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VORWORT 
 
Die geodätischen Wissenschaften haben in der letzten Dekade zunehmende Bedeutung im Kontext 
der Atmosphärenforschung erlangt. Die Installation von kontinuierlich arbeitenden und dicht 
verteilten GNSS-Stationsnetzen ermöglicht die Anwendung tomographischer Lösungsansätze zur 
Bestimmung der Wasserdampfverteilung in der Atmosphäre an Hand von GNSS Messungen. 
Allerdings sind für den Praxis nahen Einsatz der GNSS-Tomographie neben theoretischen auch 
methodische Entwicklungen nötig. Es ist wichtig, dass sowohl meteorologische Kenntnisse als auch 
mathematisches und computertechnisches Wissen zusammengeführt werden, um ein greifbares 
Resultat erreichen zu können.  
 
Die tomographische Methode wurde weiter verbessert: Zum Einen durch die räumlich variable 
Modellierung der Refraktion innerhalb einer Digitalisationszelle, zum Anderen durch die 
Berücksichtigung der zeitlichen Variation des Wasserdampfgehaltes mittels Filteransätzen 
(Kalman-Filter). Dies wird real-time Berechnungen und deren Einbindung in die neueste 
Generation der in Entwicklung begriffenen Assimilationsverfahren ermöglichen. Die Validierung 
der neuen Algorithmen und Verfahren erfolgte anhand von Simulationen und von realen Daten.  
 
Eine grosse Stärke der neu entwickelten Software liegt in der Möglichkeit der kompletten 
Simulation von Messdaten und Resultaten. Damit können Methodentests aber auch a priori 
Untersuchungen zu verschiedenen Netzkonfigurationen und Satellitenkonstellationen durchgeführt 
werden. Die Untersuchungen haben gezeigt, dass alleine durch den Einsatz eines weiteren 
Satellitensystems (Galileo) die Genauigkeit um etwa 10 Prozent verbessert wird. Ein dreimal 
dichteres Messnetz würde demgegenüber eine Verbesserung von zehn bis zwanzig Prozent bringen. 
 
Die Arbeiten reihen sich ein in die GNSS Meteorologie Aktivitäten des Institutes für Geodäsie und 
Photogrammmetrie der ETH Zürich und der Schweizerischen Geodätischen Kommission (SGK). 
Wir danken dem Verfasser, Herrn Dr. Perler, für den wertvollen Beitrag zur Geodäsie. Der 
MeteoSchweiz danken wir für die aktive Unterstützung, insbesondere wären derartige Studien nicht 
möglich ohne deren qualitativ hochwertigen meteorologischen Daten. Ebenso danken wir dem 
Bundesamt für Umwelt (BAFU, UTF 186.16.06, « GANUWE ») für die Projektfinanzierung. Der 
SCNAT danken wir für die Übernahme der Druckkosten.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Prof. Dr. M. Rothacher Prof. Dr. A. Geiger 
Institut für Geodäsie und Photogrammetrie ETH Zürich 
ETH Zürich Präsident der SGK 



PREFACE 
 
Durant cette dernière décennie, les sciences géodésiques n’ont cessé de gagner de l’importance dans 
la recherche sur l’atmosphère. L’installation dense de stations GNSS permanentes donne la 
possibilité d’envisager la détermination de la distribution spatio-temporelle de la vapeur d’eau dans 
l’atmosphère, par tomographie, grâce à l’observation des signaux GNSS. Cependant, la réalisation 
pratique d’un système de tomographie GNSS nécessite des développements tant théoriques que 
méthodologiques. Afin de pouvoir obtenir des résultats tangibles, il est indispensable de pouvoir 
marier de solides connaissances en météorologie avec des compétences en mathématiques et en 
informatique. 
 
La méthode de tomographie a été principalement améliorée grâce à, d’une part, la modélisation de 
la variabilité spatiale de la réfraction à l’intérieur d’une cellule de discrétisation, et d’autre part, 
grâce à la prise en compte de la variation temporelle de la vapeur d’eau, intégrée dans un filtre de 
Kalman. Ceci permet d’envisager des calculs en temps-réel ainsi qu’une intégration dans les 
nouvelles générations de processus d’assimilation. La validation des nouveaux algorithmes a été 
réalisée avec succès, à l’aide de données réelles et simulées. 
 
Un des atouts majeurs du nouveau logiciel est de pouvoir faire des simulations de tout le processus, 
depuis les mesures jusqu’aux résultats. Celles-ci permettent de tester différentes méthodes ainsi que 
de réaliser des analyses a priori de diverses configurations de réseaux dont les observations sont 
issues de constellations satellitaires multiples. Ces recherches ont pu démontrer que l’introduction 
du système de navigation Galileo va augmenter la précision du système d’environ dix pour cent. De 
plus, un réseau de récepteurs trois fois plus dense pourrait améliorer la précision de dix à vingt pour 
cent. 
 
Ces travaux s’inscrivent dans le cadre des activités de météorologie GNSS de l’institut de Géodésie 
et Photogrammétrie de l’ETH Zürich et de la Commission Géodésique Suisse (CGS). Nous 
remercions son auteur, Monsieur Dr. Perler , pour sa contribution de très haute qualité à la géodésie. 
Nous remercions également MétéoSuisse pour son soutien actif, et la mise à disposition de leurs 
données météorologiques de très hautes qualités sans lesquelles de telles études ne seraient pas 
envisageables. Au même titre, nous remercions l’office fédéral de l’environnement (OFEV, UTF 
186.16.06, « GANUWE ») pour le financement de ce projet. 
 
La Commission Géodésique Suisse (CGS) est reconnaissante envers l’Académie Suisse des 
Sciences Naturelles (SCNAT) pour avoir pris à sa charge les coûts d’impression du présent 
manuscrit. 
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Institut de Géodésie et Photogrammétrie ETH Zürich 
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FOREWORD 
 
During the last decade, the importance of geodetic sciences in atmospheric research has 
significantly increased. Newly installed, continuously running, and densely distributed GNSS 
receivers provide observations that enable the application of tomographic approaches for the 
determination of water vapour concentration in the atmosphere. However, for the practical 
application of GNSS tomography, theoretical as well as methodological developments are 
necessary. In order to get a concrete result, it is important that both meteorological knowledge and 
computational expertise are combined.  
 
The tomographic methodology has been further improved, on the one hand by modelling the 
spatially varying refraction inside each digitalisation cell, on the other hand by considering the 
temporal variation of water vapour concentration using Kálmán filters. This allows real-time 
calculations that can be integrated in the latest assimilation processes. The new algorithms have 
been validated with simulations made on the basis of real data.  
 
Its option to entirely simulate observations and results is a major strength of the newly developed 
software. With this, methods can easily be tested, and a-priori studies for different network 
configurations and satellite constellations can be carried out. Such studies have shown that an 
additional satellite system, Galileo, can improve the accuracy by ten percent. A densification of the 
observation network by a factor of three would improve the tomography up to twenty percent.  
 
The presented work is part of a series of activities in GNSS meteorology at the Institute of Geodesy 
and Photogrammetry at ETH Zürich and by the Swiss Geodetic Commission. Thanks go to the 
author, Dr Donat Perler, for his valuable contribution to geodesy and meteorology, to Meteo Swiss 
for their active support, particularly for their high-quality meteorological data, to the Federal Office 
for the Environment (FOEN, UTF 186.16.06, « GANUWE ») for funding the project, and the Swiss 
Academy of Sciences for covering the printing costs of this volume. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prof. Dr. M. Rothacher Prof. Dr. A. Geiger 
Institute of Geodesy and Photogrammetry ETH Zurich 
ETH Zurich President of SGC 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract

Water vapor plays an important role in the atmosphere. It is involved in many atmospheric
processes and is a major contributor to the atmospheric energy budget and as such is a key quantity
in numerical weather prediction (NWP) models. In recent years, NWP models gain in importance
in hazard mitigation. But to provide precise quantitative forecasts, especially with respect to
precipitation, we need accurate knowledge of the water vapor distribution in the atmosphere.
Ground-based Global Navigation Satellite System (GNSS) tomography is a technique which can
provide highly resolved and accurate water vapor profiles in space and time.

The main objective of this thesis is to develop new tomographic algorithms which fulfill the
requirements to assimilate refractivity measurements derived from GNSS into NWP models. A
new tomography software called AWATOS 2 has been implemented. It is an assimilation system
for point and integrated refractivity measurements. The tomographic model in AWATOS 2 is for-
mulated as a Kalman filter and different voxel parameterizations are provided. The new trilinear
and spline-based parameterizations allow a more accurate representation of the refractivity field
without considerably increasing the number of unknowns. Advantages of these new parameter-
izations are a) more accurate results, b) point observations need not to be interpolated to the
voxel centers and c) the tomographic solutions are at least C0-continuous in space. The stochas-
tic prediction model implemented in AWATOS 2 relies on in-situ measurements and NWP model
data. The prediction model is evaluated and adjusted with respect to data from the high-resolution
NWP model COSMO-2 and from balloon soundings in Europe. In addition, AWATOS 2 provides
a sophisticated simulation framework to carry out synthetic tests based on simple refractivity fields
and on NWP model data.

The algorithms of AWATOS 2 are assessed with synthetic tests and with real data in a long-
term study using one year of data. The synthetic tests have confirmed the theoretical properties
of the model such as a bias-free solution in case of bias-free input data, fast convergence rates, and
the capability to resolve vertical structures in the wet refractivity field. In the long-term study, a
root-mean-square (RMS) error of 3.0 ppm (0.4 g m−3 absolute humidity) is achieved with respect
to the NWP model COSMO-7. The investigations have shown that the newly introduced voxel
parameterizations lead to significantly more accurate results than the classical constant parameter-
ization. The improvements are about 15% with respect to balloon soundings and 5% with respect
to NWP analysis data. The performance of the trilinear and spline-based parameterizations are
similar.

Further investigations have revealed the importance of a bias correction model. A newly devel-
oped bias correction model has decreased the RMS error with respect to the NWP model analysis
from 4.9 ppm (0.7 g m−3) to 3.0 ppm (0.4 g m−3) using the spline parameterization. For the other
parameterizations, the improvements are significantly smaller. The systematic differences corrected
here are mainly caused by a) systematic differences between GPS tropospheric path delays and the
NWP model data and b) by discretization errors. Another error source is related to the departure
of the NWP model’s topography from the true one which can amount to several hundred meters
in alpine areas. Investigations have shown that processes near the Earth’s surface have a strong
impact on the wet refractivity. Therefore, differences between the true topography and that of the
NWP model can cause substantial errors. This topic has to be addressed if GNSS observations are
assimilated into NWP models in complex terrain.

Considerable progress has been made in the field of low-cost GNSS receivers in recent years
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allowing to build dense networks at low costs. Furthermore, the existing GNSSs are improved and
new ones are being launched. These developments offer new possibilities in GNSS tomography.
With error analyses, the potential of such improvements for GNSS tomography have been inves-
tigated. The use of GPS together with Galileo has the potential to improve the formal accuracy
of the GNSS tomography by 10-15% compared to a GPS-only solution. In Switzerland, equipping
the SwissMetNet with GNSS receivers would increase the number of GNSS stations from 31 to
91. This would improve the formal accuracy of the tomographic solution by about 20-25%. The
investigations have shown that the improvements obtained by a more dense network and additional
GNSSs are cumulative. Placing the stations on different altitudes and choosing locations with good
satellite visibility are important to achieve accurate results and should be considered in the design
of GNSS networks.

All investigations have demonstrated that accurate 4D distributions of the wet refractivity in the
troposphere can be estimated with GNSS tomography. The work has also revealed the possibilities
and limitations of GNSS tomography in view of the assimilation into NWP models and proposes
solution strategies to overcome the limitations.
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Zusammenfassung

Wasserdampf spielt eine wichtige Rolle in der Atmosphäre. Er ist in vielen atmosphärischen Pro-
zessen involviert und beeinflusst stark den Energiehaushalt der Atmosphäre. Als solcher ist er
eine der wichtigsten meteorologischen Grössen in den numerischen Wettervorhersagemodellen. In
den letzten Jahren wurden Wettermodelle zu einem wichtigen Bestandteil in der Vorhersage und
Beurteilung von Unwetter. Um jedoch präzise Vorhersagen über beispielsweise die Niederschlags-
menge machen zu können, bedarf es genauer Kenntnisse über die Verteilung des Wasserdampfes
in der Atmosphäre. Wasserdampf-Tomografie mittels globaler Positionierungssysteme (GNSS) ist
eine Methode, die zeitlich und räumlich hoch aufgelöste Wasserdampffelder mit hoher Genauigkeit
zur Verfügung stellen kann.

Das Hauptziel dieser Arbeit ist die Entwicklung neuer Tomografie-Algorithmen, welche die An-
forderungen zur Assimilation von Feuchtrefraktivitäten in numerische Wettermodelle erfüllen. Zu
diesem Zweck ist eine neue Tomografie-Software namens AWATOS 2 entwickelt worden. Die Soft-
ware ist ein System zum Assimilieren von beliebigen Punkt- und Integralmessungen, die auf der
Refraktivität basieren. AWATOS 2 basiert auf einem Kalman-Filter und bietet verschiedene Para-
meterisierungen des Wasserdampffeldes an. Die Parameterisierung mittels trilinearen Funktionen
und kubischen Spline Funktionen erlauben eine genauere Wiedergabe des Wasserdampffeldes, ohne
die Anzahl der zu schätzenden Parameter wesentlich zu erhöhen. Die Vorteile dieser neuen Para-
meterisierungen sind a) genauere Resultate, b) Punktmessungen müssen nicht mehr auf das Voxel-
zentrum interpoliert werden und c) die tomografische Lösung ist in jedem Fall C0-kontinuierlich im
Raum. Das in AWATOS 2 implementierte stochastische Vorhersagemodell basiert auf Erkenntnis-
sen aus in-situ Beobachtungen (Bodenstationen und Ballonsondierungen) undWettermodell-Daten.
AWATOS 2 bietet ausserdem viele Simulationsmöglichkeiten an, um synthetische Tests basierend
auf generischen Wasserdampffeldern und Wettermodell-Daten durchzuführen.

Die in AWATOS 2 verwendeten Modelle wurden in synthetischen Tests und in einer Lang-
zeitstudie von einem Jahr Dauer mit realen Daten getestet. Die synthetischen Tests haben die
theoretischen Eigenschaften der Modelle bestätigt. Insbesondere wurden die Eigenschaften, dass
die Tomografie-Lösung keine systematischen Fehler aufweist, insofern auch die Messungen keine
aufweisen, bestätigt, wie auch die schnelle Konvergenzrate und das Auflösungsvermögen von ver-
tikalen Strukturen im Refraktivitätsfeld. In der Langzeitstudie wurde eine Genauigkeit (mittlere
quadratische Abweichung) von 3.0 ppm (0.4 g m−3 absolute Feuchte) bezüglich des Wettermo-
dells COSMO-7 erreicht. Die Untersuchungen haben gezeigt, dass die neuen Parameterisierungen
im Vergleich zur Parameterisierung mit konstanten Voxelrefraktivitäten zu signifikant genaueren
Resultaten führen. Die Verbesserungen betragen 15% im Vergleich mit Ballonsondierungen und
5% im Vergleich mit Wettermodelldaten. Zwischen den Genauigkeiten, die mit den beiden neuen
Parameterisierungen erreicht werden, gibt es kaum Unterschiede.

Weitergehende Untersuchen haben die Bedeutung eines Modells für die Korrektur von syste-
matischen Fehler deutlich gemacht. Ein in dieser Arbeit entwickeltes Modell verkleinert den Fehler
(mittlere quadratische Abweichung) der Tomografie gegenüber dem Wettermodell von 4.9 ppm
(0.7 g m−3) auf 3.0 ppm (0.4 g m−3) bei Verwendung von der auf kubischen Spline basierenden
Parameterisierung. Die Verbesserungen bei den anderen Parameterisierungen sind signifikant klei-
ner. Die systematischen Differenzen beruhen vorwiegend a) auf systematischen Differenzen zwi-
schen dem numerischen Wettermodell und den troposphärischen Weglängenverzögerungen aus GPS
Messungen und b) auf Diskretisierungsfehler. Eine andere Fehlerquelle ist die Abweichung der Mo-
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dellorographie des Wettermodells von der realen Topographie. Diese Abweichung kann in alpinen
Regionen bis zu mehreren hundert Meter betragen. Untersuchungen haben gezeigt, dass Prozesse
in der Nähe der Erdoberfläche grossen Einfluss auf die Feuchtrefraktivität haben. Dadurch können
sich grosse Unterschiede zwischen Wettermodell und Tomographielösung an Stellen im Feucht-
refraktivitätsfeld ergeben, wo sich die Topografie des Wettermodells stark von der Wirklichkeit
unterscheidet. Diese Erkenntnis sollte bei der Assimilation von GNSS Daten in numerische Wet-
termodelle in Gebieten mit komplexer Topografie beachtet werden.

Beachtenswerte Fortschritte wurden im Bereich von günstigen GNSS-Empfängern in den letzten
Jahren gemacht. Diese erlauben mit geringen Kosten dichte Empfängernetze aufzubauen. Ande-
rerseits wurden existierende globale Positionierungssysteme technisch verbessert und neue sind
im Aufbau. Diese Entwicklungen eröffnen neue Möglichkeiten für die Wasserdampf-Tomografie.
Mittels Fehleranalysen wurde das Potential dieser Entwicklungen für die Wasserdampf-Tomografie
abgeschätzt. Die formale Genauigkeit der Tomografie kann durch die Verwendung von Galileo als
zusätzliches Satellitensystem zu GPS um 10-15% verbessert werden. Würde man das SwissMetNet
mit GNSS-Empfänger ausrüsten, würde dies die Anzahl der Stationen in der Schweiz von 31 auf 91
erhöhen und die formale Genauigkeit der Tomografie um 20-25% verbessern. Die Untersuchungen
haben auch gezeigt, dass die Genauigkeitsgewinne durch zusätzliche Satellitensysteme und dichtere
Netze kumulativ sind. Zudem hat sich gezeigt, dass die Platzierung der Empfänger an Orten, die
gut über die Höhe verteilt sind und die eine gute Sichtbarkeit der Satelliten aufweisen, wichtig
ist, um genaue Ergebnisse mit der Wasserdampf-Tomografie erzielen zu können. Dies sollte beim
Planen neuer Netze beachtet werden.

Alle Untersuchungen haben gezeigt, dass genaue vierdimensionale Verteilungen der Feucht-
refraktivität in der Troposphäre mittels Wasserdampf-Tomografie geschätzt werden können. Die
Arbeit hat auch die Möglichkeiten und Grenzen der Wasserdampf-Tomografie in Hinblick auf die
Assimilation der Feuchtrefraktivität in numerische Wettermodelle aufgezeigt. Zudem wurden Lö-
sungsstrategien vorgeschlagen, wie die Limitierungen überwunden werden können.
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Chapter 1

Introduction

1.1 Significance of tropospheric water vapor measurements

Water vapor is involved in many processes in the atmosphere. It is a potent greenhouse gas and
an important chemical reactant. In addition, water vapor is one of the most important terms in
the atmospheric energy budget as a considerable amount of latent heat is released and absorbed
during the condensation and evaporation processes. These make water vapor a key quantity in the
modeling of the atmosphere (Jacobson 2005). To validate and to initialize such models, appropriate
observations of water vapor in the atmosphere are needed (Jacob et al. 2007; Buzzi 2008; Clark
2009). Global Navigation Satellite System tomography is a promising technique to provide such
4D distributions of water vapor in the troposphere. Better Numerical Weather Prediction (NWP)
forecasts would also be of economic value and for hazard mitigation.

Several studies have been carried out to investigate the economical value of meteorological
services including NWP. They have revealed that a cost/benefit ratio of about 1:5 is achieved in
industrialized countries considering national meteorological services (Anaman et al. 1995; Lazo and
Chestnut 2002; Leiviäkangas et al. 2008). For instance, the costs for meteorological operations and
research in the U.S. in 2007 was about 5.1 billion U.S. dollars in total and the estimated economical
value 31.5 billion U.S. dollars (Lazo et al. 2009). The sectors of economy which benefit from these
services are mainly agriculture, construction, the energy sector, insurance, telecommunication,
transport, logistics and water availability (Frei 2010).

Urban growth and the advancing settlement of rural areas increase the vulnerability to natural
hazards (Clark 2002). It is therefore of utmost interest to better understand the impact of global
climate change on natural hazards and to improve hazard mitigation (Pilon 2005). Recent studies
have been carried out to investigate the extent and the occurrence of natural hazards such as
floods and landslides with highly resolved climate simulations (see for example Dankers et al.
2009). Rockel and Woth 2007 expect an increase of up to 20% in the frequency of extreme wind
events for the period 2071-2100 compared to 1961-1990. For Switzerland, a study carried out by
Ecoplan/Sigmaplan in 2007 revealed that the expected average economic damage due to climate
change will rise to 1 billion Swiss francs per year for the period 2005-2100. As a result of this, several
warning systems based on NWP models have been implemented for natural hazard mitigation in
recent years (e.g. Zappa et al. 2008 and Falconer et al. 2009). GNSS tomography can help to
improve the reliability of such warning systems by providing accurate information about the 4D
distribution of the water vapor in the troposphere.

1.2 A short review of the research in GNSS tomography

GNSS tomography is a technique providing water vapor content with high spatial and temporal
resolution. Most tomography software packages operate on the basis of slant path delays. These
delays are usually estimated with Precise Point Positioning (PPP) (Flores et al. 2000; Hirahara
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2000). The wet refractivity field is then computed using a Kalman filter. LSQ estimation was
used by Champollion et al. 2005. Instead of PPP, they process the raw GPS data in double
difference mode and reconstruct the slant path delays by mapping the zenith path delays. Nilsson
and Gradinarsky 2005 estimate the wet refractivity field directly from GPS data. They also use the
Kalman filter approach. Another algorithm to reconstruct the wet refractivity field is the Algebraic
Reconstruction Technique (ART), which is successfully applied by Bender et al. 2011. A more
complete review of the research in the field of water vapor tomography can be found in Lutz 2009
and Perler et al. 2010.

The Least Squares (LSQ) approach to estimate the 3D wet refractivity field based on tropo-
spheric double difference delays is used in the tomography software AWATOS. The software has
been successfully applied to several campaigns (Kruse 2001; Troller et al. 2002; Troller 2004; Troller
et al. 2005; Troller et al. 2006). In the scope of this thesis, AWATOS was rewritten and extended.
The increased performance allowed the error analyses presented in Chapter 7. The new version of
AWATOS supports tropospheric gradients and enhanced statistical models (see Section 3). The
software was used in the investigations presented in Lutz 2009 and Lutz et al. 2010. In the follow-
ing, the main results of the campaigns carried out with AWATOS are summarized (Perler et al.
2010):

• Troller 2004 and Troller et al. 2006 conclude that additional observations and appropriate
constraints are necessary to strengthen the tomographic equation system. As additional
observations, they introduce a priori information derived from several sources such as ground-
based meteorological sensors, balloon soundings and NWP models. In their papers, they also
investigate the use of intervoxel constraints and state that the constraints can be problematic
in cases where they smooth out rapid refractivity changes and inversions.

• The campaign described in Lutz 2009 was used to investigate questions concerning high-
resolution tomography in the context of hazard mitigation. The campaign took place in
the Swiss Alps and included 30 GPS receivers covering an area of 50 km by 50 km. The
campaign comprised two parts (July 2005 and October 2005). Each part had a duration of
2 weeks. The investigations revealed that better results are obtainted with highly resolved
grids. He proposed a horizontal resolution similar to the mean inter-station distance (3 km)
and 43 layers. Comparisons with balloon soundings showed a good agreement of 7.1 ppm
RMS in July and 3.0 ppm RMS in October.

• Near real-time processing is considered in the work published in Lutz 2009. To process Global
Navigation Satellite System (GNSS) phase observations, highly accurate satellite orbits are
needed. Such orbit data are provided by the International GNSS Service (IGS) (Dow et al.
2009). Several data products with different accuracies and latencies are offered. Lutz 2009
has investigated these products in view of their usability for near real-time tomography. He
showed that ultra-rapid orbits fulfill the trade off between accuracy and availability best.

• Investigations of high-resolution tomography in mountainous regions have shown that better
results can be achieved by refining the vertical discretization (Lutz 2009). However, higher
resolution increases the computational costs and the influence of intervoxel constraints on
the results. The latter may introduce unintentional artifacts.

Based on these results, the tomography software AWATOS 2 has been developed within this
thesis. AWATOS 2 is a completely new software and has the ability to assimilate any kind of
refractivity measurement formulated as point or integral observation. It introduces two new voxel
parameterizations and uses the Kalman filter approach. The parameterization of voxels is a tech-
nique that reduces the effects of discretization and negligibly increases the computational costs.
Moreover, the interpolation of in-situ measurements to voxel central points becomes obsolete with
parameterization (Perler et al. 2011). AWATOS 2 provides, in addition, sophisticated simulation
capabilities of point and integral observations. All the investigations presented in Chapters 8 and 9
are based on AWATOS 2.
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1.3 Objectives and structure of the thesis
This thesis investigates ground-based GNSS tomography and its results in view of the assimilation
into NWP models. The investigations focus on the determination and the modeling of the 4D
distribution of wet refractivity in the troposphere. The main objectives are

• to develop an assimilation system for refractivity observations. Integral and point measure-
ments have to be supported. In particular, the system should incorporate different observa-
tions from GNSSs such as double difference delays and zenith path delays.

• to implement a simulation toolbox for investigating properties of the models implemented
in the tomography software. This toolbox should help answering questions about the tomo-
graphic capability to resolve vertical structures in the troposphere. In addition, the impact
of technical improvements such as a denser receiver network and new GNSSs on the accuracy
of the tomographic solution shall be investigated.

• to determine the statistical properties of the wet refractivity field. Based on these investiga-
tions, a prediction model for a tomographic assimilation software shall be developed and its
parameter settings specified.

• to evaluate the assimilation software within a long-term study using real data. The tomo-
graphic solutions shall be validated with independent observations such as balloon soundings
and a NWP model.

In Chapter 2, the governing equations and models for GNSS processing are described and the
relationship between path delay, refractivity and meteorological quantities are explained. They
show how GNSS raw observations are related to the water vapor content in the atmosphere. Chap-
ter 3 introduces the GNSS tomography and describes the algorithms and models implemented
in AWATOS 2. The simulation capabilities of AWATOS 2 are also specified in this chapter. In
addition, software packages used for preprocessing GNSS and meteorological data are shortly in-
troduced.

Chapter 4 describes data sets and their availability. Based on these data sets, statistical inves-
tigations of the wet refractivity distribution in the troposphere are performed in Chapter 5. The
results of these investigations are used to develop appropriate tomographic models and to specify
the model parameters. Moreover, the discretization error is quantified for the grid resolution used
in the tomographic reconstruction. This shows the accuracy which can theoretically be achieved
with the given grid resolution and voxel parameterization.

In Chapter 6, balloon sounding data used for evaluating the tomographic solutions are compared
to GNSS-based tropospheric delays which serve as input data into the tomographic processing. The
findings of this chapter will help to interpret the results obtained by GNSS tomography.

In Chapter 7, the impact of technical improvements, such as additional GNSSs and denser
receiver networks, on the accuracy of the tomographic solution is investigated. Furthermore, the
problem of network design is discussed, in particular the essential properties for the selection of
the receiver locations.

The results of synthetic tests investigating the resolvability and convergence properties of
AWATOS 2 are presented in Chapter 8. The investigations allow to specify how and how quickly
the tomographic algorithms react to changes of the wet refractivity distribution in the troposphere.
These results will have an impact on how the tomographic results could be assimilated in NWP
models. Furthermore, the investigations of the resolvability will illustrate how accurate the to-
mographic algorithms can reconstruct spatial perturbations in the wet refractivity field and which
kind of measurements complements ground-based GNSS observations best.

In Chapter 9, the evaluation of a long-term study using GPS double difference data of more than
one year is described and discussed. The accuracy of the different voxel parameterizations with
respect to balloon soundings and NWP analyses is quantified. Regional and seasonal differences
are investigated as well as the accuracy at different height levels. The impact of the topography,
artifacts of the NWP model and measurement issues of balloon soundings on the accuracy is
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discussed and, the implication of that, the need for a bias correction model. Such a model is
introduced and validated in this chapter.

Concluding remarks and an outlook for further research are given in Chapters 10 and 11.
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Chapter 2

Introduction to the propagation of
radio waves in the atmosphere

GNSS observations are influenced by the composition and the physical conditions of the atmo-
sphere. This relationship enables to extract information on meteorological quantities from GNSS
observations. In this chapter, this relationship is explained. The governing equations and tropo-
spheric models used in GNSS processing are given. This chapter provides the theoretical basis for
algorithms used in GNSS tomography.

2.1 Propagation of radio waves in the atmosphere
GNSS satellites transmit signals on carrier frequencies in the L band (1-2 GHz). The atmosphere
considerably influences propagation of radio waves within this frequency range on the way from
the emitting satellite to the receiver located on the Earth’s surface. The propagation velocity of
the waves is, thereby, affected by the propagation medium (Leick 1989). In vacuum, the speed is
equal to the speed of light c (Melbourne et al. 1983)

c = 2.99792458 · 108ms−1 (2.1)

The propagation velocity in other media may be different and can be characterized by the
refractive index

n =
c

v
(2.2)

with the propagation velocity v within a certain material or medium.
Positioning with GNSS is based on light travel times. The light travel time ∆t is the time

differences between signal emission tr and reception tp. It is also related to the refractive index

∆t = tp − tr =
∫ tp

tr

dt =
∫
S

1
v(s)

ds =
1
c

∫
S

n(s) ds (2.3)

with the ray path S. In the processing of GNSS signals, these time differences are mapped to
Euclidean distances (geometrical path). The difference between the effective light travel time and
the light travel time without atmosphere is called path delay and is denoted by ∆%.

∆% =
∫
S

n(s) ds −
∫
S0

ds (2.4)

=
∫
S

(
n(s) − 1

)
ds +

∫
S

ds −
∫
S0

ds︸ ︷︷ ︸
refraction

(2.5)

with the geometric path S0.
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The path delay ∆% can be further split into a direct effect caused by the slower propagation
of the ray and geometric path elongation due to ray bending. In the troposphere, largest bending
effect are observed at low elevation angles. Bending effects are usually neglected for elevations
above 10◦ (Mendes 1999). Thus, Equation 2.5 can be simplified to

∆% =
∫
S

(
n(s) − 1

)
ds = 10−6

∫
S

N(s) ds (2.6)

where the refractivity N is defined as

N = 106 (n − 1). (2.7)

In the ionosphere, microwaves are dispersively propagated. Dispersion means that signals with
different frequencies are propagated at different velocities. This fact can be used to widely eliminate
the ionospheric effects by combining several frequencies. GNSS satellites, therefore, transmit on
two or more frequencies.

Contrary, the troposphere is non-dispersive for radio waves and the propagation velocity only
depends on the composition of the medium (Seeber 2003). Refractivity is determined by mete-
orological quantities. This relationship is described by an empirical formula developed by Essen
and Froome 1951. In the last decades, several authors improved the parameters of this formula
(Smith and Weintraub 1953; Tatarskii 1971; Thayer 1974; Hill et al. 1982; Hartmann and Leitinger
1984; Bevis et al. 1994; Rüeger 2002). In this thesis, the parameters of the best-average formula
proposed by Rüeger 2002 is used:

N = k1
Pdry

T︸ ︷︷ ︸
Ndry

+ k2
Pwet

T
+ k3

Pwet

T 2︸ ︷︷ ︸
Nwet

(2.8)

with

k1 = 77.6890 KhPa−1

k2 = 71.2952 KhPa−1

k3 = 375463 K2 hPa−1

where Pdry = (Ptot − Pwet) is the partial dry air pressure in [hPa], Pwet the partial water vapor
pressure in [hPa], and T the temperature in [K]. The single terms of Equation 2.8 reflect the
composition of the atmosphere. The first term is associated with dry air and the remaining two
with water vapor. This subdivision is made for the tropospheric path delay ∆%tot, too.

∆%tot = 10−6

∫
S

Ndry(s) ds︸ ︷︷ ︸
dry part

+ 10−6

∫
S

Nwet(s) ds︸ ︷︷ ︸
wet part

(2.9)

2.2 Modeling the path delay

2.2.1 Mapping functions
Path delays are often referred to as slant path delay (SPD). For comparing and modeling purposes,
slant path delays are mapped to the direction of the zenith (see Fig 2.1). Such a delay is called
zenith path delay (ZPD) ∆%tot,0.

∆%tot = m(ϑ) ∆%tot,0 (2.10)

where m(ϑ) is the mapping function depending on zenith angle ϑ. A simple mapping function is

m(ϑ) =
1

cos(ϑ)
(2.11)
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2.2 Modeling the path delay

ϑ

SPD
ZPD

Figure 2.1: Mapping of a slant path delay (SPD) onto the zenith. The resulting vector is called
zenith path delay (ZPD). The angle between the slant path vector and the zenith path vector is
denoted by the zenith angle ϑ.

More sophisticated mapping functions take the curvature of the Earth’s surface and atmo-
spheric layering into account. Due to the different vertical distribution of the components of the
atmosphere, separate functions for dry air and water vapor are introduced. In this thesis, Niell’s
mapping functions are used (Niell 1996). The mapping functions depend on the zenith angle ϑ,
latitude φ, height h of the site above sea level, and time t. The function is for both parts

m(ϑ, φ, h, t) =
1 + a

1+ b
1+c

cos(ϑ) + a
cos(ϑ)+ b

cos(ϑ)+c

+ h∆m(ϑ). (2.12)

However, they differ in the parameters a, b, c and ∆m(ϑ). For the hydrostatic mapping function,
the parameters a, b, and c are determined by the following formula, respectively.

a(φ, t) = aavg(φ) − aamp(φ) cos
(

2π
τ

(t − t0)
)

(2.13)

aavg(φ) : linearly interpolated from tabulated values
aamp(φ) : linearly interpolated from tabulated values

t0 : phase shift of 28 days
τ : period of 365.25 days

The height correction term for the hydrostatic mapping function is

∆m(ϑ) =
1

cos(ϑ)
−

1 + aht

1+
bht

1+cht

cos(ϑ) + a
cos(ϑ)+ b

cos(ϑ)+c

(2.14)

with tabulated values aht, bht, and cht. For the wet mapping function, the parameters a, b, and
c are constants and the height correction term ∆m(ϑ) is 0. A comparison with other mapping
functions can be found in Ifadis 2000.
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2.2.2 Saastamoinen’s formula
Often, no meteorological quantities required to compute the refractivity are available along the
whole ray path. Therefore, models are developed to estimated the path delay from meteorological
quantities on the ground. A widely used model is the one derived by Saastamoinen 1972; Saas-
tamoinen 1973a; Saastamoinen 1973c; Saastamoinen 1973b. The model depends on the pressure
P in [hPa], the temperature T in [K], and the partial water vapor pressure Pwet in [hPa]. Origi-
nally, Saastamoinen has used parameters published by Essen and Froome 1951. In this study, the
parameters presented in (Rüeger 2002) are applied to Saastamoinen’s formula. This leads to

∆%tot,Saas =
k1

cos(ϑ)

(
P +

(
k2

T
+ k3

)
Pwet − B tan2(ϑ)

)
+ δR. (2.15)

with

k1 = 0.002279mhPa−1

k2 = 1153K
k3 = 0.074

The term B tan2(ϑ) is a correction term modeling the effects of the curvature of the atmospheric
layers. The factor B depends on the station height. Values for different heights are tabulated in
Saastamoinen 1972. The term δR is a range correction. It depends on the zenith angle and the
station height. The values are listed in Hofmann-Wellenhof et al. 2001.

To compute the dry delay, the partial water vapor pressure Pwet is usually set to zero in
Equation 2.15. According to Troller 2004, this practice results only in partially accurate solutions.
He presented another partitioning between dry and wet path delay. In this work, Troller’s formula
is used but applying the parameters presented in Rüeger 2002.

∆%dry,Saas =
k1

cos(ϑ)

(
P − k′3 Pwet − B ,̧ tan2(ϑ)

)
+ δR (2.16)

∆%wet,Saas =
k1

cos(ϑ)

(
k2

T
+ k′′3

)
Pwet (2.17)

with

k1 = 0.002279 mhPa−1

k2 = 1153 K
k′3 = 0.155500
k′′3 = 0.229425
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Chapter 3

GNSS tomography with the software
package AWATOS 2

The 4D distribution of the wet refractivity in the troposphere can be estimated with the tomo-
graphic technique from GNSS observations. This chapter introduces the tomographic technique
and describes the models and algorithms implemented in AWATOS 2 (Atmospheric Water Vapor
Tomography Software). The chapter also includes a description of the simulation capabilities of
AWATOS 2. The tomography software AWATOS 2 uses tropospheric delays which are estimated
with the help of software packages not developed within this thesis. The models and functionality
of the software is summarized in a separate subsection about the preprocessing of the tropospheric
delays.

3.1 Overview of AWATOS 2

AWATOS 2 is a software to estimate the atmospheric refractivity field from different types of
measurements for assimilation into numerical weather prediction models. Integral measurements,
such as GNSS double difference delays and slant path delays, are supported as well as point
measurements. To reconstruct the field, an underdetermined inverse problem has to be solved.
The algorithms are optimized to solve such underdetermined problems by using regularization
techniques. AWATOS 2 also allows it to simulate integral and point observations from predefined
functions and from data fields provided by NWP models.

The software is based on the Kalman filter approach. This allows to compute the time-evolving
3D refractivity field and its covariances. The accuracies of the estimated refractivities can be
considered in the assimilation in numerical weather prediction models to control their impact on
prognostical variables. Another advantage of the Kalman filter approach is that measurements are
successively processed. There is no need to collected the observations and process them in e.g.
hourly batches. Thus, solutions considering the newest data are instantly available.

The 3D refractivity field is discretized into volumetric pixels called voxels. Due to this dis-
cretization, not all details of the refractivity field can be represented anymore. The results are so
called discretization errors. A possibility to reduce this error is to increase the resolution of the grid.
Refining the grid, however, increases the number of unknowns in the reconstruction of that field
and, hence, further increases the underdetermination of the inverse problem. In the tomographic
reconstruction, this increase in the number of unknowns might be problematic as the regularization
of the problem becomes more important and may then cause artificial effects in the reconstructed
field. Another way to reduce the discretization error is the use of sophisticated parameterization of
the voxels. An appropriate parameterization can reduce the discretization error without increas-
ing the number unknowns. The software provides 3 different voxel parameterizations. Besides
the classical parameterization of the voxels representing the refractivity as a constant within the
voxel, trilinear and an hybrid parameterization using cubic spline functions in combination with
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3 GNSS tomography with the software package AWATOS 2

bilinear parameterization have been implemented. These parameterizations will be explained in
more details in Section 3.3.

The software packages AWATOS 2 supports different kinds of measurements and observations.
They are grouped in a) integral measurements, b) point measurements, c) pseudo-observations.
Figure 3.1 gives an overview of supported observations and the groups, to which they are assigned.

Integral 
Measurements

Other Types of 
Observations

Point 
Measurements

GNSS DDD

GNSS ZPD

GNSS SPD

IVW from 
Solar Spectrometer

IVW from 
Radiometer

Ground based in-
situ Measurements

Profiles from
Radio Soundings

Profiles from LIDAR

Grid Observations

Intervoxel 
Constraints

Figure 3.1: Measurement types supported by AWATOS 2.

