previous section can be rigidly fixed has been designed and manufactured to be mounted on the
roof of a car (see left image in Figure 9.2). Datasets issued from two measurement campaigns
will be analysed.

The Urban Campaign The dataset depicted in the left panel of Figure 9.3 is issued from a
track of approximately 10 km length collected in urban conditions. The car came across
two tunnels (the first 40 seconds duration) and passed under several bridges. In these
cases, no GNSS signals were available. Red lights and crossroads made the car stop many
times during periods lasting from a few seconds to several minutes. A longer dataset
acquired during the urban campaign will be used to illustrate the MRS synthetic IMU
(see Figure 9.5).

The Campus Campaign The dataset depicted in the right panel of Figure 9.3 contains
observations from a track on the university campus. The GNSS signal availability was very
good during almost the complete run except when the car came across an underground
parking garage. Note that the circles in the trajectory represent round-abouts.

On both panels in Figure 9.3, the reference trajectory together with the CP post-processed
differential GPS (CP-DGPS) positions are drawn as a black curve and gray circles, respectively.
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Figure 9.3: High precision reference trajectory of the urban (upper panel) and campus (lower
panel) dataset collected with a car.

In the sequel, we process the observations issued from the augmented MEMS-based INS using
the different redundancy architectures developed in Chapter 8. All individual sensors biases
are modeled using models estimated by means of the GMWM method presented in Chapter 6.

9.4 Synthetic IMU Performance

Synthetic IMUs will be computed out of three calibrated MTx devices using the different
weighting strategies developed in Chapter 8

9.4.1 Two-Regimes Markov Regime Switching Modeling

The results of the application of the MRS modeling on one gyroscope and accelerometer
signal (Y-axis) of MTx #1 is presented as an example in Figure 9.41. We considered a two
regimes MRS, i.e. the regime (Si,j)k ∈ {1, 2} and S?i,j = 2. We assume that these two regimes
discriminate the static and the dynamic cases. This hypothesis is relevant and sufficient in the
context of car navigation. Furthermore, the selection of the number of AR(·) coefficients was
realized by retaining the model yielding the minimum BIC value among tested AR(·) processes
with ds = 1, . . . , 10. In Figure 9.4, only a portion of the complete signal is shown for clarity.
The upper panels show the estimated sensor (gyroscope/accelerometer) residuals (gray curves),
i.e. ε̂k = (y1,2)k− µ̂2,k for times {tk : k = 1, . . . , N} where (y1,2)k is the sensor signal and µ̂2,k is
the synthetic sensor computed using Eq. (8.4.7). The black curves are the noise level (standard
deviation) obtained through MRS modeling, i.e. (γ̂1,2)k from Eq. (8.4.38), which will weight
the individual sensors. The lower panels depict the sensor signals (y1,2)k (gray curves) and the
estimated smoothed probabilities ξ̂i,js|k (black curves, see Eq. (8.4.26)) to be either in regime 1
(s = 1) or regime 2 (s = 2). The probabilities are not clearly separated since they are oscillating
around 0.5. Hence, this could be interpreted as a difficulty of the MRS to discriminate both
regimes. Consequently, the gyroscope residuals have a constant estimated noise level with
time and hence the unweighted form may be sufficient in this case. However, the effects of the

1Identical results were obtained for all remaining sensors.
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Figure 9.4: Result of the MRS modeling on XSens MTx gyroscope and accelerometer signals.
The upper panels show the residuals {ε̂k} computed on the Y-axis gyroscope (left column)
and the Y-axis accelerometer (right column) as gray lines, together with the estimated noise
level obtained through two-regimes MRS modeling (black curves). The lower panels compare
the raw signals ({yi,j)k} (gray curves) with the estimated smoothed probabilities to be either
in regime 1 or regime 2. The correlation between the detected regimes and the dynamics is
clearly visible in the accelerometer case.
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Figure 9.5: Map of the test trajectory on which the norm of the specific force is represented
(colored thin line) and the smoothed probabilities issued from the regime-switching modeling
are superposed (thicker transparent line). Note that due to the scale of the map, short term
variations are not visible.

dynamics (through the vibrations) are clearly visible in the estimated accelerometer residuals
ε̂k. The estimated noise level (upper right panel) is successfully changed during these periods
according to the estimated smoothed probabilities which are clearly separated into 0.0 and 1.0
probabilities (lower right panel). In this case, the two regimes clearly discriminate the static
(full black curve) from the dynamic periods (dashed black curve).

