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VORWORT 
 
Ein wichtiger Aspekt des viel diskutierten Klimawandels sind Meeresspiegeländerungen und ihre 
Auswirkungen auf küstennahe Gebiete. Radargestützte Altimetrie-Satelliten sind geeignet, 
Klimasignale sowie Anomalien des Schwerefeldes der Erde zu erfassen. Es ist daher von Bedeutung, 
die Satellitenmessungen zu validieren und zu kalibrieren. Das Hauptziel der vorliegenden 
Forschungsarbeit bestand darin, dafür Methoden zu entwickeln und zu erproben. Sie beinhalten 
Airborne Laser Altimetrie, marines Ultraschallmonitoring, sowie GPS Bojen- und Schiffsmessungen. 
 
Von Bedeutung für die Airborne Laser-Altimetrie ist die Georeferenzierung. Mit differenziellen GPS 
Phasenmessungen war es möglich, Genauigkeiten von besser als 5 cm zu erreichen. Unter extremen 
Wetterbedingungen wurden Schwierigkeiten bei den troposphärischen Korrekturen aufgezeigt, die den 
limitierenden Faktor darstellten. Zur Bestimmung der Neigungen der Messplattform, hat Herr 
Limpach ein Multi-Antennensystem sowie ein Inertialsystem nutzbar gemacht. Erwähnenswert ist 
auch die von ihm entwickelte Laser-Selbstkalibration, mit der man auf mehrfache Überflüge 
verzichten kann. Gezeitenwirkungen erreichen in der Ägäis mehrere dm. Herr Limpach hat 
verschiedene Gezeitenmodelle analysiert, einbezogen und auch eigene Pegelmessungen für die 
Korrekturen berücksichtigt. Die Effekte des Luftdrucks lagen während der Messkampagnen in 
derselben Grössenordnung wie die Gezeiten und mussten entsprechend berücksichtigt werden. Die 
Messungen konzentrierten sich auf das Meeresgebiet um Kreta, sowie auf Schiffsmessungen in der 
Nord-Ägäis. 
 
Im letzten Teil des Berichtes interpretiert Philippe Limpach die erhaltene Meerestopographie im 
Hinblick auf geophysikalische Phänomene. Das Relief des Kretischen Meeres ist stark beeinflusst vom 
Hellenischen Tiefseegraben. Der Horizontalgradient der Meeresoberfläche erreicht beachtliche Werte 
von bis zu 22 cm/km. Sie stehen mit den dortigen geodynamischen Prozessen im Zusammenhang. 
Ähnliche Anomalien wurden auch für den Nordägäischen Graben nachgewiesen und interpretiert. 
 
Das Projekt hat dank Herrn Limpachs hervorragender Forschungsarbeit sehr gute Resultate erbracht. 
Die Thematik ist fachübergreifend und öffnet den Weg für neue Validierungs- und 
Kalibrationsmöglichkeiten der Satellitenradar-Altimetrie im Offshore Bereich. Herr Limpach hat die 
komplexe geodätische Fragestellung wissenschaftlich ausserordentlich kompetent bearbeitet und weit 
über den eigentlichen Fachbereich hinaus diskutiert. Internationale Bemühungen, die 
Meeresoberfläche räumlich hochaufgelöst bestimmen zu können, belegen die Bedeutung der Arbeit. 
Im Rahmen von Radaraltimetrie-Missionen werden die entwickelten Methoden einen bedeutenden 
Stellenwert erhalten.  
 
Philippe Limpach hat dieses Projekt mit beispiellosem Einsatz nicht nur in der Theorie, sondern auch 
in nächtelangen Messfahrten erfolgreich bearbeitet und international grosse Anerkennung gefunden. 
Die Schweizerische Geodätische Kommission gratuliert Herrn Limpach zu seiner Leistung und dankt 
ihm für diesen wertvollen Beitrag. Wir danken dem Schweizerischen Nationalfonds für die 
Unterstützung dieses Projektes sowie der Schweizerischen Akademie für Naturwissenschaften für die 
Übernahme der Druckkosten. 
 
 
 
 
 
 
 
 
Prof. Dr. Hans-Gert Kahle      Prof. Dr. Alain Geiger 
Institut für Geodäsie und Photogrammetrie    ETH Zürich 
ETH Zürich        Präsident der SGK 

  



  

PREFACE 
 
Les variations de la surface des mers et leurs effets dans les zones côtières sont un des aspects 
importants des changements climatiques. Les satellites altimétriques radar sont des instruments 
adaptés pour la détection des signaux climatiques et des anomalies gravifiques. Il est par conséquent 
très important de valider et de calibrer leurs mesures. Le principal objectif du travail présenté ici fût de 
développer et de tester des méthodes destinées à cette validation et à cette calibration. Ces méthodes 
comprennent l’altimétrie laser aéroportée, l’altimétrie ultrasonique marine et l’utilisation de bouées 
équipées de récepteurs GPS. 
 
Le référencement géographique est un des problèmes clefs de l’altimétrie laser aéroportée. Dans des 
conditions de mauvais temps troposphérique, les corrections de réfraction se sont montrées comme un 
facteur limitant la précision finale. Un dispositif multi-antennes GPS et une station inertielle furent 
utilisés pour les corrections de l’attitude de l’avion ainsi que du bateau utilisé pour les mesures 
altimétriques. Un aspect important de cette recherche a été le développement d’une méthode d’auto-
calibration qui a permit d’éviter la répétition de multiples survols. Les effets des marées peuvent 
atteindre plusieurs décimètres dans la mer Egée. Monsieur Limpach a, d’une façon critique, analysé 
différents modèles de marées et a intégré ceux-ci dans la procédure de correction. De même, des 
marégraphes ont été installés. Les effets des variations de la pression atmosphérique ont montrés être 
du même ordre de grandeur et ont été pris en considération. Les mesures aéroportées ont été conduites 
autour de l’île de Crète alors que les mesures marines le furent dans la partie nord de la mer Égée. 
 
Dans la partie finale du présent travail la topographie de la surface de la mer a été interprétée en 
termes de structures géophysiques. La surface de la mer Crétoise est fortement influencée par la zone 
de subduction Hellénique. Le gradient horizontal de la surface marine atteint des valeurs allant jusqu’à 
22 cm/km. Ces valeurs sont associées à des processus géodynamiques actuels. Des gradients 
d’amplitudes similaires ont aussi été trouvés dans la partie septentrionale de la mer Egée. Des 
modélisations complètes du champ gravifique ont révélé des anomalies significatives pouvant être 
associées à la structure tectonique du fossé nord-Égéen. 
 
Ce projet, grâce à l’excellent travail de Monsieur Limpach, a apporté de remarquables résultats. Des 
méthodes innovatrices pour la calibration et la validation des données altimétriques par satellites ont 
été développées, aussi bien en termes d’ingénierie de „hardware“ que de „software“. Monsieur 
Limpach a travaillé et discuté les problèmes géodésiques compliqués bien au-delà du domaine du sujet 
proprement dit. Les efforts internationaux pour déterminer la topographie de la surface de la mer à 
haute définition spatiale et temporelle donnent du crédit à l’important travail accompli. Ces 
réalisations donneront certainement encore plus de crédit aux missions d’altimétrie spatiale futures et 
en cours. 
 
Monsieur Philippe Limpach a poursuivi ce projet avec de minutieux efforts non seulement théoriques, 
mais aussi sur le terrain. La poursuite du satellite Jason a été faite durant de nombreuses nuits en mer, 
souvent dans des conditions météorologiques adverses. Les campagnes de mesures n’auraient pas été 
possibles sans un engagement tenace dans tous les aspects des activités marines. 
 
L’institut de géodésie et photogrammétrie de l’EPF-Z et la commission géodésique suisse, membre de 
l’académie suisse des sciences naturelles, désirent remercier le Dr. Limpach pour cette contribution de 
grande valeur. Nous sommes redevable à la fondation nationale suisse pour la science du financement 
de ce projet de recherche et à l’académie des sciences du financement des coûts d’impression du 
présent fascicule. 
 
 
Prof. Dr. Hans-Gert Kahle      Prof. Dr. Alain Geiger 
Institut de Géodésie et Photogrammétrie    ETH Zurich 
ETH Zürich        Président de la CGS 

 



  

 

FOREWORD 
 
Sea surface variability and its effects in near coastal areas are an important aspect of climate change. 
Radar based altimetry satellites are best suited for the detection of climate signals and gravity 
anomalies. It is, therefore, important to validate and calibrate the satellite measurements. The main 
objective of the research work presented was to develop and test corresponding methods. These 
include airborne laser altimetry, ship-borne ultrasound altimetry as well as GPS-equipped buoys. 
 
Georeferencing is one of the key problems in airborne laser altimetry. Accuracies of better than 5 cm 
were achieved by applying differential GPS phase measurements. In bad weather tropospheric 
refraction corrections were found to be a limiting factor for the final accuracy. A multi-antenna GPS 
array and inertial systems were used for control and correction of the attitude of the aircraft and the 
ship. An important aspect was also the development of a method for self-calibration of boresight 
misalignment which saved repetitions of multiple overflights. Tidal effects amount to several dm in 
the Aegean Sea. Philippe Limpach has critically analyzed different tidal models and integrated these in 
the correction procedure. Also own tide gauges were installed and taken into account. Air pressure 
effects were found to be in the same order of magnitude and had to be considered as well. Airborne 
measurements were made around the island of Crete. Shipborne campaigns were carried out in the 
North Aegean Sea. 
 
In the final part of this report the sea surface topography obtained was interpreted in terms of 
geophysical structures. The sea surface of the Cretan Sea is strongly influenced by the Hellenic 
subduction zone. The horizontal gradient of the sea surface attains values of up to 22 cm/km. These 
are associated with ongoing geodynamic processes. Gradients in similar size were also found in the 
North Aegean sea. Comprehensive modelling of the potential field revealed significant gravity 
anomalies which can be associated with the tectonic structure of the North Aegean trough. 
 
Important results were achieved thanks to Philippe Limpach’s outstanding research work which is 
truly interdisciplinary. Innovative methods for calibration and validation of satellite altimetry have 
been successfully worked out, both in terms of hardware engineering and software development. A 
complex geodetic task has been performed and discussed far in excess of the subject area. 
International efforts to determine the sea surface topography at high spatio-temporal resolution 
account for the importance of the work accomplished. The achievements will certainly be given credit 
in the frame of ongoing and future spaceborne radar altimetry missions. 
 
Philippe Limpach has pursued this project with painstaking endeavour, not only theoretically but also 
in the field. Tracing the Jason Satellite numerous night-time campaigns had to be carried out at sea 
also in adverse weather conditions. The expeditions would not have been possible without his 
persistent commitment in all aspects of marine activities. 
 
The Institute of Geodesy and Photogrammetry of the ETH Zürich and the Swiss Geodetic Commission 
(SGC) of the Swiss Academy of Natural Sciences would like to thank Dr. Limpach for his highly 
valuable contribution. We are grateful to the Swiss National Science Foundation for funding the 
research project and to the Swiss Academy of Sciences for financing the printing costs. 
 
 
 
 
 
 
 
Prof. Dr. Hans-Gert Kahle      Prof. Dr. Alain Geiger 
Institute of Geodesy and Photogrammetry    ETH Zurich 
ETH Zurich        President of SGC 





Abstract

The aim of this project was to contribute to the improvement of sea level monitoring and to provide
local-scale information on the short-wavelength structure of the marine gravity field, by developing
enhanced methods for offshore sea surface height observations. The methods include airborne laser
altimetry, shipborne ultrasound altimetry and GPS-equipped buoys.

In a first step, instrumental aspects of sea surface height observations by airborne and shipborne
altimetry were analyzed. Precise position and attitude of the range sensor are crucial for an
accurate sea surface height computation. For this purpose, the survey aircraft and boat were
equipped with a multi-antenna GPS array and inertial systems. Sea surface heights were computed
from the range data by direct georeferencing. Important aspects are the influences of errors in the
differential kinematic GPS positioning and in the attitude determination, as well as the calibration
of boresight misalignments. In a second step, the obtained sea surface heights were reduced to
mean sea surface by applying corrections for geophysical effects, including waves, tides, atmospheric
pressure and wind forcing.

In the framework of this work, several regional campaigns for sea surface height surveys based
on airborne and shipborne altimetry were carried out in the Eastern Mediterranean Sea. Dedi-
cated surveys, including deployments of GPS buoys, were performed along Jason-1 radar altimetry
ground tracks. Airborne laser altimetry data was acquired along densely spaced flight tracks cover-
ing an area of 200 by 200 km around the western part of the island of Crete, Greece, in the vicinity
of the Hellenic Trench. The objective was the determination of a detailed regional geoid and sea
surface topography model in the framework of the GAVDOS project, funded by the European
Union. Furthermore, several shipborne campaigns for sea surface height observations were carried
out in the North Aegean Sea, in the vicinity of the North Aegean Trough.

Based on the airborne and shipborne altimetry data, a high-resolution sea surface topography of the
survey areas was computed, with an accuracy of better than 10 cm. Geoid undulations were derived
from the sea surface heights by subtracting the mean dynamic ocean topography induced by oceanic
currents. Around western Crete, the geoid obtained from airborne laser altimetry is characterized
by very large gradients, with an average height difference of 20m along a distance of only 200 km
and maximum local gradients of 22 cm/km. These gradients are a clear indication for significant
gravity effects caused by the bathymetry and the geodynamic system of the Hellenic Trench. In the
survey area in the North Aegean Sea, the geoid obtained from shipborne altimetry shows a distinct
depression of 1.5m, indicating a connection with the bathymetry and the geodynamic features of
the North Aegean Trough.

The high resolution and accuracy of the sea surface and geoid heights obtained were verified
by comparisons with mean sea surface models from multi-mission satellite radar altimetry, as
well as with global and regional geoid models. The reduction of the geoid heights for modeled
mass effects of topography, bathymetry, marine sedimentary deposits and crust-mantle boundary
revealed pronounced gravity anomalies related to the geodynamic processes in the survey areas.
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Zusammenfassung

Ziel dieser Arbeit ist die genaue Bestimmung der Meeresoberfläche als Beitrag zur Verbesserung
der Beobachtung des Meeresspiegels und zur lokalen Bestimmung der kurzwelligen Strukturen
des Schwerefeldes. Zu diesem Zweck wurden mehrere Methoden zur präzisen und flächendeckenden
Vermessung der Meeresoberfläche untersucht, weiterentwickelt und eingesetzt. Es handelt sich hier-
bei um flugzeuggestützte Laser-Altimetrie, schiffsgestützte Ultraschall-Altimetrie und GPS Bojen-
Messungen.

In einem ersten Schritt werden die instrumentellen Aspekte von Meereshöhenbeobachtungen mittels
flugzeug- und schiffsgestützter Altimetrie analysiert und diskutiert. Für die genaue Berechnung der
Meereshöhen ist die präzise Kenntnis von Position und Lage der Messplattform von entscheidender
Bedeutung. Zu diesem Zweck wurden Flugzeug und Schiff mit mehreren GPS-Antennen und einem
Inertialsystem ausgerüstet. Die momentanen Meereshöhen wurden mittels direkter Georeferenzie-
rung aus den Altimeterdaten berechnet. Die wichtigsten Aspekte sind hierbei die Einflüsse von
Fehlern in der differentiellen kinematischen GPS-Positionierung, Fehlern in der Lagebestimmung,
sowie Orientierungsfehler der Sensoren. In einem zweiten Schritt wurden zeitabhängige Variationen
der Meereshöhe, verursacht durch geophysikalische Einflüsse wie Wellen, Gezeiten, Luftdruck und
Wind, korrigiert.

Im Rahmen dieser Arbeit wurden mehrere regionale Messkampagnen im östlichen Mittelmeer
durchgeführt. Die Messgebiete beinhalten Ground-Tracks des Radar-Altimeter Satelliten Jason-1.
Entlang dieser Tracks wurden Messungen während Überflügen von Jason-1 durchgeführt. In einem
Gebiet von 200 auf 200 km rund um die Insel Kreta wurde die Meeresoberfläche mittels flugzeugge-
stützte Laser-Altimetrie vermessen. Das Gebiet umfasst einen Teil des Hellenischen Grabens. Ziel
dieser Messkampagne war die Bestimmung eines detaillierten Geoid- und Meeresoberflächenmo-
dells im Rahmen des GAVDOS-Projektes, unterstützt von der Europäischen Union. Des Weiteren
wurden mehrere Messkampagnen mittels schiffsgestützter Ultraschall-Altimetrie in der Nord-Ägäis
durchgeführt. Ein besonderes geodynamisches Merkmal dieser Region ist der Nordägäische Graben.

Mit Hilfe der Flugzeug- und Schiffsdaten konnte eine hochauflösende Meerestopographie mit ei-
ner Genauigkeit unter 10 cm bestimmt werden. Durch Abzug der dynamischen Meerestopogra-
phie, welche durch Meeresströmungen verursacht wird, wurden aus den beobachteten Meereshöhen
Geoidhöhen abgeleitet. Das resultierende Geoid rund um Kreta zeigt sehr starke Gradienten, mit
einem durchschnittlichen Gefälle von 20m auf 200 km und maximalen Gradienten von 22 cm/km.
Diese Gradienten sind ein klarer Hinweis auf signifikante Schwerefeldeffekte, verursacht durch die
Bathymetrie und das geodynamische System des Hellenischen Grabens. Das Geoid im untersuchten
Gebiet in der Nord-Ägäis zeigt eine ausgeprägte Depression von 1.5m, welche mit der Bathyme-
trie und den geodynamischen Eigenschaften des Nordägäischen Grabens in Verbindung gebracht
werden kann.

Die hohe Auflösung und Genauigkeit der berechneten Meeres- und Geoidhöhen konnten durch Ver-
gleiche mit Modellen der mittleren Meereshöhe aus Satelliten-Radar-Altimetrie, sowie mit globalen
und regionalen Geoidmodellen, aufgezeigt werden. Des Weiteren wurden durch die Reduktion von
modellierten Masseneffekten, verursacht durch Topographie, Bathymetrie, marinen Sedimenten
und Kruste-Mantel-Grenze, starke Anomalien im Schwerefeld detektiert, welche mit den geodyna-
mischen Prozessen in den Messgebieten in Verbindung stehen.

iii
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1 Introduction

1.1 Motivation and Goals

Concerns of the future are associated with the fact that non-natural processes have begun to
influence life on our planet at a global scale. Global change has become of major interest, raising
the need to describe the Earth as a changing system. One of the internationally widely accepted
scientific focuses is pointed upon the sea level and its variability. Since the sea surface reflects the
integral of both the amount of water and the heat content of the oceans, it is a key quantity that
responds to climate change and short-term variability. With an increasing understanding of the
processes involved in sea surface variability, precise sea surface height observations will provide long-
term benefits in environment management, safety and protection, and contribute to the assessment
of global change. Interdisciplinary studies of climatic interactions in the Mediterranean area are
important for the surrounding countries. Sea-level fluctuations in the region have long history and
can result in tremendous economic losses, regarding the present distribution of coastal cities.

On a global scale, satellite radar altimetry missions are the basic means for sea surface height mon-
itoring over the deep sea, with dense and homogeneous coverage in space and time. For the past
decades, Europe has invested in several radar altimetry space missions (ERS-1, ERS-2, and EN-
VISAT, operated by ESA), as well as in the joint participation of the French Space Agency CNES
and the United States NASA in the missions TOPEX/Poseidon (AVISO, 1996) and its follow-on
mission Jason-1 (Picot et al., 2003). In June 2008, Jason-2, also called Ocean Surface Topography
Mission (OSTM), was launched as another follow-on mission (OSTM, 2008). Important outputs of
satellite radar altimetry missions are information on the short- and long-term variability of the sea
surface. A result of major concern is the evidence of global sea level rise of 3.3mm/yr detected by
continuous radar altimetry observations since 1992 (Fig. 1.1). Half of this rise is most likely due to
the dilatation of the water associated with global ocean temperature increase. The global image
of sea level variations provided by radar altimetry shows the large geographical variability of sea
level trends (Fig. 1.2). Furthermore, radar altimetry missions allowed to captured the evolution of
El Niño/La Niña events and broadened our understanding of these phenomena like no other source
of information has done before. In addition, they provide a major source for improvement in the
knowledge of the short- and mid-wave structure of the marine geoid.

Due to the increasing requirements in accuracy and long-term integrity of spatio-temporal moni-
toring, it has become mandatory to validate and calibrate satellite radar altimetry system. Hence,
the availability of ground-truth data have become a major target for current and future altimeter
missions, leading to an international effort to establish calibration sites (Bonnefond et al., 2003;
Haines et al., 2003; Pavlis et al., 2004). Common methods applied are tide gauge observations and
deployments of GPS-equipped buoys underneath satellite tracks. With such calibration facilities,
the accuracy of the oceanographic products is being improved. What is often missing, however, is
offshore calibration data in the open sea.

The major aim of this project was to contribute to the improvement of sea level monitoring by
developing enhanced methods for offshore regional sea surface height observations. The methods
investigated included airborne laser altimetry, shipborne ultrasound altimetry and GPS-equipped
buoys. By deploying these methods adjacent to radar altimetry sub-satellite tracks, they can
contribute to the validation and calibration of spaceborne radar altimetry missions. In addition,
these methods can be used to provide a link between offshore radar altimetry data and onshore
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1 Introduction

Figure 1.1: Global mean sea level (1992 to 2009) from the combination of data from TOPEX/Poseidon,
Jason-1 and Jason-2. Seasonal variations have been removed. (Credits: CNES, CLS, LEGOS).

Figure 1.2: Sea level variation trends since 1992. (Credits: CNES, CLS, LEGOS).

tide-gauge stations. The final goal of this project was the analysis of the obtained regional sea
surface topography and derived geoid heights in connection with geodynamic processes. The mean
sea surface corresponds in a very good approximation to an equipotential surface of the Earth’s
gravity field. Thus, the gathered sea surface height data provides local-scale information on the
short-wave structure of the marine geoid and related gravity field and can be used to improve local
geoid solutions. Since the geoid is an equipotential surface of the Earth’s gravity field, it depends
on the mass distribution of the Earth’s interior. The knowledge of mass distribution is of major
importance for geophysical and geodynamical research. With the inversion of mean sea surface
and geoid data, models of mass distribution can be constrained.
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1.2 Geophysical Characteristics of the Eastern Mediterranean

Figure 1.3: Survey areas in the Eastern Mediterranean Sea, with survey area for airborne laser altime-
try around western Crete and survey area for shipborne ultrasound altimetry in the North Aegean Sea.
Diagonal gridlines: Jason-1 ground tracks.

The area of investigation is the Eastern Mediterranean Sea, where two regional survey areas were
chosen adjacent to Jason-1 radar altimetry ground tracks (Fig. 1.3). A detailed airborne laser
altimetry campaign was carried out around the western part of the island of Crete, in the vicinity
of the Hellenic Trench and the Hellenic subduction zone. Several campaigns for shipborne sea
surface height surveys were carried out in the North Aegean Sea, in the vicinity of the North
Aegean Trough. The sea surface height observations were concentrated on these areas in order to
contribute to the improvement of the knowledge of the local gravity field, which could improve the
understanding of the complex geodynamic processes related to the Hellenic subduction zone and
the North Aegean Trough.

1.2 Geophysical Characteristics of the Eastern Mediterranean

The Mediterranean Sea is located between Africa and Europe and has a surface of 2.5·106 km2,
with a limited access to the Atlantic Ocean at the Strait of Gibraltar. Due to its semi-closed
nature, the sea surface height of the Mediterranean Sea is strongly influenced by the seasonal
atmospheric variations over Europe and North Africa, like wind tension, surface heat flow, rainfall
and evaporation. A second forcing is formed by the mass flow through the Strait of Gibraltar.

The Eastern Mediterranean region is located in the slope region between the geoid high in the
North Atlantic and the low in the Indian Ocean, associated with values of 40m in the North
Aegean down to 1m in the Libyan Sea, south of Crete (Fig. 1.4). The Eastern Mediterranean
is a region of high geodynamic activity, exposed to considerable earthquake and tsunami risks
related to different types of active plate-tectonic boundaries. The region is mainly characterized
by the collision between the Eurasian and African lithospheric plates (Fig. 1.5) (Kahle and Mueller,
1998). This collision is closely related to continental subduction and formation of the Hellenic Arc
and Hellenic Trench system (Fig. 1.3). Superimposed on the relatively slow motion of the African
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Figure 1.4: Jason-1 ground tracks in the Mediterranean Sea, with sea surface heights (in m) above the
reference ellipsoid. A pronounced regional slope of the sea surface is observed, ranging from 50m in the
Balearic Sea down to 5m in the Southern Aegean Sea.

Figure 1.5: Simplified tectonic setting of the Eastern Mediterranean. From (Kahle and Mueller, 1998).

plate, complex dynamic processes affect the lithospheric blocks between the two major plates
(Kahle et al., 2000). The most prominent kinematic feature is the rapid motion of the Anatolia
and Aegean regions to the west and south-west, reaching velocities of up to 4 cm/yr, relative to
Eurasia (McClusky et al., 2000; Hollenstein, 2006). The Hellenic Trench zone south of Crete is
characterized by strong normal compression strain (Fig. 1.6). It is commonly accepted that the
subduction and large-scale motion of the lithospheric blocks are associated with crustal and upper
mantle mass anomalies causing pronounced geoid undulations which are also reflected in the sea
surface topography.
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1.3 Former Work by the GGL in Related Fields of Research

(a) Normal strain rates (b) Shear strain rates

Figure 1.6: Normal (a) and shear (b) strain rates in the Eastern Mediterranean, derived from GPS
observations (Hollenstein, 2006).

Besides the Hellenic Trench, another important geodynamic feature in the Eastern Mediterranean
is the North Aegean Trough (NAT), situated in the North Aegean Sea (Fig. 1.5). The NAT is a
tectonic graben-like feature characterized by a deep water zone reaching 1500m and trending from
north-east to south-west. It is considered to form the western continuation of the seismically active
North Anatolian Fault Zone (NAFZ). The area of the NAFZ and NAT is identified as a major strike-
slip boundary characterized by high seismicity, separating the Anatolia-Aegean plate from Eurasia
(McNeill et al., 2004). It is accompanied with dextral shear strain rates of up to 170 nstrain/yr,
combined with normal extension and isolated normal compression (Fig. 1.6) (Hollenstein, 2006).
Compared to other strike slip boundaries between major tectonic plates, the GPS derived strain
rates found along the NAFZ-NAT are of similar magnitude as those of the San Andreas fault zone
(Kahle et al., 1999).

1.3 Former Work by the GGL in Related Fields of Research

The Geodesy and Geodynamics Lab (GGL) of ETH Zurich collaborated in several international
projects covering the Mediterranean and Black Sea regions, such as the sea level fluctuation projects
SELF–I and SELF–II (Zerbini et al., 1996; Becker et al., 2002), and a WEGENER study (Plag
et al., 1998). The GGL has been active in the field of airborne laser altimetry since 1994. The
technique was used for geoid determination in the Ionian and Aegean Seas, Greece (Cocard et al.,
2002), as well as at the Lakes of Geneva (Favey and Schlatter, 1998) and Constance, Switzerland.
Airborne laser altimetry surveys were conducted at the Unteraar glacier, Switzerland, with the goal
to generate repeated surface models of the glacier used for mass balance determination and glacier
monitoring (Favey, 2001; Favey et al., 2002). Airborne gravimetry was another main research area
of the GGL (Verdun et al., 2003; Baumann, 2003). Satellite geodesy and GPS technology are other
important research fields. Apart from high-precision static GPS applications, kinematic aspects
and dynamic positioning are investigated. Different tests and feasibility studies have been carried
out, leading to the development of a software for kinematic GPS positioning (Cocard, 1995).
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1.4 Research Tasks and Project Outline

The project is structured in four main research tasks (Fig. 1.7):

1. Determination of instantaneous sea surface heights (SSH)

This task focuses on the precise determination of instantaneous SSH profiles by airborne
laser altimetry and shipborne ultrasound altimetry. For accurate SSH determination, the
datasets have to be corrected for instrumental errors, like ranging errors due to atmospheric
refraction and boresight misalignment. GPS-equipped buoys are used to provide ground-
truth SSH data, for the calibration of the airborne and shipborne altimetry systems.

2. Transformation from instantaneous SSH to time-independent sea surface topography (SST)

Based on the instantaneous SSH from research task 1, a time-independent SST is generated,
by applying corrections for time-dependent geophysical effects, including ocean waves, tides,
atmospheric pressure (inverse barometer effect) and wind forcing.

3. Validation of satellite radar altimetry missions

This research task concentrates on the comparison of the detailed SST from airborne laser
altimetry and shipborne ultrasound altimetry with the ones obtained from spaceborne radar
altimetry missions, especially Jason-1.

4. Geoscientific exploitation

This research task includes the modeling of local mass effects and the interpretation of sea
surface height anomalies over the Hellenic Trench and the North Aegean Trough.

Based on the research tasks presented above, this work is organized in the following chapters:

Chapter 2: Geoid, Sea Surface and Dynamic Ocean Topography gives an overview of the theoretical
background concerning these three geophysical quantities, as well as their interrelationship. The
basic definitions and equations of gravitational potential, geoid, gravity anomalies, modeling of
mass effects, mean sea surface, sea level anomalies, absolute and mean dynamic ocean topography
and permanent tides are presented.

Chapter 3: Geophysical Effects on Sea Surface Heights gives an overview of the theoretical back-
ground of geophysical effects influencing the height of the sea surface on a time-dependent basis.
The effects covered in this chapter are ocean waves, tides, atmospheric pressure and wind forcing.

Chapter 4: Airborne Laser Altimetry describes the instrumental setup used during the airborne
altimetry surveys, as well as the theoretical background of laser ranging onto water surfaces.

Chapter 5: Shipborne Ultrasound Altimetry describes the instrumental setup used during the ship-
borne altimetry surveys, as well as the theoretical background of ultrasound ranging.

Chapter 6: Direct Georeferencing presents an approach for direct georeferencing, valid for both
airborne laser and shipborne ultrasound altimetry. The GPS based trajectory and attitude recovery
is discussed, and comparisons with attitude solutions from inertial units are made. In addition, a
calibration method for boresight misalignment in airborne laser altimetry is presented.

Chapter 7: Sea Surface Heights by Airborne Laser Altimetry around Western Crete gives a descrip-
tion of the airborne laser altimetry surveys. Instantaneous sea surface height results are presented.
The obtained sea surface heights are corrected for geophysical effects, including ocean tides, at-
mospheric pressure and wind forcing. A repeatability analysis and least-squares adjustment based
on crosspoints is carried out, and the finally obtained time-independent sea surface topography is
presented.

6



1.4 Research Tasks and Project Outline

Figure 1.7: Flow diagram showing the four research tasks and the main results and outcomes (in black).
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Chapter 8: Sea Surface Heights by Shipborne Ultrasound Altimetry in the North Aegean Sea is
equivalent to Chapter 7 for shipborne ultrasound altimetry in the North Aegean Sea.

Chapter 9: Validation of Satellite Radar Altimetry Data presents a comparison between sea surface
heights from airborne laser altimetry and Jason-1. Furthermore, a validation of mean sea surfaces
from CLS01 and DNSC08 from multi-mission satellite radar altimetry with airborne and shipborne
altimetry results is carried out.

Chapter 10: Geoscientific Exploitation of Airborne Altimetry Data around western Crete presents
marine geoid heights, gravity anomalies, geoid gradients and deflections of the vertical derived from
airborne laser altimetry around western Crete. A comparison of the obtained local altimetric geoid
heights with existing models is carried, namely with the global models EGM96, EGM2008, EIGEN-
5S, EIGEN-5C. Attempts to determine the mean dynamic topography are presented. Finally, mass
effects are modeled for the survey areas and used to reduce the obtained geoid heights, for the
detection and interpretation of geoid anomalies and mass anomalies.

Chapter 11: Geoscientific Exploitation of Shipborne Altimetry Data in the North Aegean is equiv-
alent to Chapter 10 for shipborne ultrasound altimetry in the North Aegean Sea.

Chapter 12: Summary and Conclusions draws a summary and the major conclusions of this research
project.
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2 Geoid, Sea Surface and Dynamic
Ocean Topography

2.1 Introduction

Techniques like satellite radar altimetry, airborne laser altimetry and shipborne ultrasound altime-
try provide observations of the instantaneous sea surface height SSHi above the reference ellipsoid
(Fig. 2.1). After correcting SSHi for geophysical effects like tides and atmospheric pressure, con-
tributing to the relief of the sea surface on a time-dependent basis, time-independent sea surface
heights SSH are obtained (Chapter 3).

The geoid forms the main permanent part of the sea surface topography, while ocean currents
form both a permanent and a variable part. The permanent part is usually called mean dynamic
topography MDT , whereas the sum of the permanent and the variable part is called absolute
dynamic topography ADT . The SSH above the reference ellipsoid, provided by altimetry, is the
sum of the geoid height N above the same ellipsoid and the ADT :

SSH = N + ADT (2.1)

The mean sea surface MSS above the reference ellipsoid, the geoid undulations N above the same
ellipsoid and the mean dynamic topography MDT are related by the following equation:

MSS = N + MDT (2.2)

In the following sections, the constituents of the above equations will be described in more detail.

2.2 Geoid

2.2.1 Gravity Potential, Geoid and Gravity Anomalies

The gravity potential W of the Earth, at a point P (x, y, z) on or outside the Earth’s surface, is
the sum of the gravitational potential V and the potential Vc of the centrifugal force:

W (P ) = V (P ) + Vc(P ) (2.3)

The gravitational potential V is given by Newton’s integral:

V (P ) = G

∫∫∫
v

dm

l
= G

∫∫∫
v

ρ

l
dv (2.4)

where G=6.6742 · 10-11 [m3 kg-1 s-2] is Newton’s gravitational constant, dm is an element of mass,
dv is an element of volume, ρ is the mass density of the element and l is the distance between the
mass element dm and the attracted point P .
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2 Geoid, Sea Surface and Dynamic Ocean Topography

Figure 2.1: Altimetric sea surface height observations and relations between sea surface height, geoid
and dynamic ocean topography.

The geoid is an equipotential surface of the Earth’s gravity field that is closely associated with the
location of the mean sea surface (Picot et al., 2003). The constant gravity potential on the geoid
is defined by:

W (P ) = W0 = constant (2.5)

The normal gravity potential U is given by:

U(Q) = Ve(Q) + Vc(Q) (2.6)

where Q is a point on the ellipsoid, Ve(Q) is the gravitational potential of the reference ellipsoid
representing the best approximation of the geoid and Vc(Q) is the potential of the centrifugal force.
The reference ellipsoid is defined in a way that its gravity potential on its surface is equal to the
potential of the geoid:

U(Q) = W0 = constant (2.7)

The vector gravitational acceleration, or gravity vector, −→g is the gradient of W :

−→g = grad W =
(
∂W

∂x
,
∂W

∂y
,
∂W

∂z

)
(2.8)

−→g is always perpendicular to the equipotential surface, meaning that there are no lateral gravita-
tional forces along the geoid. Analogous, the normal gravity vector −→γ is the gradient of U :

−→γ = grad U =
(
∂U

∂x
,
∂U

∂y
,
∂U

∂z

)
(2.9)

The magnitude of the normal gravity vector −→γ on the surface of the ellipsoid can be obtained by
the closed formula:

γ = γe
1 + k sin2 φ√
1− e2 sin2 φ

(2.10)
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2.2 Geoid

Figure 2.2: Schematic diagram of a bump and a depression at the ocean bottom and the corresponding
marine geoid. Vectors indicate the gravitational acceleration along the geoid.

where k = b·γp
a·γe − 1, a and b are the semi-major and semi-minor axes of the ellipsoid, γe and γp

are the theoretical gravity at the equator and poles, e is the first ellipsoid eccentricity and φ is
the geodetic latitude. Definitions and values of the ellipsoidal parameters of the WGS84 reference
ellipsoid can be found in (NIMA, 2000).

The anomalous or disturbing gravity potential T is given by the difference between the real gravity
potential W (P ) and the normal gravity potential U(P ):

T (P ) = W (P ) − U(P ) (2.11)

The surface of the geoid is generally described in terms of geoid undulations N , which are the
heights of the geoid with respect to the reference ellipsoid. The geoid height N is related to the
anomalous gravity potential T by Brun’s formula:

N =
T

γ
(2.12)

where γ is the normal gravity related to the reference ellipsoid (2.10). The most negative geoid
undulations of -106m are found in the Indian Ocean, whereas the most positive geoid heights are
encountered over Indonesia (85m) and in the Northern Atlantic Ocean (61m). On a global scale,
the geoid is usually defined using spherical harmonic expansions of the Earth’s gravity potential.

As stated above, the geoid is an equipotential surface of the Earth’s gravity field that is closely
associated with the location of the mean sea surface (Picot et al., 2003). In the absence of other
forcing (e.g. pressure gradients, wind forcing or tides), the sea surface would be a surface of con-
stant gravity potential, corresponding the marine geoid (Chelton, 1988). Variations in gravitational
acceleration over the Earth’s surface result in an uneven distribution of water mass in the oceans
(Chelton, 1988) and in deformations of the sea surface. Although geoid undulations are primar-
ily long-wavelength phenomena, short-wavelength changes in the geoid undulation are seen over
seamounts, trenches and ridges in the oceans (Picot et al., 2003). The gravitational acceleration
at the sea surface is slightly stronger over bumps on the ocean bottom and slightly weaker over
depressions in the bathymetry (Chelton, 1988). The gravitational acceleration is locally deflected
towards the bump and away from the depression and is perpendicular to the geoid (Fig. 2.2). The
amount of the deflection depends on the composition of the bathymetric feature and decreases with
the distance to the feature. Thus, a feature in the far field has essentially no effect on the local
gravitational acceleration. The marine geoid over a bump is also a bump, but smoothed due to
the inverse dependency on the distance to the bump. Similarly, the marine geoid over a depression
in the bathymetry (e.g. a trench) is also depressed (Chelton, 1988). In a first approximation, the
marine geoid can be considered as a low-pass filtered image of the bathymetry (Fig. 2.2).

The deflection of the vertical is the angle between the normal to the geoid and the normal to the
ellipsoid. The east and north components (η, ξ) of the deflection of the vertical, corresponding to

11



2 Geoid, Sea Surface and Dynamic Ocean Topography

the slope of the geoid in east and north direction, are given by (Heiskanen and Moritz, 1967):

η = −∂N
∂x

, ξ = −∂N
∂y

(2.13)

and with the spherical approximation:

η = − 1
a cosφ

∂N

∂λ
, ξ = −1

a

∂N

∂φ
(2.14)

where φ is the geodetic latitude, λ is the longitude and a is the mean radius of the Earth.

The gravity anomaly vector ∆−→g is the difference between the gravity vector −→g (2.8) and the
normal gravity vector −→γ (2.9). Analogous, the difference in magnitude is the gravity anomaly ∆g:

∆g = g(P ) − γ(Q) (2.15)

where P is a point on the geoid and Q is the projection of P onto the ellipsoid along the ellipsoidal
normal. The gravity anomaly can also be computed as (Hofmann-Wellenhof and Moritz, 2006):

∆g = −∂T
∂z

+
∂γ

∂z
N (2.16)

where z denotes the vertical direction, normal to the ellipsoid. In (2.16), the first term on the
right-hand side is the gravity disturbance δg at the point P on the geoid:

δg(P ) = g(P ) − γ(P ) = −∂T
∂z

(2.17)

The second term of (2.16) accounts for the gravity change between the point P on the geoid and
the point Q on the ellipsoid. In practice, e.g. in free-air gravity reduction, the vertical gradient of
the normal gravity is usually approximated by:

∂γ

∂z
= − 0.3086 [mGal/m] (2.18)

Anomalies of the marine gravity field can be derived from the marine geoid using Laplace’s equation:

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 (2.19)

Substitution of (2.12), (2.16) and (2.13) in Laplace’s equation (2.19), and considering that ∂2γ
∂z2 =0,

yields the following relation between the vertical gravity gradient and the curvature of the geoid
(Sandwell and Smith, 1997):

∂∆g
∂z

= γ

(
∂2N

∂x2
+
∂2N

∂y2

)
= −γ

(
∂η

∂x
+
∂ξ

∂y

)
(2.20)

The differential equation (2.20) can be solved in the frequency domain by Fourier transformation
of gridded geoid heights (Sandwell and Smith, 1997). The use of Laplace’s equation (2.19) implies
that there are no masses outside the geoid. For the marine geoid, this condition is always verified,
except for coastal areas, where the marine gravity field and geoid are influenced by topographic
masses outside the geoid.
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2.2 Geoid

Table 2.1: Density values used in the modeling of mass effects and isostatic compensation.

Layer Density [103 kg/m3]
Sea water 1.03
Light sediments 2.30
Upper crust (topography) 2.67
Lower crust (above crust-mantle boundary) 2.90
Upper mantle 3.30

More details on the theory of gravity potential, geoid and gravity anomalies can be found in many
textbooks on physical geodesy, e.g. (Heiskanen and Moritz, 1967; Moritz, 1980; Hofmann-Wellenhof
and Moritz, 2006).

2.2.2 Gravitational Mass Effect and Mass Reduction

Regional anomalies of the gravity potential are mainly caused by mass anomalies from topography,
bathymetry, sedimentary deposits, crust-mantle boundary and lithosphere structures like subduct-
ing slabs. These mass effects can be modeled and used to reduce observed geoid heights or gravity.
The effect of a mass element on the gravitational potential is given by Newton’s integral (2.4).
Denoting the coordinates of the attracted point P by (xp, yp, zp) and the coordinates of the mass
element dm by (x, y, z), the disturbing potential T caused by the mass elements is given by:

T (xp, yp, zp) = G

∫∫∫
v

ρ (x, y, z)
l

dx dy dz (2.21)

where l =
√

(x− xp)2 + (y − yp)2 + (z − zp)2 is the distance between the mass element of density
ρ and the attracted point P . Typical values of mass densities ρ are given in Tab. 2.1. The effect
of mass elements on the geoid height N at the computation point P is obtained from (2.21) using
Brun’s formula (2.12):

N(xp, yp, zp) =
T

γ
=

G

γ

∫∫∫
v

ρ(x, y, z)
l

dx dy dz (2.22)

Based on (2.16), the effect of mass elements on the gravity anomaly ∆g at the computation point
P is obtained from (2.21), by first order derivation along the vertical z direction:

∆g(xp, yp, zp) = −∂T
∂z

= − G

∫∫∫
v

ρ(x, y, z) (z − zp)
l3

dx dy dz (2.23)

Note that in (2.23), the term ∂γ
∂zN of (2.16) was omitted. Hence the gravity anomaly ∆g in (2.23)

is more precisely a gravity disturbance δg as defined in (2.17). Due to the 1/l3 dependency of the
gravity anomaly ∆g on the distance l between the mass element and the attracted point P (2.23),
the influence of a mass element on gravity decreases much faster with increasing distance than its
influence on the geoid height N (2.22). Hence, as compared to geoid heights, gravity anomalies
are less affected by the long-wavelength part of the gravitational potential and are therefore better
suited for the analysis of local gravitational anomalies.

A method to compute mass effects on geoid heights or on gravity based on (2.22) or (2.23) consists
in dividing the present masses into mass cuboids. The derivation of the complete formulas for the
potential of a finite cuboid and the derivations of the potential to the third degree can be found
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2 Geoid, Sea Surface and Dynamic Ocean Topography

in (Mader, 1951). The following formula gives the gravitational potential T of a finite cuboid,
obtained by solving the integral in (2.21) for a finite cuboid (Mader, 1951):

1
G ρ

T (P ) = {x2y2z2} − {x1y2z2} − {x2y2z1}+ {x1y2z1}

− {x2y1z2}+ {x1y1z2}+ {x2y1z1} − {x1y1z1} (2.24)

with e.g.

{x2y2z2} = y2 z2 log(x2 + r222) + x2 y2 log(z2 + r222) + x2 z2 log(y2 + r222)

− x2
2

2
arctan

(
y2 z2
x2 r222

)
− y2

2

2
arctan

(
x2 z2
y2 r222

)
− z2

2

2
arctan

(
x2 y2
z2 r222

)

where x1, x2, y1, y2, z1, z2 are the coordinates of the edges of the cuboid and e.g. r222 =
√
x2

2 + y2
2 + z2

2

is the distance between the point (x2, y2, z2) and the computation point P (0, 0, 0). Geoid heights
are obtained from (2.24) using Brun’s formula (2.12). Similar to (2.24), the gravity anomaly ∆g
are obtained by solving the integral in (2.23) for a finite cuboid, or by first order derivation of
(2.24) along the vertical z direction (Mader, 1951):

1
G ρ

∆g(P ) = − 1
G ρ

∂T (P )
∂z

= {x2y2z2} − {x1y2z2} − {x2y2z1}+ {x1y2z1}

− {x2y1z2}+ {x1y1z2}+ {x2y1z1} − {x1y1z1} (2.25)

with e.g.

{x2y2z2} = y2 log(x2 + r222) + x2 log(y2 + r222) − z2 arctan
(
x2 y2
z2 r222

)

Since the computation of the effects of cuboid masses using (2.24) and (2.25) can be very CPU-
intensive, a simplified method to compute approximate mass effects on geoid heights and on gravity
based on (2.22) and (2.23) consists in concentrating the mass of each cuboid at its center of mass
(point mass). In order to assess the impact of this approximation, the effects on geoid heights
computed based on cuboid masses and on point masses were compared in Sections 10.4.7 and
11.4.7.

With the mass reduction, the mass effects computed with (2.22) or (2.23) are removed from the
geoid heights or gravity anomalies. The residual geoid heights or gravity anomalies represent
the effects caused by unmodeled masses. Hence, the mass reduction allows to detect anomalous
mass distributions. Positive residuals indicate an existing mass excess with respect to the modeled
masses or an underestimation of the mass effect in the model. On the other hand, negative residuals
indicate an existing mass deficiency with respect to the modeled masses or an overestimation of
the mass effect in the model.

In Sections 10.4 and 11.4, mass effects of topography, bathymetry, sediments and crust-mantle
boundary (Moho) on geoid heights and on gravity anomalies were computed using (2.22) and (2.23),
respectively (2.24) and (2.25). In Sections 10.5 and 11.5, the modeled mass effects were used to
reduce the geoid heights and gravity anomalies derived from the sea surface heights obtained from
airborne and shipborne altimetry, in the area of Crete and in the North Aegean Sea, respectively.

More details on the theory of mass effects can be found in textbooks on physical geodesy, e.g.
(Heiskanen and Moritz, 1967; Moritz, 1980; Hofmann-Wellenhof and Moritz, 2006).
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2.3 Mean Sea Surface

2.2.3 Gravitational Models

A brief description of the gravitational models used in Sections 10.2 and 11.2 for comparison with
the geoid heights obtained from airborne and shipborne altimetry, is given below:

• The Earth Gravitational Model EGM96 was developed by the NASA GSFC and NIMA
(Lemoine et al., 1998). The data used to derive the EGM96 include orbital perturbations
from over 20 satellites, surface and airborne gravimetric surveys from different regions and
sea surface heights from radar altimetry missions GEOSAT, ERS-1 and TOPEX/Poseidon.
The EGM96 is complete to spherical harmonics degree and order 360, corresponding to a
spatial resolution of approximately 55 km (half-wavelength).

• The Earth Gravitational Model EGM2008 was publicly released by the U.S. NGA EGM
Development Team in April 2008 (Pavlis et al., 2008). It combines gravity information from
the GRACE mission with a global gravity anomaly database of 5’× 5’ resolution from surface
gravity data and altimetry data. The EGM2008 does not incorporate any GPS/leveling
data or astronomic deflections of the vertical. It is complete to spherical harmonics degree
and order 2159, and contains additional coefficients extending to degree 2190 and order
2159, corresponding to a spatial resolution of approximately 10 km (half-wavelength). Geoid
heights computed from EGM2008 over the Mediterranean Sea are shown in Fig. 2.3a.

• The EIGEN-5C is a combined gravity field model computed by the GFZ-GRGS cooperation
(Foerste et al., 2008). It is a combination of GRACE data from Feb. 2003 to Jan. 2007 and
LAGEOS data from Jan. 2002 to Dec. 2006, as well as 0.5°× 0.5° surface gravimetric and
altimetric data. The EIGEN-5C is complete to spherical harmonics degree and order 360,
corresponding to a spatial resolution of approximately 55 km (half-wavelength).