Integral measurements: The implementation of AWATOS 2 focuses on the support of GNSS tropo-
spheric delays. Zenith path delays (GNSS ZPD), GNSS slant path delays (GNSS SPD), and
GNSS double difference delays (GNSS DDD) are supported. Other integral measurements
can also be included as long as their path delays are related to the material properties in the
same way as the GNSS signals (see Section 2.1).

Point measurements: In-situ wet refractivity observations are usually computed from temperature
and from humidity measurements using Equation 2.8. Such observations are often carried
out at ground or by radio soundings. In the recent years, optical remote sensing techniques
have been developed providing temperature and humidity observations. Such systems are
called Light Detection and Ranging (LIDAR).

Pseudo-observations: In the tomographic reconstruction, additional observations are usually intro-
duced. Spatial smoothing pseudo-observation referred to as intervoxel constraints in litera-
ture, are used to stabilize the tomographic reconstruction. Besides these pseudo-observations,
boundary values and a priori values are set. The boundary values and the a priori values are
subsumed under the umbrella term grid observations.

3.2 Preprocessing of GNSS double difference delays
Computing a wet refractivity field from GNSS data is a procedure involving several steps. Figure 3.2
gives an overview of this process. In a first step, the tropospheric zenith path delays and station
coordinates are estimated with the GPS processing software Bernese 5.0 (Dach et al. 2007). These
two parameters in combination with residuals are used by the tomography software AWATOS 2.
If the humidity in the troposphere is of interest, the part of the delay related to dry air has to
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3.2 Preprocessing of GNSS double difference delays

be eliminated. The dry delay can accurately be estimated from the partial pressure of dry air at
the receiver station using Saastamoinen’s model (see Section 2.2.2). For stations, which are not
equipped with meteorological sensors providing these measurements, the quantities are interpolated
using the collocation software COMEDIE (Eckert et al. 1992a; Eckert et al. 1992b; Geiger and
Cocard 1992; Kruse 2001; Troller et al. 2002). Finally, the (wet) delays in combination with
the station coordinates, satellite orbits and residuals are used by AWATOS 2 to compute a time-
evolving 3D (wet) refractivity field. The details of the GPS raw data processing with Bernese 5.0,
the interpolation of the meteorological observations with COMEDIE, the elimination of the dry
part, and the construction of double difference delays are described in the subsequent subsections.

Figure 3.2: Overview of the processing of GNSS data.

3.2.1 GPS data processing with Bernese 5.0

The processing of GPS observations can be done in different ways. The choice of the processing
method, thereby, depends on the capabilities of the receivers and on the accuracy requirements.
One way is to process the codes modulated on the carrier (code pseudoranges). However, this is
a rather inaccurate technique. A more accurate way is to process the phase pseudoranges. The
phase pseudorange ψ is a phase measurement of the carrier in cycles.

GNSS satellites emit signals on two or more frequencies. For instance, current GPS satellites
send on the two frequencies listed in Table 3.1. The most recent GPS satellite generation provides
signals emitted on a third frequency (1176.45 MHz). With this extension, there are as many
frequency available on GPS as on Galileo.

Table 3.1: Carrier frequencies used by GPS satellites (Dach et al. 2007).
Frequency fi Wavelength λi

Carrier 1 1575.42 MHz 19.0 cm
Carrier 2 1227.60 MHz 24.4 cm
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A geodetic GPS receiver usually provides phase pseudoranges for both frequencies. The obser-
vation equation is as followed (Dach et al. 2007):

Lr1,p = λ1 ψ
r
1,p = %rp + c δp − c δr − Irp + ∆%rtot,p + λ1 n

r
1,p (3.1a)

Lr2,p = λ2 ψ
r
2,p = %rp + c δp − c δr − f2

1

f2
2

Irp + ∆%rtot,p + λ2 n
r
2,p (3.1b)

where

ψrF,p : Phase measurement in cycles of the signal emitted by

satellite r recorded from receiver p at frequency F
%rp : Geometrical distance between satellite r and receiver p

δr, δp : Clock error of satellite r and receiver p, respectively
Irp : Ionospheric refraction at frequency f1 between satellite r

and receiver p
∆%rtot,p : Tropospheric refraction between satellite r and receiver p

nrF,p : Initial phase ambiguity (nrF,p ∈ N)

fF : Frequency of carrier F
λF : Wavelength of carrier F
c : Speed of light in vacuum

In Equation 3.1, the frequency-dependent ionospheric effect is linearly approximated using the
property that the effect is roughly proportional to 1/f2. With the linear combination

L3 =
1

f2
1 − f2

2

(f2
1L1 − f2

2L2), (3.2)

the linear part of the ionospheric effect is eliminated. The satellite and receiver clock errors can
be mostly eliminated by building differences. The definition of a double difference is

Lr,sF,p,q =
(
LrF,p − LrF,q

)
−
(
LsF,p − LsF,q

)
(3.3)

with observations between satellites r and s and receivers p and q.
Combining Equations 3.1-3.2 leads to

L3,p,q = %r,sk,q + ∆%r,stot,k,q +
1

f2
1 − f2

2

(f2
1 λ1 n

r,s
1,p,q − f2

2 λ2 n
r,s
2,p,q) (3.4)

where the double difference notation from Equation 3.3 is used for the symbols %r,sk,q, ∆%r,sk,q, n
r,s
1,p,q,

and nr,s2,p,q.
As the tropospheric effect ∆%tot is of major interest in GNSS tomography, a closer look is taken

at this parameter. The Bernese GPS processing software offers several approaches to model the
tropospheric delay. All provided models split the delay in an a priori and in a correction part:

∆%rtot,p = ∆%rapr,p + ∆%rcor,p (3.5)

In this thesis, the dry part of the Saastamoinen model (see Section 2.2.2) is used as a priori model
for the zenith path delay. The values for the input parameters of the model are derived from a
standard atmosphere (ISO 2533:1975 1975). Contrary to the original mapping function used in the
model, Niell’s hydrostatic mapping function is applied (see Section 2.2.1).

The correction term in the tropospheric delay (Equation 3.5) is modeled by estimating the
tropospheric zenith path delay for each receiver.

∆%rp,cor = mwet(ϑrp) ∆%cor,0,p (3.6)
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3.2 Preprocessing of GNSS double difference delays

with mapping function mwet presented by Niell (see Section 2.2.1) for the wet path delays, zenith
angle ϑrp between receiver p and satellite r and tropospheric zenith path delay ∆%cor,0,p. The
Bernese software also provides estimations of tropospheric gradients. Lutz 2009 has shown that
gradient estimation has no significant influence on the accuracy of tomographic results. Therefore,
no gradients are estimated.

3.2.2 Interpolation of meteorological quantities with COMEDIE

Collocation technique

There are GNSS stations, which are not equipped with any meteorological sensor. For such stations,
the meteorological observations are interpolated from measurements in the neighborhood. Such an
interpolation technique is the collocation method (Moritz 1973).

The collocation method comprises a deterministic and a stochastic model and subdivides the
measurement into a) a deterministic part (f(◦)), b) a stochastic signal part s, and c) a noise part
(n).

b = f(x,y) + s + n (3.7)

The deterministic model is usually a function f(x,y) depending on the location x of the observation
b and on an internal parameter set y. The stochastic model takes the part of the measurement not
considered by the deterministic model into account and split it into the signal (colored noise) and
the (white) noise part.

The partitioning into signal and noise is done by splitting the covariance matrix of the obser-
vations into a correlated (signal) and in an uncorrelated part (white noise). The covariance matrix
for the signal part is denoted by Css and for the noise part by Cnn. The latter is usually a diagonal
matrix representing white noise.

The internal parameters y of the deterministic model are estimated by weighted LSQ from the
measurements b. The following expression is minimized:

min
y

(b − Ay)T (Css + Cnn)−1 (b − Ay) (3.8)

where A is the design matrix of the deterministic model depending on the positions of the mea-
surements. Thereby, the deterministic model is linearized in the input parameters The residual
vector r = b−Ay is then split into a signal s and a white noise n:

s = Css (Css + Cnn)−1 r (3.9a)

n = Cnn(Css + Cnn)−1 r (3.9b)

The estimated value b′ at some location x is composed of the contribution of the deterministic
part f(x, ŷ) and of the stochastic part s′ where ŷ denotes the previously estimated internal pa-
rameter set of the deterministic model. A covariance matrix Cs′s is used in the stochastic part.
The matrix describes the covariances between the signal at the interpolation locations and the
observations.

b′ = f(x, ŷ) + s′ (3.10a)

s′ = Cs′s(Css + Cnn)−1 r (3.10b)

COMEDIE

The software package COMEDIE (Collocation of Meteorological Data for Interpolation and Esti-
mation of Tropospheric Path Delays) was developed by Eckert et al. 1992a; Eckert et al. 1992b.
The deterministic models were improved by Hirter 1998; Troller 2004. A detailed description of
the software can be found in Troller et al. 2002. The software package provides methods for the
interpolation of pressure P , temperature T , and partial water vapor pressure Pwet in 4 dimensions.

13



3 GNSS tomography with the software package AWATOS 2

Deterministic models

The deterministic model for the pressure is

P(x, y, z, t) =
(
P0 + aP (x− x0) + bP (y − y0) + cP (t− t0)

)
exp

(
− z − z0

HP

)
(3.11)

P(x, y, z, t) : Pressure at location (x, y, z) at time t
x0, y0, z0, t0 : Reference coordinates and reference time

P0 : Pressure at the reference point (x0, y0, z0)
aP , bP , cP : Coefficients of the horizontal and temporal gradients

HP : Scale height

The reference horizontal coordinates x0 and y0 and the reference time t0 are the mean values of
all measurement locations and times. The vertical reference height is set to 0 m. The parameters
aP , bP , cP , P0, and HP are fitted.

There are two deterministic models for the temperature; one for the troposphere and one for
the lower stratosphere. The model for the troposphere assumes a linear change of the temperature
with height. Contrary, the model for the lower stratosphere assumes no change of the temperature
with height (see Figure 3.3).
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Figure 3.3: Deterministic models of the collocation for the troposphere and for the lower strato-
sphere. In the model for the troposphere, the temperature decreases linearly with the height.
On the other hand, the temperature stays constant with height in the model of the stratosphere.
(Source: Troller 2004)

If a sufficient number of measurements is available above the tropopause, the two deterministic
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3.2 Preprocessing of GNSS double difference delays

models are combined using a weighting function

S(z − zTropopause) =
1
π

(
arctan(z − zTropopause)

)
+ 0.5 (3.12)

with zTropopause = 11 km. The combined deterministic model for the temperature is

T(x, y, z, t) = aT (x− x0) + bT (y − y0) + cT (t− t0) + γ(z − z0)+

(T0 + γz)
(
1− S(z − zTropopause)

)
+ T1 S(z − zTropopause) (3.13)

T(x, y, z, t) : Temperature at location (x, y, z) at time t
x0, y0, z0, t0 : Reference coordinates and reference time

T0 : Temperature at the reference point (x0, y0, z0) at time t0
T1 : Temperature in the stratosphere along the vertical profile at (x0, y0)

aT , bT , cT : Coefficients of the horizontal and temporal gradients
γ : Temperature laps rate

If there are not enough measurements available in the stratosphere, only the model for the tropo-
sphere is fitted.

T(x, y, z, t) = T0 + aT (x− x0) + bT (y − y0) + cT (t− t0) + γ(z − z0) (3.14)

The reference coordinates and the reference time is determined in the same way as in the pressure
model. The parameters aT , bT , cT , T0, T1, and γ are estimated.

The model for estimating the partial water vapor pressure has the same characteristics as the
model for the pressure.

Pwet(x, y, z, t) =
(
Pwet,0 + awet(x− x0) + bwet(y − y0) + cwet(t− t0)

)
exp

(
− z − z0

Hwet

)
(3.15)

P(x, y, z, t) : Partial water vapor pressure at location (x, y, z) at time t
x0, y0, z0, t0 : Reference coordinates and reference time

Pwet,0 : Pressure at the reference point (x0, y0, z0) at time t0
awet, bwet, cwet : Coefficients of the horizontal and temporal gradients

Hwet : Scale height

Again, the reference coordinates and the reference time are the same as in the previous models.
The fitted parameters are awet, bwet, cwet, Pwet,0, and Hwet.

Stochastic model

The covariance matrices Css and Cs′s are determined by a covariance function depending on the
spatial and temporal distance between two locations. The covariance function Φi,j proposed by
Wehrli 1986 and extended by Troller 2004 with a height-dependent damping factor is used in the
COMEDIE software package for the three meteorological parameters.

Φi,j =
σ2

0

1 +
((

xi−xj
∆x0

)2

+
(
yi−yj
∆y0

)2

+
(
zi−zj
∆z0

)2

+
(
ti−tj
∆t0

)2
)

exp
(
− zi+zj

2zs

) (3.16)

σ2
0 : A priori variance of the signal
zs : Scaling height

xi, yi, zi, ti : Coordinates and time of the observation i
xj , yj , zj , tj : Coordinates and time of the observation j

∆x0,∆y0,∆z0,∆t0 : Correlation length of the individual components
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3 GNSS tomography with the software package AWATOS 2

The parameters for the stochastic model are different for the three meteorological quantities. They
are listed in Table 3.2.

The correlation matrix Cnn of the noise has non-zero elements only on the diagonal that is
uncorrelated noise. The noise of the pressure and partial water vapor pressure measurements is set
to 0.5 hPa. For the temperature measurements, a noise of 0.5 K is assumed.

Table 3.2: Parameters of the stochastic model of the collocation used for interpolating pressure,
temperature, and partial water vapor pressure.

σ0 ∆x0 ∆y0 ∆z0 ∆t0 zs noise
[hPa] or [◦K] [km] [km] [km] [h] [km] [hPa] or [K]

P 0.5 200 200 1 6 3 0.5
T 0.7 200 200 1 6 3 0.5
Pwet 0.6 50 50 0.2 2 4 0.5

3.2.3 Elimination of the dry part in GNSS double difference observa-
tions

We have seen how zenith path delays at the GNSS stations are estimated by the Bernese GPS
processing software and how the meteorological quantities are interpolated at the GNSS stations,
where no meteorological sensors are mounted. From these quantities, double difference delays are
computed by the following algorithm:

1. Compute the isotropic part of the total slant path delay ∆̃%
r

tot,p between satellite r and
station p:

∆̃%
r

tot,p = ∆̃%apr,0,p ·mapr(ϑrp) + ∆̃%cor,0,p ·mcor(ϑrp)

where the zenith path delays ∆̃%apr,0,p and ∆̃%cor,0,p at station p are estimated by the Bernese
GPS Software using mapping functions mapr(ϑrp) and mcor(ϑrp) with zenith angle ϑrp at station
p to satellite r. The tilde denotes the isotropic delays.

2. Eliminate the dry part of the slant path delay by applying a modified version of Saasta-
moinen’s formula ∆%dry,Saas(Pdry,p, ϑ

r
p, hp) (see Equation 2.16). For this step, partial pressure

of dry air Pdry,p at the receiver station p, and station altitude hp are needed. For GNSS sta-
tions which are not equipped with meteorological sensors, the missing data are interpolated
by the collocation approach (see Section 3.2.2). The isotropic part of the wet slant path delay
is computed by

∆̃%
r

wet,p = ∆̃%
r

tot,p − ∆%dry,Saas(Pdry,p, ϑ
r
p, hp).

3. Build the isotropic double differences of the wet path delays from the isotropic wet slant path
delays using Equation

∆̃%
rs

wet,pq =
(

∆̃%
r

wet,q − ∆̃%
r

wet,p

)
−
(

∆̃%
s

wet,q − ∆̃%
s

wet,p

)
(3.17)

4. Add the double difference residuals ∆%rsres,pq from the processing with Bernese GPS Software.
As in Flores et al. 2000; Gradinarsky and Jarlemark 2004; Troller et al. 2006, we assume
that the residuals are dominated by the effect of the non-isotropic distribution of the wet
refractivity.

∆%rswet,pq = ∆̃%
rs

wet,pq + ∆%rsres,pq (3.18)
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3.3 Discretization of the refractivity field and parameterization

3.3 Discretization of the refractivity field and parameteriza-
tion

The wet refractivity field is discretized with a rectilinear grid whose edges are parallel to the
axes longitude λ, latitude φ and height h with reference to the WGS84 ellipsoid. AWATOS 2
provides 3 different parameterizations of the grid cells. These are a) constant, b) trilinear, and
c) spline/bilinear parameterizations. In the follow subsections, their exact definitions will be given.

Constant parameterization

This parameterization is the simplest one and is widely used in GNSS tomography (e.g. Flores
et al. 2001; Troller et al. 2002; Champollion et al. 2005; Lutz 2009). The field is assumed
constant within a voxel and the refractivity in the voxel is modeled with a single parameter (see
Figure 3.4a)). Thus, the number of unknowns is the same as the number of voxels.

N
i, j, k

(a) Constant Parameterization

N
i + 1, j, k

N
i, j, k

N
i + 1, j + 1, k

N
i, j, k + 1 N

i, j + 1, k + 1

N
i, j + 1, k

N
i, j + 1, k + 1

N
i + 1, j + 1, k + 1

(b) Complex Parameterization

Figure 3.4: Parameterization of a voxel. a) The classical way to parameterize a voxel. The
refractivity within a voxel is assumed constant and is modeled by one parameter per voxel. b) In
the case of trilinear and spline/bilinear parameterization, the field is described by a weighted sum
of refractivities at the vertices of the grid.

Trilinear parameterization

In the trilinear parameterization, the refractivity at the point (λ, φ, h) is determined by a weighted
sum of the 8 refractivity values at the corners of the voxel in which the point is located (see
Figure 3.4b)). The refractivity within a voxel is defined by the following interpolation function:

N(λ, φ, h) = ωωωTNvoxel,i,j,k (3.19)

ωωω =


λi+1−λ
λi+1−λi

φj+1−φ
φj+1−φj

hk+1−h
hk+1−hk

λ−λi
λi+1−λi

φj+1−φ
φj+1−φj

hk+1−h
hk+1−hk

...
λ−λi

λi+1−λi
φ−φj

φj+1−φj
h−hk

hk+1−hk

 (3.20)

Nvoxel,i,j,k =


Ni,j,k
Ni+1,j,k

...
Ni+1,j+1,k+1

 (3.21)
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3 GNSS tomography with the software package AWATOS 2

In contrast to the constant parameterization, the estimated parameters represent the refractivity
at specified points. As a consequence of that, there are slightly more parameters to estimate:
(nλ + 1) (nφ + 1) (nh + 1) instead of nλ nφ nh where nλ is the number of voxels in longitudinal, nφ
in latitudinal, and nh in the vertical direction, respectively. In contrast to the constant parame-
terization, the trilinear parameterization is C0-continuous in space.

Spline/bilinear parameterization

This approach uses two different techniques of parameterization. In the horizontal directions, the
bilinear form is used and, in the vertical one, natural spline functions. This leads to a representation
which is C0-continuous in latitudinal and longitudinal directions and C1 along the vertical.

The bilinear interpolation works in the same way as the trilinear interpolation except that the
bilinear one acts only in two dimensions. The refractivity at any point inside the voxel can be
expressed by a weighted sum of the 4 refractivity values Ni,j , Ni,j+1, Ni+1,j and Ni+1,j+1 lying all
at the same height on the vertical edges of the voxel (see Figure 3.5).

N(λ, φ) = ΩΩΩTNplane,i,j (3.22)

with

ΩΩΩ =


λi+1−λ
λi+1−λi

φj+1−φ
φj+1−φj

λ−λi
λi+1−λi

φj+1−φ
φj+1−φj

λi+1−λ
λi+1−λi

φ−φj
φj+1−φj

λ−λi
λi+1−λi

φ−φj
φj+1−φj



Nplane,i,j =


Ni,j
Ni,j+1

Ni+1,j

Ni+1,j+1


The refractivity along a vertical profile is described by natural spline functions (Schwarz 1997).

These functions have the following properties:

• The function is based on k sampling points located at the grid vertices on the corresponding
vertical profile. For the profile i, j the height of the nodes are denoted by hi,j,1, hi,j,2, . . . , hi,j,nk .
As they are equal for different profiles, the indices i and j of the profiles are omitted.

• The refractivity between two nodes is determined by a cubical polynomial, which is denoted
by

Nk(h) = ak(h− hk)3 + bk(h− hk)2 + ck(h− hk) + dk (3.23)

with

ak =
1

6dhk
(N′′k+1 −N′′k) (3.24a)

bk =
1
2

N′′k (3.24b)

ck =
1
dhk

(Nk+1 −Nk)− dhk
6

(N′′k+1 + 2N′′k) (3.24c)

dk =Nk (3.24d)

where dhk = hk+1−hk is the thickness of the k-th layer. The Nk and N′′k are the refractivity
and its second derivative at the node located at height hk, respectively.

• The resulting spline function has the refractivity Nk at the node with height hk. Furthermore,
it is at least one time continuously differentiable at the inner nodes and 4 times between the
nodes.
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Figure 3.5: Bilinear/spline parameterization. Each point in the voxel can be described by the
refractivity and its second derivative at the 8 corners of the voxel. For instance, the refractivity
at the points Ni,j , Ni,j+1, Ni+1,j and Ni+1,j+1 lying all on the same height level as the point of
interest can be described by cubical spline functions along vertical profiles. Having the refractivity
at these points, the refractivity at the point of interest can be described in bilinear form from these
4 refractivities.

The Equations 3.23 and 3.24a-e can also be expressed as a weighted sum of refractivities and
its derivatives. The Equation 3.23 becomes for h ∈ [hk;hk+1]

N(h) = ωωωT


Nk

Nk+1

N′′k
N′′k+1

 (3.25)

with

ωωω =


1− h−hk

dhk
h−hk
dhk

(h−hk)2

2 − dhk(h−hk)
3 − (h−hk)3

6dhk
(h−hk)3

6dhk
− dhk(h−hk)

6

 .
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3 GNSS tomography with the software package AWATOS 2

In a next step, the second derivative will be expressed in terms of the refractivity at the nodes.
This can be done by solving the following system of equations where vectors N and N′′ contain the
refractivity and its second derivatives with respect to the parameter h at the nk nodes, respectively.

CN′′ = −DN (3.26)

with

C =



1 0 · · · · · · · · · · · · 0
dh1 c1 dh2 0 · · · · · · 0
0 dh2 c2 dh3 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 dhnk−3 cnk−3 dhnk−2 0
0 · · · · · · 0 dhnk−2 cnk−2 dhnk−1

0 · · · · · · · · · · · · 0 1



D =



0 · · · · · · · · · · · · · · · 0
6
dh1

d1
6
dh2

0 · · · · · · 0
0 6

dh2
d2

6
dh3

0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 6
dhnk−3

dnk−3
6

dhnk−2
0

0 · · · · · · 0 6
dhnk−2

dnk−2
6

dhnk−1

0 · · · · · · · · · · · · · · · 0


where ck = 2(dhk + dhk+1) and dk = − 6

dhk
− 6

dhk+1
. As natural splines are used, the second

derivatives N ′′1 and N ′′nk are set to zero. This is indicated by the first and last row in matrix D.
With the equation system 3.26, the second derivatives can be pre-eliminated and, thus, the field
of the second derivatives do not have to be stored. As the refractivities and its second derivatives
of all nodes on the vertical profile are involved in the pre-elimination step, the weight vector ωωω in
Equation. 3.25 has to be adapted. The adapted version is denoted by ω̃̃ω̃ω. This leads to the following
equation.

N(h) = ω̃̃ω̃ωT
[

I
−C−1D

]
N (3.27)

with

ω̃k =


ω1 if hk ≤ h < hk+1,

ω2 if hk−1 ≤ h < hk,

0 else.

ω̃nk+k =


ω3 if hk ≤ h < hk+1,

ω4 if hk−1 ≤ h < hk,

0 else.

for k = 1 . . . nk. Since C and D are the same for any (λi, φj) and the grid geometry does not
change over time, the matrix −C−1D has to be computed only ones.

Finally, the bilinear and the spline part have to be combined. A point at (λ, φ, h) can be
parameterized in two ways leading to the same result. In both cases, Equations 3.22 and 3.27 are
used.

• In a first step, all refractivities on the 4 adjoining profiles are bilinearly mapped onto the
vertical profile at (λ, φ). From these refractivities, the refractivity at the point (λ, φ, h) is
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then computed using the spline parameterization.

N(λ, φ, h) = ω̃̃ω̃ωT
[

I
−C−1D

]
ΩΩΩT 0 · · · 0

0 ΩΩΩT
. . .

...
...

. . . . . . 0
0 · · · 0 ΩΩΩT




Nplane,i,j,1
Nplane,i,j,2

. . .
Nplane,i,j,nk

 (3.28)

where Nplane,i,j,k is a vector containing the refractivities at the points (λi, φj , hk), (λi, φj+1, hk),
(λi+1, φj , hk), and (λi+1, φj+1, hk).

• Contrary to the previous approach (see Equation 3.28), the refractivity on the height h is
computed at first using the spline interpolation. This is done along the 4 vertical profiles
adjoining the coordinate (λ, φ). In a second step, the refractivity at the point (λ, φ, h) is
bilinearly interpolated from these 4 refractivities:

N(λ, φ, h) = ΩΩΩT


ω̃̃ω̃ωT 0 0 0
0 ω̃̃ω̃ωT 0 0
0 0 ω̃̃ω̃ωT 0
0 0 0 ω̃̃ω̃ωT

T


Ni,j

Ni,j+1

Ni+1,j

Ni+1,j+1

 (3.29)

with

T =



I 0 0 0
−C−1D 0 0 0

0 I 0 0
0 −C−1D 0 0
0 0 I 0
0 0 −C−1D 0
0 0 0 I
0 0 0 −C−1D


and Ni,j a vector containing the refractivities along the vertical profile located at (λi, φj).

3.4 Modeling the refractivity field with the Kalman filter ap-
proach

The refractivity field in the troposphere is a time-evolving field. Its behavior in space and time can
be modeled. However, such models can represent the field only to a certain extent. To take this
limitation into account, a model considering uncertainty is implemented in AWATOS 2. The wet
refractivity is modeled by a simple stochastic differential equation system. This allows to describe
the temporal behavior of the refractivity field and its probability density function.

Measurements, such as GNSS double difference delays and in-situ observations, represent the
state of the refractivity field over time. As they are available over a longer period, they can be seen
as time series. Due to measurement inaccuracies and modeling errors, such as the conversion from
meteorological quantities to refractivity, measured values differ from the true value. AWATOS 2
models this inaccuracy by describing each measurement as random variable with a certain proba-
bility distribution.

The time-evolving model of the refractivity field and the measurements are combined in AWA-
TOS 2 using the Kalman filter approach (Gelb 1974; Øksendal 2010). The model of the refractivity
field is called prediction model. As the measurements represent the refractivity at certain time
points, the discrete-time Kalman filter is used. The state of the refractivity field is predicted with
the prediction model to the time where the next measurements are available. In the update step,
the predicted state is combined with the measurements and the most probable state is estimated.
In the following, the notation of the Kalman filter is introduced.
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3 GNSS tomography with the software package AWATOS 2

3.4.1 Definition of the Kalman filter

The discrete-time Kalman filter with prediction step from time tm−1 to tm is defined by

x̂m|m−1 = Fm x̂m−1|m−1 (3.30)
Pm|m−1 = Fm Pm−1|m−1 FTm + Qm (3.31)

and the update step by

x̂m|m = x̂m|m−1 + Km

(
zm − Hm x̂m|m−1

)
(3.32)

Pm|m =
(
I − Km Hm

)
Pm|m−1 (3.33)

with the Kalman gain

Km = Pm|m−1HT
m(HmPm|m−1HT

m + Rm)−1 (3.34)

where x̂m−1|m−1 ∈ Rn represents the estimated refractivity field at time tm−1 described by n
parameters, and Pm−1|m−1 ∈ Rn×n its covariance matrix. The matrix Fm ∈ Rn×n propagates the
field one time step forward and Qm ∈ Rn×n reflects the uncertainty of the propagation. In the
update step, the predicted state x̂m|m−1 ∈ Rn is mapped by the observation matrix Hm ∈ Rk×n
into the k-dimensional space of the observations. The observation vector is denoted zm ∈ Rk and
its covariance matrix by Rm ∈ Rk×k.

3.4.2 Prediction model

The time-evolving refractivity field is modeled by a Gaussian random walk. The motivation to use
the random walk model is its simplicity and the high sample rate of the observations compared to
temporal scale on which synoptic processes evolve. The stochastic differential equation (SDE) of
the random walk model is

dXt = B dWt (3.35)

where X is the n-dimensional multivariate random variable describing the refractivity field with
respect to time t, B a n× n matrix and Wt a vector of uncorrelated standard Brownian motions.
The matrix B is defined by

B = GK
1
2 (3.36)

with

Gi,j =

s0 exp
(
− hi

2h0

)
if i = j,

0 if i 6= j
(3.37)

and

Ki,j = exp
(
−
√(hi − hj

dh0

)2

+
(disti,j

l0

)2
)

(3.38)

where hi is the height of the i-th voxel and disti,j the horizontal distance between the i-th and
j-th voxel. The symbols s0, h0, dh0, and l0 are model parameters. In Section 5.4, they are fitted to
refractivities computed from the analyses of a numerical weather prediction model. Note that K

1
2

can be computed by VΛΛΛ1/2 VT where V is the matrix of eigenvectors of K and ΛΛΛ1/2is a diagonal
matrix with the square roots of K’s eigenvalues.

The expected value x = E[Xt] and the second moment P = E[X2
t ] of the random walk (see

Equation 3.35) can be expressed by two ordinary differential equations (Øksendal 2010):

dx
dt

= 0 (3.39)

dP
dt

= B BT (3.40)
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3.4 Modeling the refractivity field with the Kalman filter approach

Integrating them from time tm−1 to tm leads to the Kalman filter formulation stated in Equa-
tions 3.30 and 3.31 with

Fm = I (3.41)

Qm = (tm − tm−1) B BT = (tm − tm−1) G K GT (3.42)

3.4.3 Observation model

The observation matrix Hm and the covariance matrix Rm of the observations are defined for
different measurement types in this section. They are used in the update step of the Kalman
filter (see Equations 3.32 and 3.33). For the observation types point measurements and integral
measurements, the observation equations are given in respect of the different parameterizations.
Further, several pseudo-observations are defined.

Integral observations

Integral measurements, such as GNSS slant delays and GNSS zenith path delays, are expressed as
line integrals (see Equation 2.9). The ray path is modeled by a straight line neglecting any bending
effects. The line integral is subdivided into sections where the section boundaries coincide with
the voxel boundaries (see Figure 3.6). The intersection points between the ray and the voxel faces
are determined by a ray-tracing algorithm (see Appendix A). Discretizing Equation 2.9 in this way
leads to

∆%wet = 10−6

∫
S

Nwet(s) ds = 10−6
ns∑
l=1

∫
Sl

Nwet(s) ds (3.43)

where ns is the number of sections and Sl the l-th section.
The observation equations of integral measurements for the constant, the trilinear, and the

spline/bilinear parameterizations are:

Constant parameterization: The integral along the section Sl in the voxel with index (i, j, k) can
be analytically solved because the refractivity is modeled constant within the voxel∫

Sl

Nwet(s) ds = Ni,j,k

∫
Sl

ds = Ni,j,k ∆sl (3.44)

where Ni,j,k is the refractivity in voxel (i, j, k) and ∆sl the geometric length of the l-th
section. Substituting Equation 3.44 in Equation. 3.43 leads to

∆%wet =
ns∑
l=1

∆slNπ(l) (3.45)

where π(l) maps the section index l to the corresponding voxel index (i, j, k).

Trilinear and spline/bilinear parameterization: Contrary to the constant parameterization, the in-
tegral along the section Sl cannot be expressed analytically in ellipsoidal coordinated with
trilinear or with spline/bilinear parameterization. The reason for this is that there exits no
closed form of the transformation from the geocentric Cartesian to the ellipsoidal coordinates.
Therefore, a numerical integration scheme is used. Boole’s rule is used for integration, which
belongs to the Newton-Cotes quadrature family (see Appendix B). Newton-Cotes quadrature
rules approximate an integral with a weighted sum with nm + 1 summands per section (nm
is the number of subsections). In our case, the summands are refractivity values at nodes,
which are located along the ray path. The refractivities at the nodes are determined by
Equation 3.19 for the trilinear parameterization and by Equation 3.29 for the spline/bilinear
parameterization. In this way, GNSS delays can be written as a weighted sum of refractiv-
ities at grid nodes. The weights are determined by the integral weights and by one of the
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3 GNSS tomography with the software package AWATOS 2

Δs
i

Figure 3.6: Principle of GNSS tomography. Satellites emit signals and devices at ground receive
these signals. The receivers are represented by black triangles and the signal by the solid/dashed
black lines. In GNSS tomography, the atmosphere is discretized, here indicated by the grid line
(gray lines). According to this discretization, the signal path is subdivided (indicated by ∆si).
This corresponds to the discretization of the integral in Equation 2.5. Combining many rays, the
refractivity in the grid boxes can be estimated from the slant path delays.

interpolation formulas. The observation equation for integral measurements is then defined
by

∆%wet =
ns∑
l=1

∫
Sl

Nwetds (3.46)

with ∫
Sl

Nwet(s)ds =
2 δs
45

(
7
(
N(sl,0) + N(sl,4nm)

)
+ 32

(
N(sl,1) + N(sl,3)

)
+

12N(sl,2) +
nm−1∑
m=1

(
14N(sl,4m) + 32

(
N(sl,4m+1)+

N(sl,4m+3)
)

+ 12N(sl,4m+2)
))

where the integration step width δs = ∆sl
4nm

and N(sl,i) is the refractivity at the i-th node in
the l-th section.

GNSS double difference delays are treated the same way as GNSS slant path delays. The
observation equation of a double difference delay is constructed from the 4 observation equations
of the involved slant path delays. As the observation equations of slant path delays are linear,
double differences of them stay linear and can be directly considered in the Kalman filter’s update
step.
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3.4 Modeling the refractivity field with the Kalman filter approach

The matrix Rm describes the covariances of the measurements at time tm. GNSS path delays
are expected to be independent from each other. An additive Gaussian measurement error is
assumed with zero mean and predetermined variance. The variance is predetermined for delays
in zenith direction and increases by 1/ cos2(ϑ) with decreasing zenith angle ϑ. It follows that for
zenith path delay and slant delay observations, the covariance matrix Rm has non-zero elements
only on the diagonal. For GNSS double difference observations, the convariance matrix Rm also
shows non-zero off-diagonal elements. GNSS double difference delays with common slant delays
are correlated. This correlation is considered in the stochastic model and is the reason for non-zero
off-diagonal elements.

Point observations

The observation equation of point measurements has the form

N = N(λ, φ, h) (3.47)

whereN is the observation and N(λ, φ, h) is defined by the voxel parameterization. For the constant
parameterization, N(λ, φ, h) is equal to the refractivity parameter Ni,j,k of the voxel (i, j, k), in
which the refractivity is measured. For the trilinear and for the spline/bilinear parameterization,
N(λ, φ, h) is substituted by Equation 3.19 for the trilinear parameterization and by Equation 3.29
for the spline/bilinear parameterization.

Pseudo-observations

There are two different types of intervoxel constraints implemented in AWATOS 2. The constraints
are introduced in the tomographic reconstruction as pseudo-observations.

Neighborhood averaging constraints: This kind of constraints have been introduced by Troller
2004. For each voxel or grid point, an observation equation is put. The refractivity of
the voxel or grid point is, thereby, equal to the weighted sum of the 6 refractivities of the
surrounding voxels or nodes. The weights depend on the distance between the voxel middle
points or on the distance between the nodes, respectively (see Wehrli 1986). For the voxel or
node with index (i, j, k), the observation equation is



Φi,j,k−1
Φsum

Φi,j−1,k
Φsum

Φi−1,j,k
Φsum

Φi+1,j,k
Φsum

Φi,j+1,k
Φsum

Φi,j,k+1
Φsum

−1



T 

Ni,j,k−1

Ni,j−1,k

Ni−1,j,k

Ni+1,j,k

Ni,j+1,k

Ni,j,k+1

Ni,j,k


= 0 (3.48)
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with weight functions

Φi,j,k−1 =
1

1 +
(
λi,j,k−λi,j,k−1

∆λ

)2

+
(
φi,j,k−φi,j,k−1

∆φ

)2

+
(
hi,j,k−hi,j,k−1

∆h

)2

Φi,j−1,k =
1

1 +
(
λi,j,k−λi,j−1,k

∆λ

)2

+
(
φi,j,k−φi,j−1,k

∆φ

)2

+
(
hi,j−1,k−hi,j,k

∆h

)2

Φi−1,j,k =
1

1 +
(
λi,j,k−λi−1,j,k

∆λ

)2

+
(
φi,j,k−φi−1,j,k

∆φ

)2

+
(
hi,j,k−hi−1,j,k

∆h

)2

Φi+1,j,k =
1

1 +
(
λi,j,k−λi+1,j,k

∆λ

)2

+
(
φi,j,k−φi+1,j,k

∆φ

)2

+
(
hi,j,k−hi+1,j,k

∆h

)2

Φi,j+1,k =
1

1 +
(
λi,j,k−λi,j+1,k

∆λ

)2

+
(
φi,j,k−φi,j+1,k

∆φ

)2

+
(
hi,j,k−hi,j+1,k

∆h

)2

Φi,j,k+1 =
1

1 +
(
λi,j,k−λi,j,k+1

∆λ

)2

+
(
φi,j,k−φi,j,k+1

∆φ

)2

+
(
hi,j,k−hi,j,k+1

∆h

)2 ,

and
Φsum = Φi,j,k−1 + Φi,j−1,k + Φi−1,j,k + Φi+1,j,k + Φi,j+1,k + Φi,j,k+1.

The scaling lengths ∆λ, ∆φ, and ∆h are normalizing the 3 dimensions and allow to adjust
their influence.

Spatial gradient constraints: In AWATOS 2, it is possible to individually constrain the single spa-
tial derivatives of the refractivity field. They have the same form for all parameterizations.
The horizontal derivatives are set to zero whereas the vertical derivative is equal to the deriva-
tive of the exponential model N0 exp(− h

hs
) with refractivity N0 on the reference ellipsoid and

the scaling height hs. This leads to the following 3 pseudo-observation equations.

Ni+1,j,k −Ni,j,k = 0 (3.49a)
Ni,j+1,k −Ni,j,k = 0 (3.49b)

Ni,j,k+1 −Ni,j,k = N0

(
exp

(
− hk+1

hs

)
− exp

(
− hk
hs

))
(3.49c)

The pseudo-observations belonging to one of these constraint types are independent among
each other. For each type, a weight can be specified. The reciprocal of this weight is then used in
the covariance matrix Rm. As no correlations between pseudo-observations are considered, there
are no non-zero off-diagonal elements for pseudo-observations.

3.5 Simulation capabilities in AWATOS 2

Synthetic tests are helpful for testing new algorithms and for investigating the behavior of differ-
ent configurations on specific atmospheric processes. Such synthetic tests comprise of two parts:
a) simulation of the observations (forward modeling) and b) the tomographic reconstruction of the
refractivity field (backward modeling). In this section, the simulation of different observations is
described. AWATOS 2 supports to simulate different point and integral measurements from pre-
defined refractivity fields. Such fields can be described by functions or can be derived from data
of numerical weather prediction models.
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3.5 Simulation capabilities in AWATOS 2

3.5.1 Predefined refractivity fields
Predefined functions

Two predefined functions are implemented in AWATOS 2. The first one is an exponential function
depending on the height. It accurately models the average refractivity along a vertical profile (see
Figure 5.4a)). The model is extended to support horizontal and temporal variations.