Figure 9.5 illustrates an example of trajectory acquired with a car during the urban campaign.
The colors of the fine curve represent the norm of the b-frame specific force (used to represent
dynamics), while the transparent superposed line provides the estimated smoothed probability
to be in regime 1 (blue) or regime 2 (red). Note that due to the scale of the figure, only global
trends are visible. The numbers along the trajectory represent the time of running from the
starting point. In general, the “dynamic” regime is successfully detected at portions were strong
linear accelerations or curves occured. Static periods at red lights are also clearly visible for
example after 10, 44 or 53 minutes.

9.4.2 ARMA-GARCH Modeling

The results of ARMA-GARCH modeling are illustrated in Figure 9.6 for the estimated
gyroscope and accelerometer residuals, ε̂k, on the same axis and time period as in the preceding
section, i.e. ε̂k = (y1,2)k − µ̂2,k for times {tk : k = 1, . . . , N} where (y1,2)k is either the
gyroscope or accelerometer signal (see Eq. (8.4.7)). The black curves depict the noise level
(γ̂1,2)k (representative for the individual sensor weighting) estimated by the GARCH(·, ·) on
the ARMA(·, ·) residual sequence. Again, a constant noise level (γ̂1,2)k is estimated on the
gyroscope residuals (left panel). Note that due to the scale of the figure, the slight variations in
(γ̂1,2)k are not visible. However, the noise level of the accelerometer varies with dynamics (right
panel). Compared to the MRS based computer, the noise level is better estimated in this case.
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Figure 9.6: Result of the ARMA-GARCH modeling on MEMS-based gyroscope and accelerom-
eter signals. The panels show the {ε̂k} residuals computed on the Y-axis gyroscope (left panel)
and the Y-axis accelerometer (right panel) as gray lines, together with the noise level γ̂k (black
curves) obtained through ARMA-GARCH modeling.

Since GARCH(·, ·) models are based on the assumption that the signal to model, i.e. the sensor
residual sequence {εk : k = 1, . . .} of Eq. (8.4.13), is unpredictable (thus only composed of
white noise), the ARMA modeling step has to fullfill this condition, considering from Chapter
7 and Stebler et al. [2011b], Waegli et al. [2010] that the inertial sensor errors are composed of
colored noise. In Figure 9.7, the upper panels show the sensor residuals {ε̂k} (black curves) and
the ARMA(·, ·) residuals {uk : k = 1, . . . , N} (gray curves) of Eq. (8.4.13) for the gyroscope
and accelerometer over longer time period ( 8 minutes). The middle and lower panels illustrate
the ACS and the Allan variance curves computed on both types of residuals. The whitening
effect of the ARMA modeling is confirmed by a the ACS of {ε̂k} which becomes close to a
Dirac (gray curve) when computed on the ARMA(·, ·) residual sequence {uk}, and an Allan
variance curve shape (black curve with dots) computed on {ε̂k} which tends to the line with
slope −1/2 (this slope corresponds to a Gaussian white noise and is drawn as a dashed-black
line on the same figure) when computed on {uk} (gray curve with triangles). For the gyroscope,
this step can clearly be removed since the sensor residuals sequence {ε̂k} is already white in
this case.

9.4.3 Noise Reduction

The resulting noise reduction of the weighting process using MRS and ARMA(·, ·)-GARCH(·, ·)
models is compared to the unweighted synthetic IMU as well as to the magnitude of the
estimated residuals of each individual sensor. Only gyroscope results will be presented here,
since they are more important for achieving accurate navigation.

The upper panel of Figure 9.8 compares boxplots of the magnitude of the true angular rate
errors (with respect to the reference provided by the Airins gyroscopes) of the individual
MTx gyroscopes with the synthetic sensors. First, all three types of synthetic gyroscopes
have reduced noise level, as could be expected from the theory. The values of the residual
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Figure 9.7: Demonstration of the whitening capability of the ARMA filters. The upper panels
show the {ε̂k} residuals (gray curves) and the residuals {uk} of the ARMA filters for the Y-axis
gyroscope (left column) and the Y-axis accelerometer (right column). The middle and lower
panels illustrate the corresponding autocorrelation and Allan variance sequences, respectively.
Both information demonstrate the whiteness of the ARMA residuals {uk} used as input in the
GARCH filters.
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standard deviations are written in the boxplot. The observed noise level reduction is close to
the asymptotic value of

