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VORWORT 
 
 
Für Flächen ab einigen Hektaren ist luftgestütztes Laserscanning die präziseste und effektivste 
Technologie für die Erzeugung von hochauflösenden, digitalen Geländemodellen. Solche 
Modelle sind unabdingbar in vielen Bereichen, wie zum Beispiel Raum- und Städteplanung 
oder Kartierung von Naturgefahren. Zusätzlich zum eigentlichen Laser-Messinstrument hängt 
dieses Verfahren auch von zwei Navigationstechnologien (namentlich globale 
Satellitenpositionierung und Inertialnavigation) ab, welche nicht konzipiert sind um die hohen 
Genauigkeiten der Lasermessung (Zentimeter-Genauigkeit bei Distanzmessung und 10 
Bogensekunden für die Orientierung) zu erreichen. Die in der Industrie verwendeten Prozesse 
zur Berechnung dieser Daten sind häufig langsam und umständlich und erlauben nur eine 
begrenzte Kontrolle der Datenqualität. 
  
Die Dissertation von Philipp Schär überwindet diese Nachteile mit dem Design und der 
Implementierung neuer, innovativer Algorithmen welche parallel zur Datenakquisition 
ausgeführt werden können. Somit wird eine 3D-Kartographie in Echtzeit und eine umfassende 
Qualitätskontrolle noch während dem Messflug möglich. Dieser optimierte Prozess ermöglicht 
die automatisierte Klassifizierung der in Echtzeit berechneten Punktwolke, sowie die 
Ableitung von digitalen Terrain- und Oberflächenmodellen durch Triangulation. Des Weiteren 
wird für jede Lasermessung die Präzision durch rigorose Fehlerfortpflanzung berechnet. In 
Verbindung mit Geländeneigungsanalysen, sowie Kenntnis der ursprünglichen Punktdichte 
kann somit für jeden Modellpunkt ein Qualitätsindikator berechnet werden. Diese Information 
wird während dem Flug laufend aktualisiert und kann dem Systemoperator als farblich 
kodierte Datenebene, zusammen mit dem Flugplan, präsentiert werden.  
 
Die Implementierung dieser Methodologie erlaubt eine drastische Verkürzung der 
Produktionszeiten sowie eine Steigerung der Zuverlässigkeit und Wirtschaftlichkeit. Dies wird 
in der Dissertation mit mehreren realen Messflügen mit verschiedenen Szenarien aufgezeigt. 
Schlussendlich erlauben diese Algorithmen nicht nur eine Verbesserung der bereits 
bestehenden Prozesse, sondern sie eröffnen auch ganz neue Anwendungsgebiete, welche eine 
sehr kurze Reaktionszeit erfordern (so z.B. luftgestütztes Monitoring von Naturgefahren, 
Erstellung von Notfallplänen nach Naturkatastrophen, usw.). 
 
 
 
Dr. Jan Skaloud, MER      Prof. Dr. Alain Geiger 
Institut für Topometrie      ETH Zürich 
EPF Lausanne       Präsident der SGK 



PREFACE 
 
 
Le scannage aéroporté est la méthode la plus précise et la plus efficace pour saisir des modèles 
altimétriques numériques de haute résolution. Ces modèles sont essentielles dans différents 
domaines tels que l’aménagement du territoire, la planification urbaine ou encore la 
cartographie des zones de dangers naturels. Cette approche se base sur deux technologies de 
navigation (c.à.d. le positionnement par satellites et la navigation inertielle) qui ne sont pas 
conçues a priori pour égaler les précisions élevées de la mesure laser proprement dite 
(précision centimétrique pour la mesure de distance et 10 arcs seconds pour l’orientation). De 
plus, les processus de traitement des données actuellement utilisés par l’industrie de 
cartographie civile sont souvent lents, incommodes et offrent peu de moyens de contrôle de la 
qualité des données.  
 
La thèse de Philipp Schär surmonte ces inconvénients par le design et l’implémentation 
d’algorithmes innovants qui s’exécutent en parallèle à l’acquisition des données. Une 
cartographie 3D en temps réel, qui inclut le contrôle de qualité durant le vol devient alors 
possible. Ce processus hautement optimisé commence avec la classification automatique du 
nuage de points généré en temps réel, ainsi que la génération des modèles numériques de 
terrain et de surface par triangulation. Ensuite, la précision est estimée pour chaque mesure du 
laser par une propagation rigoureuse des erreurs. Cette information est combinée avec 
l’analyse de la pente du terrain et avec l’échantillonnage des points afin d’obtenir un indicateur 
de qualité pour chaque point du modèle numérique. Cette information est mise à jour 
directement en vol après le bouclement d’une ligne de vol et peut être présentée à l’operateur 
par le biais de couches géocodées et superposables sur le plan de vol.  
 
L’implémentation d’une telle méthodologie réduit considérablement la durée de production 
tout en rendant les produits cartographiques plus fiables et plus économiques. La faisabilité est 
démontrée dans la thèse lors de divers missions de cartographie aérienne réalisées dans des 
conditions très diverses. Finalement, cette nouvelle méthodologie ne présente pas uniquement 
une amélioration des processus traditionnels, mais rend possible des nouveaux champs 
d’applications qui exigent un temps de réaction très court (par exemple : la surveillance 
aéroportée des sites de dangers naturels, la cartographie d’urgence lors de catastrophes 
naturels, etc.).   
 
 
 
Dr. Jan Skaloud, MER      Prof. Dr. Alain Geiger 
Laboratoire de Topométrie     ETH Zürich 
EPF Lausanne       Président de la CGS 
 
       



 

s 
results in real-time 3D mapping, which quality is evaluated directly within 
the flight mission. 

s 
information is updated within the flight after each scan line and is presented 
to the operator as a color-coded layer drawn over the flight plan.  
 

 

FOREWORD 
 
 
The method of airborne laser scanning is the most accurate and most effective mean of 
obtaining high-resolution elevation models of the topographical surface from few hectares to 
thousands of hectares. These models are essential in various fields as land management, urban 
planning or supervision of natural hazards, to name a few. Apart the laser-scanner instrument 
itself, the mapping approach relies on two navigation technologies (namely the satellite 
positioning and inertial navigation) which were not conceived to match the scanner’s cm-level 
ranging and 10 arc-seconds pointing accuracies. The conventional data processing chain as 
carried out by today’s civilian mapping industry is known to be slow and cumbersome while it 
offers limited control of the resulting quality.  
 
The dissertation of Philipp Schär overcomes such drawback through design and 
implementation of innovative algorithms that are executed parallel to data collection. Thi

Such highly optimized computation includes first the automated 
classification of the real-time generated laser-point cloud and its triangulation to digital surface 
and terrain models, respectively. Second, accuracy is estimated for each laser reflection by 
rigorous error propagation. This is combined with the analysis of terrain steepness and with the 
actual surface sampling density to yield quality measure for the obtained terrain model. Thi

The implementation of such methodology considerably shortens the mapping cycle while 
making it more reliable and therefore economical. This is proven within the dissertation 
through many real mapping missions carried over surfaces of different types. Finally, this 
novel methodology not only improves the traditional approach of airborne laser scanning but 
opens the door to completely new applications requiring fast response time (e.g. airborne 
monitoring of natural hazards, natural disaster mapping, etc.).   
 