N(t, λ, φ, h) = N0 ftime(t) fspace(λ, φ, h) exp
(
− h

hf

)
(3.50)

with

ftime(t) = 1 + a sin(ω t + θ)

fspace(λ, φ, h) = 1 + b exp

(
− 1

2

((λ− λ0

λs

)2

+
(φ− φ0

φs

)2

+
(h− h0

hs

)2
))

where N0 denotes the refractivity on the reference ellipsoid, hf the scaling height of the base
function, a the amplitude of the temporal perturbation, ω the angular rate, θ the phase shift, b the
size of the spatial perturbation, (λ0, φ0, h0) the point where the spatial perturbation is maximal, and
λs, φs and hs the scaling longitude, latitude and height for the spatial perturbation, respectively.

The second function describes a vertical perturbation. Atmospheric inversions are an example
of such perturbations and are commonly observed in the Swiss Plateau during winter (Wanner
1979). It is, therefore, of importance to assess the capability to properly reconstruct such patterns.
The perturbation function is defined as

N(λ, φ, h) =

{
N0 if h ∈ [hlower, hupper]
0 else

(3.51)

where N0 is the perturbation.

Refractivity fields derived from data of numerical weather prediction models

AWATOS 2 is capable to derive time-evolving (wet) refractivity fields from data of numerical
weather prediction models such as COSMO-7 and COMSO-2 (Doms and Schättler 2002). Using
Equation 2.8, the (wet) refractivity at the grid nodes is computed from the pressure, temperature
and humidity fields. Between grid nodes, the refractivity is trilinearly interpolated (see Equa-
tion 3.19). As a 3D refractivity field represents the atmosphere at a certain time, the refractivities
in between two consecutive 3D fields are linearly interpolated.

3.5.2 Simulated observations
Integral observations, such as GNSS double difference delays, slant path delays and zenith path
delays, can be simulated. Besides integral observations, the simulation of in-situ measurements is
supported, too.

Integral measurements

Ray paths are modeled as straight lines between the emitting satellites and the receivers. The
visibility of satellites from a receiver station can be restricted by a cutoff angle or by defining the
horizon around that station. For instance, the horizon can be calculated from a digital elevation
model. Numerical integration is used to compute the delay along the ray path. Boole’s quadrature
rule is used (see Appendix B). Integration limits are at the receiver and either at the top of the
atmospheric grid or at a given height level. AWATOS 2 provides the possibility to add measurement
errors to the delays. The error is modeled by a Gaussian distribution where the measurement bias
is specified by expectation value µ and the measurement noise by the variance σ2. Measurement
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3 GNSS tomography with the software package AWATOS 2

errors are modeled without correlation among each other. For slant path delays, the error is
multiplied by the mapping function 1/ cos(ϑ), where ϑ is the zenith angle of the slant path delay.

∆%̃ = ∆%+
1

cos(ϑ)
ε (3.52)

with
ε ∼ N (µ, σ2)

where ∆% is the exact delay and ∆%̃ the perturbed delay.
GNSS double difference observations are simulated by combining 4 slant path delay observa-

tions. There are different possibilities how double difference observations can be built. A possibility
is to specify a spanning tree, where the vertices represent the receiver stations. The edges represent
the baselines. Slant path delays which belong to two stations of a common baseline are combined
to double difference observations. In AWATOS 2, the spanning tree is determined by computing
a minimum spanning tree in respect of a cost function from a complete graph. The minimum
spanning tree is calculated with Kruskal’s algorithm (Matoušek and Nešetřil 1998). Three cost
functions are supported:

Maximum common observations: For each edge, the number of common slant path delays is
computed. The cost function is the negative number of common slant path delays.

Minimum distance: The ellipsoidal distance between two stations is used as cost function.

Maximum distance: The negative ellipsoidal distance between two stations is used as cost function.

Measurement bias and measurement noise are added on the slant path delay level. The same
measurement error model as for slant path delays is used (see Equation 3.52).

Point measurements

In-situ measurements are simulated by point observations. They represents the refractivity at a
given point. A measurement error can be added.

Ñ = N(λ, φ, h) + ε (3.53)

with
ε ∼ N (µ, σ2)

where Ñ is the perturbed refractivity, N(λ, φ, h) the exact refractivity at point (λ, φ, h) derived
from the give refractivity field, µ the measurement bias, and σ2 the variance of the Gaussian
measurement noise. The measurement noise of the point observations is uncorrelated among each
other.
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Chapter 4

Overview of the data sets

Data from different sources are used within this study. This chapter gives an overview of these
data sets and shortly describes their sources, availability and main properties. Figure 4.1 illustrates
the availability of the single data sets. Processed and prepared data from GPS observations are
available for the year 2006. Meteorological measurements, such as balloon soundings and measure-
ments from the synoptic measurement network SwissMetNet, are available for a period of 2 years
beginning in 2006. In addition, data from NWPs are provided from the Swiss Federal Office of
Meteorology and Climatology for the years 2006 and 2007 (COSMO-7) and for 4 months in 2008
and 2009 (COSMO-2).

4.1 GPS data

The GPS data stems from more that 120 GPS permanent stations distributed over central Europe
(see Figure 4.2). In the area indicated by the dark blue box, the network shows a high station
density. This is the core area in which the tomographic processing is carried out. The mean
shortest inter-station distance is about 30 km in this region. 31 of the stations in this area belong
to the Automated GNSS NEtwork of Switzerland (AGNES) operated by the Swiss Federal Office
of Topography (Ineichen et al. 2009). 50 stations located outside this area mainly belong to the
EUREF permanent network (EPN). For details see Bruyninx and Roosbeek 2009. The processing
of the GPS data is carried out by the Swiss Federal Office of Topography (Brockmann et al. 2006;
Brockmann et al. 2007). Further details about the processing can be found in Section 3.2.

4.2 Balloon soundings

Balloon sounding measurements (TEMP upper air soundings) are available for 93 stations located
in Europe (see Figure 4.3). The data set spans a period of 2 years starting in the year 2006
and comprises more than 112’000 measurement profiles. It includes measurements of pressure,
temperature and relative humidity.

The only balloon sounding station located in the area of investigation is that in Payerne. During
this time, a sounding device called SRS-400 had been used (Richner 1999; Ruffieux and Joss 2003).
Balloons are launched usually twice per day: One at midnight and one at noon with respect to
UTC time. Occasionally, there are launches at 6 a.m. and 6 p.m. UTC. In total, there have been
1738 balloon launches in Payerne during these 2 years providing more than 78’000 observation
triples (pressure, temperature, relative humidity). In the average, these are 44.974 triples per
launch. The observations are non-uniformly distributed over the height (see Figure 4.4). The
measurement density decreases with height. Below 906 m and above 12’931 m, no observations are
available.

29



4 Overview of the data sets

GPS Data

Balloon Soundings

COSMO-7

COSMO-2

SwissMetNet

2006

2007

2008

2009

2010Year

Figure 4.1: Availability of the data sets.
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Figure 4.2: Locations of the GPS receiver stations used in the preprocessing carried out at the
Swiss Federal Office of Topography (black squares). The area framed by the dark blue lines is the
area in which the tomographic processing is investigated.
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Figure 4.3: Locations of the balloon sounding stations (black triangles). The area framed by the
dark blue lines is the area in which tomographic processing is investigated.
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Figure 4.4: Vertical distribution of the balloon sounding measurements in Payerne.
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Figure 4.5: Stations of the synoptic measurement network SwissMetNet and stations located in
adjoining countries (black circles). The area framed by the dark blue lines is the area in which the
tomographic processing is investigated.

4.3 Synoptic network SwissMetNet
Ground-based meteorological measurements collected by 124 stations belonging to the SwissMetNet
(formerly called ANETZ) and from stations in adjoining countries are provided by the Swiss Federal
Office of Meteorology and Climatology (see Figure 4.5). The meteorological quantities pressure,
temperature at 2 m above Earth’s surface and relative humidity, wind guest, 10 minutes average
wind velocity, and wind direction are used within this study. The data is sampled with a rate of
10 minutes (Suter et al. 2006).

4.4 Numerical weather prediction model COSMO
COSMO is a non-hydrostatic local NWP model developed by the COSMO consortium (Consortium
of small scale modelling). The Swiss Federal Office of Meteorology and Climatology operates this
model in two different setups: a) COSMO-7 and b) COSMO-2 (Doms and Schättler 2002; Buzzi
2008; Baldauf et al. 2011). The configurations mainly differ in their resolution (7 and 2 km
horizontal resolution and 45 and 60 levels, respectively) and the lead time up to which forecasts
are computed (72 and 24 h). The domains of the two configurations are shown in Figure 4.6. For
the investigations in this study, data from the assimilation cycle (corresponding to lead time zero)
are considered. The data is also referred to as analysis in this study.
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Figure 4.6: Domains of COSMO-7 (red box) and COSMO-2 (blue box).
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Chapter 5

Description of the wet refractivity
field

Several aspects of the wet refractivity field are considered in this chapter. In the first two sec-
tions of this chapter, the tempo-spatial distribution of the wet refractivity in the troposphere is
investigated. Time series of wet refractivity at different regions and altitudes are analyzed to
identify the main frequencies and the underlying processes. In addition, the vertical distribution
of the wet refractivity is investigated. The goal of these investigations is a better understanding
of the processes causing changes in the wet refractivity field and to deduce the main statistical
characteristics. This knowledge enables us to better interpret the tomographic results presented in
subsequent chapters and to assess the implemented models in AWATOS 2, especially the different
intervoxel constraints.

The next two sections address the discretization error. The investigations are based on the
data from the NWP COSMO-2 with a horizontal grid resolution of 2 km. The discretization
error is calculated for the tomographic grid with a horizontal resolution of 37 km. This is the grid
resolution used in the tomographic processing presented in subsequent chapters. The investigations
will provide information on the tempo-spatial structure of the discretization error. This error will
be split into a time invariant and in a time variant part. This splitting will help us to decide
whether observations can be treated as bias free in view of the tomography model or if a bias
correction is needed. On the other hand, the discretization error can be regarded as an accuracy
limit for the tomographic solutions obtained with the given configuration. Comparing the actual
error of the tomographic solution with the discretization error allows us to judge the performance
of the tomographic algorithms.

In a last part of this chapter, the prediction model implemented AWATOS 2 is validated and
parameters for this model specified. The configuration of subsequent tomographic investigations
will be based on these numbers.

Several studies have been carried out to identify statistical properties of the wet refractivity field,
such as temporal and spatial correlation lengths of the wet refractivity in the troposphere. Treuhaft
and Lanyi 1987 have investigated the wet tropospheric effect on radio interferometric measurements.
Their model is based on Kolmogorov turbulence theory and describes the correlation between slant
wet delays. Nilsson and Gradinarsky 2005 have applied this model to microwave radiometry.
The same techniques are used in GPS tomography to describe the covariance between the wet
refractivity at different locations by Gradinarsky 2002 and Nilsson and Gradinarsky 2006.

In view of the horizontal grid spacing on the order of 15-50 km used in this work, it is debatable
if turbulent theory yields a valuable approach. Looking at the time period of observed wind speed
variations near the Earth’s surface, we see a spectral gap between 30 minutes and 1 hour (see
Figure 5.1). This gap is used to separate the synoptic scale from the turbulent scale (e.g. Stull
1999). Assuming that temporal fluctuations of wet refractivity are caused by spatial patterns which
are advected by wind on the synoptic scale, the temporal scale can be transformed into a spatial
scale. A common value for the mean horizontal wind in mid-latitude is 8 m s−1 (Treuhaft and Lanyi
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5 Description of the wet refractivity field

1987). A temporal scale of 30 minutes then corresponds to a spatial scale of about 14 km. This can
be seen as an upper bound for the turbulent scale. As the grid spacing used in our work is larger,
statistical characteristics of the wet refractivity field are empirically estimated from observations
on the synoptic scale.

Figure 5.1: Schematic spectrum of wind speed near the ground (Stull 1999).

The following data types are taken into account for the investigations:

Balloon soundings: The vertical resolution of balloon soundings is suitable for investigating the
vertical correlations and the most data points are representative for the free atmosphere.
Neither horizontal nor temporal resolution is sufficient for horizontal cross-correlations and
for autocorrelations, respectively.

Synoptic stations: The synoptic stations indeed feature a high temporal resolution. As they are
located at the Earth’s surface they might not be representative for the free atmosphere. Such
stations are located in the planetary boundary layer in which wind regimes are different
from that in the free atmosphere. Hence, we expect different statistical properties from the
synoptic stations and the radiosondes.

Numerical weather prediction model data: As additional data sources, data from the numerical
weather models COSMO-7 and COSMO-2 are considered.

5.1 Tempo-spatial variation of the wet refractivity field
The wet refractivity field is influenced by processes at different time scales. Figure 5.2 shows the
time series of wet refractivity at the synoptic station in Payerne. In Figure 5.3a), the amplitude
spectrum of these time series is plotted. A seasonal cycle is clearly visible with a maximum during
summer. One can, therefore, estimated the seasonal cycle the following way

N(t) = a

(
1 + b cos

(
2π
τ

(t − θ)
))

(5.1)

with wet refractivity N at time t, a period of 1 year denoted by τ and the unknown parameters
a (mean), b (relative amplitude to the mean), and θ (phase shift). These parameters are estimated
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5.1 Tempo-spatial variation of the wet refractivity field

from time series of several SwissMetNet stations. The resulting parameters a, b, and θ are plotted
in Figure 5.4. In addition, the parameters at different height levels are estimated from time series
based on balloon sounding data from Payerne. The spacing between two subsequent levels is 100 m.

Figure 5.2: Time series of wet refractivity at the synoptic station in Payerne.

The largest mean wet refractivities are found in the lower troposphere. The maximum mean
values measured by the considered synoptic stations are between 50 and 60 ppm. However, this
strongly depends on the height at which the station is located. The higher the altitude the lower
the refractivity. The decrease of the wet refractivity with height can be described by an exponential
function as the water vapor pressure is the dominating quantity in the wet part of the refractivity
approximation formula (see Equation 2.8) and as the partial water vapor pressure can be well
approximated with an exponential function (Hann and Süring 1957).

At noon, there is no significant difference between the mean wet refractivity measured at syn-
optic stations and that observed by balloon soundings (see Figure 5.4a)). In contrast to that, the
wet refractivity at synoptic stations is significantly smaller (up to 5-8 ppm smaller in layer between
1000-2000 m altitude) than that measured by balloon soundings at the same altitude at midnight
(not shown in any of the figures).

The difference between the mean wet refractivities (parameter a) estimated for the synoptic
stations and for the balloon soundings at the same height as the corresponding station is located
are plotted in Figure 5.5a). The majority of the synoptic stations in inner alpine valleys has a
smaller wet refractivity than the corresponding measurements above the balloon sounding station.
This might be related to the fact that inner alpine valleys are dryer than areas at the foothills of
the Alps as less precipitation occurs in inner alpine valleys due to the lee effect.

The synoptic stations in the foothills of the Alps and the synoptic stations in the Jura moun-
tains show larger wet refractivity values than the balloon sounding measurements in the Swiss
Plateau during the night (see Figure 5.5b)). The wet refractivity at the synoptic stations is for all
stations lower than the values measured by balloon soundings. This suggests that evaporation and
condensation processes are involved near the Earth’s surface. During day time, evapotranspiration
occurs near the Earth’s surface and increases the wet refractivity. As a result of this, the wet re-
fractivity measured near the Earth’s surface tends to be larger than that in the (free) atmosphere
at the same altitude. The opposite can be observed during night time. Near Earth’s surface, water
vapor is condensing and lowering the wet refractivity more than in the (free) atmosphere at the
same height.

Figure 5.5b) shows the amplitude of the seasonal cycle for SwissMetNet stations (black dots)
and for the balloon soundings in Payerne (black line). The amplitude of the seasonal cycle is
about half the mean value of the wet refractivity and, according to the balloon sounding data, the
relative amplitude is quite insensitive to height in the lowest 6 km of the atmosphere atmosphere.
Looking at observations measured at the synoptic stations, a different height dependent behavior
can be observed. The relative amplitude increases with height whereas the absolute amplitude is
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Figure 5.3: Amplitude spectra of wet refractivity measured at the synoptic stations a) Payerne
located in the Swiss Plateau and b) Mount Säntis (2500 m above mean sea level).

independent of the station height. This shows that processes near the Earth’s surface strongly
influence the wet refractivity field in the layers where these effects are present. As the GNSS
stations are located on the Earth’s surface, GNSS observations cross these layers and, therefore,
reflect this difference in wet refractivity. Regarding the impact on the result of GNSS tomography,
this can lead to significant seasonal systematic errors if the tomographic grid is not fine enough to
represent such atmospheric structures.

Figure 5.4c) shows when the seasonal cycle reaches its maximum. It occurs around the 24th of
July and does not vary considerably with height. The estimated phase shift is a few days smaller
for the synoptic stations than for the balloon soundings.

Besides the seasonal cycle, fluctuations on the order of a few days to a few weeks are visible in
the time series shown in Figure 5.2 and in its spectrum plotted in Figure 5.3a). These variations
are mainly driven by effects of synoptic scale (Hogg et al. 1981; Ciotti et al. 1987), such as frontal
passages. The spectrum at the synoptic station in Payerne has peaks at periods of half a day and
one day. Small peaks are also visible for periods of 8 h (1/3 day) and 6 h (1/4 day) which might
be a result of non-sinusoidal diurnal or semi-diurnal variations. Similar spectra are found for other
stations in the Swiss Plateau.

Figure 5.6 shows the mean diurnal cycle of the wet refractivity measured at the synoptic station
in Payerne in the period from the beginning of 2006 to the end of 2007. The semi-diurnal cycle is
slightly visible, but the variations do not differ significantly from the daily mean. Large seasonal
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5.1 Tempo-spatial variation of the wet refractivity field

(a) Mean a (b) Relative amplitude b (c) Phase θ

Figure 5.4: These plots show a) the mean wet refractivity a, b) the relative seasonal amplitude of
wet refractivity b, and c) the phase shift of the maximum θ. All parameters are estimated from
synoptic stations at noon in Switzerland (dots) or from balloon soundings launched at Payerne
(lines). The measurement period consists of 2 years of data.

and synoptical variations superimpose the diurnal signal. Analyzing the data from different seasons
separately, the diurnal variations are significant in the summer half year. The variations account
for about 6-8% of the daily mean, as shown in Figure 5.7a). During winter, no semi-diurnal cycle
is visible, but, a small diurnal cycle with an amplitude of few percents of the daily mean is still
recognizable.

As the wet refractivity is a compound quantity depending on meteorological quantities, such
as partial water vapor pressure, temperature and horizontal wind speed, the diurnal cycle of these
meteorological quantities are also investigated (see Figures 5.7b)-d)). Like the wet refractivity, the
partial water vapor pressure also shows a semi-diurnal cycle. Contrary to that, the temperature
and the horizontal wind do not. The relative variation during the day is also much smaller for
the temperature than for the partial water vapor pressure. To quantify the impact of the diurnal
temperature and partial water vapor variation on the wet refractivity, partial derivatives of Rüeger’s
wet refractivity formula (see Equation 2.8) are computed:

∂Nwet

∂Pwet
=
k2

T
+

k3

T 2
, (5.2)

∂Nwet

∂T
= −k2

Pwet

T 2
− 2 k3

Pwet

T 3
. (5.3)

with

k2 = 71.2952 KhPa−1

k3 = 375463 K2 hPa−1

Assuming a partial water vapor pressure of 10 hPa and variation of ±0.5 hPa, which is similar
to that of the diurnal cycle in Payerne, results in a diurnal wet refractivity variation of ±2.3 ppm.
For a temperature of 293 K with a diurnal variation of ±5.8 K, we get a variation of ∓1.8 ppm in
wet refractivity. This shows that the impact of the diurnal partial water vapor cycle on the diurnal
wet refractivity variation is about 20-25% larger than that of the diurnal temperature variation.
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Figure 5.5: Difference of wet refractivity measured at the synoptic stations (SwissMetNet) and
at the corresponding height observed by balloon soundings (RS) above Payerne. The values are
averaged over a period of 2 years.
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Figure 5.6: Diurnal variation of the wet refractivity at the synoptic station in Payerne. The data
set spans 2 years. The solid line represents the median and the dashed lines the 25%-quantiles.

So far, temporal variation of the wet refractivity a few meters above the Earth’s surface have
been analyzed. In the following, we will discuss the question to which height above Earth’s surface
the diurnal cycle can be observed. Figures 5.8a) and c) show the diurnal variation of the wet
refractivity and of the zenith total delay during July 2006. Both quantities show similar diurnal
variations. Assuming that 1 ppm wet refractivity corresponds to 1 mm of zenith wet delay and
that the diurnal wet refractivity variation linearly decreases with height, the variation would have
to be observable up to 2 km above the Earth’s surface in order to match the diurnal cycle of the
zenith path delay. This indicates that during the summer, diurnal variations of wet refractivity
are observable up to a few kilometers above Earth’s surface in the investigated area.

The synoptic station in Payerne is located in the planetary boundary layer and is, therefore,
affected by effects observed in this layer. How do the temporal variations look like above the
planetary boundary layer? The synoptic station on the Mount Säntis is located at 2500 m above
mean sea level and is assumed to be located in the free atmosphere most of the time (Livingstone
1997). Note that planetary boundary layer can reach stations at this height especially during
summer (Collaud Coen et al. 2011). Figure 5.3b) shows the amplitude spectrum of the wet
refractivity on Mount Säntis for periods of one hour to a few years. The time series of the station
on Mount Säntis is also dominated by a seasonal cycle as seen for the station in Payerne (see
Figure 5.3a)). The diurnal cycle has the second largest amplitude and this amplitude is even larger
than those related to synoptic effects. Compared to the synoptic station in Payerne, the diurnal
variation is much stronger on Mount Säntis whereas variations on the synoptic scale are of the same
order of magnitude. These observations are remarkable with respect to the considerably lower wet
refractivity typically measured at Mount Säntis (2500 m altitude and about 26 ppm wet refractivity)
compared to that at Payerne (500 m altitude and about 50 ppm wet refractivity). These relatively
larger amplitudes might be related to orographic effects and to thermal convection. Air motions
driven by synoptic scale systems, such as frontal passages, but also by local wind systems, cause
moist air to rise across mountain ridges. This leads to a rapid increase of the humidity on the
mountain ridges. After the passage of such a system, the wind velocities decrease and the supply
of moist air from lower layers reduces or even stops. Hence, the humidity decreases on the mountain
ridges. As a result of this, larger amplitudes of humidity are measured on mountain ridges compared
to stations located in the plains. A similar effect is caused by thermal convection. At sunrise, the
air near the Earth’s surface is heated and begins to rise on the mountain ridges. Compared to air
on the mountain ridge, the lifted air is more moist. As a result of this, the humidity increases on
the mountain ridges. In the late afternoon, the thermally driven wind decreases and subsidence
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5 Description of the wet refractivity field

(a) Wet Refractivity (b) Water Vapor Pressure

(c) Temperature (d) Wind Speed

Figure 5.7: Mean diurnal variability as percentage of the diurnal mean value at the synoptic station
in Payerne for July 2006: a) wet refractivity b) partial water vapor pressure c) temperature and
d) wind speed.

increases. Hence, the humidity measured at the mountain ridges reduces. This leads to a diurnal
amplitude larger than observed at stations located in the plains. Jungfraujoch is another station
located on a mountain ridge on 3500 m altitude. This station shows a similar diurnal variation
as the station on Mount Säntis. The semi-diurnal cycle is missing altogether (see Figure 5.8b)).
This shows that the peaks of the higher harmonics in the spectrum are mainly related to the non-
sinusoidal shape of the diurnal cycle for the stations showing the same wind regime as the stations
Mount Säntis and Jungfraujoch. Further investigations on wet refractivity variations show that
synoptic stations in the Swiss Plateau and in the inner alpine valleys mostly have a semi-diurnal
and a diurnal cycle during the summer half year whereas stations at higher altitudes only show a
diurnal cycle.

Zenith total delays estimated from GPS phase observations show similar diurnal variations as
that of wet refractivity measured 2 m above the Earth’s surface, especially during the summer half
year. This suggests that diurnal variations observed in the zenith delays during the summer time
are mainly driven by effects in the boundary layer. A comparison of two sites located at different
altitudes is shown in Figures 5.8a)-d). Payerne is at about 500 m and Jungfraujoch at about
3500 m altitude. Although the zenith wet delay in Payerne is about 2-3 times larger than that at
Jungfraujoch, the amplitude of the diurnal cycle at Jungfraujoch is as large as that at Payerne.

Figure 5.9a) shows the maximum amplitude of the mean diurnal variation of July 2008 computed
from the analysis of the numerical weather model COSMO-2 at 2000 m altitude. The largest
amplitudes are found where the Earth’s surface approaches the 2000 m level (see Figure 5.9b)).
The mean diurnal variation at the 2000 m level during the July 2008 is shown in Figures 5.10a)-h)
for different day times (every 3 hours). Above mountains, the diurnal maximum is usually reached
during the afternoon. Above the larger plains such as the Padan plain and above inner alpine
valleys, the diurnal variation is counter-cyclic. The maximum is observed between the late evening
and midnight, the minimum in the early afternoon.
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5.2 Discretization Error

(a) Synoptic station Payerne (b) Synoptic station Jungfraujoch

(c) GPS station Payerne (d) GPS station Jungfraujoch

Figure 5.8: Comparison between wet refractivity measured 2 m above ground (a and b) and zenith
total delays estimated from GPS phase observations (c and d) during July 2006. The ordinate
shows derivation from daily mean. Payerne is located in the Swiss Plateau at 500 m altitude and
Jungfraujoch is on a 3500 m high mountain station. Periods of wet refractivity variations between
one hour and a few days are considered.

An hypothesis to explain why the wet refractivity is larger during the day than during the night
near the Earth’s surface is that evapotranspiration during the day increases the wet refractivity
close to the Earth’s surface and condensation processes lead to lower wet refractivities near the
Earth’s surface during the night. This effect explains why the wet refractivity is larger during the
day than during the night near the Earth’s surface, but it cannot explain the semi-diurnal cycle
in the plains and inner alpine valleys. At least in valleys, local wind systems seem to play an
important role. Solar radiation heats the air near the Earth’s surface. As warm air is less dense
than cold air, the warm air moves uphill the valleys and the valley faces (see Figure 5.11). This
leads to subsidence of cold dry air in the middle of the valley and to an ascent of the wet warm
air along the mountain ridges. The temporal change of the wet refractivity at the bottom of the
valley, therefore, reflects the counteracting processes of the local increase of wet refractivity by
evapotranspiration and the advection of the dry air. If the diurnal cycle of advection differs from
that of evapotranspiration, i.e, if there is a phase difference between these two processes, we observe
a kind of semi-diurnal cycle at the bottom of the valleys. On the other hand, wet air is advected
during the day above mountain ridges. Thus, the time segment where wet air is advected coincides
with that when evapotranspiration occurs. This may explain the observation that no semi-diurnal
cycle is visible above mountain ridges.

5.2 Discretization Error

In tomographic reconstruction, the wet refractivity field is usually discretized. We use constantly
parametrized voxels in this investigation. A horizontal grid resolution of the same order of magni-
tude as the mean inter-station distance is commonly chosen (Troller 2004; Lutz 2009; Bender et al.
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(a) Diurnal amplitude

(b) Height difference

Figure 5.9: a) Mean diurnal amplitude of the wet refractivity at 2000 m altitude in July 2008
computed from the COSMO-2 numerical weather model. b) Height difference between the 2000 m
level and the Earth’s surface.
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(a) 0 h (b) 3 h

(c) 6 h (d) 9 h

(e) 12 h (f) 15 h

(g) 18 h (h) 21 h

Figure 5.10: Deviation of wet refractivity from the daily mean at 2000 m altitude in July 2008
computed from the COSMO-2 numerical weather model. The figures show the differences every
3 hours in local time, respectively.
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Figure 5.11: Cross section of a valley with schematic wind circulations during the afternoon
(e.g. Stull 1999)

2009). The AGNES network, which is used in this work, has a mean inter-station distance of about
30 km. In our setup, a grid resolution of about 37 km is used. The vertical resolution decreases
with height. The lowest layers are a few hundred meter and the top layer is about 4.5 km thick.
For this resolution, we investigate spatial variations of the wet refractivity field on the subgrid-
scale. The goals of the analyses are a) to determine the discretization error assuming a perfect
tomography algorithm, and b) to estimate the systematic part of this error. This knowledge will
help us to decide whether a bias correction is necessary and how it could look like. The analysis
will give us also an estimation of the upper bound of the achievable accuracy.

Since the wet refractivity of the atmosphere is not exactly known, we use the analysis of the
high-resolution weather model COSMO-2. It has a horizontal grid spacing of about 2 km and the
temporal resolution is 1 hour. The variation of the refractivity of the subgrid-scale is computed for
different day times (0 h UTC, 1 h UTC, . . ., 23 h UTC) over a period of 1 month. Data of 4 months
at different seasons (April 2008, July 2008, October 2008, and January 2009) are considered. The
following algorithm is used:

1. Compute the mean voxel wet refractivity N j,k from the weather model data Ni,k for each
voxel j at each time step k. The set Vj contains all indices i of the weather model grid points
belonging to voxel j.

N j,k =
1
|Vj |

∑
i∈Vj

Ni,k

2. Calculate the residual at weather model grid point i in voxel j.

∆Ni,k = Ni,k −N j,k; for ∀i ∈ Vj

3. Compute the bias and the standard deviation of the residuals at each grid point i of the
weather model over time. The set containing the time indices is denoted by T .

∆N i =
1
|T |

∑
k∈T

∆Ni,k (5.4a)

σi =

√
1

|T | − 1

∑
k∈T

(
∆Ni,k −∆N i

)2 (5.4b)
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5.2 Discretization Error

Figure 5.12 shows the mean and standard deviation of the discretization error at different day
times interpolated at the level 2000 m above mean sea level during July 2008. The bias within a
grid box varies in the range of ±2 ppm during the night and ±5 ppm during the day. Generally,
the range of observed biases is slightly larger in alpine regions than in flat areas, such as the Swiss
Plateau. Especially during day time, topographic patterns can be recognized. A positive bias
is often observed above mountain ridges. On the other hand, negative biases are found above
larger valleys (e.g. Rhone valley or the upper Rhine valley) or near lakes (Lake Constance or Lake
Neuchâchtel).

Looking at the standard deviation, large differences can be observed between the plots during
night and early morning and those at noon and in the evening. During the night and early morning,
the standard deviations are around 1-3 ppm and hardly vary within grid boxes. In contrast to this,
large variations within grid boxes can be seen during day time. Standard deviations are in the
range between 3-9 ppm and the largest ones are observed in the foothills of the Alps.

How does the discretization error change with height? To answer this question, we compute the
bias and standard deviation of the discretization error in the same way as described in the previous
paragraphs using equations 5.4a and 5.4b, respectively. However, we calculate the fields not only
for the 2000 m level, but also for levels between 500 m and 5000 m in 100 m steps. For each level
and field, the quartiles are computed from the values located within the grid. The quartiles at
each level are plotted for the bias and for the standard deviation field as Box-Whisker plots in
Figure 5.13a) and b), respectively. All calculations are based on COSMO-2 analyses data from
July 2008.

Looking at Figure 5.13a), biases between ±12 ppm are observed. The range of observed biases
is largest between 900 and 2100 m. The decrease of the bias range with the height above this
layer is expected, as the wet refractivity decreases with height, too. Below this layer, the reason
is not obvious. In the layers below 900 m, data is only partly available in alpine regions because
Earth’s surface is often above the top of these layers. As a result of this, alpine regions can less
contributed to the range of the observed biases in these layers. This considerably influences the
range of observed biases in these layers as the largest ranges are observed in such alpine regions.

The median varies only little and is seldom beyond ±1 ppm. Especially in the higher layers,
oscillations of the median around zero are observed. They are related to the vertical grid discretiza-
tion: As the refractivity within a voxel is assumed constant, the median of the bias is negative
in the upper part of the voxel and positive in the lower part. It is also clearly visible how the
wavelength of the oscillations increases with height. This increase corresponds to the increase of
the voxel thickness with height. A similar effect is visible for the inter-quartile range (difference
between the 75%- and 25%-quartile). They are clearly larger near the voxel boundaries than in
the middle of the voxel.

Figure 5.13b) shows Box-Whisker plots for the standard deviation at different heights. The
median varies between 2-5 ppm with the maximum at 1600 m above mean sea level. This is the
same height as on which the largest range of the biases are observed (see Figure 5.13a)). The
inter-quartile ranges (IQR) for the standard deviations are proportional to their medians and vary
between 1-2 ppm. It is supposed that the decrease of the median and the IQR with height above
1600 m altitude is related to the decrease of wet refractivity with height and the increase below
this altitude to planetary boundary layer effects.

In Figures 5.14a)-d), the histograms of the discretization error of 4 voxels at different heights are
shown. They illustrate the distribution of the discretization errors. Normal distributions with the
same mean value and standard deviation as the data are plotted as dashed lines. Comparing the 2
distributions indicates that the kurtosis of the sample distributions are different: The histograms
are more peaked than the dashed lines representing the fitted normal distribution. Concerning
skewness, the histograms are not skewed (a) and b)) or show only a very weak skewness (c) and
d)).
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(a) Bias 00h UTC (b) Std. Err. 00h UTC

(c) Bias 06h UTC (d) Std. Err. 06h UTC

(e) Bias 12h UTC (f) Std. Err. 12h UTC

(g) Bias 18h UTC (h) Std. Err. 18h UTC

Figure 5.12: Discretization error of the wet refractivity field at the 2 km level during July 2008
using a grid of 37-38 km horizontal resolution.
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5.3 Representation of the discretization error

(a) Variability of the bias (b) Variability of the standard deviation

Figure 5.13: Box-Whisker plot of the variability of the discretization error within the voxels (bias
and the standard deviation) on different height levels during July 2008.

Figure 5.15 shows quantile-quantile plots of the discretization error for the same 4 voxels as
in Figure 5.14. As already visible in the Figure 5.14, the distribution of the data and the fitted
normal distribution mainly differs in the kurtosis. The Pearson’s χ2-test (Rice 1995) is carried
out to check for normality. In all 4 cases, the test clearly rejects the hypothesis that the data is
normally distributed.

In Figure 5.16 the bias and the standard deviation of the discretization error is plotted for
different seasons at the 2000 m level at 12 h UTC. The largest biases can be observed during
summer. The biases are significantly lower during the other months, especially during winter.
In winter, usually they do not exceed 2 ppm. The spatial distribution is similar throughout the
year. During summer, 75% of the biases are significantly different from zero (assuming normally
distributed biases and a significance level of 5%). Although the biases are smaller during winter
than during summer, 83% of them are significantly different from zero (spring: 80% and autumn:
77%). The standard deviations of the discretization error are shown in Figure 5.16b). During
summer and winter, standard deviations of up to 9 ppm and up to 3 ppm are observed, respectively.
Locations with a large bias do not necessarily show a large standard deviation.

5.3 Representation of the discretization error

The method of empirical orthogonal functions (EOF, see Appendix C) is used to find characteristic
spatial patterns in the discretization error and how they evolve over time. In a further step, we will
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5 Description of the wet refractivity field

(a) 578 - 897 m (b) 1614 - 2019 m

(c) 2961 - 3518 m (d) 5781 - 6886 m

Figure 5.14: Histograms of the difference between voxel mean value and actual values in a voxel
(thick lines) and fitted normal distributions (dashed lines).
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5.3 Representation of the discretization error

(a) 578 - 897 m (b) 1614 - 2019 m

(c) 2961 - 3518 m (d) 5781 - 6886 m

Figure 5.15: Quantile-quantile plots of the discretization error compared to fitted normal distribu-
tions.
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5 Description of the wet refractivity field

(a) Bias April 2008 (b) Std. Err. April 2008

(c) Bias July 2008 (d) Std. Err. July 2008

(e) Bias October 2008 (f) Std. Err. October 2008

(g) Bias January 2009 (h) Std. Err. January 2009

Figure 5.16: Discretization error of the wet refractivity field at the 2 km level during different
seasons at 12h UTC using a grid of 37 km horizontal resolution (gray lines). The results are based
on data from the NWP COSMO-2 with a horizontal grid resolution of 2 km.
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5.3 Representation of the discretization error

compare the principle patterns with the topography, the gradients of the Earth’s surface and the
slope aspect. The results can be used to implement a bias correction model for any observations
used in the tomography. As systematic local variations are already removed in the observations,
the tomographic model would not have to take them into account. As a result of this, a coarser
grid could be used in the tomographic processing. To get a wet refractivity field including these
local variations, the correction model would have to be added on the tomographic result. Another
application would be to use the main orthogonal functions in the tomographic processing. Instead
of estimating the refractivity at the grid points, one estimates the factor of the main empirical
orthogonal functions. A main advantage of this technique is that local effects can be taken into
account with a relative small number of parameters.

The data set is the same as that used for the previous investigations. The EOF is computed
for the discretization error using a grid with a horizontal resolution of about 38 km on the 2000 m
level. We have restricted us to evaluate only an single level due to the high computational demands
of EOF. To allow comparisons to previous investigations, the 2000 m level is investigated.

The months April, July, October 2008, and January 2009 are evaluated together. The time
series has a length of 2928 hours and a sampling rate of 1 hour. At epoch, 8090 data points are
available at the 2000 m level. Figure 5.17a) shows the mean value of the time series at each point of
the 2000 m level. It looks similar to the bias computed for the month July 2008 (see Figure 5.16).
This is expected as this month shows much larger biases than the other three months.

The time series of each point at the 2000 m level is reduced by its mean value. On this data, we
compute the principle components and their variances (eigenvalues). The cumulative explanation
of the variance can be computed from the eigenvalues.

s2
total =

n∑
i=1

λi (5.5a)

α2
j,total =

j∑
i=1

λi
s2
total

(5.5b)

where λi denotes the i-th eigenvalue with λi ≥ λi+1 and n the number of eigenvalues. The number
of eigenvalues is equal to the smaller value of the length of the time series and of the number of
time series. The total variance is denoted by s2

total and the cumulative explanation by α2
j,total.

Figure 5.17b) shows the cumulative explanation of the principle components. To explain 80%
of the total variance, the first 187 out of 2928 principle components are needed.

In Figures 5.18a), c), e), and g), the first 4 principle components are plotted. The first two
factors seem to show patterns related to the topography. The inner Alpine valleys, the Jura
Mountains and the Swiss Plateau are well recognizable. The discretization error is compared to
several quantities, therefore, related to the topography. These are

• Height above mean sea level

• Angle of slope

• South-North component of the slope

• West-East component of the slope.

Looking at the correlation coefficients between the discretization errors and these quantities, no
significant or only weak correlations are found. The first factor shows a weak correlation (0.244)
with Earth’s surface height and a weak negative correlation (-0.258) with the slope aspect in
North-South direction. The second factor is also correlated with the slope aspect in North-South
direction, but stronger with 0.338.

The third factor shows, especially in the Swiss Plateau, a North-West to South-East gradient
within the grid boxes. Similar patterns are visible in the Alps in the forth factor. The forth factor
also shows a weak correlation of 0.248 with the angle of slope.
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5 Description of the wet refractivity field

(a) Bias

(b) Cumulative representation of the variance through factors

Figure 5.17: Discretization error caused by the discretization grid (dark gray lines) at an altitude
of 2000 m. a) Bias of the discretization error computed for the months April, July, October in
2008, and January 2009 from the NWP model COSMO-2. Light gray shaded areas indicate regions
with no data. b) Cumulative representation of the principal components of the discretization error.
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5.4 Investigations of the process noise using a random walk model

Looking at the time series of the scores for these 4 factors, we can see that they show variations
on the synoptic time scale. In addition, the first two factors have a weak seasonal cycle. In contrast
to them, the third and fourth do not.