• The EIGEN-5S is a satellite-only model associated with the EIGEN-5C. It includes only
GRACE and LAGEOS data, and is independent of surface data and radar altimetry data.
Since missions like GRACE and LAGEOS do not resolve short-wavelength signals, the
EIGEN-5S is only complete to spherical harmonics degree and order 150, corresponding
to a spatial resolution of approximately 130 km (half-wavelength).

• The AUTH2008 is a gravimetric geoid model based on free-air gravity anomaly data, cover-
ing the area of Greece. It was computed by the Aristotle University of Thessaloniki (AUTH),
Greece (Tziavos and Andritsanos, 1999; Vergos et al., 2004; Grigoriadis, 2009). For the area of
Crete, the model is partly based on airborne gravimetric data collected during the combined
airborne gravimetry-altimetry campaign in the framework of the GAVDOS project (Tziavos
et al., 2004) (Section 7.1).

2.3 Mean Sea Surface

The mean sea surface MSS represents the position of the ocean surface averaged over an appro-
priate time period to remove annual, semi-annual, seasonal and spurious sea surface height signals
(Picot et al., 2003). The MSS is a height above a reference ellipsoid. It corresponds to the sum of
the geoid undulation N and the mean dynamic topography MDT averaged over a selected time
period (Hernandez and Schaeffer, 2001), according to (2.2). MSS models are essentially based
on satellite radar altimetry data. They are used for various purposes, such as the computation
of along-track and cross-track geoid gradients, needed as corrections in the repeat orbit method,
for the computation of gridded gravity anomalies, for the operational computation of sea level
anomalies SLA (Section 2.4) and to provide a common reference for distinct satellite missions.
The MSS models used in this project to validate the sea surface heights obtained by airborne and
shipborne altimetry are the CLS01 and DNSC08 (Sections 9.3.1 and 9.3.2):
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2 Geoid, Sea Surface and Dynamic Ocean Topography

(a) EGM2008

(b) DNSC08

Figure 2.3: (a) EGM2008 geoid heights and (b) DNSC08 mean sea surface heights above the WGS84
reference ellipsoid in the Mediterranean Sea. The pronounced regional slopes of the marine geoid and the
sea surface range from 50m in the Balearic Sea in the Western Mediterranean down to 0m in the Eastern
Mediterranean. Contour intervals: 1m.

• The CLS01 was produced by CLS Space Oceanography Division and distributed by AVISO,
with support from CNES (Hernandez and Schaeffer, 2000). The reference time period of the
CLS01 is from 1993 to 1999 (7 years). It was computed using TOPEX/Poseidon mean profiles
over 7 years, ERS-1/2 mean profiles over 5 years, GEOSAT mean profiles over 2 years and
ERS-1 data. The CLS01 is determined oceanwide between 80°S and 82°N. Over continents,
it is based on the EGM96 geoid, with a smooth transition in coastal areas. The CLS01 is
provided on a regular grid with a spatial resolution of 2’×2’ (' 4 km). However, the inherent
resolution of along-track radar altimetry data is limited to about 10 km by their footprint
diameter. In addition, ground track spacing between multi-mission data can reach even
higher values. Furthermore, the CLS01 is based on a local least square collocation, using
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2.4 Sea Level Anomaly

altimetric data in a radius of 200 km (Hernandez and Schaeffer, 2001). Hence, the CLS01
can resolve wavelengths down to 10 - 20 km.

• TheDNSC08 is the most recentMSS released by the Danish National Space Center (DNSC)
(Andersen et al., 2007; Andersen and Knudsen, 2008). An extract of the DNSC08 in the
Mediterranean Sea is shown in Fig. 2.3b. It is based on multi-mission radar altimetry data
from TOPEX/Poseidon, Jason-1, ERS-1/2, ENVISAT, GFO and GEOSAT, as well as ICE-
SAT data. The DNSC08 is provided on a regular grid with a spatial resolution of 1’×1’
(' 2 km). The coverage is global (90°S to 90°N). Similar to the remarks concerning the
CSL01 above, the DNSC08 can resolve wavelengths down to 10 - 20 km.

The MSS from CLS01 and DNSC08 are both referenced to the TOPEX/Poseidon Earth ellipsoid
(a=6378136.3m, 1/f =298.257, GM =398600.4415 km3/s2). For comparison purposes with the
sea surface heights from airborne and shipborne altimetry determined in this project, the MSS
heights were transformed to the WGS84 reference ellipsoid. This transformation corresponds to a
mean vertical shift of -0.705m at the latitudes of the Mediterranean Sea.

2.4 Sea Level Anomaly

The sea level anomaly SLA is the difference between the time-independent sea surface height SSH
from (3.1) and the mean sea surface MSS from (2.2):

SLA = SSH − MSS (2.26)

The only means to observe SLA on a global and regional scale is satellite radar altimetry, since
repeated observations of the sea surface at the same location over time periods of several years
are needed. In (2.26), the MSS can either be a multi-mission mean sea surface (Section 2.3) or a
mono-mission mean sea surface profile computed along repeated tracks of the same mission. The
SLA always refers to the reference height MSS used to compute it.

The SLA products used in this project are delayed-time SSALTO/DUACS SLA (AVISO, 2008).
They are produced by SSALTO/DUACS and distributed by AVISO, with support from CNES.
DUACS (Data Unification and Altimeter Combination System) is part of the CNES multi-mission
ground segment SSALTO. The SSALTO/DUACS are multi-mission products from TOPEX/-
Poseidon, Jason-1, ENVISAT, GFO, ERS-1/2 and GEOSAT. Delayed-time SLA products from
SSALTO/DUACS are provided as along-track data for each altimetry mission, as well as gridded
products merging data from all missions. Altimetry observations are resampled along a theoreti-
cal ground track (or mean track) associated to each mission. Then, a mean profile is subtracted
from the resampled data to obtain along-track SLA, using (2.26). The mean profile is a time
average of similarly resampled data over a long period. For example, the mean profiles used for
TOPEX/Poseidon and Jason-1 were computed with TOPEX/Poseidon data from January 1993
to December 1999, using the new 2008 GDR standards. The gridded products are provided on a
global 1/3° Mercator grid and on regional grids, e.g. a 1/8° regular grid for the Mediterranean Sea,
based on one week of altimeter data.

An example of gridded weekly SLA from multi-mission SSALTO/DUACS over the Mediterranean
Sea is shown in Fig. 2.4, corresponding to the time period of the GAVDOS airborne campaign
(Section 7.1). A high spatial variability was observed, with SLA values ranging from -15 to 25 cm.
The average sea surface of the Mediterranean was higher than the reference height, with positive
mean SLA values of 8.6 and 2.8 cm for 08/01/2003 and 15/01/2003, respectively. The rapid
decrease of the mean SLA by 5.8 cm during only one week, as well as local SLA variations of up
to 15 cm (Fig. 2.4, bottom), underline the highly dynamic behavior of sea level variations in time.
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Figure 2.4: Weekly sea level anomalies (SLA) from SSALTO/DUACS merged multi-mission altimetric
data in the Mediterranean Sea, on 08/01/2003 (top) and 15/01/2003 (center), as well as difference between
the two consecutive weekly datasets (bottom). Contour intervals: 2.5 cm
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2.5 Dynamic Ocean Topography

2.5 Dynamic Ocean Topography

2.5.1 Absolute and Mean Dynamic Topography

The dynamic ocean topography is an important indicator in the study of ocean dynamics (Dobslaw,
2007). From an oceanographic perspective, the primary purpose of sea surface height observations
is the determination of the sea surface elevation induced by ocean currents. This sea surface
elevation is called absolute dynamic topography ADT of the ocean. Based on (2.1), the ADT is
given by the difference between the sea surface height SSH, corrected for geophysical effects like
tides and atmospheric pressure (3.1), and the geoid height N :

ADT = SSH − N (2.27)

The major application of ADT signals from radar altimetry is their assimilation into general
circulation models, which is crucial for the development of operational forecasting systems (Rio
et al., 2007). Analogous to (2.27), the mean dynamic topography MDT of the ocean is obtained
from (2.2) as the residual surface between the mean sea surface MSS and the geoid height N :

MDT = MSS − N (2.28)

TheMDT is the part of theMSS produced by permanent ocean currents. In (2.28), MSS can ei-
ther be a gridded multi-mission MSS or a mono-mission MSS profile along repeated tracks of the
same mission. The ADT andMDT are orthometric sea surface heights above the geoid. Equations
(2.27) and (2.28) are called direct method for the computation of the absolute and mean dynamic
topography. The direct method requires that the accuracy and spatial resolution of the marine
geoid and sea surface height information comply with the amplitudes and wavelengths of the ef-
fects produced by ocean currents. Important features of the oceanic circulation typically contain
wavelengths as short as 100 - 200 km (Rio and Hernandez, 2004). The altimetric MSS resolves
spatial scales down to 10 - 20 km (Section 2.3), while geoid models are usually only available at
lower resolutions (Section 2.2.3), especially over oceans. In this case, the MSS has to be low-pass
filtered to make it compatible with the resolution of the geoid model. Hence, the resolution of the
marine geoid model is generally the limiting factor for the resolution of the dynamic ocean topog-
raphy determined with the direct method. As demonstrated in (Rio et al., 2006), combined geoid
solutions, enhancing the satellite-only solutions by introducing in situ gravimetric and altimetric
data to better estimate the shortest scales of the geoid, produce better MDT results. However,
since they rely on altimetric sea surface height data, the combined solutions intrinsically include
information on the mean ocean circulation, and the obtainedMDT is therefore not independent of
this a priori information. It was shown in (Rio et al., 2006) that using the most recent satellite-only
geoid models from GRACE (at that time the EIGEN-GL04S), the MDT could only be estimated
with sufficient accuracy at spatial scales of 300 - 400 km. However, theMDT contains scales shorter
than 130 km (Rio et al., 2006). Hence, geoid models resolving such small wavelengths, indepen-
dently of altimetric data, are needed. Such a geoid model is expected from the GOCE mission,
who’s launch is scheduled for March 2009. GOCE aims to provide geoid heights with cm-level
accuracy at a resolution better than 100 km.

In order to bypass the geoid uncertainties, altimetric missions were designed with repeated orbits,
allowing to compute accurate along-track MSS profiles and to deduce SLA at cm-level accuracy.
In theory, the SLA represents the change of the sea surface height related to effects that are not
considered during the correction for geophysical effects like tides and atmospheric pressure (3.1).
The major part of these residual effects are changing ocean currents. By inserting (2.27) and (2.28)
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in (2.26), the SLA can be defined as:

SLA = ADT − MDT (2.29)

Thus, by neglecting all other residual effects, the SLA corresponds to the variable part of the
dynamic ocean topography, or the deviation of the absolute dynamic topography ADT from the
mean dynamic topographyMDT . This is the so-called repeat-track method, providing the variable
part of the dynamic topography with 3 - 4 cm accuracy (Rio and Hernandez, 2004). The analysis
of the SLA has led to numerous progresses in the knowledge of ocean dynamics, but the inference
of the ADT and MDT from altimetric observations remains a challenge (Rio et al., 2006).

A method used to estimate the MDT independently of the geoid and its uncertainties is the so-
called synthetic method. Based on (2.29), it allows to locally estimate the MDT by subtracting
the SLA, as observed by altimetry (2.26), from in situ ADT observations, obtained from satellite-
tracked drifting buoys (Rio and Hernandez, 2004; Rio et al., 2007).

In reality, however, the SLA is not only produced by changing ocean currents, but also by apparent
or true sea surface height variations related to unconsidered or mismodeled effects in (3.1), as well as
uncorrected measurement errors. The SLA can e.g. be affected by uncertainties in the tidal model
and in the model of the response to atmospheric pressure and wind. Residual measurement errors
can be produced by altimeter ranging errors, orbit errors, errors in the sea state bias correction,
tropospheric correction, ionospheric correction and skewness of the sea surface. In addition, steric
sea level changes, produced by the volume change of water molecules related to temperature change,
are not considered and are therefore also included in the SLA signal. One of the major challenges in
satellite radar altimetry is therefore to reduce the model errors on the instrumental and geophysical
correction levels, in order that their impacts on the SLA become negligible as compared to the
effect of changing ocean currents, so that (2.29) applies.

2.5.2 Geostrophic Flow Fields from Dynamic Ocean Topography

Ocean currents can be derived from the ADT andMDT , on an instantaneous and permanent basis,
respectively. These flow fields are of great importance for hydrological and oceanographic research.
Under the assumption of the geostrophic equilibrium, the ocean circulation can be derived from
gradients of the vertical deviation of the ocean topography with respect to its position of rest. The
position of rest, observed in the hypothetic case of complete absence of ocean circulation, is an
equipotential surface of the Earth’s gravity field, the geoid (Section 2.2.1). Aside from the equator
and on timescales longer than a few days, the ADT of height H above the geoid is linked to the
geostrophic part of the ocean circulation (ug, vg) by the geostrophic equilibrium equation (Fu and
Chelton, 2001; Le Traon and Morrow, 2001; Rio and Hernandez, 2004):

ug = − g
f

∂H

∂y
vg =

g

f

∂H

∂x
(2.30)

where ug and vg are the horizontal East (zonal) and North (meridian) components of the geostrophic
circulation velocity, x and y are the East and North directions, g is gravity and f =2ω sinφ is the
Coriolis parameter, with ω=7.292115 · 10-5 [rad · s-1] the mean angular velocity of the Earth’s rota-
tion and φ the geographic latitude. Geostrophic mean velocities and geostrophic velocity anomalies
can be obtained from (2.30), by inserting the MDT or the SLA of (2.29) as H, respectively.

2.5.3 Mean Dynamic Topography of the Mediterranean Sea

The mean circulation in the Mediterranean Sea is largely unknown. It is characterized by smaller
scales and less intensity than in the open ocean, making the interpretation of the variability ob-
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served from altimetric SLA rather difficult. The accurate knowledge of the Mediterranean MDT
should help to correctly interpret the altimetric observations and therefore to remove many re-
maining ambiguities on the Mediterranean variability (Rio et al., 2007). An inventory of the main
Mediterranean features from basin scale to mesoscale, mainly based on the analysis of sea surface
temperature images, is given e.g. in (Millot, 1999) for the western Mediterranean basin and in
(Hamad et al., 2005) for the eastern basin. Despite the fact that a correlation exists between the
dynamic height and the surface temperature, such images are not always easy to interpret as they
only contain surface information and therefore do not reflect the ocean dynamics (Rio et al., 2007).

The mean dynamic topography used in this project is the RioMed (Fig. 2.5a). RioMed was pro-
duced by CLS Space Oceanography Division and distributed by AVISO, with support from CNES
(Rio et al., 2007). It is based on the Rio07 synthetic MDT of the Mediterranean Sea computed
for the period 1993-1999. Values are given on a 1/8° regular grid. Besides the MDT , the RioMed

(a)

(b)

Figure 2.5: (a) RioMed mean dynamic topography of the Mediterranean Sea. Contour interval: 0.025m.
(b) RioMed mean geostrophic circulation.
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(a) (b)

Figure 2.6: Extracts of the RioMed mean dynamic topography (surface) and mean geostrophic circulation
(arrows) shown in Fig. 2.5 around Crete (a) and in the North Aegean Sea (b). Contour interval: 0.01m

product includes zonal and meridian components of the geostrophic mean circulation derived from
to the MDT (Fig. 2.5b). The accuracy of the synthetic mean field obtained in areas covered by
drifting buoys is directly linked to the number of buoy velocity observations used for the estimation
(Rio et al., 2007). The smallest errors are found in the Ionian and Adriatic Seas, while larger errors
affect areas like the Balearic Sea or the Levantine basin. Inversely, where no buoy observations are
available (mainly in the northern Levantine Sea and the North Aegean Sea), the accuracy is linked
to the a priori model errors.

The Riomed MDT ranges from -0.17 to 0.27m over the entire Mediterranean Sea (Fig. 2.5a). The
Cretan area is characterized by a cyclonic (counter clockwise) circulation cell of the Cretan cyclone,
centered at 25°E, 35°N (Fig. 2.5b). In the survey area around western Crete, the maximum effect
of the MDT reaches -0.15m (Fig. 2.6a). In the survey area in the North Aegean Sea, the effect
of the MDT is small, with a maximum of only 0.05m (Fig. 2.6b). The order of magnitude of the
gradients of the RioMed MDT in the North Aegean Sea is in accordance with values found by
other author, e.g. (Kourafalou and Tsiaras, 2007).

2.6 Permanent Tide

2.6.1 Permanent Tidal Effects on Gravitational Potential and Earth’s Crust

A considerable part of the tides does not vary periodically with time but is permanent (Ekman,
1989). This permanent deformation of the Earth caused by the presence of the Sun and the Moon
is called permanent tide. The permanent tide complicates the definition of the geoid and the mean
sea surface. The Earth’s own gravitational potential is perturbed by the action of the external tidal
potential. The observed gravitational potential V (t)obs in the vicinity of the Earth is a combination
of the Earth’s own potential V (t)E and the tidal gravitational potential of external bodies (i.e. the
Moon, the Sun and the planets) (McCarthy and Petit, 2004). The external tidal potential contains
both permanent and periodic parts (Vext and V (t)ext), and so does the tide-induced part of the
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Earth’s own potential (Vdef and V (t)def ):

V (t)obs = V (t)E + Vext + V (t)ext + Vdef + V (t)def (2.31)

where

V (t)obs observed gravitational potential at a given position and time t
V (t)E gravitational potential of the Earth (not induced by tidal effects)
Vext permanent external tidal gravitational potential caused by external bodies

(Moon, Sun and planets)
V (t)ext periodic external tidal gravitational potential caused by external bodies (Moon,

Sun and planets)
Vdef permanent tide-induced gravitational potential, related to the permanent de-

formation of the Earth caused by the permanent external tidal potential Vext
V (t)def periodic tide-induced gravitational potential, related to the periodic deforma-

tion of the Earth (solid-Earth tide) caused by the periodic external tidal po-
tential V (t)ext

Similar to the gravitational potential in (2.31), the observed site position is affected by displace-
ments associated with crustal deformations produced by the tidal potential (McCarthy and Petit,
2004). Considering only the vertical site position h(t)obs:

h(t)obs = h(t)E + dhdef + dh(t)def (2.32)

where

h(t)obs observed site height at time t
h(t)E site height without crustal deformation caused by external tidal potential
dhdef permanent vertical deformation of the crust caused by the permanent part of

the external tidal potential Vext (permanent solid Earth tide)
dh(t)def periodic vertical deformation of the crust caused by the periodic part of the

external tidal potential V (t)ext (periodic solid Earth tide)

2.6.2 Mean-Tide, Zero-Tide and Tide-Free Systems

Consideration of the permanent tidal effects described in (2.31) has led to the definition of three
types of gravitational potentials: mean-tide, zero-tide and tide-free (Lemoine et al., 1998). The
mean-tide potential V (t)m, zero-tide potential V (t)z and tide-free potential V (t)f are derived from
(2.31) using the following equation:

V (t)m = V (t)obs − V (t)ext − V (t)def = V (t)E + Vext + Vdef (2.33)
V (t)z = V (t)m − Vext = V (t)E + Vdef (2.34)
V (t)f = V (t)z − Vdef = V (t)E (2.35)

The mean-tide potential is obtained from (2.31) by removing the periodic parts of the tidal contri-
butions from the observed potential (2.33). Hence, the mean-tide potential includes the permanent
external tidal potential Vext and the permanent potential Vdef , associated with the permanent tidal
deformation of the crust, and is free of periodic variations due to tidal forces. The removal of the
permanent external potential Vext from the mean-tide potential in (2.33) results in the zero-tide
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potential (2.34), which is strictly a geopotential (Lemoine et al., 1998). The removal of the per-
manent potential Vdef , related to the permanent tidal deformation, from the zero-tide potential
in (2.34) results in the tide-free potential (2.35). In a tide-free quantity (e.g. potential), all tidal
effects have been removed. Because the perturbing bodies are always present, a truly tide-free
quantity cannot be observed (McCarthy and Petit, 2004). Similar to the gravitational potential in
(2.33), (2.34) and (2.35), the mean-tide, zero-tide and tide-free gravity are given by:

g(t)m = g(t)obs − g(t)ext − g(t)def = g(t)E + gext + gdef (2.36)
g(t)z = g(t)m − gext = g(t)E + gdef (2.37)
g(t)f = g(t)z − gdef = g(t)E (2.38)

The mean-tide, zero-tide and tide-free geoid undulation are given by:

N(t)m = N(t)obs − N(t)ext − N(t)def = N(t)E + Next + Ndef (2.39)
N(t)z = N(t)m − Next = N(t)E + Ndef (2.40)
N(t)f = N(t)z − Ndef = N(t)E (2.41)

The mean-tide geoid corresponds to the mean sea surface, exempt from non-gravitational distur-
bances (ocean currents, wind, air pressure, salinity, temperature), but including permanent tidal
effects. The zero-tide geoid is obtained by removing the permanent direct effects of the Sun and
Moon from the mean-tide geoid, while the indirect effects related to the elastic deformation of
the Earth are retained. The tide-free geoid would exist for a tide-free Earth, with all (direct and
indirect) effects of the Sun and Moon removed (Lemoine et al., 1998).

Analogous to the potential in (2.33), (2.34) and (2.35), the station height in the mean-tide, zero-tide
and tide-free system can be derived from (2.32):

h(t)m = h(t)obs − dh(t)def = h(t)E + dhdef (2.42)
h(t)z = h(t)m = h(t)E + dhdef (2.43)
h(t)f = h(t)m − dhdef = h(t)E (2.44)

When removing the periodic part of the tidal contributions from the observed station height in
(2.32), the resulting station height h(t)m is on the mean-tide crust (2.42). The permanent part
of the deformation produced by the tidal potential is still present in the mean-tide crust. The
zero-tide crust h(t)z is identical to the mean-tide crust (2.43). If the permanent deformation due
to the permanent tidal potential is removed from the mean-tide crust, the tide-free crust h(t)f is
obtained (2.44).

2.6.3 Conversion between Permanent Tide Systems

The conversion between mean-tide gravity g(t)m, zero-tide gravity g(t)z and tide-free gravity g(t)f
is obtained from (2.36), (2.37) and (2.38) (Ekman, 1989):
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g(t)m − g(t)z = gext = −∂Vext
∂r

= − 30.4 + 91.2 sin2 φ [µgal] (2.45)

g(t)z − g(t)f = gdef = −(δ − 1)
∂Vext
∂r

= (δ − 1) (− 30.4 + 91.2 sin2 φ) [µgal] (2.46)

g(t)m − g(t)f = gext + gdef = −δ ∂Vext
∂r

= δ (− 30.4 + 91.2 sin2 φ) [µgal] (2.47)

with

δ = 1 +
(
∂Vdef
∂r

)
/

(
∂Vext
∂r

)
' 1.16 (2.48)

where ∂/∂r is the radial derivative and φ is the geographic latitude. The difference between mean-
tide gravity and zero-tide gravity (2.45) corresponds to the gravitation gext of the permanent
external tidal potential. The difference between zero-tide gravity and tide-free gravity (2.46) cor-
responds to the gravitation gdef of the permanent potential, related to the permanent deformation
of the Earth caused by the permanent external tidal potential Vext. The difference between mean-
tide gravity and tide-free gravity (2.47) is the sum of gext and gdef . Numerical expressions after
(Ekman, 1989), associated with the permanent external tidal gravitational potential Vext caused
by the Moon and the Sun, are given on the right-hand side of (2.45), (2.46) (2.47). The numerical
expressions are plotted in Fig. 2.7a as a function of latitude. The permanent external gravitation
gext is more pronounced (factor of 6.25) than the gravitation gdef caused by the deformation due
to the permanent solid Earth tide. The effect of the permanent tide on gravity is more pronounced
at the poles and at the equator than at mid-latitude. The difference between mean-tide gravity
and tide-free gravity varies between -35.3µgal at the equator and 70.5µgal at the poles. At the
equator, the total gravity is decreased by the permanent tidal effects gext and gdef , while it is
increased at the poles.

The conversion between mean-tide geoid N(t)m, zero-tide geoid N(t)z and tide-free geoid N(t)f
is obtained from (2.39), (2.40) and (2.41) (Ekman, 1989):

N(t)m −N(t)z = Next =
Vext
g

= 9.9− 29.6 sin2 φ [cm] (2.49)

N(t)z −N(t)f = Ndef = k
Vext
g

= k (9.9− 29.6 sin2 φ) [cm] (2.50)

N(t)m −N(t)f = Next +Ndef = (1 + k)
Vext
g

= (1 + k) (9.9− 29.6 sin2 φ) [cm] (2.51)

with
k =

Vdef
Vext

' 0.30 (2.52)

where k is the (fundamentally unknowable) zero frequency Love number, usually taken as 0.30
(e.g. for the EGM96), g is gravity and φ is the geographic latitude. The difference between
mean-tide geoid and zero-tide geoid (2.49) corresponds to the geoid deformation Next caused by
the permanent external tidal potential Vext. The difference between zero-tide geoid and tide-free
geoid (2.50) corresponds to the geoid deformation Ndef , associated with the permanent solid Earth
tide. The difference between mean-tide geoid and tide-free geoid (2.51) is the sum of Next and
Ndef . Numerical expressions after (Ekman, 1989), associated with the permanent external tidal
gravitational potential Vext caused by the Moon and the Sun, are given on the right-hand side of
(2.49), (2.50) (2.51). The numerical expressions are plotted in Fig. 2.7b as a function of latitude.
Similar equations can be found in (Rapp, 1989). The deformation Next of the geoid caused by
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the permanent external potential is more pronounced (factor of 3.33) than the deformation Ndef
caused by the permanent solid Earth tide. The effect of the permanent tide on the deformation of
the geoid is more pronounced at the poles and at the equator than at mid-latitude. The difference
between mean-tide geoid and tide-free geoid varies between -25.6 cm at the poles and 12.9 cm at
the equator. The positive values near the equator indicate that the permanent external potential
Vext and the potential caused by the permanent solid Earth tide Vdef are increasing the geoid
undulation near the equator. At the poles, they have a decreasing effect on the geoid undulation.

Finally, the conversion of GPS heights above the ellipsoid on the tide-free crust to GPS heights on
the mean-tide (or zero-tide) crust can be derived from (2.42), (2.43) and (2.44) (Ekman, 1989):

h(t)m − h(t)f = dhdef = h
Vext
g

= h (9.9 − 29.6 sin2 φ) [cm] (2.53)

where the Love number h' 0.62. The difference is equal to the deformation dhdef of the crust
due to the permanent part of the solid Earth tide. A similar equation can be found in the IERS
Conventions 2003 (McCarthy and Petit, 2004):

h(t)m − h(t)f = [ −0.1206 + 0.0001 P2(sinφ) ] P2(sinφ) [m] (2.54)

with P2(sinφ)= (3 sin2 φ - 1)/2. Similar results are obtained using (2.53) and (2.54), with values of
-12.21 and -12.05 cm at the poles, and 6.14 and 6.03 cm at the equator, respectively. The deforma-
tion of the crust caused by the permanent tide, corresponding to the difference between mean-tide
(or zero-tide) and the tide-free crust heights (2.53) is shown in Fig. 2.7c, as a function of latitude.
The difference varies between -12.2 cm at the poles and 6.1 cm at the equator.

2.6.4 Conversion of Sea Surface Heights between Permanent Tide Systems

Most gravitational models and their associated geoid undulations are referenced to a tide-free
system. On the other hand, the undisturbed sea surface is a representation of the geoid in a
mean-tide system, because it includes all the effects of the permanent tide on the Earth’s crust.
Sea surface heights observed by satellite radar altimetry are therefore referenced to a mean-tide
system. In order to make comparisons between geoid undulations and sea surface heights, they
have both to be referenced to the same permanent tide system, e.g. the tide-free system. The
deformation of the sea surface due to the permanent tide is a combination of the deformation of
the Earth’s crust (sea bottom) and the deformation of the water masses above it. It follows that
the deformation of the sea surface due to permanent tide is similar to the deformation of the geoid
due to the permanent tide.

As opposed to satellite radar altimetry, the sea surface heights determined in this project by air-
borne laser altimetry, shipborne ultrasound altimetry and GPS buoys all involve GPS observations,
referenced to the tide-free ITRF reference frame. The GPS heights are therefore also related to
the tide-free system. However, this definition only applies to the Earth’s crust, but not to the
sea surface. In a first step, in order to obtain consistent sea surface heights SSHm in a mean-tide
system, the observed heights SSHobs, derived from GPS, have to be converted from the tide-free to
the mean-tide system, using (2.53) or (2.54). Using (2.53), the following corrections are obtained
for the survey areas of Crete and North Aegean Sea:

Crete (35.0°N) : SSHm = SSHobs + 0.001 [m] (2.55)
North Aegean (39.5°N) : SSHm = SSHobs − 0.013 [m] (2.56)
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(a) Effect of permanent tide on gravity (b) Effect of permanent tide on geoid height

(c) Effect of permanent tide on crust deformation

Figure 2.7: Effect of permanent tide, as a function of latitude, on (a) gravity ((2.45), (2.46), (2.47)), (b)
geoid height ((2.49), (2.50), (2.51)) and (c) crust deformation (2.53).

Using the above equations, the sea surface heights determined in this project are made compatible
with sea surface heights from satellite radar altimetry. The undisturbed sea surface heights in
a mean-tide system are equivalent to geoid undulations Nm in a mean-tide system. In order to
obtain sea surface heights SSHf in a tide-free system, the mean-tide sea surface heights SSHm

have to be converted using (2.51):

Crete (35.0°N) : SSHf = SSHm − 0.002 = SSHobs − 0.001 [m] (2.57)
North Aegean (39.5°N) : SSHf = SSHm + 0.027 = SSHobs + 0.014 [m] (2.58)

These are the corrections that have to be applied to make the sea surface heights determined in this
project using airborne laser altimetry, shipborne ultrasound altimetry and GPS buoys compatible
with geoid heights in a tide-free system. The difference between the observed sea surface heights
SSHobs and sea surface heights SSHf in a tide-free system are negligibly small, with values of
0.1 cm in the survey area around Crete and 1.4 cm in the North Aegean Sea.
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3 Geophysical Effects on Sea Surface
Heights

3.1 Introduction

Instantaneous sea surface heights SSHi, as obtained by satellite radar altimetry, airborne laser
altimetry, shipborne ultrasound altimetry and GPS buoys, are affected by time-dependent geo-
physical effects, including ocean waves, astronomical tides, atmospheric pressure (inverse barome-
ter effect) and wind stress. By subtracting these effects from SSHi, time-independent sea surface
heights SSH are obtained:

SSH = SSHi − ocean waves (3.1)
− tide effects
− inverse barometer effect
− high frequency wind response

This correction procedure is equivalent to the one applied by the official analysis centers of space-
borne radar altimetry data (Picot et al., 2003). The correction for tidal effects has nowadays
generally reached centimeter accuracy, whereas the effects associated with the forcing of wind and
atmospheric pressure are less well known. Other effects influencing sea surface heights, like precip-
itation, evaporation, river inflow, changing ocean currents, salinity and steric sea level variations
due to the volume change of water molecules related to water temperature change, and in the
case of the Mediterranean Sea the net flow at the strait of Gibraltar and from the Black Sea, are
not considered directly (Fenoglio-Marc et al., 2006). The resulting time-independent sea surface
heights SSH can be interpolated in order to obtain a surface representing the time-independent
sea surface topography.

3.2 Ocean Waves

Ocean waves have typical amplitudes of half a meter to several meters in extreme cases. They are
characterized by a succession of crests and troughs, The wave height H is the vertical distance
between a trough and the next crest. The significant wave height H̄1/3 is given by the average
height of the 1/3 highest waves in a record (WMO, 1998). It roughly approximates the visually
estimated wave height. More details on waves can be found in (Coulson and Jeffrey, 1977; Lighthill,
1978; WMO, 1998).

The airborne and shipborne altimetry data, as well as the GPS buoy data, contain information
on ocean waves. Wave characteristics (sea state) and significant wave heights can be derived
from these data by signal filtering and wave modeling (Section 7.2.3, Fig. 7.6). Appropriate filter
algorithms, based on cubic splines and windowed median, have been developed and applied in the
framework of this project, allowing to separate the high-frequency wave component from the sea
surface height signal (Sections 7.2.1 and 8.2).
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3.3 Tides

3.3.1 Characteristics of Tides

Tidal effects are governed by Newton’s law of gravitation, where the gravitational force ~F between
two bodies of masses m and M , separated by a distance vector ~r is given by:

~F = G
M ·m
|~r|3

~r (3.2)

where G is Newton’s universal gravitational constant. In the degree of approximation needed in the
computation of tides, only the Moon and the Sun have an influence on the Earth: the Sun because
of its enormous mass and the Moon because of its relatively small distance to the Earth. The
tide generating force can be derived from the tide generating potential. In the case of the system
formed by the three bodies Earth, Moon and Sun, the total astronomic tide generating potential
can be separated into the sum of the lunar and the solar potential. The trajectories of the Moon
and the Sun with respect to the Earth are highly complex. They have elliptic orbits contained
in a plane which’s inclination varies with respect to the terrestrial equatorial plane. In addition,
interactions between the Moon, the Sun and the Earth are modifying the orbital trajectories. The
tide generating force needs therefore to be separated into a sum of elementary forces (Tab. 3.1).

There are several contributions to the tidal effect influencing the sea surface height: ocean tide
(with respect to the ocean bottom), ocean loading tide (of the ocean bottom), solid Earth tide and
pole tide (Picot et al., 2003). The first three contributions are related to luni-solar forcing of the
Earth (astronomical tides), either directly, in the case of the ocean tide and solid Earth tide, or
indirectly, in the case of the ocean loading tide, since it is forced by the ocean tide. The sum of
these tidal contributions is called the geocentric tide:

geocentric tide = ocean tide + ocean loading tide + solid Earth tide + pole tide (3.3)

Tide-gauges directly observe the ocean tide, while satellite altimetry data includes the entire geo-
centric tide (3.3). The geocentric tide has therefore to be removed to correct altimetric data
for tidal effects. The same applies for airborne and shipborne altimetry data, but with special
considerations concerning the solid Earth tide (Section 3.3.3).

3.3.2 Ocean Tide

The ocean tide of astronomic origin is the periodic variation of the sea surface height resulting from
the actions of the celestial bodies (in particular the Moon and the Sun) moving around the Earth.
The relative movements of the Moon and the Sun with respect to the Earth, combined with the
Earth’s own rotation, are generating periodic gravitational forces. Each of these elementary forces
generates a periodic displacement of the water masses on Earth, resulting in sinusoidal variations
of the sea surface (tidal waves), called harmonic tidal components.

The tide generating force is the differential force between the gravitational force of the Moon and
the Sun at a given point of the sea surface and the rotational centrifugal force of the Earth-Sun-
Moon system (Fig. 3.1). The latter corresponds to the reciprocal of the gravitational force of the
Moon and the Sun at the center of mass of the Earth, since the Earth is in equilibrium. Hence,
at the center of the Earth, the gravitational force towards the Moon/Sun and the centrifugal force
away from the Moon/Sun are perfectly in balance. Assuming that the sea surface instantaneously
adopts the equilibrium position corresponding to the acting gravitational forces of the attraction
of the Moon and the Sun on the water particles and on the center of mass of the Earth, the
equilibrium tide is obtained based on the tide generating force.
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Figure 3.1: Schematic view of the forces governing the equilibrium ocean tide.

On the surface of the Earth nearest to the Moon/Sun, the gravitational force is stronger than the
centrifugal force, resulting in a force towards the Moon/Sun causing a water bulge (Fig. 3.1). On
the opposite side of the Earth, the gravitational force is weaker, since the Moon/Sun is further away,
and the centrifugal force is dominant. Hence there is a resulting force away from the Moon/Sun,
creating another water bulge (Fig. 3.1).

When the Earth, Moon and Sun are in line (during new and full Moon), the bulges of water caused
by the Moon and the Sun occur in the same place on the Earth’s surface. The lunar and solar tides
are reinforcing each other, which leads to higher than average high tides, and lower than average
low tides. These are called spring tides. When the Earth, Moon and Sun form a right angle, the
high water caused by the lunar tide coincides with the low water of the solar tide. This produces
lower than average high waters and higher than average low waters, which are called neap tides.
They occur approximately seven days after spring tides (POL, 2009).

The tidal variation of the sea surface is constituted by the superposition of many oscillations
generated by different phenomena (Le Provost, 2001). Laplace’s theory of dynamic response of the
ocean suggests that the tide generating force induces a response of the ocean in form of oscillations
with the same frequencies than the tide generating force, characterized by an amplitude and a
phase. Based on Laplace’s theory, the variation of the sea surface height ht(x, t) at location x and
time t caused by the ocean tide is given by:

ht(x, t) =
N∑
k=1

Ak(x) cos [ ωk t + Vk − Gk(x) ] (3.4)

where k is the tidal component with oscillation period ωk, astronomical phase Vk, amplitude Ak(x)
and Greenwich phase lag Gk(x). The major components k have diurnal or semi-diurnal periods
(Fig. 3.2 and Tab. 3.1). The semi-diurnal waves have a period of about 12 hours. The M2 wave
(M for Moon and 2 for semi-diurnal) is the most important semi-diurnal wave, corresponding to
the tide generated by the Moon uniformly moving around the Earth with a circular orbit in the
equatorial plane. The S2 wave (S for Sun) corresponds to the same phenomena for the Sun. There
are other semi-diurnal waves due to the ellipsoidal shape of the orbits. The diurnal waves have
a period of about 24 hours. The principal diurnal waves are the lunar-solar declination wave K1
and the lunar wave O1. In addition, there are waves with longer periods, e.g. the annual wave Sa
caused by the annual variation of the distance Sun-Earth.
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Figure 3.2: Tidal amplitudes as a function of frequency in the survey area in the North Aegean Sea.

Table 3.1: Major harmonic constituents of the astronomical tide.

Type Name Period Origin
Semi-diurnal M2 12h25 Mean movement of the Moon

S2 12h00 Apparent mean movement of the Sun
K2 11h59 Lunar-solar declination
N2 12h39 Major lunar eccentricity effects
L2 12h11 Minor lunar eccentricity effects
2N2 12h54 Lunar eccentricity effects of 2nd order

Diurnal K1 23h56 Lunar-solar declination
O1 25h49 Lunar declination
P1 24h03 Solar declination
Q1 26h56 Major lunar eccentricity effects

Long period Mf 13.661 days Semi-monthly lunar declination
Mm 27.555 days Monthly lunar declination
Ssa 182.621 days Semi-annual solar declination
Sa 365.240 days Annual variation of the distance Sun-Earth

If the Earth was covered by a uniform water layer, the dynamic prediction of ocean tides at any lo-
cation would be easy, since the astronomical periods, amplitudes and phases of all tidal constituents
are known precisely (Chelton, 1988). However, the propagation speed of these oscillations depends
on the water depth. In addition, they are reflected on the continental shelf, refracted and dissipated
(Roblou, 2001). Hence, ocean tides are strongly influenced by the continental boundaries, the sub-
marine topography (bathymetry), the complex sea floor topography in coastal regions, the shape of
the coastline and the eigenfrequency of oceanic basins (Le Provost, 2001). These influences, which
can locally produce tidal amplitudes of several meters, are making purely dynamic predictions only
marginally useful (Chelton, 1988). In practice, ocean tides are therefore determined empirically at
selected locations, based e.g. on hourly observations of the sea level from tide-gauges, covering a
period long enough (usually a few months to several years) to resolve the major tidal constituents
by harmonic analysis of the observed tidal signal. The harmonic analysis yields amplitudes and
phase lags of the harmonic constituents of the tidal signal at the observations site. Dynamic models
of global ocean tides are then constrained by the tidal amplitudes and phases empirically deter-
mined at the tide-gauges (Chelton, 1988). Empirical tidal constituents can only be determined at
locations where the sea level can be measured on a regular basis. Hence, satellite radar altimetry
is a revolutionary technique, since it allows to observe the sea level at nearly every point on Earth.

The ocean tide is one of the most significant variations of the sea surface. Its amplitudes in the
open ocean are typically 1 - 2m. This means that the tidal amplitudes are often larger than the
signals of interest in altimetric studies of ocean circulation or local geoid signals. Ocean tides need
therefore to be removed from the observed sea surface heights. The variation of the sea surface due
to ocean tides represents 80% of its variability in the open ocean (Le Provost, 2001), but much less
in semi-enclosed seas like the Mediterranean (Fig. 3.3). In the Mediterranean Sea, tidal amplitudes
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Figure 3.3: M2 and S2 ocean tide amplitude and phase from FES2004 in the Mediterranean Sea.
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are small as compared to the open sea, as can be seen from the amplitudes in the Atlantic Ocean,
adjacent to the Mediterranean Sea. The ocean tide models used in this project are the FES2004,
GOT00.2 and POL models:

• The FES2004 tide model (Lyard et al., 2006; Letellier, 2004; Le Provost, 2001) is based on a
finite element hydrodynamic model and the assimilation of tide-gauge data and observations
from TOPEX/Poseidon and ERS-2. FES2004 was produced by LEGOS and CLS Space
Oceanography Division and distributed by AVISO, with support from CNES. The hydrody-
namic model is based on the resolution of the tidal barotropic equations on a global finite
element grid of approx. 1million nodes. It includes 14 tidal constituents (M2, S2, K2, N2,
2N2, O1, P1, K1, Q1, Mf, Mtm, Mm, Msqm, M4) distributed on global 1/8°×1/8°grids of
amplitude and phase lag (Fig. 3.3). FES2004 is used as default correction model for the
altimetric products of TOPEX/Poseidon and Jason-1.

• The GOT00.2 tide model (Ray, 1999) consists of independent near-global estimates of 8major
constituents (Q1, O1, K1, P1, N2, M2, S2, K2). FES94.1 was used as a priori hydrodynamic
model, as well as several local hydrodynamic models. The tidal constituents are given on
0.5°×0.5°grids. GOT00.2 used 286 cycles of TOPEX/Poseidon data, supplemented in shallow
seas and in polar seas (latitudes above 66°) by 81 cycles of ERS-1 and ERS-2 data.

• A local tide model for the Mediterranean Sea, developed by the Proudman Oceanographic
Laboratory (POL) (Tsimplis et al., 1995). The POLmodel is a high-resolution two-dimensional
hydrodynamic model forced by the equilibrium tide and the incoming tide at the Strait of
Gibraltar. It is based on depth-averaged equations of continuity and motion in spherical
polar coordinates and relies on the data of 63 coastal tide-gauges, including tide-gauges in
the Aegean Sea and on Crete. It consists of the 4most significant constituents (M2, S2, K1,
O1) distributed on 1/12°×1/12°grids of amplitude and phase lag.

3.3.3 Solid Earth Tide

The solid Earth tide is the elastic periodic deformation of the Earth’s crust, including the ocean
bottom, due to luni-solar forcing. The solid Earth responds to external gravitational forces similar
to the oceans (Picot et al., 2003). The response of the Earth is fast enough that it can be considered
to be in equilibrium with the tide generating forces. Solid Earth tides have amplitudes of about
10 - 20 cm. Solid Earth tides occur at the same frequencies than the ocean tide, but can be modeled
much more accurately (to approx. 1 cm) than ocean tides (Chelton, 1988). Since the movement of
the ocean bottom due to solid Earth tides affects the height of the sea surface, it must be removed
from spaceborne altimetric data.

In the case of sea surface height observations from airborne and shipborne altimetry, or from other
techniques where the positioning of the altimetric sensor relies on differential GPS processing, the
treatment of solid Earth tides has to be considered with care. Terrestrial GPS stations are affected
by solid Earth tides. In classical differential processing of a GPS baseline between two terrestrial
stations of height h1 and h2, the solid Earth tide correction is given by the difference between the
solid Earth tide at the two stations (Fig. 3.4a):

h2 = h1 + ∆hobs(ti) + tide1(ti) − tide2(ti) (3.5)

where h1 and h2 are the heights of the reference station and roving station corrected for solid Earth
tides, ∆hobs(ti) is the height difference between the two stations observed by differential GPS at
time ti, tide1(ti) and tide2(ti) are the solid Earth tides at the reference station and at the roving
station at time ti.
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(a) static terrestrial

(b) airborne altimetry

Figure 3.4: (a) Solid Earth tides in static differential GPS processing between two terrestrial stations.
(b) Solid Earth tides in airborne altimetry and kinematic differential GPS processing between a terrestrial
reference station and the aircraft, resp. the laser ground point.

In airborne altimetry, the height of the aircraft is not affected by solid Earth tides. In this case,
the solid Earth tide correction that has to be applied to the laser ground point depends on how
solid Earth tides were considered during kinematic GPS baseline processing between the terrestrial
reference station and the aircraft. If the solid Earth tide at the reference station was considered,
the real aircraft height ha(ti) is obtained (Fig. 3.4b):

ha(ti) = hr + ∆hobs(ti) + tider(ti) (3.6)

where hr is the height of the reference station corrected for solid Earth tides, ∆hobs(ti) is the height
difference between the aircraft and the reference station observed by differential GPS at time ti
and tider(ti) is the solid Earth tide at the reference station at time ti. In airborne altimetry,
the laser sensor is measuring the range between the real position of the aircraft, not affected by
solid Earth tides, and the ground surface (sea or land) affected by solid Earth tides. Hence, by
subtracting the observed vertical range r(ti) from the aircraft height ha(ti), the sum of the ground
point height hg(ti), corrected for solid Earth tides, and the solid Earth tide effect tideg(ti) is
obtained (Fig. 3.4b):

hg(ti) + tideg(ti) = ha(ti) − r(ti) (3.7)

This means that if the solid Earth tide on the GPS reference station was corrected during kinematic
GPS processing, the surface height obtained by airborne altimetry includes the full effect of the
solid Earth tide at the ground point position, analogous to spaceborne altimetry. However, most
kinematic GPS software do not consider solid Earth tide corrections. In that case, by fixing the
baseline origin to the a priori coordinates of the reference station hr, the tidal deformation tider(ti)
at the reference station propagates with opposite sign into the computed aircraft height ha,c(ti)
(Fig. 3.4b), yielding vertical errors of up to 20 cm:

ha,c(ti) = hr + ∆hobs(ti) = ha(ti) − tider(ti) (3.8)
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By subtracting the observed vertical range r(ti) (3.7) from the aircraft height ha,c(ti) falsified by
the solid Earth tide effect tider(ti) at the reference station (3.8), the obtained surface height is
the sum of the ground point height hg(ti), corrected for solid Earth tides, and the differential
solid Earth tide effect between the laser ground point and thereference station, analogous to the
differential GPS positioning between terrestrial stations (3.5):

hg(ti) + tideg(ti) − tider(ti) = ha,c(ti) − r(ti) (3.9)

During the kinematic differential processing of airborne GPS data used to compute sea surface
heights from airborne laser altimetry, no correction for solid Earth tides was applied. Hence,
the solid Earth tide correction to be applied to the obtained sea surface heights is given by the
differential solid Earth tide between the laser ground point and the GPS reference station, according
to (3.9). The solid Earth tides, computed for both the reference station and the laser ground points,
show amplitudes in the order of 10 - 15 cm (Fig. 3.5). In the present case, with baseline lengths
below 150 km (Fig. 7.1), the differential solid Earth tide between the laser ground points and the
reference station ranges between -3 and 4mm. This means that the major part of the effect of the
solid Earth tide on the observed sea surface height was indirectly eliminated during the differential
GPS processing, and that the remaining part can be considered negligible because it is about one
order of magnitude smaller than the expected accuracy of the airborne laser altimetry system.
On the other hand, removing the absolute value of the solid Earth tide computed at the laser
ground points from the obtained sea surface heights would induce a vertical error of up to 20 cm.
In general, the differential solid Earth tide correction becomes negligible for short baselines.

Sea surface height observations by shipborne altimetry and GPS buoys, involving differential GPS
processing, are similar to the case of two terrestrial GPS station (Fig. 3.4a). The ship and the buoy
are both directly affected by the solid Earth tide, in the same way as a terrestrial station. Hence,
(3.5) applies, meaning that the obtained sea surface heights are affected by the differential solid
Earth tide between the observation point and the reference station, unless solid Earth tides were
considered during GPS processing. For baselines below 150 km (Fig. 8.1), similar to the case of
airborne altimetry above, the differential solid Earth tide correction can be considered negligible,
because it is about one order of magnitude smaller than the expected accuracy.