 
 
Dr. Jan Skaloud, MER      Prof. Dr. Alain Geiger 
Institute for Topometry      ETH Zürich 
EPF Lausanne       President of SGC 
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Chapter 1

Introduction

1.1 Context

During the last decade, Airborne Laser Scanning (ALS1) has become a well established and
broadly employed technology in the mapping industry. The performance of the commercially
available ALS systems is increasing at an astonishing pace, going hand in hand with the
reduction in acquisition time and production cost. Surprisingly, the development of the
accompanying data processing and system monitoring software has not followed the same
evolution [131]. Although Direct Georeferencing (DG) can be considered as a well established
industrial method, a number of open questions related to its reliability and integrity are
remaining [149]. The reason for this is the tremendous complexity of the ALS technology
that groups the latest in several research fields.

Currently, no ALS system providers can claim to control the complex chain of ALS from data
acquisition, data georeferencing and system calibration to final mapping product generation.
Instruments and methods are often connected upon without rigorous links or feedbacks
among them. This leads to situations where users may encounter pitfalls due to undetected
sensor behavior, varying data quality and consistency. FIG. 1.1 illustrates some examples
of possible problems in ALS datasets: For instance, data gaps originated by poor ground
reflectance (FIG. 1.1.A) or insufficient strip overlaps (FIG. 1.1.B) can only be seen once the
point-cloud is available. FIG. 1.1.C shows another example where the bare-earth model in a
forested area is of poor quality due to reduced laser beam penetration across the canopy. This
results in few available ground points for surface modeling. FIG. 1.1.D depicts the influence
of inhomogeneous navigation accuracy that causes problems in the georeferencing of the
point-cloud visible as data discrepancies within strip overlaps.

In the classical ALS workflow, the trajectory computation (kinematic DGPS processing
and GPS/INS integration) and point-cloud generation is performed in post-processing (PP).
As a consequence, problems in data consistency and accuracy can only be detected after the

1Although ALS is used as type designation by a particular system manufacturer, in the context of this
research ALS will be used as a general term for Airborne Laser Scanning (including GPS/INS), while the term
LiDAR (Light Detection and Ranging) will be used for the scanner itself.
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FIG. 1.1: Possible problems occurring in ALS data: (A) No laser signal returns due to poor
reflectance, (B) Missing strip overlap, (C) Poor ground point density, (D) Poor navigation accuracy.

flight. The applied QA/QC (Quality Assurance/Quality Control) methods usually involve
field collection of independent survey checkpoints [193]. This may result in situations where
the quality control and problem mitigation takes an overwhelming part of the cost of the
final mapping product. Furthermore, if the QC reveals that the data does not comply with
the specifications and no ad-hoc mitigation is possible, the quality degradation either has to
be accepted or the parts failing the quality requirements have to be re-acquired. This may
lead to delays in data delivery and further increase in production cost (see FIG. 1.2.A).

FIG. 1.2: Potential ALS mission workflow without (A) and with (B) in-flight QA/QC tool.

The capacity to perform parts of the ALS processing and QA/QC directly during data
acquisition (in-flight) could substantially reduce the risk to encounter unwanted quality
degradation in PP. Such tool would also have a positive economic impact for the mapping
industry by reducing the effort for quality control and preventing situations that require
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(partial) re-acquisition of data (see FIG. 1.2.B). This would translate into increased profit
margin in conventional ALS mapping applications and could open a new field of mapping
applications, where excellent data quality and a short hand-over time are crucial (e.g. risk
management, natural hazards, security, etc.).

In 2005, the aforementioned motivations have prompted BSF-Swissphoto AG2 and the
Geodetic Engineering Laboratory (TOPO-EPFL3) to launch a project called IQUAL. This
project aimed at developing a tool performing QA/QC of the recorded ALS data “on the
fly” [81]. The project ended in February 2009 and was supported by the Swiss Innovation
Promotion Agency (CTI/KTI) [75]. The research presented in this thesis is an integrated
part of this project.

1.2 Research Objectives

The objectives of this research are threefold:

1. Elaborate the theoretical concepts and methodologies needed for perform-
ing fast and automated QA/QC of ALS data. This embraces the definition of a
methodology to automatically assess the quality of laser measurements and to evaluate
the point-cloud coverage and homogeneity. A further objective is to establish a concept
to assess the accuracy of derived surface models.

2. Implement the theoretical concepts in a fully functional in-flight QA/QC-
tool embedded in an ALS system. This requires merging data streams from different
technologies (i.e. inertial navigation, GNSS positioning, laser measurements) in real-time
(RT), developing its qualitative evaluation and presenting it to the system operator.

3. Provide a thorough analysis of the system performance using data acquired
under real operating conditions. The objective is to demonstrate the usefulness
of the provided QC information in-flight and to determine the achievable accuracies
for ALS data processed in-flight. A particular attention is payed to the evaluations
of benefits using real-time Kinematics (RTK) for improving the accuracy of the RT
navigation, point-cloud generation and derivation of quality metrics.

1.3 Methodology

The development of RT algorithms is very critical as they need to be optimized for pro-
cessing speed to handle the data at their original data rates. This requires special testing
environments where the algorithms can be evaluated in PP (without speed constraints) and
in “emulated RT”. For this purpose a multi-level methodology has been designed, where
each level depends on the results of the previous one but simultaneously allows feedbacks for
adjustments at lower level.

2BSF-SWISSPHOTO AG, based in Regensdorf, is the largest private mapping company in Switzerland
providing worldwide ALS mapping services

3Swiss Federal Institute of Technology, Lausanne
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The different levels (from bright gray to dark gray) are depicted in FIG. 1.3. First, the theo-
retical concepts for in-flight quality monitoring are developed. This level mainly depends on
the inherent characteristics of the involved technologies, that are Global Navigation Satellite
Systems (GNSS) for absolute positioning, Inertial Measurement Units (IMU) for attitude
determination and LiDAR (Light Detection and Ranging) for ranging. This is followed by
the algorithmic implementation for evaluation in PP. Due to its simulation and programming
simplicity, primarily the MATLAB-environment is employed in this step. The Proof-of-
Concept (POC) can be carried out using recorded datasets. Once the algorithms are stable
in PP, they can be adapted for RT use. At this stage, the implementation has to account for
the hardware that is interfaced with the software application. For this implementation level,
the C++ programming language is chosen.

To facilitate the code development and debugging, a “simulated RT” environment pre-
cedes the in-flight tests. For this purpose a special server application, called RFLOWS, has
been developed. This application redistributes recorded datasets (raw GPS, IMU and LiDAR
measurements) at RT data rates [151]. This step allows testing the behavior of the algorithms
under RT conditions including mission specific characteristics (terrain, point density, etc.)
without need to acquire new data. Finally, the tool is tested during flight operation, where the
user-friendliness and the ergonomics of the graphical user interface (GUI) can be evaluated.

FIG. 1.3: Methodology for the development of the in-flight quality monitoring tool.

Implementation Platform

Embedding an in-flight QA/QC-tool in an ALS system requires in-depth knowledge about
the system components and free access to all internal data flows. Yet, commercial system
providers rarely grant access to detailed information (i.e. data exchange protocols, file for-
mats, algorithms) of their systems to the customers. The commercial strategy is to sell the
systems as black-boxes, where the interacting possibilities are reduced and the input and
output interfaces are well defined.