√
3 (see Eq. (8.4.8)). However, since all synthetic IMU computation

methods estimated rather constant noise levels in the gyroscopes (and thus equal weights),
the ARMA-GARCH and MRS based synthetic IMUs have no reduced noise level compared
to the unweighted form in this dataset. Therefore, the use of more sophisticated weighted
synthetic IMU computers such as ARMA-GARCH and MRS is only necessary if the noise
level is varying between sensors and in time. As an example, we considered a fourth MTx
unit issued from the second DIMU. As previously explained, this sensor contains uncalibrated
errors and its noise level is higher than the others. We then reprocessed the three forms of
synthetic gyroscopes on the same (campus) trajectory. Again, we computed the residuals of
the angular rate magnitude for each computed gyroscope and produced a boxplot (lower panel
of Figure 9.8). The significantly higher noise level of MTx #4 with respect to the three others
is clearly visible. In this case, the use of an ARMA-GARCH or MRS based synthetic computer
is advantageous compared to the unweighted form as the noise level was reduced from 0.55
(deg/s) to 0.43 (deg/s) and 0.44 (deg/s) for the ARMA-GARCH and MRS based synthetic
gyroscope, respectively.

For the accelerometers, the noise level variation is fully correlated to the vibrations. Since all
accelerometers will sense the same vibrations, the estimated noise level will be increased for all
of them. This further decreases the relative weighting of the individual IMUs and cancels the
advantage of using the ARMA-GARCH or MRS based synthetic accelerometer against the
unweighted synthetic accelerometer. Therefore, the benefits of using an ARMA-GARCH or
MRS based synthetic IMU computer was limited in terms of noise reduction (not shown).

For the sake of completness, the standard deviations extracted from the synthetic IMU based
EKF system noise matrix, Qk, are depicted in Figure 9.9 for the gyroscope noise level (left
panel) and the accelerometer noise level (right panel). The benefits gained from using such
type of adaptation in terms of navigation accuracy will be described in Section 9.6. Both
plots are aligned with the estimated residuals plotted in Figure 8.1. By comparing the two
figures, it can be seen that it is mainly the noise level of the synthetic accelerometer that
accounts for the changing observation accuracy in the synthetic IMU mechanization process.
The underestimated level of the accelerometer noise as issued from the calibration in static
conditions and observed in the left panel of Figure 8.1 as a black curve is now adapted to
realistic magnitudes when the platform is subject to vibrations.

9.5 Geometrically-Constrained EKF Performance

As previously mentioned, the geometrically-constrained INS/GNSS EKF is particularly usefull
when the geometry of DIMU is poorely known. For demonstrating that, some bias (0.5 deg) was
added in the misalignment angles defining the direction cosine matrices Csj

si (see Section 8.5.2)
and two navigation solutions were computed. The first solution is issued from a geometrically-
constrained EKF filter in which the misalignment angle corrections ψsisi→sj (see Eq. 8.5.18) are
estimated in the state, while the second solution takes the wrong assumption on DIMU inner
alignment. Figure 9.10 shows the effect on navigation performance in GNSS-denied conditions
on the forward EKF solution. The true reference trajectory is shown as a thick gray curve in
the upper panel, and GNSS solutions are depicted as gray circles. The map only shows a small
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Figure 9.8: Noise reducation capability of the synthetic IMU computers for the campus
trajectory. The panels show boxplots for the residuals of the magnitude of the MTx gyroscopes
and the computed synthetic gyroscopes using three IMUs with identical noise levels (upper
panel), and four IMUs among which one (MTx #4) has higher noise level (lower panel). The
residuals standard deviations are noted below each corresponding boxplot.
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Figure 9.9: Standard deviations of the synthetic gyroscope (left panel) and accelerometer (right
panel) used in the adaptive EKF system noise matrix.

portion of the complete trajectory in which additional GNSS outages are present. The effect of
the bias in DIMU misalignment is highlighted in terms of planimetric and altimetric error in
the lower two panels. When estimating the misalignment angle corrections (black curves), the
positioning accuracy was generally increased. Such results were only obtained when the filter
had sufficient time for correctly observing the states. This observability problem is intimately
related to the dynamics encoutered by the platform. As stated in the introduction, the nature
of car motion has little dynamics along the vehicle pitch and yaw axes. This implies that
correct inter-IMU geometry estimation can only be achieved for sufficiently long datasets, large
variations in dynamics, and conditions with good reception of GNSS signal.