The correlation of the first two factors with the topography and the presence of a seasonal cycle
are indicators for a relationship with solar effects. Therefore, a diurnal cycle is expected especially
during summer. A Fourier analysis is carried out for the time series of the scores for summer and
winter. The amplitude spectra are shown in Figure 5.19. In the summer, diurnal cycles are clearly
visible for all 4 time series. The first two show an amplitude of 70 and 60 ppm, respectively. The
amplitudes for the other two time series are smaller and below 40 ppm. During winter, the time
series show only weak diurnal signals. These findings support the relationship between solar effects
and the first few principle components of the discretization error.

The previous investigations have shown diurnal signals in the principle components of the
discretization error. This is the motivation for a closer look at the diurnal cycle. For July 2008,
the mean diurnal discretization error ēφ,λ,i at position (φ, λ) at day time i is computed.

ēφ,λ,i =
1
‖Ei‖

∑
eφ,λ,t∈Ei

eφ,λ,t (5.6)

with
Ei = {eφ,λ,t|day time of t = i}

where eφ,λ,t is the discretization error at point (φ, λ) at time t. The mean diurnal discretization error
is computed hourly from wet refractivity values interpolated at the 2000 m level from COSMO-2
analyses.

For this diurnal discretization errors, the empirical orthogonal function are again computed. In
Figure 5.20, the cumulative explanation of the variance for the principle components are plotted.
The first component explains already more than 60% of the variance and the 4 first components
more than 80%.

The first 4 principle components of the mean diurnal discretization error are shown in Fig-
ure 5.21. There are topographic patterns recognizable in the factors as observed in the factor
previously computed from the discretization errors, but, the errors are again only weakly corre-
lated with topographic quantities. Factor 1 and 3 show a weak correlation of 0.257 and 0.299 with
the Earth’s surface height, respectively. Factor 3 shows also a weak correlation of 0.239 with the
angle of slope. For the other factors, no significant correlations are found with one of the quantities
related to the topography.

In the left column of Figure 5.21, the time series of scores for these 4 factors are shown. The
series for the first factor features a single oscillation with the maximum at noon. The second series
reaches its maximum in the late afternoon (17h UTC). After 19 h UTC, the values quickly decrease
until midnight. The decrease slows down during the night and ends at 11 h UTC. Comparing these
diurnal variations with the diurnal variation of solar radiation and temperature, they are in good
agreement. The first factor has the diurnal maximum at the same time as the solar radiation.
The second factor has a similar diurnal variation as the temperature with the maximum occurring
during the second part of the day. This agreement indicates a relationship between the first two
factors and solar radiation.

5.4 Investigations of the process noise using a random walk
model

So far, the spatial distribution, the discretization error and diurnal cycles of the wet refractivity
field have been considered. In this section, the focus will be on the prediction error of the random
walk model used in AWATOS 2 (see Section 3.4). Time series analyses are carried out with the
goal to answer questions such as how the prediction error increases with lead time, whether the
random walk is a suitable model to describe the time series and how the stochastic parameters
of this model have to be set. The outcome of these investigations will be the basis to configure
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5 Description of the wet refractivity field

(a) First factor (b) Score of first factor

(c) Second factor (d) Score of second factor

(e) Third factor (f) Score of third factor

(g) Fourth factor (h) Score of fourth factor

Figure 5.18: Factors (left column) and their scores (right column) for the first 4 principle com-
ponents of the wet refractivity discretization error at the 2000 m level. The data set consists of
4 months of data at different seasons from the numerical weather model COSMO-2 with a grid
resolution of 2 km. The coarse grid (gray lines) has a grid spacing of 37 km.
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(a) First factor, summer
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(b) First factor, winter

0

20

40

60

80

100

A
m

p
lit

u
d

e
 [

p
p

m
]

0.2 0.5 1 2 5 10 20

Period [day]

(c) Second factor, summer
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(d) Second factor, winter
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(e) Third factor, summer
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(f) Third factor, winter
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(g) Forth factor, summer
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(h) Forth factor, winter

Figure 5.19: Amplitude spectra of the principle component’s scores. The principle components
are computed on the basis of the wet refractivity discretization error at the 2000 m level over
Switzerland using data from the analysis of the numerical weather model COSMO-2. The data set
consists of 4 months in years 2008 and 2009.
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5 Description of the wet refractivity field

Figure 5.20: Cumulative explanation of the variance through factors for the diurnal discretization
error of the wet refractivity field at the 2000 m level.

the Kalman filter, especially the propagation step, in AWATOS 2. The investigations are based
on two time series: a) meteorological measurements from the synoptic network SwissMetNet in
Switzerland and b) data from the numerical weather prediction model COSMO-7 (see Section 4).

5.4.1 Setup, models and methods
Data from the numerical weather prediction model COSMO-7 and from selected stations of the
synoptic measurement network SwissMetNet will be used (see Section 4). The data sets span a
period of 1 and 2 years, respectively. The data from synoptic stations have the advantage that they
are available with a much higher sampling rate (10 minutes) than that derived from COSMO-7
(sampling rate of 1 hour). This is insofar of importance as the sampling rate of our GPS data
is 30 seconds and to make any suggestion for the stochastic model parameters at this time scale
requires data with a similar sampling rate. With the use of data from synoptic stations, one is much
closer to this sampling rate than with NWP model data. Moreover, the data from the synoptic
stations may represent the reality better as they do not suffer from modeling effects like the NWP
model data. A drawback of the data from synoptic stations is that they are measured at Earth’s
surface and, therefore, may not be representative for the entire atmosphere. To counteract this
point, stations exposed on mountain peaks and ridges are considered.

Both data sets provide the meteorological quantities pressure, temperature, and relative humid-
ity. The wet refractivity is computed from these quantities using Equation 2.8. For the COSMO-7
data set, voxel averages are computed (see Section 5.2). Thus, the time series analysis is based on
point observations for the SwissMetNet data set and on voxel averages for the COSMO-7 data set.

Statistical properties of the underlying process of the prediction model (see Section 3.4) and of
the time series derived from the two data sets are compared among each other. The investigation
is based on the increments

Y
(n)
t = Xt −Xt−n (5.7)

where Xt denotes the stochastic process at a voxel or at a station at time t and n the lead time
(difference between actual and forecast time). A path of the process Yt will also be referred to as
integrated time series in this subsection. The error of the prediction model is

Ỹ
(n)
t = Xt+n − f(Xt, n) = Xt+n −Xt = Y

(n)
t−n (5.8)

where f(Xt, n) is the propagation model and n is the prediction lead time. The function f(Xt, n)
is equal to Xt for the prediction model used in AWATOS 2 (see Section 3.4). One can see that the
propagation error corresponds to the process Y (n)

t . The prediction model is based on a stochastic
differential equation (SDE). The statistical properties of this equation will be compared to those of

58



5.4 Investigations of the process noise using a random walk model

(a) First factor
(b) Score of first factor

(c) Second factor
(d) Score of second factor

(e) Third factor
(f) Score of third factor

(g) Fourth factor
(h) Score of fourth factor

Figure 5.21: Factors (left column) and their scores (right column) for the first 4 principle compo-
nents of the mean diurnal discretization error of the wet refractivity field. The data set consists of
data from July 2008 from the NWP model COSMO-2 with a grid resolution of 2 km. The coarse
grid (gray lines) has a grid spacing of 37 km.
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5 Description of the wet refractivity field

the process Y (n)
t . To be a suitable prediction model, the statistical properties of the SDE should be

similar to those observed in Y (n)
t . The SDE of the prediction model have the following theoretical

properties:

1. Time increments are normally distributed.

2. The expectation value of the increments is zero.

3. Two non-overlapping increments are independent.

4. The variance of the increment increases proportionally to the time step n.

5. It is assumed that the covariances between the increments of two time series at different
locations depend on the height difference and the distance between them (see Section 3.4).

For the two data sets, the computation of the increment’s properties are subdivided into tasks.
Each task will refer to one of these properties. Note that for all tasks, stationarity of the time
series is assumed.

Distribution of the increments: The distribution of the increments are illustrated by histograms.
For each SwissMetNet station and lag, a histogram is computed and the parameters sample
mean and sample variance are estimated. The density function of the normal distribution
corresponding to the estimated parameters is plotted in the same figure as the histogram.
This allows to easily compare their shapes. In addition, quantile-quantile plots are generated
with the estimated density function on the abscissa and with the histogram data on the
ordinate (see Rice 1995). The first two properties are verified by this task.

Autocorrelation of the integrated time series: Autocorrelation functions are computed for each
SwissMetNet station from the integrated time series. The autocorrelation function gives
information about the correlation between values of a process at different epochs as a func-
tion of the time difference between two epochs. This time difference will also be referred
to as lag. If the increments are independent of each other, the autocorrelation function is
a Dirac delta function. Otherwise the function may show values significantly different from
zero for non-zero lags. If the time series show no correlation in cases where the lag differs
from zero, this indicates that the prediction model is a suitable model for the refractivity
field with respect to property 3.

Variance of the increments in dependence of different lead times: The variance of the Yt with re-
spect to the lead time is computed for each SwissMetNet station and for each voxel. Assuming
stationarity and ergodicity, the variance σ2(n) can be computed from the integrated time se-
ries with lead time n:

σ2(n) = Var(Yt−n) =
1

|T | − 1

∑
t∈T

(xt − xt−n)2 (5.9)

where T is the set of epochs and xt a measured path of the process Xt. The lead-time-
dependent variances computed from SwissMetNet data and from NWP model data are com-
pared with each other. The impact of the height on the variance is investigated by comparing
lead-time-dependent variances on different height levels. Therefore, the weighted mean of the
variances is computed for each voxel layer:

σ2
Lh

(n) =
1∑

i∈Lh ci

∑
i∈Lh

ci σ
2
i (n) (5.10)

where Lh is the set of voxel indices located in the layer at height h = 0.5 (hbottom + htop),
ci the number of COSMO-7 grid points within the i-th voxel, and σ2

i (n) the variance of the
prediction error in the i-th voxel at lead time n.
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5.4 Investigations of the process noise using a random walk model

The prediction error of a time step in the Kalman filter is modeled by a lead-time-dependent
and by a distance dependent part in AWATOS 2 (see Section 3.4). This subdivision is
also applied in the investigations. For the lead-time-dependent part, the following model is
investigated:

σ2(n) = s2

(
1 − exp

(
− n ∆t

∆t0

))
. (5.11)

where s2 denotes the reference variance, ∆t the time difference between two epochs and ∆t0
the scaling time. The parameters ∆t0 and s2 are fitted using non-linear LSQ adjustment
at each station for the SwissMetNet data set and at each voxel for the COSMO-7 data set.
Variances for lead times up to 167 hours are considered. For the COSMO-7 data set, the
reference variance s2 is modeled as a function of height. This is the same model as that used
in the prediction model (see Equation 3.37):

s2(h) = s2
0 exp

(
− h

h0

)
(5.12)

where h0 is the scaling height. The investigation of this task is intended to answer the
question whether the lead-time-dependent part of the prediction model is a suitable model
to describe the time evolution of the wet refractivity field in terms of property 4. If it does,
the fitted parameters can be used to configure the prediction model.

Spatial correlation of the prediction error: In this task, the distance dependent part of the predic-
tion model is analyzed. The correlations between the process Yt,i of the i-th voxel and the
process Yt,j of the j-th voxel are computed for different lead times. The lead time, for which
correlations are computed, ranges from 1 to 167 hours. Using this correlations, horizontal
and vertical correlation lengths are estimated and the impact of the lead time on them is
investigated. The horizontal and vertical correlation lengths l0 and ∆h0, respectively, are
computed by non-linear LSQ solving one of the following equations

exp
(
−
√

l

l0

)
= ρ (5.13)

exp
(
−
√

∆h
∆h0

)
= ρ (5.14)

where ρ denotes the correlation computed from two integrated time series at different grid
points, and l and ∆h the horizontal and vertical distance between the two voxels, respectively.

For each voxel layer and lead time, a correlation lengths is computed from all correlations of
this layer. The correlation length, dependent on the lead time, will be analyzed for different
voxel layers. For estimating the vertical correlation length, correlations of voxels located in
the same voxel column are considered. The correlation length is estimated for each lead time.
This will show if and how the correlations of the prediction error depend on the lead time.
This investigation will provide data to quantify the parameters of the prediction model.

5.4.2 Results and discussion

Figure 5.22 shows histograms of wet refractivity increments with a lead time of 10 minutes for the
synoptic stations a) Payerne and b) Mount Säntis. Both distributions are symmetric around zero.
The expectation value is zero for both stations. This is also observed for all the other stations
considered. A expectation value of zero is expected as a non-zero value would mean that the wet
refractivity changes considering a longer period.

The shape of the two histograms differs around the expectation value. The probability density
for Payerne smoothly decreases with increasing distance to the origin whereas there are two side
peaks at ±0.2ppm for Mount Säntis. This difference might be related to the different surroundings
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Figure 5.22: Histogram of the wet refractivity increments of a lead time of 10 minutes at the
synoptic stations in a) Payerne and b) Mount Säntis. The dashed line represents the density
function of the normal distribution with mean and variance equal to those of the wet refractivity
increments.

at the stations. Payerne is located in the Swiss Plateau and Mount Säntis is a wind exposed peak
at altitude of about 2500 m.

The density function of normal distribution with the same mean value and variance as those
of the data are plotted as dashed line in Figure 5.22. The slopes of the faces are less steep for
the density functions than for the sampling density. On the other hand, the sample density has
a longer tail than the density function. This is also clearly visible in the quantile-quantile plots
of Figure 5.23. This investigation has shown that the increments are not normally distributed.
However, the sample distribution function and the theoretical distribution function of the prediction
error show common properties. Both functions are symmetric around their mean value and both
functions have a mean value of zero.

−10

−5

0

5

10

S
a

m
p

le
 Q

u
a

n
ti
le

s
 [

p
p

m
]

−10 −5 0 5 10

Theoretical Quantiles [ppm]
(a) Payerne

−10

−5

0

5

10

S
a

m
p

le
 Q

u
a

n
ti
le

s
 [

p
p

m
]

−10 −5 0 5 10

Theoretical Quantiles [ppm]
(b) Mount Säntis

Figure 5.23: Quantile-quantile plot of the sample distribution derived from wet refractivity incre-
ments at the synoptic stations a) in Payerne and b) on Mount Säntis and the normal distribution
with the same mean value and variance as the increments at the stations.
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5.4 Investigations of the process noise using a random walk model

The autocorrelation functions of the wet refractivity increments of a lead time of 10 minutes are
shown in Figures 5.24 for a) Payerne and b) Mount Säntis. The sample autocorrelation function
is 1 at a lag of 0 and about -0.2 at a lag of 10 minutes for both stations. For larger lags, only non-
significant to very weak correlations are observed. Similar autocorrelation functions are observed for
the other synoptic stations. For the prediction error model, the autocorrelation function is a Dirac
function as the prediction error of two non-overlapping increments are independent. Comparing
this function to those from SwissMetNet stations show that the autocorrelation functions at the
SwissMetNet stations can be well approximated by a Dirac function at this time scale.
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Figure 5.24: Autocorrelation function of wet refractivity increments for a lead time of 10 minutes
at the synoptic station a) in Payerne and b) Mount Säntis. Dashed lines represent the significance
levels (significance level α = 0.05).

How does the prediction error change by increasing the lead time? The implemented prediction
model has the property that the variance of the prediction error linearly increases with lead time.
For the synoptic station in Payerne, the prediction error variance is computed from its measure-
ments for different lead times. In Figure 5.25, the median (solid line) and the quartiles (dashed
lines) of these variances are plotted in dependence of the lead time. The median shows a linear
increase with a slop of about 6.5 ppm2/h for lead times up to about 6 hours. Thereafter, the slope
of the curve decreases and begins to oscillate with a period of 24 hours. This plot shows that the
modeled prediction error well approximates the behavior of the observed prediction error for lead
times between 10 minutes to 6 hours.

The variances of the prediction errors within a voxel layer are collected and the weighted mean
value is computed from them for different lead times. These values are plotted in Figure 5.26 as
a function of lead time. The curves are computed from data of the numerical weather prediction
model COSMO-7. At all heights, the curves show a similar increase of the prediction error variance
with lead time as those computed from data measured at SwissMetNet stations. The weighted mean
variance linearly increases with lead time for lead times up to 6 hours. The slope varies between
4.9-7.5 ppm2/h below 2500 m altitude. This shows that the variances of the prediction error of
both data sets behave similar and that the prediction error model fits well for lead times up to
6 hours. For larger lead times, the slope of the curves decrease with lead time. If the lead time
tends to infinity, each curve approaches an asymptote. The value of these asymptotes seems to
depend on the height. Comparing the curves derived from the COSMO-7 data set with those from
the SwissMetNet data set, we can see that the values of the asymptotes are of the same order of
magnitude.
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Figure 5.25: Median (solid line) and quartile
(dashed lines) of the prediction error variance
at the SwissMetNet station vs. lead time.

Figure 5.26: Weighted mean of the predic-
tion error variance for different voxel layers
vs. lead time. Each curve represents the pre-
diction error variance for a voxel layer. The
curves are labeled with the height of the layer
( 1

2 (heightbottom + heighttop)).

Near the Earth’s surface, the prediction error also has a diurnal signal similar to that seen in the
SwissMetNet data. The diurnal signal quickly vanishes with increasing height. This observation
suggests that the signal is related to effects near the Earth’s surface and, therefore, the decrease
of the signal is rather connected with height above the Earth’s surface than with height above
the reference ellipsoid. In the middle and upper troposphere, the variance of the prediction error
decreases with height.

For each SwissMetNet station and voxel, the model defined by Equation 5.11 is fitted. It
describes the increase of the prediction error variance with the lead time. Weighted mean values
are computed for the two model parameters. Each fitted parameter of an SwissMetNet station or
of a voxel is weighted by the reciprocal of the parameter’s formal variance. Such weighted mean
values are computed for the SwissMetNet stations and for each voxel layer.

The scaling time ∆t0 indicates how quick the prediction error variance approaches the reference
variance s2 (asymptote). Comparing the estimated scaling time of the two data sets, the scaling
time is significantly smaller for the SwissMetNet data set than for the COSMO-7 data set (see
Table 5.1 and Table 5.2). The dashed line in Figure 5.27a) shows the mean value of all fitted
scaling times on the basis of COSMO-7 data (see Equation 5.11). In the lower troposphere, the
scaling time is up to twice as large as the mean scaling time. In the upper troposphere, the scaling
time is smaller than in the lower troposphere.

Table 5.1: Fitted parameters of the model described by Equation 5.11 using SwissMetNet data.
Parameter Estimated value Standard deviation

Reference prediction variance s2 116.0705 ppm2 1.3124 ppm2

Scaling time ∆t0 16.0556 h 0.3363 h

In Figure 5.26, we can see that each curve approaches an asymptote. The value of this asymptote
is represented by the parameter s2 (reference variance) in Equation 5.11. The reference variance is
plotted for each voxel layer in Figure 5.27b) indicated by circles. The reference variance exponen-
tially decreases with height and fits well with the model described by Equation 5.12 (dashed line).
The estimated parameters are listed in Table 5.2. The fitted model with the parameters ∆t0 and
s2 can be used to configure the prediction model of AWATOS 2.

The spatial correlation of the prediction error is investigated using Equations 5.13 and 5.14.
Figure 5.28 shows the horizontal correlation length l0 as a function of the lead time and of height.
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Figure 5.27: Scaling time ∆t0 and reference variance s2 of the prediction error variance (see
Equation 5.11) at different heights (circles) and for the model extended by Equation 5.12 (dashed
line). The plots are based on COSMO-7 data.

Table 5.2: Fitted parameters of the model described by Equations 5.11 and 5.12 using COSMO-7
data.

Parameter Estimated value Standard deviation

Reference prediction variance s2
0 297.745 ppm2 8.355 ppm2

Scaling height h0 2650.868 m 136.024 m
Scaling time ∆t0 23.901 h 2.258 h

Horizontal correlation lengths are shortest at about 1 km height. Below and above this altitude,
the horizontal correlation length is longer. The question whether the altitude with the shortest
horizontal correlation length is related to the planetary boundary layer height might be interesting
to investigate.

In layers close to the Earth’s surface, a signal with a period of 24 hours is visible. It quickly
vanishes with increasing height above the Earth’s surface. This indicates that this signal is related
to surface effects. Independent of the height, the horizontal correlation lengths increase with lead
time. This must be taken into account when the prediction model is configured, as the prediction
model of the Kalman filter assumes constant correlation lengths with respect to the lead time.

Figure 5.29 shows the vertical correlation length with respect to the lead time. As observed
for the horizontal correlation length, the vertical correlation length increases with lead time and,
thus, is not constant. This has to be considered in the configuration of AWATOS 2. Nevertheless,
the vertical and horizontal correlation lengths show only a small increase with lead times for lead
time shorter than 3 hours.

5.5 Conclusions
In this chapter, the properties of the wet refractivity field in Switzerland have been investigated.
On the one hand, the results of these investigations provide numbers to configure AWATOS 2, on
the other hand, they show limitations concerning the tomographic processing and the accuracy of
the tomographic results.

The main results of the tempo-spatial investigations are:

• The refractivity field in the troposphere is dominated by variations on the synoptical and
seasonal time scale.

• Especially during summer, diurnal variations are visible in the lower troposphere. Two differ-
ent patterns are often observed in data from synoptic stations: a) an oscillation with a period
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Figure 5.28: Horizontal correlation lengths of
the prediction error for different lead times and
layer heights. The correlations are computed
from COSMO-7 data.

Figure 5.29: Vertical correlation lengths of the
prediction error for different lead times. They
are computed from COSMO-7 data.

of one day with a maximum in the late afternoon, and b) two oscillations with a period of
half a day with maxima around 8 am and 8 pm local time. Amplitudes of oscillations with
a period of 24 hours are computed from NWP model data. At 2000 m altitude, mean am-
plitudes up to 7 ppm (1.0 g m−3 absolute humidity) are observed during July 2008. Largest
amplitudes are found near the Earth’s surface. They decrease with the height above ground.
During summer, diurnal variations are also visible in the zenith path delays estimated from
GPS phase observations. They are proportional to the wet refractivity variations and show
mean amplitudes of 6-8 mm during July 2008. Estimations have revealed that diurnal varia-
tions of the refractivity affecting the diurnal variation of zenith path delays are expected to
be present up to a few kilometers above ground.

• The assumption that the atmosphere is horizontally layered does not hold in alpine regions.
Mean wet refractivities measured on the same altitude but at different locations may differ
significantly from each other. At midnight, the mean wet refractivity is smaller if measured
near the Earth’s surface at high-elevated stations than at the same height for balloon sound-
ings in Payerne. At noon, the opposite is observed for stations in the Swiss planes and the
foothills of the Alps. For stations located in the inner alpine valleys, similar differences as at
midnight are observed.

• Near the Earth’s surface, boundary layer effects and locality have a significant impact on the
wet refractivity and on path delays. It is, therefore, expected that they are of importance for
tomographic reconstruction of the atmosphere’s refractivity field.

Investigations of the discretization error are carried out on a grid of about 37 km horizontal res-
olution in Central Europe. This is the same grid resolution which will be used for the tomographic
construction. The results of these investigations can be summarized as follows:

• The discretization error mainly varies on the synoptic and seasonal time scale. Diurnal and
semi-diurnal cycles are also visible, especially during summer. Significant monthly biases up
12 ppm (1.8 g m−3) are observed during summer. About 50% of the monthly biases are below
±2ppm (±0.3 g m−3) in the lower troposphere in July 2008. The standard error is typically
about 4 ppm (0.6 g m−3) considering data from July 2008. During winter, significant biases
are also observed. They are significantly lower than those in summer and rarely exceed
±2 ppm (±0.3 g m−3). The standard deviation is also smaller during winter and is about 1-
3 ppm (0.1-0.4 g m−3). These numbers show the limits of the accuracy which can be reached
with a grid resolution of 37 km and constantly parametrized voxels. For more accurate
results, the grid resolution needs to be refined and a dedicated GNSS network must be
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available. Another possibility would be a more precise prediction model, which exploits the
high temporal resolution of GNSS measurements.

• Largest discretization errors occur at an altitude of 1600 m.

• The spatial variation of the discretization shows patterns similar to the topographic pattern.
Investigations using the technique of empirical orthogonal functions have shown that the main
principle components are weakly correlated with height above ground and surface exposition.
The wet refractivity error described by main principle components is dominated by effects
on the synoptic time scale but shows a diurnal or semi-diurnal cycle as well.

• The significant biases observed in these investigations show that observations cannot be
treated as bias free in view of the tomographic model with the given grid resolution and
constant parametrization. This suggests a bias correction on the observation level. The
significant biases also show that a bias correction on the tomographic solution level has the
potential to considerably improve the accuracy of the tomographic results.

In the last part of this chapter, the stochastic properties of the wet refractivity field are compared
to the stochastic model proposed in Chapter 3. The investigations revealed that the stochastic
model well represents the reality in terms of the requirements of the Kalman filter.
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Chapter 6

Comparison of balloon sounding data
and GNSS-derived zenith path delays

Many different measurements from various types of sensors are used as input into the tomographic
reconstruction and for its validation. All these observations reflect the true atmosphere with a
certain accuracy. To validate the performance of tomographic algorithms with such data, we
need to distinguish between errors caused by deficiencies of the sensors and inaccuracies of the
tomographic reconstruction technique. This is pointed out in this chapter. The main error sources
of balloon sounding measurements and observations from synoptic stations are discussed in terms
of their impact on the tomographic reconstruction and on the validation of tomographic results.
In addition, differences between these two measurement types and path delays derived from GPS
are investigated as well as the impact of inaccuracies in modeling dry delays by Saastamoinen’s
model on zenith wet delays.

6.1 Error budget of meteorological sensors
Data from radio soundings are mainly used for validating the outcome of tomographic reconstruc-
tion in this work. This validation is based on comparisons between wet refractivities estimated
by the tomography software and in-situ measurements from radio soundings. According to Equa-
tion 2.8, the wet refractivity Nwet can be computed from the temperature T and partial water vapor
pressure Pwet. Sensors mounted on radio sounds or at stations on ground provide observations of
relative humidity RH or dew point temperature Tdew point. In combination with temperature
measurements, the partial water vapor pressure can be computed.

Pwet = RH
100 P∗wet(T ) (6.1)

Pwet = P∗wet(Tdew point) (6.2)

where RH is the relative humidity in [%], T the temperature in Kelvin, and P∗wet(T ) the saturated
water vapor pressure over water. Murray’s approximation was used to compute the saturated water
vapor pressure P ∗wet (Kraus 2004).

P ∗wet = k exp
(
a (T − c)
T − b

)
(6.3)

where

k = 6.1078 hPa
a = 17.2693882
b = 35.86 K
c = 273.16 K
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6 Comparison of balloon sounding data and GNSS-derived zenith path delays

Table 6.1: Typical standard deviations of random errors for temperature and humidity measure-
ments for radio soundings (Vaisala and RS80-A and RS92-SGP) and for ground-based measure-
ments (Meteolabor VT36 and VTP37). For details see Meteolabor 2002, Meteolabor 2008, Milo-
shevich et al. 2001, and Bian et al. 2011.

Measurement type σ of temperature σ of humidity

Radio sounding 0.25 K 2% (1)

Ground-based measurement 0.2 K 0.25 K (2)

(1) relative humidity, (2) dew point temperature

The wet refractivity can be computed from temperature and humidity measurements. The
impact of random errors in these measurements on the wet refractivity is estimated by the law of
error propagation (Schönwiese 2000).

ΣΣΣf,f = JΣΣΣx,x JT (6.4)

where J is the Jacobian matrix of the function f(x1, . . . , xm) ∈ Rn relating temperature and humid-
ity to wet refractivity, n the number of dimensions of the function’s image, and ΣΣΣx,x the covariance
matrix of the input values x1, . . . , xm. The base observations (temperature and humidity) are
assumed to be independent. Accordingly, the covariance matrix ΣΣΣ is a diagonal matrix with the
precisions σ2 of the temperature and humidity sensor on the diagonal. The Jacobian J is computed
from the Equations 2.8 and 6.1 for balloon soundings, and Equations 2.8 and 6.2 for ground-based
stations. The resulting equations are non-linear and have, therefore, to be linearized.

Given the sensor precisions listed in Table 6.1, the wet refractivity error is estimated for different
temperature and humidity values (see Figure 6.1a) and b)). In the case of balloon sounding
measurements, the error in wet refractivity mainly depends on the temperature. The higher the
temperature the larger the wet refractivity error. The wet refractivity error does usually not exceed
4 ppm standard error for temperatures below 30◦ C. In the case where humidity is provided by
sensors measuring dew point temperature, the wet refractivity error is dominated by inaccuracies
in the dew point measurement. The wet refractivity error increases with dew point temperature
and is small than 2.5 ppm standard error for temperature below 30◦ C.

0.5

0.75

1

1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

3.5
3.75

4

240

260

280

300

T
e

m
p

e
ra

tu
re

 [
K

]

0 20 40 60 80 100

Relative Humidity [%]

0

1

2

3

4

S
td

. 
D

e
v
. 
o
f 
W

e
t 
R

e
fr

a
c
ti
v
it
y
 [
p
p
m

]

(a) Standard deviation of radio soundings in ppm wet
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Figure 6.1: Wet refractivity standard deviation caused by the temperature and humidity measure-
ment inaccuracies for a) balloon soundings and b) for ground-based meteorological stations.

In the last decades, the observations from balloon sounding have been investigated in terms of
systematic errors and accuracy. Miloshevich et al. 2001; Wang et al. 2002; Vömel et al. 2003;
Fujiwara et al. 2003 have analyzed radio sounding equipment from different manufacturers and
compared them among each other and to reference measurements from high-precision sensors.
They found significant biases between the different sensors and the reference measurements. These
biases are significantly larger than the precisions given by the manufacturers of the sounding devices
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6.1 Error budget of meteorological sensors

(WMO 2008). The main systematic errors are listed for temperature and humidity sensors mounted
on balloon soundings. Note that the errors may considerably differ for different sensor types.

Temperature sensors:

Calibration: According to WMO 2008, most modern temperature sensors have only small sonde
errors caused by calibration between the surface and 30 hPa.

Thermal lag: Temperature sensors have a certain response time on temperature changes. As the
temperature of the atmosphere usually decreases with height, the sensor reports too warm
temperatures. Typically, the reported temperatures are too high by about 0.1 K in the
lower and 0.25 K in the upper troposphere. However, the vertical temperature gradients may
exceed 4 K per 100 m in strong temperature inversions. So, the temperature error may be
much larger than the values quoted above for short periods (WMO 2008).

Radiative heat exchange in the infrared: Heat exchange with the infrared background can gener-
ate significant errors at high altitudes. At pressures lower than 30 hPa, positive temperature
errors larger than 0.5 K are found on flights, where air temperatures lower than -75◦C were
measured (WMO 2008).

Heating by solar radiation: At daytime, incident solar radiation causes heating errors up to 1 K.
Software correction schemes are used to correct these errors. They feature an expected
uncertainty of 20 % (WMO 2008) leading to a maximal uncertainty of the temperature
measurements of 0.2 K.

Deposition of ice or water on the sensor: The deposition of water or ice on the temperature sensor
leads to psychrometric cooling of the sensor during the ascent in an environment with relative
humidity less than 100 %. Moreover, if the deposition of water or ice changes its aggregate
state, latent heat is released or absorbed by the deposition and, accordingly, the temperature
measured by the sensor is influenced (WMO 2008).

Humidity sensors:

Calibration: A variation of several percent in relative humidity is observed between humidity sen-
sors from different batches (Nash et al. 1995) possibly as a consequence of faulty calibration
procedures during manufacturing (WMO 2008).

Slow sensor response and sensor hysteresis: Systematic errors caused by the slow response of hu-
midity sensors are only significant below -20◦C for thin-film capacitors and carbon hygristors.
Errors caused by hysteresis are limited to a few percent for most of the sensors (WMO 2008).

Differences between sensor temperature and true atmospheric temperature: The temperature and
the humidity sensor have usually a different time response to changes in temperature and
in humidity, respectively. This causes systematic errors if both measurements are used to
compute quantities like dew point temperature or wet refractivity. This can lead to an error
of -1.5% at 50% relative humidity. The error is even larger at lower temperatures. A decrease
of 4-6% of relative humidity at temperatures between -10◦ and -30◦ C is caused by this kind
of effect.

Wetting or icing in cloud: Wetting or icing in cloud increases the relative humidity by at least
10% on average (Nash et al. 1995). Under severe icing conditions, relative humidity values
may be expected that are up to 30 percent too high (WMO 2008).

The measurements provided by the balloon soundings will be used to validate the output of the
tomographic reconstruction. To draw correct conclusions from the validations, the influence of the
systematic temperature and humidity measurement errors on the wet refractivity should be taken
into account. Figures 6.2a)-f) show the influence of these errors on wet refractivity.
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Systematic errors in the temperature measurements are usually below 0.5 K. Figure 6.2c) shows
that the resulting error in wet refractivity is below 5 ppm for atmospheric condition found in
Central Europe. However, errors caused by the thermal lag of temperature sensors may be larger
than 0.5 K. As can be seen in Figure 6.2a), errors of this magnitude lead to errors up of to 10 ppm
in wet refractivity.

Regarding the systematic errors in humidity measurements, they cause larger errors in wet
refractivity than those of temperature measurements. Calibration errors and errors caused by the
difference between sensor temperature and true atmospheric temperature amount to a few percents.
A relative humidity error of 5 percent leads to an error below 10 ppm in wet refractivity. Wetting
and icing in cloud may cause relative humidity errors in the order of 10%. Errors of this magnitude
result in wet refractivity errors up to 15 ppm.

Another quantity of interest in validating tomographic output is the zenith wet path delay. The
impact of measurement errors made by balloon soundings on the zenith path delay is investigated
by (Haase et al. 2003). They observed biases up to 15 mm in the zenith total delay, mainly caused
by the heating due to solar radiation.

In-situ measurements from synoptic stations and from balloon soundings are used to eliminate
the dry part from the tropospheric delays estimated from GNSS observations by the Saastamoinen
model and for validation of the tomographic results on the basis of an integrated quantity, such
as zenith path delays, respectively. Their impact on zenith path delays is investigated in the
subsequent paragraphs.

For the Saastamoinen model, the impact of temperature and relative humidity measurement
errors on the zenith dry and wet delay is computed in the following way

∆error,T = ∆%Saas(P, T + ∆T, RH) − ∆%Saas(P, T,RH) (6.5)
∆error,RH = ∆%Saas(P, T, RH + ∆RH) − ∆%Saas(P, T,RH) (6.6)

where ∆%Saas is the dry or the wet part of the modified Saastamoinen model (see Equation 2.16
and 2.17, respectively), P the pressure, T the temperature, RH the relative humidity, ∆T the
systematic error of the temperature measurement, ∆RH the systematic error of the relative hu-
midity measurement. In addition to the Saastamoinen model, Equation 6.1 is needed to compute
the partial water vapor pressure from temperature and relative humidity.

For sounding-based measurements, it is assumed that the temperature or the relative humidity
sensor reports values during the ascent which are all equally biased. Accordingly, a constant obser-
vation error is added for each measurement. For temperature and relative humidity measurement
error, the resulting error in the zenith delay is then given by

∆error,T = 10−6

∫ ztop

zbottom

N(P, T + ∆T, RH) − N(P, T,RH) dz (6.7)

∆error,RH = 10−6

∫ ztop

zbottom

N(P, T, RH + ∆RH) − N(P, T,RH) dz, (6.8)

respectively, with pressure P , temperature T , and relative humidity RH. The function N(P, T,RH)
denotes the dry or the wet refractivity. The refractivities can be estimated by Rüeger’s formula
(see Equation 2.8). As this formula requires the partial water vapor pressure, Equation 6.1 is used
to convert relative humidity to partial water vapor pressure. The integration starts at mean sea
level and stops at 25 km and 60 km altitude for zenith wet and dry delays, respectively.

The pressure, temperature and relative humidity values are based on an atmospheric model
similar to that of the U.S. standard atmosphere (ISO 2533:1975 1975). This standard atmosphere
divides the atmosphere into layers with different temperature gradients. The gradients are listed
in Table 6.2. Given a temperature at the reference level, which is at mean sea level, a temperature
profile can be computed from the tabulated gradients using the following relation:

T(z) = T0 + γ(z − z0) (6.9)

where γ is the lapse rate in [K/km], z the height above the lower boundary z0 of the layer, both
in [km], and T0 the temperature at height z0 in [K].
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(a) Temperature error of +1 K (b) Relative humidity error of +10%

(c) Temperature error of +0.5 K (d) Relative humidity error of +5%

(e) Temperature error of +0.1 K
(f) Relative humidity error of +1%

Figure 6.2: Dependence of the wet refractivity error on different atmospheric conditions for different
systematic measurement errors in temperature (first column) and in relative humidity (second
column).
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Table 6.2: Lapse rate for different atmospheric layers ranging from the Lower to upper Upper
boundary (ISO 2533:1975 1975).

Lower [km] Upper [km] Gradient [K/km]

0 11 -6.5
11 20 0.0
20 32 1.0
32 47 2.8
47 51 0.0
51 71 -2.8

The pressure profile is computed by

P = P0

(
T0 − γ (z − z0)

T0

) g
γR

(6.10)

P = P0 exp
(
− g(z − z0)

RT

)
(6.11)

with

z : Height
P : Pressure
T : Temperature
z0 : Lower boundary of the layer (reference level)
P0 : Pressure at the reference level
T0 : Temperature at the reference level

g : Gravitational acceleration (≈ 9.81 ms−1)

R : Gas constant of air (≈ 287 J kg−1)

Equation 6.10 is used in layers in which the lapse rate is zero. Otherwise, Equation 6.11 is applied.
Along the whole profile, a constant relative humidity of 50% is assumed.

Figure 6.3 shows zenith path delay errors for different temperatures and temperature errors.
Using the Saastamoinen model, a positive temperature measurement error has only little effect on
the zenith dry delay. At a temperature of 30◦ C at mean sea level, a measurement error of 1◦C
leads to an error of about 0.3 mm in the zenith dry delay. If the temperature is below 30◦C at
mean sea level, the error is even smaller. Temperature measurement errors by balloon soundings
have a much large impact on the zenith dry delay. The error in the zenith dry delay increases by
10 mm/K with the temperature error. The temperature and dry path delay errors are negatively
correlated. In contrast to that, a sensor reporting too high temperatures results in a too large
zenith wet delay. At a temperature of 0◦ C at mean sea level, a temperature error of 1◦ C leads to
a zenith wet path delay error of 2.0 mm and 2.5 mm for the Saastamoinen model and for balloon
soundings, respectively. The error is considerably larger at higher temperatures. At a temperature
of 30◦ C at mean sea level, the errors increase to 6.5 mm and 9.5 mm, respectively.

Combining the dry and wet delay errors, we can estimate the zenith total delay error. For
Saastamoinen’s model, the zenith total delay error is about -6 mm for a temperature error of 1◦C
at 20◦C at mean sea level and -2 mm at 0◦C. The error for biased temperature measurements from
balloon soundings is -2.5 mm and 8 mm for a positive temperature bias of 1◦C at 20◦ and 0◦C,
respectively.