The Geodetic Engineering Laboratory of the Swiss Federal Institute of Technology (TOPO-
EPFL) lead the built up of an ALS system called Scan2map, that combines GPS, INS,
LiDAR and a medium format digital camera, and where it controls all interfaces, internal
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data streams and has full access to the source codes (more details in CHAP. 6.1). Thus, in
the frame of this thesis, the Scan2map-system served as vector and testing platform for the
presented research.

1.4 External Contributions

The development of a fully functional in-fight quality monitoring application is character-
ized by a high complexity both on the scientific and engineering level. To achieve the afore-
mentioned objectives within the given time frame of a PhD thesis, the author could benefit of
the punctual assistance of several persons. Although the author is the main contributor, the
developments presented in this thesis are the result of a joint effort of several members of the
Geodetic Engineering Laboratory (TOPO-EPFL). The most important external contributions
are:

� The RT GPS Quality assessment tool (CHAP. 6.4)

� The RT GPS/INS integration engine (CHAP. 6.5)

� The RT point-cloud georeferencing engine (CHAP. 6.6)

Wherever external resources have been used for the development, their contribution will be
clearly referenced and the main contributions of the author emphasized.

1.5 Thesis Outline

This thesis is structured in 7 chapters and can be roughly divided into 4 major blocks:

� Review of ALS technology: Chapter 2 delivers the background material related to
ALS technology. The mathematical concept and the reference frames used for the pro-
cess of DG of laser data are introduced. Additionally, the enabling technologies for ALS,
namely laser range-finder technology, satellite positioning (GNSS) and integrated navi-
gation technology (GNSS/INS) are presented in detail.
Chapter 3 discusses the challenges related to the calibration of the ALS system and the
ALS data (strip adjustment). Furthermore, the basic principles for point-cloud process-
ing, such as spatial indexing, point-cloud classification and height model generation are
presented.

� Development of concepts for QA/QC of ALS data: Chapter 4 is devoted to the
concepts of quality assessment of a single ALS measurement. Particular focus is given
to the development of a new method to assess the influence of the scanning geometry
on the final accuracy. The validity of this method is discussed using both simulated and
real datasets.
In chapter 5, the quality concept is extended to surfaces. Methods to measure the data
coverage, data sampling rate and the internal data accuracy are presented. Special
attention is given to the construction of quality indicators for height models derived
from ALS data.
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� Implementation into in-flight QA/QC-application: Chapter 6 presents the avail-
able hardware infrastructure and discusses the implementation of the concepts intro-
duced in the previous chapters into a fully functional in-flight quality monitoring tool.
The adopted modular architecture for interfacing the involved hardware and software
components together with the functional principles of the modules are presented in
detail.

� Performance analysis and conclusions: Chapter 7 is dedicated to the analysis of
the performance of the developed application. The accuracies of the different quantities
computed by the tool are assessed by comparison with the post-processed solutions.
Additional tests evaluate the computational performances (in terms of processing speed)
of the tool and highlight strategies for improving the computational efficiency.
Chapter 8 presents a summary of the main contributions of the author, conclusions and
perspectives for future work. This is followed by bibliography and appendices.
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Chapter 2

ALS Enabling Technologies

Before developing an in-flight ALS quality monitoring tool, it is beneficial to know the cur-
rent industry standards for in-flight ALS processing and quality control. Furthermore, the
constraints imposed by the enabling technologies on the process of DG should be understood.
After a short overview of the in-flight QA/QC capabilities of today’s ALS systems, this chap-
ter presents the mathematical concepts and the reference frames used for DG of laser data.
The necessary background material about the involved technologies, i.e. laser ranging, GNSS
and IMU, is also provided in this chapter.

2.1 Airborne Laser Scanning

2.1.1 History of ALS Technology

Compared to photogrammetry, which has been deployed for airborne mapping and height
model generation since the early 1920s [32], ALS is a fairly new technology. The development
of ALS has been mainly driven by hardware evolution. Initially, it became possible by pulse
lasers operating in the near infrared band, which gave clearly recordable return signals after
being backscattered on the ground [2]. Its development goes back to the 1970s and 1980s, with
an early NASA system and other attempts in USA and Canada. But the real breakthrough
of the technology came only in the 1990s, when the carrier-phase differential kinematic GPS
(CP-DGPS) became accurate enough to meet the requirements for DG. By the end of the
1990s, the technology was mature and had successfully established itself within the airborne
mapping community, quickly spreading into various practical applications.
In the last decade, the development was marked by rapidly increasing pulse repetition rates
(PRF) of LiDAR scanners and the emergence of so-called full-waveform lasers [96]. Most
recent sensor developments lead to the ability of multi-pulse systems. Such systems have
multiple laser signals in the air simultaneously [106, 124], thus greatly increasing the PRF for
high flying heights. A detailed overview of currently available commercial-of-the-shelf (COTS)
ALS systems and their technical specifications can be found in [83].
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2.1.2 Current in-flight QA/QC Capabilities

The ALS community is predominantly hardware-driven, pushing the performance of their
systems further (increasing PRF, max. flying height, etc.). The key-numbers of this evolution
are well-documented. For the associated processing software, including the flight management
system (FMS) and in-flight quality monitoring less effort has been made. Moreover, commer-
cial ALS system providers are less eager to communicate the concepts behind their software.
Hence, it is somehow difficult to obtain a “detailed picture” of what is currently implemented
for in-flight quality monitoring in commercial ALS systems. The following survey (TAB. 2.1) is
based on freely available information (mainly sales material) for some selected FMS provided
by leading ALS manufacturers. Thus, it has no pretension to be complete or exhaustive. The
selected FMS suites (with used sources) are :

(A) IGI CCNS4/AEROcontrol [46]

(B) Optech ALTM Orion/DASHmap [140]

(C) LEICA ALS50-II/60 FCMS [82]

(D) TopoSys FALCON [173]

(E) RIEGL RiACQUIRE [122]

FMS
In-flight computation/display options A B C D E
RT Position 3 3 3 3 3

RT Attitude 3 3 3 3 3

Scanner swath display 5 3 (3)a 5 3

Point-cloud georeferencing 5 5 5 (3)a 3b

Point-cloud density analysis 5 5 5 5 5

Trajectory quality monitoring 5 5 3 3c 5

Point-cloud quality monitoring 5 5 5 5 5
aNot clear from documentation, bProbably only swath borders, cOnly based on GPS DOP-values

TAB. 2.1: Survey of in-flight QA/QC and data processing capacities of commercial FMS.

TAB. 2.1 illustrates that the display of RT information of position and attitude is a standard
feature in the ALS industry. Also the display of the swath becomes a common feature of
these tools. However, for some FMS it is not clear if the displayed swath represents the real
swath (i.e. 2D projection of most left/right point in a scanning profile) or only a derived
swath, where borders are drawn using the field of view of the laser, an average height over
ground and the banking angle. Although RT GPS/INS integration is sometimes implemented
(e.g. used for roll compensation or stabilization of gimbaled systems), no FMS presented in
this survey implements in-flight point-cloud generation. Also the GPS/INS quality control
provided by some FMS remains rudimentary. It is essentially based on simple thresholds on
DOP values (GPS) and displaying the computed attitude angles without confidence levels.
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2.1.3 Trends in ALS

At the beginning of the year 2009, Cary and Associates of Longmont (Colorado, USA) issued
a detailed business analysis of the global ALS market [20]. TAB. 2.2 summarizes the top four
wishes of ALS system users for the future development published in this report. The increase
in point density, thus scanning rate, is placed as top answer of this survey. Responses two and
three are in line with the objectives of this research, as the possibility to perform in-flight
QA/QC has a direct influence on production time and thus production cost. In-flight point-
cloud processing capabilities would also greatly help alleviating the post-processing and data
analysis. The ever-growing clients requirements in terms of point accuracy and point density,
coupled with tight hand-over schedules, should incite the ALS system providers to enhance
their FMS by in-flight QC and processing tools, in order to allow ALS system users to gather
data with maximum control and cost-effectiveness.