Figure 3.5: Top: Time series of solid Earth tide at the GPS reference station TUC1 and along airborne
altimetry tracks (Fig. 7.1). Bottom: Difference between solid Earth tides along airborne tracks and at the
GPS reference station, corresponding to the correction to be applied to the observed sea surface heights.
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3.3.4 Ocean Loading Tide and Pole Tide

The ocean loading tide is the oscillation of the ocean bottom (and the adjacent continental shelf
in coastal areas), caused by the tidal variations of the load of the water masses. Hence, the ocean
loading tide is indirectly related to luni-solar forcing. The pole tide is unrelated to luni-solar forcing.
Considering the sea surface, it is a tide-like motion of the ocean surface as a response of both the
solid Earth and the oceans to the centrifugal potential that is generated by small perturbations
to the Earth's rotation axis (Picot et al., 2003). These perturbations primarily occur at periods
of 433 days, called the Chandler wobble, and annually. Modeling the pole tide requires knowledge
of proportionality constants, the so-called Love numbers, and a time series of perturbations to
the Earth's rotation axis, a quantity that is now measured routinely with space techniques (Picot
et al., 2003). Ocean loading and pole tide values were computed for the region of Crete and the
North Aegean Sea using the GOT00.2 tide model. Both effects were found to be below 1 cm in
these survey areas, and were therefore not further considered.

3.4 Atmospheric Pressure and Wind Forcing

3.4.1 Inverse Barometer Effect

As atmospheric pressure increases and decreases, the sea surface tends to respond hydrostatically by
falling or rising, respectively (Picot et al., 2003). This effect is referred to as the inverse barometer
(IB) effect. The instantaneous IB effect on the sea surface height is given by (Dorandeu and
Le Traon, 1999; Picot et al., 2003; Chelton, 1988):

IB =
1
ρ g

( P − Pref ) = −0.9948 ( P − Pref ) (3.10)

where IB is the inverse barometer effect in cm, ρ=1.025 g/cm3 is the density of sea water,
g=980.7 cm/s2 is gravity, P is the atmospheric pressure at the sea surface in hPa and Pref is
the time varying mean global surface atmospheric pressure over the oceans in hPa. In many appli-
cations, Pref is assumed to be constant, e.g. 1013.3 hPa. However, using a constant Pref creates
unrealistic signals: the mean correction is no longer zero, which is not consistent with ocean mass
conservation (Dorandeu and Le Traon, 1999). The scale factor of -0.9948 implies that a local
increase of 1 hPa in atmospheric pressure locally depresses the sea surface by about 1 cm.

Since water is nearly incompressible, the variation of the sea surface elevation in relation with
atmospheric pressure changes does not result from a compression of water, but from a horizontal
redistribution of the water masses in response to horizontal variations of the atmospheric pressure
(Chelton, 1988). If the atmospheric pressure would change uniformly over an entire ocean basin,
there would be no change in the sea level, except for a negligible variation due to the small
compressibility of seawater. The response of the sea surface to atmospheric pressure loading
depends both on the spatial and temporal scale of the pressure forcing (Wunsch, 1972). The
adjustment to a change in atmospheric pressure propagates relatively rapidly by means of long
gravity waves. The detailed wavenumber-frequency characteristics of the transfer function between
sea surface elevation and atmospheric pressure loading is not known (Chelton, 1988). It is likely
that the transfer function varies geographically, with e.g. different behaviours in coastal and open
ocean regions. The response is believed to be nearly isostatic for time scales between 2 days and
2weeks (Wunsch, 1972). At shorter time scales, the response of the ocean is too slow to compensate
for rapid pressure changes. At longer time scales, the ocean responds dynamically in the form of
geostrophic currents and Rossby waves.

The IB correction is presently a major source of error in altimetric studies of dynamic ocean to-
pography (Chelton, 1988). Its accuracy is limited by the uncertainties in the atmospheric surface
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pressure field over the oceans and in the transfer function between sea surface elevation and at-
mospheric pressure loading. The uncertainty in the atmospheric pressure is typically about 3 hPa,
corresponding to an uncertainty of 3 cm in the IB correction. This uncertainty may be higher by
a factor of two or more in the case of intense storms and in the southern hemisphere, where atmo-
spheric pressure fields are not well resolved by meteorological models (Chelton, 1988). A detailed
review of the theoretical background on atmospheric loading and the oceanic inverted barometer
effect is given in (Wunsch and Stammer, 1997).

3.4.2 Dynamic Atmospheric Correction

The ocean response to meteorological forcing is poorly accounted for by simply applying the inverse
barometer (IB) correction (Wunsch and Stammer, 1997), described in Section 3.4.1. The classic IB
correction formulates the static response of the ocean to atmospheric pressure forcing, while wind
effects are totally ignored (Carrère and Lyard, 2003). The validity of the IB assumption depends
on the temporal and spatial scales considered. The ocean has a dynamic response (differing from
the IB response) to atmospheric pressure forcing at high frequencies (periods below 3 days) and
at high latitudes. Thus, the high frequency variability needs to be corrected from an independent
model. Wind effects prevail particularly around the 10 days period (Carrère and Lyard, 2003).

The corrections for atmospheric pressure and wind forcing used in this project are the dynamic
atmospheric corrections (DAC) produced by CLS Space Oceanography Division using the MOG2D
model from LEGOS and distributed by AVISO, with support from CNES. The corrections are
composed of two parts. The correction of the low frequency (above 20 days) response of the ocean
to atmospheric forcing is computed using an IB correction developed by CLS, assuming a static
response and neglecting wind effects. The correction of the high frequency (below 20 days) ocean
response to atmospheric pressure and wind forcing is computed using the MOG2D barotropic
model (Carrère and Lyard, 2003) developed by LEGOS/CNRS.

MOG2D (2D Gravity Waves model) is a barotropic non-linear model derived from (Lynch and Gray,
1979). The model is governed by the classic shallow water continuity and momentum equations and
it can include tides (Carrère and Lyard, 2003). It is based on a finite elements space discretization,
which allows to increase the resolution in areas of interest with strong topographic gradients or
shallow waters. The grid size ranges from 400 km in the deep sea to 20 km in coastal, shallow areas
(Carrère and Lyard, 2003). In shallow water, the MOG2D model shows an oceanic response very
different from the classic IB response (Carrère and Lyard, 2003). The simulation domain includes
the Mediterranean Sea and other semi-enclosed seas. The model is forced by atmospheric pressure
and 10m wind speeds from ECMWF analysis data, with a temporal resolution of 6 hours and a
spatial resolution of 0.25°×0.25°. MOG2D dynamic atmospheric corrections are provided via the
AVISO web site as global grids with a temporal resolution of 6 hours and a spatial sampling of
0.25°×0.25°. An example of MOG2D correction grids during the airborne laser altimetry campaign
around Crete is shown in Appendix G. Corresponding ECMWF atmospheric pressure fields at sea
level are shown in Appendix F. More details on MOG2D can be found in (Carrère and Lyard,
2003; Letellier, 2004; Mourre, 2004; Roblou, 2001).
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4.1 Introduction

Airborne laser altimetry has become a powerful method serving a wide range of applications in
remote sensing, geodesy, geophysics and geodynamics (Luthcke et al., 2002). These applications
include the determination of digital terrain models and the monitoring of changing surfaces like
landslides and glaciers. During the last decades, advances in airborne laser altimetry have enabled
the production of precise digital surface models on an operational level, with accuracies better
than 20 cm. The potential of airborne laser altimetry especially lies in regions where conventional
methods encounter problems due to a lack of sufficient texture or fast deforming terrain, where the
establishment of reliable ground control points is difficult or impossible. In oceanography-related
projects, airborne laser altimetry is mainly aimed at sea level determination in coastal areas, to
bridge the gap between deep sea satellite radar altimetry data and coastal tide-gauge stations.

Airborne laser altimetry provides 3D coordinates of ground surface points. It is based on range
observations between an aircraft and the ground surface using a laser distance measurement device.
Since the laser device measures the slant range between the aircraft and the ground surface, the
position of the ground point can only be determined if the position and orientation of the laser
system are permanently known with respect to an absolute coordinate system. Hence, precise
knowledge of position and attitude are crucial for the production of accurate data. For the deter-
mination of ground surface points, the laser system has therefore to be supported by a positioning
and orientation system, providing autonomous and accurate position and attitude of the aircraft
without further ground information. Details on the computation of laser ground point coordinates
based on direct georeferencing of airborne laser altimetry data are given in Chapter 6.

4.2 Instumental Setup

4.2.1 Overview

The airborne laser altimetry surveys were carried using the DeHavilland Twin-Otter of the Swiss
Federal Office of Topography (swisstopo), operated by the Swiss airforce (Fig. 4.1). The aircraft
was equipped with the following instruments:

• Optech 501 SA Rangefinder laser profiler, sampling rate 1 - 2 kHz (Fig. 4.2)

• Riegl LMS-Q140i-60 laser scanner (provided by KMS)

• 4 GPS receivers for position and attitude determination, sampling rate 2Hz (Fig. 4.1)

• Honeywell H-764G INS (provided by KMS), sampling rate 50Hz (Fig. 4.2a)

• LaCoste Romberg S-meter sea/air gravimeter (provided by the University of Bergen)

Since the aircraft is mainly used for photogrammetric missions, the laser sensors can be mounted
in the photogrammetric camera shafts (Fig. 4.2). All instruments had to be integrated into the
measuring system and synchronized with GPS time.
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Figure 4.1: DeHavilland Twin-Otter survey aircraft owned by the Swiss Federal Office of Topography
(swisstopo), with array of four GPS antennas and resulting baseline vectors for attitude determination.

4.2.2 Laser Profiler

The Optech 501 SA Rangefinder is a pulsed laser ranging instrument designed to give high accuracy
readings on a single-shot basis (Fig. 4.2 and Tab. 4.1) (Optech, 1989). The unit uses a GaAs laser
diode to generate optical pulses. A high precision time interval counter measures the time-of-
flight of the laser pulse to and from the target. The time-of-flight is converted into range by a
microprocessor. The GaAs diode in the transmitter module generates 15 - 20 ns wide optical pulses
of near-infrared radiation at a wavelength of 904 nm. The laser beam has an initial diameter of
8 cm and a beam divergence of 0.25% (=2.5mrad = 0.143°). Hence, for a flight height of 200m
above ground, the laser footprint has a diameter of 58 cm. The instrument can be operated at pulse
repetition rates up to 2 kHz, with a range resolution of 1 cm and an operating range of 10 - 500m.

4.2.3 Laser Scanner

A Riegl LMS-Q140i-60 linear laser mirror scanner (Tab. 4.1), provided by KMS, was used as addi-
tional equipment. It is based on the principle of time-of-flight measurement of short laser pulses in
the near-infrared (900 nm). An electrical pulse generator periodically drives a semiconductor laser
diode sending out infrared light pulses.Via the receiver lens, part of the echo signal reflected by the
target hits a photodiode which generates an electrical receiver signal. The time interval between
transmitted and received pulses are counted by a quartz-stabilized clock frequency and processed
by the internal microprocessor. The laser beam divergence is 0.30% (=3mrad =0.172°). Hence,
for a flight height of 200m above ground, the laser footprint has a diameter of 60 cm. The nominal
maximum range is 150m and 350m under a target reflectance of 10% and 80%, respectively. In
bright sunlight, the operational range is considerably shorter than under overcast sky. The range
resolution and nominal accuracy (1σ) are 2.5 cm. The angular deflection of the laser beam is real-
ized by a rotating polygon mirror wheel, rotated continuously at a fixed speed to provide repetitive
unidirectional scans. The scanner has a scan angle range of 60°. It was operated at a scan speed
of 40 scans/s and a pulse repetition rate of 25 kHz, leading to an angular step width of 0.288°.
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(a) (b)

Figure 4.2: (a) Optech 501 SA laser profiler (right) and Honeywell H-764G INS (left), mounted on the
same platform installed in the photogrammetric camera shaft of the aircraft. (b) Outside view of the
photogrammetric camera shaft with downward-looking laser profiler optics.

Table 4.1: Technical specifications of Optech 501 SA laser profiler and Riegl LMS-Q140i-60 laser scanner.

Optech 501 SA Riegl LMS-Q140i-60
Wavelength 904 nm (near infrared) 900 nm (near infrared)
Range 10 - 500 m1 2 - 350 m2

Range resolution 0.01 m 0.025 m
Beam divergence 2.5 mrad ( 0.25% ) 3.0 mrad (0.30%)
Pulse repetition rate 1 kHz (max. 2 kHz) 25 kHz (max. 30 kHz)
Scan angle range - 60°
Scan speed - 40 scans/s
Angular step width - 0.288°
Angle readout accuracy - 0.036°

1 The maximum range of 500m is based on a target reflectance of 20%.
2 The maximum range is 150m and 350m under a target reflectance of 10% and 80%.

4.2.4 Multi-Antenna GPS Configuration

The aircraft was equipped with an array of four GPS antennas adequately mounted on the air-
craft’s top side (Fig. 4.1) and connected to four independent GPS receivers. One dual frequency
receiver is used for trajectory recovery and as reference for moving baseline processing. The other
three receivers are single frequency receivers, acting as remote receivers in the moving baseline
processing, yielding three vectors used for attitude determination. The baseline lengths are 5.5m
between the engine antennas and 10m between the front and rear antennas. This setup allows
highly accurate 3D positioning (trajectography) of the aircraft in combination with terrestrial GPS
reference stations, as well as autonomous attitude determination, both needed for georeferencing
the laser ground point (Chapter 6).

4.2.5 Inertial Navigation System

A Honeywell H-764G Inertial Navigation System (INS), provided by KMS, allowed for attitude
recovery at a sampling rate of 50Hz, independent of the multi-antenna GPS system (Fig. 4.2a).
It is a tactical-grade INS used on military aircrafts and helicopters. It is based on accelerometers
and digital ring-laser gyros, and it is coupled with GPS.
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4.3 Laser Ranging

4.3.1 Basic Principle

In laser ranging, two major principles exist: continuous wave lasers, which continuously emit light,
and pulsed lasers (Wehr and Lohr, 1999). The continuous wave principle is based on measuring
the phase difference between the transmitted signal and the received signal backscattered from the
target surface. In current laser ranging systems, mostly pulsed lasers are used. The principle of
pulsed lasers is based on determining the time-of-flight of a light pulse by measuring the traveling
time t between the emitted and received pulse. The distance r between the ranging unit and the
target is then given by:

r = c
t

2
(4.1)

where c is the speed of light (299'792.458 km/s in the vacuum). The range determination is
complicated by the atmospheric refraction of light, discussed in Section 4.3.2. From (4.1), the
range resolution ∆r, which is directly proportional to the time resolution ∆t of the ranging unit,
can be derived (Wehr and Lohr, 1999):

∆r = c
∆t
2

(4.2)

To achieve a range resolution ∆r of 1 cm in the vacuum, a time resolution ∆t of 0.07 ns is required.

4.3.2 Atmospheric Refraction of Light

When traveling through the atmosphere, electromagnetic waves experience velocity changes and
associated changes of their direction (bending), called refraction. These changes depend on the
physical state of the gas quantities in the traversed atmosphere. The propagation velocity v in the
atmosphere deviates from the velocity c in the vacuum by the refractive index n:

v =
c

n
(4.3)

Since n > 1, v is always smaller than the velocity c in the vacuum. The refraction has a different
behavior in the troposphere and the ionosphere. Since laser ranging in airborne altimetry is only
affected by tropospheric effects, ionospheric effects are not considered here. The tropospheric re-
fraction is caused by the neutral non-ionized part of the Earth’s atmosphere. In the troposphere,
the refractive index of air depends on temperature, pressure and water vapor content. The refrac-
tive index n is proportional to the density of air and therefore decreases with increasing altitude
and becomes approx. 1 at an altitude of 40 km (Fig. 4.4a). Since the troposphere is a dispersive
medium for optical frequencies, the refractive index also depends on the wavelength of the electro-
magnetic waves. The range r measured through air is given by the integral along the curved signal
path (Hopfield, 1979):

r =
∫
path

n dr (4.4)

In laser ranging, refraction due to the atmospheric effects results in a delay of the laser signal.
This delay yields an range error ∆s, given by the difference between the optical and geometrical
distance between the laser site and the target (Hopfield, 1979):

∆s = r − s =
∫
path

n dr −
∫ s

0

ds =
∫ s

0

(n− 1) ds +
∫
path

n dr −
∫ s

0

n ds (4.5)
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where r is the optical path length measured along the beam trajectory (optical range) and s is
the slant distance between the initial and end point of the beam trajectory. The first integral on
the right hand side is the range error produced by the reduced traveling speed in the atmosphere
and the associated longer traveling time. The difference between the second and the third integral
gives the geometrical effect of the bending of the beam trajectory on the measured length with
respect to the slant distance. If the bending effect is negligible, the integral along the curved signal
path in (4.4) can be taken along the slant range vector (Hopfield, 1979), yielding:

r =
∫
path

n dr =
∫ s

0

n ds (4.6)

Inserting (4.6) in (4.5), it follows that the range error ∆s is only affected by the reduced traveling
speed along the slant range vector:

∆s =
∫ s

0

(n− 1) ds (4.7)

Note that in applications like satellite laser ranging, signal bending is not negligible and equation
(4.5) must be used. For short distances, the refractive index n can be considered as constant, and
(4.6) and (4.7) yield the following formulas for the range error ∆s and the real slant range s:

∆s = r − s = (n− 1) s =
(

1− 1
n

)
r (4.8)

s = r − ∆s =
1
n
r =

c

n

t

2
(4.9)

where r is the optical range provided by an uncalibrated EDM (Electronic Distance Measurement)
instrument (4.1) and t is the observed traveling time. Usually, EDM instruments are calibrated in
order to provide correct distances under standard atmospheric conditions. The range r0 given by
a calibrated instrument, the range error ∆s0, caused by the deviation of the actual refraction n
from the refraction during calibration n0, and the slant range s are given by:

r0 =
c

n0

t

2
=

1
n0

r (4.10)

∆s0 = r0 − s =
(
n

n0
− 1
)
s =

(
1− n0

n

)
r0 (4.11)

s = r0 − ∆s0 =
n0

n
r0 =

c

n

t

2
(4.12)

Note that in of all the above equations, the distances s, r and r0 correspond to the one-way range
between the source and the target, covered during half the traveling time t. Instead of the refractive
index n, the refractivity is often used to quantify the atmospheric refraction. The refractivity N
is the difference of the refractive index n from unity, commonly multiplied by 106 to obtain N in
units of ppm, corresponding to a delay or range error of 1mm/km of range:

N [ppm] = (n− 1) · 106 (4.13)

Most geodetic EDM instruments use intensity-modulated or pulsed light, which can be considered
as a superposition of waves of different wavelengths forming short groups of waves. The velocity
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v in (4.3) represents the phase velocity of a monochromatic carrier wave, whereas the center of a
group of waves, as used by most EDM instruments, travels at the group velocity vg. Therefore,
knowledge of the group refractivity Ng, rather than the phase refractivity N , is required. The
group velocity vg is given by:

vg = v − λ
dv

dλ
(4.14)

where λ is the operational wavelength of the laser device. Since in a dispersive medium like the
troposphere, the refractive index n, and hence the velocity v, depend on the wavelength, dvdλ 6= 0.
The group refractivity Ng is given by (Marini and Murray, 1973):

Ng =
d (f N)
df

= N − λ
dN

dλ
(4.15)

where f is the operational frequency of laser beam, λ is the corresponding wavelength and N is
the phase refractivity.

4.3.3 Atmospheric Refraction Models

In Appendix A, an non-exhaustive overview of models of atmospheric refraction at optical wave-
lengths is given, namely the (Barrell and Sears, 1939) model, the (Barrell, 1951) model, the (Edlén,
1966) model and the (Birch and Downs, 1994) model. In the 1990’s, the International Association
of Geodesy (IAG) established a working group to develop equations better suited to the very wide
ranges of atmospheric conditions and wavelengths required in geodetic surveying (McCarthy and
Petit, 2004). As part of that effort, a new set of equations was developed, based on more recent
equations and recently reported measurements for density and dispersion in the visible and the
near-infrared regions (Ciddor, 1996). In 1999, the IAG recommended (IUGG, 1999) that the group
refractive index in the atmosphere, for EDM with visible and near infrared wavelengths, to better
than 1 ppm should be computed using the procedure published by (Ciddor and Hill, 1999) and
(Ciddor, 1996). Since this procedure is rather complex as compared to the former equations given
in Appendix A, the IAG also recommended the following closed formulae be adopted for the com-
putation of the group refractive index in the atmosphere, for EDM with visible and near infrared
wavelengths, to within 1 ppm (IUGG, 1999):

N = (n− 1) · 106 = Ng
273.15
T

p

1013.25
− 11.27

T
e (4.16)

where
Ng = (ng − 1) · 106 = 287.6155 +

4.88660
λ2

+
0.06800
λ4

(4.17)

with

N refractivity [ppm] of visible and near infrared light of wavelength λ in ambient air
n corresponding refractive index
Ng group refractivity [ppm] of standard air at T =273.15K (0℃), p=1013.25 hPa,

e=0.0 hPa and 0.0375% CO2 content
ng corresponding group refractive index
T temperature [K] at the laser site in the ITS-90, with T =273.15 + t [℃]
p total atmospheric pressure [hPa] at the laser site
e partial water vapor pressure [hPa] at the laser site
λ carrier wavelength of the EDM signal in the vacuum [µm]

(4.16) and (4.17) reveal the dependency of the refractive index on the wavelength, temperature,
air pressure and water vapor content (Fig. 4.3a). Under standard atmospheric conditions of 15℃,
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(a) (b)

Figure 4.3: (a) Refractivity N (relative range error) in mm/km (ppm) for a wavelength of 900 nm (near
infrared), computed from (4.16) and (B.1). Top: as a function of temperature. Center: as a function of
atmospheric pressure. Bottom: as a function of relative humidity. (b) Refractivity (relative range error)
differences in mm/km (ppm) with respect to the (Ciddor, 1996) model, as a function of temperature and
atmospheric pressure, for a wavelength of 900 nm (near infrared) and a relative humidity of 50%.

1013.25 hPa and 50% relative humidity, the refractivity (relative range error) at a wavelength of
900 nm (near infrared) is about 280mm/km. The average variation of the refractivity as a function
of temperature and as a function of atmospheric pressure is -1 ppm/℃ and 0.275 ppm/hPa, respec-
tively. The variation of the refractivity as a function of relative humidity is negligible compared to
the influence of temperature and pressure, with a decrease of only 0.6 ppm over the entire humidity
range of 0 - 100%. The computation of the refractivity is complicated by atmospheric condition
changing in space and time, depending e.g. on the time of day and the cloudiness. Especially
the near-ground temperature can change rapidly. The input values in (4.16) for temperature,
atmospheric pressure and water vapor pressure are usually measured in situ at the laser site.

The models considered in Appendix A and in this section produce similar refractivity values
(Fig. 4.3b). Within the considered range of atmospheric conditions, the models are not deviat-
ing more than 0.35mm/km from each other. Since in the models in Appendix A, the refractive
indices of standard air were originally related to phase velocities, they had to be converted to group
refractive indices using (4.15).

4.3.4 Impact of Atmospheric Refraction in Airborne Laser Altimetry

In airborne laser altimetry, vertical range observations are carried out between the aircraft and
the ground. In case of long vertical distances, it might be necessary to consider the change of
refractivity with altitude. In airborne laser altimetry, it is usually not possible to measure atmo-
spheric parameters at the laser site. In that case, they can be derived from a standard atmosphere
model, as a function of the altitude of the laser site (Appendix B). The decrease of refractivity
with increasing altitude, computed from (4.16) and (B.1), is shown in Fig. 4.4a. In airborne laser
altimetry, ranges are usually below 1000m. In sea surface height applications, they are usually
below 300m because of the sparse to inexistent return from water surfaces in case of longer dis-
tances. For a flight altitude (vertical one-way distance covered by the laser signal) of 300m, the
variation of the refractivity is only 7.7 ppm, corresponding to 2.3mm along the distance of 300m.

The short ranges in airborne laser altimetry, as compared to e.g. ranges of several 1000 km in
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(a) (b)

Figure 4.4: (a) Refractivity N in mm/km (ppm) as a function of altitude for a standard atmosphere
and a wavelength of 900 nm (near infrared), computed from (4.16) and (B.1). (b) Top: Refractivity
(relative range error) in mm/km (ppm) from the (IUGG, 1999) model, as a function of temperature and
atmospheric pressure, for a wavelength of 900 nm (near infrared) and a relative humidity of 50%. Bottom:
Same range error, but relative to standard atmospheric conditions (equivalent to the range error produced
by an instrument calibrated under standard conditions).

satellite laser ranging (SLR), are reducing the impact of atmospheric refraction errors, since the
range error ∆s is proportional to the range s itself ((4.8) and (4.11)). For a range of 300m, the
maximum deviation of the refractivity (relative range error) of 0.3mm/km (Fig. 4.3b) between
the models considered in Section 4.3.3 corresponds to a range difference of 0.1mm. The required
absolute range accuracy in the airborne laser altimetry surveys conducted in this project is in
the order of one to a few centimeters. Hence, it can be concluded that the models produce no
noticeable difference in refractivity in the considered order of magnitude.

For a vertical range of 300m, absolute range errors of 7 - 9 cm can be expected (Fig. 4.4b, top).
These errors have to be considered if cm-accuracy is sought. However, if a calibrated instrument is
used, the range error caused by refraction consists only of the deviation of the actual refraction from
the reference refraction during calibration (4.11). In this case, the range error varies only between
-2 and 2 cm over the wide range of atmospheric conditions considered (Fig. 4.4b, bottom). It can
be concluded that in airborne laser altimetry applications for sea surface height observations, with
ranges below 300m and accuracy requirements of 1 - 5 cm, the application of additional refractivity
corrections is not needed if the ranging instrument was calibrated under conditions similar to the
operating conditions (where similar means ±100 hPa air pressure and ±20℃ air temperature.

4.4 Laser Backscatter from Sea Surface

4.4.1 Reflection and Refraction at Air-Water Boundary

When light passes from a transparent medium (e.g. air) with refractive index n1 into another
transparent medium (e.g. water) with refractive index n2, one part of the incident light is refracted
and penetrates into the second medium, while the other part is reflected at the surface, due to
the discontinuity of the refractive index at the medium boundary (Fig. 4.5a). This phenomena is
called diffraction. The velocity of light changes depending on the refractive index of the medium.
According to the law of specular reflection, the incident light is always reflected in a plane normal
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(a) (b)

Figure 4.5: (a) Diffraction (reflection and refraction) at a medium boundary with refractive index n1 <n2.
(b) Reflection coefficients ρs (labeled Rs) of light polarized in the plane perpendicular to the plane of
incidence, ρp (labeled Rp) of light polarized in the plane of incidence and ρ (labeled R) of unpolarized light
(4.21), as a function of the angle of incidence, at an air-seawater boundary (n1 =1.000278, n2 =1.338).

to the surface at an angle of reflection αr opposite to the angle of incidence αi (Fig. 4.5a):

ai = − ar (4.18)

The relation between the angle of incidence αi and the angle of refraction αn is given by the law
of diffraction, also called Snell’s law (Fig. 4.5a):

sinαi
sinαn

=
n2

n1
=

c1
c2

(4.19)

where αi is the angle of incidence and αn is the angle of refraction, both relative to the normal of
the medium boundary, n1 and n2 are the refractive indices of medium 1 and 2 and c1 and c2 are
the speed of light in medium 1 and 2. The intensity distribution of the diffraction (Fig. 4.5a) is
given by:

Ii = Ir + In (4.20)

where Ii is the intensity of the incident light, Ir is the intensity of the reflected light and In is
the intensity of the refracted light penetrating into the second medium. The relation between the
intensity of the incident light and the intensity of the reflected light, called reflection coefficient ρ
(or reflectivity, or reflectance), depends on the refractive indices, the angle of incidence and the
polarization of the incident light. The reflection coefficient ρ of unpolarized light (containing an
equal mix of s- and p-polarizations) is given by:

ρ =
Ir
Ii

=
ρp + ρs

2
(4.21)

where ρp is the reflection coefficient for energy polarized in the plane of incidence and ρs is the
reflection coefficient for energy polarized in the plane perpendicular to the plane of incidence. For
a normal or near-normal angle of incidence (αi < 20°), ρ, ρp and ρs have similar values (Fig. 4.5b),
and (4.21) yields the following simplified expression for the reflection coefficient ρ:

ρ = ρs = ρp =
Ir
Ii

=
(
n1 − n2

n1 + n2

)2

(4.22)
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The refractive index n is proportional to the density of the medium. The refractive index of dry
air at 15℃ and 1013.25 hPa is nair =1.000278. The refractive index of water is affected by its
temperature, as well as the concentration of dissolved and particulate matter. The refractive index
increases with increasing salinity and turbidity but decreases with increasing temperature (Bufton
et al., 1983). The refractive index of pure water at 20℃, 1013.25 hPa and 500 nm is nwater =1.336,
while the refractive index of uncontaminated seawater is 1.338 (Cox and Munk, 1954). Since
nair <nwater, the diffraction at an air-water boundary is characterized by Fig.4.5a. In the case of
an air-water boundary, (4.22) yields a reflection coefficient ρ=2% at normal incidence (αi=0°),
meaning that only 2% of the incident light is reflected by the water surface (Ir =0.02 Ii). The
remaining 98% of incident light penetrate into the water medium, where absorption and scattering
occurs (Section 4.4.4). The reflection coefficient has its minimum at normal incidence and is nearly
constant for angles of incidence up to 40° (Fig. 4.5b). Beyond 40°, the reflectivity increases, but the
probability of receiving a return signal from the water surface in airborne applications decreases
rapidly (Section 4.4.6). From an optical point of view, the air-water boundary is comparable to
an air-glass boundary, with nglass=1.5 and Ir =0.04 Ii. In the case of reflection at an n1 <n2

boundary (e.g. air-water), the reflected part of the incident wave incurs a phase jump of half its
wavelength during reflection. This phenomena is important when using a continuous wave laser
tracking the phase difference between the transmitted and received signal, but is not relevant for
pulsed lasers relying on the time-of-flight.

4.4.2 Specular and Diffuse Reflection

In laser ranging, two types of reflection may occur at the target surface: specular (coherent,
mirror) or diffuse reflection (Fig. 4.6). Specular reflection is the reflection without scattering or
diffusion, as from a surface that is smooth in relation to the wavelength of the incident radiation.
In the case of specular reflection, a laser beam is reflected following the law of specular reflection
(4.18). Examples of specular surfaces include calm water, paved roads, mirrors and geodetic corner
reflectors. Diffuse reflection is obtained from a relatively rough surface in terms of wavelength of
the incident radiation, where the reflected rays are scattered in all directions (Fig. 4.6). Diffuse
reflecting surfaces are e.g. forest canopies and agricultural fields. In reflector-less laser ranging
applications, the target surface needs to have diffuse reflection properties, unless the surface is
oriented perfectly normal to the laser beam. Even a narrow-width laser beam reflects from a
diffuse surface at any angle. In airborne laser altimetry, the major factors that determine the type
of reflection (specular or diffuse) of the incident radiation by the sea surface are (Zissis, 1993):

1. the surface geometry and wave slope distribution, influencing the surface reflection

2. the optical properties of water, influencing the subsurface reflection

Figure 4.6: Specular (coherent) reflection (left) and diffuse reflection (right).
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4.4.3 Impact of Sea Surface Geometry

In the theoretical case of a completely flat water surface, an incident laser beam is partly reflected
at the surface as it would from a mirror (specular reflection), with an angle of reflection αr opposite
to the angle of incidence αi (Fig. 4.5a). In order to receive a return signal from the water surface,
the incident laser beam needs to be normal or very close to normal to the sea surface (αi' 0°).
The tolerance for the deviation of the angle of incidence from normal is in the order of half the
beam divergence, corresponding to less than 0.09° (4.1), independently of the range. Hence, the
probability that such a coherently-reflected laser beam reaches the receiver lens is virtually zero,
underlining the necessity of diffuse reflection in laser ranging onto targets like water surfaces.

In most cases, the sea surface is affected by wind and waves, yielding a multitude of little facets at
the surface, each of them acting like a small mirror with specular reflection. The slope of a small
water facet in any direction is assumed to be independent of the wind direction and the cumulative
probability distribution for slopes is approximated by a Gaussian distribution (Hooper and Gerber,
1983). If the surface of the laser footprint is large enough to contain a large number of facets, a
multitude of specular reflections in many different directions occur. As a consequence, the larger
the footprint, the higher the probability of signal returns. The resulting integral reflection can be
considered as a pseudo-diffuse reflection, with a significantly higher probability of signal return
to the receiver lens. Thus, the equivalent Lambertian reflection coefficient of water is strongly
dependent on its surface state and varies from less than 1% when its surface is very smooth to more
than 20% when it is rough (Optech, 1989). However, the inherent specular reflection coefficient
of the water surface remains unchanged (e.g. 2% for an angle of incidence of 0°), regardless if
the sea surface is flat or rough (Cox and Munk, 1954). On the other hand, if the laser footprint
is smaller or of similar size than the surface facets, specular reflection occurs despite the faceted
surface structure and the signal reception probability is drastically lowered. This can occur in the
case of short distances between the laser source and the sea surface, e.g. in shipborne observations.
The effects of wind stress on the optical properties of the sea surface have been studied for several
decades (Tratt et al., 1996). In particular, the study of (Cox and Munk, 1954), linking sea surface
wind fields to wave slope statistics provides a phenomenology by which the wind velocity at the
sea surface can be estimated from direct measurements of the wave-modulated surface reflectance.

4.4.4 Absorption, Scattering, Penetration Depth and Backscattering

In laser ranging onto water surfaces, the major part of the incident light (about 98%) penetrates
into the water volume (Section 4.4.1). When traveling through a medium (e.g. water), the intensity
of a laser beam is continuously weakened by absorption and scattering. The optical transparency
T of a medium at a given wavelength λ is given by:

T =
I

I0
= e −d (aλ+bλ) = e −d cλ (4.23)

where I is the intensity of a laser beam after a traveling distance d in the medium, I0 is the initial
intensity of the laser beam, aλ and bλ are the absorption and scattering coefficients of the medium
(both e.g. in m-1), and cλ is the attenuation coefficient regrouping absorption and scattering.
Coefficients aλ and bλ, and hence the transparency T , are a function of the wavelength λ of the
laser beam and the optical properties of the medium.

The penetration depth and the intensity of the light reemerging from the penetrated medium are
depending on absorption and scattering, and thus on the wavelength λ and the optical properties
of the medium. The penetration depth dp is usually defined as the traveled distance at which the
collimated beam has been attenuated by a factor of e-1 (= 37%) (Welch et al., 1989). Thus, (4.23)
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yields:

dp =
1

aλ + bλ
=

1
cλ

(4.24)

Natural water bodies contain both solutes and particulates in suspension. In this case, the attenu-
ation coefficient cλ is a measure of the decrease of downward-welling radiation from the combined
effects of absorption of the solution and particulates, as well as scattering due to the particulates.
Because of multiple absorption and scattering, the attenuation coefficient is not necessarily the
simple sum of the absorption coefficient of the solution and the scattering coefficient of the par-
ticulates as assumed in (4.23) and (4.24) (Zissis, 1993). When the medium’s absorptive capacity
is very high relative to its scattering ability, the laser beam remains highly collimated and the
penetration depth is given by the reciprocal of the absorption coefficient aλ (Welch et al., 1989).

Backscattered laser radiation from the water volume must be considered in addition to surface
backscatter for predicting pulse energy reaching the laser receiver (Bufton et al., 1983). A concise
method for treating volume backscatter is obtained by defining the subsurface irradiance reflectivity
for zero depth R(0−), depending on the ratio between the upwelling and downwelling irradiance
just beneath the water surface at zero depth (Gordon, 1977). This enables the water volume to
be handled as an hypothetical Lambertian reflector of reflectivity R(0−) located just beneath the
surface. A simple relation for the subsurface irradiance reflectivity for zero depth R(0−) is given
by (Morel and Prieur, 1977):

R(0−) = 0.33
bλ
aλ

(4.25)

Volume backscatter and hence R(0−) are strongly dependent on the wavelength λ of the laser and
the inherent optical properties of water. Volume backscatter has a pronounced effect at 532 and
337 nm wavelengths, yielding R(0−)' 1%, while it is negligible at 9.5µm because of essentially no
surface penetration due to strong absorption (Bufton et al., 1983). In airborne laser altimetry, the
natural solar background is negligible compared to the laser backscatter. Hence, R(0−) only needs
to be considered at the respective laser wavelength.

In laser ranging with a pulsed laser to a diffuse reflecting target, the power of the return signal Pr
(or backscattered pulse energy), arriving at the receiver, is given by:

Pr = Pe
Sr
d2

R e −2 d cλ (4.26)

where Pe is the power emitted by the pulsed laser, Sr is the effective surface of the receiver, d is the
one way distance traveled by the laser beam, cλ is the attenuation coefficient regrouping absorption
and scattering of the medium at wavelength λ, e−2dcλ is the two-way atmospheric transmission
(4.23) and R is the optical reflectivity of the target. The backscatter properties of the sea surface
are modeled by the target term R, which is given by (Bufton et al., 1983):

R =
ρ

Ω
(4.27)

where ρ is the specular surface reflectivity (4.22) and Ω is a solid angle that models the pattern
of reflected radiation for backscatter (Bufton et al., 1983). Both ρ and Ω are functions of the
angle of incidence. The power Pr arriving at the receiver is proportional to the emitted power Pe
and the surface Sr of the receiver (4.26). In order to maximize the exploitation of the intensity
from diffuse reflection, the surface Sr has to be increased. The propagation of light after diffuse
reflection follows Lambert’s law. Hence, the intensity decreases with the square of the traveled
distance d from the target to the receiver. Additionally, the attenuation in the atmosphere results
in a large loss of intensity that can be counteracted using high-power laser sources.

50



4.4 Laser Backscatter from Sea Surface

4.4.5 Optical Properties of Water

In water, the attenuation of light by absorption and scattering is much higher than in the atmo-
sphere. The absorption coefficient of pure water is relatively low (0.015 - 0.840m-1) in the visible
band between 0.4 and 0.7µm (Fig. 4.7a). At these wavelengths, there is a good transmission of
light through water. A broad absorption minimum is observed in the blue and green spectral range
(0.44 - 0.54µm). At these wavelengths, the amount of absorption and scattering is about equal,
yielding considerable penetration depths (Fig. 4.7b). The absorption coefficient reaches its mini-
mum of 0.015m-1 at blue wavelengths between 0.46 and 0.48µm, corresponding to a penetration
depth of 67m. For red and near-infrared wavelengths (0.63 - 1.40µm), scattering is predominant.
At 0.9 and 1.06µm (near-infrared), the absorption coefficients of pure water are 6.55 and 17.70m-1,
corresponding to penetration depths of 0.15 and 0.06m, respectively (Fig. 4.7b). At 1.06µm, 30 -
50% of the light that penetrates into the water reemerges due to subsurface scattering (Welch
et al., 1989). Due to the very high absorption coefficient and very small penetration depth of water
at infrared wavelengths above 1.4µm, any contribution to the total reflectance due to subsurface
scatter can be neglected (Tratt et al., 1996). Seawater has similar optical properties than pure
water. It also has its absorption minimum in the blue and green spectral range, although less pro-
nounced due to solute salts, particulates and plankton. Consequently, blue and green radiations
can penetrate deeply into seawater and scatter from suspended particulates or even be reflected
by the bottom (Zissis, 1993).

4.4.6 Case Study: Backscatter Intensity and Return Rate from Sea Surface

A case study of backscatter intensity and return rate from the sea surface in airborne laser altimetry
was carried out based on the data of the GAVDOS campaign (Section 7.1). With the laser profiler
(Section 4.2.2), operated at a sampling rate of 1 - 2 kHz, a mean return rate of 70% was obtained
during straight flight lines at or close to nadir (roll angle' 0°) (Fig. 4.8b). For off-nadir (roll) angles
of 5° and 10°, the return rate is reduced to 50% and 20%, resepectively. For off-nadir angles above
15°, the return rate is close to 0%. During turns, the return rate is thus drastically reduced and
can reach 0%. In addition, the return rate depends on the sea state (Fig. 4.8a).

(a) (b)

Figure 4.7: (a) Absorption coefficient of pure water as a function of wavelength. Values from (Zissis,
1993). (b) Penetration depths in pure water as a function of wavelength, computed from the absorption
coefficient in (a) based on (4.24).
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(a) (b)

Figure 4.8: (a) Laser pulse return rate and its distribution from laser profiler during a survey flight. (b)
Mean laser profiler return rate distribution as a function of off-nadir (roll) angle of the aircraft.

Figure 4.9: Airborne laser scan during overflight of the port of Agia Galini (Fig. 7.4a), with color-coded
intensity of the return signal (blue= low intensity, red=high intensity).
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(a) (b)

Figure 4.10: (a) Distribution of the return rate of the laser scanner as a function of off-nadir angle during
a flight line of 150 km. (b) Normalized mean backscatter intensity of the scanner as a function of off-nadir
angle, during the same flight line as in (a). Error bars indicate the standard deviation for each bin.

Lower return rates were obtained with the laser scanner (Section 4.2.3), with a mean return rate at
nadir of 40% (Fig. 4.10a). As for the laser profiler, the return rate rapidly decreases with increasing
off-nadir angles and becomes close to 0% for off-nadir angles above 15°. On water, the lateral range
of the scanner is very limited as compared to land (Fig. 4.9). In Fig. 4.9, the narrowest lateral range
is observed on calm water inside the port basin, where specular reflection predominates.

Beside range data, the laser scanner provides the relative intensity of the returned signal (Fig. 4.9).
Normalized mean backscatter intensities were analyzed with respect to the off-nadir angle, along
a straight flight line of 150 km (Fig. 4.10b). As for the return rate (Fig. 4.10a), a very smooth
distribution is obtained, due to the regular distribution of observations at all off-nadir scan angles
between -30° and 30°. A slight deviation of the distribution with respect to a normal distribution
is observed. The distribution is centered at 0.32°. The analysis was made before boresight mis-
alignment calibration of the laser scanner. Since the calibration of the scanner with the method
described in Section 6.5.4 yielded a boresight misalignment of 0.39°, the major part of the deviation
can be attributed to boresight misalignment. The remaining deviation is most likely a systematic
effect produced by the sea state (direction and intesity of wind and waves) along the flight line.
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5 Shipborne Ultrasound Altimetry

5.1 Introduction

Since airborne laser altimetry is very cost-intensive, a major aim of this project was the development
of an alternative method for local-scale sea surface topography determination. Since the GPS-
equipped buoys (Appendix C) only provide useful data when they are deployed under drifting
conditions or towed at very low speed, they can only be used for punctual sea surface height
observations. In order to be able to cover larger areas, a novel method of shipborne sea surface
height observations was developed in the framework of this project. The method relies on one
or more low-cost industrial ultrasonic distance sensors mounted on a boat, providing continuous
information on the distance to the sea surface.In combination with the position and attitude
information from a multi-antenna GPS system installed on the boat, this method allows for highly
reliable sea surface height determination by direct georeferencing (Chapter 6). Due to its analogy
to airborne laser altimetry (Chapter 4), the method is called shipborne ultrasound altimetry. The
successful implementation of the new technique during several survey campaigns proved that it
is a powerful method for providing offshore sea surface height observations, even under rough sea
conditions, and that it provides a low-cost alternative to airborne laser altimetry.

5.2 Instrumental Setup

5.2.1 Overview

The setup of the sailing yacht for shipborne ultrasound altimetry, developed and deployed in the
framework of this project, is composed of the following instruments (Fig. 5.1):

• 2 ultrasonic distance sensors, sampling rate 10Hz (Fig. 5.2)

• 4 - 5 GPS receivers for position and attitude determination, sampling rate 1 - 2Hz (Fig. 5.3)

• 1 inertial AHRS (Attitude and Heading Reference System), sampling rate 20Hz (Fig. 5.4)

All instruments had to be integrated into the sensor system and synchronized with GPS time
(Section 5.4).

5.2.2 Ultrasonic Distance Sensors

The two ultrasonic distance sensors used in this project are the Pepperl+Fuchs UC4000-30GM-
IUR2-V15 and UC6000-30GM-IUR2-V15 (Fig. 5.2). They are industrial low-cost sensors, with a
nominal detection range of 4 and 6 m, respectively. A data logger with an analog-to-digital (A/D)
converter was used to record the analog signal of the sensors. Technical details of the sensors are
discussed in Section 5.3. The sensors were mounted at the bow of the boat, in a way that the
target water surface was not disturbed by the boat (Fig. 5.1).

55



5 Shipborne Ultrasound Altimetry

Figure 5.1: Main components of the ultrasound altimetry system mounted at the bow of a sailing yacht,
including two ultrasonic distance sensors, two GPS antennas and an inertial AHRS.

Figure 5.2: Ultrasonic distance sensor and GPS antenna.

5.2.3 GPS Antenna Configuration

The boat was equipped with an array of 4 to 5 GPS antennas (Fig. 5.3). All antennas were
connected to independent dual frequency GPS receivers. The baseline lengths are 2.7m between
the portside and starboard antennas, and 12.5m between the stern and bow antennas. This
setup allowed for highly precise 3D positioning (trajectography) of the boat in combination with
terrestrial GPS reference stations, as well as autonomous determination of the attitude of the boat,
both needed for georeferencing the ultrasound ground point (Chapter 6).

5.2.4 Inertial Attitude and Heading Reference System

The multi-antenna GPS system used for attitude determination was augmented with an Xsens
MTi inertial Attitude and Heading Reference System (AHRS) (Fig. 5.4). It is based on solid
state miniature MEMS (Micro-Electro-Mechanical Systems) sensors, including 3-axis gyroscopes,
3-axis accelerometers and 3-axis magnetometers, providing 3D rate of turn, 3D acceleration and
3D magnetic field data. The data of the accelerometers and magnetometers are used to eliminate
drift errors from the integration of rate of turn data. The AHRS was operated at a sampling rate
of 20Hz. With the use of the AHRS, only one GPS receiver for positioning is needed. The multi-
antenna GPS array and the AHRS were operated in parallel in order to compare their benefits in
shipborne applications. Details on the performance of the AHRS, based on comparisons with the
results from the multi-antenna GPS system, can be found in Section 6.4.6.
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Figure 5.3: GPS antenna configuration (arrows) on the sailing yacht.

Figure 5.4: Inertial AHRS (Attitude and Heading Reference System).

5.3 Ultrasound Ranging1

5.3.1 Basic Principles

Analogous to pulsed laser sensors (4.1), ultrasonic sensors determine the distance r to a target by
measuring the time delay t between the sending of a package of ultrasonic pulses and the reception
of the returned echo reflected by the target (Fig. 5.5):

r = cs
t

2
(5.1)

where cs is the speed of sound (344.0m/s at 20℃, 331.6m/s at 0℃). Hence, for a distance of 1m
to the target, the propagation time is 5.8ms. In Fig. 5.5, the propagation time t is labeled 2τ .
The ultrasonic sensors have two analog range outputs (current and voltage). They are equipped
with an integrated 12-bit D/A (digital-to-analog) converter, converting the determined range in
a 0 - 10V and 4 - 20mA signal. A resolution of 12 bits corresponds to 212 =4096 available values.
The propagation time of an ultrasonic pulse is determined with a resolution of 1µs, given by the
clock rate of the micro-controller and corresponding to a range resolution of 0.172mm. However,
this maximum range resolution is only achieved if the measuring window (distance between the
1This section is based on information from the manufacturer of the ultrasonic sensors (Pepperl+Fuchs, 2006).
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5 Shipborne Ultrasound Altimetry

Figure 5.5: Transmitted and received signal in ultrasound ranging. From (Pepperl+Fuchs, 2006).

lower and the upper range limits) is smaller than 705mm (=4096 · 0.172). For a measuring window
above 705mm, the range resolution ∆r is limited by the 12-bit D/A converter, according to the
relation:

∆r =
upper limit− lower limit

4096
(5.2)

The sensors used in this project have a configurable measuring window that was set between
from 0.5 to 4.0m, yielding a range resolution ∆r of 0.85mm. In order to determine the absolute
accuracy of the range measured by an ultrasonic sensor, factors such as temperature, atmospheric
pressure, relative humidity (Section 5.3.2), turbulences, hot spots in the air surrounding the sensor,
and sensor in hot operating status must be taken into consideration. In addition, tolerances of
the electronic components and differences in the response characteristic of the ultrasonic sensor
due to varying signal strengths of the sound reflected by the target also have an effect. Under
consideration of all these influences, an accuracy of better than 2 cm/m can generally be achieved,
along with a repeatability and linearity of better than 2mm/m (Pepperl+Fuchs, 2006).