Besides temperature measurements, humidity measurements are needed to compute zenith path
delays from meteorological observations. Figure 6.4 shows the impact of biased relative humidity
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(a) Error ZDD Saastamoinen (b) Error ZDD sounding

(c) Error ZWD Saastamoinen (d) Error ZWD sounding

Figure 6.3: Errors in the zenith dry and wet delay caused by systematic errors in temperature
measurements. In the first column, Saastamoinen’s model is used to estimate the zenith dry delay
(ZDD) and the zenith wet delay (ZWD) from meteorological measurement at the Earth surface.
In the second column, the delay error is computed by integrating along a vertical profile through
a model atmosphere. Thereby, a constant measurement error is assumed.

measurements (measured minus truth) on zenith dry and wet path delays at different temperatures.
For the Saastamoinen model, a relative humidity of 10% larger than the truth results in a zenith
dry delay error of less than one millimeter (-0.8 mm) for temperatures lower than 20◦ C at mean
sea level. In contrast to this, the impact of biased humidity measurements on the dry path delay is
much larger for delays computed from balloon sounding data. A sensor reporting relative humidity
values which are 10% larger than the truth results in zenith dry delays which are 40 mm and 9 mm
too short for temperatures of 20◦ C and of 0◦ C at mean sea level, respectively. For biased humidity
measurements, the error in the zenith wet delay is 22 mm for the Saastamoinen model and 26 mm
for balloon soundings at a temperature of 20◦ C at mean sea level and measured relative humidity
values which are 10% larger than the truth. At a temperature of 0◦ C at mean sea level, the zenith
wet delays are about 6-7 mm too large for both approaches.

For the Saastamoinen model, the impact of biased humidity measurements on zenith total
delays is similar to that on zenith wet delays (see Figure 6.4c)) because the influence on the wet
part of the zenith path delay is one order of magnitude larger than that on the dry part. For
the zenith total delays derived from balloon soundings, measured relative humidities which are
10% larger than the truth lead to zenith total delays which are 14 mm shorter than the truth at
temperature of 20◦ C at mean sea level. The error reduces with temperature and the zenith total
delays are about 3 mm too short at freezing temperature at mean sea level.
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(a) Error ZDD Saastamoinen (b) Error ZDD sounding

(c) Error ZWD Saastamoinen (d) Error ZWD sounding

Figure 6.4: Error of the the zenith dry and wet delay caused by errors in the relative humidity
measurements. In the first column, Saastamoinen’s model is used to estimate the zenith dry delay
(ZDD) and the zenith wet delay (ZWD) from meteorological measurements at the Earth’s surface.
In the second column, the delay error is computed by integrating along a vertical profile though a
model atmosphere. Thereby, a constant measurement error is assumed.

6.2 Intercomparison between zenith path delays of different
sources

In this section, zenith total, wet, and dry delays will be investigated in terms of systematic differ-
ences between time series derived from different sensors. Similar investigations have been subject
of several studies in recent years (Elgered et al. 1997; Bevis et al. 1992; Rocken et al. 1993;
Duan et al. 1996; Emardson et al. 1998; Tregoning et al. 1998). Haase et al. 2003 have com-
pared zenith total delays and zenith wet delays derived from GPS, radio soundings, and numerical
weather model for 51 stations in the Western Mediterranean. Guerova et al. 2003 investigated the
accuracy of integrated water vapor at Payerne in Switzerland during the winter 2000/2001.

The investigations presented in this section are based on time series from different observations
collected in Payerne: a) balloon soundings, b) ground-based meteorological measurements, and c)
GPS phase observations. The time series spans a period of 2 years and has a sampling rate of
12 hours (observations at midnight and noon). The time series from different observation sources
are compared in view of the following points:

Mean value: The mean values from different time series are tested on significant differences. This
allows us to judge if significant differences exist already between the input data of the to-
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mography (GPS derived data) and the validation data (balloon sounding data). Mean values
are separately computed for observations at noon and midnight.

Day-night difference: The mean difference between observations at the noon and midnight is com-
puted for each time series. If this difference varies from sensor to sensor, this is an indicator
that the sensors are affected by different systematic measurement errors. A main goal is
to figure out whether the systematic errors of balloon sounding observations listed in the
previous section are significant in the zenith path delay.

Synoptic signal: After removing systematic errors, variations of the synoptic scale are extracted
from each time series. The correlation coefficient between two time series and the variance
for each time series are computed. These statistical measures are then compared with each
others. With these measures, we can coarsely estimate the precision of the observations.

The investigations listed above are performed by fitting a simple model. The model estimates
the mean value for the observations at noon and midnight. In addition, the seasonal variation is
removed. This results in a band-pass filter where the postfit residuals contain variations on the
synoptic scale and higher order harmonics of the seasonal cycle.

∆% = µday + ∆µ fnight(t) + fday(t) aday sin
(

2π
τ

(t + φday)
)

+

+ fnight(t) anight sin
(

2π
τ

(t + φnight)
)

(6.12)

∆% : Zenith path delay in meters
t : Time in days

fday(t) =

{
1 at noon
0 at midnight

fnight(t) =

{
0 at noon
1 at midnight

µday : Mean value at noon
∆µ : Offset between noon and midnight
aday : Amplitude of the seasonal cycle at noon
anight : Amplitude of the seasonal cycle at midnight
φday : Seasonal phase shift at noon
φnight : Seasonal phase shift at midnight

τ : Seasonal period (365.25 days)

6.2.1 Zenith total delays
In this subsection, zenith total delays from radio sounding data and GPS phase observations are
investigated. Figure 6.5 shows a time series of zenith total delays derived from balloon soundings.
A seasonal variation is clearly visible. The mean value of the zenith total delays is 2.2857 m
and the standard deviation 4.28 cm for the radio soundings. The mean value and the standard
deviation of the zenith total delay computed from GPS phase observations are 2.2874 m and
4.68 cm, respectively.

Is there any significant bias between these two observations? We have, therefore, compute the
differences between the two times series (ZTD GPS minus ZTD radio sounding). The mean value
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Figure 6.5: Time series of zenith total delays computed from radio soundings at the station in
Payerne.

and the standard deviation of the differences are 1.7 mm and 12.3 mm, respectively. The mean
value is significantly different from zero meaning that there is a bias between the zenith total delays
derived from GPS and those from balloon soundings. A seasonal cycle is still recognizable in the
time series (see Figure 6.6), but with a lower amplitude than in the series shown in Figure 6.5. This
shows that the bias between the two observation types varies with time and suggests a seasonal
bias corrections.
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Figure 6.6: Difference between zenith total delays derived from radio soundings and GPS (ZTD
GPS minus ZTD radio soundings) at the station in Payerne.

In Figure 6.7, the histograms for the time series of zenith total delays derived a) from balloon
sounding and b) from GPS are shown. The observations from the two series are similar distributed.
Both histograms have a positive skewness which indicates that they are not normally distributed.

The parameters of the model described by Equation 6.12 are estimated for the two time series
of the zenith total delay (see Table 6.3). For zenith total delays derived from balloon soundings
and from GPS phase observations, the seasonal amplitudes for day and night values also differ
significantly. The same is true for the seasonal phase shift between day and night. The mean values
at noon and at night differ significantly for zenith total delays computed from radio soundings
whereas they do not for GPS-derived zenith total delays. Obviously, solar effects influence the
two measurement sources differently. Assuming no difference between the zenith path delays at
night and at noon would mean that the observed systematic difference between the zenith total
delays derived from balloon soundings at day and night is related to measurement errors. As seen
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(a) Radio soundings (b) GPS

Figure 6.7: Histogram of zenith total delays computed a) from radio sound launches at Payerne,
and b) from GPS measurements. The data sets include data from January 2006 to December 2007
with a sample rate of 12 hours.

in the previous section, differences between temperatures measured by sensors mounted on radio
soundings at day and night can be related to heating by solar radiation. At daytime, heating
by solar radiation leads to too high temperature measurements and, accordingly, to zenith total
delays which are smaller than the truth. This large difference can, however, not fully explained by
the measurement error in the temperature sensor (see Figures 6.3) as the measured temperatures
would need to be biased by a several Kelvin. This would suggest that the humidity measurements
are also biased. On the other hand, zenith path delays computed from GPS phase observations
may be influenced by a higher density of electrons in the ionosphere during daytime. Although the
ionospheric delays are reduced to a large extent by the combination of the two frequencies emitted
by GPS satellites and by the building of double differences, the remaining part may affect the
estimated zenith path delays. Investigations have shown that the remaining part can reach 2 mm
path delay at low elevations in quiet ionosphere condition (Lutz et al. 2010). The years 2006-2008
are years with low solar activity. We can, therefore, conclude that the observed day-night difference
in the zenith total delays cannot be explained by ionospheric effects.

Figure 6.8 shows the difference between the postfit residuals of the zenith total delays (GPS
minus radio sounding). The standard deviation of the series is 1.08 cm. Computing the power
spectrum of the series shows no dominating frequencies. In Figure 6.9, the monthly mean and
standard deviation are plotted. The biases show no seasonal cycles whereas the standard deviations
tend to be larger during summer.

6.2.2 Zenith dry delays

Zenith dry delays can be computed from meteorological observations on the Earth’s surface using
the dry Saastamoinen model (see Equation 2.16). Such delays are subtracted from zenith total
delays, which are estimated by the GPS processing software, to get zenith wet delays. As a
consequence of this, measurement and modeling errors of the dry delay have a direct impact on
the wet delays and, accordingly, on the tomographic results. Therefore, an accurate modeling of
zenith dry delays is essential for the accuracy of ground-based GNSS tomography.

The mean value for the time series from the dry Saastamoinen model and from radio soundings
are 2.1858 m and 2.1831 m, respectively. They show a significant bias of 0.26 cm. The standard
deviations do not significantly differ (1.62 cm and 1.69 cm, respectively). The two series are very
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Table 6.3: Fitted values and their standard deviations for the parameters of Equation 6.12. They
are estimated from zenith total delays derived from radio soundings and from GPS phase observa-
tions.

Measurement source Parameter Fitted value Standard deviation
Radio soundings

µday 2.2832 m 0.0011 m
δµ 0.0113 m 0.0015 m
aday 0.0395 m 0.0015 m
anight 0.0466 m 0.0015 m
φday 52.8284 d 2.2025 d
φnight 54.8141 d 1.9217 d

GPS phase observations

µday 2.2893 m 0.0012 m
δµ 0.0036 m 0.0017 m
aday 0.0477 m 0.0017 m
anight 0.0483 m 0.0016 m
φday 56.8350 d 2.0502 d
φnight 55.6297 d 2.0110 d

highly correlated (0.995) and, thus, the difference of the two series has a small standard deviation
(0.16 cm), which is one order of magnitude smaller than those of the time series of zenith dry delays.
No seasonal cycle is recognizable in the two time series. Figure 6.10 shows the time series of zenith
dry delays estimated from ground-based measurements using the dry Saastamoinen model.

According to the model described by Equation 6.12, a parameter set is estimated for the time
series of zenith dry delays from ground-based measurements and from radio soundings. Both
time series have a sample rate of 12 h with observations at noon and midnight. Ground-based
measurements at times that differ from midnight and noon are not considered. Table 6.4 lists the
fitted parameters for both time series. For both series, there is no significant difference between
the delays at noon and at night.

Zenith dry delays are mainly influenced by pressure variations and less by temperature varia-
tions (see Equation 2.16). Therefore, zenith dry delays computed by the dry Saastamoinen model
are rather insensitive to biased temperature and humidity measurements (see also Figures 6.3
and 6.4). Consequently, we can assume that no systematic day-night difference in the zenith dry
delay exists.

In the previous subsection, we have observed a systematic difference of about 1 cm in the zenith
total delay computed from balloon soundings. The fact that no systematic day-night difference
is present in the zenith dry delay relativizes the supposition that the day-night difference in the
zenith total delay of balloon sounding measurements is mainly based on systematic measurement
errors. The possibility that systematic errors of balloon soundings cancel mutually out is small as
we would then expect differences in the seasonal cycles of the zenith dry delay derived from balloon
soundings and from dry Saastamoinen model. But, no significant differences are observed in the
parameters describing seasonal variability.

6.2.3 Zenith wet delays

Ground-based GNSS tomography is based on wet path delays. As GPS processing software provides
zenith total delays, the dry part has to be eliminated before the tomographic processing. In our
setup, the Saastamoinen model is used to estimate the dry part (see Equation 2.16). In this
subsection, the resulting zenith wet delays are compared to zenith wet delays computed from data
provided by balloon soundings. As in the previous subsections, data of the meteorological station
in Payerne is considered.
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Figure 6.8: Time series of the postfit residual difference. The model parameters of Equation 6.12
are fitted for zenith total delays computed from GPS phase observations and for zenith total delays
calculated from balloon soundings. The difference is calculated by subtracting the balloon sounding
residuals from those of GPS phase observations.
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Figure 6.9: Monthly biases (GPS minus radio soundings) and standard errors of the residuals
according to the model described by Equation 6.12. The black bars refer to the bias and the white
bars to the standard error.

The time series of zenith wet delays shows a seasonal cycle (see Figure 6.11). This can also be
seen in the fitted parameters (see Equation 6.12 and Table 6.5). The amplitude of the seasonal cycle
is about 4.4-5.1 cm for zenith wet delays derived from balloon sounding data and about 5.1 cm for
those derived from GPS phase observations. These amplitudes are similar to those estimated for
zenith total delays. This implies that the seasonal cycle of zenith total delays is mainly caused by
the wet part of the zenith path delays. Looking at the seasonal phase shifts, they are also similar
to those of the zenith total delays.

The mean values are 10 cm and 10.4 cm for zenith wet delays at noon derived from balloon
sounding and from GPS phase observations, respectively. The difference between the mean values of
zenith wet delays from the different measurement sources is about 2 mm smaller than the difference
of mean values of zenith total delays. The zenith wet delays at midnight are 1.2 cm larger than
those at noon for delays computed from balloon sounding data. This is a significant difference. On
the other hand, the difference between midnight and noon for zenith wet delays computed from
GPS phase observations is not significant. The day-night differences are of the same magnitude as
for zenith total delays.

The postfit residuals of the two time series are highly correlated with 0.943. This is even larger
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6 Comparison of balloon sounding data and GNSS-derived zenith path delays

Table 6.4: Fitted parameters and their standard deviations for the parameters of Equation 6.12.
The two time series of zenith dry delays are computed from radio soundings and from ground-based
measurements in Payerne.

Measurement source Parameter Fitted value Standard deviation

Radio soundings

µday 2.1829 m 0.0006 m
δµ 0.0002 m 0.0008 m
aday 0.0074 m 0.0008 m
anight 0.0067 m 0.0008 m
φday 295.3 d 7.8 d
φnight 294.2 d 10.4 d

Ground-based measurements

µday 2.1854 m 0.0006 m
δµ 0.0009 m 0.0008 m
aday 0.0071 m 0.0008 m
anight 0.0067 m 0.0008 m
φday 302.6 d 6.8 d
φnight 303.3 d 7.3 d

Table 6.5: Fitted parameters and their standard deviations for zenith wet delays computed from
radio soundings and from GPS phase observations at Payerne using the model described by Equa-
tion 6.12. The dry part of the zenith total delays derived from GPS phase observations are modeled
from ground-based measurments using the dry Saastamoinen model.

Measurement source Parameter Fitted value Standard deviation

Radio soundings

µday 0.1003 m 0.0011 m
δµ 0.0115 m 0.0015 m
aday 0.0439 m 0.0015 m
anight 0.0507 m 0.0015 m
φday 61.1 d 2.0 d
φnight 61.2 d 1.8 d

GPS phase observations

µday 0.1038 m 0.0012 m
δµ 0.0029 m 0.0017 m
aday 0.0514 m 0.0018 m
anight 0.0518 m 0.0017 m
φday 62.6 d 2.1 d
φnight 61.8 d 2.0 d
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Figure 6.10: Time series of zenith dry delays computed from ground-based meteorological mea-
surements at Payerne using the dry Saastamoinen model.
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Figure 6.11: Time series of zenith wet delays (ZWD). They are computed from zenith total minus
zenith dry delay. The former are estimated from GPS phase observations and the latter by the
Saastamoinen model from ground-based measurements.

than for zenith total delay. Out of these two time series, the difference can be computed (GPS
minus balloon soundings). The resulting time series has a standard deviation of 1.08 cm and is
plotted in Figure 6.12.

6.3 Conclusions

Time series of zenith path delays derived from different sensors are compared among each other.
Precision and systematic errors of these sensors have been investigated and their impact on the
wet refractivity and the tropospheric path delays has been considered. Sensors attached to balloon
sounding devices and sensors installed at synoptic stations are included in these investigations.

For meteorological conditions found in mid-latitudes, the precision of the wet refractivity derived
from balloon soundings and from synoptic stations is less than 4 ppm and 2 ppm standard deviation
(0.6 g m−3 and 0.3 g m−3 in absolute humidity), respectively. The precision quickly improves
with lower temperatures and is smaller than 0.5 ppm (0.07 g m−3) for temperatures smaller than
0◦ C. Thus, the precision is sufficient small in the upper part of the troposphere for evaluating
tomographic algorithms.

Meteorological sensors suffer from different error sources which mainly cause measurement
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Figure 6.12: Time series of the postfit residual differences. Parameters according to Equation 6.12
are fitted to the zenith wet delays derived from GPS phase observations and for zenith wet delays
computed from balloon soundings in Payerne. The difference is computed by subtracting the postfit
residuals of balloon soundings from those of GPS.

biases. The investigations have shown that most important error sources in view of validating
GNSS tomography are

• solar-related effects, such as heating by solar radiation. In wet refractivity units, heating of
the temperature sensor by solar radiation causes a systematic error up to 1 ppm (0.15 g m−3).
Due to its decrease with height, it has to be taken into account predominantly in the lower
part of the troposphere.

• the deposition of ice or water on the sensors is another significant source of systematic errors.
This effect can lead to large errors up to a few tens of ppm wet refractivity in the lower part
of the troposphere and is needed to be considered in the interpretation of the tomographic
results.

Comparing the uncertainty in balloon sounding measurements to the discretitazion errors in
the tomographic reconstruction process, they are both of the same order of magnitude and have to
be taken into account by assessing tomographic algorithms with balloon sounding data. Another
error source in the evaluation is the departure of the true balloon track from an instantaneous
vertical climb.

Differences between wet path delays used as input data to the tomography and the delays
derived from balloon soundings introduce uncertainties in the evaluation of the tomographic algo-
rithms. During the day, zenith wet delays from GPS are 3.5 mm larger than those from balloon
soundings. During the night, the opposite is observed: Zenith wet delays from balloon sounding
are about 5 mm larger than those from GPS. Comparing the two time series, we see a high cor-
relation of 0.943. These discrepancies have to be considered in the evaluation of the tomographic
algorithms.

An error source in the zenith wet delays derived from GPS data stems from the modeling of the
dry part of the path delay. Although the dry part of the Saastamoinen model (see Equation 2.16) is
relatively insensitive to errors in temperature measurements (less than 0.25 ppm for a temperature
error of 1 K), comparisons between time series of zenith dry delays modeled by Saastamoinen’s
model and delays computed from balloon sounding data show a bias of 2.5 mm. Apart from this
bias, the time series are highly consistent: The correlation between them is 0.995. Compared with
the uncertainty in the zenith total delays, the uncertainty in the dry part is about one order of
magnitude smaller. Therefore, the elimination of the dry part by Saastamoinen’s model is accurate
enough for tomographic reconstruction.
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Chapter 7

Potential of new GNSSs and dense
networks in view of GNSS
tomography

In recent years, many advances have been made in GNSS technology and in the processing of GNSS
signals. For instance, the newest generation of GPS satellites provides a third frequency which
improves the modeling of the ionospheric effects and offers new possibilities in ambiguity resolution.
Additionally, the number of GNSS satellites have been steadily increased. GLONASS will achieve
full constellation in 2011 and two more GNSSs are in development, such as the European Galileo and
the Chinese COMPASS. The receiver technology has been improved, too. This development leads
to multi-GNSS capable receivers that are available at relatively low costs making dense networks
affordable and GNSS even more attractive for surveying and meteorology. Finally, cutoff angles
for GNSS signals are considerably lowered due to advances in the GNSS processing. Low-elevation
signals are important in GNSS tomography. What do all these developments mean in view of GNSS
tomography and what is the impact of them on the precision of the refractivity estimated with
GNSS tomography? These questions will be discussed in this chapter. In particular, the following
points will be investigated with the help of an error analysis:

• The potential of additional GNSSs to improve the precision of GNSS tomography will be
estimated.

• The impact of denser GNSS networks on the precision of GNSS tomography will be analyzed
and a practical extension of a GNSS network in Switzerland will be evaluated.

• Recommendations for the selection of receiver locations will be devised. Properties such as
satellite visibility and station height distribution of the network will be considered.

7.1 Configurations
The error analyses are carried out with the help of the tomography software AWATOS. The software
has been evaluated in several studies in recent years (e.g. Troller 2004; Troller et al. 2006; Lutz 2009
and Lutz et al. 2010). In Troller et al. 2007, AWATOS has been investigated for a study period of
one year. The evaluations have shown a good agreement between the tomographic solutions and
the refractivity distribution derived from radio soundings and the numerical weather prediction
(NWP) model COSMO-7.

Since our focus is on Switzerland, a similar configuration to that given by Troller et al. 2006
is used as base configuration. Some of the configuration options have been modified in this chap-
ter to investigate their impact on the formal accuracy of the unknown refractivities. The base
configuration and derivations from it are listed in Table 7.1.
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7 Potential of new GNSSs and dense networks in view of GNSS tomography

Table 7.1: Configuration options used for the error analyses.
Parameter Base configuration Variations

Horizontal resolution 3×6 cells 2×4, 6×12
Vertical resolution 15 levels 5, 10, 20 and 30 levels
Cutoff elevation angle 10◦ 0◦, 3◦, 5◦
Satellite system GPS only GPS and Galileo
Number of receivers 31 stations (AGNES) 92 stations (AGNES and

SwissMetNet)

Observations GNSS double difference delays
Pseudo-observations A priori values and neighborhood

averaging constraints

The investigations presented in this chapter represent the measurement configuration of 20th

November 2006 (24 hours) in Switzerland. As input data, the geometry of the rays between
satellites and receiver stations, and the accuracy of double difference delays, a priori values, and
intervoxel constraints are considered. With this information, AWATOS is capable to compute the
formal error of the unknowns. On the basis of the formal errors, configurations are compared with
each other.

Horizontal and vertical resolution

The area between 46.0◦-47.5◦ latitude and 6.5◦-9.5◦ longitude is horizontally subdivided into 2×4,
in 3×6 or in 6×12 grid cells. Each of these cells has dimension 0.75◦×0.75◦, 0.5◦×0.5◦, and
0.25◦×0.25◦, respectively. The 0.5◦×0.5◦ grid is shown in Figure 7.1.
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Figure 7.1: Model domain and the horizontal floor plan of the model grid with 0.5◦ grid spacing
(blue lines).

In contrast to the horizontal dimensions, the vertical grid resolution varies with height. The
vertical extent of the model grid is subdivided into n layers by

∆hi = ∆h0 q
i, for i = 1 . . . n− 1 (7.1)

86



7.1 Configurations

where ∆hi is the thickness of the i-th layer, ∆h0 the thickness of the lowest layer and q the so-called
growth factor. A factor of 1.3 is chosen for the configurations with 5, 10 and 15 layers, 1.23 for that
with 20 layers and 1.13 for that with 30 layers. The vertical extent of the grid ranges from 200 to
15000 m above mean sea level for all configurations. Figure 7.2 shows the vertical grid resolutions
for the 4 different configurations.
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Figure 7.2: Vertical grid resolutions used in the tomographic processing.

Cutoff elevation angle

A major challenge in ground-based GNSS tomography is the fact, that there are no rays traversing
the model domain tangentially to the Earth’s surface. The lack of this information has a negative
impact on the vertical resolvability of the water vapor distribution. Figure 7.3 shows that only
signals from stations located < 25 km away from the next lateral column boundary and with
elevation angles lower than 30◦ traverse the lateral column boundaries below the model top at
15 km. Rays with a low elevation angle contribute most to the vertical resolution and are, therefore,
important in GNSS tomography. In this study, different cutoff angles of 10◦, 5◦, 3◦ and 0◦ are
investigated. Due to the mountainous topography in Switzerland, the topography has to be taken
into account. Accordingly, the visibility has been computed for each receiver station using the
digital elevation model DEM25 (Swisstopo 2004).

At lower elevation angles, effects, such as multipath, have an increasing impact on the accuracy
of slant path delays. This impact is considered by modeling the accuracy (variance) of slant path
delays proportional to 1/ cos2(ϑ) where the ϑ denotes the zenith angle.

Global navigation satellite systems

Currently, most GNSS applications process GPS observations, only. The use of other GNSSs, such
as GLONASS and Galileo, will considerably increase the amount of measurements and have the
potential to significantly improve the accuracy of the parameters estimated by GNSS processing

87



7 Potential of new GNSSs and dense networks in view of GNSS tomography

� -
50 km

?

6

15
km

r(((((((((((((
((

hhhh
hhhh

hhhh
hhh

10◦

��
��

��
��

��
��

��
�

PP
PP

PP
PP

PP
PP

PP
P

20◦

"
"
"
"
"
"
"
"
"
"
"
"
"
""

b
b

b
b
b

b
b
b

b
b
b

b
b
bb

30◦

,
,
,
,
,
,
,
,
,
,,

l
l

l
l
l

l
l
l

l
ll 40◦

Figure 7.3: A vertical column of the model grid (5 layers) is shown. The layer boundaries are
indicated by dashed lines. The size of the cells corresponds to the grid resolution used in the
investigations. In the middle of the lowest cell, a receiver is placed (black dot) which tracks signals
at various elevation angles (solid lines).

software. The satellite constellation of Galileo and, especially, that of GLONASS show larger
nominal inclinations compared to that of GPS. This will increase the coverage at high latitudes.

In this experiment, the impact of observations from the additional GNSS Galileo together with
GPS on the formal error of the unknown refractivities is investigated. GPS ephemeris of GPS
week 1402 from the International GNSS Service (IGS) are used and for Galileo, the ephemeris are
computed assuming a full constellation. For observations of the two systems, the same accuracy is
assumed.

Receiver network

In Switzerland, a dense GNSS permanent network called AGNES is available (see Section 4.1). It
comprises 31 GNSS stations well-distributed over the whole country (see Figure 7.4). SwissMetNet
is the meteorological network operated by the Swiss Federal Office of Meteorology and Climatology
(see Section 4.3). If we equip the SwissMetNet with GNSS receivers, this would increase the number
of GNSS stations to 92. The costs of this extension are considerably smaller than setting up a
separate network from scratch as infrastructure, such as communication and power supply, is
already available and the administrational efforts are smaller. Investigations of the impact of this
network extension on the formal error of the estimated refractivities will show if this update is
recommendable in view of GNSS tomography.

Beside the investigations on the practical network extension, experiments with synthetically
generated networks are carried out. The stations are placed at the nodes of a regular mesh. Meshes
with different mesh widths and different number of nodes are used to vary the number of stations
(see Table 7.2). The height of the stations are randomly set. For each network configuration, the
probability density function

p(x) = λe−λx (7.2)

with a dedicated value for the coefficient λ is applied (see Table 7.2). Figure 7.5 shows histograms
of the height distribution for networks of 200 stations for various distribution coefficients λ. The
same realizations of the distribution functions are used in the experiments. The impact of the
station density and distribution of the station height on the formal error will also be investigated
(see Section 7.3.3).

7.2 Methods

In the error analysis, a modified version of the software package AWATOS is used (Troller 2004).
Double difference delay observations and pseudo-observations, such as a priori values and intervoxel
constraints, are combined in a least squares adjustment. Observations are processed in hourly
batches and for each batch, a single adjustment is carried out. Observation errors are assumed
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Figure 7.4: Map displaying the GNSS permanent network AGNES (black circles) and the meteo-
rological network SwissMetNet (back triangles).

Table 7.2: Configuration options for the synthetically generated networks
Option Values

Height distribution Exponentially distributed station heights with var-
ious values for the distribution parameter λ =
{0.0006, 0.0008, 0.001, 0.0015, 0.002, 0.003} or the
same height of 200 m for all stations

Mesh/#Stations 4×8/32, 6×12/72, 8×16/128, 10×20/200,
12×24/288, 14×28/392

to be normally distributed and the observation equations are linear. This allows a proper error
propagation.

Least squares adjustment

The linear observation equation written in matrix notation is

b = A x + η (7.3)

where b is the observation vector, A the observation matrix, x the unknown parameters (refrac-
tivity values), and ηηη the normally distributed measurement errors. The most probable solution is
obtained by a least squares adjustment. The least squares problem is stated as

min
x

∥∥∥B−1
(
A x − b

) ∥∥∥
2
. (7.4)

where B denotes the Cholesky factorization of the measurement error covariance matrix Cbb. The
least squares problem can be solved with the method of normal equations which formulates the
problem as a linear system.

AT C−1
bb A x = AT C−1

bb b (7.5)
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Figure 7.5: Histogram of station heights for 6 networks with different height distributions. Each
network consists of 200 GNSS stations. The heights are exponentially distributed (see Equation 7.2)
with parameters λ = 0.0006, 0.0008, 0.001, 0.0015, 0.002 and 0.003.

The covariance matrix of the unknown parameters Cxx can be easily derived from the normal
equation.

Cxx =
(
AT C−1

bb A
)−1 (7.6)

This shows that no observation vector is needed to compute the covariance matrix of the unknown
parameters. The knowledge of the measurement constellation described by the observation matrix
A and of the measurement error covariance matrix Cbb is sufficient.

In least squares adjustment, one often likes to change the influence of certain observations rela-
tive to others. A reason for a different weighting of the observations can be different measurement
errors. However, the accuracy of an observation is often known only relative to the accuracy of
another one. As the least squares solution is not affected by multiplying the covariance matrix
of the measurement errors with a constant, the use of relative accuracies is often preferred. The
covariance matrix of the measurement error is replaced by the matrix containing the relative ac-
curacies. This matrix is called cofactor matrix of the observations and is denoted by Qbb. The
following formula relates the covariance matrix Cbb with the cofactor matrix Qbb

Cbb = σ2
0 Qbb (7.7)

where σ0 is the unit-weight standard error. The cofactor matrix of the unknown parameters Qxx

is computed the same way as the covariance matrix of the unknown parameters:

Qxx =
(
AT Q−1

bb A
)−1 (7.8)

The least squares adjustment implemented in AWATOS works with cofactor matrices. In order
to compute the covariance matrix of the known parameters, the unit-weight standard error σ0 is
needed. This standard error is estimated from a real GPS least squares adjustment from 20th
November 2006 by

σ̂2
0 =

1
n− r

vT Q−1
bb v (7.9)
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where σ̂0 is the estimated unit-weight standard error, n the number of observations, r the number
of unknowns and v = Ax̂− b the postfit residuals.

Error measures

The formal error of a tomographic solution ε is computed from the cofactor matrix of the unknown
parameters

ε =

√√√√ σ̂2
0

r

r∑
i=1

qi,i (7.10)

where r is the number of unknown parameters, qi,i the i-th diagonal element of the cofactor matrix
Qxx and σ̂0 the estimated unit-weight standard error. The formal error of the tomographic solution
is also evaluated for different layers. The formal error in the l-th layer is computed by

εl =

√√√√ σ̂2
0

|Hl|
∑
i∈Hl

qi,i (7.11)

where Hl is the set of all voxel indices of the voxels located in the l-th layer.
As a least squares adjustment is computed for each hour, one gets a time series of formal errors.

Several statistical measures are computed from such time series. These are

• the mean formal error (MFE)

ε̄ =

√
1
|T |

∑
t∈T

ε2
t (7.12)

where εt is the formal error of the tomographic solution at time t and T the set of all time
points for which solutions are available,

• the absolute temporal variability of the formal error (ATV)

νa =

√√√√√ 1
|T |

∑
t∈T

(
ε2
t − ε̄2

)2
, and (7.13)

• the relative temporal variability of the formal error (RTV)

νr =

√√√√√
√√√√ 1
|T |

∑
t∈T

(
ε2
t − ε̄2

ε̄2

)2

. (7.14)

7.3 Results and discussion

7.3.1 Geometry of the satellite constellation
Dilution of precision (DOP) is a simple precision measure in satellite navigation based on the ge-
ometric constellation of the visible satellites (Geiger 1987; Seeber 2003). In view of assimilation
of GNSS observations into numerical weather prediction models, a simple monitoring of the tomo-
graphic solution in terms of quality is desirable. In this subsection, the use of DOP to monitor the
formal error of the tomographic solution is investigated.

The squared formal error of the tomographic solution ε2 is computed using the base config-
uration and a cutoff elevation angle of 5◦. The resulting time series are compared to geometric
DOPs (GDOP) calculated at a virtual station located at 47◦ N, 7◦ E, and 400 m height.

The two time series are plotted in Figure 7.6. The GDOP values are most of the time lower
than 3 m2 which indicates excellent geometric satellite constellations. In addition, the two time
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7 Potential of new GNSSs and dense networks in view of GNSS tomography

series are highly correlated. The correlation coefficient of the hourly maximum values is 0.801.
This shows that temporal changes in the formal error are mainly related to the geometry of the
satellite constellation. The investigation has also revealed that GDOP can be used as a simple
precision measure for monitoring the tomographic solution.
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Figure 7.6: Time series of the geometric dilution of precision (GDOP) for a virtual station located at
47◦N, 7◦E, and 400 m height (dashed line) and of the formal error computed from the tomographic
solution (solid line).

7.3.2 Cutoff angles and satellite visibility
The change of the cutoff elevation angle for satellite observations in GNSS processing has a signif-
icant effect on the formal error of the tomographic solution. Lowering the cutoff angle decreases
the mean formal error by about 20% (see Table 7.3). This shows the importance of low-elevation
rays in GNSS tomography. Rays visible at low elevations contain valuable information for the
resolution of vertical structures in the atmosphere and, thus, significantly contribute to precise
results in GNSS tomography. Their importance in GNSS tomography shows the need for accurate
models in GNSS processing as they increase the precision of low-elevation delays and allows to
actually include low-elevation rays in the processing. The strong impact of low-elevation rays in
GNSS tomography affects the selection of receiver stations. A good satellite visibility for receiver
stations is essential for precise results in GNSS tomography.

In Figure 7.7a), time series of the formal errors are plotted for configurations with different
cutoff elevation angles. The temporal variability of the formal errors is only weakly affected by
changing the cutoff angle. A small increase of the relative temporal variability can be observed at
lower cutoff elevation angles (see Table 7.3). The appearance and disappearance of satellites have a
large impact on the measurement geometry and are, therefore, a major contributor of the temporal
variability observed in the formal error. If the cutoff elevation angle is lowered, the impact of these
events on the formal error increases as low-elevation rays contribute disproportionally high to the
precision of the tomographic solution.

Figure 7.8a) shows the impact on the formal error with changing the cutoff elevation angles
in different layers. The strongest effect is visible in layers between 4 and 8 km height. At these
heights, the angle between crossing rays are on average closer to 90◦ than in layers below and
above this height range. In contrast to that, the influence of changing the cutoff elevation angle
on the formal error in lower layers is relatively small. In these layers, only rays with low elevations
cross each other. Hence, crossing rays show rather acute intersecting angles which results is lower
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Figure 7.7: Time series of the formal errors of the tomographic solutions computed a) with different
cutoff elevation angles and b) using networks with different numbers of receiver stations.

resolution capabilities. This similarly holds for layers above 8 km except in the top layer where the
formal errors are considerably improved by a lower cutoff angle. The reason for this improvement
in the top layer is not clear, but, might be related to the combination of the special intervoxel
constraints in the boundary layer and the low-elevation observations.

Table 7.3: Statistics of the formal errors of the tomographic solutions. The correlation coefficients
between the time series for different cutoff elevation angles are listed. In addition, the mean formal
error (MFE), absolute temporal variability (ATV) and relative temporal variability (RTV) are
computed from each of the time series.

0◦ 3◦ 5◦ 10◦ MFE [ppm] ATV [ppm] RTV [-]

0◦ 1.000 0.945 0.834 0.480 0.933 0.141 0.151
3◦ 0.945 1.000 0.949 0.646 1.055 0.145 0.138
5◦ 0.834 0.949 1.000 0.819 1.146 0.131 0.114
10◦ 0.480 0.646 0.819 1.000 1.266 0.159 0.126

7.3.3 Network density
Three studies are carried out to investigate the impact of network properties on the formal accuracy
of the tomographic solutions. Namely, the station density and the distribution of the station
heights in the network are investigated. In the first study, the practical extension of the AGNES
network by equipping the SwissMetNet with GNSS receivers is evaluated. In the other two studies,
synthetically generated networks with different numbers of stations and station height distributions
are analyzed.

The extension of the AGNES network by the SwissMetNet decreases the formal error of the
tomographic solution by about 20% (see Table 7.4). The formal errors in the layers are not equally
affected by this extension. Formal errors are mainly improved in the lower part of the troposphere
(see Figure 7.8b)). There are 2 effects unequally influencing the formal errors at different layers:

1. Vertical atmospheric structures can be precisely resolved by GNSS observations even with
large elevation angles in that part of the troposphere which is well populated with receiver
stations. For the extended network, these are the lowest 3 km of the troposphere.

2. A ray traverses only voxels located at the same height as the receiver station or above that
station. Thus, voxels located at lower heights are less frequently traversed than those at higher
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Figure 7.8: Formal errors of tomographic solutions in dependence of the height are computed
a) with different cutoff elevation angles and b) with different network configurations.

altitudes. As a result of this, the improvement of the formal error increases with height and
the maximal improvement is reached at the height of the top station of the network. Above
this height, the improvement remains constant with height.

In Figure 7.8b), one can see that the formal error is already considerably improved in the lowest
part of the troposphere. This indicates that this improvement is at least partially caused by
the first effect. In addition, the improvement of the formal error steadily increases with height
and reaches its maximum at approximately 3500 m altitude. Similar improvements are achieved
between 3500 m and 6000 m. This coincides with the second effect and with the height of the
top station (3630 m altitude) in the extended network. The reason for the smaller increase of the
formal error with height between 6000 m and 11500 m and large improvement of the formal error
in the top layer is not clear and needs further investigations.

We can expect smaller temporal variations of the formal error by the particular extension of
the AGNES network (see Figure 7.7b)). The absolute and relative temporal variability have been
decreased by a factor of 2 (see Table 7.4). It seems that denser networks are less sensitive to the
satellite constellation. Beside the significant decrease of the mean formal error, this is another
important improvement and shows the potential of this particular network extension.

In the second study, two experiments are carried out. In both experiments, network configura-
tions with different numbers of receiver stations are used. The configurations of the two experiments
differ in the distribution of the station heights. In the first one, all stations are located at 200 m al-
titude. In the other one, station heights are exponentially distributed with distribution parameter
λ=0.001 (see Equation 7.2).
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Table 7.4: Statistics of the formal errors of the tomographic solutions. The correlation between the
time series using different receiver networks are listed. The AGNES network includes 31 stations
and the extended network (AGNES in combination with SwissMetNet) 92 stations. In addition
to the corrections, the mean formal error (MFE), the absolute temporal variability (ATV), and
relative temporal variability (RTV) of the time series are listed.