Percent Top wishes 2009-2012
25% Increasing point density
18% Decreasing costs of data
14% Easier and improved post-processing and analysis software
11% Multi-sensor data / fusion

TAB. 2.2: Top four wishes of ALS service providers for developments in the ALS industry in the next
three years (after [20]).

2.2 Direct Georeferencing: Basic Relations

According to [144], georeferencing can be defined as a process of obtaining knowledge about
the origin of some event in space-time. Depending on the sensor type, this origin needs to
be defined by a number of parameters such as time, position, attitude (orientation), and
possibly also the velocity of the object of interest. When this information is obtained directly
by measurements from sensors aboard the vehicle, the term Direct Georeferencing (DG) is
used. In other words, DG comprises a long process that involves acquisition, synchronization,
processing, integration and transformation of measured data from navigation (GPS/INS) and
remote sensing instruments (such as scanners, digital cameras, radar, etc.).

2.2.1 Direct Georeferencing for ALS

Unlike airborne photogrammetry, where the georeferencing of the data (the images) can be
established a-posteriori by means of ground control points (GCP), ALS is entirely depending
on DG for sensor orientation and coordinate computation. Accordingly, every ALS consists
of two main units:

1. The navigation unit embraces all the necessary sensors to compute position and
attitude of the system. The so-called positioning sensors namely are a GPS-antenna
and receiver and an inertial navigation system (INS) or unit (IMU).
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2. The laser unit includes a laser range finder and a scanner as the remote sensing
component. This segment can further be divided: The laser ranging unit includes a
laser transmitter and receiver optics, the optical scanning mechanism reflects the laser
beam across-track (see FIG. 2.1).

The end-product of an ALS system are geometric measures in terms of distance, position,
attitude and coordinates. For each laser shot, the spatial vector from the laser platform to
the point of reflection is established, thus providing the XYZ coordinates of the footprint.
The final product after georeferencing is a so-called point-cloud.

FIG. 2.1: Principal components of an ALS system (after [191]).

2.2.2 Used Reference Frames

As georeferencing of airborne laser data involves GPS and inertial measurements, computing
final point-cloud coordinates in a desired mapping frame cannot be done without using a
global reference frame and a series of intermediate frames. TAB. 2.3 and FIG. 2.2 provide
an overview of the principal frames involved in ALS point computation. All the subsequent
formulas involve the annotations listed in TAB. 2.3. The definitions follow the notations used
in [85].

Sensor Frame (s)

Most airborne laser scanners are line scanners, providing a 2D-scan across a line. A target
coordinate in the sensor frame can therefore be expressed in function of the encoder angle
θ and the range measurement ρ. Assuming that the scanning plane (yszs) and the encoder
angle θ are defined as in FIG. 2.2 (positive rotation around xs), the relation can be described
by EQN. 2.2.1.

xs = ρ

 0
sin θ
cos θ

 (2.2.1)
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ID Frame Name Description
s Sensor Frame Frame of the laser sensor, defined by the principal axes of the scanner.

The yz-plane defines the scanning plane.
b Body Frame Frame materialized by the triad of accelerometers with an INS.
l Local Level Frame Also called NED-Frame, this frame is tangent to the global earth

ellipsoid (normally WGS84), with the orthogonal components North,
East and Down.

e ECEF Frame Earth-centered Earth-fixed frame. The origin is the geocenter of the
earth, the X-axis points towards the Greenwich meridian and the Z-
axis is the mean direction of the earth rotation axis. The Y-axis is
completed by the right-handed Cartesian system.

m Mapping Frame Cartesian Frame with East, North and Up component. The easiest
implementation is the local tangent plane frame, but this frame can
also be represented by a national projection.

TAB. 2.3: Overview of reference frames (adopted after [85]).

ECEF Frame (e)

The satellite orbits of the common GNSS-systems are referred to some Earth-Centered Earth-
Fixed frame. The outcome of the trajectory computation is primarily provided in this frame. A
geocentric ellipsoid is normally attached with the ECEF frame which together with some other
geophysical parameters defines a world datum, such as WGS84 used for GPS measurements
[135]. Coordinates in this frame can either be expressed as Geocentric coordinates (xe,ye,ze),
or as Geographical coordinates (latitude ϕ, longitude λ, ellipsoidal height h). The latter
notation is often used to output the GPS/INS trajectory of the carrier. The transfer from
geocentric to geographic coordinates can be performed as follows:

xe =

xy
z

e

=

(N + h) cosϕ cosλ
(N + h) cosϕ sinλ

( b
2

a2N + h) sinϕ

 (2.2.2)

where a,b are semi-major and semi-minor axes of the ellipsoid and N = a√
1−e2 sin2 ϕ

is the

radius of curvature in the prime vertical. The transfer from geocentric to geographic coordi-
nates can either be done by an approximate closed formula or by using an iterative approach.
The respective formulas can be found in [33].

Local-level Frame (l)

This frame is generally used as reference for the orientation angles outputted from the
GPS/INS processing. Its origin can be defined as the intersection of the local plumb line
from the actual sensor position with the world ellipsoid. The xl-axis points along the local
meridian to the north , the yl−axis points to the east and the zl−axis is defined along the local
plumb line. This frame may be called NED (for North−East−Down). The rotation matrix
Re
l for the coordinate transformation from the l- to the e-frame can be written as follows:

Re
lNED

=

− sinϕ cosλ − sinλ − cosϕ cosλ
− sinϕ sinλ cosλ − cosϕ sinλ

cosϕ 0 − sinϕ

 (2.2.3)
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FIG. 2.2: ALS observation geometry and used frames.

Body Frame (b)

In most cases the body-frame is represented by the axes of the inertial navigation system. The
origin of the b-frame is located at the navigation center of the INS. The axes are congruent
with the axes spanned by the triad of accelerometers. Normally, the b-frame axis coincide
with the principal axis of rotation of the carrier or can be rotated to them by some cardinal
rotation. According to the aerospace norm ARINC 705, the axis and the rotations describing
the 3D attitude are defined as follows. The xb−axis is pointing forward along the fuselage, the
yb-axis points to the right and the zb−axis points down. The associated rotation angles are
called roll(r), pitch(p) and yaw(y) (see FIG. 2.3). Respecting the aerospace attitude definitions,
the corresponding rotation matrix that relates the l-frame to the b-frame takes the following
form:

Rb
lNED

= R1(r)R2(p)R3(y) (2.2.4)

where the composed rotation must be read from the right-hand side.
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FIG. 2.3: Definition of navigation angles.