Since the ultrasonic sensors used in this project operate with only one piezoelectric sound trans-
ducer acting alternately as transmitter and receiver, the transmitted pulse duration ∆t and the
attenuation time ta of the sonic transducer result in an unusable area, called blind range rb, in
which targets cannot be detected (Fig. 5.5):

rb < cs
∆t+ ta

2
(5.3)

The pulse duration ∆t of the sensors is configurable between 0.04 and 0.55ms. For the UC4000,
∆t+ ta=1.1ms, corresponding to a blind range rb of 20 cm. For the UC6000, ∆t+ ta=2.0ms,
corresponding to a blind range rb of 35 cm.

The maximum detection range of the sensor depends on the sound reflection properties of the
target. Good reflectors can be detected from up to double the nominal detection range. On the
other hand, an object situated close to the sensor can produce multiple return signals, since the
ultrasonic pulses may propagate several times back and forth between the target and the sensor.
This can lead to erroneous distance estimation if the object is situated within the blind range.
Blind range and detection range are both functions of the energy contained in the pulse. The
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UC4000

UC6000

Figure 5.6: Response curves of UC4000 and UC6000 ultrasonic sensors. From (Pepperl+Fuchs, 2006).

higher the energy, the larger the detection range, but in parallel, the attenuation time and thus
the blind range also increase. The spatial dimension of the sound cone emitted by the sensor is
defined by the opening angle of the ultrasonic beam, which is approx. 5° for the sensors used in
this project. Fig. 5.6 shows the response range for typical targets. Within these ranges, the sensor
can detect the specific targets.

After the transmission of an ultrasonic pulse, the sensor waits for a time equivalent to twice the
nominal detection range, since it can receive echoes from distances beyond the nominal detection
range under favorable reflection conditions. This waiting phase limits the maximum sampling rate
of the sensor. For the UC4000 and UC6000, the nominal detection ranges of 4 and 6m result
in waiting phases of 47 and 70ms, corresponding to maximum sampling rates of 21 and 14Hz,
respectively. In this project, both sensors were operated in self-synchronization mode (Section 5.4),
yielding a sampling interval of 0.15 s (7Hz) for each sensor.

5.3.2 Atmospheric Influences

The sound propagation velocity and the detection range depend on the physical properties of the
carrier medium. In case of a gas-air mixture, they depend on air temperature, relative humidity and
barometric pressure (Fig. 5.7). The temperature greatly affects the velocity of sound, whereas air
pressure and humidity are less important factors. The temperature influence on the measured range
is -0.17%/℃, corresponding to a decrease of the measured range by 0.17 cm/m for a temperature
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5 Shipborne Ultrasound Altimetry

(a) (b)

Figure 5.7: (a) Relationship between air temperature, pressure and velocity of sound. (b) Relationship
of the maximum detection range with respect to air temperature and relative humidity, for the UC6000-
30GM sensor. The nominal detection range at an ambient temperature of 20℃ and a relative humidity of
50% is 6m. Graphs from (Pepperl+Fuchs, 2006).

increase of 1℃. Due to the strong temperature dependency, the ultrasonic sensors used in this
project are temperature-compensated, based on a temperature probe connected to the sensors.
Fig. 5.7b shows the increased maximum detection range at low temperatures, independent of the
relative humidity, as well as the reduced detection range at higher temperatures, strongly influenced
by the relative humidity.

5.3.3 Ultrasonic Target Reflection

Targets detectable by ultrasonic sensors can be solid or liquid. The echo is influenced by the
properties of the target surface. Even and smooth surfaces, oriented at a right angle to the sound
cone, provide ideal reflection. Reliable detection is still obtained for angular deviations of 3°.
Material properties like transparency, color or surface finish have no effect on detection reliability.

The roughness of the surface, together with the sensor-specific transducer wavelength, determines
whether the reflection of the ultrasonic pulse is specular or diffuse (Section 4.4.2). If the wave-
length is longer than the peak-to-valley height of the surface roughness, specular reflection prevails
(Tab. 5.1). If it is shorter, diffuse reflection prevails. The transition from specular to diffuse reflec-
tion is continuous, and roughness depths in between the values in Tab. 5.1 will result in reflections
with diffuse and specular shares. Targets with pronounced surface roughness and associated diffuse
reflection will result in a reduction of the detection range. On the other hand, pronounced surface
roughness allows larger deviation of the angle of incidence from normal, due to predominant diffuse
reflection. As a consequence, filling level or pouring cones of coarse-grained material can e.g. be
detected (at reduced sensing range) at an angular deviation of up to 45°.

The following targets are well-suited for detection:

• smooth and solid object aligned at a right angle to the axis of the sound cone

• solid object with surface roughness causing diffuse reflection, largely independent of alignment

• liquid surface, not inclined by more than 3° perpendicular to the axis of the sound cone

The following targets are poorly suited for detection:

• materials absorbing ultrasonic waves such as felt, cotton, wool, coarse textiles or plastic foam

• materials at temperatures above 100℃
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Table 5.1: Ultrasound transducer frequencies and wavelengths, and associated degrees of surface rough-
ness (peak-to-valley height) for specular and diffuse reflection. Values from (Pepperl+Fuchs, 2006).

Transducer
frequency

Transducer
wavelength

Surface roughness causing
predominant specular reflection

Surface roughness causing
predominant diffuse reflection

65 kHz 5.3 mm < 1.0 mm > 25 mm
85 kHz 4.0 mm < 0.8 mm > 20 mm
120 kHz 2.9 mm < 0.5 mm > 13 mm
175 kHz 2.0 mm < 0.4 mm > 10 mm
375 kHz 0.9 mm < 0.2 mm > 5 mm

The transducer frequencies of the sensors used in this project are 65 and 85 kHz, respectively. Since
natural water surfaces like oceans are usually characterized by a peak-to-valley height above 25mm
within the ultrasound footprint of approx. 1m diameter, the resulting reflection is predominately
diffuse (Tab. 5.1), leading to reliable signal returns even for off-nadir angles above 3°.

5.4 Sensor Synchronization

5.4.1 Self-Synchronization between Ultrasonic Sensors

Mutual interference between ultrasonic sensors can occur if they are not separated by a minimum
distance. The minimum distance can be relatively large, depending on the nominal detection range,
the distance to the target and the site conditions. Interference can be effectively prevented by syn-
chronizing the ultrasonic sensors. For this purpose, the sensors are equipped with a synchronization
input/output interface. Synchronization pulses sent to the sensor initiate each measuring cycle and
the transmission of a single ultrasonic pulse package. The two sensors used in this project were
self-synchronized by interconnecting their synchronization inputs/outputs, causing the sensors to
alternately transmit ultrasonic pulses.

5.4.2 Synchronization of Ultrasonic Sensors with GPS

The self-synchronization pulses described above were also used to synchronize the ultrasonic sensors
with the GPS system, by simultaneously transmitting the pulses to the data logger recording the
range of the sensors, as well as to a GPS receiver. Every pulse coincides with a data sample of an
ultrasonic sensor. The data logger associates a time-tag to every pulse, and hence to every range
observation, in his internal time system. The GPS receiver attributes a time-tag in GPS time to
the same pulses, providing a precise absolute time-tag for every ultrasonic range measurement.

Due to sporadic dropouts of the hardware synchronization during the early deployment of the
ultrasound altimetry system, an algorithm relying on a purely mathematical synchronization was
developed. The system is based on 2D cross-correlation between the absolute height of the GPS
antenna mounted close to the ultrasonic sensor and the range observed by the sensor. The antenna
height is determined by GPS processing and is given in precise GPS time. The sensor range is
recorded in the time frame of the data logger. The synchronization between the two time frames
is defined by an offset and a scale factor. The offset accounts for the offset of the time frame of the
data logger with respect to the absolute GPS time frame, whereas the scale factor accounts for a
constant drift of the logger time frame. Drift variations are neglected. Since the GPS antenna and
the ultrasonic sensor are rigidly mounted on the boat, the movement produced by the boat equally
affects the height of the GPS antenna and the ultrasonic range (Fig. 5.8). The 2D cross-correlation,
where the first dimension is the offset, and the second is the scale factor, allows to identify the
offset and scale factor of the time frame for which the maximum correlation between the GPS
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Figure 5.8: Example of mathematical synchronization under calm conditions, with height of GPS antenna
(top) and ultrasonic range (bottom).

(a) (b)

Figure 5.9: (a) 2D cross-correlation of the two signals in Fig. 5.8, with offset (lag) along the x-axis and
scale factor along the y-axis. The (dimensionless) correlation values are color-coded. A distinct peak of
maximum correlation can be identified. (b) 3D view of (a).

height and the ultrasound range is obtained (Fig. 5.9). The method does not suffer from the fact
that the range signal is additionally affected by the undulation of waves at the target water surface.
The only case where the synchronization method would not provide a solution is in the absence
of vertical movement of the boat. This condition is never verified, even when the boat is floating
in calm water or lying in a calm port. Theoretically, the maximum synchronization accuracy that
can be achieved is governed by the largest of the two sampling intervals of the GPS and ultrasound
records. However, since both signals are smooth oscillating movements, they can be interpolated
to smaller sampling intervals, e.g. using cubic polynomial interpolation.
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6 Direct Georeferencing

6.1 Introduction

In this chapter, an approach for direct georeferencing is shown, valid for both airborne laser
altimetry (Chapter 4) and shipborne ultrasound altimetry (Chapter 5). The GPS based trajectory
and attitude recovery is discussed, and comparisons with attitude solutions from inertial units are
made. In addition, a calibration method for boresight misalignment in airborne laser altimetry is
presented. The quality of the trajectory of the airplane or the boat determined by differential GPS,
and their attitude determined by a multi-antenna GPS array or by inertial systems, are of utmost
importance. These issues will be analysed in Sections 6.3 and 6.4, respectively. Another critical
element is the determination of the boresight misalignment between the frame of the laser device
and the body frame. This misalignment affects the georeferencing of the laser data systematically.
Since they are difficult to measure directly, their determination is not trivial. In Section 6.5, the
impact of boresight misalignment on computed terrain heights will be analysed and a boresight
self-calibration method is presented. Considerations on the effect of atmospheric refraction in laser
ranging were discussed in Section 4.3.2. Most of the elemnts in this chapter are focused on airborne
laser altimetry, but unless not explicitly stated, they also apply to shipborne ultrasound altimetry.
The approach of direct georeferencing described in this chapter is based on (Favey, 2001).

6.2 Basic Principle

6.2.1 Direct Georeferencing Equation

The key problem in airborne laser altimetry consists in integrating all necessary elements for geo-
referencing the laser beam, yielding a 3D vector between the aircraft and the ground point in an
absolute coordinate system (Fig. 6.1). For each range measurement r by the laser device, the cor-
responding ground point is computed, involving the GPS position of the aircraft and its attitude.
The observations from all devices have to be synchronized with respect to GPS time and interpo-
lated to the corresponding measuring epoch. The observation equation for direct georeferencing in
airborne laser altimetry can be written as (Favey, 2001):

xG = aG + RG/L RL/B

(
RB/S r s

S + bB
)

(6.1)

or in vector notation:XY
Z

G =

Xa

Ya
Za

G + RG/L RL/B

 RB/S r

sxsy
sz

S +

bxby
bz

B


where (Fig. 6.1):
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6 Direct Georeferencing

Figure 6.1: Direct georeferencing elements in airborne laser altimetry.

xG geocentric position of laser ground point (to be determined)
aG geocentric position of GPS antenna (determined by GPS trajectography)
RG/L rotation matrix from topocentric to geocentric system, defined by the aircraft’s

latitude and longitude
RL/B rotation matrix from body frame to topocentric system, defined by the aircraft’s

attitude angles roll (ax), pitch (ay) and yaw (az)
RB/S rotation matrix of boresight between laser device and body frame, defined by the

boresight angles βx, βy, βz and the boresight misalignment angles dβx, dβy, βz (to
be determined by calibration)

r slant laser range (measured by laser device)
sS unit vector giving the laser beam direction in laser device coordinate frame
bB offset vector between GPS antenna and laser (measured with geodetic methods)

The laser vector sS in the laser device coordinate frame is given by:

sS = (sinσx cosσz, sinσx sinσz, cosσx)T (6.2)

where σx is the off-nadir angle with respect to the vertical as defined in the laser frame and σz is
the horizontal angle (azimuth) with respect to the laser frame. For a vertical profiler, σx=σz =0°
and sS = (0, 0, 1)T . For a cross-section linear scanner, σx is the time-varying off-nadir scan angle,
σz = -90° and sS = (0,− sinσx, cosσx)T . The signs of σz and sinσx depend on the definition of the
direction of the scanner rotation.

The general definition of rotation matrices is given in Appendix D.1. The rotation matrix from
the local level north oriented coordinate frame NED (North, East, Down) to the geocentric system
(Appendix D.2) depends on the aircraft’s latitude (ϕ) and longitude (λ), determined by GPS
trajectography:

RG/L = R3 (−λ) R2

(π
2

+ ϕ
)

=

− sinϕ cosλ − sinλ − cosϕ sinλ
− sinϕ sinλ cosλ − cosϕ sinλ

cosϕ 0 − sinϕ

 (6.3)
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The rotation matrix from the body frame to the local level NED frame depends on the attitude
angles roll (αx), pitch (αy) and yaw (αz) of the aircraft:

RL/B = R3(−αz) R2(−αy) R1(−αx)

=

cosαy cosαz − cosαx sinαz+sinαx sinαy cosαz sinαx sinαz+cosαx sinαy cosαz

cosαy sinαz cosαx cosαz+sinαx sinαy sinαz − sinαx cosαz+cosαx sinαy sinαz

− sinαy sinαx cosαy cosαx cosαy

 (6.4)

The boresight rotation is described by three rotation angles (βx, βy, βz) around the three axes of
the laser device frame. Approximate values (β0

x, β
0
y , β

0
z ) of the boresight rotation angles are known

from mechanical alignment. The actual angles can slightly differ from these nominal values. This
deviation is called boresight misalignment. The boresight misalignment angles (dβx, dβy, dβz) are
unknown and have to be determined by calibration. The boresight rotation matrix depends on the
boresight angles (β=β0 + dβ):

RB/S = R3(−βz) R2(−βy) R1(−βx)

=

cos βy cos βz − cos βx sin βz+sin βx sin βy cos βz sin βx sin βz+cos βx sin βy cos βz

cos βy sin βz cos βx cos βz+sin βx sin βy sin βz − sin βx cos βz+cos βx sin βy sin βz

− sin βy sin βx cos βy cos βx cos βy

 (6.5)

In many applications, the coarse boresight angles β0 are zero from mechanical alignment, and
the rotation matrix RB/S only depends on the unknown misalignment angles dβ. Usually, the
boresight misalignment angles are small differential angles (< 1°), and the rotation matrix RB/S

can be simplified using the properties of small angles close to 0° (sin dβ' dβ and cos dβ' 1):

RB/S =

 1 −dβz dβy
dβz 1 −dβx
−dβy dβx 1

 (6.6)

6.2.2 Vertical Component of Direct Georeferencing Equation

In boresight misalignment calibration (Section 6.5) or when estimating the impact of erroneous
attitudes angles onto terrain height (Section 6.2.3), the vertical component of the laser ground
point in the direct georeferencing equation (6.1) is of particular interest. Therefore, we want to
first express the coordinates of the ground point in topocentric coordinates by left-multiplying
(6.1) with R−1

G/L (Appendix D.2):

NE
D

L =

NaEa
Da

L + RL/B

 RB/S r

sxsy
sz

S +

bxby
bz

B


=

NaEa
Da

L +

r11 r12 r13
r21 r22 r23
r31 r32 r33

L/B

r11 r12 r13
r21 r22 r23
r31 r32 r33

B/S r

sxsy
sz

S +

bxby
bz

B


(6.7)

For the case of a cross-section linear scanner, sS = (0,− sinσx, cosσx)T . Considering only the
vertical down component D in (6.7) and by substituting the terms of the rotation matrices from
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(6.3), (6.4) and (6.6) in (6.7), the true height difference ∆hL between the GPS antenna and the
laser ground point is obtained:

∆hL = DL − DL
a = − sinαy

(
r dβz sinσx + r dβy cosσx + bBx

)
+ sinαx cosαy

(
−r sinσx − r dβx cosσx + bBy

)
+ cosαx cosαy

(
−r dβx sinσx + r cosσx + bBz

) (6.8)

This equation can be reformulated using the true height of the laser ground point hL and the
ellipsoidal height of the GPS antenna hLa in the classical ENU (East, North, Up) coordinate system:

hL = hLa − ∆hL = hLa + sinαy
(
r dβy cosσx + r dβz sinσx + bBx

)
− sinαx cosαy

(
−r sinσx − r dβx cosσx + bBy

)
− cosαx cosαy

(
r cosσx − r dβx sinσx + bBz

) (6.9)

For the case of a vertical laser profiler, sS = (0, 0, 1)T and (6.9) is further simplified to:

hL = hLa −
[
cosαx cosαy

(
r + bBz

)
− sinαx cosαy

(
r dβx − bBy

)
− sinαy

(
r dβy + bBx

)]
(6.10)

In the case of a cross-section linear scanner, the vertical component does not depend on the yaw
angle αz (6.9). In the case of a laser profiler, the vertical component does not depend on the yaw
angle αz, nor on the yaw component dβz of the boresight misalignment (6.10).

6.2.3 Impact of Attitude Error onto Ground Point Height

Erroneous attitude angles can occur due to inaccurate attitude observations or a misalignment of
the attitude measurement system. Assuming that the roll and pitch angles αx and αy are affected
by the errors dαx and dαy, (6.10) for a profiler becomes:

hL = hLa − cos (αx + dαx) cos (αy + dαy)
(
r + bBz

)
+ sin (αx + dαx) cos (αy + dαy)

(
r dβx − bBy

)
+ sin (αy + dαy)

(
r dβy + bBx

) (6.11)

Since attitude errors are usually small angles (< 1°), (6.11) can be simplified using the properties
of small angles (for dαi→ 0, sin dαi' dαi, cos dαi' 1 and dαi · dαi' 0):

hL = hLa − (cosαx cosαy − dαx sinαx cosαy − dαy cosαx sinαy)
(
r + bBz

)
+ (sinαx cosαy + dαx cosαx cosαx − dαy sinαx sinαy)

(
rdβx − bBy

)
+ (sinαy + dαy cosαy)

(
rdβy + bBx

) (6.12)

By subtracting (6.10) from (6.12), the effect dh of roll and pitch errors dαx and dαy on the ground
point height is obtained (using dαi · dβi' 0 and dαi · bBi ' 0):

dh = r (dαx sinαx cosαy + dαy cosαx sinαy) (6.13)
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(a) (b)

Figure 6.2: (a) Impact dh of roll error dαx on ground point height (Graph by E. Favey). (b) Height
error dh from (6.14) as a function of roll error dαx, for roll angles αx from 0° - 5° and a laser range r ('
flight height above ground) of 200m.

Thus, the impact dh of roll and pitch attitude errors dαx and dαy on ground point heights depends
on the range r and on the roll and pitch angles αx and αy. Considering e.g. only the roll angle
(αy =0, dαy =0), an intuitive formula for the height error dh is obtained from (6.13) (Fig. 6.2):

dh = r dαx sinαx = r [ cosαx − cos (αx + dαx) ] (6.14)

In airborne altimetry, for a laser range r=200m, a roll angle αx=3° and a roll error dαx=0.2°,
(6.14) yields a height error dh=4 cm. In shipborne altimetry, the impact of erroneous roll/pitch
angles on height determination is significantly reduced as compared to airborne applications, due
to the smaller range between the distance sensor and the sea surface. For the same roll angle
αx=3°, the same roll error dαx=0.2° and a range r=3m, (6.14) yields a height error dh<1mm.

6.2.4 Required Attitude Accuracy

Using (6.13), the required attitude accuracy dαm for roll or pitch angles can be computed as
a function of the range r, the maximum roll/pitch angle αm during the survey and the desired
height accuracy dhm. The largest impact on ground point heights occurs when αx=αy =αm and
dαx= dαy = dαm, yielding the following expression for the required attitude accuracy:

dαm =
dhm

2 r sinαm cosαm
(6.15)

In the airborne altimetry application, the flight height r above ground (sea) is 200m, and the roll
and pitch angles αm on a flight line are below 3°. The desired height accuracy dhm is 4 cm, corre-
sponding to the maximum vertical accuracy achievable by kinematic differential GPS positioning,
used for the determination of the absolute altitude of the aircraft. Under the above conditions,
the required accuracy dαm for roll and pitch angles using (6.15) is 0.11°. In shipborne altimetry
applications, the required accuracy for roll and pitch angles is lower than in airborne altimetry,
due to the smaller range between the distance sensor and the sea surface. For a range r=3m,
maximum roll and pitch angles αm=10° and a desired height accuracy dhm=4 cm, the required
accuracy dαm for the roll and pitch angles using (6.15) is 3.9°.
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6.3 Kinematic GPS Positioning

6.3.1 Basic Principle

Airborne and shipborne altimetry, as well as GPS buoy observations, rely on precise kinematic
positions determined by GPS. E.g. in airborne laser altimetry, the absolute position of the aircraft
has to be known at any moment during a survey flight in order to georeference the laser ground
point. Thus, the trajectory of the aircraft has to be tracked with continuous GPS observations
aboard the aircraft. These kinematic GPS observations, together with their kinematic processing,
a referred to as kinematic GPS positioning or GPS trajectography. GPS trajectography supplies
aG and RG/L of the direct georeferencing equation (6.1). Precise trajectography is one of the
major issues in airborne and shipborne altimetry, since positioning errors propagate one-to-one
into the ground point positions and directly affect the observed sea surface heights.

High-precision kinematic GPS positioning relies on differential carrier phase observations, achieved
by simultaneously operating at least one GPS receiver aboard the moving vehicle (e.g. aircraft or
ship) and at least one terrestrial GPS reference station. The coordinates of the reference stations
have to be known or determined with respect to the International Terrestrial Reference Frame
(ITRF). The trajectory of the roving GPS antenna is computed through kinematic differential
GPS carrier phase processing with respect to the reference stations. A sampling rate of at least
1Hz is usually required on the roving receiver as well as on the reference stations. For high-precision
positioning, the resolution of phase ambiguities and cycle slip detection are important issues. The
quality of the GPS solutions can be degraded by various factors like tropospheric and ionospheric
refraction, radio frequency interference, obstruction of satellite visibility and multi-path effects.
Since in airborne and shipborne altimetry, the baselines between the reference stations and the
roving receiver can exceed 100 km, the use of dual frequency receivers is mandatory to mitigate
ionospheric influences.

The software primarily used in this work to process kinematic GPS data is a software package
for baseline-wise differential kinematic GPS processing developed at the GGL (Cocard, 1995).
Investigations were made to assess the kinematic potential of Bernese GPS Software (Beutler et al.,
2007) and its capabilities to estimate tropospheric path delays in kinematic mode (Section 6.3.3).

6.3.2 Atmospheric Influences

GPS observations are affected by systematic errors due to ionospheric and tropospheric refraction.
The ionosphere is a dispersive medium at microwave frequencies, thus the refractive index for GPS
signals is frequency-dependent. To the first order, ionospheric refraction is inversely proportional
to the square of the frequency of the electromagnetic signal. Based on this property, the effect of
ionospheric refraction can be largely mitigated by the use of dual frequency receivers. Ionospheric
refraction delays the GPS pseudorange code signal and advances the carrier phase. The effect has
the same absolute value for code and phase observations, but with opposite signs. Two kinds of
tropospheric biases can be distinguish (Beutler et al., 2007):

• Relative troposphere bias caused by errors of mismodeled tropospheric refraction at one end-
point of a baseline relative to the other endpoint, producing primarily relative height errors.

• Absolute troposphere bias caused by errors of mismodeled tropospheric refraction common
to both endpoints of a baseline, producing a scale bias of the estimated baseline length.

In airborne or shipborne altimetry applications involving differential kinematic GPS data, the
relative troposphere biases between the reference station and the aircraft or ship is important, due
to its direct impact on the computed sea surface heights. To a first order, the station height bias
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dh due to a relative troposphere error can be computed as (Beutler et al., 2007):

dh =
drr

cos zmax
(6.16)

where drr is the relative tropospheric zenith delay error and zmax is the maximum zenith angle of
the observation scenario. In this order of magnitude formula, it is assumed that the satellites are
uniformly distributed above the observation site. It indicates that a relative troposphere bias of
1 cm leads to an error of 3 cm in the estimated relative station height for an elevation cutoff angle
of 20°. This error increases to 19 cm for an elevation cutoff angle of 3° (Beutler et al., 2007).

Due to the availability of high accuracy orbits from IGS, orbit errors need no longer be considered
as an important error source (Beutler et al., 2007). The propagation delay of GPS signals due to
atmospheric water vapor in the troposphere are probably the ultimate accuracy-limiting factor for
geodetic applications (Beutler et al., 2007; Dodson et al., 1996). At the moment, the major error
source in kinematic GPS positioning, and especially in height determination, is the insufficient
modeling of the influence of tropospheric path delays. The impact of tropospheric mismodeling on
differential kinematic positioning increases with the height difference between the reference station
and the roving receiver on the aircraft. An example of the impact of relative troposphere biases
on airborne kinematic GPS positioning is shown in Section 6.3.3.

6.3.3 Case Study: Impact of Troposphere on Airborne GPS Solutions

Aircraft trajectories were computed for the six flights of the GAVDOS airborne campaign around
Crete (Section 7.1), using three reference stations (TUC1, GALI and RTHY), yielding three base-
lines with respect to the aircraft. Stations TUC1 and RTHY are situated at the northern coast of
Crete, while station GALI is situated at the southern coast. The altitudes of stations TUC1, GALI
and RTHY are 178m, 34m and 38m, respectively, while the average flight height of the aircraft
during surveys was 215m. During the processing, only a priori altitude-dependent tropospheric
path delay corrections where applied, based on the Saastamoinen tropospheric refraction model
together with standard atmosphere values, without any in situ meteorological information. Height
differences were computed between the baseline-wise trajectories of the moving antenna aboard the
aircraft, obtained using the three reference stations. The height differences range between -0.40
and 0.25m (Fig. 6.3 to Fig 6.7). The differences depend on both the used reference station and the
flight day. Two different behaviours can be distinguished. On the first three days of the campaign
(09/01/2003 to 11/01/2003), the aircraft heights obtained with GALI and TUC1 show mean dif-
ferences of up to -0.26m and standard deviations of up to 0.20m (Fig. 6.3a to Fig 6.5a, Tab. 6.1).
The aircraft heights obtained with RTHY and TUC1 show mean differences around 0.05m and
standard deviations of up to 0.12m (Fig. 6.3b to Fig 6.5b, Tab. 6.1). Especially for the differences
RTHY-TUC1 on flights GRL03 and GRL05, the distributions of height differences show several
peaks, indicating inconsistent ambiguity resolutions on several flight sections. On 12/01/2003,
flight operations had to be canceled due to bad weather conditions. As can be seen from the
ECMWF atmospheric pressure grids (Appendix F), the first four days are characterized by a large
atmospheric depression over the Mediterranean basin, accompanied by strong pressure gradients
around Crete and the entire region. These gradients are obviously producing inhomogeneous tro-
pospheric path delays between the reference stations and the moving receiver, strongly deviating
from the a priori tropospheric corrections. On the last two days of the campaign (13/01/2003
and 14/01/2003), the differences between GALI and TUC1 and between RTHY and TUC1 are in
good agreement, with small mean offsets between -0.04 and 0.03m and near normal distributions
with standard deviations below 0.04m (Fig. 6.6 and Fig 6.7, Tab. 6.1). These two days are charac-
terized by a high pressure regime and small pressure gradients (Appendix F), indicating a more
homogeneous troposphere that is better approximated by the a priori tropospheric corrections.
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Table 6.1: Mean aircraft height differences dh and their standard deviation (Std) between trajectory
determined with reference stations GALI and TUC1 and with RTHY and TUC1.

GALI - TUC1 RTHY - TUC1
Date Flight mean dh ± Std [m] mean dh ± Std [m]

09/01/2003 GRL02 -0.26 ± 0.05 0.05 ± 0.04
10/01/2003 GRL03 -0.16 ± 0.20 0.03 ± 0.11
11/01/2003 GRL05 -0.21 ± 0.06 0.03 ± 0.12
13/01/2003 GRL01 -0.02 ± 0.04 0.03 ± 0.03
14/01/2003 GRL04 -0.04 ± 0.04 0.00 ± 0.04

The height differences of the aircraft determined with different reference stations correspond in
a good approximation to the height differences directly obtained by kinematic processing of the
static baselines between these reference stations, since influences on the airborne data are largely
canceled out in the difference. Hence, height differences of the aircraft between solutions with
different reference stations primarily reflect mismodeled effects between the reference stations. In
order to further asses the origin of these height differences, the tropospheric zenith path delays
(ZPD) estimated at the reference stations during the static network processing with Bernese GPS
software were analysed. The impacts of these ZPD on the baselines between the reference stations
are influenced by elevations and azimuths of the considered satellite constellation. The impacts were
computed based on (Geiger, 1987), by considering the satellite constellation used in the airborne
GPS processing. These impacts correspond to the theoretical influences of the troposphere on the
differences of aircraft positions computed with respect to the different reference stations (Fig. 6.8a
and Fig. 6.8b, black line). A correlation is observed with respect to the position differences of
the aircraft obtained from GPS processing (Fig. 6.8a and Fig. 6.8b, gray line), at least on several
sections. On 10/01/2003 (Fig. 6.8a), where inhomogeneous troposheric effects were assumed, the
theoretical impact of the estimated ZPD is higher than on 10/01/2003 (Fig. 6.8b), where more
homogeneous troposheric effects were assumed. This underlines the fact that the inconsistent GPS
solutions on the first three days must be linked to unmodeled tropospheric effects. Jumps on the
theoretical impacts (black line) are produced by abrupt changes in the satellite constellation (rise
or fall of a satellite). The observed height differences are not always following these jumps, since
the GPS solution is influenced and stabilized over longer time periods by the phase ambiguities of
constantly tracked satellites. This aspect also explains part of the deviations between the observed
differences and the theoretical impacts.

Based on the conclusions stated above, investigations were made to assess the kinematic potential of
Bernese GPS Software Version 5 (Beutler et al., 2007) and its capabilities of estimating tropospheric
path delays in kinematic mode. The Bernese GPS Software is a very powerful state-of-the-art GPS
processing software, widely approved by the geodetic community for static processing of permanent
GPS networks. The original source code had to be adapted to the estimation of path delays in
kinematic mode. Kinematic positionning solutions of a quality similar to the classic solution with
path delays predicted from an a priori model were obtained under homogeneous atmospheric con-
ditions. Under extreme tropospheric conditions, differences between the two solutions could easily
reach 0.5m. The analysis of resulting sea surface height differences at crosspoints (Section 7.4.2)
showed that with the estimation of tropospheric parameters, it was possible to locally improve the
solution, but the overall agreement was always degraded. The analysis also showed that under
such conditions, the Bernese solution including the estimation of tropospheric path delays was
extremely sensitive to the parameter settings, like e.g. the interval of the piecewise linear tro-
pospheric parameters and their relative constraints, but also a priori weights of observations and
parameters. Small changes of the parameters could induce height differences of 1m. The instability
of the solution leads to the conclusion that the algorithms used to model the troposphere are not
sophisticated enough to provide a realistic representation of extreme inhomogeneous atmospheric
conditions (e.g. atmospheric inversion) in kinematic mode.
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(a)

mean: -0.26m
stdev: 0.05m

(b)

mean: 0.05m
stdev: 0.04m

Figure 6.3: Aircraft height differences on 09/01/2003 (flight GRL02) between trajectory determined with
reference stations (a) GALI and TUC1 and (b) RTHY and TUC1.

(a)

mean: -0.16m
stdev: 0.20m

(b)

mean: 0.03m
stdev: 0.11m

Figure 6.4: Aircraft height differences on 10/01/2003 (flight GRL03) between trajectory determined with
reference stations (a) GALI and TUC1 and (b) RTHY and TUC1.
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(a)

mean: -0.21m
stdev: 0.06m

(b)

mean: 0.03m
stdev: 0.12m

Figure 6.5: Aircraft height differences on 11/01/2003 (flight GRL05) between trajectory determined with
reference stations (a) GALI and TUC1 and (b) RTHY and TUC1.

(a)

mean: -0.02m
stdev: 0.04m

(b)

mean: 0.03m
stdev: 0.03m

Figure 6.6: Aircraft height differences on 13/01/2003 (flight GRL01) between trajectory determined with
reference stations (a) GALI and TUC1 and (b) RTHY and TUC1.
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(a)

mean: -0.04m
stdev: 0.04m

(b)

mean: 0.00m
stdev: 0.04m

Figure 6.7: Aircraft height differences on 14/01/2003 (flight GRL04) between trajectory determined with
reference stations (a) GALI and TUC1 and (b) RTHY and TUC1.

(a) (b)

Figure 6.8: (a) Aircraft position differences on 10/01/2003 (flight GRL03) between trajectory determined
with reference stations GALI and TUC1 (corresponding to Fig. 6.4a), and modeled theoretical impact of
tropospheric zenith path delays estimated at the reference stations. (b) Same as (a), for 13/01/2003 (flight
GRL01) with reference stations RTHY and TUC1 (corresponding to Fig. 6.6b)
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6.4 Multi-Antenna GPS Attitude Determination

6.4.1 Basic Principle

The attitude of an aircraft or any other vehicle or platform is given by its roll, pitch and yaw angles,
which constitute the rotation matrix RL/B of (6.1) and (6.4). Whereas the classic technique to
acquire the attitude of a platform relies on inertial measuring units (IMU), another approach for
attitude determination is based on a multiple-antenna GPS array. Since three points on a platform
completely determine its orientation, the relative positions of at least three points on the platform
need to be continuously monitored in order to derive its attitude. This is achieved by equipping
the platform with at least three GPS antennas, adequately mounted on the platform’s topside,
so that they form non-collinear baseline vectors between each other. The approach of attitude
determination by multi-antenna GPS described in this section is based on (Favey, 2001).

The moving vectors of the antenna array are first rotated from the geocentric GPS reference frame
to a topocentric, north oriented frame, using the latitudes and longitudes of the moving reference
antenna (6.3). As the antennas are rigidly mounted on the aircraft, their coordinates are also
known in the body frame by terrestrial calibration measurements. Thus, the core problem of
attitude determination using a multi-antenna array can be formulated as follows (Favey, 2001):
Given two or more non-collinear vectors in the topocentric coordinate frame L and in the body
frame B, find the rotation matrix RL/B (6.4) that transforms the vectors from the body frame
into the topocentric frame (Fig. 6.9).

Acquiring attitude information from GPS or IMU shows properties individual to each method
(Favey, 2001). As the GPS attitude solution is computed on a per epoch basis, independently from
subsequent epochs (except the link through GPS carrier phase ambiguities), the major advantage
of the GPS attitude is that it is exempt from random walk (drift) effects. Regarding the IMU
attitude, epochs are correlated and can suffer from drift effects, that have to be corrected by e.g.
coupling a GPS receiver to the IMU. The major advantage of IMU is its higher sampling rate.
Comparisons between GPS and IMU attitudes are shown in Section 6.4.5 and Section 6.4.6.

Figure 6.9: Attitude determination with multi-antenna GPS array.
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6.4.2 Processing of Moving GPS Baselines

The relative positions of the GPS antennas used to compute the vectors for attitude determination
are obtained by so-called moving baseline processing (Fig. 6.9). Like in conventional differential
kinematic GPS processing, moving baseline processing is based on differential GPS carrier phase
processing, with the only difference that both receivers forming a baseline are moving. During
processing, one receivers is defined as reference. The coordinates of its antenna are fixed to an
approximate kinematic position (e.g. stande-alone code solution), since only the relative vector is
of interest. The reference receiver is used to compute the relative positions of the other antennas by
differential GPS carrier phase processing. Since the lengths of the baseline is usually below 10m,
relative atmospheric path delay errors between the reference and remote receivers are negligible
and ambiguity resolution usually causes no major problems, unless interferences or lack of satellite
visibility are encountered. Since the lengths of the vector is theoretically constant and known by
terrestrial measurements, it may be introduced in the GPS baseline processing as additional infor-
mation. Especially in highly dynamic applications, the obtained GPS vectors must be corrected
for differential clock biases (Appendix E) before the attitude computation (Section 6.4.3). The
approach of moving baseline processing used in this project is based on (Favey, 2001).

6.4.3 Algorithm for Multi-Antenna GPS Attitude Determination

Considering the vector kLi between two GPS antennas in the topocentric frame L, obtained from
moving baseline processing (Section 6.4.2), and the corresponding vector kBi determined by terres-
trial calibration measurements in the body frame B, the basic equation for attitude determination
can be written as (Favey, 2001):

kLi = RL/B k
B
i (6.17)

whereRL/B is the rotation matrix from the body frame B to the topocentric frame L. The attitude
angles roll (αx), pitch (αy) and yaw (αz) are derived directly from the elements rij of the rotation
matrix RL/B (6.4):

αx = arctan (r32/r33) , αy = arcsin (r31) , αz = arctan (r21/r11) (6.18)

An approximate attitude solution can be computed using two vectors (three GPS antennas). The
approximate solution for the rotation matrix in (6.17) is obtained by:

RL/B ≈ LBT = R0 (6.19)

where R0 is the approximate rotation matrix, and L and B are rotation matrices given by:

L =
(
iL1 , i

L
2 , i

L
3

)
, B =

(
iB1 , i

B
2 , i

B
3

)
(6.20)

with

iL1 =
kL1∥∥kL1 ∥∥ , iL2 = iL3 × iL1 , iL3 =

kL1 × kL2∥∥kL1 × kL2 ∥∥ (6.21)

iB1 =
kB1∥∥kB1 ∥∥ , iB2 = iB3 × iB1 , iB3 =

kB1 × kB2∥∥kB1 × kB2 ∥∥ (6.22)
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If more than two vectors (more than three antennas) are available, an optimal solution can be
estimated by least-squares (LSQ) adjustment. Based on (6.17), an observation equation can be
written for each vector ki and each epoch (Favey, 2001):

kLi − vi = RL/B k
B
i (6.23)

which is of the general form l − v = F (x). In (6.23), the vectors kLi in the topocentric frame,
derived from GPS moving baseline processing, are considered as the observations l, with residuals
v. The unknown parameters x are the attitude angles forming the rotation matrixRL/B (6.4). The
vectors kBi in the body frame, determined by terrestrial calibration measurements, are considered
as error-free. Linearization of (6.23) near the approximate values yields:

kLi − vi = R0 k
B
i + Ai δx (6.24)

which is of the general form:

l − v = F (x0) +
∣∣∣∣∂F (x)
∂x

∣∣∣∣
x0

(x− x0) = F (x0) + A δx (6.25)

where x0 are the approximate attitude angles from (6.19), δx= (x− x0) are the increments of the
parameters, R0 =RL/B(x0) is the approximate rotation matrix calculated from two vectors (6.19)
and Ai is the design matrix of the LSQ adjustment, with:

Ai =
∣∣∣∣∂Fi∂x

∣∣∣∣
x0

=

∣∣∣∣∣∂(RL/B k
B
i )

∂x

∣∣∣∣∣
x0

≈
∣∣∣∣∂R0 k

B
i + R0 K

B
i δx

∂x

∣∣∣∣
x0

= R0 K
B
i (6.26)

In (6.26), only the rotation matrixRL/B is a function of x. Thus, the expression to be differentiated
in (6.26) was linearized using:

RL/B k
B
i = R(x0+δx) kBi = R0 R(δx) kBi ≈ R0 (I + Ω) kBi = R0 k

B
i + R0 K

B
i δx (6.27)

with

Ω kBi =

 0 δx3 −δx2

−δx3 0 δx1

δx2 −δx1 0

kBi,1kBi,2
kBi,3

 =

 0 −kBi,3 kBi,2
kBi,3 0 −kBi,1
−kBi,2 kBi,1 0

δx1

δx2

δx3

 = KB
i δx (6.28)

where KB
i is a skew symmetric matrix containing the elements of kBi . The solution of the LSQ

adjustment for one epoch is finally given by (Favey, 2001):

δx =

(∑
i

AT
i Pi Ai

)−1

·
∑
i

AT
i Pi v0,i (6.29)

where Pi is the weight matrix and v0,i are the approximate residuals obtained by:

v0,i = li − Fi (x0) = kLi − R0 k
B
i (6.30)

Since the observation equation (6.23) is nonlinear, the LSQ adjustment needs to be iterated a few
times with R0 improved as RL/B(x0 + δx) (Favey, 2001).
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6.4.4 Accuracy of Multi-Antenna GPS Attitude Determination

Since the attitude of a platform determined with a multi-antenna GPS array is computed using
GPS baseline vectors, its accuracy σa depends on the differential GPS positioning error σr, the
baseline length l and the antenna vector geometry (Fig. 6.10):

σa =
σr
l

[rad] (6.31)

The geometrical configuration is optimal in the sense of minimizing attitude errors when the
antennas are forming orthogonal vectors, which is not always possible to realize on an aircraft or a
boat. Another strategy to reduce the attitude error σa consists in increasing the baseline lengths
l. For example, in order to reach an attitude accuracy σa of 0.01° with a vector accuracy σr of
1 cm, a baseline length l of 57m is required.

The attitude accuracy cannot be measured directly, but it can be quantified by different methods
(Tab. 6.2). First, the accuracy can be assessed using (6.31). In the airborne application, two
antennas were mounted on the wing engines (Fig. 4.1), in order to reach the best compromise
between wing flexure effects and baseline length. Maximizing baseline lengths by mounting the
antennas on the wing tips would reduce the accuracy, since the wing flexure at the tips can exceed
10 cm. The distance between the engine antennas, relevant for the roll angle, was 5.5m, whereas
the baseline length between the front and tail antennas, relevant for the pitch and yaw angles,
was 10.0m. The RMS of the difference between the baseline lengths obtained by GPS and the
terrestrially calibrated lengths is in the order of 0.9 cm, yielding a theoretical attitude accuracy of
0.08° for the roll and 0.05° for the pitch and yaw (Tab. 6.2), based on (6.31). The average attitude
standard deviations estimated by the LSQ adjustment during attitude determination are in the
same order of magnitude. Finally, the standard deviation of the differences between attitudes
determined with GPS and INS are in the order of 0.11° for the roll and pitch, and 0.06° for the
yaw. The differences between GPS and INS attitudes are analysed in more detail in Section 6.4.5.
It can be concluded that the obtained attitude accuracies are in the order of 0.10° and that they
meet the required accuracy value of 0.11° established in Section 6.2.4.

Similar to the airborne case, the attitude accuracy of the shipborne antenna setup was quantified
by different methods (Tab. 6.2). The baseline length between the portside and starboard anten-
nas, relevant for the roll angle, was 2.7m, whereas the baseline length between the bow and stern
antennas, relevant for the pitch and yaw angle, was 12.5m (Fig. 5.3). The RMS of the difference
between the baseline lengths determined by GPS and the terrestrially calibrated lengths is 0.9 cm,

Figure 6.10: Error σa of attitude determined by multi-antenna GPS array, according to (6.31), as a
function of baseline length l, for differential GPS positioning errors σr from 1 to 20 cm.
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Table 6.2: Estimated accuracy of attitude from multi-antenna GPS array, for the airborne and shipborne
setups. The airborne data correspond to averages over all flights of the GAVDOS campaign (Fig. 7.1). The
shipborne data correspond to averages over 18 survey tracks of the 2007 campaign (Fig. 8.1).

Roll Pitch Yaw
airborne shipborne airborne shipborne airborne shipborne

Relevant baseline length [m] 5.5 2.7 10.0 12.5 10.0 12.5
Baseline RMS [m]1 0.008 0.009 0.009 0.009 0.009 0.009
Theor. attitude Std [°]2 0.08 0.19 0.05 0.04 0.05 0.04
GPS LSQ Std [°]3 0.14 0.31 0.05 0.08 0.06 0.08
GPS-INS Std [°]4 0.11 0.32 0.11 0.22 0.08 0.38

1 Average RMS of differences between baseline lengths determined by GPS and by terrestrial calibration
2 Average attitude standard deviation (Std) from (6.31) using baseline RMS and relevant baseline length
3 Average attitude standard deviation (Std) estimated during vector LSQ adjustment
4 Average standard deviation (Std) of differences between GPS and INS attitude

yielding a theoretical attitude accuracy of 0.19° for the roll and 0.04° for the pitch and yaw, based
on (6.31). The obtained attitude accuracies from LSQ adjustment are about twice the theoretical
values (Tab. 6.2). This is most likely due to inaccurate because hard to measure bodyframe coor-
dinates on the boat. Nevertheless, it can be concluded that the obtained attitude accuracies are
far below the required value of 3.9° established in Section 6.2.4. The differences between GPS and
INS attitudes are discussed in Section 6.4.6.

6.4.5 Case Study: Airborne Multi-Antenna GPS vs. Tactical-Grade INS

Two independent systems for attitude determination were operated aboard the aircraft: a multi-
antenna GPS array (Section 4.2.4, Fig. 4.1) and a Honeywell H-764G tactical-grade inertial naviga-
tion system (INS), coupled with GPS (Section 4.2.5, Fig. 4.2a). The simultaneous operation of the
two systems allows to directly compare their performance (Fig. 6.11). Significant offsets between
the GPS and INS attiude solutions are observed, persisting throughout the campaign (Tab. 6.3).
The mean offsets are 0.50°, -0.91° and -0.42° on the roll, pitch and yaw, respectively. These offsets
are similar to those observed by (Favey, 2001) using the same GPS antenna array on the same
aircraft, but a different inertial system. The offsets reveal a misalignment between the body frames
defined by the GPS antennas and the INS. The coordinates of the GPS antennas with respect to
the aircraft body frame were determined using a terrestrial tachymeter setup (Favey, 2001). For
this purpose, the aircraft was jacked up and leveled out in the hangar. Precise antenna coordinates
in the aircraft body frame were obtained, with a standard deviation below 1mm. If the offsets
in Tab. 6.3 were produced by wrong coordinates of the GPS antennas in the aircraft body frame,
the offset of 0.50° on the roll would correspond to a vertical error of 4.8 cm on the 5.5m baseline
between the wing antennas, and the offset of -0.91° on the pitch would correspond to a vertical
error of 15.9 cm on the 10.0m baseline between the front and tail antennas. Since such large errors
on the terrestrial observations can be excluded, the offsets must be produced by a misalignment
between the INS and the aircraft body frames. Since the INS unit and the laser profiler were
mounted on the same rigid platform (Fig. 4.2a), it can be assumed that the body frame defined
by the INS is more consistent with the frame of the laser device than the body frame defined by
the GPS antenna array. This assumption was confirmed during the boresight misalignment cali-
bration, where smaller misalignments are obtained between the laser frame and INS body frame
(Tab. 6.6 and Tab. 6.7). Apart from the offsets, a good agreement is observed between the attitude
solutions provided by the two independent systems, with mean standard deviations of 0.11° on the
roll and pitch, and 0.08° on the yaw (Tab. 6.3). The standard deviations are of the same order of
magnitude as the expected accuracy of the multi-antenna GPS attitude determination (Tab. 6.2).
Furthermore, no noticeable drift effect on the INS attitudes is detected.

78



6.4 Multi-Antenna GPS Attitude Determination

(a) Roll (b) Pitch

(c) Yaw

Figure 6.11: Attitude angles from the Honeywell H-764G tactical-grade INS and the multi-antenna GPS
array, and their differences, during survey flight GRL02.

Table 6.3: Mean differences and standard deviations (Std) between airborne attitude angles from multi-
antenna GPS array and Honeywell H764G tactical-grade INS.