AGNES Ext. network MFE [ppm] ATV [ppm] RTV [-]

AGNES 1.000 0.759 1.146 0.131 0.114
Ext. network 0.759 1.000 0.869 0.058 0.067

In both experiments, the mean formal error is decreased by increasing the network density
(see Figure 7.9a)). The improvements are significantly larger for the configurations with well
distributed station heights than for those with all stations located at the same height. With the
help of the 1/

√
n-rule, one can assess the improvement of the formal error by increasing the number

of observations. This rule assumes that all observations contain equally valuable information. As
each station contributes on average a similar number of observations to the tomographic inversion,
one can apply the rule to the number of stations instead of to the number of observations. For
the experiment with all stations located at the same height, the decrease of the formal error
is much smaller than estimated by the 1/

√
n-rule. On the other hand, similar improvements as

expected from the 1/
√
n-rule are achieved with the configurations including well distributed station

heights. This is remarkable with respect to the use of pseudo-observations. Pseudo-observations
can be understood as a Tikhonov regularization. If the number of observations are increased in a
Tikhonov-regularized least squares problem, the formal error decreases less than proposed by the
1/
√
n-rule given that the Tikhonov factor is kept constant.
Looking at Figure 7.9b), the mean formal error decreases with the number of stations and

the decrease becomes smaller with larger numbers of stations. The following model mirrors these
considerations.

ε(n) = εa + εm exp
(
− n

ns

)
(7.15)

where εa is the value of the horizontal asymptote, εm the maximal decrease of the formal error due
to the observations, n the number of observations, and ns the scaling factor.This model is fitted
for the two experiments. The estimated parameters are listed in Table 7.5. For both experiments,
the horizontal asymptote is larger than zero. A horizontal asymptote at values εa > 0 indicates
that the least squares problem is ill-conditioned or even ill-posed and needs additional information
which can be provided by pseudo-observations. The value εa can be regarded as the part of the
formal error which is exclusively controlled by pseudo-observations. In our study, the experiment
using a network with well distributed station heights shows a significantly smaller value for this
parameter than the other experiment. This suggests a) that considerably lower formal errors can be
achieved with networks showing well distributed station heights and b) that the solutions computed
with such networks are much less sensitive to pseudo-observations. The estimated value for the
parameter εm is significantly larger for the experiment using a network with well distributed station
heights than for the other one. This indicates that a larger gain in formal accuracy can be achieved
by increasing the network density in a network with well distributed station heights than in an
network with stations located all at the same height.

In the third study, configurations with differently distributed station heights are used. For
all configurations, the network includes the same number of stations (200 stations). The station
heights are exponentially distributed with different distribution parameter λ (see Equation 7.2).
Histograms for the different network configurations are plotted in Figure 7.5. For each network
configuration, the formal error of the tomographic solution is computed. The mean formal error
for each λ is shown in Figure 7.10. The results of this study confirm the positive impact of well
distributed station heights on the formal error seen in the previous study. These results show that
the distribution of the station heights is a key property of a network used for GNSS tomography.
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Figure 7.9: Mean formal error of the tomographic results versus the number of receiver stations
for configurations with stations located all at the same height (black circles) and for configurations
with exponentially distributed station heights (black triangles). a) The dashed lines indicate the
expected improvement of the formal error according to the 1/

√
n-rule. b) The model described

by Equation 7.15 has been fitted to the mean formal errors of the two experiments. The model’s
solutions are represented by the dashed lines. The model approaches to an asymptote if the number
of stations tends to infinity. This asymptotes are indicated by the dotted lines.

From these 3 studies about the impact of the denser receiver networks on the formal error in
GNSS tomography, one can conclude the following:

• The formal error can be significantly decreased with denser receiver networks.

• The distribution of the station height in the network is a key property of a GNSS network
and has a large impact on the formal accuracy of tomographic solutions.

• The decrease of the formal error is limited. The limit can be decreased by a network con-
figuration with well distributed station heights. Other types of observations are, however,
needed to further improve the formal accuracy.

• The improvements by increasing the number of receiver stations is similar to the 1/
√
n-rule

if the station heights are well distributed in the network.

• The vertical resolution capability is the limiting factor in ground-based GNSS tomography.
Observations providing information on the vertical wet refractivity distribution are the ob-
servations which ideally complement ground-based GNSS observations.

Table 7.5: Estimated parameters of the model described by Equation 7.15 for the experiments using
a network with stations located all at the same height and using a network with exponentially
distributed station heights. The residual standard error of the fitted models is 0.006 ppm and
0.018 ppm, respectively.

Equal height Exponentially distributed heights
Parameter Estimate Std. Error t value Estimate Std. Error t value

εa [ppm] 0.685 0.004 168.00 0.229 0.017 13.72
εm [ppm] 0.212 0.022 9.71 0.493 0.039 12.65
ns [-] 54.622 8.166 6.69 85.885 14.707 5.84
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Figure 7.10: Plot of mean formal error of the tomographic solutions for different station height
distributions. The exponential distribution with parameter λ is used (see Equation 7.2). An
increasing parameter λ is equivalent to a narrower station height distribution.

7.3.4 Additional global navigation satellite systems

The use of the additional GNSS Galileo decreases the mean formal error by about 10% (see Ta-
ble 7.6). This is much less compared to the impact of lowering the cutoff elevation angle and to
increase the station density. Figure 7.11 shows the time series of the formal error for the two
configurations. The time series computed with the configuration including Galileo varies much less
in time than that using GPS only. Including Galileo in GNSS tomography decreases the absolute
and the relative temporal variability by a factor of 2 (see Table 7.6). The mean formal error in
different layers is shown for the two configurations in Figure 7.12. The investigations have revealed
that the mean formal error in the layers are equally affected by the use of the additional GNSS.
Galileo shows similar constellation features as GPS which leads to a similar measurement geometry
for Galileo observations as for GPS ones. This might be a reason why the mean formal error in
the layers is equally affected. Even though the impact of other GNSSs on the formal accuracy is
not investigated in this chapter, one can expect similar improvements with the GNSSs GLONASS
and COMPASS.

Table 7.6: Formal error statistics of the tomographic solution using different GNSSs. The correla-
tion between the two time series is listed. In addition, the mean formal error (MFE), the absolute
temporal variability (ATV) of the formal error and the relative temporal variability (RTV) of the
formal error is computed.

Correlation MFE [ppm] ATV [ppm] RTV [-]

GPS 0.730 1.146 0.131 0.114
GPS+Gal. 0.730 1.049 0.064 0.061

7.3.5 Horizontal and vertical grid resolution

Increasing the resolution of the model leads to more unknown parameters. Consequently, there are
less observations per unknown which results in larger values on the diagonal of the cofactor matrix
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Figure 7.11: Time series of the formal accuracy using configurations with different GNSSs.

of the unknown parameters. Contrary, the a posteriori unit-weight standard error σ0 becomes
smaller because the finer grid resolution allows a more accurate representation of the reality. The
tradeoff between these two effects determines the optimal grid resolution. In the experiments
carried out in this section, the effect of more accurate representations of the truth is disregarded
and, accordingly, the same unit-weight standard error is assumed for all grid configurations.

The mean formal error is computed for each layer and for each grid configuration used in the
tomographic processing. The investigations have shown that the mean formal error averaged over
all layers tends to be larger for fine grids than for coarse grids if the unit-weight standard error is not
accordingly adjusted. Changing the horizontal grid resolution affects more the mean formal error
in layers at high altitude than in the layers at low altitude (see Figure 7.13a)). In contrast to that,
refining the vertical grid resolution increases the formal errors in the layers below 1500 m altitude
(see Figure 7.13b)). The dissimilar effects with respect to horizontal and vertical grid refinements
might be related to different resolvability capabilities of GNSS tomography in the vertical and
horizontal dimensions. The resolution capabilities of vertical structures are especially limited above
the top receiver station in GNSS tomography. In this part of the atmosphere, the parameters
are mainly influenced by pseudo-observations. As the number of pseudo-observations increases
proportionally to the grid refinement and GNSS observations make only a limited contribution to
the vertical resolvability, the unknown parameters are similarly good determined as before the grid
refinement. In the lowest 1500 m of the troposphere, GNSS observations considerably contribute
to the vertical resolvability due to the good height distribution of the stations within this layer.
As a result of this, the decrease of the number of GNSS observations per layer affects the formal
error in these layers. This is exactly what can be observed in Figure 7.13b).

7.3.6 Combination of the improvements and their joint potential

Lowering the cutoff elevation angle, the use of an additional GNSS and a larger number of receiver
stations are configuration options which show considerable improvements of the formal accuracy.
In this section, the joint potential of these options is investigated and in particular if the single
improvements are cumulative with respect to the formal accuracy.

In Figure 7.14, time series of 5 different configurations are shown. Setting the cutoff elevation
angle to 0◦ and using additional receiver stations are the configuration options with the largest
impact on the formal error. For both, the mean formal error is decreased by about 25%. The
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Figure 7.12: Formal error in different layers. The tomographic model is evaluated with configura-
tions using different GNSSs.

use of the additional GNSS Galileo improves the mean formal error by only 10%. Combining the
use of Galileo with lowering the cutoff angle or with the use of SwissMetNet leads to similarly
accurate results and their joint improvements are mostly cumulative. Hence, the mean formal
error is decreased by about 30% (see Table 7.7).

Table 7.7: Statistics on the formal error achieved by modifying multiple configuration options.
The mean formal error (MFE), the absolute temporal variation (ATV) and the relative temporal
variation (RTV) are listed in the table.

MFE [ppm] ATV [ppm] RTV [-]

5◦, -Galileo, -SwissMetNet 1.146 0.131 0.114
5◦, +Galileo, +SwissMetNet 0.803 0.035 0.044
0◦, +Galileo, -SwissMetNet 0.810 0.064 0.079
0◦, -Galileo, +SwissMetNet 0.484 0.040 0.084
0◦, +Galileo, +SwissMetNet 0.419 0.014 0.035

Lower formal errors can be achieved if the cutoff elevation angle is lowered and additional
stations from the SwissMetNet are used. This decreases the mean formal error by about 60%
compared to the base configuration. Even lower formal errors are obtained by combining all three
improvements. They decrease the formal error from 1.146 ppm to 0.419 ppm which corresponds to
a relative decrease of 65%.

Concerning the temporal variability, the use of the additional GNSS Galileo and the network
extension have shown the largest decrease of the temporal variability. Combining these two mod-
ifications results in the cumulation of the single improvements in terms of the relative temporal
variability (see Table 7.7).
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Figure 7.13: Mean formal error in different layers for horizontal and vertical grid refinements. The
tomographic model is evaluated with configurations using a) different horizontal grid resolutions
and b) different vertical grid resolutions.

Figure 7.15 shows how much the formal error in the individual layers are affected. For all layers,
an improvement of the formal error can be observed. The layers between 4 km and 8 km show the
largest decrease of the formal error, especially if the cutoff angle is lowered.

7.4 Conclusions

The investigations presented in this chapter have clearly shown that certain configurations signifi-
cantly decrease the formal error of the tomographic solution. Lowering the cutoff elevation angle
and increasing the number of ground stations cause major improvements. However, the increase is
not the same in all layers. Taking signals at low elevations into account mainly affects layers be-
tween 4 to 8 km altitude whereas increasing the number of stations influences the meteorologically
more relevant layers below 4 km altitude.

Compared to the first two modifications, the use of the additional global navigation system
Galileo increases the formal accuracy less. The main effect of the use of Galileo is the lower temporal
variability of the formal accuracy. This decrease is preserved even if multiple configuration options
are combined and their effects are cumulative. This is also true for the improvements of the formal
error.

The extension of the AGNES network with the locations of the SwissMetNet has been inves-
tigated in this chapter. The investigations revealed that equipping the SwissMetNet with GNSS
receivers would ideally complement the AGNES network. This practical network extension de-
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Figure 7.14: Time series of the formal errors computed with several improved configuration options.
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creases the formal error by about 20%. The expected cost for such an extension would be roughly
1-2 million Euros and is recommended in view to provide accurate GNSS observations for meteo-
rological applications.

A poor height distribution of the stations is a limiting factor for the formal accuracy and cannot
completely be compensated by increasing the number of receiver stations. Therefore, it is highly
recommended to take the station height into account when setting up a receiver network. The
investigations have also revealed that a good satellite visibility at the receiver stations is essential
for precise tomographic results.

102



Chapter 8

Simulation-based evaluation of the
new tomographic algorithms

What are the capabilities of GNSS tomography to reconstruct atmospheric structures? This ques-
tion is regularly debated in the GNSS tomography community (see Bastin et al. 2007; Bender and
Raabe 2007; Bender et al. 2011). Especially, the capability to reconstruct vertical structures is
of interest and will be considered in this chapter. In addition, the convergence properties of the
tomographic algorithm will be investigated and the impact of the network design on the vertical
resolution will be discussed. This chapter is divided into two parts. In a first part, theoretical
aspects of the capabilities to reconstruct vertical structures will be investigated. In a second part,
experiments with simulated GPS data are carried out investigating if and how fast the tomographic
solutions converge and how well vertically varying patterns are resolved.

8.1 Theoretical considerations of the resolvability of vertical
structures

The measurement geometry of GNSS tomography is characterized by rays which enter the model
grid at the top and end at the receiver located on Earth’s surface. Though this measurement con-
figuration enables to accurately resolve horizontal structures, it is not obvious if vertical structures
can be resolved. The capability to resolve vertical structures will be investigated with the help of
two layer-models.

The refractivity in the layers can be estimated by solving a linear inversion problem where the
observation matrix is denoted by H, the refractivities within the layers by n and the GPS slant
path observations by ∆.

10−6 H n = ∆ (8.1)

Assuming constant refractivity within the layers, the observation matrix H contains geometrical
path lengths of the rays within the respective layers (see also Section 3). The inverse problem is
solved using the least squares technique. Therefore, the normal equation is build.

10−12 HT H︸ ︷︷ ︸
N

n = 10−6 HT ∆ (8.2)

To solve this equation system, the normal equation matrix N have to be invertable. In this
subsection, the structure of the matrix N is analyzed with respect to its invertability. This should
help us to better understand how well vertical structures in the atmosphere can be reconstructed
with GNSS tomography.

Two layer-models are considered, a) in plane (Cartesian) geometry and b) in spherical geometry.
The first model is illustrated in Figure 8.1a). A ray hits the Earth’s surface with a zenith angle
ϑ0. On its way, it crosses a layer (gray shaded) with thickness δr. The distance between the lower
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Figure 8.1: Path length of a ray within a layer (gray shaded) in a) plane (Cartesian) geometry and
in b) spherical geometry. The height of the layer above the Earth’s surface is denoted by h, the
layer thickness by δr and the path length within the layer by δs.

boundary of the layer and the Earth’s surface is denoted by h and the path length of the ray within
the layer by δs. The path length δs in the planar case can be computed by

δs =
1

cos(ϑ0)
δr. (8.3)

Figure 8.1b) shows the spherical layer-model. The spherical model has an additional parameter
r0 describing the radius of the Earth’s surface. The radius of the lower boundary of the layer is
denoted by r = r0 + h, where h is the distance between the lower layer boundary and the Earth’s
surface. As in the planar model, the variables ϑ0, δr, and δs describe the zenith angle of the ray
hitting the Earth’s surface, the thickness of the layer, and the path length of the ray within the
layer, respectively. In the spherical model, the path length δs is

δs =
ds
dr
δr =

r√
r2 − r2

0 sin2(ϑ0)
δr (8.4)

and can be written as Taylor series

δs =
1

cos(ϑ0)
δr − 1

r0

sin2(ϑ0)
cos3(ϑ0)

h δr + R1(h)︸ ︷︷ ︸
R0(h)

. (8.5)

where Rl(h) is the remainder of the l-th order spherical approximation. For a complete derivation
see Appendix E.

In Equation 8.3, the distance δs within the layer depends only on the layer thickness δr and the
zenith angle ϑ0. The height h of the layer above Earth’s surface has no influence on the path length
and, thus, varying the parameter h in the observation equation has no influence on the delay. As
no information about the location of the layer is contained in Equation 8.3, no vertical structures
can be resolved in the planar case.

In the first order approximation of the spherical model, the distance δs is determined by two
terms. The first term (zeroth order spherical approximation) is equal to the planar model. The
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8.1 Theoretical considerations of the resolvability of vertical structures

second one is related to the spherical effect. This term will be referred to as first spherical term.
In contrast to the planar model, the first spherical term includes the distance h between Earth’s
surface and the lower layer boundary. This is a necessary condition to resolve vertical structures.

What are the conditions influencing the first spherical term? The first spherical term vanishes
in certain circumstances. In the case where the Earth’s radius r0 tends to infinity, the first spherical
term becomes zero. From a geometrical point of view, the smaller the curvature is the larger the
radius. In the limit case, the Earth’s surface becomes flat and this corresponds to the planar case.
The first spherical term also vanishes if the zenith angle ϑ0 or the height h of the layer are zero.
In the case where ϑ0 = 0 the path lengths are equal to the layer thicknesses. Consequently, no
correction for the curvature is necessary. In another case where h = 0, the first spherical term
vanishes due to the linearization used in the derivation of Equation 8.5 (see Appendix E).

The remainder R0(h) in Equation 8.5 describes the spherical effect. To evaluate the impact of
the spherical effect on the path length, we write the ratio between the remainder and the path
length as

ξδs =
R0(h)
δs

=
δs − δr

cos(ϑ0)

δs
. (8.6)

In Figure 8.2, the ratio is displayed with respect to the zenith angle ϑ0 for given layer heights h
and using a radius r0 = 6370 km. If the zenith angle ϑ0 is zero, the ratio is also zero as the planar
approximation perfectly fits the spherical model. On the other hand, if the zenith angle ϑ0 tends to
90◦, the ratio tends to infinity. This illustrates that the planar approximation strongly differs from
the spherical model in this case. Table 8.1 lists at which zenith angle certain ratios are achieved for
different layer heights. For path lengths in layers located in the lower troposphere (500-2000 m),
the ratio is larger than 1% for rays with zenith angle ϑ0 larger than 85◦. In the middle troposphere
(2000-8000 m), the ratio is larger than 1% for rays with zenith angle larger than 80◦. This shows
that rays with larger zenith angles become more important if the spherical effect is of interest.

Table 8.1: Zenith angles for ratio ξδs = 0.1%, 1%, 10%, and 100% and for h = 500 m, 1000 m,
2000 m, 4000 m, and 8000 m. The ratio describes the spherical effect on the path length normalized
by the path length (see Equation 8.6 and Figure 8.2).

layer height 0.1% 1% 10% 100%

500 m 74.353◦ 84.950◦ 88.434◦ 89.586◦
1000 m 68.393◦ 82.877◦ 87.786◦ 89.414◦
2000 m 60.749◦ 79.979◦ 86.871◦ 89.171◦
4000 m 51.626◦ 75.972◦ 85.580◦ 88.828◦
8000 m 41.777◦ 70.548◦ 83.764◦ 88.344◦

How do the elements of the normal matrix N = HTH look like? Using Equation 8.4, the
elements in H can be written as

δsi,j =
r0 + hj√

(r0 + hj)2 − r2
0 sin

2(ϑ0 i)
δrj (8.7)

or using its first order approximation stated in Equation 8.5

δsi,j ≈
1

cos(ϑ0 i)
δrj −

1
r0

sin2(ϑ0 i)
cos3(ϑ0 i)

hj δrj (8.8)

where δrj is the thickness of the j-th layer, hj is the height of the j-th layer and ϑ0 i is the zenith
angle of the i-th observation. The normal matrix N = HTH can be formed assuming an infinite
number of observations distributed uniformly between zenith angles 0◦ and ϑ0,max. The diagonal
elements of N become (see Appendix E)

Nj,j =
10−12 (r0 + hj)

ϑ0,max
√

(r0 + hj)2 − r2
0

arctan
(√

(r0 + hj)2 − r2
0 tan(ϑ0,max)

r0 + hj

)
δr2
j (8.9)
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Figure 8.2: Ratio ξδs between the remainder of the zeroth order spherical approximation R0(h)
and the exact spherical path length with respect to the zenith angle ϑ0 and layer height h.

and as a Taylor series expansion

Nj,j =
10−12

ϑ0,max
tan(ϑ0,max) δr2

j︸ ︷︷ ︸
Ñl j,j

+
10−12

ϑ0,max

tan3(ϑ0,max)
r0

(
h2
j

5 r0
tan2(ϑ0,max) − 2hj

3

)
δr2
j + M1 j,j(h)︸ ︷︷ ︸

M0 j,j(h)

(8.10)

where hj is the height of the j-th layer and δrj the j-th layer thicknesses (for details, see Ap-
pendix E). Equation 8.10 consists of two parts: a) Ñ0 j,j related to the l-th order approximation
(see Equation 8.5) and b) Ml j,j related to the remainder of l-th order.

The following list shows the convergence behavior for the parameters h and r0:

• In the case where h tends to 0 or r0 to infinity, the diagonal elements of the normal matrix
become equal to the zeroth order approximation Ñ0 j,j (see Equation 8.10).

lim
h→0

Nj,j =
10−12

ϑ0,max
tan(ϑ0,max) δr2

j (8.11)

lim
r0→∞

Nj,j =
10−12

ϑ0,max
tan(ϑ0,max) δr2

j (8.12)

This means that the spherical effect vanishes and that the diagonal elements become inde-
pendent of the layer height h.
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• In the cases where h tends to minus or plus infinity or r0 to 0, the diagonal elements only
depend on the layer thickness δr.

lim
h→±∞

Nj,j = 10−12 δr2
j (8.13)

Nj,j

∣∣∣
r0=0

= 10−12 δr2
j (8.14)

In GNSS tomography, the layers are usually subdivided into voxels and only a limited area
is investigated. This restricts the possible zenith angles at a certain station for rays traversing
this voxel requiring that all rays have to traverse the top layer within the area of interest. In
Figure 8.1b), the angle α can also be interpreted as a measure of the horizontal extent of the
investigated area. The angle α can be computed from the horizontal extent l by

α =
l

r0
(8.15)

where α is in radian and r0 the radius of the sphere. According to this measure α, the considered
zenith angles of the rays range from ϑ0 = 0 to ϑ0,max, with the latter given as a function of the
horizontal extent of the area of interest α in radian and the layer height h.

ϑ0,max = π − arccos
(

r0 − (r0 + h) cos(α)√
r2
0 + (r0 + h)2 − 2 r0(r0 + h) cos(α)

)
(8.16)

where r0 is the radius of the sphere (see Appendix E).
Assuming a single-layer model with layer thickness δr, layer height h, and with a restricted layer

width α, how accurate can the refractivity be estimated within this layer? In a LSQ adjustment
with a single unknown, the normal matrix becomes a scalar. This scalar value can be computed
from Equation 8.9 using Equation 8.16 to determine ϑ0,max. From the scalar value, the square
root of the cofactors normalized by the layer thickness is computed and plotted with respect to
the layer height for finite layer widths (l=3.47, 6.95, 13.9, 27.8, and 55.6 km) in Figure 8.3. The
cofactors are measures indicating how accurate the single unknowns can be computed. The larger
the cofactor, the less accurate the refractivity within the layer can be estimated. For all layer
widths, the accuracy monotonically decreases with height. The wider the layers are, the more
accurate the estimated refractivities become. The most accurate estimates can be expected from
the heights where the rays span the largest zenith angle range. This is at the height where the
lowest observed ray is at a zenith angle of 90◦. In the case where the height tends to infinity, the
uncertainty approaches 1 meaning that the uncertainty is bounded.

The contribution of the spherical effect to the diagonal elements of the normal matrix (see
Equation 8.10) is computed the following way for limited zenith angle ranges:

ξN (hj) =
|M0 j,j |
Nj,j

=
|Ñ0 j,j − Nj,j |

Nj,j

=

∣∣∣∣∣1 −
(√

(r0 + h)2 − r2
0

r0 + h

tan(ϑ0,max)

arctan
(√

(r0+h)2 − r20 tan(ϑ0,max)

r0 + h

))
∣∣∣∣∣ (8.17)

where ϑ0,max is given in Equation 8.16. Figure 8.4 shows the spherical contribution with respect to
the layer height for different horizontal resolutions. The spherical effect on the diagonal elements
disproportionately decreases with height. The decrease is monotone. At the height where rays down
to ϑ0,max = 90◦ are observed the contribution of the spherical effect tends to infinity. As Nj,j is
bounded by a finite value, the spherical contribution must compensate the planar contribution
which tends to infinity. Thus, the spherical contribution approaches 0 if the height h tends to
infinity. It can be concluded that two effects are responsible for the disproportionate decrease of
the spherical effect:
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• On the one hand, the diagonal elements of the normal matrix using the zeroth order approx-
imation is independent of the layer height. On the other hand, the diagonal elements Nj,j
decrease with height. This difference must be compensated by the remainder M0 j,j of the
zeroth order approximation, hence, by the terms related to the spherical effect.

• The restriction of the visibility of rays by considering layers with finite width enforces the
disproportionate decrease. The contribution of the spherical effect increases with the zenith
angle. As the maximal zenith angle of the observed rays decreases with height, the contribu-
tion of the spherical effect also decreases.
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Figure 8.3: Cofactors of a spherical single-
layer model depending on the layer height,
computed for a layer whose width is restricted
to the values 3.47 km, 6.95 km, 13.9 km,
27.8 km, and 55.6 km.

Figure 8.4: Spherical contribution ξN (h) to
the diagonal elements of the normal matrix
vs. layer height for a layer whose horizon-
tal extent is restricted to the values 3.47 km,
6.95 km, 13.9 km, 27.8 km, and 55.6 km.

What does this mean in terms of network design? The formulation used within this section can
be used to investigate how the network design influences the impact of the spherical effect. Moving
the receiver station in Figure 8.1b) to the right decreases the zenith angle of the ray crossing the
layer at the same point. As soon as the stations is below the crossing point, the minimal zenith
angle of 0◦ is reached. Moving the station further to the right increases the zenith angle again.
Equation 8.16 can also be interpreted in the way that the maximal observable zenith angle of a
ray crossing a layer at the border of the area covered by the network is restricted by the horizontal
extent α of the network area. Combining Equations 8.10 and Equation 8.16 then reveals that the
spherical effect disproportionately increases with the maximal zenith angle of the considered rays
and, hence, the spatial extent of the area of investigation. However, the increase is limited by the
fact that a single crossing point is only visible from a bounded area on the sphere. This shows that
the impact of the spherical effect on the diagonal elements of the normal matrix is related to the
horizontal extent of the area of interest and, hence, on the spatial extent of the receiver network.

8.2 Experiments with simulated data
Investigations on how well the three parametrizations (see Section 3.3) approximate two synthetic
atmospheric patterns are carried out. The synthetic patterns are refractivity fields varying along
the vertical. The first pattern is an average refractivity profile computed from data of weather
balloons launched at Payerne. The motivation for this experiment is to investigate the convergence
behavior of the algorithms and possible systematic errors. The second experiment is a spike layer
test. The proper reconstruction of sharp vertical refractivity changes is of importance, since they
can occur during inversions. Inversions are an atmospheric pattern commonly observed in the Swiss
Plateau during winter (Wanner 1979). By varying the height and the thickness of the spike layers,
the vertical resolution capabilities of the tomographic algorithms are investigated and compared
to the theoretical considerations of the preceding section.
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8.2 Experiments with simulated data

8.2.1 Setup and method

The starting point of the experiments is a refractivity field, also referred to as original field in this
section (see Figure 8.5). Based on this field, a forward model simulates measurements. At this stage,
measurement errors may be added to the simulated data. A refractivity field is then estimated
with the tomographic approach (also called backward model) using the simulated observations from
the preceding step. Finally, the estimated field is compared to the original one. This procedure
enables us to investigate the properties of the backward model such as the convergence behavior,
the vertical resolvability, and the impact of measurement errors on the reconstructed field.

Wet refractivity field Measurements

Forward modelling

Backward modelling

Figure 8.5: Schematic layout of the simulations.

Forward modeling

GPS double difference delays are simulated with the forward model using a sampling rate of 30 s.
The duration of the simulation period is 24 h and the GPS satellite constellation of 26th November
2006 is used. The simulation period approximately corresponds to a ground-track repetition period
of GPS. Figure 8.6 shows the receiver network. The network consists of 31 stations and the locations
of its stations coincide with the AGNES stations (see Section 4.1). Figure 8.7 shows the height
distribution of these stations. The station heights range from 310 m up to 3584 m above the
reference ellipsoid. Most stations in the Swiss Plateau are located below 1000 m altitude whereas
large parts of the stations in the Alps are at altitudes between 1000-2000 m.

The measurements are computed using a raytracer (see Appendix A). The raytracer considers
the wet refractivity field up to 15’000 m and only includes rays to satellites with zenith angles
ϑ0 ≤ 85◦. Additive Gaussian noise is added to each slant delay. The noise mapped to the zenith
shows a standard deviation of 5 mm. The standard deviation of the noise increases with the zenith
angle ϑ0 by 1/ cos(ϑ0). Double difference delays are computed from these slant delays using the
minimum distance strategy to determine the baselines. All the configurations of the forward model
are summarized in Table 8.2.

Backward modeling

The backward model solves the stochastic differential equation (SDE) stated in Equation 3.35,
which corresponds to a random walk on the wet refractivity field. The Kalman filter approach is
used to combine the time evolving solution of the SDE with the measurements simulated by the
forward model (see Section 3).

The wet refractivity field is discretized along the 3D ellipsoidal coordinates. The core area
ranges from 6.5-9.5E◦ in longitude, 46-47.5N◦ in latitude, and 0-15’000 m in WGS84 ellipsoidal
height. Additionally, the core area is surrounded by a fringe of 10◦ to ensure that no ray path crosses
the lateral boundaries of the model area. The horizontal discretization is 0.5◦, which corresponds
to a horizontal resolution of about 37 km (see Figure 8.6). The thickness of the layers increases
with height (see Figure 8.7).
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Figure 8.6: Map covering the core area of investigation with
GPS stations (black squares) and the vertical comparison profile
(black triangle). The gray lines indicate the floor plan of the grid
used in the tomographic processing.

Figure 8.7: Height distribu-
tion of the GPS stations (black
squares) and the levels of the
ellipsoidal voxel model used in
the tomographic processing.

The initial values of the SDE are given by a vector representing the initial refractivity field
and a matrix describing the covariances within this field. In both experiments, the initial vector is
set to zero and represents the state 30 seconds before the first GPS double difference observation
is available, i.e. 25th November 2006 at 23:59:30 UTC. The covariances are based on investiga-
tions using balloon sounding measurements. The parameters of the backward model are listed in
Table 8.3.

The propagation step size of 30 seconds is chosen equal to the sampling rate of the GPS double
difference observations. The model used in the stochastic term (also referred to as prediction error)
of the SDE contains a matrix Q̃ δ describing the spatial correlation and a scaling matrix G̃ (see
Section 3). The correlation matrix Q̃ δ is assumed to be equal to the correlation of the initial
value. The scaling matrix is a diagonal matrix containing values exponentially decreasing with
height. These values are considered with observations made at synoptic stations in Switzerland
(see Section 5.4).

In the experiments, GPS double difference observations down to an elevation of 5◦ are used
and they are regarded to be correlated with each other if they comprise a common slant delay. No

Table 8.2: Parameter settings for the forward model.
Parameter Value

Simulation period 24 hours
Simulated observations GNSS double difference path delays
Number of GPS stations 31 stations
Satellite systems GPS
Sampling rate of the measurements 30 seconds
Cutoff angle 5◦
Integration height 15’000 meter above reference ellipsoid
Type of measurement noise Additive Gaussian
Measurement noise 5 mm std. dev. in zenith direction
Baseline strategy Minimum distance
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8.2 Experiments with simulated data

Table 8.3: Parameter settings of the initial state used in the backward model (tomography algo-
rithm).

Parameter Value

Initial state 0 ppm
Initial variance at reference level (0 m above ref. ellipsoid) 121 ppm2

Scaling height of the variance model 2178 m
Vertical scaling length of the correlation model 1000 m
Horizontal scaling length of the correlation model 400 km

pseudo-observations are added. The measurement error of a slant delay is assumed to be additive
Gaussian and two slant delays are regarded to be uncorrelated. The standard deviation of a slant
delay is set to 5 mm in zenith direction and it increases with 1/ cos(ϑ0) with increasing zenith
angle ϑ0. The parameters of the prediction and the observation models are listed in Table 8.4.

Evaluation methods

The evaluation of the algorithms is based on comparisons between the field estimated by the
backward model and the original field. At specific points in space and time, the difference of the
two fields is computed (estimated field minus original). Three different strategies are applied to
specify comparison points:

Evolutionary strategy: In the evolutionary strategy, the two evolving fields are compared every
5 minutes at 1441 points distributed uniformly along the vertical profile located at 47.0◦N
and 8.5◦E (see Figure 8.6). The profile ranges from 600 m (approximately Earth’s surface)
to 15’000 m above the reference ellipsoid and is situated in the core area of investigation, but
not in the high mountains. This allows to analyze the troposphere in the lower altitudes, too.
Note that, for the constantly parametrized approach, the refractivities need to be evaluated
in the voxel column ranging from 8.0-8.5◦E and 46.5-47◦N.

Spatial strategy: In the spatial strategy, the estimated field at the end of the simulation period
is compared to the original field at 1 million points uniformly distributed over the space
ranging from 6.5-9.5◦E longitude, from 46.0-47.5◦N latitude, and from 200-12’500 m height.
This covers the core of the investigation area (see Figure 8.6).

Table 8.4: Parameter settings of the backward model.
Parameter Value
Prediction model

Prediction model Random walk on wet refractivity
Prediction step size 30 seconds
Prediction error Multi variant additive Gaussian
Prediction error on the reference level 110 ppm2 day−1

Scaling height of the prediction error 2178 m
Vertical scaling length of the correlation 1000 m
Horizontal scaling length of the correlation 400 km

Observation model

Observations GPS double difference path delays
Pseudo-observations None
Cutoff angle of GPS observations 5◦
Covariance model of the observations Full covariance model
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8 Simulation-based evaluation of the new tomographic algorithms

Combined strategy: In this strategy, the evolving estimated field is compared to the original field
every 5 minutes at 1 million points uniformly distributed over the space ranging from 6.5-
9.5◦E longitude, from 46.0-47.5◦N latitude, and from 200-12’500 m height.

8.2.2 Results and discussion
Convergence tests with exponential refractivity distribution with height

The results presented in this section are based on a simulation using a field with refractivities
decreasing exponentially with height. The field shows no variation in latitude, longitude and time.
The vertical variation is described by the function

N(h) = N0 exp
(
− h

hs

)
(8.18)

where the refractivity [ppm] at height h [m] is denoted by N(h), the refractivity at the reference
level by N0=77.5 ppm, and the scale height by hs=2178 m. The values for the parameters N0 and
hs are estimated from balloon sounding data at Payerne spanning a period of 2 years.

Figures 8.8 a)-c) show solutions along the vertical profile for different parametrizations using the
evolutionary evaluation strategy. Solutions are plotted every 5 minutes with different gray shades
beginning with light gray. The solutions computed with the trilinear and with the spline/bilinear
parametrizations are smooth whereas the solutions calculated with the constant parametrization
show staircase-shaped patterns. These patterns correspond to the grid layers.

Figures 8.8 d)-e) show the deviation of the solutions from the model profile. The deviations
are plotted every 5 minutes with the same gray scale as in the previous subplots. The solutions
of all three parametrizations approximate well the model profile already after a short simulation
time. However, the limitation of the constantly parametrized approximation can be clearly seen
in Figure 8.8 d). The errors become as large as 3.8 ppm in the lower troposphere. The maximum
errors are obviously smaller for the other two parametrized solutions, 1.1 ppm and 0.7 ppm for
the trilinear and the spline/bilinear case, respectively (see Figure 8.8 e)-f)). Considering the entire
profile, the standard error is again significantly smaller for the trilinearly parametrized and spline-
based solutions than for that with a constant parametrization (see Table 8.5).

Table 8.5: Statistical comparison of the three parametrizations based on synthetic tests. Double
difference observations were generated from an atmosphere where the refractivity decreases ex-
ponentially with height. The simulated data served as input for the tomographic software. The
statistics is based on 1441 points distributed uniformly along the vertical profile in the center of
the area of investigation after one simulation day. All values are given in [ppm] refractivity units.

Parameterization Mean Standard error Maximum error

constant 0.010 0.871 3.832
trilinear 0.008 0.176 1.060
spline/bilinear 0.004 0.209 0.716

The solutions computed with the spline-based parametrization show a small positive bias around
12 km altitude. This bias is located in between two nodes and can lead to negative refractivities.
The choice of another spline condition at the top of the model grid may reduce the bias. The
natural spline conditions requiring no curvature at the boundary nodes can be replaced by a
condition fixing the slope.

The combined evaluation strategy is applied to generate the plots in Figure 8.9. The plots show
the median and the quartiles computed from the differences between estimated refractivities and
model at 1 million points vs. simulation time. All three plots show fast convergence of the median
error towards near-zero values within the first 15 minutes of the simulation. After this time, the
convergence rate becomes slow for all parametrizations. This is especially true for the constant
parametrization. The median errors after 24 h simulation time are 0.032 ppm, 0.020 ppm, and
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(a) constant (b) trilinear (c) spline/bilinear

(d) constant (e) trilinear (f) spline/bilinear

Figure 8.8: Tomographic results using simulated double difference observations with different
parametrizations along the vertical profile at 47.0◦N/8.5◦E in refractivity units. a) b) c) Re-
fractivity profiles. d) e) f) Differences between retrieved profiles and the synthetic model profiles
(computed minus model). Observations are generated from an atmosphere with refractivities de-
creasing exponentially with height. Every 5 minutes, a profile is plotted starting from light gray
shade at the beginning to black at the end of one simulation day. Figures a) and d) represent the
result with constant parametrization, b) and e) with trilinear, and c) and f) with bilinear/spline
parametrization.
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8 Simulation-based evaluation of the new tomographic algorithms

0.005 ppm for the constant, trilinear, and spline/bilinear parametrizations, respectively. Summing
up these systematic differences leads to a bias in the zenith path delay of less than 0.5 mm for all
parametrizations. This is one order of magnitude smaller than the accuracy of zenith path delays
estimated by GPS processing software and shows that the tomographic reconstruction process
does not produce or annihilate artificial refractivity. Looking at the time-dependent behavior,
the median of the errors is larger than zero at the beginning. For the constant and trilinear
parametrizations, it becomes positive after 40 and 5 minutes, respectively. For the spline/bilinear
parametrization it remains negative.

The inter quartile ranges (IQR) quickly decrease for all three parametrizations at the beginning
of the simulation period. After 15 minutes, they are between 0.778 ppm for the constant and
1.388 ppm for the spline/bilinear parametrization (see Table 8.6). This shows that atmospheric
changes can be quickly resolved by the tomographic algorithm. After 1.5 h simulation time, only
little changes are observed for the IQRs for the constant parametrization. They considerably
decrease for the trilinear and for the spline/bilinear parametrizations during the last 22.5 hours
of the simulation. After the 24 h simulation period, the IQRs for the trilinear and spline/bilinear
parametrizations are significantly smaller than the IQR for the constant parametrization. This is
in agreement with the results presented in Table 8.5.

Table 8.6: Inter quartile range (IQR) in [ppm] of the difference between the original field and the
estimated field after different simulation times.

Parametrization 15′ 30′ 45′ 60′ 90′ 24 h

Constant 0.778 0.705 0.667 0.638 0.619 0.595
Trilinear 1.102 0.993 0.913 0.758 0.749 0.153
Spline/bilinear 1.388 1.277 1.177 1.066 1.034 0.304

Layer tests

For the spike layer experiment, refractivity fields with a common property are used: The fields are
0 ppm everywhere except within one layer where the refractivity is 3.5 ppm. This value corresponds
to the accuracy achieved by in-situ measurements (see Flores et al. 2000). The refractivity fields
differ in the height and thickness of this layer. Spike layer thicknesses of 200 m, 400 m, and 800 m
located at different heights are investigated. Using a spike layer thickness of 800 m, the vertical
perturbations cause a change in the measured tropospheric delays of the same order as the noise
level of the path delay observations. The bottom of the layers are located at 500 m up to 4000 m
in 500 m steps and, additionally, one at 5000 m and one at 6000 m above the reference ellipsoid.