Mapping Frame (m)

This frame is employed as substitute for the datum in which the point-cloud should be deliv-
ered. The easiest implementation of such mapping frame is the Local Tangent Plane Frame:
The origin is defined as an arbitrary position (ϕ0, λ0) on the ellipsoid, the xm-axis is pointing
to the east, the ym-axis pointing north along the central meridian (λ0) and the zm-axis is
pointing upwards along the ellipsoid normal at the plane origin. The rotation matrix Re

mENU

for coordinate transformation from the m-frame (as local tangent frame) to the e-frame is

Re
mENU

=

− sinλ0 − sinϕ0 cosλ0 cosλ0

cosλ0 − sinϕ0 sinλ0 cosϕ0 sinλ0

0 cosϕ0 sinϕ0

 (2.2.5)

The m-frame can also represent some other datum or projection or a national coordinate
system.

2.2.3 ALS Observation Equation

FIG. 2.2 helps depicting the geometrical relations between the frames presented above. Let
us first consider the relationship between the b- and s-frame. An arbitrary measurement on
some point p by the sensor can be expressed in the b-frame as

xbp = abs + Rb
s(ω, φ, κ)xsp (2.2.6)

where abs is the leverarm vector between the INS center and the firing center of the laser
expressed in the b-frame, and Rb

s is the so-called boresight matrix parametrized by the three
Euler angles ω, φ, κ. Their determination will be discussed in the section related to the system
calibration (CHAP. 3.1). Following the previous relation, the laser measurement in the e-frame
can be expressed as:

xep = xeb + Re
b

(
abs + Rb

sx
s
p

)
(2.2.7)

After rearranging and expanding EQN. 2.2.7 by EQN. 2.2.1 to EQN. 2.2.4, the ALS observation
equation for an arbitrary laser point xp expressed in the e-frame, in function of time varying
measurements, denoted with (t), can be written as:

xep(t) = xeb(t) + Re
l (t)R

l
b(t)R

b
s(ω, φ, κ)

abs + ρ(t)

 0
sin θ(t)
cos θ(t)

 (2.2.8)
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where
Re
l (t) is the rotation matrix in function of the geographic position (ϕ(t), λ(t))

on the reference ellipsoid measured by GPS

Rl
b(t) is the so-called attitude matrix parametrized by the Euler angles

r(t), p(t), y(t) measured by GPS/INS

ρ(t), θ(t) are the range and the encoder angle measurement of the laser scanner

The GPS position can be attached to EQN. 2.2.8 by

xeb(t) = Re
b(t)a

b
GPS + xeGPS(t) (2.2.9)

where abGPS is the leverarm of the INS navigation center to the GPS antenna center expressed
in the b-frame, and xeGPS(t) is the vector of the GPS measure in the e-frame.

2.3 Laser Scanner Technology

2.3.1 Laser Ranging

The laser ranging unit contains the laser transmitter and the receiver. The two units are
mounted so that the received laser path is the same as the transmitted path. This ensures that
the system will detect the target the transmitter points to. The size of the laser footprint is
a function of the flying height above ground and the divergence of beam. The divergence ε of
the beam defines the instantaneous field of view (IFOV) of the sensor. For currently available
systems on the market, the beam divergence (or IFOV) typically spans from 0.2 mrad to
3 mrad (e.g. [83]).

To obtain a range measurement from a laser, the transmission must be modulated. There
exist two major ranging principles [191]:

� Pulsed ranging or TOF (Time of Flight): The transmitter generates a rectangular
pulse with widths from 4 to 15 ns. The time difference between the pulse leaving the
transmitter and its detection by the receiver is proportional to the returned distance:

t = 2
D

c
(2.3.1)

where t is the total elapsed time, D the range of the pulse and c the speed of light.

� Continuous wave ranging (CW): This modulation type employs a transmitter to
emit a sinusoidal continuous light wave at a given frequency. The phase difference of
the received light wave is proportional to the travel time and thus to the range:

t =
φ

2π
T + nT (2.3.2)

where t is the total elapsed time, φ the phase difference of the returned wave, T the
period of the modulated signal and n the number of full wavelengths included in the
distance from the transmitter to the receiver.
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FIG. 2.4: Principle of multiple echos from a
laser signal.

FIG. 2.5: Emitted and received impulse for discrete
echo scanners and full-waveform scanners.

Today’s ALS systems are almost solely based on pulsed ranging technology [111]. Currently,
there are two different types of commercial ALS sensor systems available:

� Discrete echo scanners detect a representative trigger signal for an echo in RT using
analog detectors. A discrete echo scanner can reflect multiple targets in its line of sight.
This allows gathering ground points even through the canopy (see FIG. 2.4). The gaps
between the leaves and branches permit parts of the pulse to penetrate further to the
ground, while some energy is reflected immediately. Every reflection is detectable as a
peak in the gathered return signal. Based on some threshold (see FIG. 2.5), the received
input signal is discretized into single pulses. Today’s commercial discrete echo systems
can record up to 5 returns, whereas the minimum pulse separation has reached sub-
meter level [54]. These returns can be labeled according to their returning position and
number of returns: First (of many), last (of many), intermediate and only return [105].

� Full-waveform scanners digitize the entire analog echo waveform, i.e. the time-
dependent variation of the received signal power, for each emitted laser pulse (see FIG.

2.5). Hence, they overcome the minimum pulse separation limitation of discrete echo
scanners. Digitization is performed typically with an interval of 1 ns (corresponding to a
discretization resolution of 15 cm). For most full-waveform systems, the determination
of the individual echoes is performed in PP. However, a new generation of ALS systems
performing full echo digitization and waveform analysis in-flight has recently emerged
on the market [121].

2.3.2 Intensity Measure

Most commercial laser rangers operate between 900 and 1500 nm (near-infrared). The trans-
mitted energy interacts with the target surface and permits the derivation of range and
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reflectance measurements. The intensity1 of the reflected near-infrared signal can be added
as an additional attribute to the coordinates or can be used to form a grayscale orthoimage
(see FIG. 2.6) of the measured area. The amount of backscattered energy depends on several
factors:

� Laser wavelength: Varying the laser wavelength results in very different reflectance
response diagrams. Lasers deploying long wavelength (> 1500 nm) have very good re-
flectance responses on dark surfaces, whereas bright surfaces (i.e. glaciers, snow) reflect
weakly [191]. On the other side, systems with shorter wavelength (< 1000 nm) have poor
reflectance on concrete and dark pavement and are less suitable for mapping in urban
areas.

� Reflectance of target material: Objects with high reflectivity (or other words: high
albedo) such as street mark paintings or cement contrast distinctly with objects of low
reflectivity such as coal or soil (see FIG. 2.7).

� Incidence angle of laser beam: The backscattered signal from the target surface is
a function of the integrated energy distribution across the whole footprint. Accordingly,
the bigger the incidence angle, the larger the footprint and consequently the smaller the
backscattered energy.

� Atmospheric illumination and attenuation: Laser scanners are active measurement
devices as they illuminate the target by themselves. Therefore, every external illumina-
tion, such as sun light or reflectance from clouds, is considered as noise. Additionally,
light propagation in the troposphere is affected by both, scattering and absorption char-
acteristics of the atmospheric medium [186], thus reducing the beam energy proportional
to the range. Accordingly, the intensity measure is heavily subject to the actual range,
the atmospheric and meteorological conditions (air humidity, cloud cover, day time,
etc.).

FIG. 2.6: Point-cloud colored by
non-normalized intensity values.

FIG. 2.7: Reflectivity for different surfaces for a laser
operating at 905 nm (after [119]).