The choice on the frequency of constraints within a DIMU system, i.e. the interval in performing
the relative coordinate, velocity and attitude updates rate (see Section 8.5.2) can be made
as a tradeoff between the computational load and the navigation performance. Using the
same rate as the filter rate2 implies updates at each IMU epoch. By keeping in mind that the
geometrically-constrained EKF architecture involves high state dimensions with large matrices,
it is obvious that this option is not optimal. For all processed datasets, the relative geometry
updates were performed at the same rate as the filter covariance prediction rate, i.e. P−k in Eq.
(1.9.4), which was set at 10 Hz. The effect of further decreasing this rate to 1 Hz is shown for
the campus dataset in Figure 9.11 which presents RMSE3 values in attitude computed with
respect to the reference navigation solution provided by the high-grade navigation system. Two
solutions are investigated: the first solution is issued from the geometrically-constrained EKF
updated with correctly known (accurate) relative pseudo-measurements (designated as known
constraints in the figure), while the second solution is issued from the same filter in which
(ψsisi→sj )k for k = 1, . . . , N is estimated in the state and used for the (C

sj
si )k cosine matrices at

filter update stage (designated as estimated constraints in the figure). The RMSE values for the
forward-filtered EKF and the (fixed-interval) smoothed navigation solutions were computed
and are presented in the left and right panel of Figure 9.11, respectively. As no significant
differences were observed in terms of position and velocity RMSE, only attitude RMSE are
shown. The first bar (black) in each panel represents the averaged RMSE issued from the

2In this work, the general filter rate is equal to the IMU sampling rate, except for update times.
3Although RMSE is not a very representative quantity when evaluating accuracy of data containing inertial

coasting periods, it still provides a good indication on the relative accuracy between two solutions.
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Figure 9.10: Influence of the poorely known inter-IMU boresight angles on the estimated
trajectory during periods of poor GNSS signal availability. The upper panel depicts a portion of
the true trajectory (thick gray curve) along with GNSS positions (circles) and the trajectories
estimated using the geometrically-constrained EKF in which biased inter-IMU boresight angles
are used as update (thin gray lines) and the filter in which the angles are estimated (black
lines). The lower panels draw the planimetric (left panel) and altimetric (right panel) error of
the solutions provided by the two filters.
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Figure 9.11: Influence of the inter-IMU geometry update rate on forward filtered (left panel)
and smoothed (right panel) attitude estimation.

three individual single- IMU based EKF solutions. In the case of the forward EKF solution
(left panel), there is an improvement of 75% when using fixed inter-IMU boresight angles at
both rates. When estimating the boresight angles, the roll accuracy is improved by 75% and
61% at 10 Hz and 1 Hz rate, respectively. The pitch angle accuracy is improved by 13% for
all four cases. The heading has respectively 23% and 14% less error when using 10 Hz and
1 Hz update rate in the case of known geometry. However, lower improvement can be noted
when the boresight angles are estimated at either 10 Hz (0.6%) or 1 Hz (8%). In the case of
the smoothed solution (right panel), roll, pitch and heading accuracy is improved by 60%, 62%
and 65%, respectively, when using 10 Hz update rate with known boresight angles. At 1 Hz,
these values decrease to 46% and 44% respectively for roll and pitch. The heading accuracy is
2% worse.

In summary, increasing the relative geometry update rate improves the navigation performance,
especially in the case were the boresight and leverarms of DIMU are already known.

9.6 Overall Navigation Performance Comparison

9.6.1 General Accuracy Improvement

The navigation performance evaluated with respect to the reference solution will be denoted as
the state accuracy (RMSE). Only the results for the campus datasets are presented, because
similar conclusions can be drawn from all other acquired datasets. In the upcoming figures,
the following legends will be used:

• Single IMU (MTx #i): navigation solution provided by the INS/GNSS EKF based on
the classical single-IMU mechanization of the ith MTx unit, with i = 1, . . . , R;

• Average of Single IMU : average of the RMSE values obtained with the R single-IMU
based EKF;
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• Federated Filter (no reset): results obtained with a federated filter without resets. This
filter fuses R solutions of single-IMU based filters in least-squares sense. We refer to
Bancroft [2010] who investigated these types of filters for INS/GNSS navigation;

• Geometrically-Constrained (known calibration): results given by the geometrically-
constrained EKF that is updated with inter-IMU geometry pseudo-measurements based
on known (accurate) boresight angles and leverarms;

• Geometrically-Constrained (unknown calibration): results given by the geometrically-
constrained EKF that is updated with inter-IMU geometry pseudo-measurements based
on estimated (in the state) boresight angles and leverarms;

• Unweighted Synthetic IMU : navigation solution computed with the unweighted synthetic
IMU and EKF;

• ARMA-GARCH Synthetic IMU : navigation solution computed with the ARMA-GARCH
synthetic IMU and EKF;

• MRS Synthetic IMU : navigation solution computed with the MRS synthetic IMU and
EKF;

• Extended Mechanization: solution provided by the generalized EKF based on the extended
mechanization.