Figure 8.10 shows the refractivity along the vertical profile located at 47.0◦N/8.5◦E for the
original field and the fields computed with the different parametrizations after 24 h simulation
time. The thickness of the spike layer is 400 m and approximately corresponds to the height
resolution of the grid at this altitude. The discontinuities of the spike layer function cannot be
exactly resolved by the trilinearly parametrized and spline-based voxel modeling. In contrast,
the constantly parametrized representation is capable to reproduce them exactly as long as the
discontinuities are at the borders of a voxel. If the voxel boundaries are not coinciding with
the spike layer, the constantly parametrized approach smooths out the spike layer much more
than the trilinearly parametrized and the spline-based ones. The trilinearly parametrized and
the spline-based approaches show much clearer negative refractivity values below and above the
layer than in the constantly parametrized case. The maximum peak is aligned with voxels in the
solutions of the constantly parametrized approach and is shifted to voxel boundaries in the trilinear
parametrization. However, the peak is well centered in the spline/bilinear case.

A more quantitative view of the accuracies is achieved using the spatial evaluation strategy
applied to simulation runs with different original fields. There are 30 runs per parametrization
(3 layer thicknesses times 10 layer heights). The accuracy is assessed by computing the IQR
from the difference between the original and the estimated field at the comparison points for
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Figure 8.9: Time evolution of the median and quartiles of the computed minus modeled refractivi-
ties from 1 million uniformly distributed points for a) constant, b) trilinear, and c) spline/bilinear
parametrization.
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Figure 8.10: Refractivity values along a profile. The solid line represents the given model atmo-
sphere from which GPS double difference observations are generated. The spike has the lower
bound at 1500 m altitude and a thickness of 400 m. The refractivity within the spike layer is
3.5 ppm and 0 ppm elsewhere. Using the simulated observations, the dotted line is the solution
of the constantly parametrized approach, the dashed one the solution of the trilinear approach
and the dash-dotted the solution of the spline/bilinear approach. Note that neither vertical nor
horizontal constraints are used.

each simulation run. A smaller IQR reflects a better accuracy. Hypothesis testing is used to
decide whether the IQRs among the parametrizations significantly differ from each other. As
the sample size is rather small (30 different spike layer profiles for each parametrization) and
normal distribution cannot be assured, we used the Wilcoxon signed-rank test (Rice 1995) with a
significance level of 0.05. The IQRs of the spline/bilinear parametrized solutions are significantly
smaller than those from the trilinear parametrized and the constantly parametrized solutions. The
accuracy of the trilinear parametrized solutions is better than that of the constantly parametrized
solutions, however, not as obvious as in the previous comparisons.

Figures 8.11a) and b) show box-whisker diagrams depicting the differences between original
and computed fields using the spatial evaluation strategy. Each box represents one simulation run.
There are 10 boxes per plot and their ordinates are equal to the center heights of the layers. The
layer thicknesses are 800 m and 200 m in Figures 8.11a) and b), respectively. For both plots, the
same grid is used in the backward model employing the linear parameterization (see Figure 8.7).
This grid will be referred to as default grid.

How well a spike layer is resolved depends mainly on its height and its thickness. Spike layers
with a thickness of 800 m are well reproduced below 4500 m (see Figure 8.11a)). Thinner spike
layers are not as well resolved as the 800 m spike layers. As shown by Figure 8.11b), thinner ones
are only well represented below 3500 m.

The investigations show that an insufficient grid spacing is not a major cause for the poor
retrieval of high altitude spike layers. Figures 8.11c) and d) are computed using an equidistant
grid of 200 m vertical resolution in the backward model. The solutions show the same characteristics
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8.2 Experiments with simulated data

(a) spike layer thickness of 800 m,
exponential grid

(b) spike layer thickness of 200 m,
exponential grid

(c) spike layer thickness of 800 m,
equidistant grid

(d) spike layer thickness of 200 m,
equidistant grid

Figure 8.11: Box-whisker plots of the difference between computed and modeled refractivities with
different spike layer heights using the spline/bilinear parametrization. In the first column, a spike
layer thickness of 800 m is given and in the second a thickness of 200 m. Two different grids are
used. The grid used in the first row has exponentially decreasing height resolution ranging from
280 m up to 4320 m and the grid used in the second row has a constant height resolution of 200 m.
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as the solutions calculated with the default grid. The IQRs shown in Figure 8.11a) do not differ
remarkably from those in Figure 8.11c) although the finer grids have a much smaller grid resolution
than the thickness of the spike layers. Even for a thinner spike layer of 200 m, no obvious difference
in accuracy is observed between the two grid configurations (see Figures 8.11b) and d)).

The results plotted in Figure 8.11a) show that the layers below the top station at 3584 m
altitude (see Figure 8.7) are well resolved. This is due to the good height distribution of the
stations in the network. Furthermore, Figure 8.11a) shows 2 well resolved spike layers located
above the top station between 3500 m and 4500 m altitude. This indicates that also above the top
station information about the vertical refractivity distribution can still be gained.

What does this mean in view of Equation 8.5? In the layer experiment, the layer heights hj and
layer thickness δrj are known. The radius r0 corresponds to the Earth’s radius. The experiment
revealed that some of the unknown refractivities within the voxels above the top station can be
accurately computed. This is only possible if the normal matrix N is invertible. In the case where
only the zeroth order approximation (planar part) is considered, the normal matrix is singular.
This suggests that the normal matrix becomes invertible due to the spherical effect and that this
effect allows vertical resolution above the top station.

The results in Figures 8.11a)-d) strongly suggest that the vertical resolvability quickly de-
creases with height above the top station. This is in agreement with the theoretical considerations.
Compared to the diagonal elements in the normal matrix, the spherical effect disproportionately
decreases with height in the spherical layer-model. As shown in Figure 8.4, the contribution of the
spherical effect super-exponentially decreases within the first 1000 m above the top station. The
agreement between the observations in the experiments and the theoretical considerations indicates
the importance of a large zenith angle range of the rays traversing the corresponding voxels and
the impact of the spherical effect on the vertical resolvability (see Section 8.1).

Regarding the network design, a good vertical distribution of the receiver station is recom-
mended as the vertical resolvability quickly decreases above the top station. According to the
theoretical considerations in the previous section, the horizontal extent generally increases the im-
pact of the spherical effect. It is, therefore, expected that this will positively influence the vertical
resolvability.

8.3 Conclusions

In this chapter, the vertical resolvability was investigated with theoretical considerations and sim-
ulations. The convergence behavior was analyzed with simulated data. In a first part, the ob-
servation matrix was investigated with the help of a spherical layer-model. In the second part,
simulations were carried out. The tomographic algorithm parametrizing the voxels in different
ways were assessed using simulated data generated from different model atmospheres.

The simulations have shown that AWATOS 2 has a quick convergence rate. The tomographic
solution converges within 30 minutes simulation time to a solution with an IQR smaller than 1 ppm
(0.15 g m−3 absolute humidity) for the trilinear and constant parametrizations. This shows the
capability of the tomographic software to quickly reproduce changes in the atmosphere in its solu-
tion. The investigations also revealed that the discretization error is one of the main error sources
for constantly parametrized voxels. The discretization error significantly decreases with the use of
more sophisticated voxel parametrizations such as trilinear or spline/bilinear voxel parametriza-
tion. The standard deviation after 24 h simulation time in the convergence test was reduced by
80%, the maximal error by 72% and the bias by 20% if the trilinear voxel parametrization was
used instead of the constant one.

In a second experiment, the vertical resolvability was investigated. Spike layers at different
heights and with different thicknesses had to be estimated by the tomographic software AWATOS 2.
The experiment revealed that layers below the top station could be accurately reconstructed by
the tomographic approach. Layers above the top station are also correctly resolved. However, the
vertical resolvability quickly decreases with height. Layers located 1000 m above the top station
are poorly reproduced. Nevertheless, this indicates that the tomographic approach in the way it is

118



8.3 Conclusions

used in this work is capable of resolving vertical structures above the top station. The agreement
with the theoretical considerations suggests that the Earth’s curvature allows to resolve vertical
structures.

The experiments confirmed the recommendations on network design made in Chapter 7. To
achieve good vertical resolvability, the stations should be well distributed across the possible topo-
graphic altitudes. As the wet refractivity field features small-scale variations, a sufficiently dense
network is needed. Based on the investigations about the wet refractivity field in Chapter 5, we
recommend GNSS networks with a mean inter-station distance smaller 15 km in alpine regions.
Theoretical considerations also suggested that a larger horizontal extent of the network has a
positive impact on the vertical resolvability.
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Chapter 9

Evaluation of the GPS tomography
with a long-term study

In this chapter, the three parameterizations (constant, trilinear, and spline/bilinear) of the tomog-
raphy software AWATOS 2 are evaluated with real data. The data have been collected in the GPS
permanent network in Switzerland AGNES and from receivers located in adjoining regions. A
long-term study is carried out using one year of data from these stations. The data are processed
for each of the three parameterizations and compared to measurements from different sources, such
as balloon soundings and analyses of a numerical weather prediction model. The results computed
with the different voxel parameterizations are discussed in terms of accuracy and are compared
to the results achieved with simulated data. Furthermore, a regional and seasonal assessment is
carried out. Based on this assessment, a bias correction model is implemented and evaluated.

9.1 Configuration and evaluation methods

In the experiments presented in this chapter, GPS path delay observations from the Swiss perma-
nent network AGNES and from stations located in the adjoining countries are used. The processed
data comprises observations between 15th January 2006 and 28th January 2007. The wet part of
GPS double difference delays is used as input into the tomographic processing. No other obser-
vations are taken into account. Tropospheric path delays have been derived from raw GPS phase
observations using the GPS processing software Bernese 5.0. To separate the wet part from the
total tropospheric path delay, the partial pressure of dry air is needed at the GPS receiver stations.
At stations where no sensors provide the needed meteorological data, the meteorological quantities
are interpolated using the collocation software COMEDIE (see Section 3.2.2).

GPS processing with Bernese 5.0

Tropospheric path delays are computed as part of the operational processing at the Swiss Federal
Office of Topography. The GPS data processing uses data collected by the Swiss GPS permanent
network AGNES and by other stations located in Europe (see Section 4.1). Table 9.1 lists the main
parameters of the configuration used in this operational processing. GPS phase observations with a
sampling rate of 30 seconds are processed in double difference mode using the ionosphere-free linear
combination. Daily solutions are computed which are then stacked together to weekly solutions.
The IGS satellite orbit product rapid orbits are used (Dow et al. 2009). Observations down to
a cutoff angle of 10◦ are considered and the baseline strategy maximizing the number of observa-
tions is used (Dach et al. 2007). Tropospheric path delays are computed using Niell’s mapping
functions (Niell 1996). A priori values are calculated with the dry part of Saastamoinen’smodel
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(Saastamoinen 1973a) and using dry Niell mapping function. These a priori values are corrected
by a piecewise linear function with a step size of 1 hour. Niell’s wet mapping function is used for
estimating these corrections.

Table 9.1: Main parameters of the configuration used in the GPS processing with Bernese 5.0.
Parameter Value

Processing mode Double difference processing estimating weekly solutions
using the ionosphere-free L3 combination

Orbit product IGS rapid orbits
Sampling rate 30 s
Cutoff angle 10◦
Baseline strategy Maximum number of observations

Troposphere model

A priori model Dry delay: Saastamoinen model using dry Niell mapping
function,
Wet delay: zero

Correction model Estimation of piecewise linear path delays using the wet
Niell mapping function

Tomographic processing with AWATOS 2

Tomographic solutions have been computed with three different configurations for a period of one
year. The basic configuration is the same for all 3 configurations and differs only in the voxel
parameterization used. The constant, trilinear, and spline/bilinear voxel parameterizations are
considered. The tropospheric double difference delays prepared with Bernese 5.0 are processed
by AWATOS 2 in weekly batches. Successive batches have an overlap of 6 hours. The choice
of the overlap duration is based on the investigations of the convergence rate (see Section 8.2).
The simulations have shown that the error of the tomographic solution is less than 1 ppm after
30 minutes accumulation time. With an overlap of 6 hours between two consecutive batches,
initialization effects can be neglected.

The state vector in the Kalman filter is initialized with refractivities, which exponentially
decrease with height (see Equation 8.18). The exponential model has been fitted to data of balloon
soundings launched in Payerne in the years 2006 and 2007. The remaining parameters for the initial
state are based on investigation using NWP model data and observations from the SwissMetNet
(see Section 5). The parameters are listed in Table 9.2.

Table 9.2: Parameter setting of the initial state used in the tomographic processing.
Parameter Value

Initial value at reference height 77.5 ppm
Scaling height of the initial value model 2178 m
Initial variance at reference level 10’000 ppm2

Vertical scaling length of the correlation model 1216 m
Horizontal scaling length of the correlation model 86 km

The prediction model is the same as that used in the synthetic tests (see Table 9.3). The
parameters of the prediction error model are based on the investigations presented in Section 5.
The prediction model is implemented as a random walk on the wet refractivities and the prediction
error is modeled as additive Gaussian (see Section 3.4). In the update step, several observations
and pseudo-observations are considered as follows:
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GPS double difference observations: GPS double difference path delay observations down to an
elevation of 10◦ are used. This cutoff angle is equal to that used in GPS raw data process-
ing. Two double difference observations are regarded as being correlated if they comprise a
common slant path delay. Otherwise, double difference delays are considered as independent
from each other. The standard deviation of the measurement error is assumed to be 5 mm in
zenith direction for a slant path delay (e.g. Troller 2004). The standard deviation increases
with 1/ cos(ϑ) where ϑ is the zenith angle.

Vertical gradient constraints: In the long-term study, vertical gradient constraints are used (see
Equation 3.49c)). Their weights are chosen in order to minimize the error between balloon
sounding data and the outcome of the tomographic processing. Data from 4 weeks at differ-
ent seasons have been considered for this weighting task. The vertical gradient constraints
are based on the same average profile as used for determining the initial state vector (see
Equation 8.18).

Boundary layer constraints: Grid point observations are introduced at the lateral boundaries of
the grid. The values at the grid points are modeled with the average profile described by
Equation 8.18. The weight of such pseudo-observations is equal to the reciprocal of the
prediction error at the particular point. In that way, the formal accuracy of the refractivity
at the boundaries remains constant over time if no further information is provided by other
measurements.

Table 9.3: Parameter settings of the tomographic processing.
Parameter Value
Prediction model

Prediction model Random walk on wet refractivity
Prediction step size 30 seconds
Prediction error Multi-variate additive Gaussian
Prediction error on the reference level 346 ppm2 day−1

Scaling height of the prediction error 1216 m
Vertical scaling length of the correlation 1216 m
Horizontal scaling length of the correlation 86 km

Observation model

Observations GPS double difference path delays
Pseudo-observations Vertical smoothing constraints
Cutoff angle of GPS observations 10◦
Covariance model of the observations Full covariance model

Figure 9.1 shows the floor plan of the grid used in the tomographic processing (solid blue lines).
The spacing of the grid is 0.5◦ in latitudinal and 1/3◦ in longitudinal direction. This corresponds
to a resolution of about 37 km. The core area covers large parts of Switzerland and ranges from
6.5-10◦ E in longitude, and 46-47.6̄◦ N in latitude. Additionally, the core area is surrounded by
a fringe of 10◦ to ensure that no ray path crosses the lateral boundaries of the model area (not
shown in Figure 9.1). Vertically, the atmosphere is subdivided into 17 levels ranging between 0
and 15’000 m WGS84 ellipsoidal height. The distance between two adjoining levels is increasing
with height (see Figure 8.7).

Tropospheric delays from 46 GPS stations are taken into account (black squares in Figure 9.1).
The stations are located in or near the core area. Receivers located farther away are not considered
as no rays between them and the GPS satellites cross voxels in the core area.
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Figure 9.1: View of the investigation area. The tomographic grid covers large parts of Switzerland.
The grid has a horizontal spacing of about 37 km. The black squares represent the GNSS receiver
stations. The black triangle denotes the balloon sounding station at Payerne.

Evaluation methods

The estimated fields are compared to measurements from balloon soundings and to the analyses of
the NWP model COSMO-7.

Balloon soundings: Balloon sounding data from the station in Payerne are considered (black trian-
gle in Figure 9.1). The data set consists of in-situ measurements irregularly recorded by the
radiosonde during the ascents. Each time, when a temperature and humidity measurement
is available, a wet refractivity value is computed. An instantaneous and vertical climb is
assumed for the balloon tracks. Each value computed from a balloon sounding is then com-
pared to the wet refractivity estimated by the tomographic technique at the same location
and time. The statistical evaluations are based on the difference of these values (estimated
minus measured). All differences are equally weighted in the statistical evaluations and are
considered as independent from each other.
At midnight and at noon, balloon soundings are launched. Comparing the zenith delays
computed from balloon soundings in Payerne with GPS derived delays have shown different
biases for midnight and noon (see Section 6). Due to this different biases, data from midnight
and noon are treated separately in the investigations.

NWP COSMO-7: The hourly analyses of the NWP COSMO-7 are considered (see Section 4.4).
At each grid point of the NWP, the wet refractivity is computed and compared to the wet
refractivity estimated by the tomographic software (estimated minus model). Only grid
points located in the core area of the tomographic processing and grid points below 15’000 m
altitude are considered. Based on the wet refractivity differences at these grid points, a
weighted RMS error is computed. The weights are proportional to the volume a NWP grid
point represents. The comparison with NWP model data provides the possibility to evaluate
the solutions of the tomographic processing in different regions.
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9.2 Results and discussion

Figure 9.2a) and 9.2b) show the difference between the wet refractivity derived from balloon sound-
ings launched at noon in Payerne (490 m altitude) and those computed with constant and with
trilinear parameterization along the vertical profile above the balloon sounding station, respec-
tively. The right subplots illustrate the mean difference (continuous line) and the 68.26% quantiles
assuming normal distribution (dashed lines) for the entire time span of the investigation. The top
subplots display the expected difference and the 68.26% quantiles over the entire height domain.

In Figure 9.2a), staircase-shaped patterns are visible. They exactly correspond to the voxel
boundaries. If the trilinear or spline parameterization is used, no such patterns are visible (see
Figures 9.2b) and 9.3). This shows that more complex parameterizations, such as the trilinear one,
prevent discontinuities at voxel boundaries and reduce biases at the top and bottom boundaries of
the voxels.

Both plots show a dry bias for the GPS measurements (refractivities of the GPS solution are
smaller in average than those from balloon soundings). Especially below 2000 m altitude for the
constant parameterization and 3000 m for the trilinear one, distinct dry biases are visible. For
both parameterizations, biases are maximal at an altitude of about 1000-1300 m during summer.
During this season, the standard deviation is about 2 ppm larger than during winter (see top
subplot in Figures 9.2a) and b)). No seasonal variability is visible in the bias. Contrary to that,
the comparison with balloon soundings launched at midnight shows a seasonal variation of the bias
of 0.5-1 ppm (see Figure 9.4a)). Comparing them to the variations on the synoptic time scale,
synoptic-scale effects cause variations which are one order of magnitude larger than those from
diurnal variations. This shows that synoptic-scale effects are dominant on the scale of our setup.

Figure 9.4 shows the difference along the vertical profile above Payerne between wet refractivity
derived from GPS data and from balloon soundings launched a) at midnight and b) at noon for the
trilinear parameterization, respectively. At midnight, the GPS-derived solutions show a larger dry
bias than at noon. This difference agrees with the investigations about the systematic errors be-
tween GPS derived zenith wet delays and delays computed from balloon soundings (see Section 6).
They revealed that the zenith wet delays derived from GPS are smaller (indicating a more dry
atmosphere) than those computed from balloon soundings at midnight. The opposite is observed
at noon: GPS-derived zenith wet delays are larger than those from balloon soundings. From this
we can conclude that the day-night difference observed in the evaluation of the tomography is
related to the differences between GPS-derived path delays and those from balloon soundings.

In Table 9.4, the standard deviations are listed for several parameterizations and layers. The
standard deviation decreases with height. The new parameterizations (trilinear and spline) show a
significantly lower standard error in the lower troposphere (below 3 km altitude). Above this level,
the constant parameterization shows a lower standard deviation than the other two parameteriza-
tions. Above 6 km altitude, that is, however, mainly related to the a priori values at the top of
the grid. In the case of constant parameterization, refractivity within a voxel is represented by a
single parameter. In contrast to that, the refractivity within a voxel is determined by the param-
eters at the grid nodes in the non-constantly parameterized field. This means that a priori values
introduced at the top of the grid have a much stronger influence on the top layer in the constantly
parameterized case than in the non-constantly parameterized cases. Since the gradients in this
layer are small and the wet refractivity is small compared to low-altitude layers, the introduced
a priori values for constant parameterization are a suitable approximation. Furthermore, these a
priori values decrease the impact of observations or modeling errors from GPS measurements on
the top layer. Comparing the different parameterizations over all layers, the trilinear and the spline
parameterizations show a significantly lower standard deviation than the classical constant one.
With respect to the measured wet refractivities, the tabulated precisions correspond to a relative
error of about 15%.

Figures 9.5a)-9.5c) show the weighted RMS error of the estimated wet refractivity field with
respect to data from COSMO-7. The data set spans a period of 1 year and the statistics is computed
for each vertical column of the NWP model. The most accurate results are achieved in the Alps
where the RMS error is 2-4 ppm. On the Swiss Plateau, slightly larger RMS errors are observed
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Figure 9.2: Wet refractivity difference between tomographic solutions and observations computed
from balloon soundings launched at Payerne at noon for a) constant and b) trilinear parameteri-
zation.
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Figure 9.3: Wet refractivity difference between tomographic solutions and observations computed
from balloon soundings launched at Payerne at noon for the spline parameterization.

(6-8 ppm). Outside the core area, the RMS errors are significantly larger and range up to an RMS
error of 16 ppm. The latter is related to the coarse grid resolution and sparse observations in these
areas.

Comparing the results from the different parameterizations, the constant parameterization
shows slightly better results than the trilinear and spline parameterizations (see Table 9.5). Look-
ing for common patterns in Figures 9.5a)-9.5c), we find tile-shaped patterns for the constant
parameterization. Their largest spatial gradients coincide with the lateral voxel boundaries. This
indicates that this kind of pattern is related to how a voxel is parameterized. As a single parame-
ter describes the refractivity field within a voxel in the constant parameterization. A continuously
changing property of the refractivity field over the area cannot be accurately represented by this
parameterization and leads to discontinuities at the voxel boundaries. This is exactly what we
observe in this plot.

Table 9.4: Standard deviation of wet refractivity differences between the balloon sounding observa-
tions and the tomographic solutions. The balloon sounding measurements are grouped according
to the given height layers.

Height Constant Trilinear Spline

0-1500 m 13.353 ppm 9.670 ppm 9.722 ppm
1500-3000 m 8.800 ppm 8.152 ppm 8.258 ppm
3000-4500 m 5.197 ppm 6.085 ppm 6.086 ppm
4500-6000 m 3.097 ppm 3.759 ppm 3.730 ppm
6000-15’000 m 1.365 ppm 2.267 ppm 2.521 ppm

0-15’000 m 7.587 ppm 6.443 ppm 6.517 ppm
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Figure 9.4: Wet refractivity difference between tomographic solutions and observations computed
from balloon soundings launched at Payerne for the trilinear parameterization at a) 0 and b) 12 h
UTC.
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Figure 9.5: Weighted RMS errors computed from the wet refractivity difference between COSMO-7
and the tomographic solution using a) constant, b) trilinear, and c) spline parameterization. One
year of data is considered between Earth’s surface and 15’000 m altitude.
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9 Evaluation of the GPS tomography with a long-term study

Table 9.5: RMS error in ppm wet refractivity units of the tomographic solution with respect to
the analysis of COSMO-7. Tomographic solutions based on constant, trilinear and spline param-
eterizations are considered. Columns entitled Uncorr. describes the RMS error without any bias
correction. For the values in the columns headed by Corr., a bias correction is applied to the
tomographic solutions (see also Section 9.3).

Constant [ppm] Linear [ppm] Spline [ppm]
Uncorr. Corr. Uncorr. Corr. Uncorr. Corr.

500 m 19.162 9.881 14.010 11.846 14.021 11.731
1000 m 17.068 11.310 14.237 11.994 14.332 12.003
1500 m 13.200 9.852 13.252 10.479 13.239 10.331
2000 m 11.555 9.328 11.109 8.936 11.122 8.618
3000 m 8.975 8.463 8.437 7.441 8.497 7.545
4000 m 7.750 7.575 7.688 7.253 7.943 6.865
5000 m 4.946 4.778 5.904 4.094 5.950 4.271
6000 m 2.990 2.898 3.853 3.779 3.665 3.098

0-15000 m 4.673 3.150 4.802 3.092 4.887 3.034

As expected, the trilinear and the spline parameterizations show a different common pattern
from that observed by the constant parameterization. Larger RMS values are often found along
voxel boundaries and around grid nodes. This can be explained by the different voxel parameteri-
zation. In contrast to the constant parameterization, the refractivity within a voxel is determined
by the refractivities at the corners of the voxel. Trilinear as well as spline parameterization use
bilinear interpolation in the horizontal. Thereby, the estimated field tends to be more accurate
in the center of the voxel than towards the boundaries or the corners of the voxel. This is even
strengthened by the fact that no horizontal smoothing constraints are used.

Comparing the accuracies achieved with respect to the balloon soundings in Payerne (see Ta-
ble 9.4) and to the NWP COSMO-7 (see Table 9.5), large differences can be observed between
them. To a large extent, they are related to the different evaluation method: All balloon sound-
ing measurements are equally weighted, but they are not uniformly distributed over the height
(see Figure 4.4). The density of the available measurements generally decreases with height and,
therefore, errors at low altitudes have a larger impact on the global accuracy than those at high
altitudes. In contrast to that, the data from the NWP COSMO-7 is weighted proportional to
the volume which a grid node represents. This corresponds to equally weighted balloon sounding
measurements if they were uniformly distributed along the vertical.

Figures 9.6-9.8 show the RMS of the tomographic solution with respect to the analysis of
COSMO-7 at different height levels. Largest RMS errors are found at levels at low altitudes
and a strong decrease of the RMS error with height is visible. This explains why better absolute
accuracies are achieved over the alpine regions than over the Swiss Plateau incorporating the whole
atmosphere (see Figures 9.5a)-9.5c)). In the highly elevated alpine regions, the low-elevated levels
responsible for large parts of the errors are not present whereas they are over the Swiss Plateau.

In Figure 9.6, tile-shaped patterns are again clearly visible. Especially in Figure 9.6e) and f)
around the location 46.5◦ N and 7.8◦ E, such a pattern can be found. The large RMS error within
the voxels at this location is related to the GPS receiver station on Jungfraujoch, which is located in
this voxel at an altitude of about 3500 m. The rather large RMS error indicates that the information
provided by this station differs from the properties of the NWP field in the vicinity of Jungfraujoch.
Although the station is located at 3500 m, large RMS errors are observed in altitudes below the
station height. In Figures 9.7 and 9.8, large RMS errors can also be observed in this voxel. However,
the pattern shows the characteristics typical for the non-constant parameterizations. The maximal
uncertainties are centered along the eastern boundary of the voxel. This coincides well with the
location of the receiver station at Jungfraujoch (46◦33’ N 7◦59’ E). Contrary to the solution of
the constant parameterization, layers at lower altitudes than the height of that station are not
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Figure 9.6: RMS error of the GPS tomography using constant parameterization with respect to
the analysis of COSMO-7 interpolated to different height levels. Black areas indicate regions with
an RMS error larger than 30 ppm and gray areas regions in which the Earth’s surface is above the
considered level.
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Figure 9.7: RMS error of the GPS tomography using trilinear parameterization with respect to
the analysis of COSMO-7 interpolated to different height levels. Black areas indicate regions with
an RMS error larger than 30 ppm and gray areas regions in which the Earth’s surface is above the
considered level.
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Figure 9.8: RMS error of the GPS tomography using spline parameterization with respect to the
analysis of COSMO-7 interpolated to different height levels. Black areas indicate regions with an
RMS error larger than 30 ppm and gray areas regions in which the Earth’s surface is above the
considered level.
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9 Evaluation of the GPS tomography with a long-term study

affected. On the other hand, the 5000 m level shows a larger RMS error compared to the results
of the constant parameterization. We can conclude that non-constant parameterization can more
accurately localize such effects and that the impact is spatially more restricted compared to the
solution computed with constant parameterization. These findings also indicate that high-elevated
receiver stations, such as Jungfraujoch, may introduce artefacts. Therefore, the impact of such
stations should be carefully investigated before they are processed in an operational setup.

Figure 9.9 shows the seasonal RMS errors of the tomographic solution computed with con-
stant parameterization with respect to COSMO-7. During winter (December-February) and spring
(March-May), the RMS errors are significantly smaller than during the other seasons (see Table 9.6).
This agrees well with the investigations about the seasonal variability of the wet refractivity in Sec-
tions 5.1 and 5.2. They revealed that during summer, largest wet refractivity values and spatial
variability are observed. The investigations have also shown a larger spatial variability in autumn
than in spring. This suggests that the accuracy of the reconstructed field is strongly related to the
spatial variability of the wet refractivity field and, thus, to the discretization error.
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Figure 9.9: Weighted RMS error of the tomographic solution using constant parameterization with
respect to COSMO-7 evaluated for different seasons. The RMS error is in ppm wet refractivity
units.

The diurnal cycle of the RMS error of the tomographic solution with respect to COSMO-7
is shown in Figure 9.10. The minimal RMS error is reached during the morning. At noon, the
RMS error increases by about 2-3 ppm and reaches the diurnal maximum in the late afternoon.
Afterwards, it monotonically decreases until it reaches again the diurnal minimum in the morning.
Larger RMS errors during the afternoon are expected as solar radiation causes thermal convection
in the atmosphere. The resulting small-scale perturbations cannot be resolved by the grid used in
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9.2 Results and discussion

Table 9.6: Weighted RMS error of tomographic solutions with respect to COSMO-7 evaluated for
different seasons and parameterizations. Each season comprises 3 months.

Constant Linear Spline

Winter (December-February) 4.004 ppm 4.083 ppm 4.063 ppm
Spring (March-May) 3.973 ppm 4.591 ppm 4.674 ppm
Summer (June-August) 5.678 ppm 6.633 ppm 6.749 ppm
Autumn (September-November) 4.535 ppm 5.465 ppm 5.554 ppm

our setup (see Section 5.2). This is reproduced in the diurnal cycle of the RMS error. As the data
set used to computed these RMS errors considers all 4 seasons and thermal convection is mainly
observed during summer in mid-latitudes on the northern hemisphere, a more distinct diurnal cycle
of the RMS error is expected during summer (see Section 5.1).
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Figure 9.10: Weighted RMS error of different parameterized tomographic solutions with respect to
COSMO-7 at different day times. The values are in ppm wet refractivity units.

Looking at Figure 9.11, the largest diurnal changes of the RMS error are observed in alpine
areas. This supports the hypothesis that diurnal variations in the RMS error are mainly driven
by convective processes because such processes are usually stronger in alpine regions. However,
comparing the mean diurnal variability of the RMS error with the total variability, the diurnal one
is about one order of magnitude smaller than the total one. This relativizes the importance of the
diurnal variability compared to other factors, such as variations caused by synoptic scale effects.

The statistics about the accuracy of the tomography presented so far give only an average view
over time and space. Particular cases are not addressed. Table 9.7 is a first try to list effects
which have an impact on the precision which are not due to the tomographic processing. The error
ranges caused by particular effects at certain times and locations are estimated. These ranges are
coarse guesses and should be treated with care. The ranges are mainly estimated from the outcome
of the investigations presented in Section 6 and observations from this section. Balloon sounding
measurements are a main source of errors and can considerably vary between sensors of different
manufacturers. Heating by solar radiation causes a rather small error compared to others, but it
occurs more frequently. An error source with a large impact is icing or wetting of the sensors. This
effect can be occasionally observed if a balloon traverses a cloud or an area with relative humidity
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Figure 9.11: Weighted RMS error of tomographic solution using constant parameterization with
respect to COSMO-7 at selected day times. The values are in ppm wet refractivity units.
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9.3 Bias correction model and its evaluation

near the saturation level. Errors with a similarly large impact are related to the tempo-spatial
variability of the wet refractivity field. On the one hand, the balloon track can depart from the
assumed instantaneous and vertical climb of the balloon due to advection of the balloon by wind.
In that case, the refractivities are compared at different locations and this can introduce errors.
On the other hand, the finite parameter set used in tomographic reconstruction may not have the
necessary degrees of freedom to reproduce the true atmosphere. These discretization errors can
be quite large in particular cases. Another error source is the GNSS processing. There are several
unmodeled or incomplete modeled effects such as higher-oder ionospheric effects, multipath and
phase center variations of the antenna which can be found in the postfit residuals. Postfit residuals
are important for GNSS tomography as they are expected to contain information on the anisotropic
water vapor distribution in the troposphere.

Table 9.7: Error budget for the tomographic evaluation. The error level reflects the error range a
certain effect can cause.

Error source Uncorrected error level

Heating by solar radiation 0-1 ppm
Icing/wetting of sensors 0-30 ppm
Departure true/assumed of balloon track 0-30 ppm
Discretization error 0-30 ppm

Higher-order ionospheric terms 0-2 cm ∗

Multipath 0-5 cm ∗

Antenna phase center variation 0-1 cm ∗

∗ personal communication with A. Geiger

9.3 Bias correction model and its evaluation
In the previous section, some systematic errors with respect to data from balloon soundings have
been observed, such as a dry bias in the lower layers. In this section, a simple model will be
presented to reduce such systematic errors. With the help of this model, these errors should be
better quantized and, finally, should lead to a better understanding of the tomographic technique
and its limitations. In addition, this should allow us to better formulate strategies to further
improve GNSS tomography.

Figure 9.12 shows a time series of the difference between the tomographic solution and COSMO-
7 at the grid point located at 46.905◦ N, 7.482◦ E and 1198 m altitude (gray dots). The time series
clearly shows a seasonal cycle. This is also rendered in the bias correction model:

µ̂(t) = a0 + a cos
(

2π
t

τ
− φ

)
(9.1a)

= a0 + a1 sin
(

2π
t

τ

)
+ a2 cos

(
2π

t

τ

)
(9.1b)

with the time t, the seasonal period τ = 365.25 days, and the parameters a0, a =
√
a2

1 + a2
2,

and φ = arctan(a1/a2). Equation 9.1a) can be reformulated into the linear Equation 9.1b). The
parameters a0, a1 and a2 are fitted by a linear LSQ adjustment at each grid node of the NWP
COSMO-7. Performing the bias correction at each NWP grid node allows us to eliminate a) local
effects and artifacts of the NWP model, and b) artefacts caused by the parameterization and the
measurement constellation. bias

For the time series shown in Figure 9.12, the model parameters are fitted. The solid line in the
figure represents the solution of the fitted model parameters. The correction is largest in February
and reaches the minimum in summer. Therefore, we can expect that the bias correction decreases
the RMS error during winter more than during summer. This will further increase the seasonal
variability of the accuracy. Considering the whole year, the bias correction decreases the RMS error
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9 Evaluation of the GPS tomography with a long-term study

from 9.962 ppm to 8.213 ppm at this grid point. Testing the single parameters of the model for
their relevance reveals that all 3 parameters are significantly different from zero. Detailed statistics
about the parameters are listed in Table 9.8.
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Figure 9.12: Difference between the tomographic solution and COSMO-7 at the location 46.905◦ N,
7.482◦ E and 1198 m height indicated by gray dots. The black line represents the solution of the
fitted model (see Equation 9.1a)).

Figure 9.13 shows the parameter a0 on different height levels for the case using constant parame-
terization. Largest biases are found in the layers close to the Earth’s surface where the tomographic
solution tends to be too wet (indicated by the blue color). At higher elevations, the opposite can
be observed: the tomographic solution is too dry. The parameter a0 is shown for the trilinear and
the spline parameterization in Figures 9.14 and 9.15, respectively. The fitted parameter values for
these two parameterizations are similar to each other, but are considerably different from those of
the constant parameterization. Namely, they show horizontal gradients within the voxels in layers
below 2000 m altitude. As generally only a single station resides in a voxel column and bilinear
parameterization is used in the horizontal, local systematic gradients in the GPS observations seem
a reasonable explanation for these gradients. These local gradients might not be representative for
the whole voxel and, thus, cause these systematic differences.

In the vicinity of Jungfraujoch (46◦33’ N 7◦59’ E), strong biases of the order of 10 ppm are
detected below 4000 m altitude in the solutions based on constantly parameterized voxels. Contrary,
the solutions using non-constant parameterizations show no such distinct correction values. This
indicates that more complex parameterizations can better handle conditions similar to that found
in the Jungfraujoch area. Whether this will improve the accuracy of the bias corrected solution will
be discussed later in this section. Nonetheless, this confirms that data from such stations should
be handled with care.

Considering the whole troposphere, we have seen dry biases of the tomographic solution com-
pared to the balloon soundings launched in Payerne (e.g. Figures 9.4a) and b)). Are such dry biases
also present in other regions? Figures 9.16a)-9.16c) show the integrated biases along the zenith
direction with respect to COSMO-7. The integrated bias is also referred to as zenith wet path delay

Table 9.8: Parameters of the bias correction model for the grid point located at 46.905◦ N, 7.482◦ E,
and 1198 m height (see Equation 9.1b)).

Parameter Estimate Std. Error t value

a0 4.518 ppm 0.088 ppm 51.37
a1 2.007 ppm 0.124 ppm 16.12
a2 4.309 ppm 0.124 ppm 34.66
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Figure 9.13: Estimated biases of the constantly parameterized solution with respect to COSMO-7
on different height levels. The displayed values correspond to the parameter a0 in Equation 9.1b).
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Figure 9.14: Estimated biases of the trilinear parameterized solution with respect to COSMO-7 on
different height levels. The displayed values correspond to the parameter a0 in Equation 9.1b).
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Figure 9.15: Estimated biases of the spline parameterized solution with respect to COSMO-7 on
different height levels. The displayed values correspond to the parameter a0 in Equation 9.1b).
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bias. The delays are computed by integrating the parameter a0 of the bias correction model along
the vertical. In the case with constantly parameterized voxels, the tomographic solutions show a
dry bias of about 3-10 mm. Small dry and even wet biases are observed in alpine regions. Towards
the boundaries of the core area and outside the core area, the bias tends to be larger and more dry.

For the trilinearly parameterized voxels, the zenith path delay biases tend to be smaller com-
pared to those of the constantly parameterized voxels. There are regions showing a wet bias up to
5 mm delay. Outside the core area, rather large dry biases are visible. The latter are related to a
priori values introduced at the lateral boundaries of the grid which are significantly smaller than
those of COSMO-7. Adapting these pseudo-observations should reduce the dry bias outside the
core area.

For the solutions computed with the spline parameterization, large dry biases of about 5-15 mm
are visible. This type of parameterization clearly shows the largest dry biases of all 3 parameteri-
zations and, nowhere, wet biases are observed. Investigations have shown that a large parts of the
dry biases are produced in the top grid layer. This indicates that the combination of the pseudo-
observation at the top level in combination with the boundary condition of the natural cubic splines
is problematic and one should consider to use other boundary conditions, such as fixing the first
derivative of the spline function. Another possibility would be to modifying intervoxel constraints
in the way to rather affect the first derivative at the grid points than the wet refractivity difference
between two adjoining grid points.