FIG. 2.6 illustrates the large intensity disparities that can occur for points measured on a
same surface but gathered in different strips (thus different ambient lighting conditions and

1Term used in the ALS industry for the amplitude of the reflected signal
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incidence angles). As the single intensity measure is influenced by so many parameters that
vary in time and space, a normalization of the intensity values is crucial, should the intensity
data be applicable e.g. as attribute for ALS point-cloud filtering, segmentation or feature
extraction. This issue has been addressed by many authors [52, 60, 76], however, an easy and
robust intensity normalization procedure is not yet available.

2.3.3 Scanning Patterns

Airborne scanners must be moved across a surface to complete a scan. This is generally
achieved with rotating mirrors or other means to deflect the laser beam to provide across-
track scanning, while the motion of the platform provides along-track scanning. The total
across-track scanning angle defines the swath width or field of view (FOV). The swath width
SW can be computed in function of the flying height H and the FOV φmax:

SW = 2H tan
φmax

2
(2.3.3)

Today’s commercial systems typically have FOV’s around 60 degrees [83], although systems
with FOV’s up to 80 degrees are available [120]. There exist several scanning techniques
employed in current ALS systems (see FIG. 2.8):

� Constant velocity-rotating polygon mirror: This type of scanner produces mea-
surements that appear as parallel lines on the ground. The mirror is rotated in one
direction by a motor and the angle is measured either directly from the motor or from
an angular encoder mounted to the mirror.

� Oscillating mirror: With this technique the mirror is rotated back and forth. This
has the effect of creating a “Z” or “zigzag” line of points on the ground.

� Nutating mirror: Rather than moving a mirror to project the laser onto the ground,
a small nutating mirror is used to direct a laser into a linear fiber-optical array. The
array transmits the pulse at a fixed angle onto the ground.

� Elliptical scanner: This system employs two mirrors to move the laser along an ellip-
tical path around the aircraft [100].

The advantages and drawbacks of the different scan patterns are summarized in TAB. 2.4.
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FIG. 2.8: Different scanning patterns: (A) Line scanner, (B) Oscillating mirror, (C) Nutating mirror,
(D) Elliptical mirror (after [100]).

Scan
Pattern

Advantages/Drawbacks

Line
scanner

3 Does not induce any systematic errors in the observation due to mirror acceler-
ation/deformation.

3 Regularly spaced sampling along and cross-track can be achieved.

5 For a certain amount of time during each rotation, the mirror is not pointing at
the ground and no observations can be taken.

5 FOV is fixed and cannot be adapted.

5 Are usually limited to lower flying heights (height above ground < 1000 m).

Oscillating
mirror

3 Mirror is always pointing towards the ground guaranteeing continuous data col-
lection.

3 FOV and scan rate can be controlled.

3 It is possible to compensate for aircraft motion (roll compensation).

3 Can be used for long ranges (> 3 km).

5 Changing velocity and acceleration of the mirror cause torsion between the mir-
ror and the angular encoder.

5 Measured points are not equally spaced. The point density increases at the edge
of the scan field where the mirror slows down, and decreases at nadir.

Nutating
mirror

3 With fewer and smaller moving parts, the scan rate can be greatly increased.

3 Sufficient scan rate to guarantee overlap in the along-track position.

5 FOV is mostly much smaller than for a rotating mirror.

5 The across-track spacing is fixed.

Elliptical
scanner

3 Ground is often measured twice from different perspectives, thus allowing areas
that were occluded on the first pass to be scanned.

5 Increased complexity for system calibration due to two mirrors.

TAB. 2.4: Comparison of different scanning patterns.
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2.4 Positioning Technology

2.4.1 GNSS Systems

FIG. 2.9: Overview of Global Navigation Satellite Systems.

In general terms, a GNSS (Global Navigation Satellite System) estimates the absolute location
of static and dynamic objects on earth, air and space using precise timing and geometric
triangulation based on orbiting satellites [88]. GNSS systems can be characterized by a non-
stop availability, providing accurate three-dimensional positioning for everyone equipped with
the appropriate radio reception and processing equipment. At the present state, there a two
world-wide functioning GNSS systems in operation:

� Global Positioning System (GPS): The system was developed by the U.S. Depart-
ment of Defense (DoD). The first satellite was launched in 1978 and the system was
declared fully operational in 1995. The system can be divided into three segments: The
user segment consists of the antenna and a receiver including a processor to compute the
navigation solutions and to monitor the time shifts. The space segment is currently com-
posed of 24 satellites, arranged in 6 very precise orbits each at an altitude of 20’200 km.
The satellites send information to the receiver of their position with respect to the cen-
ter of the earth, together with the time signal. The ground segment consists of several
monitoring stations, where every satellite passes at least twice a day. These stations are
equipped to calculate satellite positions with high precision and to uplink the corrected
information to them.

� Global Orbiting Navigation Satellite System (GLONASS): Its concept is similar
to the GPS, albeit it employs different signal modulation and processing techniques.
In 2008, GLONASS had 18 satellites in constellation, however some of them where in
maintenance and therefore not available for the users. Although GLONASS in its present
state cannot be used as a standalone positing system, most geodetic GPS receivers are
able to receive GLONASS signals, hereby increasing the number of satellites. This is
particularly beneficial for surveys in demanding topography [57].

The first generation satellite position systems (GNSS-I) are mainly controlled by military
authorities. They are completed by four civil Satellite Based Augmentation Systems (SBAS)
(see CHAP. 2.4.4) to improve the accuracy and integrity of the existing GNSS (see FIG. 2.9):
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� The European Geostationary Navigation Overlay Service (EGNOS) with a core coverage
area over Europe and the northern Africa

� The American Wide Area Augmentation System (WAAS) covering North-America

� The Japanese Multi Functional Transport Satellites (MTSAT) Satellite - Based Aug-
mentation System (MSAS)

� The Indian GPS /GLONASS And Geo-Stationary Augmented Navigation (GAGAN)

The next decade will be marked by the appearance of a new generation of GNSS, called
GNSS-II (see FIG. 2.9). Although the second generation systems are not yet (or only partly)
operational, their arrival will have a huge impact on the RT positioning accuracy and reliabil-
ity. GNSS-II will see the emergence of the first GNSS totally under control of a civil authority
(GALILEO) and new carrier frequencies (e.g. L5 in GPS Block IIF) will improve the accuracy
and availability of GPS positioning services for all users. A detailed overview of the GNSS-II
systems can be found in [188].

2.4.2 GPS Signal

Every satellite within the GPS framework produces a fundamental frequency (f0 =
10.23 MHz), precisely timed by embarked high precision atomic clocks. Coherently derived
from f0 are (currently) two signals, the L1 and the L2 carrier waves generated by multiply-
ing the fundamental frequency. These dual-frequencies are crucial for eliminating the major
source of error due to signal propagation, i.e. the ionospheric refraction [53]. L1 and L2 are
modulated by pseudo-random noise codes (PRN). The pseudo-ranges that are derived from
the measured travel times between satellite and receiver use PRN that are modulated on
L1 and L2, respectively. The C/A-code (coarse/acquisition-code) is modulated on L1 and is
available for civilians, giving access to the Standard Positioning Service (SPS), whereas the
P-Code (precise-code) is reserved for U.S. military and other authorized users. In addition to
the PRN codes, a data message is modulated onto L1/L2, transmitting status information,
satellite clock bias and satellite ephemeris data.