All filters used for computing the navigation solutions presented in this section were updated
by carrier-phase differential GPS position and velocity measurements (at 1 Hz). Furthermore,
they were aligned by estimated coarse tilt angles (i.e. roll and pitch) during the static leveling
procedure (see Section 2.5.2) and assuming large uncertainty in the initial heading while
running the EKF. For this aim, the quaternion-based large-angle misalignment algorithm
explained in Section 2.6.1 was used for platform fine alignment. Note also that the automatic
“inertial-based” non-moving period detection algorithm developed in Section 2.5.1 was activated.
By this means, periods during which the filters had to be (re-)initialized (position initialization
by means of GPS, velocity assumed to be zero, and coarse alignment procedure engaged) or
put in zero-velocity update mode were computed automatically without any interaction from
the user.

The performance of the forward EKF attitude solution is presented in the upper panel of
Figure 9.12. The different synthetic IMU computers and the generalized EKF have similiar
performance improvement: the roll and heading angles accuracy are improved by 90% and 27%
with respect to the averaged single IMU performance, respectively, while the pitch angles are
18% less accurate. Both forms of the geometrically-constrained EKF bring nearly 76% and 13%
of improvement on roll and pitch angles. Heading is improved by 23% when boresight angles are
known, while no difference is observed in the case when the boresight angles are estimated. The
federated filter presents the worst results among the filters acounting for redundancy. Regarding
position and velocity accuracy (lower panel in Figure 9.12), the geometrically-constrained EKF
with unknown calibration parameters performs best in this case (respectively 48% and 51%
of improvement for position and velocity) while again, the federated filter brings the lowest
advantage with nearly 28% of improvement for both, position and velocity. Comparing the
smoother solutions for the same dataset reveals that the highest attitude accuracy improvement
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Figure 9.12: Performance of the forward EKF filter running the different redundancy architec-
tures. The upper and lower panels show respectively the attitude and position/velocity RMSE.
Note that the large position errors are due to periods (of up to 40 seconds duration) during
which the system was in inertial coasting mode.

is brought by the generalized EKF (extended mechanization with known boresight angles)
and the geometrically-constrained EKF with known boresight angles (upper panel in Figure
9.13) with around 60% of improvement for all three angles. All forms of synthetic IMUs have
similar performance with nearly 55% of improvement for roll and heading, and 63% for pitch.
Position and velocity accuracy improvement is shown in the lower panel of Figure 9.13. The
generalized EKF improves the position and velocity accuracy by 73% and 40% respectively.
The geometrically-constrained filter operated with unknown calibration parameters presents
the least improvement in position accuracy.

Globally, the use of redundant sensors brought significant improvements (∼
√
R) in the

navigation solution. Introducing this redundancy information into the filter architecture or
through the synthetic IMU computers clearly enables achieving higher accuracy compared to
the federated filter. However for the analysed datasets, the gain obtained with the ARMA-
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Figure 9.13: Performance of the smoother running the different redundancy architectures. The
upper and lower panels show respectively the attitude and position/velocity RMSE. Note that
the large position errors are due to periods (of up to 40 seconds duration) during which the
system was in inertial coasting mode.

GARCH or MRS based synthetic IMU compared to the unweighted form was marginal with
an improvement of 1-3% in accuracy. In the sequel, closer views on critical parts of the campus
and urban datasets are provided.

9.6.2 Close Views on Inertial Coasting

During the urban run, the car came twice across tunnels in which the filter operated in inertial
coasting mode. The first tunnel lasted approximately 40 seconds and is depicted in the upper
left panel of Figure 9.14. The second tunnel (upper right panel) was located in a dense urban
area and was shorter (the vehicle came through in approximately 15 seconds). The planimetric
and altimetric position drift due to the integrated inertial sensor errors is only presented for
the first tunnel in the lower two panels of Figure 9.14. The performance obtained by computing

176



Overall Navigation Performance Comparison

−600 −400 −200 0 200 400 600

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

Local East Coordinate (m)

Lo
ca

l N
or

th
 C

oo
rd

in
at

e 
(m

)

Close View on First Tunnel (~40s Duration) for Forward EKF Solution

 

 

Tunnel Start

Tunnel End

650 700 750 800

440

460

480

500

520

540

Local East Coordinate (m)

Lo
ca

l N
or

th
 C

oo
rd

in
at

e 
(m

)

Close View on Second Tunnel (~15s Duration) for Forward EKF Solution

 

 