Figures 9.16a)-9.16c) show a larger dry bias in Payerne compared to most other regions for all
3 parameterizations. This means that biases shown by the comparison with balloon sounding data
are generally larger and more dry than those observed in the other regions. We can, therefore,
conclude that the comparisons with balloon soundings in Payerne (Table 9.4) are too pessimistic.
Nevertheless, the tomographic solutions tend to be too dry compared to the NWP COSMO-7 in
most regions.

The distinct differences in the integrated biases between the parameterizations show that the
tomographic solutions are sensitive to the voxel parameterization with respect to zenith wet delays.
This suggests that the setup and especially the choice of the parameterization and intervoxel
constraints are crucial for accurate tomographic results. On the other hand, this also indicates
that GNSS tomography with double difference observations has a limited robustness regarding
integrated quantities. From this point of view, it is debatable to prefer slant path delays over
double difference delays. Due to the differencing, a single double difference observations contains
no information about the absolute path delay. Therefore, the use of slant path delays may have a
positive impact on the accuracy regarding integrated quantities.

Figure 9.17 shows the seasonal amplitude of the bias correction for the constantly parameterized
solution with respect to COSMO-7. Large amplitudes are mainly found below 4000 m altitude and
tile-shaped patterns similar to those observed in Figure 9.5a) are present in these layers. The
shape of these patterns changes at heights between 4000-5000 m: Largest values are found along
mountain ridges. This suggests that seasonal variations are related to the voxel parameterization
and to local effects. Comparing the amplitudes to the mean biases (parameter a0), they are of
the same order of magnitude. In several regions and below 3000 m altitude, the seasonal variation
even tends to be larger than the mean bias. This means that dry and wet biases can be observed
at a single point at different seasons. The other two parameterizations show much smaller seasonal
variations (see Figures 9.18 and 9.19). Thus, the ratio between the seasonal variation and the mean
bias is also smaller. This is an indicator that the solutions of more complex parameterized voxels
are more consistent over time which is an important property regarding the assimilation into NWP
models.

The seasonal maxima are reached between late autumn and winter at low altitudes. Above
3000 m altitude, the maxima are shifted towards spring and summer (see Figures 9.20-9.22). This
corresponds to a phase shift of about half a year between low- and high-elevated layers and can be
interpreted in the way that the systematic seasonal variation is largely a variation in the vertical
distribution. During winter, the tomographic solution has a more wet bias in low-elevated layers
and a more dry bias in high-elevated layers with respect to the mean bias. The opposite is then
observed during summer. As the vertical resolvability in GNSS tomography is limited, vertical
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Figure 9.16: Integrated biases along the zenith direction computed from a) the constant, b) the
trilinear, and c) the spline-parameterized solutions with respect to COSMO-7.
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Figure 9.17: Seasonal amplitude variation of the bias with respect to COSMO-7 using constantly
parameterized voxels. Gray shaded areas indicate regions in which the Earth’s surface is above the
considered level.
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Figure 9.18: Seasonal amplitude variation of the bias with respect to COSMO-7 using trilinearly
parameterized voxels. Gray shaded areas indicate regions in which the Earth’s surface is above the
considered level.
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Figure 9.19: Seasonal amplitude variation of the bias with respect to COSMO-7 using spline
parameterization. Gray shaded areas indicate regions in which the Earth’s surface is above the
considered level.
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9.4 Conclusions

intervoxel constraints play a crucial role concerning the vertical distribution of the wet refractivity.
This suggests that a departure of the wet refractivity vertical distribution on which the intervoxel
constraints are based from the truth leads to systematic errors in the vertical distribution in
the tomographic results. Although the vertical distribution varies with time, the same vertical
distribution is assumed for the whole year in our setup. This might be the reason for the systematic
errors in the vertical distribution of the wet refractivity. Adaptive vertical intervoxel constraints
might reduce these errors.

Figures 9.23-9.25 show the RMS error with respect to COSMO-7 for different parameterizations
on selected height levels after applying the bias correction model on the tomographic solutions.
They still show the same typical pattern as seen in the RMS error plots without bias correction.
The RMS values are, however, significantly decreased (see Table 9.5), at least at low altitudes.

Below 1500 m altitude, the bias correction model has a large impact on the accuracy of solutions
based on constantly parameterized voxels and leads to even more accurate results than with the
more complex parameterizations. An explanation of this could be that local gradients induced by a
single GPS station are not representative for the gradients on the grid scale. As the station density
is rather low compared to the grid resolution (less than one station per voxel column in average)
and no ray crossings occur below several hundred meters above the Earth’s surface, the field is not
well determined. Thus, the local gradients are visible in the solutions and increase the RMS error
along the voxel boundaries.

Above 1500 m altitude, the solutions of the more complex parameterizations become more
accurate than those computed with the constant parameterization. This is an indicator that the
more entangled rays better determine the field and, therefore, can better suppress the effects of
non-representative local gradients. Investigations using horizontal intervoxel constraints in the
layers below 1500 m altitude may clarify this hypothesis.

Comparing the results of the different parameterizations, the estimated refractivities based on
the complex parameterizations are more accurate on heights between 1500-5000 m than those
based on the constant parameterization. The same holds if the whole atmosphere is considered.
The results based on the more complex parameterizations are improved by 2% and 4% compared
with that based on the constant parameterization (see Table 9.5).

Concerning the accuracy in the vicinity of Jungfraujoch (46◦33’ N 7◦59’ E), the complex pa-
rameterizations show significantly more accurate results than the constant parameterization. Large
RMS errors are limited to a radius of a few kilometers around the Jungfraujoch whereas several
voxels around Jungfraujoch are affected in the case of the constant parameterization. This confirms
the better resolvability of the complex parameterizations compared to that of constant parameter-
ization and agrees with the results of the synthetic tests presented in Section 8.2.

9.4 Conclusions

The investigations in this chapter revealed a good performance in terms of accuracy for the new
tomography software AWATOS 2. An RMS error of 3.0 ppm (0.4 g m−3 absolute humidity) is
achieved with respect to the NWP COSMO-7 including 1 year of data. This demonstrates the high
potential of GNSS tomography to improve the initial state of numerical weather prediction models.
Compared to the predecessor AWATOS, the new algorithms in AWATOS 2 show significantly
more accurate results (Troller 2004; Troller et al. 2006). This shows the positive impact of
the enhancements such as the Kalman filter, the improved statistical model, the new intervoxel
constraints and the voxel parameterizations on the accuracy of the results.

The investigations revealed that tomographic solutions show significant systematic errors. Sour-
ces of these errors are effects due to the discretization of the space by the voxel parameterization,
and systematic differences between the input data and data used for the validation. These errors
can be considerably reduced by a bias correction model. The RMS error with respect to the NWP
COSMO-7 decreases from 4.9 ppm (0.7 g m−3) to 3.0 ppm (0.4 g m−3) for the solution usingspline
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Figure 9.20: Phase shift of the seasonal maximal bias with respect to COSMO-7 for constant
parameterization. The shifts are given in day of year. Gray shaded areas indicate regions in which
the Earth’s surface is above the considered level.
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Figure 9.21: Phase shift of the seasonal maximal bias with respect to COSMO-7 for the trilinear
parameterization. The shifts are given in day of year. Gray shaded areas indicate regions in which
the Earth’s surface is above the considered level.
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Figure 9.22: Phase shift of the seasonal maximal bias with respect to COSMO-7 for the spline
parameterization. The shifts are given in day of year. Gray shaded areas indicate regions in which
the Earth’s surface is above the considered level.
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Figure 9.23: RMS error of the tomographic solutions computed with constant parameterization
with respect to COSMO-7 on selected height level using the bias correction model. Gray shaded
areas indicate regions in which the Earth’s surface is above the considered level.
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Figure 9.24: RMS error of the tomographic solutions computed with trilinear parameterization
with respect to COSMO-7 on selected height level using the bias correction model. Gray shaded
areas indicate regions in which the Earth’s surface is above the considered level.
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Figure 9.25: RMS error of the tomographic solutions computed with spline parameterization with
respect to COSMO-7 on selected height level using the bias correction model. Gray shaded areas
indicate regions in which the Earth’s surface is above the considered level.
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parameterization. Besides the algorithmic improvements, the bias correction considerably decreases
the RMS error of the tomographic solution with respect to COSMO-7 and is, therefore, highly
recommended.

Comparisons with balloon sounding measurements and data from the NWP COSMO-7 showed
that the accuracy is improved by more complex voxel parameterizations such as the trilinear or
spline parameterization. With the spline parameterization, the standard error decreases by about
15% with respect to the data of balloon soundings launched at Payerne. Compared to the NWP
COSMO-7, the improvement is much smaller and is of the order of 5% (including the application
of the bias correction model). The case study addressing the local conditions in the vicinity of
the highly elevated GNSS station Jungfraujoch revealed that the special local conditions near
Jungfraujoch are significantly better reproduced by the non-constant parameterizations. Large
biases and RMS errors are limited to the vicinity of this receiver station whereas the whole voxel
and to a certain extent adjoining voxels are affected in the case where the constant parameterization
is used. We can, therefore, recommend the use of the trilinear or spline parameterization. As the
results of these two parameterizations are very similar, they are rated as equal in terms of accuracy.

Different parameterizations lead to a different vertical distribution of the systematic errors
and to different integrated biases along the zenith direction. This sensitivity indicates a limited
vertical resolvability and confirms the results of the synthetic tests in Section 8.2. Undifferenced
observations such as zenith wet delays or slant path delays may improve the accuracy with respect
to integrated quantities. Further investigations will reveal if the use of slant path delays instead of
double difference delays will improve the accuracy.

The limited capability of GNSS tomography to resolve vertical structures is also supported by
the observation that the vertical distribution of the systematic errors varies throughout the year.
The departure of the vertical water vapor distribution, on which the intervoxel constraints are
based, from the true distribution introduces systematic errors. These systematic departures are
reduced by the bias correction. Adaptive intervoxel constraints should be considered to further
decrease the impact of this effect.
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Chapter 10

Conclusions

Within this thesis, the tomography system AWATOS 2 for estimating the 4D distribution of tro-
pospheric refractivity has been implemented. The system is able to process integral measurements,
such as GNSS double difference and slant path delays, and point measurements (e.g. from syn-
optic networks, balloon soundings and aircrafts). Tests with simulated and with real data have
demonstrated the good performance of the assimilation system and the positive impact of the new
models on the accuracy of the results. The simulation capabilities of AWATOS 2 have turned
out to be useful for investigating the theoretical possibilities and limitations of the tomographic
reconstruction based on GNSS double difference path delays.

In AWATOS 2, a trilinear and spline-based parametrization of the refractivity field are imple-
mented. Investigations including simulated data and GPS double difference observations collected
from 46 receiver stations over one year have shown superior performance of the new parametriza-
tions compared to the classical constant one. The errors with respect to balloon soundings have
been decreased by 15% using the new parametrizations instead of the constant one. As both
new parametrizations achieve similarly accurate results, but the spline-based operates at higher
computational costs, trilinear parametrization should be favored.

The long-term study revealed that there exist systematic differences between the tomographic
solutions and the analysis of the NWP model. The bias correction model presented in this study
reduces the RMS error with respect to the NWP model by 35% to 3.0 ppm (0.4 g m−3 abolute
humidity). The bias can be explained to some extent by systematic differences between the input
and the validation data and by discretization errors. In view of assimilation into a NWP model,
a high-resolution bias correction model is strongly recommended. It is suggested that a similar
grid resolution should be chosen for the bias correction model as for the NWP model. This allows
to reduce the discretization errors and local effects which are related to differences between the
true topography and that of the NWP model. For further applications, the possibility to reduce
systematic differences at the observation-level should be considered.

Synthetic tests have indicated that vertical structures above the top station of the receiver
network can be reconstructed by GNSS tomography. Thin refractivity layers above the top station
are, however, weakly resolved compared to layers below the top station. In addition, the vertical
resolvability of such layers quickly decreases with increasing layer height. Theoretical considerations
suggest that the resolution of such structures are possible due to the spherically layered atmosphere.

The limited capability to resolve vertical structures is also visible in the results of the long-
term study. Systematic differences between the tomographic solutions and the analyses of the
NWP model are present. The analysis of these differences indicates the problematic influence
of the intervoxel constraints. The investigations have shown that the distribution of the wet
refractivity can considerably depart from the horizontal layering, especially in mountainous regions.
Therefore, the horizontally smoothing intervoxel constraints should be used with care. The use
of vertical smoothing constraints is, however, also challenging as the weak vertical resolvability of
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10 Conclusions

GNSS tomography makes the solution sensitive to intervoxel constraints. It is suggested to use
adaptive intervoxel constraints or, better, supplementary observations which provide more accurate
information on the vertical distribution of the wet refractivity.

The investigations based on the 2 km grid NWP model data have shown small-scale structures
of the wet refractivity field. Representing these data on a coarser grid of 37 km resolution revealed
a discretization error of about 8 ppm (1.2 g m−3) RMS error at the 2000 m level in Switzerland.
Thus, the difference in resolution between NWP model data and tomographic solutions is definitely
a non-negligible error source. The impact of this error source can be reduced by high-resolution
tomography and dense GNSS receiver networks.

Most of the investigations presented in this thesis are based on the existing operational mea-
surement setup using GPS measurements from the AGNES receiver network. With the help of
an error analysis, the impact of technical improvements, such as additional receiver stations, their
specific locations and additional GNSSs, on the formal accuracy have been investigated. The study
revealed that receiver stations should be placed at different altitudes whenever possible and at lo-
cations where satellites are visible down to low elevations. The accuracy is mainly improved in
the lower 4 km of the troposphere. A practical extension of the AGNES network with additional
receiver stations at the locations of the SwissMetNet (SMN) revealed an improvement of about
20% in formal accuracy. This extension would increase the number of receiver stations from 31
to 91. The use of the additional GNSS Galileo improves the formal accuracy by about 10-15%.
The main effect is, however, a more constant accuracy over time. These analyses have revealed the
potential of the new GNSSs to improve the accuracy of the tomography and the strong positive
impact of dense receiver networks.
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Chapter 11

Outlook

In this thesis, the investigations focus on the accurate reconstruction of the wet refractivity field.
The step from wet refractivity to humidity has not been considered. To successfully assimilate
humidity data derived from GNSS, this step has to be addressed in further investigations. Another
issue is how to cope with the departure of the true topography from that of the NWP model
orography, especially pronounced in alpine regions. In these regions, the RMS remains large even
after applying the previously presented bias correction.

The theoretical investigations and the long-term study have shown the limited capability of
GNSS tomography to resolve vertical structures. Complementary observations such as radio oc-
cultations, meteorological measurements from aircrafts and satellite imagery have large potential
to improve the accuracy of GNSS tomography. AWATOS 2 already provides the possibility to
assimilate such observations. Case studies are suggested to show the impact of such observations
on the accuracy of the tomographic solutions.

A debatable point is whether to use zero difference delays or double difference delays as input
data in GNSS tomography. Double difference processing has the advantage that ambiguities can be
better resolved as with precise point positioning. This may result in more precise tropospheric path
delays, which is crucial for GNSS tomography. On the other hand, the differencing complicates
the tomographic processing, the investigations of the postfit residuals and a bias correction on the
GNSS delays.

Independent of the processing strategy of GNSS raw observations, the accuracy of the tropo-
spheric delays rely on the adequacy of the mapping functions. The investigations with the NWP
model and balloon sounding data have revealed that the wet refractivity field can show significant
perturbations from layered atmosphere. The impact of such departures from the usual structure of
the wet refractivity distribution on the wet path delays is not clear and needs further investigations.

GNSS tomography is one of the few water vapor remote sensing techniques operating at all
weather conditions. Assimilating the tomographic results into NWP models will have a large
impact on forecasting extreme weather situations, as many observations from other remote sensing
techniques are missing in these cases. It is, therefore, essential to better understand the accuracy
and reliability of the tomographic solutions in extreme weather situations.
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Appendix A

Ray-tracing in ellipsoidal coordinate
systems

In GNSS tomography, the atmosphere is discretized in so-called voxels. They are laterally limited
by faces of constant longitude and latitude. Two faces parallel to the reference ellipsoid limit the
voxel along the vertical. Signals are emitted by satellites and received at stations usually located
on the Earth’s surface. The ray path between satellite and receiver is modeled by a straight line.
Some of these rays cross voxels of our model. To determine, which voxels are traversed is the work
of the ray-tracing algorithm.

There are 3 cases of intersections: intersection with a) longitudinal, b) latitudinal, and c) hor-
izontal boundary faces. An intersection between a longitudinal voxel boundary and a straight line
is the simplest case. The boundary face is an unbent plane and the intercept point can be easily
computed, therefore. The ray line is described by

g(r) = x0 + r dx =

x0

y0

z0

 + r

dxdy
dz

 (A.1)

and the limiting plane by

fλ(s, t) = s

cos(λ)
sin(λ)

0

 + t

0
0
1

 , (A.2)

where x0 is a coordinate on the ray path (e.g. the coordinates of the receiver station), dx the
direction of the ray with ‖dx‖2 = 1, λ is the longitude of the face, and r, s and t the free
parameters describing the ray path and the face, respectively. Setting g(r) = fλ(s, t) and solve this
equation for r leads to

r̂ =
x0 sin(λ) − y0 cos(λ)
dy cos(λ) − dx sin(λ)

. (A.3)

The estimated parameter r is equal to the distance between the point x0 and the intersection of
the ray path g(s) with the plane fλ(s, t). Thus, the intercept point is x = x0 + r dx.
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A Ray-tracing in ellipsoidal coordinate systems

A bit more complicated is the latitudinal case. This case can be attributed to an intersection
between a straight line and a cone. The ray is again described as in Equation A.1. The cone can
be constructed by rotating the normal vector on the Earth’s surface around the Earth’s rotation
axis (z-axis). This leads to the quadratic equation a r2 + b r + c = 0 with

a = cos2(φ) dz2 − sin2(φ) (dx2 + dy2)
b = cos2(φ) z̃ dz − sin2(φ) (x dx + y dy)
c = cos2(φ) z̃2 − sin2(φ) (x2 + y2)

z̃ = z + aee
2 sin(φ)√

1−e2 sin2(φ)
,

where ae the Earth’s major axis, e the excentricity of the Earth’s ellipsoid, and φ the latitude of
the face.

The intercept point between the top and bottom of a voxel cannot be described in closed form.
The root finding algorithm Newton-Raphson was used to find the intersection point (Schwarz 1997).
The following system of equations must be solved:∣∣∣∣(Rn + h) cos(φ) cos(λ)− x0 − r dx = 0

(Rn + h) cos(φ) sin(λ)− y0 − r dy = 0

∣∣∣∣ , (A.4)

where φ denotes the latitude, λ the longitude, h the height above the Earth’s ellipsoid, d the Earth’s

semi-major axis, e the excentricity, Rn = d/
√

1− e2 sin2(φ), and r = ((Rn(1 − e2) + h) sin(φ) −
z0)/dz.
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Appendix B

Newton-Cotes quadrature

Newton-Cotes quadrature is a numerical method to estimate a definite integral. The Newton-Cotes
quadrature formulas approximate the integrand by Lagrange polynomials (Schwarz 1997; Stoer and
Bulirsch 1980). In our setup, Lagrange polynomials of order 4 are used. An integral of the function
f(x) in the interval [a, b] is then approximated by∫ b

a

f(x)dx =
2h
45

(
7
(
f(a) + f(b)

)
+ 32

(
f(x1) + f(x3)

)
+ 12f(x2)+

N−1∑
k=1

(
14f(x4k) + 32

(
f(x4k+1) + f(x4k+3)

)
+ 12f4k+2

))
with

h =
b− a
4N

, xj = a+ jh, (j = 1, 2, . . . , 4N − 1).
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Appendix C

Empirical Orthogonal Functions

The method of Empirical Orthogonal Functions (EOF) is a technique for analyzing the variability
of a scalar field (Obukhov 1960). It is widely used in meteorology and is closely related to Principle
Component Analysis (PCA). The method can be used to identify patterns of scalar fields and their
variation in time. Further, a quantity is indicating how important the single patterns are. In this
way, principle patterns or components are extracted. However, the principle patterns are not
necessarily related to a physical process, but they can help to characterize the data.

Another application of EOF is the removal of noise from data. Thereby, patterns with low
importance are interpreted as noise and are truncated. The data is then reconstructed by using
the principle components.

The method works on a discretized field. Let us assume that we have measurements at the
points pj(j = 1, . . . ,m). For each of these points, we have a measurement at time ti(i = 1, . . . , n).
All these observations are collected in a n×m matrix D. As a first step, the mean values and, if
desired, trends and seasonal effects are removed from each of the time series (e.g. from each of the
columns in D). Let us call the resulting matrix F.

The goal of the method is to find m patterns vk which maximize

n∑
i=1

(vTk fi)
2 (C.1)

subjected to the orthogonal constraint
vTk vk = 0, (C.2)

where fi is the i-th row vector of F. Applying the methods of Lagrange multipliers leads to the
eigenvalue problem

FTFv = λv (C.3)

with the eigenvalues λ. Thereby, the eigenvalues indicate the importance of the corresponding
pattern, and the eigenvectors or patterns are uncorrelated in the space of the field. Since F
contains the detrended data of the scalar field, FTF is the covariance matrix of the field.
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Appendix D

Atmospheric tides in times series of
wet refractivity

Further investigations of the spectra shown in Figures 5.3 a) and b) revealed additional peaks at
periods around 8 h, 12 h, and 24 h. To get more distinct spectra, a much longer period is evaluated.
The data set consists of pressure, temperature and humidity measurements with a sampling rate of
10 minutes at the synoptic station in Payerne and Mount Säntis. Each time series spans a period
beginning in January 1984 and ending in September 2010 (see Figure D.1a) and b)).

Figures D.1a) and b) show the spectra of the wet refractivity computed from temperature and
humidity measurements at the synoptic stations in Payerne and Mount Säntis, respectively. In the
spectrum belonging to Payerne, 3 peaks on both sides of the peak corresponding to the 24 h cycle
are visible. These 6 peaks are even more distinct than the 24 h peak. In the spectrum belonging to
Mount Säntis, only 2 peaks are visible besides the 24 hour peak. In contrast to the spectrum from
Payerne, the 24 h peak is the most pronounced one. The amplitudes are at about 1 ppm and are
of the same magnitude on both sites. The exact amplitudes of the most distinct peaks are listed
in Table D.1.

The observed frequencies correspond to the main solar tidal frequencies published in Petit and
Luzum 2010. The peaks at periods of 24.066 h and 23.934 h are identified with the main solar
tide P1 and the lunisolar declinational tide K1, respectively. The periods of 23.869 and 24.132 h
correspond to solar elliptical components π1 and ψ1, respectively. The outermost peak at a period
of 23.804 h refers to solar declination component ϕ1. The peak at period of 24.199 h has no name
but corresponds to a tidal component related to the Sun (Hartmann and Wenzel 1995).

Sidorenkov 2003, Sidorenkov 2009 and Bizouard and Seoane 2010 have investigated the influ-
ence of diurnal atmospheric tides on Earth rotation. Sidorenkov analyzed the relative atmospheric
angular momentum vectors computed from NCEP/NCAR reanalysis. The significant diurnal fre-
quencies listed in Table D.1 are also found in his spectral analysis. Beside these frequencies, he
observed significant frequencies around 28.235 h. No significant peaks are found in this band in
our spectra of the wet refractivity time series.

Comparing Figures D.1a) and b) shows that the tidal effects π1, ψ1, ϕ1 and that with period
24.199 h are only visible in the spectrum at Payerne but not on Mount Säntis. The reason for that
is not clear and needs further investigations.

The main semi-diurnal peaks visible in Figures D.1a) and b) are listed in Table D.1. They
coincide with tidal frequencies published in Sidorenkov 2009. The period of 11.967 h is indicated
as K2, that of 11.984 h as R2, 12.016 h as T2, and 12.033 h as 2T2. There are two additional peaks
with periods of 11.951 h and 12.049 h. Both of them are unnamed in the tide catalog published by
Hartmann and Wenzel 1995. All the visible semi-diurnal frequencies are related to solar induced
tidal components. Their amplitudes are of the same size as the amplitudes of the diurnal cycles.
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Figure D.1: Amplitude spectra of wet refractivity computed from the time series spanning more
than 26 years of data measured at the synoptic stations a) Payerne and b) Mount Säntis.

Ter-diurnal frequencies are also found. In contrast to the diurnal and semi-diurnal ones, they
coincide with lunar-induced tidal components and their amplitude is about one magnitude smaller
than the one from diurnal and semi-diurnal cycles.

In Table D.2, the amplitudes of main gravimetric tides at mid-latitudes are listed. Comparing
them to the observed ones in Table D.1, the tides which influence the gravitational acceleration
strongest are not the ones with the most pronounced amplitude in the spectra of the wet refractivity
time series. The partial tides Q1, O1, N2, M2 and M3 are not distinguishable from noise in the
spectra. This indicates that the atmospheric tides are not mainly driven by the change of the
gravitational acceleration. By looking at which of the tides are absent in the spectra, one sees that
only lunar tides are missing. Siebert 1961, Chapman and Lindzen 1970 and Lindzen 1978 state
that recurring variations in insolation and the resulting thermal effects are mainly responsible for
atmospheric tides. This confirms the suppositions that the atmospheric tides are not mainly driven
by changes in gravitational acceleration. In the following, the time series of pressure, temperature
and specific humidity will be considered.

In the last decades, pressure time series from synoptic stations have been investigated in Switzer-
land by Haurwitz and Cowley 1975 and by Palumbo 1975. They mainly focused on the solar partial
tides S1 and S2 and on the lunar tides M1 and M2. Haurwitz and Cowley 1975 investigated the
differences in amplitude observed on Mount Säntis and in Zurich and estimated the mean temper-
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Table D.1: Main cycles with periods equal or shorter than 1 day computed from temperature and
humidity measurements at the synoptic stations in Payerne and Mount Säntis. The time series is
sampled with 10 minutes and spans 26 years. For diurnal, semi-dirunal, and ter-dirunal cycles, the
sampling period dt of the spectra and threshold amplitude (limit) is given.

Payerne Säntis
Period [h] Amplitude [ppm] Period [h] Amplitude [ppm]

Diurnal cycles dt ≈ 11 s limit = 0.2 ppm
24.199 0.340
24.132 0.304
24.066 0.597 24.066 0.815
24.000 0.270 24.000 1.533
23.934 0.694 23.934 0.965
23.869 0.427
23.804 0.287

Semi-diurnal cycles dt ≈ 2.5 s limit = 0.08 ppm
12.049 0.095
12.033 0.182
12.016 0.622 12.016 0.224
12.000 0.929 12.000 0.519
11.984 0.661 11.984 0.332
11.967 0.089 11.967 0.098
11.951 0.130

Ter-diurnal cycles dt ≈ 1 s limit = 0.08 ppm
8.015 0.137
8.007 0.104
8.000 0.182 8.000 0.082
7.985 0.142

ature difference between these two sites assuming hydrostatic equilibrium. Palumbo 1975 has also
analyzed time series of temperature and estimated the influence of the tidal temperature change
on the pressure time series to explain the unexpected large tidal amplitudes in the pressure time
series. In addition, Palumbo 1998 has investigated time series of humidity measurements to better
explain the larger pressure amplitude for S2 than for S1. Frei and Davies 1993 and de Argandoña
et al. 2010 have studied diurnal atmospheric tides over the European Alps and over the Pyrenees,
respectively. To our knowledge, no other partial tides are considered in meteorological data, yet.
The high sampling rate of 10 minutes and the length of the time series (26 years) allows a high
spectral resolution which is sufficient to resolve additional diurnal and semi-diurnal partial tides.

If solar insolation is the main driving effect of solar tides, this should be visible in the spectra
of pressure, temperature and humidity on which the computation of the (wet) refractivity is based.
The diurnal partial tides P1, S1 and K1 are visible in the spectrum of pressure measurements
(see Figure D.2a)). The side peaks have an amplitude of 0.1 hPa and the main peak at S1 0.34 hPa.
Haurwitz and Cowley 1975 estimated an amplitude for S1 of 0.2735 hPa in Zurich. This is of the
same order of magnitude as observed in Payerne, but, it is not clear if the difference of 0.063 hPa
can be explained by different local conditions. It is also debatable if the peaks generally explained
with solar tides are not biased by measurment errors such as effects from solar radiation on the
sensor.

The semi-diurnal partial tides M2, 2T2, R2, S2 and K2 are visible. The amplitude of S2 is,
with 0.42 hPa, larger than that of the S1 partial tide. This corresponds to the findings stated in
Haurwitz and Cowley 1975. There are also ter-diurnal partial tides visible which correspond to
those seen in the spectrum of the wet refractivity.

Whereas only solar partial tides are visible in the spectrum computed from the wet refractivity
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Table D.2: Main gravimetric partial tides at latitude 45◦ and height 0 m. (Source: Torge 2003)
Symbol Period [h] Amplitude [nms−2]

Diurnal cycles
Q1 26.87 59.5
O1 25.82 310.6
P1 24.07 144.6
K1 23.93 436.9

Semi-diurnal cycles
N2 12.66 71.9
M2 12.42 375.6
S2 12.00 174.8
K2 11.97 47.5

Ter-diurnal cycles
M3 8.28 5.2

time series, there are also lunar tides recognizable in the pressure spectrum. The identifiable lunar
tides are the M2 partial tide, the synodic moon period (29.322 days) and its second and third
harmonics.

In Figure D.2b), the spectrum computed from the temperature time series is plotted. It shows
the same characteristic frequencies as the spectrum of the wet refractivity time series. The largest
amplitudes are observed at the diurnal tides with a maximum of about 5 K in S1. The semi-diurnal
partial tides are between half and one order of magnitude smaller than the diurnal ones. The ter-
diurnal tides are also smaller than those in the semi-diurnal band and have an amplitude of about
0.1 K.

The supposition that variations in insolation are the main driving effect for atmospheric tides
fits in with the observations made in the spectra of the pressure and the temperature time series.
Although the variation of gravitational acceleration caused by lunar tides are stronger than those
caused by solar tides, the solar tidal components observed in the spectra of pressure and temper-
ature are significantly more distinct than those of the Moon. This indicates that the variations
of gravitational acceleration cannot be the main driving effect. The fact that the spectrum of
the temperature shows only solar tides and that a change in temperature is strongly related to
changes in insolation indicates that variations in insolation is the main tidal driving effect in the
troposphere. These observations fit in with the findings made by Hamilton 1981.

Figure D.2c) shows the spectrum of the specific humidity. It looks similar to that derived from
the wet refractivity and from the temperature time series. The existence of the tidal signal in the
time series confirms the strong influence of variations in insolation on atmospheric tides, as changes
in the specific humidity near the Earth’s surface are strongly related to variations in insolation and
the resulting evapotranspiration. Further investigations have shown that the tidal signal observed
in the wet refractivity time series is mainly related to tidal variation in humidity.
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Figure D.2: Amplitude spectra of a) pressure, b) temperature and c) specific humidity computed
from the time series spanning more than 26 years of data measured at the synoptic station in
Payerne.
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Appendix E

Geometrical path length in spherical
geometry

Geometrical path length within a layer in spherical geometry

In the following, a formula will be derived to approximate the geometrical path length δs of a ray
within a layer. The ray hits a sphere with radius r0 with a zenith angle ϑ0. The distance between
the center of this sphere and the lower boundary of the layer is r = r0 +h, where h is the height of
the lower layer boundary above the sphere. The thickness of the layer is denoted by δr. Figure E.1
illustrates the situation.

h

r

s

r0

ϑ

ϑ0

α

Figure E.1: Illustration of the spherical model. A ray hits the surface of the sphere with radius r0

with zenith angle ϑ0. The geometrical path length of the ray between the spheres with radius r0

and r is denoted by s.
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E Geometrical path length in spherical geometry

The geometrical path length s between the sphere and the lower boundary of the layer can be
computed with the help of the Law of Sines (Equation E.1a), Pythagorean identity (Equation E.1b)
and the Law of Projection (Equation E.1c).

r0

sin(ϑ)
=

r

sin(π − ϑ0)
(E.1a)

sin2(ϑ) + cos2(ϑ) = 1 (E.1b)
s = r0 cos(π − ϑ0) + r cos(ϑ) (E.1c)

The geometrical path length s is then

s =
√
r2 − r2

0 sin2(ϑ0)− r0 cos(ϑ0) (E.2)

Assuming that the layer thickness δr is small compared to the distance r, the geometrical path
length δs can be approximated by

δs =
ds
dr
δr =

r√
r2 − r2

0 sin2(ϑ0)
δr. (E.3)

Finally, the geometrical path length δs is linearized at r = r0.

δs ≈ δs

∣∣∣∣
r=r0

+
d δs
dr

∣∣∣∣
r=r0

(r − r0)

≈ 1
cos(ϑ0)

δr − 1
r0

sin2(ϑ0)
cos3(ϑ0)

h δr

(E.4)

The linearized form will be referred to as first order spherical approximation.

Normal matrix in spherical geometry

Assuming constant refractivity within the layers and using the spherical model presented in the
previous section, the observation equation is written in Einstein’s summation notation as

10−6 δsi,j nj = ∆i (E.5)

where δsi,j is the path length of the i-th ray in the j-th layer, ∆i the path delay in metrical
units of the i-th ray and nj the refractivity within the j-th layer. According to Equation E.3, the
geometrical path length for the i-th ray in the j-th layer can be written as

δsi,j =
r0 + hj√

(r0 + hj)2 − r2
0 sin2(ϑ0 i)

δrj . (E.6)

and the geometrical path length of the first spherical approximation as

δsi,j ≈ 1
cos(ϑ0 i)︸ ︷︷ ︸

ci

δrj − 1
r0

sin2(ϑ0 i)
cos3(ϑ0 i)︸ ︷︷ ︸

bi

hj δrj (E.7)

The elements of the normal matrix are then defined by

Nj,k = 10−12 δsi,j δsi,k

=
r0 + hj√

(r0 + hj)2 − r2
0 sin2(ϑ0 i)

r0 + hk√
(r0 + hk)2 − r2

0 sin2(ϑ0 i)
δrj δrk

(E.8)
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and the elements of the normal matrix using the first spherical approximation

N
(1)
j,k = 10−12 δsi,j δsi,k

= 10−12 (ci − bi hj) (ci − bi hk) δrj δrk

= 10−12
([
c2i
]
−
[
bi ci

]
(hj + hk) +

[
b2i
]
hj hk

)
δrj δrk

(E.9)

where the 1 in the superscript in N denotes the first spherical approximation. Assuming observa-
tions uniformly distributed between zenith angles ϑ0 a and ϑ0 b, leads to

Nj,k =
10−12

ϑ0 b − ϑ0 a

∫ ϑ0 b

ϑ0 a

r0 + hj√
(r0 + hj)2 − r2

0 sin2(ϑ0 i)

r0 + hk√
(r0 + hk)2 − r2

0 sin2(ϑ0 i)
dϑ0 δrj δrk

(E.10)

and for the first spherical approximation

N
(1)
j,k =

10−12

ϑ0 b − ϑ0 a

(∫ ϑ0 b

ϑ0 a

1
cos2(ϑ0)

dϑ0

− 1
r0

∫ ϑ0 b

ϑ0 a

sin2(ϑ0)
cos4(ϑ0)

dϑ0 (hj + hk)

+
1
r2
0

∫ ϑ0 b

ϑ0 a

sin4(ϑ0)
cos6(ϑ0)

dϑ0 hj hk

)
δrj δrk.

(E.11)

As no analytical solution for the integral in Equation E.10 for j 6= k is found, the solution is only
given for the case where j = k:

Nj,j =
(r0 + hj) arctan

(√
(r0+hj)2 − r20 tan(ϑ0)

r0 hj

)
1012 (ϑ0 b − ϑ0 a)

√
(r0 + hj)2 − r2

0

∣∣∣∣∣
ϑ0 b

ϑ0 a

δr2
j . (E.12)

In contrast to that, the integrals in Equation E.11, can also be analytically solved for j 6= k:

N
(1)
j,k =

10−12

ϑ0 b − ϑ0 a

(
tan(ϑ0)

∣∣∣∣ϑ0 b

ϑ0 a

− hj + hk
3 r0

tan3(ϑ0)
∣∣∣∣ϑ0 b

ϑ0 a

+
hj hk
5 r2

0

tan5(ϑ0)
∣∣∣∣ϑ0 b

ϑ0 a

)
δrj δrk (E.13)

Maximal observed zenith angle in spherical geometry

Dividing the layer in segments restricts the observable zenith angles at a given receiver location
on the sphere for a given segment. In the following, a formula will be given that describes the
maximal zenith angle of a ray traversing a layer segment of infinitesimal thickness with radian
measure α and with the lower horizontal boundary at the same angular coordinate as the location
of the receiver (see Figure E.1). The maximal observable zenith angle can be computed with the
help of the Law of Cosine (Equation E.14) and the Law of Projection (Equation E.1c).

s2 = r2
0 + r2 − 2 r0 r cos(α) (E.14)

The maximal observable zenith ϑ0,max angle is then

ϑ0,max = π − arccos
(

r0 − (r0 + h) cos(α)√
r2
0 + (r0 + h)2 − 2r0(r0 + h) cos(α)

)
(E.15)

using r = r0 + h.
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Appendix F

Supplementary plots of the long-term
study
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Figure F.1: Wet refractivity difference between tomographic solutions and observations computed
from balloon soundings launched at Payerne for spline parameterization at 0 h UTC.
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Figure F.2: Wet refractivity difference between tomographic solutions and observations computed
from balloon soundings launched at Payerne for constant parameterization at (a) 0 and (b) 12 h
UTC.
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Figure F.3: Weighted RMS of the tomographic solution using linear parameterization with respect
to COSMO-7 evaluated for different seasons. The RMS is ppm wet refractivity units.
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Figure F.4: Weighted RMS of the tomographic solution using spline parameterization with respect
to COSMO-7 evaluated for different seasons. The RMS is ppm wet refractivity units.

186



6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

0

2

4

6

8

10

12

14

16
ppm

 by D. Perler, ETH Zurich, 2010

linear, 00 h

(a) 0 h
6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

0

2

4

6

8

10

12

14

16
ppm

 by D. Perler, ETH Zurich, 2010

linear, 03 h

(b) 3 h

6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

0

2

4

6

8

10

12

14

16
ppm

 by D. Perler, ETH Zurich, 2010

linear, 06 h

(c) 6 h
6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

0

2

4

6

8

10

12

14

16
ppm

 by D. Perler, ETH Zurich, 2010

linear, 09 h

(d) 9 h

6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

0

2

4

6

8

10

12

14

16
ppm

 by D. Perler, ETH Zurich, 2010

linear, 12 h

(e) 12 h
6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

0

2

4

6

8

10

12

14

16
ppm

 by D. Perler, ETH Zurich, 2010

linear, 15 h

(f) 15 h

6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

0

2

4

6

8

10

12

14

16
ppm

 by D. Perler, ETH Zurich, 2010

linear, 18 h

(g) 18 h
6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

0

2

4

6

8

10

12

14

16
ppm

 by D. Perler, ETH Zurich, 2010

linear, 21 h

(h) 21 h

Figure F.5: Weighted RMS of tomographic solution using linear parameterization with respect to
COSMO-7 at selected day times. The values are in ppm wet refractivity units.
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Figure F.6: Weighted RMS of tomographic solution using spline parameterization with respect to
COSMO-7 at selected day times. The values are in ppm wet refractivity units.
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