2.4.3 GPS Positioning Modes

Based on the requirement of the project in terms of accuracy, data disposability (RT or
delayed) and the available equipment, GPS can furnish different positioning modes with
different performances. FIG. 2.10 depicts the most important positioning techniques applied
in the ALS context:

� Single Point Positioning (SPP) (­ in FIG. 2.10) is based on phase-smoothed code
measurements and is the most frequently used technology for RT positioning. Provided
that SBAS corrections are available, this approach can deliver accuracies of a level of
1 to 4 m [14, 109, 187]. However, SBAS is not available worldwide and the reception
of the correction signal emitted by the geostationary satellite (placed at the equator)
can be difficult for regions in higher latitudes. In this case the Standard Positioning
Service (SPS) (¬ in FIG. 2.10) has to be used that provides an accuracy of about 4
to 5 m [104].
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� The availability of precise GPS satellite orbit and clock products (near-RT broadcast-
ing of precise GPS ephemeris data) has led to the development of a novel positioning
methodology known as the Precise Point Positioning (PPP) (® in FIG. 2.10). This
technique can achieve decimetric position accuracy [126, 139] when continuous signal
tracking is possible and is available world-wide without need of any augmentation sys-
tem.

� If at least five common satellites per epoch are available, dual-frequency carrier-
phase measurements can be used to perform differential GPS (CP-DGPS). If applied
in PP, no communication link has to be established, as the reference and rover data are
processed as one. PP algorithms feature ambiguities recovery through forward/back-
ward processing. Additional trajectory smoothing techniques, atmospheric modeling
and clock bias estimation pull down the accuracy to a centimeter level for kinematic
processing (° in FIG. 2.10). For static processing (± in FIG. 2.10), when respecting
some considerations about baseline length and observation time, sub-millimeter accur-
acy can be achieved [87, 113].

� RT differential applications, such as RT Kinematics (RTK) (¯ in FIG. 2.10) require
a continuous data exchange between reference and rover, as the differential corrections
are transmitted via some communication link. RTK is based on CP-DGPS, solving
the ambiguities on-the-fly (see CHAP. 2.4.4). If the ambiguities are fixed correctly, sub-
decimeter to centimeter accuracy can be achieved.

FIG. 2.10: Overview of GPS positioning methods with respect to their accuracy and time delay to
position fix. Methods of particular interest within the ALS context are marked red.

2.4.4 GPS Quality Monitoring Techniques

In the ALS context, the position of the carrier is usually determined using dual-frequency
GPS receivers and post-processed by CP-DGPS. This has the major drawback that during
data collection, no information about the data quality can be provided. This implies that
possible occurrences of local signal distortions or erroneous sensor behavior affecting both the
GPS code and phase measurements remain undiscovered and become apparent only during
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the PP step [130]. As a consequence, point-cloud accuracy degradation due to undetected
GPS quality problems have either to be accepted or parts on the mission have to be re-flown,
which rises the production costs.
To avoid such situations, the collected GPS data should either be processed in RT to solve
the ambiguities on-the-fly or analyzed in RT in order to predict the likelihood of fixing the
differential carrier-phase ambiguities in PP. The different methods and technologies to perform
GPS quality monitoring, applicable in the ALS context, are presented in this section.

Observable based Indicators

The basic observations of GPS are the ephemeris informations, code pseudo-ranges, carrier-
phases and Doppler measurements. Combinations of these can be used to construct RT quality
measures for the positioning accuracy:

� Satellite geometry: Using the broadcast ephemeris of all satellites and the present
rover location the current constellation and their associated dilution of precision (DOP)
values can be computed. Together with the accuracy of a single pseudo-range measure-
ment, expressed by the User Equivalent Range Error σUERE , the DOP parameters can
serve to estimate theoretical horizontal and vertical position accuracies. Detailed infor-
mation about the computation of DOP values and the associated accuracy measures
can be found in [135]. Their applicability for the prediction of the fixability of ambigui-
ties in PP is limited, as these indicators do not consider any signal disturbance on the
carrier phases. Nevertheless, a good satellite geometry is a prerequisite for ambiguity
validation.

� Signal-to-noise ratio (SNR): The relevance of the SNR and satellite elevation as
quality indicators for GPS observations has been emphasized by many authors (e.g.
[42, 79]). The relationship between SNR or Carrier-to-Noise density ratio (C/N0) and
multipath, which is a major problem in precise GPS positioning, is well known. Accord-
ingly, the SNR value can be directly deployed as a quality measure of the individual
GPS phase values [50].

� Cycle slip detection: The use of carrier-phase measurements implies the resolution of
the ambiguities. If a loss of lock of the signal occurs simultaneously on several satellites,
the ambiguity resolution has to be started again. Cycle slips are very frequent in the
context of airborne mapping and can occur in cases where tracking is interrupted by
shadowing, weak satellite signal (low SNR), rapid change in dynamics or due to atmo-
spheric effects. As a consequence adjacent carrier-phase observations jump by one or
more cycles and the integer ambiguity parameter has to be re-estimated. To identify
cycle slips, the velocity trend method, as proposed by [195], can be used:

∆tNi = ∆tΦi −
ti∫

ti−1

Didt+ ε (2.4.1)

where the ambiguity time difference (∆tNi) can be computed as the temporal difference
between the phase (∆tΦi) and Doppler observations (Di).
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� Phase tracking loop output analysis: Situations where the phase tracking loop is
not able to maintain the lock are important to detect. L2 is generally more affected by
loss of lock, because of the lower transmitting power on L2 and absence of the C/A code
on this frequency.

� Interference detection: GPS receivers are vulnerable to Radio-Frequency (RF) in-
terference. The latter can result in degraded navigation accuracy or complete loss of
signal tracking [62]. RF interference detection is of particular interest in the airborne
mapping context since avionic equipments, rotor rotation and cellular phones constitute
potential interference sources that degrade satellite signals. RF interferences have effects
on code correlation and loop filtering functions by reducing the C/N0 of all the GPS
signals. In other words, they have the same effect as signal blockage, foliage attenuation,
ionospheric scintillation and multipath, which are all factors that reduce the effective
C/N0 of the GPS signals. Accordingly, C/N0 values can be used to detect possible
interferences.

GPS Augmentation Systems

Within civil aviation much effort has been undertaken to develop techniques providing in-
tegrity information for airborne use of GPS. Augmentation systems enable the improvement
of the RT GPS positioning (i.e. accuracy, integrity, continuity and reliability) through inte-
gration of additional information. Several systems exist and are usually classified based on
how the GNSS sensor receives this additional information [165]:

� Ground Based Augmentation System (GBAS): GBAS are local Differential GPS
systems (DGPS) transmitting differential corrections to the users. The corrections are
computed using accurately surveyed ground stations. After the processing, the correc-
tions are directly sent to the users by radio transmitters operating in the Very High
Frequency (VHF) or Ultra High Frequency (UHF) bands. Other GBAS approaches are
based on ground-based pseudo-satellites (pseudolites) that send GPS signals. By com-
bining them with a classical DGPS reference station, the number of signals can be
increased, adding at the same time precision and integrity check capabilities.

� Aircraft Based Augmentation System (ABAS): One functional principle of ABAS
is to compute the integrity information using Receiver Autonomous Integrity Monitor-
ing (RAIM) functions. RAIM is a user-based integrity enhancement technique based
on redundant code observations. If more than 5 satellites are available, RAIM allows
detecting anomalies and removal of faulty satellites from the navigation solution, the
so-called Fault Detection and Isolation (FDI). RAIM also provides precious information
about the state/quality of the constellation that can be used for GPS quality prediction.
More details about RAIM algorithms can be found in [180].