Tunnel StartTunnel End

700 710 720 730 740 750 760
0

50

100

150

200

250

300

350

Planimetric Error During GNSS Signal Outage (Tunnel) 
for Forward EKF Solution

Time (s)

D
is

ta
nc

e 
(m

)

 

 
Single IMUs
Federated Filter (no reset)
Geometrically−Constrained
(known calibration)

Geometrically−Constrained
(unknown calibration)
Unweighted Synthetic IMU
ARMA−GARCH Synthetic IMU
Extended Mechanization

700 710 720 730 740 750 760
0

5

10

15

20

25

Altimetric Error During GNSS Signal Outage (Tunnel) 
for Forward EKF Solution

Time (s)

D
is

ta
nc

e 
(m

)

 

 

Figure 9.14: Close views on urban trajectory parts during which the vehicule came across
tunnels. The upper panels present planimetric navigation solutions obtained during inertial
coasting mode over a 40 seconds (left panel) and a 15 seconds (right panel) long period. The
lower panels show the planimetric (left panel) and altimetric (right panel) errors during the
GNSS-signal outage of 40 seconds duration in the tunnel.

each single IMU individually (in this case three MTx devices) is represented by the light gray
curves. The final planimetric error at the end of the tunnel varies a lot among these three
solutions: more than 300 meters error for the worst and nearly 120 meters for the best case.
Note that the car came across the tunnel approximately 10 minutes after start. Therefore,
some states accounting for sensor biases might not have been observed correctly at this stage.
The remaining curves in the panels are issued from the filters accounting for redundancy.
The worst performance is clearly accomplished by the geometrically-constrained EKF filter in
which the boresight angles had to be estimated (dotted black curve). Due to the decreasing
estimated filter precision and the accumulated errors in each individual filter block, errors
in the estimated inter-IMU boresight angles increase and impact largely the final position
accuracy. This confirms the previously mentioned remark stating that inter-IMU calibration
shall only be performed in optimal conditions when these states are observable. The federated
filter performs similarly to the ARMA-GARCH and the MRS-based synthetic IMU (note that
the MRS performs almost exactly the same and is not depicted for clarity reasons) with a final
planimetric error of around 60 meters. The unweighted synthetic IMU solution presents less
drift than the two other synthetic IMU forms (around 50 meters). Although better in this case,
several (not presented) analyses in which artifical GNSS gaps were introduced revealed that
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Figure 9.15: Close view on campus trajectory parts during which the vehicle came across the
underground parking garage.

globally, the unweighted synthetic IMU performed similarly to the two other more sophisticated
forms. However, their accuracy dramatically improved compared to the classical single IMU
solutions. The minimum position drift is obtained with the geometrically-constrained EKF filter
with known calibration parameters and the generalized EKF running extended mechanization
with only 20 meters planimetric error at the end of the tunnel. In this case, redundancy at
state level performed best.

During the campus run, the car experienced a period without GNSS data while passing through
an underground parking garage. A closer view on this trajectory portion is drawn in Figure 9.15.
This scenario is demanding on the performance of the inertial navigation system since many
sharp turns and velocity changes occured during this GNSS-free 25 seconds long period. The
planimetric positions issued from smoothed solutions are drawn on this figure with the same
coding as was used in Figure 9.14. The same conclusion as for the urban dataset can be drawn
in this case: the geometrically-constrained EKF together with the generalized EKF performed
best while the different forms of synthetic IMU computers had no difference between them.
Again, the solution provided by the geometrically-constrained EKF operated with unknown
boresight angles dramatically deviates from the reference trajectory (not shown in the figure).

Finally, we analyse for the urban run the navigation performance with respect to the number
of IMUs increasing from two units up to five. For this purpose, we used IMUs from the second
DIMU system. Remember that some MTx IMUs within this system were not calibrated and
that the MTx #4 experienced large level of noise (see Section 9.4.3). Although we consider here
only the results obtained with the generalized EKF (extended mechanization), both panels of
Figure 9.16 enable to draw conclusions that are also representative for the other redundancy
architectures. We can observe some improvement in the attitude accuracy when using more
than two sensors (left panel). However, no significant improvement in the attitude accuracy
can be observed when using three, four or five devices. A closer view on the 40-seconds long
tunnel is depicted in the right panel. Again, the position solution obtained by integrating each
individual IMU are drawn as light gray curves ( only three out of five are shown for clarity).
Using more than two sensors significantly improves the accuracy of inertial navigation. The
solutions obtained with three and four sensors are similar. This can be explained by the high
noise level featuring MTx #4 which may not bring any gain in the solution acccuracy, compared
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Figure 9.16: Influence of the number of sensors in the forward EKF solution of the urban run.
The left panel shows the attitude RMSE and the right panel provides a close view on position
solutions during the 40 seconds long tunnel.