Roll GPS-INS Pitch GPS-INS Yaw GPS-INS
Date Flight Mean ± Std [°] Mean ± Std [°] Mean ± Std [°]

09/01/2003 GRL06 0.50 ± 0.09 -0.88 ± 0.12 -0.50 ± 0.07
09/01/2003 GRL02 0.53 ± 0.09 -0.93 ± 0.08 -0.54 ± 0.08
10/01/2003 GRL03 0.53 ± 0.12 -0.92 ± 0.13 -0.32 ± 0.07
11/01/2003 GRL05 0.50 ± 0.12 -0.92 ± 0.11 -0.35 ± 0.09
13/01/2003 GRL01 0.45 ± 0.15 -0.89 ± 0.10 -0.34 ± 0.07
14/01/2003 GRL04 0.38 ± 0.25* -0.90 ± 0.09 -0.49 ± 0.10

Mean 0.50 ± 0.11 -0.91 ± 0.11 -0.42 ± 0.08

* GPS attitude computed without left wing antenna due to receiver failure, yielding poor roll
angle determination. This roll information was excluded from mean computation.
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6.4.6 Case Study: Shipborne Multi-Antenna GPS vs. MEMS-Based AHRS

Two independent systems for attitude determination were operated aboard the boat during the 2007
campaign: a multi-antenna GPS array (Section 5.2.3, Fig. 5.3) and an Xsens MTi miniature MEMS-
based AHRS (Attitude and Heading Reference System) (Section 5.2.4, Fig. 5.4). The simultaneous
operation of the two independent systems allowed to directly compare their performance under the
given conditions (Tab. 6.4 and Fig. 6.13). The differences between the attitudes determined by the
two systems revealed no noticeable drift effects on the AHRS, demonstrating the efficiency of the
stabilization of the gyro data with the magnetometer and accelerometer data in the Xsens sensor
fusion algorithm. Due to the good agreement between the multi-antenna GPS system and the
Honeywell H-764G tactical-grade INS in the airborne application (Section 6.4.5), the GPS derived
attitude can be considered as reference solution for the AHRS.

Significant offsets between the GPS and AHRS attitude solutions were observed, persisting through-
out the campaign (Tab. 6.4). The mean offsets are -2.67° and -4.83° on the roll and pitch. These
offsets are produced by the approximate mechanical alignement of the AHRS with respect to the
boat axes and the horizontal plane. They are in accordance with roll an pitch misalignments
approximately measured with a clinometer with respect to the horizontal plane. Apart from the
offsets, a good agreement between the attitude solutions provided by the two independent systems
was observed, with mean standard deviations of 0.32° on the roll and 0.22° on the pitch (Tab. 6.4).
The standard deviation on the roll is significantly larger than the one on the pitch, and it is very
similar to the standard deviation of 0.31° of the roll estimation with the multi-antenna GPS system
(Tab. 6.2). As opposed to the multi-antenna GPS system, the AHRS produces the same accuracy
for the roll and pitch. Hence, the roll agreement between the GPS system and the AHRS is limited
by the weak roll determination of the GPS system, due to the short distance between the starboard
and portside antennas. On the other hand, the standard deviation of 0.22° on the pitch differences
is significantly larger than the standard deviation of 0.08° of the pitch estimation with the multi-
antenna GPS system (Tab. 6.2). Considering the strong pitch estimation by the GPS system, due
to the long distance between the bow and stern antennas, the pitch agreement between the GPS
system and the AHRS is limited by the accuracy of the AHRS.

Since the yaw (heading) determination of the AHRS mainly relies on 3D magnetometer data, it
suffers from disturbances of the Earth magnetic field. In shipborne applications, the disturbances
are mainly produced by the magnetic field caused by the structure and machinery of the ship. The
deviation or heading error ∆ω of a magnetic compass can be modeled by (NGA, 2004):

∆ω = A+B sinω + C cosω +D sin 2ω + E cos 2ω (6.32)

where ω is the heading angle. Coefficient A accounts for a permanent offset, while B and C
account for effects produced by the hard-iron parts of the ship’s structure. Hard iron behaves like
a permanent magnet and retains its polarity as the ship rotates (Kayton and Fried, 1997), causing
a magnetic disturbance with a period of 360°. Electrical equipment, motors and wiring aboard the
ship produce fixed magnetic fields that rotate with the ship and hence have the same effect as hard
iron (Kayton and Fried, 1997). However, the magnetic field depends on the power-on status of
the electrical equipment. Coefficients D and E account for effects produced by the soft-iron parts
of the ship’s structure, made of highly permeable magnetic material. Soft iron is magnetized by
the Earth by induction. As the ship rotates, soft iron remains polarized so that its north-facing
poles always face the north pole (Kayton and Fried, 1997), causing a magnetic disturbance with a
period of 180°.

Depending on the calibration method, 4 types of AHRS yaw angles are given in Tab. 6.4:

1. Uncalibrated AHRS yaw. The yaw deviation of the AHRS depends on the yaw angle itself,
yielding variable mean offsets with respect to the GPS yaw, irregular distributions of the
differences (Fig. 6.13c) and consequently a high mean standard deviation of 1.62°.
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Table 6.4: Mean differences and standard deviations (Std) between shipborne attitude angles from multi-
antenna GPS array and Xsens MTi miniature AHRS.

Roll GPS-AHRS Pitch GPS-AHRS Yaw GPS-AHRS * Yaw GPS-AHRS *

Date Mean ± Std [°] Mean ± Std [°] Mean ± Std [°] Mean ± Std [°]
08/09/2007 moving -2.61 ± 0.28 -4.97 ± 0.20 6.16 ± 1.021 4.61 ± 0.462

08/09/2007 static -2.60 ± 0.37 -4.85 ± 0.16 1.86 ± 0.331 4.73 ± 0.332

08/09/2007 static -2.69 ± 0.32 -4.81 ± 0.16 1.92 ± 0.321 4.78 ± 0.332

09/09/2007 moving -2.58 ± 0.49 -4.89 ± 0.27 4.63 ± 2.291 4.44 ± 0.472

09/09/2007 static -2.68 ± 0.21 -4.81 ± 0.14 3.85 ± 2.021 4.79 ± 0.422

09/09/2007 moving -2.57 ± 0.32 -4.86 ± 0.21 4.30 ± 2.571 4.69 ± 0.422

10/09/2007 static -2.72 ± 0.23 -4.79 ± 0.14 5.50 ± 2.051 4.79 ± 0.302

10/09/2007 moving -2.65 ± 0.24 -4.88 ± 0.19 4.74 ± 2.341 4.47 ± 0.392

10/09/2007 static -2.61 ± 0.22 -4.87 ± 0.12 3.80 ± 1.351 4.82 ± 0.242

11/09/2007 moving -2.70 ± 0.32 -4.88 ± 0.23 3.75 ± 1.861 4.62 ± 0.412

Mean 4.05 ± 1.621 4.67 ± 0.382

15/09/2007 moving -2.74 ± 0.38 -4.63 ± 0.23 4.83 ± 0.853 5.53 ± 0.644

16/09/2007 moving -2.64 ± 0.48 -4.95 ± 0.32 4.87 ± 1.273 4.63 ± 0.974

17/09/2007 moving -2.63 ± 0.31 -4.80 ± 0.18 6.12 ± 0.513 5.53 ± 0.524

18/09/2007 moving -2.65 ± 0.35 -4.80 ± 0.22 5.37 ± 0.763 4.80 ± 0.674

19/09/2007 moving -2.90 ± 0.33 -4.80 ± 0.54 4.91 ± 0.883 5.51 ± 0.604

20/09/2007 static -2.72 ± 0.30 -4.74 ± 0.18 4.98 ± 0.443 5.38 ± 0.414

Mean -2.67 ± 0.32 -4.83 ± 0.22 5.18 ± 0.793 5.23 ± 0.644

1 Uncalibrated AHRS yaw anlge.
2 AHRS yaw anlge calibrated with GPS reference yaw based on (6.32) (Fig. 6.12).
3 AHRS yaw anlge calibrated by instrumental magnetometer calibration.
4 AHRS yaw anlge calibrated by instrumental magnetometer calibration and GPS reference yaw.
* Yaw offsets include magnetic declination, since yaw angles from GPS and AHRS are referenced to the geographic
and the magnetic North, respectively. For the given location and time, a magnetic declination of 3.5° has to be
subtracted from the mean values.

2. AHRS yaw calibrated in post-processing with the yaw from GPS, based on (6.32). Using
the yaw determined by the multi-antenna GPS system as reference, the heading deviation
∆ω between the GPS and AHRS solution can be computed as a function of the yaw angle
ω (Fig. 6.12). A heading deviation curve defined by the five coefficients of (6.32) can be
estimated using a least-squares adjustment. The calibrated AHRS yaw yields a more con-
stant offset with respect to the yaw from GPS and a normal distribution of the differences
(Fig. 6.13d). The calibration allowed to reduce the mean standard deviation to 0.38°.

3. AHRS yaw determined with magnetometers previously calibrated using the Xsens Magnetic
Field Mapper software. The calibration is obtained by performing a complete heading rota-
tion of the ship with the sensor mounted in its final position. Since this calibration does not
rely on a reference yaw, this case corresponds to the yaw accuracy that can be obtained with
the Xsens MTi in stand-alone operation. The mean standard deviation of 0.79° with respect
to the GPS solution is less good than the results of type 2. However, a clear improvement
with respect to the uncalibrated heading (type 1) is obtained.

4. AHRS yaw determined with calibrated magnetometers (type 3), followed by a post-processing
yaw calibration (type 2). The post-processing calibration allowed to reduce the mean stan-
dard deviation to 0.64°.
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coefficient value [°] Std [°]
A 4.786 0.0013
B -1.908 0.0018
C 2.544 0.0019
D -0.113 0.0017
E 0.007 0.0018

Figure 6.12: Difference between yaw (heading) from shipborne multi-antenna GPS array and Xsens MTi
AHRS (labeled INS) as a function of yaw angle, over a time period of 10 hours. A heading deviation
curve of the AHRS was estimated by a least-squares adjustment based on (6.32). The magnetic deviation
coefficients and their standard deviation (Std) are shown on the right.

(a) Roll (b) Pitch

(c) Yaw (with uncalibrated AHRS yaw) (d) Yaw (with calibrated AHRS yaw)

Figure 6.13: Attitude angles from the Xsens MTi miniature AHRS (labeled INS) and the multi-antenna
GPS array, and their differences, during a survey track on 11/09/2007.
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6.5 Boresight Misalignment Calibration in Airborne Altimetry

6.5.1 Introduction

Critical elements in the direct georeferencing equation (6.1) for airborne laser altimetry are the
inner orientation parameters (Favey, 2001), and especially the boresight misalignment between
the body frame B and the laser frame S. Boresight misalignment can affect the georeferencing of
the laser data systematically, yet it is not trivial to determine. Boresight misalignment is usually
assumed to remain constant during the whole flight, tough it may be subject to vibrations and
aircraft deformations to a small degree. The aim of boresight misalignment calibration is the esti-
mation of the boresight misalignment angles (dβx, dβy, dβz), forming the boresight misalignment
rotation matrix RB/S of (6.1).

6.5.2 Impact of Boresight Misalignment on Ground Point Height

In order to estimate the boresight misalignment angles, their effect on the ground point position,
and especially on its vertical component, have to be modeled. (6.9) gives the true height hL of the
laser ground point for the case of a cross-section linear scanner. If boresight misalignment is
not considered, e.g. in a preliminary data processing before calibration, the approximate height
hL0 of the laser ground point becomes, based on (6.9):

hL0 = hLa −
[
cosαx cosαy

(
r cosσx + bBz

)
− sinαx cosαy

(
r sinσx − bBy

)
− bBx sinαy

]
(6.33)

Thus, the effect dhβ of boresight misalignment on the height is given by the difference between the
true height hL from (6.9) and the approximate height hL0 (without considering boresight misalign-
ment) from (6.33):

dhβ = r [(cosαx sinσx + sinαx cosσx) dβx cosαy + sinαy (dβy cosσx + dβz sinσx)] (6.34)

For the special case of a laser profiler, sS = (0, 0, 1)T , and (6.33) and (6.34) can be simplified
using sinσx = 0 and cosσx = 1:

hL0 = hLa −
[
cosαx cosαy

(
r + bBz

)
+ bBy sinαx cosαx − bBx sinαy

]
(6.35)

dhβ = hL − hL0 = r (dβx sinαx cosαy + dβy sinαy) (6.36)

6.5.3 Impact of Simplification for Small Boresight Misalignment Angles

In (6.34) and (6.36), simplifications for small boresight misalignment angles (6.6) were applied.
Without these simplifications, the true height hL of the laser ground point for the case of a laser
profiler becomes, based on (6.7):

hL = hLa − cosαx cosαy
(
r cos dβx cos dβy + bBz

)
+ sinαx cosαy

(
r sin dβx cos dβy − bBy

)
+ sinαy

(
r sin dβy + bBx

) (6.37)
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Table 6.5: Impact [cm] of boresight misalignment simplification on ground point height from (6.40), for
roll = pitch=0° and dβx = dβy

boresight flight height above ground
angles 100m 200m 300m 500m 1000m
0.10° 0.0 0.1 0.1 0.2 0.3
0.25° 0.2 0.4 0.6 1.0 1.9
0.50° 0.8 1.5 2.3 3.8 7.6
0.75° 1.7 3.4 5.1 8.6 17.1
1.00° 3.0 6.1 9.1 15.2 30.5

The non-simplified impact dhβ of boresight misalignment on the height is given by the difference
between (6.37) and (6.35):

dhβ = r (sinαx cosαy sin dβx cos dβy + sinαy sinβy − cosαx cosαy cos dβx cos dβy) (6.38)

The impact dhβ,s of the simplification of the boresight misalignment on the height of the laser
ground point is given by the difference between (6.37) and (6.10):

dhβ,s = r cosαx cosαy (1 − cos dβx cos dβy)
+r sinαx cosαy (sin dβx cos dβy − dβx)
+r sinαy (sin dβy + dβy)

(6.39)

Hence, the impact of the boresight simplification on the height is proportional to the laser range r.
Assuming the simple case where the roll and pitch angles are perfectly zero on a flight line
(αx=αy =0), (6.39) becomes:

dhβ,s = r (1 − cos dβx cos dβy) (6.40)

The impact for different flight heights above ground (' laser range r) and boresight misalignment
angles are given in Tab. 6.5, for αx=αy =0 (6.40). Note that this case represents the minimum
impact of boresight misalignment, and that in case of roll and pitch angle deviating from zero,
or in case of a laser scanner, the impact would drastically increase. Tab. 6.5 shows that for high
flight heights and relatively large boresight misalignment angles, the simplification of the boresight
rotation matrix is not recommended in high-accuracy applications. In this case, (6.37) rather than
(6.10) should be used to compute ground point heights.

6.5.4 Self-Calibration Based on Piecewise Polynomial Fit of Water Surfaces

Although several well-developed boresight calibration approaches for airborne camera systems
exist, e.g. (Škaloud and Schaer, 2003), the correct recovery of airborne laser scanner misalignments
still remains elusive (Škaloud and Lichti, 2006). In airborne laser scanning, the usual approach to
estimate boresight misalignment angles relies directly on the laser distance measurements, using
a least squares adjustment. These self-calibration techniques are based on the assumption that
laser ground points from different shots close to each other have the same height when the scanned
area is rather continuous and planar (Škaloud and Lichti, 2006). In this case, the data from one
scan subset should have the same characteristics as the data from an adjacent scan subset covering
the same area. Differences are then functionally modeled to be an error induced by the boresight
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angles. The method described above is based on the assumption that the target surface remains
the same between two subsequent scans of the same target. This assumption does not hold for
natural water surfaces, where the topography of the surface permanently changes with time, e.g.
due to waves. Thus, the same surface height can never be observed twice at the same position. This
means that in self-calibration techniques based on water surfaces, an adapted model for surface
characteristics has to be applied.

In the following, a method for boresight misalignment calibration relying on water surfaces is
described. It is based on former investigations at the GGL (Peter, 1994; Geiger et al., 1994) and is
applicable for both airborne laser profilers and scanners. The method directly relies on ellipsoidal
water surface heights provided by airborne laser altimetry. The boresight misalignment calibration
model is based on the following general observation equation:

hL0 = hL − dhβ = F (x) (6.41)

The observations are the approximate ground point heights hL0 without considering boresight mis-
alignment, hL is the true but unknown surface height and dhβ is the effect of boresight misalignment
on the ground point height. Due to geoid undulations, ellipsoidal water surfaces cannot be sat-
isfactorily modeled by a single horizontal or inclined plane over large distances. Hence, the true
water surface of height hL in (6.41) is modeled by piecewise planar surfaces:

hL = ai x + bi y + ci (6.42)

where (x, y) are the horizontal coordinates of the laser ground point. ai, bi and ci are the planar
coefficients of the piecewise interval i, leading to one set of polynomial parameters for every chosen
interval of typically 5 - 10 km flight distance. Additionally, the piecewise polynomials are con-
strained from one interval to the next with a continuity condition at the common point (x1,i, y1,i):

hL1,i = ai−1 x1,i + bi−1 y1,i + ci−1 = ai x1,i + bi y1,i + ci (6.43)

If the aircraft is flying on a more or less straight line during an interval i, the planar fit is weakly
determined because an infinite number of planes can be defined by a single line. To avoid this
problem, the coordinates (x, y) are defined in a local coordinate system, the origin (x1,i, y1,i) being
the first ground point of the interval, and the x-axis defined in flight direction. Using this coordinate
system, the parameter bi can be constrained to zero on a straight flight line, leading to a linear
fit of the sea surface in flight direction. If the interval comprises a turn between two flight lines,
a planar polynomial is used. In the case of a laser profiler, the latter intervals contain the most
significant information on boresight misalignment, especially for the roll angle, due to the banking
of the aircraft. Hence, a special algorithm was applied to obtain an ideal interval distribution with
intervals centered around turns.

A least-squares (LSQ) adjustment of (6.41) attributes the difference between the approximate
ground point heights and the true height modeled by the surface polynomials (i.e. the deviations
from the piecewise planar surfaces) to the effect of the boresight misalignment angles (dβx, dβy,
dβz). For cross-section linear laser scanners, (6.33), (6.42) and (6.34) are inserted in (6.41),
yielding the following observation equation:

hLa −
[
cosαx cosαy

(
r cosσx + bBz

)
− sinαx cosαy

(
r sinσx − bBy

)
− bBx sinαy

]
(6.44)

=
aix+ biy + ci − r [(cosαx sinσx + sinαx cosσx) dβx cosαy + sinαy (dβy cosσx + dβz sinσx)]
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It is seen from (6.44) that the surface height does not depend on the yaw angle az. The unknown
parameters for an interval i are the three boresight calibration angles (dβx, dβy, dβz) (the same
for every interval i), plus three surface polynomial coefficients (ai, bi, ci). Thus, the total number
of unknowns is 3+3ni, where ni is the number of polynomial intervals. Compared to the large
number of laser observations at a sampling rate of 1 kHz, redundancy is guaranteed even in case of
short polynomial intervals. The observation equation (6.44) is linear with respect to the unknown
parameters.

For boresight misalignment calibration of airborne laser profilers, (6.35), (6.42) and (6.36) are
inserted in (6.41), yielding the following observation equation:

hLa −
(
r + bBz

)
cosαx cosαy + bBx sinαy − bBy sinαx cosαy (6.45)

=
aix + biy + ci − r dβx sinαx cosαy − r dβy sinαy

It is seen from (6.45) that the surface height depends neither on the yaw angle αz, nor on the
yaw boresight misalignment angle dβz, which is meaningless for a laser profiler. Thus, the number
of unknowns is decreased by one as compared to the scanner model. In order to enhance the
estimation, the aircraft may fly at different levels and do banking turns.

Note that if the scan angle σx=0, (6.44) and (6.45) for the scanner and profiler are identical. The
models (6.44) and (6.45) do not allow to distinguish between boresight misalignment and systematic
errors on the attitude angles, caused by a misalignment between the attitude measurement system
and the body frame. The introduction of constant unknown roll and pitch offsets as additional
parameters in the calibration models revealed very high negative correlations of more than 99.99%
with the boresight misalignment parameters, due to the small size of the lever arm vector bB (6.1)
as compared to the laser range r.

The boresight misalignment calibration method for airborne laser altimetry described above is a
truly self-calibrating technique in the sense that it exclusively relies on the sea surface height ob-
servations themselves. There is no need for overflying special calibration surfaces. Additionally,
the method relies directly on subsequent observations within the same flight line, with no need
for overflying the same area more than once. Furthermore, the calibration algorithm is completely
independent of any a priori information about the relief of the measured water surface, like e.g.
geoid heights. The calibration method allowed to estimate boresight misalignment angles with
an accuracy better than 0.1° (Section 6.5.5), corresponding to the expected order of magnitude
of boresight misalignment variations during flight operations, as well as to the estimated attitude
accuracy (Section 6.4.4). Due to the small ranges of less than 3m in shipborne ultrasound altime-
try, and the large size of the ultrasound footprint, there was no need for boresight misalignment
calibration in shipborne ultrasound altimetry.

6.5.5 Case Study: Airborne Laser Profiler Calibration

The attitude of the aircraft was determined using two independent systems: a multi-antenna GPS
array and a Honeywell H764G tactical-grade INS coupled with GPS (Section 6.4.5). The laser
profiler data was georeferenced twice using each attitude solution. The two ground point solutions
were entered separately into the boresight calibration algorithm described in Section 6.5.4, yielding
two sets of boresight misalignment angles (Tab. 6.6 and Tab. 6.7). The roll and pitch misalignment
angles obtained from the same attiude solution agree better than 0.1° between the 6 flights, except
for two outliers on the pitch angle on flights GRL03 and GRL05 for both the GPS and INS
solutions. The outliers are due to a complete lack of significant pitch maneuvers on these specific
flights. In general, the pitch misalignment estimation suffers from larger standard deviations due
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Table 6.6: Boresight misalignment angles estimated from calibration (6.45) using attitudes from the
multi-antenna GPS system. The ∗ are marking outliers.

Date Flight droll [°] Std [°] dpitch [°] Std [°]
09/01/2003 GRL06 -0.71 ±0.006 0.53 ±0.010
09/01/2003 GRL02 -0.73 ±0.007 0.61 ±0.018
10/01/2003 GRL03 -0.77 ±0.007 0.42∗ ±0.018
11/01/2003 GRL05 -0.76 ±0.009 0.68∗ ±0.022
13/01/2003 GRL01 -0.70 ±0.008 0.57 ±0.017
14/01/2003 GRL04 -0.65 ±0.006 0.53 ±0.009

Mean -0.72 ±0.007 0.56 ±0.016
Std ±0.045 ±0.087

Table 6.7: Boresight misalignment angles estimated from calibration (6.45) using INS attitudes. The ∗

are marking outliers.

Date Flight droll [°] Std [°] dpitch [°] Std [°]
09/01/2003 GRL06 -0.21 ±0.006 -0.28 ±0.010
09/01/2003 GRL02 -0.20 ±0.007 -0.23 ±0.018
10/01/2003 GRL03 -0.25 ±0.007 -0.37∗ ±0.018
11/01/2003 GRL05 -0.25 ±0.009 -0.12∗ ±0.022
13/01/2003 GRL01 -0.20 ±0.007 -0.25 ±0.016
14/01/2003 GRL04 -0.23 ±0.005 -0.32 ±0.008

Mean -0.22 ±0.007 -0.26 ±0.015
Std ±0.021 ±0.086

Table 6.8: Differences between boresight misalignment angles estimated using attitudes from the multi-
antenna GPS system (Tab. 6.6) and INS (Tab. 6.7).

Date Flight droll GPS-INS [°] dpitch GPS-INS [°]
09/01/2003 GRL06 -0.50 0.81
09/01/2003 GRL02 -0.53 0.85
10/01/2003 GRL03 -0.53 0.79
11/01/2003 GRL05 -0.51 0.79
13/01/2003 GRL01 -0.50 0.82
14/01/2003 GRL04 -0.42 0.86

Mean -0.50 0.82
Mean from Tab. 6.3 0.50 -0.91

to less significant pitch maneuvers as compared to roll maneuvers (turns) during the survey flights.
The estimated standard deviations of the GPS and INS solutions are similar. This shows that the
slightly higher accuracy and the higher sampling rate of the INS does not result in a significant
advantage in boresight calibration and that the efficiency of the calibration is primarily governed
by the characteristics of the aircraft maneuvers during a survey flight. The differences between the
boresight angles of the GPS and INS solution are listed in Tab. 6.8. Theoretically, these differences
should correspond to the mean attitude differences obtained by the two systems (Tab. 6.3). For the
roll angle, both differences are identical, while for the pitch angle, a deviation of 0.09° is observed.
Obviously, the attitude differences are of opposite sign than the boresight differences.

An example of boresight misalignment calibration of the laser profiler using attitudes from the
multi-antenna GPS system on survey flight GRL01 is shown in Fig. 6.15. Fig. 6.14 shows the
attitude of the aircraft during the flight. It is seen that during strong roll maneuvers, the laser
altimeter receives no return from the sea surface, whereas the pitch movements on survey flights
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(a) (b)

Figure 6.14: (a) Attitude of the aircraft during flight GRL01 from multi-antenna GPS. Light line on roll
and pitch: attitudes where no returns of the laser profiler were obtained. (b) Zoom into part of (a), with
special roll and pitch maneuvers without heading change (constant yaw) around 10:26.

are not strong enough to produce significant lacks of laser returns. Fig. 6.15a and Fig. 6.15b show
the original sea surface height observations without considering boresight misalignment (6.35),
as well as the adjusted sea surface height observations from LSQ adjustment. The adjusted sea
surface heights are given by the difference between the original sea surface height observations
and their residuals from LSQ adjustment. They reveal the effect of boresight misalignment during
turns, characterized by oversized variations of the sea surface heights (Fig. 6.15a and Fig. 6.15b,
top). The residuals contain the part of the sea surface height that is not modeled by (6.45).
This part is mainly formed by ocean waves, as well as residual system noise. The residuals are
normally distributed around zero (Fig. 6.15a and Fig. 6.15b, bottom), underlining the conformity
of the model. The good performance of the model is demonstrated by its capability of separating
the waves, considered as residuals, from the effects of boresight misalignment, both contained in
the original sea surface height observations.

The effect of the boresight misalignment correction on ground point height can reach 1m during
turns, due to large roll angles of 20° (Fig. 6.15c and Fig. 6.15d, bottom). A common approach
to avoid strong boresight misalignment effects on laser profilers consists in considering only data
along straight flight lines and neglecting data during turns or other roll and pitch maneuvers.
On flight GRL01, the decrease of the pitch angle from 2.5° at the beginning of the flight to 1°
towards the end of the flight (Fig. 6.14a) results in a vertical boresight effect decreasing from 5 cm
to 2.5 cm (Fig. 6.15c, bottom). This underlines the benefit of boresight calibration even when only
straight flight lines are considered. Even on straight lines, aircrafts usually fly with more or less
constant pitch angles (different from 0), or they may fly at constant roll angles due to strong side
winds. This can cause systematic ground point errors of several cm if boresight misalignment is
not considered.
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(a) (b)

(c) (d)

Figure 6.15: (a) Boresight misalignment calibration of the laser profiler (6.45) during flight GRL01 using
the attitude solution from multi-antenna GPS. Top: Original sea surface height observations without
considering boresight misalignment (light line) and adjusted sea surface height observations from LSQ
adjustment (black line). Bottom: Residuals on sea surface height observations from LSQ adjustment.
(c) Same boresight misalignment calibration as in (a). Top: Sea surface heights corrected for boresight
misalignment (light line), original sea surface height observations without boresight misalignment correction
(black line in the background) and sea surface heights modeled with piecewise polynomials (black line
with circles indicating polynomial breaks). Bottom: Difference between sea surface heights corrected
for boresight misalignment and original sea surface heights without boresight misalignment correction,
corresponding to the estimated effect of boresight misalignment on on ground point heights. (b) and (d)
Zoom into part of (a) and (c) with special roll and pitch maneuvers without heading change (constant
yaw) around 10:26.
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7 Sea Surface Heights by Airborne Laser
Altimetry around Western Crete

7.1 GAVDOS Airborne Laser Altimetry Campaign

The GAVDOS project, supported by the European Union, formed an integral part of an inter-
national effort to establish European absolute sea level monitoring facilities and calibration sites
for radar altimetry satellites (Pavlis et al., 2004). The isle of Gavdos, situated south of Crete
(Greece), was selected to host the facilities due to its offshore location under a crossover of two
ground tracks of the radar altimetry missions TOPEX/Poseidon and Jason-1. The GAVDOS
project was an international cooperation between the following institutions:

• Technical University of Crete (TUC), Geodesy and Geomatics Engineering, Greece

• Joint Center for Earth Systems Technology (JCET), University of Maryland, Baltimore
County, USA

• Aristotle University of Thessaloniki (AUTH), Department of Geodesy and Surveying, Greece

• Institute of Marine Biology of Crete (IMBC), Department of Oceanography, Heraklion,
Greece (now Hellenic Center for Marine Research, HCMR)

• Austrian Space Research Institute, Department of Satellite Geodesy, Austria

• National Survey and Cadastre of Denmark (KMS), Geodynamics Department, Denmark

• Observatoire de la Cote d’Azur (OCA), France

• Centre d’Etudes et de Recherches en Géodynamique et Astrométrie (CERGA), CNRS, France

• Hellenic Navy Hydrographic Service (HNHS), Athens, Greece

• University of Bergen, Institute of Solid Earth Physics, Norway

• ETH Zurich, Geodesy and Geodynamics Lab (GGL), Switzerland

During the GAVDOS project (2001 - 2004), coordinated survey campaigns were carried out in
the area around Gavdos and Crete, with the primary aim to calibrate Jason-1 observations. The
project included data collected from tide-gauges, airborne laser altimetry, airborne gravimetry, GPS
buoys, hydrodynamic leveling, satellite laser ranging (SLR), DORIS radio positioning, altimeter
transponder observations and continuous GPS stations. In order to reference the radar altimeter
observations at the calibration facility and to study the regional sea current circulation, detailed
regional models of the geoid and sea surface topography are required. This task was achieved
by carrying out a regional flight campaign for airborne gravimetry and laser altimetry. A high-
resolution geoid has been derived from the gravimetric data (Tziavos et al., 2004).

The airborne campaign took place during 7 consecutive days, from 09/01/2003 to 15/01/2003, with
a total of 35 survey flight hours. An area of approximately 200 by 200 km was covered with two
different flight levels around Gavdos and the western part of Crete, in the vicinity of the Hellenic
Trench. The higher flight level, with 8 flight lines at 11500 ft (3500m) altitude, was reserved
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7 Sea Surface Heights by Airborne Laser Altimetry around Western Crete

Figure 7.1: Low altitude (700 ft) flight lines of the GAVDOS combined airborne gravimetry and laser
altimetry campaign around Crete, with aircraft trajectories (thin blue line) and laser data (thick red line).
Black diagonal lines: Jason-1 radar altimeter ground tracks. Orange triangles: GPS reference stations
(TUC1, GALI, RTHY). White circle: Souda Bay tide-gauge (SBTG). Blue circle: Chania Airport (CHQ).
Gray line: boundary of FIR-Athens. Background: bathymetry in [m].

for gravimetric surveying. The lower flight level, with 24 lines at 700 ft (215m) altitude flown
during 6 consecutive days was a combined gravimetric and laser altimetry survey (Fig. 7.1). Three
GPS reference stations (TUC1, GALI, RTHY) were operated on the island of Crete during flight
operations. Data from the permanent tide-gauge station in Souda Bay (SBTG), operated by the
Hellenic Navy Hydrographic Service, was available. All flights were flown out of Chania Airport
(CHQ) and remained within the Athens Flight Information Region (FIR-Athens). The campaign
was carried out in close cooperation with the National Survey and Cadastre of Denmark (KMS)
and the Institute of Solid Earth Physics of the University of Bergen. The survey vessel Pytheas
of the Hellenic Navy Hydrographic Service (HNHS) took part in the campaign. There has been
a close collaboration with the Hellenic Military Geographic Service, Civil and Military Aviation
Control Authorities and Chania Airport.

7.2 Instantaneous Sea Surface Height Profiles

7.2.1 Sea Surface Height Profiles

Sea surface height profiles (Fig. 7.2 and Fig. 7.3) were computed with respect to the WGS84 el-
lipsoid, based on airborne laser range data, aircraft trajectories and attitudes, using the direct
georeferencing method described in Chapter 6. The original sea surface height results with a sam-
pling rate of 1 kHz were low-pass filtered using a 1D spline filter with a cut-off wavelength of 10 km
(Fig. 7.2 and Fig. 7.3). The spline filter algorithm is robust against outliers and is capable of han-
dling the large amount of data yielded by the 1 kHz laser observations. In addition, as opposed to
filter algorithms in the frequency domain based on Fourier transforms, the spline filter is insensitive
to data gaps as occurring throughout the laser datasets. Further information on spline filters can
be found in (Goto et al., 2005; Hernla, 2000; Numada et al., 2007; Törnig and Spellucci, 2000).
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7.2 Instantaneous Sea Surface Height Profiles

Figure 7.2: Left: Tracks of flights GRL06, GRL02 and GRL03, with aircraft trajectory (thin line) and
laser data (thick line). Right: Corresponding time series of instantaneous sea surface height profiles (with
respect to the WGS84 reference ellipsoid) from airborne laser altimetry, with original sampling rate of
1 kHz (light line) and heights smoothed using a low-pass spline filter with a cut-off wavelength of 10 km
(black line). Time indications on the left-hand graphs correspond to the time axis of the right-hand graphs.
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Figure 7.3: Left: Tracks of flights GRL05, GRL01 and GRL05, with aircraft trajectory (thin line) and
laser data (thick line). Right: Corresponding time series of instantaneous sea surface height profiles (with
respect to the WGS84 reference ellipsoid) from airborne laser altimetry, with original sampling rate of
1 kHz (light line) and heights smoothed using a low-pass spline filter with a cut-off wavelength of 10 km
(black line). Time indications on the left-hand graphs correspond to the time axis of the right-hand graphs.
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7.2 Instantaneous Sea Surface Height Profiles

7.2.2 Calibration of Airborne Laser Altimetry Data with GPS Buoys

GPS-equipped buoys were deployed simultaneously with the airborne surveys, providing ground-
truth sea surface heights for the verification and calibration of the airborne laser altimetry system.
Two lightweight buoys (Appendix C.2) were used at a sampling rate of 1Hz. The GPS data of the
buoys was processed by double-differenced carrier phase, using the reference stations TUC1 and
GALI (Fig. 7.1). Several overflights of the buoys were performed. Two verifications of airborne laser
altimetry results with GPS buoy observations during flight GRL04 are presented in this section.

A first calibration was performed in the port of Agia Galini (GALI in Fig. 7.1, Fig. 7.4). The buoy
data reveals the presence of a wave with a period close to 10minutes and an amplitude of about
2 cm inside the port (Fig 7.4d). The laser data also indicates the presence of a wave, since the
filtered height is not constant inside the port (Fig 7.4c). Due to this wave, in conjunction with the
horizontal offset of 87m between the laser profile and the buoy, the comparison between the two

(a) (b)

(c) Airborne Laser Altimetry Profile (d) GPS Buoy

Figure 7.4: (a) Overflight of the port of Agia Galini as seen from the aircraft. (b) GPS buoy deployed in
the port of Agia Galini during overflight. (c) Height profile from airborne laser altimetry during overflight
of the port of Agia Galini. Light dots: original data (sampling rate 1 kHz). From left to right, the laser
data shows the sea surface outside the port, the wave-breaker, the sidewalk, the sea surface inside the port
and the pear. The cross-section of the port is 150m. (d) Sea surface height from GPS buoy in the port of
Agia Galini during 1 hour centered around the overflight.

95



7 Sea Surface Heights by Airborne Laser Altimetry around Western Crete

(a) (b) (c)

(d) Airborne Laser Altimetry Profile (e) GPS Buoy

Figure 7.5: (a) Overflight of the survey vessel Pyhteas as seen from the aircraft. (b) GPS buoy deployed
during overflight, under rough sea conditions. (c) Situation of the overflight with airborne laser altimetry
profile (gray line) and GPS buoy trajectory (black line), with time indications corresponding to (d) and (e).
(d) Sea surface height profile from airborne laser altimetry during offshore buoy overflight. The laser data
cover 120 s corresponding to a distance of 5 km. (e) Sea surface height from GPS buoy during overflight,
covering 40minutes and corresponding to a drifted distance of 1.5 km.

datasets at the closest approach is meaningless. Therefore, the mean buoy height observed during
1 hour and the mean laser height over the entire cross-section of the port basin were considered in
the comparison. A height difference of 4.3 cm is observed, which lies within the expected accuracies,
regarding the noisy laser data inside the port.

In order to obtain an offshore calibration, a GPS buoy was deployed in the open sea south of
Crete, at 35.17°N and 23.90°E. The buoy was deployed under drifting conditions by the survey
vessel Pytheas of the Hellenic Navy Hydrographic Service, during an overflight of the survey
aircraft (Fig. 7.5). The horizontal distance between the buoy and the laser profile during the
overflight (closest approach) was 26m. Both datasets were smoothed using a spline filter with the
same cut-off wavelength of 2 km. A good agreement was obtained between the two independent
observations, with a height difference of only 0.2 cm (Fig 7.5d and Fig 7.5e). In addition, similar
wave amplitudes were observed by both systems. The good agreement between the ground-truth
GPS buoy observations and airborne laser altimetry enabled the validation of the laser altimetry
system and the direct georeferencing algorithm, without any further calibration.
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7.3 Sea Surface Height Corrections

7.2.3 Significant Wave Heights

Due to the high sampling rate of the airborne laser altimetry data, the residuals between the original
and filtered data correspond to the ocean wave undulations, neglecting system noise. Based on these
wave undulations, significant wave heights H̄1/3 (Section 3.2) were computed from the airborne
laser altimetry data (Fig. 7.6). For each significant wave height sample, an overlapping data interval
of 10 km was considered. During the airborne campaign, the sea surface was characterized by a
wide variety of sea states, with significant wave heights ranging from 0.3 to 2.8m. Significant wave
heights from a dedicated profile are compared to significant wave heights from Jason-1 GDR data
in Section 9.2.

7.3 Sea Surface Height Corrections

7.3.1 Ocean Wave Correction

The oscillation effects of ocean waves are eliminated by the low-pass filtering (Section 7.2.1).
Further details on ocean waves are given in Section 3.2.

7.3.2 Ocean Tide Correction

The amplitudes of the major ocean tide constituents M2 and S2 are below 2 cm in the survey
area around Crete (Fig. 3.3). Hence, only very small tidal effects are to be expected. Tidal
corrections along the airborne laser altimetry tracks were computed with the global tide models
FES2004 (Fig. 7.7a) and GOT00.21 (Fig. 7.7b), as well as with the POL (Proudman Oceanographic
Laboratory) model for the Mediterranean Sea (Fig. 7.7c). Further details on these ocean tide
models can be found in Section 3.3.2. All three models predict ocean tides below 2.5 cm. However,
the predictions are highly contradictory, since the differences between the models reach up to 3 cm
(Fig. 7.7d). Considering the small size of the tidal amplitudes and of the differences between the
models, the choice of the tide model is not crucial for the accuracy of the corrected sea surface
heights. Nevertheless, in order to select the most appropriate model for the considered survey area,
a validation of the tidal corrections obtained from the three models was performed, based on tide-
gauge observations and on a crosspoints analysis. The validation of FES2004 and POL with local
tide-gauge data showed that the POL predictions agree better with the tide-gauge observations
(Section 7.3.4). Since the tidal amplitudes and the differences between the predictions of the three
models are in the same order of magnitude as the expected accuracy of the sea surface height
observations from airborne laser altimetry, it was not possible to discredit one model in favor of
another based on the crosspoints analysis (Section 7.4.2). Similar validations were performed for
the shipborne data in the North Aegean Sea (Section 8.3.4 and Section 8.4.1). Due to the fact that
tidal amplitudes are higher in that survey area, the POL model was identified to agree best with
the in situ observations. This model was therefore used to correct the shipborne sea surface height
data in the North Aegean Sea. For consistency reasons, the POL model was also used to correct
the airborne sea surface height data around western Crete.

7.3.3 Correction for Atmospheric Pressure and Wind Forcing

Corrections for the effect of atmospheric pressure and wind forcing on sea surface heights were
computed from the MOG2D correction grids (Section 3.4.2 and Appendix G). Corrections along
the airborne laser altimetry tracks were obtained by spatiotemporal interpolation of the MOG2D

1Tide corrections from GOT00.2 model were provided by E.C. Pavlis from JCET.
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7 Sea Surface Heights by Airborne Laser Altimetry around Western Crete

Figure 7.6: Significant wave heights estimated from airborne laser altimetry (background: bathymetry).
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7.3 Sea Surface Height Corrections

(a) FES2004 (b) GOT00.2

(c) POL (d)

Figure 7.7: Ocean tide predictions along airborne laser altimetry tracks from the models (a) FES2004,
(b) GOT00.2 and (c) POL (Proudman Oceanographic Laboratory). (d) Top: time series of ocean tides
along airborne laser altimetry tracks from FES2004 corresponding to (a), GOT00.2 corresponding to (b)
and POL corresponding to (c). (d) Bottom: differences between the models.
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(a) (b)

Figure 7.8: (a) Effect of atmospheric pressure and wind forcing on sea surface height along airborne laser
altimetry tracks, based on MOG2D correction grids. (b) Time series of the effect of atmospheric pressure
and wind forcing along flight tracks (black line, corresponding to (a)) and at Souda Bay tide-gauge station
(gray line, SBTG).

grids (Fig. 7.8). At the tide-gauge station in Souda Bay (SBTG), the atmospheric effect varies
between -18 cm and 4 cm during the 9 consecutive days of the survey campaign (Fig. 7.8b, light
line). The maximum positive effect occurrs during the morning of 12/01/2003, coinciding with the
passage an atmospheric depression (Appendix F). The atmospheric effect along the flight tracks
ranges from -10 cm to -2 cm, and variations of up to 5 cm are encountered during the same flight
(Fig. 7.8a and Fig. 7.8b dark line). For the area and period of the considered dataset, the effect of
atmospheric pressure and wind forcing (Fig. 7.8) is larger than the ocean tide effect (Fig. 7.7).

7.3.4 Validation of Tidal and Atmospheric Corrections with Tide-Gauge

A validation of the FES2004 and POL tidal corrections, as well as the MOG2D atmospheric
corrections, was carried out using observations from Souda Bay tide-gauge station (SBTG, Fig. 7.1),
operated by the Hellenic Navy Hydrographic Service. The sea surface heights recorded by tide-
gauges are affected by astronomic ocean tides and the forcing of atmospheric pressure and wind.
In order to compare tide-gauge data to the predictions obtained from tide models, the effects of
atmospheric forcing have to be removed from the tide-gauge data. Tide data of 9 consecutive
days of the airborne campaign were analyzed (Fig. 7.9). In a first step, the atmospheric effect
from MOG2D correction grids were removed from the tide-gauge observations (Fig. 7.9a). In a
second step, a remaining low frequency trend (period>48 h) was removed from the observations.
This trend mainly represents the remaining local effect of atmospheric forcing, not resolved by
MOG2D. Differences between the corrected tide-gauge observations and predications of FES2004
show a standard deviation of 2.0 cm and maximum values of 5 cm (Fig. 7.9b). Differences with
respect to the POL model have a smaller standard deviation of 1.3 cm and maximum values of
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(a) (b)

Figure 7.9: (a) Top: Sea level observations from Souda Bay tide-gauge, Crete (with data gap on
10/01/2003), during 9 consecutive days of the airborne campaign, and dynamic atmospheric corrections
(DAC) from MOG2D. Center: Tide-gauge data corrected with MOG2D DAC and remaining trend. Bot-
tom: Tide-gauge data corrected with MOG2D DAC and with remaining trend removed. (b) Top: Sea
level observations from Souda Bay tide-gauge station, corrected with MOG2D DAC and with remaining
trend removed (corresponding to (a) bottom), as well as tidal predictions from FES2004 and POL models.
Bottom: Difference between tide-gauge data and FES2004 and POL predictions.

3 cm. The differences with respect to both tide models still contain periodic signals, meaning that
the models do not entirely match the observed tide. The discrepancies between the tide-gauge
observations and the models are most likely due to local coastal effects, not resolved by the tidal
and atmospheric forcing models. It can be assumed that the models perform better offshore, in
the absence of strong and hardly predictable coastal effects.

7.3.5 Sea Level Anomaly Correction

Sea level anomalies (SLA) were computed for the survey area around Crete during the airborne
campaign, based on SSALTO/DUACS products (Section 2.4). For the considered area and period
(1week), the SLA range from -2,cm to 18 cm (Fig. 7.10). The average sea surface height in the area
is higher than the reference height, with a positive mean SLA of 10.9 cm and 4.5 cm for 08/01/2003
and 15/01/2003, respectively. Hence, during only one week, an important decrease of the mean
SLA by 6.3 cm and local SLA variations of up to 12 cm is observed in the survey area (Fig. 7.10c).
The SLA show that even after removing the effects of waves, tides and atmospheric forcing, the sea
surface topography cannot be considered as constant during the 6 days of the airborne campaign.
Thus, an additional sea surface height correction was computed along the flight tracks, based
on spatiotemporal interpolation of the SSALTO/DUACS SLA (Fig. 7.10d). The resulting SLA
corrections take significant values between -1 cm and 15 cm. These corrections, however, should
only be applied when the resulting sea surface heights are meant to represent the mean sea surface
MSS, as defined in (2.2) and (2.28). They must not be applied when the resulting sea surface
heights are meant to represent corrected sea surface heights SSH, including the variable part of
the dynamic topography, as defined in (2.1) and (2.27).
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(a) (b)

(c) (d)

Figure 7.10: Weekly sea level anomaly (SLA) from SSALTO/DUACS merged multi-mission altimetric
data around Crete, on 08/01/2003 (a) and 15/01/2003 (b). Contour interval: 0.01m. (c) Sea level
anomaly difference between the two consecutive weekly datasets in (a) and (b). Contour interval: 0.01m.
(d) Sea level anomaly along airborne laser altimetry tracks, based on SSALTO/DUACS sea level anomalies
in (a) and (b).

102



7.4 Repeatability Analysis

7.4 Repeatability Analysis

7.4.1 Analysis of Repeated Tracks

A good indicator for the repeatability of the airborne laser altimetry system are height differences
on repeated tracks. Repeated tracks provide information on the repeatability and on the behavior
of the height difference along a whole track, rather than only at punctual crossovers. Three
repeated tracks were flown (Fig. 7.11). Cross-track distances between the repeated tracks remained
mostly below 100m. Statistics on the height differences using different combinations of tidal and
atmospheric sea surface height corrections are shown in Tab. 7.1. Good agreements are obtained
between the repeated tracks, with the majority of the height differences remaining below 10 cm.
Strong winds and heavy turbulences were encountered on flight GRL05, which degraded the quality
of the resulting sea surface heights on this flight. The tidal and atmospheric corrections do not
allow to substantially improve the height differences on the repeated tracks (Fig. 7.11), since the

(a) Repeated track GRL01-GR0L1 (b) Repeated track GRL01-GR0L5 a

(c) Repeated track GRL01-GR0L5 b

Figure 7.11: Repeated tracks on flights GRL01 and GRL05. Top of (a), (b), (c): cross-track coordinate
as a function of along-track horizontal coordinate. Bottom of (a), (b), (c): height difference between
repeated tracks without sea surface height corrections (black line) and with different combinations of sea
surface heigtht corrections (gray lines), corresponding to Tab. 7.1.
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Table 7.1: Height differences on repeated tracks for solutions with different combinations of tidal and
atmospheric sea surface height corrections.

Tidal/Atmospheric sea surface height correction
Tidal - FES2004 GOT00.2 POL - FES2004 GOT00.2 POL

Atmospheric - - - - MOG2D MOG2D MOG2D MOG2D
Repeated track GRL01-GR0L1 (Fig. 7.11a)
Mean [m] -0.054 -0.048 -0.053 -0.055 -0.059 -0.052 -0.058 -0.060
StD [m] 0.017 0.017 0.018 0.018 0.017 0.017 0.018 0.018
RMS [m] 0.057 0.051 0.056 0.058 0.061 0.055 0.060 0.062
|Max| [m] 0.075 0.069 0.075 0.077 0.080 0.074 0.079 0.081
Repeated track GRL01-GR0L5 1 (Fig. 7.11b)
Mean [m] 0.015 0.026 0.037 0.028 -0.000 0.011 0.022 0.013
StD [m] 0.069 0.069 0.072 0.069 0.063 0.063 0.066 0.063
RMS [m] 0.070 0.074 0.081 0.074 0.063 0.064 0.070 0.064
|Max| [m] 0.150 0.161 0.179 0.163 0.144 0.137 0.155 0.139
Repeated track GRL01-GR0L5 2 (Fig. 7.11c)
Mean [m] -0.003 -0.003 -0.024 -0.005 0.013 0.013 -0.008 0.011
StD [m] 0.047 0.048 0.049 0.048 0.046 0.047 0.047 0.047
RMS [m] 0.047 0.048 0.054 0.049 0.048 0.049 0.048 0.048
|Max| [m] 0.068 0.070 0.091 0.072 0.080 0.082 0.074 0.080

order of magnitude of the height differences is higher than the estimated corrections. This confirms
the conclusion of Section 7.4.2, where no significant improvement at the crosspoints is obtained
using the different combinations of tidal and atmospheric corrections.

7.4.2 Crosspoints Analysis

The airborne laser altimetry profiles yield 100 crosspoints, where the sea surface height was ob-
served twice at the same position (Fig. 7.13). Height differences at crosspoints are a good indicator
for the repeatability and the accuracy of the airborne laser altimetry system. An analysis of these
height differences computed with different combinations of tidal and atmospheric sea surface height
corrections, as well as sea level anomaly (SLA) corrections, was carried out (Tab. 7.2 and Fig. 7.12).
The various combinations yield no significant difference, with the RMS of the height differences
varying less than 0.6 cm. Furthermore, no improvement at the crosspoints is observed using the
different combinations of tidal and atmospheric corrections. This is a consequence of the fact that
the orders of magnitude of the tidal and atmospheric effects are small compared to the accuracy
of the airborne laser altimetry method. The beneficial impact on sea surface height differences
at crosspoints of the same corrections applied to the shipborne data in the North Aegean Sea is
shown in Section 8.4.1.

After the application of tidal, atmospheric and SLA corrections, the final RMS of the height
differences at the 100 crosspoints is in the order of 8.5 cm (Tab. 7.2). The RMS at the 18 inner-
flight crosspoints is about 6.5 cm, whereas the RMS at the remaining 82 inter-flight crosspoints
is 9.0 cm. For the solution using POL tidal corrections, MOG2D atmospheric corrections and
SLA corrections, the height difference remains below 10 cm at 76% of the crosspoints, below 15 cm
at 89% and below 20 cm at 99% of the crosspoints (Fig. 7.12). The maximum observed height
difference is 21.6 cm. A final outlier rejection was carried out during the surface generation and data
gridding (Section 7.5). An outlier removal further improves the height differences at crosspoints
and eliminates most of the differences above 15 cm. At this stage, however, the objective of the
crosspoint analysis was not to give the best possible result by eliminating all outliers, but to give a
realistic impression of the accuracy and repeatability of the airborne laser altimetry method, prior
to a thorough outlier removal.
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(a) without SLA correction

(b) with SLA correction

Figure 7.12: Distributions of height differences at crosspoints using different combinations of tidal and
atmospheric corrections (corresponding to Tab. 7.2), without (a) and with (b) sea level anomaly (SLA)
correction. Black: inner-flight crosspoints. Gray: inter-flight crosspoints.
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Table 7.2: RMS [m] of height differences at crosspoints for solutions with different combinations of tidal
and atmospheric sea surface height corrections, without sea level anomaly (SLA) correction, with SLA
correction and with combined SLA correction and LSQ adjustment.

Tidal/Atmospheric sea surface height correction
Tidal - FES2004 GOT00.2 POL - FES2004 GOT00.2 POL
Atmospheric - - - - MOG2D MOG2D MOG2D MOG2D
All 100 crosspoints
RMS [m] 0.083 0.083 0.084 0.083 0.087 0.089 0.089 0.087
RMS [m] (SLA) 0.085 0.084 0.083 0.085 0.086 0.087 0.086 0.087
RMS [m] (SLA+LSQ) - - - - - - - 0.045
Inner-flight 18 crosspoints
RMS [m] 0.068 0.066 0.066 0.066 0.067 0.066 0.066 0.065
RMS [m] (SLA) 0.067 0.066 0.066 0.066 0.067 0.066 0.065 0.065
RMS [m] (SLA+LSQ) - - - - - - - 0.050
Inter-flight 82 crosspoints
RMS [m] 0.086 0.087 0.087 0.086 0.091 0.094 0.093 0.092
RMS [m] (SLA) 0.088 0.087 0.087 0.088 0.090 0.091 0.089 0.091
RMS [m] (SLA+LSQ) - - - - - - - 0.044

7.4.3 LSQ Adjustment Based on Crosspoints

After the application of all corrections, a relatively large amount (24%) of height differences at
crosspoints remains above 10 cm (Section 7.4.2). These misfits are causing problems during sur-
face generation (Section 7.5). Hence, as a final correction, an LSQ adjustment of the profiles was
carried out, estimating a linear correction for every flight line that reduces the height differences
at crosspoints in a least-squares sense. The LSQ adjustment benefits from the grid-like configu-
ration of the densely spaced flight tracks. Corrections of up to 15.7 cm are obtained by the LSQ
adjustment, providing a significant improvement of the height differences at crosspoints (Tab. 7.2
and Fig. 7.13b). Using POL tidal corrections, MOG2D atmospheric corrections and SLA correc-
tions in combination with the LSQ adjustment, the RMS of the height differences is reduced to
4.5 cm, corresponding to an improvement of 50%. After the LSQ adjustment, height differences
remain below 5 cm at 77% of the 100 crosspoints and below 10 cm at 98% of the crosspoints. The
maximum observed height difference was reduced from 21.6 to 14.9 cm. The beneficial impact of
the LSQ adjustment for the surface generation procedure is shown in Section 7.5.

7.5 Time-Independent Sea Surface Topography

By subtracting the time-dependent corrections (Section 7.3) from the low-pass filtered instanta-
neous sea surface heights (Section 7.2.1, Fig. 7.2 and Fig. 7.3), time-independent sea surface height
profiles are obtained (Fig. 7.14). The sea surface heights are computed with respect to the WGS84
reference ellipsoid. Based on the analysis of sea surface height corrections in Section 7.4.2, the
observed sea surface heights were corrected using POL tidal corrections, MOG2D atmospheric cor-
rections and SLA corrections from SSALTO/DUACS. Furthermore, the sea surface heights were
corrected using an LSQ adjustment of the profiles in order to reduce the height differences at
crosspoints (Section 7.4.3).

The resulting punctual time-independent sea surface heights were interpolated onto a regular grid
using a bicubic spline interpolation with continuous curvature and adjustable tension. In a second
step, the obtained gridded sea surface heights were low-pass filtered using a 2D FFT filter with
a cut-off wavelength of 10 km. The cut-off wavelength of the FFT filter was optimally chosen in
order to keep the residuals small, without obtaining an unrealistically rough surface. The gridded
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(a) before LSQ adjustment

(b) after LSQ adjustment

Figure 7.13: (a) Crosspoints of sea surface height profiles with height differences and their distribution,
using POL tidal corrections, MOG2D atmospheric corrections and SSALTO/DUACS sea level anomaly
corrections. (b) Same as (a), but with LSQ adjustment of flight lines based on crosspoints.

data are forming a surface representing the time-independent sea surface topography (Fig. 7.15).

A final indication for the accuracy of the sea surface heights is given by the residuals between
the time-independent sea surface height profiles (Fig. 7.14) and the gridded sea surface topography
(Fig. 7.15). Without the LSQ adjustment (Section 7.4.3), the along-track residuals have a standard
deviation of 4.1 cm and large local values of up to 28.5 cm (Fig. 7.16a). After the LSQ adjustment,
the residuals are significantly improved (Fig. 7.17a). The standard deviation is reduced to 3.1 cm,
but large residuals of up to 26.6 cm locally remain. In order to avoid unrealistic strong gradients
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7 Sea Surface Heights by Airborne Laser Altimetry around Western Crete

Figure 7.14: Time-independent sea surface height profiles (with respect to the WGS84 ellipsoid) from
airborne laser altimetry around Crete. The sea surface height profiles were low-pass filtered using a 1D
spline filter with a cut-off wavelength of 10 km. Background: bathymetry in [m] (contour interval 100m).

Figure 7.15: Sea surface topography (with respect to WGS84) obtained from airborne altimetry profiles
around Crete (Fig. 7.14) by bicubic spline interpolation. The topography was low-pass filtered using a 2D
FFT filter with a cut-off wavelength of 10 km. White lines: flight tracks. Contour interval: 0.25m.
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7.5 Time-Independent Sea Surface Topography

(a) without LSQ adjustment, without outlier removal (b) without LSQ adjustment, with outlier removal

Figure 7.16: Residuals between along-track sea surface heights (Fig. 7.14) and gridded sea surface topog-
raphy (Fig. 7.15), without correction from LSQ adjustment based on crosspoints, before (a) and after (b)
outlier removal.

(a) with LSQ adjustment, without outlier removal (b) with LSQ adjustment, with outlier removal

Figure 7.17: Residuals between along-track sea surface heights (Fig. 7.14) and gridded sea surface to-
pography (Fig. 7.15), with correction from LSQ adjustment based on crosspoints, before (a) and after (b)
outlier removal.
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7 Sea Surface Heights by Airborne Laser Altimetry around Western Crete

in the gridded sea surface topography, it is advisable to eliminate along-track data with large
residuals prior to the surface generation. Using the LSQ adjustment, less observations had to be
removed (Fig. 7.16b and Fig. 7.17b). After the removal of the outliers, the final residuals are all
below 10 cm, with a standard deviation of only 2.9 cm (Fig. 7.17b).

The sea surface height results reveal very strong gradients, with heights decreasing from 28m
above the reference ellipsoid in the north-eastern part of the survey area down to 8m towards the
Hellenic Trench in the southern part, along a distance of only 200 km (Fig. 7.15). Further analysis
and interpretation of the observed sea surface heigths are treated in Chapter 10.
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8 Sea Surface Heights by Shipborne
Ultrasound Altimetry in the North
Aegean Sea

8.1 Shipborne Ultrasound Altimetry Campaigns

The survey area is situated in the North Aegean Sea and covers part of the North Aegean Trough
(NAT), which is a tectonic graben-like feature characterized by a zone of deep water reaching
1500m and trending from north-east to south-west in the North Aegean Sea (Fig. 8.1). The North
Aegean Trough is considered to form the western continuation of the seismically active North
Anatolian Fault Zone (McNeill et al., 2004). For calibration and validation purposes of radar
altimeter missions, the survey area was chosen in the vicinity of Jason-1 ground tracks, including
the crossover of Jason-1 ascending track 33 and descending track 94.

Five successful campaigns for shipborne sea surface height surveys were carried out in the North
Aegean Sea from 2004 to 2008, totaling more than 2000 nautical miles of ship tracks (Fig. 8.1).
The campaigns were carried out in Sept. 2004, June 2005, Sept. 2006, Sept. 2007 and July 2008.
The boat was equipped with a multi-antenna GPS array of 4 - 5 GPS receivers, 1 - 2 ultrasonic
distance sensors and an inertial Attitude and Heading Reference System (Section 5.2). Dedicated
GPS buoy observations were performed on Jason-1 ground tracks and at other key spots, including
deployments with simultaneous Jason-1 crossover. Five GPS reference stations, situated on the
islands of Alonissos (ALON), Agios Efstratios (EFST), Limnos (LIMS) and Skiros (NSKS), as well
as in Neohori (NEOH), were operated at a sampling rate of 1Hz during the shipborne campaign.
In June 2005 and Sept. 2007, the permanent tide-gauge stations PELAS and PELAN were installed
in the survey area and operated since then.

8.2 Instantaneous Sea Surface Height Profiles

Sea surface profiles (Fig. 8.2 and Fig. 8.3) were computed with respect to the WGS84 reference
ellipsoid, based on shipborne ultrasound range data, ship trajectories and attitudes, using the
direct georeferencing method described in Chapter 6. During the shipborne campaigns, sea surface
height data was collected while the ship was at rest and moving with varying velocity. This made
inadequate the use of the spline filter algorithm, developed and applied for sea surface height
observations by airborne laser altimetry (Section 7.2.1). Hence, a robust windowed median filter
algorithm, allowing to switch between window sizes in the time and distance domain, was developed.
The shipborne sea surface height results, with sampling rates of 1Hz and 10Hz, were low-pass
filtered using the median filter with a moving-window size of 30minutes or 500m, depending on
whether the ship was at rest or moving. The used windowed median filter algorithm is robust
against outliers and is capable of processing the enormous amount of data points yielded by the
10Hz ultrasound observations. In addition, as opposed to filter algorithms in the frequency domain
based on Fourier transforms, the windowed median filter is indifferent to data gaps as observed
throughout the ultrasound datasets.
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8 Sea Surface Heights by Shipborne Ultrasound Altimetry in the North Aegean Sea

Figure 8.1: Shipborne sea surface height campaigns in the North Aegean Sea. Boat tracks from the
campaigns in 2004 (orange line), 2005 (green line), 2006 (blue line), 2007 (red line) and 2008 (brown line).
Black diagonal lines: Jason-1 tracks 33 (ascending) and 94 (descending). Orange triangles: GPS reference
stations (ALON, EFST, LIMS, NSKS, NEOH). White triangles: tide-gauge stations (PELAS, PELAN).
Background: bathymetry in [m] with contour interval 50m.

8.3 Sea Surface Height Corrections

8.3.1 Ocean Wave Correction

The oscillation effects of ocean waves are eliminated by the low-pass filtering (Section 8.2). Further
details on ocean waves are given in Section 3.2.

8.3.2 Ocean Tide Correction

In the North Aegean Sea, the amplitudes of the major ocean tide constituents M2 and S2 are
in the order of 15 cm and 10 cm, respectively (Fig. 3.3). The tidal effects to be expected in the
North Aegean Sea are thus stronger than in the survey area around Crete. Tidal corrections along
the shipborne altimetry tracks were computed with the global tide model FES2004 (Fig. 8.4a) and
the POL (Proudman Oceanographic Laboratory) model for Mediterranean (Fig. 8.4b). Further
details on these ocean tide models can be found in Section 3.3.2. Both models predict ocean
tide amplitudes in the order of 15 - 20 cm. However, the predictions are contradictory, since the
differences between the models reach up to 20 cm (Fig. 8.4c). Considering the size of the tidal
amplitudes and of the differences between the models, the choice of the tide model is crucial for
the accuracy of the corrected sea surface heights.

In order to select the most appropriate model for the considered survey area, a validation of the
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8.3 Sea Surface Height Corrections

Figure 8.2: Left: Sea surface height profiles from shipborne altimetry campaigns in 2004 (top) and
2005 (bottom). Right: Corresponding time series of instantaneous sea surface heights (with respect to
the WGS84 reference ellipsoid) with original sampling rate of 10Hz (light line) and filtered heights (black
line).

tidal corrections obtained from the two models was performed, based on tide-gauge observations
(Section 8.3.4) and on a crosspoints analysis (Section 8.4.1). The POL model was identified to
agree better with the in situ observations and was therefore chosen to correct the shipborne sea
surface height data in the North Aegean Sea.

8.3.3 Correction for Atmospheric Pressure and Wind Forcing

Corrections for the effect of atmospheric pressure and wind forcing on sea surface heights were
computed from the MOG2D correction grids (Section 3.4.2 and Appendix G). Corrections along
the shipborne altimetry tracks were obtained by spatiotemporal interpolation of the MOG2D grids
(Fig. 8.5). The atmospheric effect along the ship tracks ranges from -16 cm to 12 cm during the
survey campaigns. Extreme variations of the atmospheric effect of up to 10 cm/day are encountered.
For the area and period of the considered dataset, the effect of atmospheric pressure and wind
forcing reaches values similar to the amplitudes of ocean tides (Fig. 8.4).
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8 Sea Surface Heights by Shipborne Ultrasound Altimetry in the North Aegean Sea

Figure 8.3: Left: Sea surface height profiles from shipborne altimetry campaigns in 2006 (top), 2007
(center) and 2008 (bottom). Right: Corresponding time series of instantaneous sea surface heights (with
respect to the WGS84 reference ellipsoid) with original sampling rate of 10Hz (light line) and filtered
heights (black line).
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8.3 Sea Surface Height Corrections

(a) FES2004 (b) POL

(c) FES2004 - POL

Figure 8.4: Ocean tide predictions along shipborne tracks from the models (a) FES2004 and (b) POL
(Proudman Oceanographic Laboratory). (c) Differences between the tides from FES2004 and POL.
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(a) 2004 (b) 2005

(c) 2006 (d) 2007

(e) 2008 (f) 2004, 2005, 2006, 2007, 2008

Figure 8.5: Effect of atmospheric pressure and wind forcing on sea surface height during shipborne
surveys in 2004 (a), 2005 (b), 2006 (c), 2007 (d) and 2008 (e), based on MOG2D correction grids. Black
line: time series along ship tracks. Gray line: time series at PELAN tide-gauge station. (f) Effect along
ship tracks during all campaigns, corresponding to the time series of (a) to (e).
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8.3 Sea Surface Height Corrections

8.3.4 Validation of Tidal and Atmospheric Corrections with Tide-Gauge

A validation of the FES2004 and POL tidal corrections, as well as the MOG2D atmospheric
corrections, was carried out using local tide-gauge data. The considered tide observations are from
the PELAN tide-gauge station, installed in the framework of this project (Fig. 8.1 and Fig. 8.6).
The sea surface heights recorded by tide-gauges are affected by astronomic ocean tides and the
forcing of atmospheric pressure and wind. In order to compare tide-gauge data to the predictions
obtained from tide models, the effects of atmospheric forcing have to be removed from the tide-
gauge data. Tide data covering 9 consecutive months were analyzed. In a first step, the atmospheric
effect from MOG2D correction grids were removed from the tide-gauge observations (Fig. 8.7). In
a second step, a remaining low frequency trend (period>48 h) was removed from the observations.
This trend, ranging between -18.5 cm and 14.3 cm, mainly represents the remaining local effect of
atmospheric forcing, not resolved by MOG2D.

Differences between the corrected tide-gauge observations and predictions from FES2004 show a
large standard deviation of 8.6 cm and large maximum values of 25 cm (Fig. 8.8a). The FES2004
predictions do not match the observed tidal signal: e.g. the spring and neap tides do not coincide in
time (Fig. 8.8b). Predictions from the POL model show a good agreement with the observed tidal
signal (Fig. 8.8c and Fig. 8.8d). Differences have a standard deviation of 2.5 cm and maximum
values of 8 cm. Hence, despite the fact that only 4 tidal constituents (M2, S2, K1, O1) are
included in the POL model (against 14 constituents for FES2004), the POL predictions are in
better agreement with local tide-gauge data than FES2004. The discrepancies between the tide-
gauge observations and the POL model are most likely due to local coastal effects, not resolved
by the tidal and atmospheric forcing models. It can be assumed that the model performs better
offshore, in the absence of strong and hardly predictable coastal effects.

To further analyze the tidal signal observed in the survey area of the North Aegean Sea, amplitudes
and phase lags of the 9 major tidal constituents (M2, S2, K2, N2, 2N2, K1, O1, P1, Q1) were
estimated by harmonic analysis (3.4) of the corrected tide-gauge data at PELAN. The amplitudes
and phase lags obtained by harmonic analysis are in good agreement with the POL model (Tab. 8.1).
The amplitudes agree better than 0.4 cm and the phase lags better than 9°. On the other hand,
a poor agreement with the amplitudes and phase lags of FES2004 is obtained. The maximum
amplitude difference is 2.9 cm and the maximum phase lag difference is 107°. The poor agreement
is most likely a consequence of a lack of Aegean tide-gauge data in the assimilation of FES2004.
This assumption was confirmed by analysing tidal predictions from FES2004 and POL in the
Western Mediterranean, where local tide-gauge data are assimilated in FES2004. In this area,
a good agreement between the two models is observed. Using the amplitudes and phase lags

Figure 8.6: Left: Pressure tide-gauge station PELAN, with GPS antenna for the determination of
absolute position and height. Right: view of the pressure gauge inside the tube.
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(a) (b)

Figure 8.7: (a) Top: Sea level observations from PELAN tide-gauge in the North Aegean Sea, from
Sept. 2007 to June 2008 (9 months), and dynamic atmospheric corrections (DAC) from MOG2D. Center:
Tide-gauge data corrected with MOG2D DAC and remaining trend. Bottom: Tide-gauge data corrected
with MOG2D DAC and with remaining trend removed. (b) Zoom into first 2 months of (a).

Table 8.1: Amplitudes and phase lags of the major harmonic constituents of the astronomical ocean tide
at the PELAN tide-gauge site in the North Aegean Sea, estimated by harmonic analysis of local tide-gauge
data (TG) and extracted from FES2004 and POL grids.

Period Amplitude [m] Phase lag [°]
Wave [days] TG FES2004 POL TG FES2004 POL
M2 0.51753 0.075 0.078 0.079 59 -25 68
S2 0.50000 0.052 0.035 0.054 80 103 82
K2 0.49863 0.020 0.014 - 52 88 -
N2 0.52743 0.015 0.044 - 55 -17 -
2N2 0.53772 0.002 0.006 - 85 74 -
K1 0.99727 0.029 0.017 0.029 -18 -69 -17
O1 1.07581 0.014 0.035 0.015 -47 -58 -40
P1 1.00275 0.009 0.007 - -15 -70 -
Q1 1.11951 0.002 0.006 - -71 36 -

obtained by harmonic analysis of the tide-gauge data (Tab. 8.1), local tides can be predicted using
(3.4). Residuals between the corrected tide-gauge data and the predictions from the harmonic
analysis have a small standard deviation of 1.3 cm and maximum values of 8 cm (Fig. 8.8e and
Fig. 8.8f), showing the good approximation of the observed tides by the harmonic model of the
9 tidal constituents M2, S2, K2, N2, 2N2, K1, O1, P1, Q1.

8.3.5 Sea Level Anomaly Correction

Sea level anomalies (SLA) were computed for the survey campaigns in the North Aegean Sea, based
on SSALTO/DUACS products (Section 2.4). During the 5 campaigns, the SLA vary between -
6 cm and 13 cm (Fig. 8.9). Within the same campaign of 2 - 3 weeks, SLA variations of 5 - 10 cm are
encountered, and systematic SLA differences are observed between the campaigns. The campaigns
of 2004, 2006 and 2007, carried out in September, show positive SLA of 5 - 13 cm, whereas the
campaigns of 2005 and 2008, carried out in May/June and July, show negative SLA of -5 to 0 cm.
The SLA show that even after removing the effects of waves, tides and atmospheric forcing, the
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(a) (b)

(c) (d)

(e) (f)

Figure 8.8: (a) Top: Tidal predictions from FES2004 against corrected observations from PELAN tide-
gauge in the North Aegean Sea, from Sept. 2007 to June 2008 (9 months), corresponding to Fig. 8.7,
bottom. Bottom: Difference between tide-gauge data and FES2004 predictions. (c) Same as (a), but
for FES2004 predictions replaced with POL predictions. (e) Same as (a), but for FES2004 predictions
replaced with predictions based on the harmonic analysis of the PELAN tide-gauge data (Tab. 8.1). (b),
(d) and (f) Zoom into first 2 months of (a), (d) and (e).
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(a) 2004 (b) 2005

(c) 2006 (d) 2007

(e) 2008 (f) 2004 - 2008

Figure 8.9: Sea level anomalies along ship tracks, based on SSALTO/DUACS sea level anomalies, during
shipborne surveys in 2004 (a), 2005 (b), 2006 (c), 2007 (d), 2008 (e) and from 2004 to 2008 (f).
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8.4 Repeatability Analysis

sea surface topography cannot be considered as constant from one campaign to the next, and even
not during the same campaign. The significant improvement of height differences at crosspoints
of the shipborne profiles after application of the SLA corrections is shown in Section 8.4.1. These
corrections should therefore be applied when the resulting heights are meant to represent the mean
sea surface MSS, as defined in (2.2) and (2.28). On the other hand, they must not be applied
when the resulting heights are meant to represent corrected sea surface heights SSH, including
the variable part of the dynamic topography, as defined in (2.1) and (2.27).

8.4 Repeatability Analysis

8.4.1 Crosspoints Analysis

The shipborne profiles yield 1999 crosspoints, where the sea surface height was observed twice at
the same position (Fig.8.11). Height differences at crosspoints are a good indicator for the repeata-
bility and the accuracy of the shipborne altimetry system. An analysis of these height differences
computed with different combinations of tidal and atmospheric sea surface height corrections, as
well as sea level anomaly (SLA) corrections, was carried out (Tab. 8.2 and Fig. 8.10). Significant
differences are observed between the various combinations of corrections. The analysis shows that
the POL (Proudman Oceanographic Laboratory) tidal corrections reduce the RMS on the height
differences at crosspoints by 4.8 cm and the maximum absolute difference by 8.0 cm. Applying
tidal corrections directly from local tide-gauge data produces a slightly worse agreement with the
shipborne data (not shown), due to the fact that the tide-gauge data is affected by local coastal
effects. The FES2004 tidal corrections have no improving effects on the height differences. The
MOG2D atmospheric corrections reduce the RMS on the height differences by 2.0 cm and the max-
imum absolute difference by 7.7 cm. Finally, the SLA corrections reduce the RMS on the height
differences by 3.8 cm and the maximum absolute difference by 8.6 cm. The beneficial effect of
the SLA corrections is further shown by analyzing height differences at crosspoints separately for
each campaign. Offsets at crosspoints between the campaigns were estimated (Tab. 8.3). Without
SLA corrections, systematic offsets of up to 13.5 cm are observed when at crosspoints between one
campaign and the other four campaigns. These offsets are reduced to below 2 cm by applying SLA
corrections.

The crosspoint analysis leads to the conclusion that the best result is obtained using POL tidal
corrections in combination with MOG2D atmospheric corrections and SSALTO/DUACS SLA
corrections (Fig. 8.10). Using this set of corrections, the final RMS of height differences at the
1999 crosspoints is 7.9 cm (Tab. 8.2 and Fig. 8.11a). The RMS at the 824 inner-campaign cross-
points is 6.8 cm, whereas the RMS at the remaining 1175 inter-campaign crosspoints is 8.6 cm. The
height difference remains below 10 cm at 80% of the crosspoints, below 15 cm at 94% and below
20 cm at 99% of the crosspoints. The maximum observed height difference is 28.7 cm. A final out-
lier rejection was only carried out during the surface generation and data gridding (Section 8.5).
The outlier removal would further improve the height differences at crosspoints and eliminate most
of the differences above 15 cm. At this stage, however, the objective of the crosspoint analysis was
not to give the best possible results by eliminating all outliers, but to give a realistic impression
of the accuracy and repeatability of the shipborne altimetry method, prior to a thorough outlier
removal.

8.4.2 LSQ Adjustment Based on Crosspoints

After the application of the best combination of corrections, namely POL tidal corrections in com-
bination with the MOG2D atmospheric corrections and the SSALTO/DUACS SLA corrections,
a relatively large amount (20%) of height differences at crosspoints remains above 10 cm (Sec-
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(a) without SLA correction

(b) with SLA correction

Figure 8.10: Distributions of height differences at crosspoints using different combinations of tidal and
atmospheric corrections (corresponding to Tab. 8.2), without (a) and with (b) sea level anomaly (SLA)
correction. Black: inner-campaign crosspoints. Gray: inter-campaign crosspoints.
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8.5 Time-Independent Sea Surface Topography

Table 8.2: RMS [m] of height differences at crosspoints for solutions with different combinations of tidal
and atmospheric sea surface height corrections, without sea level anomaly (SLA) correction, with SLA
correction and with combined SLA correction and LSQ adjustment.

Tidal/Atmospheric sea surface height correction
Tidal - FES2004 POL - FES2004 POL

Atmospheric - - - MOG2D MOG2D MOG2D
All 1999 crosspoints
RMS [m] 0.162 0.164 0.126 0.152 0.159 0.117
RMS [m] (SLA) 0.143 0.138 0.099 0.127 0.127 0.079
RMS [m] (SLA+LSQ) - - - - - 0.055
Inner-campaign 824 crosspoints
RMS [m] 0.144 0.129 0.095 0.131 0.119 0.078
RMS [m] (SLA) 0.137 0.124 0.084 0.125 0.116 0.068
RMS [m] (SLA+LSQ) - - - - - 0.042
Inter-campaign 1175 crosspoints
RMS [m] 0.173 0.185 0.144 0.165 0.181 0.137
RMS [m] (SLA) 0.147 0.147 0.108 0.129 0.134 0.086
RMS [m] (SLA+LSQ) - - - - - 0.062

Table 8.3: Offsets (dh) and their standard deviations (std) between height differences at crosspoints from
different campaigns. The offset of the 2004 campaign was set to 0.

without SLA correction with SLA correction
Campaign dh [m] ±std [m] dh [m] ±std [m]

2004 0.000 ±0.000 0.000 ±0.000
2005 0.135 ±0.005 0.002 ±0.004
2006 0.027 ±0.006 0.006 ±0.005
2007 0.036 ±0.006 -0.019 ±0.006
2008 0.100 ±0.007 -0.020 ±0.007

tion 8.4.1). These misfits are causing problems during surface generation (Section 8.5). Hence, as
a final correction, an LSQ adjustment of the profiles was carried out, estimating a linear correction
for every ship track that reduces the height differences at the crosspoints in a least-squares sense.
The irregular distribution of the ship tracks yields an inhomogeneous distribution of crosspoints
along the tracks, which makes the LSQ adjustment less efficient than in the case of the airborne
data (Section 7.4.3). Corrections of up to 15.4 cm are obtained by the LSQ adjustment, providing
a significant improvement of the height differences (Tab. 8.2 and Fig. 8.11b). Using POL tidal
corrections, MOG2D atmospheric corrections and SLA corrections in combination with the LSQ
adjustment, the RMS of the height differences is reduced to 5.5 cm, corresponding to an improve-
ment of 30%. After the LSQ adjustment, height differences remain below 5 cm at 67% of the 1999
crosspoints and below 10 cm at 94% of the crosspoints. The maximum observed height difference
was reduced from 28.7 to 23.1 cm. The beneficial impact of the LSQ adjustment for the surface
generation procedure is shown in Section 8.5.

8.5 Time-Independent Sea Surface Topography

By subtracting the time-dependent corrections (Section 8.3) from the low-pass filtered instanta-
neous sea surface heights (Section 8.2, Fig. 8.2 and Fig. 8.3), time-independent sea surface height
profiles are obtained (Fig. 8.12).The sea surface heights are computed with respect to the WGS84
reference ellipsoid. Based on the analysis of sea surface height corrections in Section 8.4.1, the
observed sea surface heights were corrected using POL tidal corrections, MOG2D atmospheric cor-
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(a) before LSQ adjustment

(b) after LSQ adjustment

Figure 8.11: (a) Crosspoints of sea surface height profiles with height differences and their distribution,
using POL tidal corrections, MOG2D atmospheric corrections and SSALTO/DUACS sea level anomaly
corrections. (b) Same as (a), but with LSQ adjustment of ship tracks based on crosspoints.

rections and SLA corrections from SSALTO/DUACS. Furthermore, the sea surface heights were
corrected using an LSQ adjustment of the profiles in order to reduce the height differences at
crosspoints (Section 8.4.2).

The resulting punctual time-independent sea surface heights were interpolated onto a regular grid
using a bicubic spline interpolation with continuous curvature and adjustable tension. In a second
step, the obtained gridded sea surface heights were low-pass filtered using a 2D FFT filter with
a cut-off wavelength of 10 km. The cut-off wavelength of the FFT filter was optimally chosen in
order to keep the residuals small, without obtaining an unrealistically rough surface. The gridded
data are forming a surface representing the time-independent sea surface topography (Fig. 8.13).
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Figure 8.12: Time-independent sea surface height profiles (with respect to WGS84 ellipsoid) from ship-
borne altimetry in the North Aegean Sea. The sea surface height profiles were low-pass filtered using a
windowed median filter. Background: bathymetry in [m] (contour interval 100m).
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Figure 8.13: Sea surface topography (with respect to WGS84) obtained from shipborne altimetry profiles
in the North Aegean Sea (Fig. 8.12) by bicubic spline interpolation. The topography was low-pass filtered
using 2D FFT filter with a cut-off wavelength of 10 km. White lines: ship tracks. Contour interval: 0.1m.
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(a) without LSQ adjustment, without outlier removal (b) without LSQ adjustment, with outlier removal

Figure 8.14: Residuals between along-track sea surface heights (Fig. 8.12) and gridded sea surface topog-
raphy (Fig. 8.13), without correction from LSQ adjustment based on crosspoints, before (a) and after (b)
outlier-removal.

(a) with LSQ adjustment, without outlier removal (b) with LSQ adjustment, with outlier removal

Figure 8.15: Residuals between along-track sea surface heights (Fig. 8.12) and gridded sea surface to-
pography (Fig. 8.13), with correction from LSQ adjustment based on crosspoints, before (a) and after (b)
outlier-removal.
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8.5 Time-Independent Sea Surface Topography

A final indication for the accuracy of the sea surface heights is given by the residuals between
the time-independent sea surface height profiles (Fig. 8.12) and the gridded sea surface topography
(Fig. 8.13). Without the LSQ adjustment (Section 8.4.2), the along-track residuals have a standard
deviation of 6.0 cm and large local values of up to 32 cm (Fig. 8.14a). After the LSQ adjustment,
the residuals are significantly improved (Fig. 8.15a). The standard deviation is reduced to 5.2 cm,
but large residuals of up to 30 cm locally remain. In order to avoid unrealistic strong gradients
in the gridded sea surface topography, it is advisable to eliminate along-track data with large
residuals prior to the surface generation. Using the LSQ adjustment, less observations had to be
removed (Fig. 8.14b and Fig. 8.15b). After the removal of the outliers, the final residuals are all
below 12 cm, with a standard deviation of only 3.6 cm (Fig. 8.15b).

The sea surface height results in the North Aegean Sea reveal a distinct depression of the sea surface
in the western part of the survey area, associated with the bathymetric low of the south-western
end of North Aegean Trough (Fig. 8.13). The depression reaches a minimum of 37.9m above the
WGS84 ellipsoid, while the height in the surrounding area is more than 39.5m and reaches even
40.5m towards the north of the survey area. Further analysis and interpretation of the observed
sea surface heights are treated in Chapter 11.
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9 Validation of Satellite Radar Altimetry
Data

9.1 Introduction

The basic means to monitor the sea surface on a global scale is satellite radar altimetry. Techno-
logical developments have transformed satellite radar altimetry from a technique by which major
geoid features with order 10m amplitudes could be resolved to one where resolution of dynamic
ocean signals as small as a few cm is possible (Chelton, 1988). Details on satellite radar altimetry
can be found in (Chelton, 1988; Chelton et al., 2001; Picot et al., 2003; OSTM, 2008).

An important aspect when analyzing satellite radar altimetry data in region with steep geoid
gradients is the slope-induced height error. Radar altimeters measure the two-way travel time to
the closest point on the Earth’s surface within the antenna beam (Fig. 9.1). The footprint diameter
of the Jason-1 and TOPEX/Poseidon altimeters is e.g. around 10 km. Hence, steep geoid gradients
can have minor effects on the observed sea surface heights, since the point at the sea surface closest
to the radar altimeter, to which the range is measured, can differ from the sub-satellite nadir point.
For a planar surface of constant slope α, the slope-induced height error ∆h with respect to nadir
is given by (Zwally and Brenner, 2001) (Fig. 9.1):

∆h = h − r = h (1 − cosα) (9.1)

where h is the true altitude of the satellite above ground and r is the range measured by the radar
altimeter. The altitude h is the target parameter actually sought by radar altimetry, in order
to subtract it from the satellite altitude with respect to the reference ellipsoid. The horizontal
displacement ∆x of the measured point P with respect to the sub-satellite nadir point S is given
by (Zwally and Brenner, 2001) (Fig. 9.1):

∆x = h cosα sinα (9.2)

Without prior detailed knowledge of the topography of the surface observed by radar altimetry,
the location from which the radar reflection originates cannot be determined. One difficulty in
correcting for slope-induced errors is the variation of the slope within the beam-limited footprint,
both along and across the satellite ground track, which makes the selection of an appropriate slope
α difficult (Zwally and Brenner, 2001). Due to these difficulties and the negligible impact of slope-
induced errors in most cases, it is common practice not to correct satellite radar altimetry data
for slope-induced errors. In this case, the altitude h is approximated by the observed range r.

In the survey area around Crete, extreme geoid gradients of up to 0.22m/km (45 arcsec) are
observed (Fig. 10.1c), corresponding to a slope α of 0.013°. Using the equatorial reference altitude
of 1336 km for Jason-1 as approximate altitude h above ground in (9.1), a slope-induced height
error ∆h of 3.2 cm is obtained. The associated horizontal displacement ∆x is 294m (9.2). Hence,
under the extreme geoid gradients encountered in the survey area, the maximum slope-induced
height error of satellite radar altimetry observations can reach noticeable values, but it still remains
within the expected accuracy level of airborne, shipborne and spaceborne altimetry.
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9 Validation of Satellite Radar Altimetry Data

Figure 9.1: Slope-induced height error ∆h in satellite radar altimetry for an inclined planar surface,
illustrating (9.1) and (9.2).

9.2 Validation of Jason-1 Data with Airborne Laser Altimetry

Two flights were conducted along the two Jason-1 ground tracks traversing the survey area (Fig. 7.1).
A coinciding track of over 100 km of flight GRL05 on 11/01/2003 is of special interest, since air-
borne laser altimetry observations were performed during a Jason-1 crossover, providing quasi-
simultaneous observations of the same sea surface (Fig. 9.2 and Fig. 9.2). Jason-1 passed over the
isle of Gavdos at 10:09UT and needed 30 s to cross the area of interest, while the aircraft covered
the same profile in 30minutes, from 9:55 to 10:25UT. Thus, the time offset between Jason-1 and
airborne observations is less than 15minutes along the track, and variations of the sea surface
height over this short time period can be neglected. Hence, in the comparison between the two
datasets, there is no need to apply corrections for time-dependent sea surface height variations
like tides and atmospheric forcing. The airborne laser altimetry observations allow to make direct
comparisons with the sea surface heights provided by Jason-1. However, since the sea surface
heights from airborne laser altimetry are mostly free of solid Earth tides due to differential GPS
processing (Section 3.3.3), solid Earth tide corrections have to be applied to the Jason-1 data for
the comparison. Prior to the comparison, the sea surface heights from Jason-1 were transformed to
the WGS84 reference ellipsoid, yielding a mean vertical shift of -0.705m at the considered latitude.
In addition, cross-track gradient corrections were applied to the airborne data in order to account
for the horizontal offset between the radar altimeter ground points and the airborne profile.

The observed differences between sea surface heights from Jason-1 and airborne laser altimetry re-
veal variations between -0.10 and 0.20m along the dedicated profile of more than 100 km (Fig. 9.2b).
These variations are too large to be explained by slope-induced errors (Section 9.1). However, the
overall agreement is good, with a mean difference of only 0.04m and a standard deviation of
0.08m. The distinct negative difference reaching -0.65m at the northern end of the airborne pro-
file (Fig. 9.2a) is due to a lack of Jason-1 data approaching the coast, where sea surface heights
from Jason-1 are interpolated from the next data points north of Crete. This underlines the need
for satellite-independent methods like airborne laser altimetry to cover coastal regions. Additional
comparisons were made between significant wave heights derived from airborne laser altimetry
(Fig. 7.6) and from Jason-1 GDR data (Picot et al., 2003) along the dedicated profile (Fig. 9.2c).
A good agreement of better than 20 cm is obtained using Jason-1 Ku-band data. Differences with
the noisier C-band are larger.
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(a)

(b)

(c)

Figure 9.2: Left: Ascending Jason-1 track 109 with 1Hz sea surface height samples (dots with time
and height labels, black dots indicate erroneous data). Airborne laser altimetry flight (blue line with time
labels) at the same day, covering Jason-1 track with direct crossover. (a) Comparison between sea surface
height profile from Jason-1 (dots marking 1Hz samples and dashed line marking lack of data) and airborne
laser altimetry. (b) Height differences between Jason-1 and airborne laser altimetry data (dashed line
marks lacks of Jason-1 data). (c) Significant wave heights from airborne altimetry and Jason-1 GDR data.

9.3 Validation of Mean Sea Surface from Radar Altimetry

9.3.1 Validation with Airborne Laser Altimetry around Western Crete

Comparisons were made between the sea surface topography derived from airborne laser altime-
try (Fig. 7.15) and mean sea surfaces (MSS) from multi-mission radar altimetry, namely CLS01
(Fig. 9.3a) and DNSC08 (Fig. 9.3b). Both MSS were previously transformed to the WGS84 ref-
erence ellipsoid. Note that the sea surface topography from airborne laser altimetry includes
SSALTO/DUACS sea level anomaly corrections (Sections 2.4 and 7.3.5). Theoretically, the CLS01
and DNSC08 resolve wavelengths down to 10 - 20 km (Section 2.3). The residuals between the
sea surface topography from airborne laser altimetry and the MSS from CLS01 have a standard
deviation of 8.6 cm (Fig. 9.4a and Tab. 9.1). A mean offset of 15.7 cm was previously removed.
This implies that there is a bias of 5.7 cm in the survey area, additionally to the global bias of
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(a) CLS01 (b) DNSC08

Figure 9.3: Mean sea surface heigths above the WGS84 reference ellipsoid from (a) CLS01 and (b)
DNSC08. Contour intervals: 0.25m.

(a) Airborne - CLS01 (b) Airborne - DNSC08

Figure 9.4: Residuals between sea surface topography from airborne laser altimetry (Fig. 7.15) and mean
sea surface (MSS) from (a) CLS01 (Fig. 9.3a) and (b) DNSC08 (Fig. 9.3b). Mean offsets of respectively
15.7 cm and 17.7 cm were previously removed. White lines: airborne tracks. Contour intervals: 0.025m.
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9.3 Validation of Mean Sea Surface from Radar Altimetry

Table 9.1: Mean offset and standard deviation (std) of residuals of local sea surface topographies (SST)
from airborne laser altimetry around Crete and shipborne ultrasound altimetry in the North Aegean Sea
with respect to mean sea surfaces CLS01 and DNSC08 from multi-mission radar altimetry.

SST - CLS01 SST - DNSC08
Survey area Method Mean ± std [cm] Mean ± std [cm]
Crete Airborne 15.7 ± 8.6 17.7 ± 7.7
North Aegean Shipborne 10.5 ± 6.6 10.7 ± 5.8

10 cm between SSALTO/DUACS reference heights and CLS01. The overall agreement between
the two datasets is very good. However, high residuals of up to 50 cm are observed in a belt of
20 km around the coast of Crete, where the strongest geoid gradients of the entire survey area
occur, reaching 0.22m/km (Fig. 10.1c). In these coastal areas, CLS01 sea surface heights are inter-
polated due to a lack of satellite radar altimetry data. Since the coastline was not systematically
covered by airborne laser altimetry as well, uncertainties also remain in the airborne sea surface
topography regarding these areas. Similar residuals are observed between the airborne sea surface
topography and the MSS from DNSC08 (Fig. 9.4b and Tab. 9.1). As compared to CLS01, the
standard deviation improved to 7.7 cm. A similar offset of 17.7 cm was previously removed. As for
CLS01, the highest absolute residuals of up to 50 cm are observed in a belt of 20 km around the
coast of Crete. Besides the validation of the MSS products, the good agreement with the MSS
from CLS01 and DNSC08 also allows to assess the good accuracy and resolution of the sea surface
topography determined by airborne laser altimetry.

9.3.2 Validation with Shipborne Altimetry in the North Aegean Sea

Comparisons were made between the sea surface topography derived from shipborne altimetry
(Fig. 8.13) and mean sea surfaces (MSS) from multi-mission radar altimetry, namely CLS01
(Fig. 9.5a) and DNSC08 (Fig. 9.5b). Both MSS were previously transformed to the WGS84
reference ellipsoid. Note that the sea surface topography from shipborne altimetry includes
SSALTO/DUACS sea level anomaly corrections (Sections 2.4 and 8.3.5). Theoretically, the CLS01
and DNSC08 resolve wavelengths down to 10 - 20 km (Section 2.3). The residuals between the sea
surface topography from shipborne altimetry and theMSS from CLS01 have a standard deviation
of 6.9 cm (Fig. 9.6a and Tab. 9.1). A mean offset of 10.5 cm was previously removed. This bias
corresponds to the global bias of 10 cm between SSALTO/DUACS reference heights and CLS01,
meaning that there is no additional bias between the two sea surface solutions in the survey area.
The overall agreement between the two datasets is very good. They both similarly resolve the sea
surface depression at the south-western end of the North Aegean Trough. An interesting feature is
the positive difference of up to 20 cm near the island of Alonnisos. North of the island, pronounced
gradients of the sea surface of up to 10 cm/km were observed by dedicated shipborne surveys in
this area (Fig. 11.1c). TheMSS from radar altimetry do not fully resolve this local steep gradient.
Similar residuals are observed between the shipborne sea surface topography and the MSS from
DNSC08 (Fig. 9.6b and Tab. 9.1). As compared to CLS01, the standard deviation improved to
5.8 cm. A similar offset of 10.7 cm was previously removed. The highest absolute residuals of up to
22 cm are observed in the north-eastern part of the survey area, probably linked to extrapolation of
the shipborne data (Fig. 9.6b). Besides the validation of the MSS products, the good agreement
with the MSS from CLS01 and DNSC08 allows to assess the good accuracy and resolution of
the sea surface topography determined by shipborne ultrasound altimetry. In terms of standard
deviation, the agreement of both CLS01 and DNSC08 with the shipborne altimetry data in the
North Aegean Sea is slightly better than with the airborne altimetry data around Crete (Tab. 9.1).
This is not a consequence of a better accuracy of the shipborne altimetry data, but rather related
to the extreme sea surface height gradients encountered around Crete.
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Figure 9.5: Mean sea surface heigths above the WGS84 reference ellipsoid from (a) CLS01 and (b)
DNSC08. Contour intervals: 0.1m.

(a) Shipborne - CLS01

A

(b) Shipborne - DNSC08

A

Figure 9.6: Residuals between sea surface topography from shipborne altimetry (Fig. 8.13) and mean
sea surface (MSS) from (a) CLS01 (Fig. 9.5a) and (b) DNSC08 (Fig. 9.5b). Mean offsets of respectively
10.5 cm and 10.7 cm were previously removed. White lines: ship tracks. A=Alonnisos. Contour intervals:
0.025m.
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10 Geoscientific Exploitation of Airborne
Altimetry Data around Western Crete

10.1 Marine Geoid, Gravity Anomalies and Deflections of the
Vertical from Sea Surface Heights

Assuming the mean dynamic topography (MDT ) as known, marine geoid heights can be derived
from observed sea surface heights by subtracting the MDT (2.2). The MDT used in this study
is the RioMed mean dynamic topography of the Mediterranean Sea (Section 2.5.3, Fig. 2.5a). The
maximum effect of the MDT in the survey area reaches -15 cm south of Crete (Fig. 2.6a). By
subtracting the RioMed MDT (Fig. 2.6a) from the sea surface heights obtained by airborne laser
altimetry (Fig. 7.15), altimetric geoid heights are obtained (Fig. 10.1a). The geoid heights are given
with respect to the WGS84 ellipsoid. The obtained geoid heights are characterized by a pronounced
overall gradient, with heights decreasing from 28m in the north-eastern part of the survey area
to 8m in the southern part, along a distance of only 200 km. This gradient indicates the strong
effect on gravity caused by the bathymetry and geodynamic system of the Hellenic Trench. An
interesting feature is the weakened gradient around the isle of Gavdos, where the geoid height is
increased by about 2m as compared to the overall downward trend towards the Hellenic Trench.
Further details on the geodynamic processes associated with the Hellenic Trench subduction zone
are given in Section 1.2.

Gravity anomalies (Fig. 10.1b) were computed from the altimetric geoid heights (Fig. 10.1a), based
on Laplace’s equation (2.19) and the curvature of the geoid (2.20), using the GMT (Generic
Mapping Tools) software (Wessel and Smith, 1998, 2005). As compared to geoid heights, gravity
anomalies are less affected by the long-wavelength part of the gravitational potential and are
therefore better suited for the analysis of local gravity anomalies. E.g. a pronounced positive local
gravity anomaly around the isle of Gavdos, reaching 120mGal, is depicted (Fig. 10.1b).