to the three-IMU based filter. However, the accumulated error is significantly bounded when
using five sensors since the obtained trajectory is very close to the reference.
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Chapter 10

Conclusions and Recommendations

10.1 Contributions and Conclusions

This research aimed in proposing and investigating novel modeling and estimation approaches for
integrated inertial navigation. Particular attention was paied to the development of theoretical
aspects and its validation by means of simulation studies and real applications. The developed
concepts were described using an algorithmic notation that is suitable for implementation.
This section highlights the major findings.

10.1.1 Theoretical/Conceptual Contributions

The following main theoretical contributions and conclusions can be drawn from this research.

Adapted EM algorithm for inertial sensor error modeling. We described a modified
likeli-hood-based estimation technique based on the well known EM algorithm. The
modifications aimed at estimating error models traditionally used within the navigation
community for which conventional techniques such as the autocorrelation, the PSD or
also the Allan variance methods fail. In particular, the often encountered problem of
selecting the inverse correlation time and the variance of driving noise for a first-order
Gauss-Markov process employed with INS/GNSS integration has been treated. We
analysed the algorithm results with a critical and practical point of view on the basis of
simulations with typical error signals. These simulations showed that the EM algorithm
performs better than the Allan variance and offers the possibility to estimate first-order
Gauss-Markov processes mixed with other types of noises. An empirical scenario was
presented to support the former findings. There, the positive effect of using the more
sophisticated EM-based error modeling on a filtered trajectory was demonstrated. At
the same time, the conducted tests revealed limits of this approach that are related
to convergence and stability issues. Suggestions were given to circumvent or mitigate
these problems when the complexity of the error structure is “reasonable”. The work
also highlighted the fact that, similarly to the Allan variance, this approach may not be
able to estimate reasonably well the parameters of more complex composite stochastic
processes.
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A new estimation framework for composite stochastic processes. We developed a
new estimation method for the parameters of composite Gaussian processes, called
the generalized method of wavelet moments. In this thesis, we considered processes which
are mostly used in navigation. The proposed estimator results as the optimization of
a criterion based on standardized distance between the sample and the model-based
wavelet variances. Indeed, wavelet variances provide a decomposition of the process
variance through different scales and hence contain information about different features
of the stochastic model. We investigated the asymptotic properties of the estimator by
making adequate links to papers (written in the framework of this thesis) which are
dedicated to purely theoretical aspects. By means of simulation studies, we demonstrated
the capability of the GMWM approach to estimate parameters of very complex models
such as a sum of first-order Gauss-Markov processes for which other estimation methods
fail. This method opened the door to original investigations of more complex models that
capture the behavior of inertial sensor errors. The GMWM estimator was hence applied
on signals issued from low-cost MEMS-based inertial measurement units, using a sum
of Gauss-Markov processes as stochastic models. The benefits of using such models was
highlighted by analysing the quality of the free-inertial trajectory during the (artificial)
absence of GNSS data. During these epochs, the inertial navigation operated in coasting
mode while GNSS-supported trajectory acted as a reference. As the overall performance
of inertial navigation is strongly dependent on the errors corrupting its observations,
the benefits of using the more appropriate error models (with respect to simpler ones
obtained via classical Allan variance identification technique) were demonstrated by a
significant improvement in the trajectory accuracy.

A study of sensor error behavior in dynamical conditions. An experimental setup
was developed and implemented with the aim of constructing inertial sensor error
signals under dynamic conditions. We realized and implemented data acquisition with
a hardware-based real-time synchronization scheme capable to perform relative time
alignment between different operating IMUs and absolute timing with respect to GPS
time-frame. Moreover, algorithms for estimating the inter-IMU spatial alignment in
an EKF were proposed and validated through simulation. This enabled to construct
error signals of MEMS-based IMUs with respect to a navigation-grade system used as a
reference. This method allowed to empirically prove the dependency of the sensor noise
level on dynamics.

Inertial redundancy at observation level. The use of multiple inertial sensors operating
on the same platform provides a way of dynamically estimating the noise level, to
improve navigation accuracy and to detect defective sensors. In this work, we studied new
algorithms accounting for redundancy at observation level, the so-called synthetic IMU
computers. Three types of computers were analysed: the unweighted, ARMA-GARCH,
and MRS based computers. The first computes synthetic sensors by considering equal
weights for each individual device, while the two others account for varying noise levels
with respect to time and among individual sensors. Experiments with real data showed
that all three computers significantly reduced the level of sensor noise and improved
navigation accuracy with respect to single-IMU navigation filters ( 30% of improvement
in heading accuracy, 45% in velocity accuracy, 42% in position accuracy). However, the
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advantage of using ARMA-GARCH or MRS based computers was only marginal in the
experimental dataset at hand.