Variations of the geoid were further quantified by computing horizontal gradients (Fig. 10.1c) and
deflections of the vertical (2.14) (Fig. 10.1d) from the geoid heights. Maximum gradients of up
to 0.22m/km are encountered along the southern and western coast of Crete, corresponding to a
deflection of the vertical of 45 arcsec. Another local maximum of similar magnitude is observed
south of the isle of Gavdos. A significant correlation is observed between the Hellenc Trench and
the variations of the gravity anomalies and geoid gradients (Fig. 10.1b and Fig. 10.1c). Further
interpretation of the obtained geoid heights and gravity anomalies is carried out in the framework
of the reduction of mass effects in Section 10.5.

10.2 Local Altimetric Geoid vs. Existing Models

To validate the marine geoid heights (Fig. 10.1a) obtained by airborne laser altimetry (Section 10.1),
they were compared to geoid heights from several gravity models. The analyzed global gravity
models are EGM96 (Fig. 10.2a), EGM2008 (Fig. 10.2b), EIGEN-5S (Fig. 10.2c) and EIGEN-5C
(Fig. 10.2d). All geoid heights were computed with respect to the WGS84 ellipsoid. Further details
on the gravity models are given in Section 2.2.3. The different resolutions of the geoid models are
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(a) Geoid Height (b) Gravity Anomaly

(c) Geoid Gradient (d) Deflection of the Vertical

Figure 10.1: (a) Altimetric geoid heights with respect to the WGS84 reference ellipsoid, obtained by
subtracting the RioMed mean dynamic topography (Fig. 2.6a) from sea surface heights determined by
airborne laser altimetry (Fig. 7.15). Contour interval: 0.25m. White lines: airborne tracks. (b) Gravity
anomalies derived from geoid heights in (a). Contour interval: 5mGal. Gray lines: fault system of the
Hellenic Arc. (c) Horizontal gradients of the geoid heights in (a). Contour interval: 0.01m/km. (d)
Deflections of the vertical from geoid heights in (a).
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10.2 Local Altimetric Geoid vs. Existing Models

(a) EGM96 (n=m=360) (b) EGM2008 (n=2190, m=2159)

(c) EIGEN-5S (n=m=150) (d) EIGEN-5C (n=m=360)

Figure 10.2: Geoid heights to degree n and order m with respect to the WGS84 reference ellipsoid, from
(a) EGM96, (b) EGM2008, (c) EIGEN-5S and (d) EIGEN-5C. Contour intervals: 0.25m.

seen (Fig. 10.2), e.g. by their capability of resolving the feature around the isle of Gavdos.

The residuals between the altimetric geoid (Fig. 10.1a) and the geoid models (Fig. 10.2) are shown
in Fig. 10.3. Mean offsets and standard deviations are summarized in Tab. 10.1. In the ideal case
of error-free sea surface heights, dynamic topography and geoid models, these residuals should be
zero according to (2.27). The residuals with respect to EIGEN-5S have large values of more than
1.5m, large gradients and a high standard deviation of 0.81m (Fig. 10.3c). The poor agreement is
due to the low resolution (approx. 130 km) of the EIGEN-5S. The two combined geoid solutions
EGM96 and EIGEN-5C have a theoretical resolution of 55 km. They produce very similar results
in the survey area (Fig. 10.3a and Fig. 10.3d). The mean differences between the altimetric geoid
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Table 10.1: Mean offsets and standard deviations (STD) between the altimetric geoid from airborne laser
altimetry and geoid models.

Geoid Model (degree,order) mean offset [m] STD [m]
EIGEN-5S (150,150) -0.23 0.81
EIGEN-5C (360,360) -0.18 0.40
EGM96 (360,360) -0.20 0.40
EGM2008 (360,360) -0.23 0.37
EGM2008 (2190,2159) -0.14 0.11
AUTH2008 - -0.24 0.15

and EGM96 and EIGEN-5C are -0.20m and -0.18m, respectively, both with a standard deviation
of 0.40m. As for EIGEN-5S, both models do not resolve the local positive anomaly around the isle
of Gavdos, with residuals reaching 1m. Similarly, the local negative anomaly north-east of Gavdos
is not resolved by both models, with residuals reaching -1.2m. The best agreement is obtained
with EGM2008, with a mean difference of -0.14m and a standard deviation of 0.11m (Fig. 10.3b).
The good agreement is due to the high resolution of EGM2008. Its expansion to degree 2190 and
order 2159 corresponds to a resolution of approx. 10 km.

The improved input data in terms of resolution and accuracy of the recent EIGEN-5C, as com-
pared to EGM96, does not yield a significant improvement of the spatial resolution of EIGEN-5C
(Fig. 10.3a and Fig. 10.3d). The limiting factor in terms of spatial resolution of the geoid mod-
els is their mathematical expansion of the spherical harmonics. This is confirmed by comput-
ing an EGM2008 solution with a spherical harmonics expansion limited to degree and order 360
(Fig. 10.4a). The residuals with respect to the altimetric geoid have a standard deviation of 0.37m
(Fig. 10.5a), similar to those of EGM96 (Fig. 10.3a) and EIGEN-5C (Fig. 10.3d). The extension of
the expansion of EGM2008, from degree and order 360 to degree 2190 and order 2159, yields an
improvement of 0.26m of the standard deviation with respect to the altimetric geoid, correspond-
ing to an improvement of 69%. Additional residuals were computed between the altimetric geoid
and the local gravimetric geoid model AUTH2008 (Fig. 10.4b) (Section 2.2.3). The residuals have
a standard deviation of 0.15m (Fig. 10.5b), similar to the one obtained with respect to EGM2008.

The mean offsets (Tab. 10.1) are different from the ones obtained with respect to the shipborne al-
timetric geoid in the North Aegean Sea (Tab. 11.1), indicating discrepancies in the long wavelength
geoid undulations between the two areas under investigation. Since the absolute geoid height is
not of major interest, the offsets are not critical and were therefore not further investigated.

10.3 Mean Dynamic Topography Estimation

Among the geoid models used in Section 10.2, the satellite-only solution EIGEN-5S and the local
gravimetric geoid model AUTH2008 are the only geoid solutions that are independent of altimetric
sea surface height data. Hence, they would be the only appropriate models to determine the mean
dynamic topography (MDT ) using the direct method after (2.28) (Section 2.5). The pronounced
residuals between the airborne data and EIGEN-5S (Fig. 10.3c) are obviously making the EIGEN-
5S unusable for realisticMDT determination at wavelengths below 130 km. The same remark holds
for EGM96 and EIGEN-5C (Fig. 10.3a and Fig. 10.3d). Even if these models were independent of
altimetric data, they would not be appropriate to determine theMDT at wavelengths below 55 km.
Hypothetic MDT were computed from the residual fields of the sea surface heights from airborne
laser altimetry (Fig. 7.15) with respect to EGM2008 (Fig. 10.6a) and AUTH2008 (Fig. 10.6b) geoid
heights. Geostrophic circulation fields were derived from the hypothetic MDT based on (2.30).
Compared to the RioMed mean geostrophic circulation (Fig. 2.6a), the obtained circulations are
unrealistic and spoiled by noisy eddies. The main anti-clockwise circulation around Crete is not
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(a) Altimetric Geoid - EGM96 (n=m=360) (b) Altimetric Geoid - EGM2008 (n=2190, m=2159)

(c) Altimetric Geoid - EIGEN-5S (n=m=150) (d) Altimetric Geoid - EIGEN-5C (n=m=360)

Figure 10.3: Difference between airborne altimetric geoid (Fig. 10.1a) and geoid heights to degree n and
order m from (a) EGM96, (b) EGM2008, (c) EIGEN-5S and (d) EIGEN-5C. White lines: airborne laser
ground tracks. In (c), black and white surface colors indicate differences below -1.5m and above 1.5m.
Contour intervals: 0.05m.
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(a) EGM2008 (n=m=360) (b) AUTH2008

Figure 10.4: Geoid heights with respect to the WGS84 reference ellipsoid, from (a) EGM2008 with
expansion limited to degree and order 360 and from (b) the gravimetric model AUTH2008. Contour
intervals: 0.25m.

(a) Altimetric Geoid - EGM2008 (n=m=360) (b) Altimetric Geoid - AUTH2008

Figure 10.5: Difference between airborne altimetric geoid (Fig. 10.1a) and geoid heights from (a)
EGM2008 to degree and order 360 and (b) AUTH2008. White lines: airborne laser ground tracks. Contour
intervals: 0.05m.
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(a) SSH - EGM2008 (n=2190, m=2159) (b) SSH - AUTH2008

Figure 10.6: Hypothetic mean dynamic topography (background) and ocean circulation (arrows) from
differences between sea surface heights from airborne laser altimetry (Fig. 7.15) and geoid heights from (a)
EGM2008 and (b) AUTH2008.

resolved. By applying low-pass filters to both datasets, it was possible to eliminate the noisy eddies,
but no significant circulation remained. Hence, it was not possible to derive a realistic circulation
pattern based on the sea surface height observations and the used geoid models. The major reason
lies in the fact that the presumed MDT , as e.g. given by RioMed (Fig. 2.6a), varies only within
a range of 10 cm over the entire survey area. Furthermore, the gradients of the MDT associated
with the circulation are below 1 cm/10 km. Hence, the MDT signal in the survey area in the
same order of magnitude as the accuracy of the airborne sea surface heights and the used geoid
models. It can be concluded that the sea surface height observations by airborne laser altimetry
and the considered geoid models are not accurate enough to resolve such small dynamic effects. In
addition, EGM2008 is not independent of altimetric sea surface height data.

10.4 Modeled Mass Effects on Geoid Heights and Gravity

10.4.1 Introduction

The effects of mass anomalies on geoid heights were computed for the survey area around western
Crete, based on (2.22) and on cuboid masses (2.24). The grid spacing of the computation points
and the mass elements was 30’× 30’, corresponding to approx. 900m. The distances between the
mass elements and the computation points were computed using geocentric coordinates, in order to
avoid effects of Earth’s curvature. A maximum radius of influence of 275 km was considered for the
masses effects. The area of influence extends from 19°E to 29°E and from 31°N to 39°N (Fig. 10.7a).
The mass densities in Tab. 2.1 were used. Geoid heights are highly influenced by large-scale mass
anomalies (Section 2.2.2). As compared to geoid heights, gravity anomalies are less affected by the
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(a)

M e d i t e r r a n e a n R i d g e

(b)

(c) (d)

Figure 10.7: (a) Topography/bathymetry of the area of influence considered in the modeling of mass
effects (contour interval topo: 1000m, bathy: 250m). (b) Light sediment thickness from (Makris and
Yegorova, 2006) (contour interval: 250m). (c) Moho depth from ESC (Grad et al., 2009) (contour interval:
1 km). (d) Moho depth from isostatic compensation (reference depth: 30 km, contour interval: 1 km).

long-wavelength part of the gravitational potential and are therefore better suited for the analysis
of local gravity anomalies. Hence, the effects of mass anomalies on gravity were computed, based
on (2.23) and (2.25), in order to obtain additional information on the local gravity field, although
the major investigations were carried out on geoid heights. The gravity anomalies were computed
at sea level, yielding e.g. exclusively negative effects of the topography on gravity anomalies. The
mass effects are used in the Section 10.5 to reduce the geoid heights and gravity anomalies derived
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from airborne laser altimetry. The theoretical background of the computation of mass effects on
geoid heights and gravity anomalies is given in Section 2.2.2.

10.4.2 Mass Effect of Topography and Bathymetry

The topography and bathymetry were taken from the SRTM30 (Shuttle Radar Topography Mis-
sion) digital terrain model, published by the United States Geological Survey (USGS). It has a
resolution of 30’× 30’, corresponding to approx. 900m. The topography and bathymetry of the
area of influence are characterized by deep water zones reaching -4000m (Fig. 10.7a). Hence, the
topography and bathymetry (including water masses) are producing pronounced negative effects on
geoid heights, ranging between -12m north and -50m west of Crete (Fig. 10.8a). Associated grav-
ity anomalies are shown in Fig. 10.8b. Within the effect of topography and bathymetry, the water
masses have strong positive effects on geoid heights, reaching 32m west of Crete, related to the
deep bathymetry in that area (Fig. 10.9a). Associated gravity anomalies are shown in Fig. 10.9b.

10.4.3 Mass Effect of Sediments

The survey area is characterized by large layers of light sedimentary deposits along the Mediter-
ranean Ridge, between Crete and the African coast (Fig. 10.7b). The sediments locally reach very
large thicknesses of more than 10 km. The information on sediment thickness used in the model-
ing is based on (Makris and Yegorova, 2006). The mass deficiency associated with the sediments
has a pronounced negative effect on geoid heights, between -6m north and -25m south of Crete
(Fig. 10.10a). Associated gravity anomalies are shown in Fig. 10.10b.

10.4.4 Mass Effect of Moho Depths

For the computation of the effect of crust-mantle boundary (Moho) anomalies, Moho depths from
the digital Moho depth map published by the ESC (European Seismological Commission) Working
Group (Grad et al., 2009) were used. The ESC Moho map covers the European plate from 40°W
to 70°E and from 28°N to 86°N, with a resolution of 0.1°× 0.1°. It was compiled from more than
250 datasets of individual seismic profiles, 3D models obtained by body and surface waves, receiver
function results and maps of seismic and gravity data compilations. The Moho in the survey area
is characterized by a strong uplift to a depth of -21 km south of Crete, along the Mediterranean
Ridge (Fig. 10.7c). The mass excess caused by this uplift has a pronounced positive effect of up to
25m on geoid heights, whereas the effect is only 0 - 5m north of Crete (Fig. 10.11a). Associated
gravity anomalies are shown in Fig. 10.11b.

10.4.5 Mass Effect of Isostatic Moho Depths

As an alternative to the ESC Moho, Moho depths were computed based on the isostatic compen-
sation theory using the Airy-Heiskanen isostasy model (Heiskanen and Moritz, 1967; Hofmann-
Wellenhof and Moritz, 2006) and considering the masses of topography, bathymetry, water and
sediments. A reference depth of -30 km was used. The obtained Moho depths were smoothed to
obtain a more realistic regional compensation. A more rigorous method to obtain regional com-
pensation would rely on flexure theory of a thin elastic plate floating on a fluid mantle. Since the
model of isostatic compensation only reflects a theoretical correlation between the masses above
the crust-mantle boundary (Moho) and the compensating depth of the boundary, it may sound
more appropriate to use a Moho model predicted by real observations, like the ESC Moho (Sec-
tion 10.4.4). In the present study, however, better reduction results were obtained with the isostatic
Moho (Section 10.5).
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The isostatic compensation has a dominant uplift effect on the Moho in the survey area (Fig. 10.7d),
due to the large mass deficiency caused by the deep water and thick sediments along the Mediter-
ranean Ridge. The isostatic Moho rises up to a depth of -16 km west of Crete. Considering the
fact that the water has a depth of 3 km west of Crete, and the sediment thickness is 7 km, the crust
thickness is only 6 km in this area. The mass excess caused by the uplift of the isostatic Moho
has a pronounced positive effect on geoid heights, ranging between 11m north and 41m west and
south-east of Crete (Fig. 10.12a). Associated gravity anomalies are shown in Fig. 10.12b.

10.4.6 Combined Mass Effects

The combination of the effects of topography and bathymetry (Fig. 10.8a) with the effects of
sediments (Fig. 10.10a) yield pronounced negative effects on geoid heights (Fig. 10.13a). They
range between -18m north and -72m west and south-east of Crete. Associated gravity anomalies
are shown in Fig. 10.13b.

The combination of the negative effects of topography, bathymetry and sediments (Fig. 10.13a)
with the positive effects of the ESC Moho (Fig. 10.11a) yield an overall negative effect on geoid
heights, ranging between -17m north and -55m west of Crete (Fig. 10.14a). The modeled geoid
heights present pronounced gradients along the southern coast of Crete and towards the North-
West. Along the north-eastern coast of Crete, the structure of the modeled geoid is rather flat.
Associated gravity anomalies are shown in Fig. 10.14b.

The combination of the negative effects of topography, bathymetry and sediments (Fig. 10.13a)
with the positive effects of the isostatic Moho (Fig. 10.12a) yield an overall negative effect on
geoid heights, ranging between -7m north and -30m west and south-east of Crete (Fig. 10.15a).
The modeled geoid heights present pronounced gradients along the southern coast of Crete and
towards the North-West. Along the northern coast of Crete, the structure of the modeled geoid is
rather flat. Associated gravity anomalies are shown in Fig. 10.15b.

By visually comparing the modeled geoid (Fig. 10.14a and Fig. 10.15a) to the observed geoid
(Fig. 10.1a) and to EGM2008 (Fig. 10.2b), an overall good agreement is observed, except for the
flat structure of the modeled geoid north of Crete.

10.4.7 Cuboids vs. Point Mass Modeling

The mass effects (Fig. 10.8 to Fig. 10.15) were computed based on cuboid masses using (2.24) and
(2.25). Since the computation involving cuboid masses can be very CPU-intensive depending on
the size and resolution of the data grids, a simplified method to compute mass effects on geoid
heights and on gravity based on (2.22) and (2.23) consists in concentrating the mass of each cuboid
at its center of mass. To assess the impact of this approximation, the effects on geoid heights
computed by cuboid masses (Fig. 10.8a to Fig. 10.15a) were recomputed based on the center of
mass (point mass) method. Differences between the cuboid and point mass methods are increased
by the presence of elongated cuboids close to the computation point, typically produced by high
mountains, deep sea, large sediment layers and large Moho depth variations.

Small differences between the two methods are obtained for the sediments effects, while larger
differences are obtained for the effect of topography and bathymetry and the effect of the Moho
(Tab. 10.2). The differences of the effect of topography and bathymetry on the geoid are below
17 cm (Fig. 10.16a). The differences of Moho effects on the geoid reach 25 cm (Fig. 10.16b) and
have a larger variation than the differences on the topography and bathymetry effect. The larger
differences on the Moho effect are caused by the elongated shape of the Moho cuboids that can
reach heights of more than 10 km. The differences on the final solution combining topography,
bathymetry, sediments and Moho depths range between -25 cm and 10 cm, with an RMS of 9.6 cm.
Hence, if an accuracy better than 10 cm is sought, the application of the cuboid model is mandatory.
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10.4 Modeled Mass Effects on Geoid Heights and Gravity

(a) (b)

Figure 10.8: Effects of topography and bathymetry (including water masses) on (a) geoid heights (contour
interval: 0.25m) and (b) gravity (contour interval: 5mGal).

(a) (b)

Figure 10.9: Effect of water masses on (a) geoid heights (contour interval: 0.25m) and (b) gravity
(contour interval: 5mGal).
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(a) (b)

Figure 10.10: Effect of mass deficiency caused by sediments on (a) geoid heights (contour interval:
0.25m) and (b) gravity (contour interval: 5mGal).

(a) (b)

Figure 10.11: Effect of mass anomalies caused by Moho depths from ESC map (Fig. 10.7c) on (a) geoid
heights (contour interval: 0.25m) and (b) gravity (contour interval: 5mGal).
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(a) (b)

Figure 10.12: Effect of mass anomalies caused by Moho depths from isostatic compensation (Fig. 10.7d)
on (a) geoid heights (contour interval: 0.25m) and (b) gravity (contour interval: 5mGal).

(a) (b)

Figure 10.13: Sum of effects of topography, bathymetry (Fig. 10.8) and sediments (Fig. 10.10) on (a)
geoid heights (contour interval: 0.25m) and (b) gravity (contour interval: 5mGal).
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(a) (b)

Figure 10.14: Sum of effects of topography, bathymetry, sediments (Fig. 10.13) and ESC Moho depths
(Fig. 10.11) on (a) geoid heights (contour interval: 0.25m) and (b) gravity (contour interval: 5mGal).

(a) (b)

Figure 10.15: Sum of effects of topography, bathymetry, sediments (Fig. 10.13) and isostatic Moho depths
(Fig. 10.12) on (a) geoid heights (contour interval: 0.25m) and (b) gravity (contour interval: 5mGal).
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10.4 Modeled Mass Effects on Geoid Heights and Gravity

(a) (b)

Figure 10.16: Differences on geoid heights between mass effects computed by cuboid masses and point
masses from (a) topography/bathymetry and (b) Moho depths. Contour intervals: 0.025m.

Table 10.2: Differences (mean offset, standard deviation (STD) and RMS) on geoid heights between mass
effects computed by cuboid masses and point masses.

Effect mean [cm] STD [cm] RMS [cm]
Topo/Bathy -5.2 4.7 7.0
Sediments -0.1 2.3 2.3
Moho 0.3 8.4 8.4
Topo/Bathy, Sediments, Moho -5.0 8.1 9.6

In the present case, regarding the sizes of the residual geoid heights after the reduction of mass
effects (Section 10.5, Fig. 10.17a to Fig. 10.20a), the approximation of the point mass model has no
significant effect on the size and spatial structure of the residuals. Uncertainties of the topography,
sediments and Moho, as well as of the exact mass distribution inside the different layers, induce
larger errors than the point mass approximation. The same conclusions were drawn from a similar
investigation in the survey area of the North Aegean Sea (Section 11.4.7).
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10.5 Mass Reduction of Local Altimetric Geoid

10.5.1 Introduction

The mass effects computed in Section 10.4 were used to reduce the marine geoid heights obtained
by airborne laser altimetry (Fig. 10.1a). While geoid undulations are mainly affected by large-
scale mass anomalies, gravity anomalies are better suited to describe the short-wavelength part of
the gravity field, affected by local mass anomalies. Hence, marine gravity anomalies derived from
airborne altimetry (Fig. 10.1b) were also mass-reduced in order to obtain additional information on
the local gravity field, although the major investigations were carried out on geoid heights. With
the mass reduction, the mass effects are removed from the geoid heights or gravity anomalies.
The residual geoid heights or gravity anomalies represent the effects caused by unmodeled masses.
Hence, the mass reduction allows to detect anomalous mass distributions.

10.5.2 Topography-Bathymetry Cogeoid

In a first step, marine geoid heights from airborne laser altimetry (Fig. 10.1a) were reduced for
the mass effects of topography and bathymetry (including water masses) (Fig. 10.8a). The mass-
reduced geoid heights (Fig. 10.17a) correspond to the topography-bathymetry cogeoid. Associated
mass-reduced gravity anomalies are shown in Fig. 10.17b. After the removal of a mean offset, the
mass-reduced geoid heights range between -2.5m and 4.0m. The positive geoid anomaly around
the isle of Gavdos (Fig. 10.1a) is removed by the reduction, meaning that this local feature is caused
by the effects of the topographic masses of Gavdos and its surrounding bathymetry. Pronounced
residual gradients in different directions remain in the entire survey area, indicating that besides the
mass effects of topography and bathymetry, the structure of the geoid is influenced by additional
effects. However, the major part of the geoid slope of 20m across the survey area (Fig. 10.1a) was
reduced to 6.5m by removing the effects of topography and bathymetry.

10.5.3 Topography-Bathymetry-Sediments Cogeoid

In a second step, marine geoid heights from airborne laser altimetry (Fig. 10.1a) were reduced
for the mass effects of topography, bathymetry and sediments (Fig. 10.13a). The mass-reduced
geoid heights (Fig. 10.18a) correspond to the topography-bathymetry-sediments cogeoid. Asso-
ciated mass-reduced gravity anomalies are shown in Fig. 10.18b. After the removal of a mean
offset, the mass-reduced geoid heights range between -7m in the north-east and 8m in the south-
west, with pronounced gradients in south-west direction south of Crete. Assuming the ideal case
where the mass effects of topography, bathymetry and sediments were perfectly modeled and en-
tirely removed by the reduction, and where no other mass anomalies except those produced by the
Moho are present, the mass-reduced geoid heights (Fig. 10.18a) and gravity anomalies (Fig. 10.18b)
would correspond to the mass effects produced by the real Moho. Under these assumptions, the
pronounced mass-reduced geoid gradients south of Crete are an indicator for a significant Moho
uplift along the Mediterranean Ridge towards the south of the survey area. This is confirmed by
the pronounced positive mass-reduced gravity anomalies towards the south-west of the survey area,
reaching up to 300mGal (Fig. 10.18b). However, the residuals at the borders of the survey area
need to be considered with reservation due to possible boundary effects. The predicted Moho uplift
along the Mediterranean Ridge is in accordance with the uplifts of the ESC Moho (Fig. 10.7c) and
the isostatic Moho (Fig. 10.7d). The nearly flat structure of the cogeoid north of Crete (Fig. 10.18a)
indicates that the modeled geoid is almost parallel to the observed geoid. This means that the
remaining mass effects of the Moho on geoid heights have to be more or less constant in this area.
This is, however, in disagreement with the modeled mass effects of the ESC Moho (Fig. 10.11a)
and the isostatic Moho (Fig. 10.12a).
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10.5 Mass Reduction of Local Altimetric Geoid

10.5.4 Topography-Bathymetry-Sediments-Moho Cogeoid

In a third step, marine geoid heights from airborne laser altimetry (Fig. 10.1a) were reduced for the
mass effects of topography, bathymetry, sediments and ESC Moho (Fig. 10.14a). The mass-reduced
geoid heights (Fig. 10.19a) correspond to the topography-bathymetry-sediments-Moho cogeoid. As-
sociated mass-reduced gravity anomalies are shown in Fig. 10.19b. After the removal of a mean
offset, the mass-reduced geoid heights range between -4.5m and 7.5m, with pronounced gradients
in west direction across a major part of the survey area. These gradients are produced by a large
positive mass anomaly with respect to the modeled masses, situated beyond the western boundary
of the survey area. The origin of this anomaly can be anomalously dense crustal material, an
overestimation of the thickness of the sediment layer or an anomalously high Moho discontinuity
with respect to the ESC Moho. The last hypothesis could be confirmed by comparing the ESC
Moho (Fig. 10.7c) with the isostatic Moho (Fig. 10.7d). The strong local uplift of the isostatic
Moho west of Crete, produced by the deep water zone of 4000m, is less pronounced in the ESC
Moho. Although the Moho associated with the subduction zone north of Crete is better modeled
by the ESC Moho than by the isostatic Moho, the overall pronounced residual geoid gradients in
west direction prevent a stringent interpretation of the topography-bathymetry-sediments-Moho
cogeoid in the area north of Crete.

10.5.5 Topography-Bathymetry-Sediments-Isostasy Cogeoid

In a final step, marine geoid heights from airborne laser altimetry (Fig. 10.1a) were reduced for the
mass effects of topography, bathymetry, sediments and isostatic Moho (Fig. 10.15a). The mass-
reduced geoid heights (Fig. 10.20a) correspond to the topography-bathymetry-sediments-isostasy
cogeoid. Associated mass-reduced gravity anomalies are shown in Fig. 10.20b. After the removal of
a mean offset, the mass-reduced geoid heights range between -1.5m and 5m. The gradients south of
Crete, observed in the topography-bathymetry-sediments cogeoid (Fig. 10.18a), have disappeared,
indicating that they can be explaiend by the mass effects of the isostatic Moho. South of Crete,
the predominant geoid gradients towards the Mediterranean Ridge, reaching impressive 0.22m/km
and characterizing the geoid of the entire region (Fig. 10.1a), were completely eliminated by the
mass-reduction. The mass effects are mainly caused by the deep bathymetry down to -4000m and
the thick sedimentary deposits of up to 10 km. The variations of the mass-reduced geoid heights
were reduced to 1.7m south of Crete.

North of Crete, a pronounced geoid gradient of 0.1m/km in north direction appears after the
reduction (Fig. 10.20a), indicating a significant positive mass anomaly north of Crete. Since the
gradient is not weakening towards the northern border of the survey area and since the mass-
reduced gravity anomalies (Fig. 10.20b) are not indicating a local mass excess inside the survey
area, the positive mass anomaly must be situated beyond the northern border of the survey area.
The origin of this mass anomaly can be anomalously dense crustal material or an anomalously high
Moho with respect to the isostatic Moho. Both hypotheses are in accordance with density models
based on seismic soundings in the area of the Hellenic subduction zone and the Hellenic Trench,
characterized by the collision between the African and European lithospheric plates (Snopek et al.,
2007; Makris and Yegorova, 2006; Casten and Snopek, 2006). These density models indicate an
upwelling of the European mantle north of Crete, related to the subduction of the African oceanic
lithosphere beneath the Eurasian (Aegean) continental lithosphere and causing a significant positive
mass anomaly. It is obvious that the complexity of the Moho discontinuity and mass anomalies
associated with the subduction zone cannot be adequately modeled by isostatic compensation. As
a consequence, the major geoid anomaly in the area is the elevation of the geoid north of Crete,
rather than the depression south of Crete along the Mediterranean Ridge, since the latter can be
explained by the mass effects of the topography, batymetry, sediments and isostasy. In order to
localize the mass anomaly north of Crete, an extension of the survey area towards the North would
be necessary.
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(a) (b)

Figure 10.17: (a) Geoid heights from airborne laser altimetry (Fig. 10.1a) reduced for the mass effects
of topography and bathymetry (Fig. 10.8a), with mean offset removed. (b) Associated gravity anomalies
from reduction of Fig. 10.1b with Fig. 10.8b. Contour intervals: 0.1m and 10mGal.

(a) (b)

Figure 10.18: (a) Geoid heights from airborne laser altimetry (Fig. 10.1a) reduced for the mass effects
of topography, bathymetry and sediments (Fig. 10.13a), with mean offset removed. (b) Associated gravity
anomalies from reduction of Fig. 10.1b with Fig. 10.13b. Contour intervals: 0.1m and 10mGal.
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10.5 Mass Reduction of Local Altimetric Geoid

(a) (b)

Figure 10.19: (a) Geoid heights from airborne laser altimetry (Fig. 10.1a) reduced for the mass effects of
topography, bathymetry, sediments and ESCMoho (Fig. 10.14a), with mean offset removed. (b) Associated
gravity anomalies from reduction of Fig. 10.1b with Fig. 10.14b. Contour intervals: 0.1m and 10mGal.

(a) (b)

Figure 10.20: (a) Geoid heights from airborne altimetry (Fig. 10.1a) reduced for the mass effects of topo-
graphy, bathymetry, sediments and isostatic Moho (Fig. 10.15a), with mean offset removed. (b) Associated
gravity anomalies from reduction of Fig. 10.1b with Fig. 10.15b. Contour intervals: 0.1m and 10mGal.
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11 Geoscientific Exploitation of
Shipborne Altimetry Data in the
North Aegean Sea

11.1 Marine Geoid, Gravity Anomalies and Deflections of the
Vertical from Sea Surface Heights

Assuming the mean dynamic topography (MDT ) as known, marine geoid heights can be derived
from observed sea surface heights by subtracting the MDT (2.2). The MDT used in this study
is the RioMed mean dynamic topography of the Mediterranean Sea (Section 2.5.3, Fig. 2.5a). The
effects of the MDT in the survey area are small, with values between 0 and 5 cm only (Fig. 2.6b).
By subtracting the RioMed MDT (Fig. 2.6b) from the sea surface heights obtained by shipborne
altimetry (Fig. 8.13), altimetric geoid heights with respect to the WGS84 ellipsoid are obtained
(Fig. 11.1a). The obtained geoid heights reveal that the bathymetric low of the North Aegean
Trough is associated with a distinct depression of the geoid at the south-western end of the North
Aegean Trough. The depression reaches a minimum of 37.9m, while the geoid height in the
surrounding area is more than 39.5m and reaches 40.5m towards the north of the survey area.
Further details on the geodynamic processes associated with the North Aegean Trough are given
in Section 1.2.

Gravity anomalies (Fig. 11.1b) were computed from the marine geoid heights (Fig. 11.1a), based on
Laplace’s equation (2.19) and the curvature of the geoid (2.20), using the GMT (Generic Mapping
Tools) software (Wessel and Smith, 1998, 2005). As compared to geoid heights, gravity anomalies
are less affected by the long-wavelength part of the gravitational potential and are therefore better
suited for the analysis of local gravity anomalies. Gravity anomalies in the survey area range from
-60mGal at the geoid depression at the south-western end of the North Aegean Trough to 60mGal
in the North (Fig. 11.1b).

Variations of the geoid were further quantified by computing horizontal gradients (Fig. 11.1c) and
deflections of the vertical (2.14) (Fig. 11.1d) from the geoid heights. Maximum geoid gradients
of up to 0.1m/km are observed north of the island of Alonnisos, corresponding to a deflection of
the vertical of 20 arcsec. For comparison and validation purposes, deflections of the vertical from
astrogeodetic observations (Somieski, 2008), (Müller et al., 2006) are added in Fig. 11.1d. Further
interpretation of the obtained geoid heights and gravity anomalies is carried out in the framework
of the reduction of mass effects in Section 11.5.

11.2 Local Altimetric Geoid vs. Existing Models

To validate the marine geoid heights (Fig. 11.1a) obtained by shipborne altimetry (Section 11.1),
they were compared to geoid heights from several gravity models. The analyzed global gravity
models are EGM96 (Fig. 11.2a), EGM2008 (Fig. 11.2b), EIGEN-5S (Fig. 11.2c) and EIGEN-5C
(Fig. 11.2d). All geoid heights were computed with respect to the WGS84 ellipsoid. Further details
on the gravity models are given in Section 2.2.3. The different resolutions of the geoid models are
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Figure 11.1: (a) Altimetric geoid heights with respect to the WGS84 reference ellipsoid, obtained by
subtracting the RioMed mean dynamic topography (Fig. 2.6b) from sea surface heights determined by
shipborne altimetry (Fig. 8.13). Contour interval: 0.1m. White lines: ship tracks. A=Alonnisos. (b)
Gravity anomalies derived from geoid heights in (a). Contour interval: 5mGal. Gray lines: North Aegean
fault system. (c) Horizontal gradients of the geoid heights in (a). Contour interval: 0.01m/km. (d) De-
flections of the vertical from geoid heights in (a). Red vectors: deflections of the vertical from astrogeodetic
observations.
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11.2 Local Altimetric Geoid vs. Existing Models

(a) EGM96 (n=m=360)
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(c) EIGEN-5S (n=m=150)
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Figure 11.2: Geoid heights to degree n and order m with respect to the WGS84 reference ellipsoid, from
(a) EGM96, (b) EGM2008, (c) EIGEN-5S and (d) EIGEN-5C. Contour intervals: 0.1m.

seen (Fig. 11.2), e.g. by their capability of resolving the depression at the south-western end of the
North Aegean Trough.

The residuals between the altimetric geoid (Fig. 11.1a) and the geoid models (Fig. 11.2) are shown
in Fig. 11.3. Mean offsets and standard deviations are summarized in Tab. 11.1. In the ideal case
of error-free sea surface heights, dynamic topography and geoid models, these residuals should
be zero according to 2.27. The residuals with respect to EIGEN-5S have large values reaching
1.5m, large gradients and a high standard deviation of 0.37m (Fig. 11.3c). The poor agreement is
due to the low resolution (approx. 130 km) of the EIGEN-5S. The two combined geoid solutions
EGM96 and EIGEN-5C have a theoretical resolution of 55 km. The mean difference between
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Table 11.1: Mean offsets and standard deviations (STD) between the altimetric geoid from shipborne
altimetry and geoid models.

Geoid Model (degree,order) mean offset [m] STD [m]
EIGEN-5S (150,150) -0.63 0.37
EIGEN-5C (360,360) -0.31 0.38
EGM96 (360,360) -0.80 0.37
EGM2008 (360,360) -0.42 0.25
EGM2008 (2190,2159) -0.41 0.08
AUTH2008 - -0.94 0.10

the altimetric geoid and EGM96 (Fig. 11.3a) and EIGEN-5C (Fig. 11.3d) are -0.80m and -0.31m,
respectively, with similar standard deviations of 0.37m and 0.38m. As for EIGEN-5S, both models
do not resolve the local negative anomaly at the south-western end of the North Aegean Trough,
with residuals reaching -1.55m and -1.05m, respectively. The best agreement is obtained with
EGM2008, with a mean difference of -0.41m1 and a standard deviation of 0.08m (Fig. 11.3b). The
good agreement is due to the high resolution of EGM2008. Its expansion to degree 2190 and order
2159 corresponds to a resolution of approx. 10 km.

The improved input data in terms of resolution and accuracy of the recent EIGEN-5C, as compared
to EGM96, does not yield a significant improvement of the spatial resolution of EIGEN-5C. As
already shown for the airborne data around Crete (Section 10.2), the limiting factor in terms of
spatial resolution of the geoid models is their mathematical expansion of the spherical harmonics.
Again, this is confirmed by computing an EGM2008 solution with a spherical harmonics expansion
limited to degree and order 360 (Fig. 11.4a). The residuals with respect to the altimetric geoid have
a standard deviation of 0.25m (Fig. 11.5a), similar to those of EGM96 (Fig. 11.3a) and EIGEN-
5C (Fig. 11.3d). The extension of the expansion of EGM2008, from degree and order 360 to
degree 2190 and order 2159, yields an improvement of 0.17m of the standard deviation with
respect to the altimetric geoid, corresponding to an improvement of 68%. Additional residuals
were computed between the altimetric geoid and the local gravimetric geoid model AUTH2008
(Fig. 11.4b) (Section 2.2.3). The residuals have a standard deviation of 0.10m (Fig. 11.5b), similar
to the one obtained with respect to EGM2008.

The mean offsets (Tab. 11.1) are different from the ones obtained with respect to the airborne
altimetric geoid around Crete (Tab. 10.1), indicating discrepancies in the long wavelength geoid
undulations between the two areas under investigation. Since the absolute geoid height is not of
major interest, the offsets are not critical and were therefore not further investigated.

1It is a coincidence that this difference corresponds to the value of 0.41m that has to be subtracted from EGM2008
geoid heights to make them correspond to the mean sea surface. By using the same method to compute
residuals in the area around Crete, a mean difference of -0.14m was obtained (Fig. 10.3b). Furthermore, without
subtracting 0.41m from EGM2008, the mean difference would be -0.82m.
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(b) Altimetric Geoid - EGM2008 (n=2190, m=2159)
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(c) Altimetric Geoid - EIGEN-5S (n=m=150)
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(d) Altimetric Geoid - EIGEN-5C (n=m=360)
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Figure 11.3: Difference between shipborne altimetric geoid (Fig. 11.1a) and geoid heights to degree n and
order m from (a) EGM96, (b) EGM2008, (c) EIGEN-5S and (d) EIGEN-5C. White lines: ship tracks.
Contour intervals: 0.05m.
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Figure 11.4: Geoid heights with respect to the WGS84 reference ellipsoid, from (a) EGM2008 with
expansion limited to degree and order 360 and from (b) the gravimetric model AUTH2008 (b). Contour
intervals: 0.1m.

(a) Altimetric Geoid - EGM2008 (n=m=360)
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Figure 11.5: Difference between shipborne altimetric geoid (Fig. 11.1a) and geoid heights from (a)
EGM2008 to degree and order 360 and (b) AUTH2008. White lines: ship tracks. Contour intervals:
0.05m.
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11.3 Mean Dynamic Topography Estimation

11.3 Mean Dynamic Topography Estimation

Among the geoid models used in Section 11.2, the satellite-only solution EIGEN-5S and the local
gravimetric geoid model AUTH2008 are the only geoid solutions that are independent of altimetric
sea surface height data. Hence, they would be the only appropriate models to determine the mean
dynamic topography (MDT ) using the direct method after (2.28) (Section 2.5). The pronounced
residuals between the shipborne data and EIGEN-5S (Fig. 11.3c) are obviously making the EIGEN-
5S unusable for realisticMDT determination at wavelengths below 130 km. The same remark holds
for EGM96 and EIGEN-5C (Fig. 11.3a and Fig. 11.3d). Even if these models were independent of
altimetric data, they would not be appropriate to determine the MDT at wavelengths below
55 km. Hypothetic MDT were computed from the residual fields of the sea surface heights from
shipborne altimetry (Fig. 8.13) with respect to EGM2008 (Fig. 11.6a) and AUTH2008 (Fig. 11.6b)
geoid heights. Geostrophic circulation fields were derived from the hypothetic MDT based on
(2.30). Compared to the RioMed mean geostrophic circulation (Fig. 2.6b), the obtained circulations
are unrealistic and spoiled by noisy eddies. By applying low-pass filters to both datasets, it was
possible to eliminate the noisy eddies, but no significant circulation remained. Hence, it was not
possible to derive a realistic circulation pattern based on the sea surface height observations and
the used geoid models. The major reason lies in the fact that the presumedMDT , as e.g. given by
RioMed (Fig. 2.6b), varies only within a range of 4 cm over the entire survey area. Furthermore,
the gradients of the MDT associated with the circulation are below 0.5 cm/10 km. Hence, the
MDT signal in the survey area is smaller or in the same order of magnitude as the accuracy
of the shipborne sea surface heights and the used geoid models. It can be concluded that the
sea surface height observations by shipborne altimetry and the considered geoid models are not
accurate enough to resolve such small dynamic effects. In addition, EGM2008 is not independent
of altimetric sea surface height data.

(a) SSH - EGM2008 (n=2190, m=2159) (b) SSH - AUTH2008

Figure 11.6: Hypothetic mean dynamic topography (background) and ocean circulation (arrows) from
differences between sea surface heights from shipborne altimetry (Fig. 8.13) and geoid heights from (a)
EGM2008 and (b) AUTH2008.
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11.4 Modeled Mass Effects on Geoid Heights and Gravity

11.4.1 Introduction

The effects of mass anomalies on geoid heights were computed for the survey area in the North
Aegean Sea, based on (2.22) and on cuboid masses (2.24). The grid spacing of the computation
points and the mass elements was 30’× 30’, corresponding to approx. 900m. The distances between
the mass elements and the computation points were computed using geocentric coordinates, in order
to avoid effects of Earth’s curvature. A maximum radius of influence of 275 km was considered
for the masses effects. The area of influence extends from 19°E to 29°E and from 36°N to 43°N
(Fig. 11.7a). The mass densities in Tab. 2.1 were used. Geoid heights are highly influenced by
large-scale mass anomalies (Section 2.2.2). As compared to geoid heights, gravity anomalies are less
affected by the long-wavelength part of the gravitational potential and are therefore better suited
for the analysis of local gravity anomalies. Hence, the effects of mass anomalies on gravity were
computed, based on (2.23) and (2.25), in order to obtain additional information on the local gravity
field, although the major investigations were carried out on geoid heights. The gravity anomalies
were computed at sea level, yielding e.g. exclusively negative effects of the topography on gravity
anomalies. The mass effects are used in the Section 11.5 to reduce the geoid heights and gravity
anomalies derived from shipborne altimetry. The theoretical background of the computation of
mass effects on geoid heights and on gravity anomalies is given in Section 2.2.2.

11.4.2 Mass Effect of Topography and Bathymetry

The topography and bathymetry were taken from the SRTM30 (Shuttle Radar Topography Mis-
sion) digital terrain model, published by the United States Geological Survey (USGS). It has a
resolution of 30’×30’, corresponding to approx. 900m. The topography and bathymetry of the area
of influence are characterized by the topographic masses surrounding the North Aegean Sea and
by the bathymetry of the North Aegean Trough (Fig. 11.7a). The topography and bathymetry (in-
cluding water masses) have mainly positive effects on geoid heights (Fig. 11.8a), since the positive
effect of the topographic mass excess predominates over the negative effect of the mass deficiency
due to the water. The effect ranges between 18m in the north-west and -4m in the south of
the survey area. A relative depression, associated with the bathymetric low of the North Aegean
Trough, can hardly be depicted, due to the pronounced overall geoid gradient in north-west direc-
tion caused by the topographic mass excess in the north-west of the area of influence. Associated
gravity anomalies are shown in Fig. 11.8b. Within the effect of topography and bathymetry, the
water masses have positive effects between 0.7m on the northern mainland of the survey area and
2.7m at the North Aegean Trough (Fig. 11.9a). In the south-western part, the effect reaches 9m,
caused by the deep water of the Ionian Sea in the south-western part of the area of influence.
Associated gravity anomalies are shown in Fig. 11.9b.

11.4.3 Mass Effect of Sediments

The survey area is characterized by two marine sediment spots reaching thicknesses of 6 km
(Fig. 11.7b). The mass deficiency associated with the sediments has a negative effect on geoid
heights, reaching -3m (Fig. 11.10a). Associated gravity anomalies are shown in Fig. 11.10b.

11.4.4 Mass Effect of Moho Depths

For the computation of the effect of crust-mantle boundary (Moho) anomalies, Moho depths from
the digital Moho depth map published by the ESC (European Seismological Commission) Working
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(a) (b)

(c) (d)

Figure 11.7: (a) Topography and bathymetry of the area of influence considered in the modeling of mass
effects (contour interval topo: 1000m, bathy: 250m). (b) Light sediment thickness from unknown source
(contour interval: 250m). (c) Moho depth from ESC (Grad et al., 2009) (contour interval: 1 km). (d)
Moho depth from isostatic compensation (reference depth: 30 km, contour interval: 1 km).

Group (Grad et al., 2009) (Fig. 11.7c) were used. Further details on the ESC Moho depths are
given in Section 10.4.4. The Moho in the survey area is characterized by large-scale depressions
over the Greek and Turkish mainland, locally reaching -47 km. The mass deficiency caused by
the depression of the Moho in the north-west of the area of influence causes pronounced negative
effects of more than -20m on geoid heights, whereas the effect in the south reaches positive values
of more than 10m (Fig. 11.11a). Associated gravity anomalies are shown in Fig. 11.11b.
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11.4.5 Mass Effect of Isostatic Moho Depths

As an alternative to the ESC Moho, Moho depths were computed based on isostatic compensation
of the masses of topography, bathymetry, water and sediments, similar to the procedure in Sec-
tion 10.4.5). A reference depth of -30 km was used. Since the model of isostatic compensation only
reflects a theoretical correlation between the masses above the crust-mantle boundary (Moho) and
the compensating depth of the boundary, it may sound more appropriate to use a Moho model
predicted by real observations, like the ESC Moho (Section 11.4.4). In the present study, however,
better reduction results were obtained with the isostatic Moho (Section 11.5).

The isostatic compensation has a weak uplift effect on the Moho in the marine areas of the Aegean
Sea (Fig. 11.7d), due to mass deficiencies caused by water and sediments. The isostatic Moho rises
up to a depth of -25 km at the North Aegean Trough. On the mainland, the Moho is characterized
by large-scale depressions locally reaching -39 km, associated with a topographic mass excess. In
the north of the survey area, the drop of the Moho is causing a mass deficiency that has a negative
effect on geoid heights, reaching -15.5m in the north-west (Fig. 11.12a). In the south, a positive
effect of the Moho on geoid heights is obtained, reaching 7.5m in the south-west. Associated
gravity anomalies are shown in Fig. 11.12b.

11.4.6 Combined Mass Effects

The combination of the effects of topography and bathymetry (Fig. 11.8a) with the effects of
sediments (Fig. 11.10a) yield mostly positive effects on geoid heights (Fig. 11.13a). They range
between 17.5m in the North-West and -4m in the South. The introduction of the effects of
sediments amplifies the local geoid depression at the North Aegean Trough. Associated gravity
anomalies are shown in Fig. 11.13b.

The combination of the effects of topography, bathymetry and sediments (Fig. 11.13a) with the
effects of the ESC Moho (Fig. 11.11a) reduces the effects on geoid heights (Fig. 11.14a). They reach
a maximum of 8m in the South and a minimum of -6m in the North-West. By visually comparing
the modeled geoid (Fig. 11.14a) to the observed geoid (Fig. 11.1a) and to EGM2008 (Fig. 11.2b),
a poor agreement is observed. In particular, the modeled geoid (Fig. 11.14a) shows no distinct
depression at the North Aegean Trough. Associated gravity anomalies are shown in Fig. 11.14b.

The combination of the effects of topography, bathymetry and sediments (Fig. 11.13a) with the
effects of the isostatic Moho (Fig. 11.12a) yield small effects on geoid heights (Fig. 11.15a). They
reach a maximum of 3m in the West and North-West, associated with major topographic mass
excesses, and a local minimum of -2.2m at the North Aegean Trough. The introduction of the
effect of the isostatic Moho removes the major geoid gradient in north-west direction observed in
Fig. 11.8a and Fig. 11.13a. As a consequence, the shape of the modeled geoid becomes more realistic
when compared to the observed geoid (Fig. 11.1a) and to EGM2008 (Fig. 11.2b). Associated gravity
anomalies are shown in Fig. 11.15b.

11.4.7 Cuboids vs. Point Mass Modeling

The mass effects (Fig. 11.8 to Fig. 11.15) were computed based on cuboids masses using (2.24) and
(2.25). Since the computation involving cuboid masses can be very CPU-intensive depending on
the size and resolution of the data grids, a simplified method to compute mass effects on geoid
heights and on gravity based on (2.22) and (2.23) consists in concentrating the mass of each cuboid
at its center of mass. To assess the impact of this approximation, the effects computed by cuboid
masses on geoid heights (Fig. 11.8a to Fig. 11.15a) were recomputed based on the center of mass
(point mass) method. Differences between the cuboid and point mass methods are increased by
the presence of elongated cuboids close to the computation point, typically produced by high
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(a) (b)

Figure 11.8: Effects of topography and bathymetry (including water masses) on (a) geoid heights (contour
interval: 0.1m) and (b) gravity (contour interval: 5mGal).

(a) (b)

Figure 11.9: Effect of water masses on (a) geoid heights (contour interval: 0.1m) and (b) gravity
(contour interval: 5mGal).
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(a) (b)

Figure 11.10: Effect of mass deficiency caused by sediments on (a) geoid heights (contour interval: 0.1m)
and (b) gravity (contour interval: 5mGal).

(a) (b)

Figure 11.11: Effect of mass anomalies caused by Moho depths from ESC map (Fig. 11.7c) on (a) geoid
heights (contour interval: 0.1m) and (b) gravity (contour interval: 5mGal).
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(a) (b)

Figure 11.12: Effect of mass anomalies caused by Moho depths from isostatic compensation (Fig. 11.7d)
on (a) geoid heights (contour interval: 0.1m) and (b) gravity (contour interval: 5mGal).

(a) (b)

Figure 11.13: Sum of effects of topography, bathymetry (Fig. 11.8) and sediments (Fig. 11.10) on (a)
geoid heights (contour interval: 0.1m) and (b) gravity (contour interval: 5mGal).
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(a) (b)

Figure 11.14: Sum of effects of topography, bathymetry, sediments (Fig. 11.13) and ESC Moho depths
(Fig. 11.11) on (a) geoid heights (contour interval: 0.1m) and (b) gravity (contour interval: 5mGal).

(a) (b)

Figure 11.15: Sum of effects of topography, bathymetry, sediments (Fig. 11.13) and isostatic Moho depths
(Fig. 11.12) on (a) geoid heights (contour interval: 0.1m) and (b) gravity (contour interval: 5mGal).
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(a) (b)

Figure 11.16: Differences on geoid heights between mass effects computed by cuboid masses and point
masses from (a) topography/bathymetry and (b) Moho depths. Contour intervals: 0.025m.

Table 11.2: Differences (mean offset, standard deviation (STD) and RMS) on geoid heights between mass
effects computed by cuboid masses and point masses.

Effect mean [cm] STD [cm] RMS [cm]
Topo/Bathy 2.0 2.4 3.1
Sediments 0.1 0.1 0.1
Moho 0.7 4.9 4.9
Topo/Bathy, Sediments, Moho 2.6 4.2 4.9

mountains, deep sea, large sediment layers and large Moho depth variations.

Small differences between the two methods are obtained for the sediments effects, while larger
differences are obtained for the effect of topography and bathymetry and the effect of the Moho
(Tab. 11.2). The differences of the effect of topography and bathymetry on the geoid are below
7 cm (Fig. 11.16a). The differences of Moho effects on the geoid reach 15 cm (Fig. 11.12a) and
have a larger variation than the differences on the topography and bathymetry effect. The larger
differences on the Moho effect are caused by the elongated shape of the Moho cuboids that can
reach heights of more than 10 km. The differences on the final solution combining topography,
bathymetry, sediments and Moho depths range between -5 cm and 15 cm, with an RMS of 4.9 cm.
Hence, if an accuracy better than 5 - 10 cm is sought, the application of the cuboid model is manda-
tory. In the present case, regarding the sizes of the residual geoid heights after the reduction of
mass effects (Section 11.5, Fig. 11.17a to Fig. 11.20a), the approximation of the point mass model
has no significant effect on the size and spatial structure of the residuals. Uncertainties of the
topography, sediments and Moho, as well as of the exact mass distribution inside the different
layers, induce larger errors than the point mass approximation. The same conclusions were drawn
from a similar investigation in the survey area of western Crete (Section 10.4.7).
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11.5 Mass Reduction of Local Altimetric Geoid

11.5.1 Introduction

The mass effects computed in Section 11.4 were used to reduce the marine geoid heights obtained by
shipborne altimetry (Fig. 11.1a). While geoid undulations are mainly affected by large-scale mass
anomalies, gravity anomalies are better suited to describe the short-wavelength part of the gravity
field, affected by local mass anomalies. Hence, marine gravity anomalies derived from shipborne
altimetry (Fig. 11.1b) were also mass-reduced in order to obtain additional information on the local
gravity field, although the major investigations were carried out on geoid heights. With the mass
reduction, the mass effects are removed from the geoid heights or gravity anomalies. The residual
geoid heights or gravity anomalies represent the effects caused by unmodeled masses. Hence, the
mass reduction allows to detect anomalous mass distributions.

11.5.2 Topography-Bathymetry Cogeoid

In a first step, marine geoid heights from shipborne altimetry (Fig. 11.1a) were reduced for the
mass effects of topography and bathymetry (including water masses) (Fig. 11.8a). The mass-
reduced geoid heights (Fig. 11.17a) correspond to the topography-bathymetry cogeoid. Associated
mass-reduced gravity anomalies are shown in Fig. 11.17b. After the removal of a mean offset,
the mass-reduced geoid heights range between -3.9m and 3.2m, with pronounced gradients in
north-west direction.

11.5.3 Topography-Bathymetry-Sediments Cogeoid

In a second step, marine geoid heights from shipborne altimetry (Fig. 11.1a) were reduced for the
mass effects of topography, bathymetry and sediments (Fig. 11.13a). The mass-reduced geoid
heights (Fig. 11.18a) correspond to the topography-bathymetry-sediments cogeoid. Associated
mass-reduced gravity anomalies are shown in Fig. 11.18b. After the removal of a mean offset, the
mass-reduced geoid heights range between -3.0m and 2.1m. Pronounced gradients in north-west
direction remain after the reduction. The strong geoid gradients north of the island of Alonnisos,
as well as the predominant geoid depression at the western end of the North Aegean Trough, are
mainly removed by the reduction, indicating that these local features are mainly produced by the
mass effects of the topography, bathymetry and sediments. Assuming the ideal case where the mass
effects of topography, bathymetry and sediments were perfectly modeled and entirely removed by
the reduction, and where no other mass anomalies except those produced by the Moho are present,
the mass-reduced geoid heights (Fig. 11.18a) and gravity anomalies (Fig. 11.18b) would correspond
to the mass effects produced by the real Moho. Under these assumptions, the pronounced local
maximum of 1.3m of the mass-reduced geoid in the North Aegean Trough region predicts a mass
excess associated with a Moho uplift in this area. Another indication for a significant regional
uplift of the Moho is given by the mass-reduced gravity anomalies, showing positive values be-
tween 60mGal and 100mGal across the entire area of the North Aegean Trough covered by the
shipborne surveys (Fig. 11.18b). The predicted Moho uplift in the North Aegean Trough area is in
accordance with the uplift of the modeled isostatic Moho (Fig. 11.7d).

11.5.4 Topography-Bathymetry-Sediments-Moho Cogeoid

In a third step, marine geoid heights from shipborne laser altimetry (Fig. 11.1a) were reduced for
the mass effects of topography, bathymetry, sediments and ESC Moho (Fig. 11.14a). The mass-
reduced geoid heights (Fig. 11.19a) correspond to the topography-bathymetry-sediments-Moho co-
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geoid. Associated mass-reduced gravity anomalies are shown in Fig. 11.19b. After the removal of
a mean offset, the mass-reduced geoid heights range between -4.0m and 2.5m, with pronounced
gradients in north direction across the entire survey area. These gradients prevent a stringent
interpretation of the topography-bathymetry-sediments-Moho cogeoid.

11.5.5 Topography-Bathymetry-Sediments-Isostasy Cogeoid

In a final step, marine geoid heights from shipborne altimetry (Fig. 11.1a) were reduced for the
mass effects of topography, bathymetry, sediments and isostatic Moho (Fig. 11.15a). The mass-
reduced geoid heights (Fig. 11.20a) correspond to the topography-bathymetry-sediments-isostasy
cogeoid. Associated mass-reduced gravity anomalies are shown in Fig. 11.20b. After the removal
of a mean offset, the mass-reduced geoid heights range between -1.5m in the South-West to a local
maximum of 1.0m at the North Aegean Trough in the north-eastern part of the survey area. The
pronounced gradients in north-west direction, observed in the topography-bathymetry-sediments
cogeoid (Fig. 11.18a) have disappeared, indicating that they can be explained by the mass effects of
the isostatic Moho. Weaker gradients in south-west direction appear instead. The origin of these
gradients can be the large mass deficiencies in the Ionian Sea, associated with the Mediterranean
Ridge, which are only partly considered within the area of influence in the computation of mass
effects. A second hypothetic origin would be an anomalous Moho discontinuity with respect to
the Moho modeled by isostatic compensation, characterized by a relative higher Moho at the local
cogeoid maximum and an inclination in south-west direction.

The predominant geoid depression of 1.5m at the south-western end of the North Aegean Trough
(Fig. 11.1a) was eliminated by the reduction (Fig. 11.20a). Hence, this depression is not an anomaly,
since it can be explained by the effects of the masses considered in the reduction. The geoid anomaly
in the survey area is in fact the discontinuity of the depression towards the North-East along the
North Aegean Trough (Fig. 11.1a), leading to the local maximum of 1.0m of the mass-reduced geoid
heights (Fig. 11.20a). This maximum is associated with mass-reduced gravity anomalies between
40mGal and 60mGal (Fig. 11.20b). The anomaly is caused by a local mass excess not considered
in the modeled mass effects. The mass-reduced geoid heights and gravity anomalies do not allow to
draw a conclusion whether the anomaly is caused by an anomalously dense crust, an overestimated
sediment effect or an anomalous local Moho uplift. The gravity anomalies in the order of 40mGal
would correspond to an hypothetical local upwelling of the Moho by 4 km with respect to the
isostatic Moho, yielding a theoretical Moho depth of 22 km. The local geoid anomaly lies on the
northern fault bounding the North Aegean Trough. The area of the anomaly is identified as a major
strike-slip boundary, characterized by high seismicity, separating the Anatolia-Aegean plate from
Eurasia (McNeill et al., 2004). It is accompanied with dextral shear strain rates, combined with
normal extension and isolated normal compression (Fig. 1.6) (Hollenstein, 2006). Furthermore, it
is correlated with the epicenters of two recent strike-slip earthquakes of magnitude 6.9 and 5.4, in
1982 and 1992, respectively (McNeill et al., 2004). These considerations may be an indication that
the observed geoid and gravity anomalies are caused by an anomalous upwelling of dense material
linked to the geodynamic system of the North Aegean Trough.
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Figure 11.17: (a) Geoid heights from shipborne altimetry (Fig. 11.1a) reduced for mass effects of topo-
graphy and bathymetry (Fig. 11.8a), with mean offset removed. (b) Associated gravity anomalies from
reduction of Fig. 11.1b with Fig. 11.8b. Contour intervals: 0.1m and 10mGal. (A=Alonnisos).
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Figure 11.18: (a) Geoid heights from shipborne altimetry (Fig. 11.1a) reduced for mass effects of topogra-
phy, bathymetry and sediments (Fig. 11.13a), with mean offset removed. (b) Associated gravity anomalies
from reduction of Fig. 11.1b with Fig. 11.13b. Contour intervals: 0.1m and 10mGal. (A=Alonnisos).
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Figure 11.19: (a) Geoid heights from shipborne altimetry (Fig. 11.1a) reduced for mass effects of topo-
graphy, bathymetry, sediments and ESC Moho (Fig. 11.14a), with mean offset removed. (b) Associated
gravity anomalies from reduction of Fig. 11.1b with Fig. 11.14b. Contour intervals: 0.1m and 10mGal.
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Figure 11.20: (a) Geoid heights from shipborne altimetry (Fig. 11.1a) reduced for mass effects of topo-
graphy, bathymetry, sediments and isostatic Moho (Fig. 11.15a), with mean offset removed. (b) Associated
gravity anomalies from reduction of Fig. 11.1b with Fig. 11.15b. Contour intervals: 0.1m and 10mGal.
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12 Summary and Conclusions

The method of airborne laser altimetry was successfully developed and deployed for high-resolution
sea surface height determination in the area of western Crete. Since airborne laser altimetry is
very cost-intensive, a major aim of this project was the development of an alternative method for
local-scale sea surface topography determination. A novel method of shipborne sea surface height
observations was developed in the framework of this project. The method relies on one or more low-
cost industrial ultrasonic distance sensors mounted on a boat, providing continuous information on
the distance to the sea surface, in combination with a multi-antenna GPS system and a low-cost
inertial measurement unit for position and attitude determination. Due to its analogy to airborne
laser altimetry, the method is called shipborne ultrasound altimetry. The successful implementation
of the new technique during several survey campaigns proved that shipborne ultrasound altimetry
is a powerful method for providing offshore sea surface height observations, even under rough sea
conditions. Hence, the method provides a low-cost alternative to airborne laser altimetry. In
this work, the scientific potential of airborne laser altimetry and shipborne ultrasound altimetry
for accurate sea surface height determination in local areas was demonstrated. The results are
more than satisfying in terms of accuracy and repeatability, leading to high-resolution local sea
surface topography solutions at sub-decimeter level, with some limitations stated below. In order
to achieve best possible accuracies, a wide range of processing algorithms and corrections needs
to be applied. On the instrumental level, they include precise kinematic GPS positioning, precise
attitude retrieval and boresight misalignment calibration. On the sea surface level, they include
correcctions for ocean waves, tides, atmospheric pressure forcing and wind forcing.

Differential kinematic GPS positions of the survey aircraft and boat were obtained at a vertical
accuracy of better than 5 cm, even for baseline lengths of more than 100 km. However, it was seen
in the airborne surveys that the vertical accuracy can be considerably degraded up to a level of
30 cm in case of extremely inhomogeneous atmospheric conditions. In this case, the inaccuracy of
the corrections of GPS observations for tropospheric refraction and their impact on the vertical
component of the GPS positions were found to be the limiting factor for the accuracy of the
final sea surface topography by airborne and shipborne altimetry. Based on these conclusions,
investigations were made to assess the kinematic potential of Bernese GPS Software Version 5 and
its capability to estimate tropospheric path delays in kinematic mode. The source code of the
Bernese software had to be adapted to the estimation of path delays in kinematic mode. Results
similar to the classic solution with path delays predicted from an a priori model were obtained
under homogeneous atmospheric conditions. Under extreme tropospheric conditions, differences
between the two solutions could easily reach 0.5m. The analysis showed that under such conditions,
the Bernese solution including the estimation of tropospheric path delays was extremely sensitive
to tropospheric parameter settings. The instability of the solution led to the conclusion that
the algorithm used to model the troposphere is not sophisticated enough to provide a realistic
representation of extremely inhomogeneous atmospheric conditions in kinematic mode. In order
to improve the accuracy of kinematic GPS positioning, and hence of deduced sea surface heights,
further research on modeling tropospheric influences in kinematic mode is needed.

Attitude determination using a multi-antenna GPS array produced reliable data for both the survey
aircraft and sailing yacht. The good performance of the multi-antenna GPS attitude determination
was demonstrated by comparing the solutions with the data of a high-precision INS platform,
operated simultaneously aboard the aircraft. The comparisons showed a good correlation between
the attitude data provided by the two systems, with standard deviations of the observed differences
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in the order of 0.11° on the roll and pitch, and 0.06° on the yaw. The accuracy of the attitude
derived from the multi-antenna GPS array was estimated to be in the order of 0.1°, given the specific
antenna configurations. This value was found to meet the accuracy requirement established for sea
surface height determination with airborne or shipborne altimetry. The achieved accuracy would
further enable the use of the multi-antenna GPS method for attitude determination in a wide range
of applications where high sampling rates are not required and where good GPS satellite visibility
is warranted.

The boresight misalignment calibration method for airborne laser altimetry developed in this
project is a truly self-calibrating technique, in the sense that it exclusively relies on the sea surface
height observations themselves. There is no need for overflying special calibration surfaces. Ad-
ditionally, the method relies directly on subsequent observations within the same flight line, with
no need for overflying the same area more than once. Furthermore, the calibration algorithm is
completely independent of any a priori information about the relief of the measured water surface,
like e.g. geoid heights. The calibration method allowed to estimate boresight misalignment angles
with an accuracy better than 0.1°, corresponding to the expected order of magnitude of boresight
misalignment variations during flight operations, as well as to the estimated attitude accuracy.
The boresight misalignment calibration allowed to mitigate systematic ground point height errors
of up to 10 cm, due to a systematic aerodynamic pitch of the aircraft. Due to the small ranges
of less than 3m in shipborne ultrasound altimetry, and the large size of the ultrasound footprint,
there was no need for boresight misalignment calibration in shipborne ultrasound altimetry.

Various ocean tide models, including FES2004 and POL (Proudman Oceanographic Laboratory)
(Tsimplis et al., 1995), as well as local tide-gauge data, were analyzed for the correction of ocean
tides. A significant contradiction among the models was observed in the survey areas around west-
ern Crete and in the North Aegean Sea. Around Crete, differences of up to 3 cm were observed
between the models, as well as with respect to local tide-gauge data. The disagreement is sig-
nificant, since tidal amplitudes in the area are only in the order of 2.5 cm. However, considering
the small size of the encountered tidal amplitudes and of the differences between the models, the
choice of the tide model is not crucial for the accuracy of the corrected sea surface heights. In the
North Aegean Sea, tidal amplitudes are in the order of 15 - 20 cm, making the choice of the tidal
model important. Significant differences of up to 20 cm were observed between the predictions of
the global FES2004 model and the POL model. A validation with local tide-gauge data revealed
large differences of up to 25 cm with respect to FES2004, while the differences with respect to the
POL model were below 8 cm. Furthermore, the POL model showed a better agreement with the
shipborne data. It allowed to significantly reduce the RMS of the sea surface height differences at
crosspoints by 4.8 cm, and the maximum absolute difference by 8.0 cm. Applying tidal corrections
directly from tide-gauge data produced a slightly worse agreement with the shipborne data, due
to the fact that tide-gauge data is affected by local coastal effects. The remaining residuals of the
tide-gauge observations with respect to the POL model are most likely due to local coastal effects,
not resolved by the tidal model. It can be assumed that the model performs better offshore, in the
absence of strong and hardly predictable coastal effects.

Corrections of sea surface heights for atmospheric pressure and wind forcing were applied using
MOG2D dynamic atmospheric corrections. Corrections between -16 cm and 12 cm were obtained
for the considered times and locations. In the case of the shipborne data, the MOG2D corrections
allowed to reduce the RMS of height differences at crosspoints by 2.0 cm and the maximum absolute
difference by 7.7 cm. Furthermore, they produced a significant improvement of the corrected sea
surface heights, as compared to a classical inverse barometer correction. Sea level anomalies
obtained from satellite radar altimetry were applied as additional correction to the airborne and
shipborne observations. The beneficial effect of this correction, especially for the shipborne data
collected over five years, was also demonstrated by the crosspoints analysis: the RMS of the sea
surface height differences was reduced by 3.8 cm and the maximum absolute difference by 8.6 cm.
This reveals the good compatibility of the airborne and shipborne observations with satellite radar
altimetry data.
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The accuracy and repeatability of the airborne and shipborne altimetry methods were estimated
by analyzing sea surface height differences at crosspoints using the best-available combination of
sea surface height corrections. The height differences at 100 crosspoints of the airborne campaign
showed an RMS of 8.7 cm, while the five shipborne campaigns yielded a total of 1999 crosspoints
with an RMS of 7.9 cm. After an LSQ adjustment of the height profiles based on the differences at
crosspoints, the RMS values were further reduced to 4.5 cm and 5.5 cm, respectively. A standard
deviation of only 3.1 cm was obtained for the residuals between the sea surface height profiles
from airborne laser altimetry and the derived gridded and filtered sea surface topography. After
an outlier removal based on the residuals, this standard deviation was reduced to 2.9 cm. The
same procedure was applied to the shipborne data, yielding a standard deviation of 5.2 cm before
and 3.6 cm after the outlier removal. The low RMS and standard deviation obtained for the
height differences at crosspoints and the residuals underline the good accuracy and repeatability
of the two methods. Furthermore, the agreement of better than 1 cm of these RMS and standard
deviations between the airborne and shipborne altimetry methods shows that the performance of
both methods is comparable in terms of accuracy and repeatability. It has to be noted that the
instrumental accuracy of both methods is better than the RMS and standard deviations stated
above, since these values include not only instrumental errors, but also errors of the geophysical
sea surface height corrections. In order to further asses the accuracy of the methods, calibration
measurements were performed with GPS buoys. The calibration of the airborne laser altimetry
system, performed in calm nearshore conditions, as well as in harsh offshore conditions, provided
excellent results, with sea surface heights fitting better than 5 cm.

Comparisons between airborne laser altimetry and nearly-simultaneous Jason-1 radar altimeter
data along a dedicated profile of more than 100 km revealed variations of the height difference in
the order of 10 cm. Additional comparisons were made between significant wave heights derived
from airborne laser altimetry and from Jason-1 GDR data along the dedicated profile. A good
agreement of better than 20 cm was obtained using Jason-1 Ku-band data.

In order to validate sea surface height products from satellite radar altimetry missions, the local sea
surface topographies obtained by airborne and shipborne altimetry were compared to the CLS01
and DNSC08 mean sea surfaces (MSS) derived from multi-mission radar altimetry. Theoretically,
the CLS01 and DNSC08 resolve wavelengths down to 10 - 20 km. The residuals between the sea
surface topography from airborne laser altimetry around Crete and both CLS01 and DNSC08 show
a good agreement with standard deviations in the order of 8 cm. However, local residuals of up
to 50 cm are observed in a belt of 20 km around the coast of Crete, where strong geoid gradients
of up to 0.22m/km occur. In these coastal areas, CLS01 and DNSC08 sea surface heights suffer
from a lack of satellite radar altimetry data. Since the coastline was not systematically covered by
airborne laser altimetry, uncertainties also remain in the airborne sea surface topography regarding
these areas. The residuals between the sea surface topography from shipborne altimetry and both
CLS01 and DNSC08 show a good agreement, with standard deviations in the order of 6 cm. Thus,
the agreement of both CLS01 and DNSC08 with the shipborne altimetry data in the North Aegean
Sea is slightly better than with the airborne altimetry data around Crete. However, this is not a
consequence of a better accuracy of the shipborne altimetry data, but rather related to the extreme
sea surface height gradients encountered around Crete. Besides the validation of the MSS products,
the good agreement with the MSS from CLS01 and DNSC08 allows to assess the good accuracy
and resolution of the sea surface topographies determined by airborne and shipborne altimetry.

Two local high-resolution marine geoid solutions were derived from the sea surface heights ob-
tained by airborne and shipborne altimetry, by subtraction of the RioMed mean dynamic ocean
topography. In addition, geoid gradients, deflections of the vertical and gravity anomalies were
derived from the altimetric geoid heights. The high accuracy of the two local altimetric geoid
solutions was demonstrated by comparison with solution from the global gravity models EGM96,
EGM2008, EIGEN-5S and EIGEN-5C. The spatial resolution of the local altimetric geoid solutions
was found to be significantly higher than the resolution of existing geoid models with a spherical
harmonics expansion limited to degree and order 360 (EGM96 and EIGEN-5C). The resolution of

177



12 Summary and Conclusions

these models corresponds to 55 km. Residuals between the local altimetric geoids and these models
have standard deviations of 0.37m to 0.40m and maximum values of 1.5m. It was shown that the
resolution of these models is mainly limited by their mathematical expansion of spherical harmon-
ics. Comparisons with the EIGEN-5S model, limited to degree and order 150, yielded even higher
residuals, with standard deviations of up to 0.81m and maximum values over 1.5m. Comparisons
between the two local altimetric geoids and the recently released EGM2008 revealed low residuals,
with standard deviations of 0.08m and 0.11m. Additional comparisons with the local gravimetric
geoid model AUTH2008 (Tziavos and Andritsanos, 1999; Vergos et al., 2004; Grigoriadis, 2009)
produced similar standard deviations of 0.15m and 0.10m. Hence, all four geoid solutions have
similar spatial resolutions. The EGM2008 is expanded to degree 2190 and order 2159, correspond-
ing to a spatial resolution of 10 km. The original sea surface height observations from airborne and
shipborne altimetry have an along-track resolution below 10 cm and 50 cm, respectively. However,
the short-wavelength information contained in these observations is degraded by instrumental sys-
tem noise and errors in geophysical sea surface height corrections (tides, inverse barometer) of at
least the same order of magnitude as the geoid signal at these wavelengths. Hence, the short-
wavelength geoid signal cannot be separated from the noise. In order to eliminate the noise and
avoid associated unrealistic short-wavelength variations in the geoid heights, the sea surface height
data has to be low-pass filtered with cut-off wavelengths around 10 km, similar to the resolution of
EGM2008. In order to obtain reliable information on shorter-wavelength geoid signals by airborne
or shipborne altimetry, both system noise and geophysical corrections need to be improved.

From an oceanographic perspective, the primary purpose of sea surface height observations is the
determination of the dynamic ocean topography induced by ocean currents. Attempts were carried
out to determine the mean dynamic topography (MDT) by subtracting geoid heights from the sea
surface height obtained by airborne and shipborne altimetry (direct method). Among the geoid
models used in this study, the satellite-only solution EIGEN-5S and the local gravimetric geoid
model AUTH2008 are the only geoid solutions that are independent of altimetric sea surface height
data. Hence, they would be the only appropriate models for MDT determination using the direct
method. Due to the large residuals caused by its low spatial resolution of 130 km, satellite-only
models like the EIGEN-5S are unusable for realistic MDT determination at wavelengths below
130 km. In closed seas with complex basin structures, like the Mediterranean, as well as in coastal
areas, the resolution of scales shorter than 130 km is crucial for the determination of complex local-
scale circulation. It is expected that shorter scales of the Earth’s marine gravity field, independent
of sea surface heights, will be provided by the GOCE mission scheduled for 2009. GOCE aims to
provide geoid heights with cm accuracy at a resolution better than 100 km, constituting a major
improvement of dynamic ocean topography determination and circulation studies. Hypothetic
local MDT were nevertheless computed from the residual fields of the sea surface heights from
airborne and shipborne altimetry with respect to EGM2008 and AUTH2008 geoid heights. The
geostrophic circulation fields derived from the hypothetic MDT are unrealistic and spoiled by noisy
eddies. Hence, it was not possible to derive a realistic circulation pattern based on the sea surface
height observations and the used geoid models. The major reason lies in the fact that the presumed
MDT only varies within a range below 10 cm in both survey areas. Furthermore, the gradients of
the MDT associated with the circulation are below 1 cm/10 km. Hence, the MDT signal in these
areas is in the same order of magnitude as the accuracy of the airborne and shipborne sea surface
heights and the used geoid models. It can be concluded that the sea surface height observations
by airborne and shipborne altimetry and the considered geoid models are not accurate enough to
resolve such small dynamic effects. In addition, EGM2008 is not independent of altimetric sea
surface height data.

In order to allow for a geophysical analysis and interpretation of the airborne and shipborne
altimetric geoid solutions in the Aegean sea, various mass effects on geoid heights were modeled for
the considered survey areas. Masses from topography, bathymetry, marine sedimentary deposits
and crust-mantle boundary (Moho) depths were considered. It was shown that major parts of the
geoid can be explained by the mass effects mentioned above. On the other hand, the residual geoid
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also revealed distinct anomalies which can be related to up to now unrecognized mass distributions.

The region south of Crete is dominated by deep sea water reaching depths of 4000m and sediment
deposits with thicknesses of up to 10 km. The predominant geoid gradients, reaching 0.22m/km
and characterizing the geoid of the entire region, were completely reduced by the modeled mass
effects. On the other hand, a strong gradient of the mass-reduced residual geoid appears north
of Crete. It can, therefore, be concluded that the major geoid anomaly in the area is the relative
geoid high north of Crete, rather than the depression south of Crete along the Hellenic Trench. The
geoid anomaly north of Crete indicates a significant positive mass distribution beyond the northern
border of the survey area, possibly linked to the Hellenic subduction zone. Density models based
on seismic soundings are indicating an upwelling of the European mantle north of Crete, related
to the subduction of the African oceanic lithosphere beneath the Eurasian continental lithosphere
(Snopek et al., 2007; Makris and Yegorova, 2006; Casten and Snopek, 2006) and causing a significant
positive mass anomaly.

In the North Aegean Sea, it was shown that the predominant geoid low of 1.5m at the western
end of the North Aegean Trough can be explained to a large extent by topographic, bathymetric,
and known geologic effects, such as sediments and crust-mantle boundary. It is striking, however,
that a widely-spread maximum of the residual geoid, reaching 1m, is encountered north-east of
the geoid low. This anomaly indicates the presence of a local mass excess. The mass-reduced
geoid heights do not allow to draw a conclusion whether the anomaly is caused by an anomalously
dense crust, an overestimated sediment effect or an anomalously high Moho. However, the geoid
anomaly lies on the northern fault bounding the North Aegean Trough. The area is considered as a
major strike-slip boundary, characterized by high seismicity, separating the Anatolia-Aegean plate
from Eurasia (McNeill et al., 2004). It is accompanied with dextral shear strain rates, combined
with normal extension and isolated normal compression (Hollenstein, 2006). It can, therefore, be
assumed that the observed anomaly in the residual geoid is caused by an anomalous upwelling of
dense material linked to the geodynamic system of the North Aegean Trough.

Preliminary attempts to geophysically interpret the obtained gravity field information based on
mass modeling and mass reduction showed promising results and allowed to detect local mass
anomalies. A future step in this direction would consist in a detailed and stringent geophysical
interpretation of the obtained gravity field results, based on a thorough investigation of existing
density models and the application of advanced inversion algorithms. With the inversion of the
obtained local geoid, models of mass distribution can be further constrained, helping to better
understand the dynamics of the Hellenic subduction zone and the westward continuation of the
North-Anatolian Fault Zone.
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A Models of Atmospheric Refraction of
Light

A.1 Barrell and Sears Model (1939)

In 1939, H. Barrell and J.E. Sears published one of the first equations for the refractive index
as a function of the atmospheric parameters temperature, air pressure and water vapor pressure,
derived from measurements on dry and moist air. The refractivity N (in ppm) of moist air is given
by (Barrell and Sears, 1939):

N = (n− 1) · 106

=
[
0.378125 +

0.0021414
λ2

+
0.00001793

λ4

]
p
(
1 + (1.049− 0.0157t) p · 10−6

)
1 + 0.003661t

(A.1)

−
[
0.0624− 0.00068

λ2

]
e

1 + 0.003661t

where

n refractive index for atmospheric conditions t, p, e and wavelength λ
p atmospheric pressure [Torr], with 1Torr= 1.33322 hPa or 760Torr= 1013.25 hPa
t temperature [℃]
e partial water vapor pressure [Torr]
λ wavelength of light in the vacuum [µm]

According to (Barrell and Sears, 1939), (A.1) is applicable for the ranges t=10℃ - 30℃ and p=720 -
800Torr (959.92 - 1066.58 hPa). Under standard atmospheric conditions (t=15℃, p=1013.25 hPa
(760Torr), e=0), the standard refractivity Ns can be derived from (A.1):

Ns = (ns − 1) · 106 = 272.5837 +
1.5437
λ2

+
0.01293
λ4

(A.2)

The refractivity N can be rewritten as a function of the refractivity Ns under standard conditions,
by combining (A.1) and (A.2):

N = (n− 1) · 106 (A.3)

= Ns
p
(
1 + (1.049− 0.0157t) p · 10−6

)
720.88261 (1 + 0.003661t)

−
[
0.0624− 0.00068

λ2

]
e

1 + 0.0003661t

In (A.3), Ns depends on the wavelength λ, following (A.2).
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A Models of Atmospheric Refraction of Light

A.2 Barrell Model (1951)

In 1951, an update of the (Barrell and Sears, 1939) model was published, where the refractivity N
(in ppm) of moist air is given by (Barrell, 1951):

N = (n− 1) · 106 (A.4)

= Ns
p
(
1 + (1.049− 0.0157t) p · 10−6

)
720.883 (1 + 0.003661t)

−
[
0.0624− 0.00068

λ2

]
e

1 + 0.0003661t

with the refractivity Ns under standard conditions

Ns = (ns − 1) · 106 = 272.729 +
1.4823
λ2

+
0.02041
λ4

(A.5)

and

n refractive index for atmospheric conditions t, p, e and wavelength λ
ns refractive index under standard conditions (t=15℃, p=760Torr, e=0)
p atmospheric pressure [Torr]
t temperature [℃]
e partial water vapor pressure [Torr]
λ wavelength of light in the vacuum [µm]

A.3 Edlén Model (1966)

The equations nowadays commonly used in physics and geodetic surveying to derive the refractive
index from temperature, pressure and humidity are those published in (Edlén, 1966), where the
refractivity N (in ppm) of moist air is given by:

N = (n− 1) · 106 (A.6)

= Ns
p
(
1 + (0.817− 0.0133t) p · 10−6

)
720.775 (1 + 0.003661t)

−
[
0.057224− 0.000457

λ2

]
e

with the refractivity Ns under standard conditions

Ns = (ns − 1) · 106 = 83.4213 +
24060.30

130− λ−2
+

159.97
38.9− λ−2

(A.7)

and

n refractive index for atmospheric conditions t, p, e and wavelength λ
ns refractive index under standard conditions (t=15℃, p=760Torr, e=0)
p atmospheric pressure [Torr]
t temperature [℃]
e partial water vapor pressure [Torr]
λ wavelength of light in the vacuum [µm]
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A.4 Birch and Downs Model (1994)

A.4 Birch and Downs Model (1994)

Since the publication of (Edlén, 1966), several updates of the set of equations have been performed
by several authors. One of these revised models was published in (Birch and Downs, 1993, 1994).
The major difference with respect to the (Edlén, 1966) equations are the conversion to the SI units
system and the change of the temperature scale from the International Practical Temperature Scale
of 1948 (ITPS-1948) to the International Temperature Scale of 1990 (ITS-90). According to (Birch
and Downs, 1994), the refractivity N (in ppm) of moist air is given by:

N = (n− 1) · 106 (A.8)

= Ns
p
(
1 + (0.601− 0.00972t) p · 10−8

)
96095.43 (1 + 0.003661t)

−
[
0.00037345− 0.00000401

λ2

]
e

with the refractivity Ns under standard conditions

Ns = (ns − 1) · 106 = 83.4254 +
24061.47

130− λ−2
+

159.98
38.9− λ−2

(A.9)

and

n refractive index for atmospheric conditions t, p, e and wavelength λ
ns refractive index under standard conditions (t=15℃, p=101325Pa, e=0)
p atmospheric pressure [Pa]
t temperature [℃]
e partial water vapor pressure [Pa]
λ wavelength of light in the vacuum [µm]
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B Standard Atmosphere Model

Values for temperature, atmospheric pressure and water vapor pressure at an altitude h can be
derived from a standard atmosphere model, as a function of altitude h and using reference values
for a reference altitude h0 (Berg, 1948):

T (h) = T0 − 0.0065 (h− h0)

p(h) = p0 (1− 0000226 (h− h0))5.225 (B.1)
H(h) = H0 · e−0.0006396(h−h0)

where T , p and H are the temperature [K], pressure [hPa] and relative humidity [%] at altitude
h [m]. T0, p0 and H0 are the corresponding values at the reference altitude h0. Commonly used
reference values for a standard atmosphere at sea level (h0 =0) are:

T0 = 288.15K (15°C) or 291.15K (18°C)
p0 = 1013.25 hPa
H0 = 50%
e0 = 17hPa

The water vapor pressure can be calculated from the relative humidity H by (Giacomo, 1982):

e(h) =
H

100
· es · fw (B.2)

with

es(h) = 0.01 · e(1.2378847·10
−5 T 2 − 1.9121316·10−2 T + 33.93711047 − 6.3431645·103 T−1) (B.3)

and

fw(h) = 1.00062 + 3.14 · 10−6 p + 5.6 · 10−7 (T − 273.10)2 (B.4)

where es is the saturation water vapor pressure and fw the enhancement factor.
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C GPS-Equipped Buoys

C.1 Introduction

GPS-equipped buoys provide ground-truth information on the instantaneous sea surface height,
enabling the determination of sea state parameters, the integration in early-warning systems for
Tsunamis and the calibration of spaceborne, airborne and shipborne altimetry systems. Depend-
ing on the application, different types of buoys and concepts have been developed by different
institutions. An overview of worldwide specialized buoy activities is given by (Schöne, 2003).

C.2 GPS-Equipped Buoys Developed by the GGL

For offshore hydrodynamic investigations and ground-truth observations of the sea surface height,
the GGL has designed and constructed lightweight GPS buoys (Fig. C.1). The buoys weight 10 kg
including the equipment and have a diameter of 0.40m, facilitating their handling. The shell of the
buoys is fabricated from microwave-transparent polycarbonate, so they can be waterproof sealed
containing the GPS receiver, GPS antenna and power supply. The dimension of the buoys and the
weight of the equipment were optimally chosen and designed in order to reach an exact floating
balance. No ballast is needed to stabilize the buoy or to reach the foreseen floating line in the
middle of the spherical buoy. Their small weight allows to follow the movements of the waves. The
operation autonomy is about 24 hours. The buoys are equipped with Novatel DL–4 dual frequency
GPS receivers.

Figure C.1: GPS-equipped buoy deployed in coastal region, containing GPS receiver, GPS antenna and
battery.
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Figure C.2: Comparison between sea surface heights from GPS buoy and pressure tide-gauge in the same
bay.

C.3 Case Study: Ocean Tide Observations with GPS Buoys

Apart from providing calibration data for spaceborne, airborne and shipborne altimetry systems,
GPS buoys can be used to observe ocean tides. Onshore tide-gauges have the disadvantage to
produce data only in coastal regions, whereas GPS buoys can be deployed offshore, thus providing
accurate ground-truth ocean tide data for the open sea. Field observations with GPS buoys carried
out in this project produced very promising results, as is shown by comparing them to pressure
tide-gauge data. In this case study (Fig. C.2), both systems were operated in the same bay. The
buoy data with an original sampling rate of 1Hz (Fig. C.2 top, cyan line) were low-pass filtered
and resampled to the 60 s sampling interval of the tide-gauge data (Fig. C.2 top, blue line). The
difference between GPS and tide-gauge data (Fig. C.2 bottom, blue line) shows an RMS of 1.3 cm.
Both methods have observed a special wave characterized by a period of about 11minutes and
an amplitude of about 2 cm, best distinguishable between 1:00 and 3:00 GPS time. For tidal
analysis purposes, focusing on periods of 12 hours and above, both datasets were low-pass filtered
and resampled to a sampling interval of 600 s (Fig. C.2 top, green and magenta lines). The filtered
datasets show a good agreement (Fig. C.2 bottom, green line), with an RMS of their difference of
only 0.5 cm.
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D Rotation Matrices

D.1 General Formulation

A rotation in a three dimensional coordinate system of a vector (x, y, z)T is given by three consec-
utive rotations by the angles αx, αy and αz around the three coordinate axes:

x̄ȳ
z̄

 = R3 (α3) ·R2 (α2) ·R1 (α1) ·

xy
z

 = R ·

xy
z

 (D.1)

with

R1 =

1 0 0
0 cosα1 sinα1

0 − sinα1 cosα1

 R2 =

cosα2 0 − sinα2

0 1 0
sinα2 0 cosα1

 R3 =

 cosα3 sinα3 0
− sinα3 cosα3 0

0 0 1


and

R = R3 (α3) ·R2 (α2) ·R1 (α1) (D.2)

R =

 cosα2 cosα3 cosα1 sinα3+sinα1 sinα2 cosα3 sinα1 sinα3−cosα1 sinα2 cosα3

− cosα2 sinα3 cosα1 cosα3−sinα1 sinα2 sinα3 sinα1 cosα3+cosα1 sinα2 sinα3

sinα2 − sinα1 cosα2 cosα1 cosα2


The rotation matrix R is orthogonal and the transposed matrix is therefore equal to its inverse
matrix. Additionally, the inverse of a rotation matrix is equal to three rotations in opposite order
and around angles with opposite signs:

R−1 = RT = R1 (−α1) ·R2 (−α2) ·R3 (−α3) (D.3)

R−1 =

 cosα2 cosα3 − cosα2 sinα3 sinα2

cosα1 sinα3+sinα1 sinα2 cosα3 cosα1 cosα3−sinα1 sinα2 sinα3 − sinα1 cosα2

sinα1 sinα3−cosα1 sinα2 cosα3 sinα1 cosα3+cosα1 sinα2 sinα3 cosα1 cosα2


In direct georeferencing, rotations are usually defined as:

R_ = R3 (−α3) ·R2 (−α2) ·R1 (−α1) (D.4)

R_ =

cosα2 cosα3 − cosα1 sinα3+sinα1 sinα2 cosα3 sinα1 sinα3+cosα1 sinα2 cosα3

cosα2 sinα3 cosα1 cosα3+sinα1 sinα2 sinα3 − sinα1 cosα3+cosα1 sinα2 sinα3

− sinα2 sinα1 cosα2 cosα1 cosα2


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and the inverse matrix is:

R−1
_ = RT

_ = R1 (α1) ·R2 (α2) ·R3 (α3) (D.5)

R−1
_ =

 cosα2 cosα3 cosα2 sinα3 − sinα2

− cosα1 sinα3+sinα1 sinα2 cosα3 cosα1 cosα3+sinα1 sinα2 sinα3 sinα1 cosα2

sinα1 sinα3+cosα1 sinα2 cosα3 − sinα1 cosα3+cosα1 sinα2 sinα3 cosα1 cosα2


For small angles dαi' 0, sin dαi' dαi and cos dαi' 1, the rotation matrix R from (D.2) becomes:

R (dα) '

 1 dα3 −dα2

−dα3 1 dα1

dα2 −dα1 1

 (D.6)

D.2 Rotation from Local Level to Geocentric System

The transformation of a vector (X,Y, Z)T from geocentric to topocentric (E,N,U)T (East, North,
Up) coordinates is performed by a translation to the origin (X0, Y0, Z0)T of the topocentric frame
followed by two consecutive rotations:

EN
U

 = R1

(π
2
− ϕ

)
·R3

(π
2

+ λ
)
·

XY
Z

−
X0

Y0

Z0

 = RENU/G ·

XY
Z

−
X0

Y0

Z0

 (D.7)

with

RENU/G = R1

(π
2
− ϕ

)
·R3

(π
2

+ λ
)

=

 − sinλ cosλ 0
− sinϕ cosλ − sinϕ sinλ cosϕ
cosϕ cosλ cosϕ sinλ sinϕ

 (D.8)

where ϕ and λ are the geographic latitude and longitude corresponding to (X,Y, Z)T . The trans-
formation from geocentric to topocentric (N,E,D)T (North, East, Down) coordinates is performed
by a translation to the origin of the topocentric frame followed by two consecutive rotations:

NE
D

 = R2

(
−π

2
− ϕ

)
·R3 (λ) ·

XY
Z

−
X0

Y0

Z0

 = RNED/G ·

XY
Z

−
X0

Y0

Z0

 (D.9)

with

RNED/G = R2

(
−π

2
− ϕ

)
·R3 (λ) =

− sinϕ cosλ − sinϕ sinλ cosϕ
− sinλ cosλ 0

− cosϕ cosλ − cosϕ sinλ − sinϕ

 (D.10)

The rotation matrixRT
G/L from the topocentric NED frame to the geocentric system can be derived

from (D.10), using (D.3):

RG/L = R−1
NED/G = R3 (−λ) ·R2

(π
2

+ ϕ
)

=

− sinϕ cosλ − sinλ − cosϕ cosλ
− sinϕ sinλ cosλ − cosϕ sinλ

cosϕ 0 − sinϕ

 (D.11)
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E Differential Clock Bias in Moving
Baseline GPS Processing

Like in conventional differential GPS processing, the vector dx(tR) obtained by moving baseline
GPS processing is given by the difference between the position xm(tRm) of the remote receiver at
its time of reception tRm and the position xr(tRr) of the reference receiver at its time of reception
tRr:

dx(tR) = xm(tRm) − xr(tRr) (E.1)

Due to the receiver-specific clock biases τi, the two times of reception tRm and tRr are not identical.
In order to compute the attitude of a platform, vectors are needed at the nominal time tN , that
is the time at which the observations should have been taken. The nominal time tN , as well as
the position of the reference receiver xr(tN ) and the remote receiver xm(tN ) at nominal time are
given by (Favey, 2001):

tN = tRi + τi (E.2)
xr(tN ) = xr(tRr) + τr vr(tRr) (E.3)
xm(tN ) = xm(tRm) + τm vm(tRm) (E.4)

where vr(tRr) is the velocity of the reference receiver at its time of reception, vm(tRm) is the
velocity of the remote receiver at its time of reception, τr is the clock bias of the reference receiver
and τm is the clock bias of the remote receiver. Thus, the vector at nominal time tN is obtained
by subtracting (E.3) from (E.4), and using (E.1):

dx(tN ) = xm(tN ) − xr(tN )
= dx(tR) + τm vm(tRm) − τr vr(tRr)

(E.5)

In the case of two static receivers, vm(tRm)=vr(tRr)=0 and (E.5) becomes:

dx(tN ) = dx(tR) (E.6)

meaning that the difference between the two receiver clock biases has no effect. In the case of a
static reference receiver and a moving remote receiver, vr(tRr)=0 and (E.5) becomes:

dx(tN ) = dx(tR) + τm vm(tRm) (E.7)

meaning that the difference between the two receiver clock biases has no effect, considering (E.2).
In the case of a moving baseline, with two moving receivers rigidly mounted on the same platform
and with small rotational velocities, vm(tRm)'vr(tRr) and (E.5) becomes:

dx(tN ) = dx(tR) + (τm − τr) v (E.8)
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where v'vm(tRm)'vr(tRr) is the velocity of the platform. Thus, the vector deformation is given
by the difference between the two receiver clock biases multiplied by the velocity of the platform.
With a differential clock bias in the order of 1ms and an aircraft velocity of 70m/s, the vector
distortion due to asynchronous receiver clocks would be 7 cm. For this reason, it is not advisable
to introduce the known vector lengths in the GPS baseline processing as additional information in
the case of highly-dynamic applications like airborne laser altimetry. The approach for differential
clock bias correction described above is based on (Favey, 2001).

200



F ECMWF Atmospheric Pressure

Figure F.1: ECMWF six hours atmospheric pressure at mean sea level over the Mediterranean Sea on
09/01/2003 and 10/01/2003. Contour interval: 1 hPa.
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F ECMWF Atmospheric Pressure

Figure F.2: ECMWF six hours atmospheric pressure at mean sea level over the Mediterranean Sea on
11/01/2003 and 12/01/2003. Contour interval: 1 hPa.
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Figure F.3: ECMWF six hours atmospheric pressure at mean sea level over the Mediterranean Sea on
13/01/2003 and 14/01/2003. Contour interval: 1 hPa.
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G Dynamic Atmospheric Correction over
the Mediterranean Sea

Figure G.1: MOG2D dynamic atmospheric correction grids over the Mediterranean Sea on 09/01/2003
and 10/01/2003, for the effect of pressure and wind forcing on sea surface height. Contour interval: 0.01 m.
Corresponding ECMWF atmospheric pressure grids at sea level are shown in Appendix F, Fig. F.1.
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G Dynamic Atmospheric Correction over the Mediterranean Sea

Figure G.2: MOG2D dynamic atmospheric correction grids over the Mediterranean Sea on 11/01/2003
and 12/01/2003, for the effect of pressure and wind forcing on sea surface height. Contour interval: 0.01 m.
Corresponding ECMWF atmospheric pressure grids at sea level are shown in Appendix F, Fig. F.2.
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Figure G.3: MOG2D dynamic atmospheric correction grids over the Mediterranean Sea on 13/01/2003
and 14/01/2003, for the effect of pressure and wind forcing on sea surface height. Contour interval: 0.01 m.
Corresponding ECMWF atmospheric pressure grids at sea level are shown in Appendix F, Fig. F.3.
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