Inertial redundancy at state level. A geometrically-constrained EKF was developed with
the possibility to deal with unknown inter-IMU geometry (i.e. misalignment and lever-
arms), and its performance was investigated with respect to MEMS-based inertial sensors.
The filter runs in parallel several single-IMU based filters which are regularly updated
by geometrical constraints. We developed and implemented the related algorithms for
this purpose. The performance of this filter was analysed in real-case experiments and
confronted to results obtained with other state-based redundancy schemes such as the
generalized EKF running the extended mechanization, as well as the developed synthetic
IMU computers. Compared to the latters, overall performance analyses revealed the
superior performance of methods accounting for redundancy at state level with accuracy
gains of 27% in attitude, 50% in velocity and 48% in position. Note that the results with
respect to the generalized EKF and the synthetic IMU method were comparable only in
a case in which both approaches could benefit from the known inter-IMU geometry (e.g.
previously estimated by the geometrically-constrained EKF).

10.1.2 Engineering Contributions

Several software modules were developed in the framework of this thesis. The most important
ones among them are described in the sequel.

Navigation data processing software. A loosely-coupled extended Kalman filter/s-
moother was developed and integrated with a redundant INS computer. The filter
accommodates different observations as absolute position and velocity measurements,
zero-velocity measurements, as well as magnetic observations, non-holonomic constraints
or odometer speed measurements. A completely automated processing scheme was
designed in which static periods are accurately detected and processing strategies set to
define the filter behavior such as filter reset (static initialization) or in-motion coarse
and fine alignment (de)activation. Moreover, a prediction-correction based inertial
integrator was implemented that enables proper handling of data streams which are
not aligned in time (which is the case in integrated navigation) as well as processing of
irregularly sampled inertial data. Finally, the filter supports large uncertainty in the
knowledge of initial platform tilt and heading by relying on INS error models accounting
for such conditions. The switching between the large-tilt/large-heading error model,
the small-tilt/large-heading error model, and the fine alignment model is completely
automated.

Inertial sensor calibration software. A C++ based software implementing the newly pro-
posed GMWM estimation framework was developed. The software accepts several in-
dustrial input formats (e.g. Applanix, XSens, ASCII ) and enables fast and interactive
building of composite stochastic models. The most popular error models like Gaussian
white noise, quantization noise, first-order Gauss-Markov processes, random walk, ran-
dom rate ramp, and more generally AR(1) processes are available. The algorithms were
implemented in an efficient way such that long signals are supported.
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Distributed IMU datalogger. A real-time C++ based DIMU datalogger based on XSens
MTi-G and MTx units has been developed. The software enables accurate absolute
and relative time synchronization by means of hardware-based synchronization of all
IMUs with GPS time. The software module was made available to international research
partners who adapted its functionality for DIMU acquisition on a UAV-helicopter.

10.2 Recommendations

During the development of this work, new research challenges have emerged that would make
further investigations worthwile.

Investigations on composite stochastic processes for inertial sensors. The GMWM
estimator developed in the framework of this research opens the door to the estimation
of complex error models which are impossible to treat with the conventional methods.
Although more complex error models can be explored for modeling stochastic errors in
gyroscopes or accelerometers, this approach is general and has wide applications within
or outside the navigation community (e.g. oscillators, atomic clocks, etc.).

Rigorous inertial sensor error model selection. Judging wether a stochastic error model
is more accurate than another one is a nontrivial task when performed at the level of a
navigation filter. Most of the time, the quality of a sensor error model, i.e. the augmented
states in the EKF, is evaluated in inertial coasting mode. However, the error bounding
during GNSS-free periods depends on the past information acquired by the filter. This is
committed to the history of the encountered dynamics, the quality of the observations,
as well as to the particular realization of stochastic processes. Overall, this makes the
decision process tricky when claiming that a filter design is in general better than another
design. In this respect, rigorous approaches for model selection/evaluation need to be
developed.

Combining redundancy at observation and state level. In this thesis, the algorithmic
approaches for inertial redundancy were clearly discriminated between observation levels
and state levels. New algorithms combining inertial redundancy at observation and
at state levels might bring even more substantial improvement to integrated inertial
navigation with redundant systems.
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