� Satellite Based Augmentation System (SBAS): SBAS are systems that support
wide-area or regional augmentation through the use of additional satellite-broadcast
messages. Due to the size of the covered area, SBAS systems must send differential
corrections based on spatial and temporal modeling. Similarly to the GBAS, the cor-
rections and the integrity information are computed by ground based stations and then
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sent via geostationary satellites to the users. The user specific corrections are computed
by interpolation functions.

Real-time Kinematics (RTK)

RTK-GPS positioning offers the possibility to provide on one side RT information on the
ability to resolve the ambiguities, on the other side a high-accuracy navigation solution usable
for DG of the laser point-cloud. The base receiver measurements and coordinates are formatted
and transmitted via a communication link to the rover receiver. This enables the operator to
be aware of the quality of the RT GPS position through three basic status:

� Fixed position: The RTK engine is capable of resolving correctly the ambiguities on
the baseline. The expected position accuracy is below decimeter level and the data can
be used further for DG of the ALS data.

� Float position: Due to poor GPS constellation, cycle slips or long baseline, the es-
timated ambiguities on the baseline cannot be fixed. Compared to the fixed status a
accuracy deterioration has to be expected. Such data does not meet the requirements
for high accuracy ALS applications.

� Standalone position: The rover cannot communicate with the base and no differen-
tial GPS computation can be carried out. The computed position equals to that of a
standalone receiver solution.

RTK Communication Link. The nature of communication link (see TAB. 2.5) dictates
the maximal distance from the rover to the base station(s) as well as the amount of data
that can be transmitted. For classical RTK applications (stake-out, stop-and-go), often radio
transmission is used. In the ALS context however, the range of operation becomes quickly
limited by the transmission power (legally) possible.
The limiting factor for GSM is the low data-rate of about 9.6 kps; this corresponds to 5 Hz
of dual-frequency measurements from one reference station [152]. Additionally, GSM is a bi-
directional point-to-point communication on a reserved channel. This complicates the trans-
mission of GPS corrections to several receivers. [148] also mentions the problems related to
cell registration and hand-over, that might be problematic for fast moving carriers, such as
aircrafts.
GPRS (General Packet Radio Service) is available on almost all GSM networks and allows
much higher data throughput rates. The more recent UMTS technology can handle even larger
data rates. However, the transmission is handled in “bursts” of packets resulting in varying
latency [157], therefore UMTS is less suitable for RTK than GPRS. The major drawback of
these mobile phone network based technologies are the high communication costs and the
reduced spatial availability of these services, as mobile network coverage quickly decreases in
rural or inhabited areas.
The principle advantage of satellite communication based on Low Earth Orbiting (LEO)
satellites is their spatial availability, but the cost and power consumption of SatCom modems
is approximately ten times higher than for GPRS modems.
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Radio GSM GPRS UMTS SatCom
Proprietary + +/- + - +/-
Data rate + - + + -
Availability + - - - +
Range - + + + +
Cost + - - - -

TAB. 2.5: Appropriateness of communication links for transmission of GPS corrections and integrity
informations in the ALS context.

RTK Networks. The last decade has seen the emergence of permanent GPS networks
that broadcast RT corrections via GPRS (e.g [47]). Many of these networks incorporate the
Virtual Reference Station (VRS) approach, where the corrections are interpolated from the
three closest permanent stations to generate a virtual base close to the rover [118]. FIG. 2.11
depicts the general architecture of the Swiss Automated GNSS Network (AGNES), that was
used for several tests within this thesis (see CHAP. 7.1.2). The spatial availability and quality
of these permanent networks is growing quickly, thus enabling RTK for helicopter-based ALS
missions, at least in central European milieu [129].

FIG. 2.11: Architecture of AGNES RTK network using VRS.

2.5 Integrated Navigation Technology

This section introduces the concepts of inertial navigation, the used inertial sensors and the
GPS/INS coupling techniques to provide a final trajectory including position and attitude,
inalienable for georeferencing the scanner measurements.

2.5.1 Inertial Measurement Units

Inertial measurement units (IMU) are normally made up of three orthogonally mounted
accelerometers and gyroscopes, each of them measuring the specific force and the angular
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rate, respectively, in one orthogonal direction. In the context of DG, their primary role is in
the determination of orientation and the improvement of the position in higher frequencies of
the motion.

Sensor Accuracy

The spectrum of different inertial technologies, costs and achievable accuracies is very large.
In order to classify inertial systems they are normally divided into three main categories
(see TAB. 2.6) based on the position error accumulated after 1 hour (expressed in nautical
miles/hour) of standalone dead-reckoning [45]:

� Navigation grade: Navigation-grade instruments accumulate a position error of about
1 nmi/h. These systems could be used for standalone inertial navigation over several
minutes.

� Tactical grade: Instruments in this category may accumulate as much as 10 to
20 nmi/h. The performances are good enough to perform unaided dead-reckoning up
to one minute. Due to their relative low cost paired with the capability to bridge GPS
outages, these instruments are the most frequently used in the context of INS/GPS
navigation for airborne mapping.

� MEMS: Instruments of this category cannot be used for standalone navigation, as the
accumulation error exceeds already several nautical miles after one minute. In com-
bination with other sensors and regular position update, GPS/MEMS integration can
provide sub-decimeter position accuracies and sub-degree orientation accuracies (e.g.
[188]). However, these accuracies are yet not good enough to be used for DG of ALS
data, but due to their low cost and increasing accuracy, this may become an interesting
alternative for mobile mapping within a near future [44, 134, 163].

Grade MEMS Tactical Navigation
Gyro drift [deg/hr] > 100 0.1 - 10 0.005 - 0.01
Accelerometer bias [m/s2] 0.05 - 0.5 2− 5 · 10−3 5 · 10−5

Price (e) > 100 > 40’000 > 100’000

TAB. 2.6: Sensor accuracy and price for MEMS, tactical and navigation grade IMU’s (after [188]).

Strapdown Technology

During decades, inertial sensors were mounted on stabilized (or gimbaled) platforms, thus
mechanically isolated from the rotational motion of the carrier. The advances in digital pro-
cessing made it possible to avoid gimbaled mounts: Nowadays, the inertial sensors are rigidly
mounted (strapped down) to its casing, hereby decreasing the complexity and cost of INS
while increasing the dynamic range of motion that can be tracked. The resulting systems are
much cheaper and smaller (less mechanical parts) and excel with higher reliability, however
penalized by an increased computational complexity and higher INS data rates [167]. Such
strapdown systems opened the field for building light weight and compact ALS systems, that
can be embarked on a helicopter without particular infrastructure [179].
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2.5.2 GPS/INS Integration

Complementarity

GPS/INS integration can be seen as a self-calibration technique for the gyros and a high-
frequency interpolator/smoother of the GPS position. The positioning accuracy of a mid-grade
IMU operated in an unaided mode degrades very quickly due to time-dependent systematic
error behavior. Therefore, even the good quality tactical-grade IMU’s cannot be used as
standalone systems for DG applications. However, within a short period of time, during which
the error growth is still limited, standalone inertial navigation can deliver relative positioning
accuracy of CP-DGPS level. As it can be seen in TAB. 2.7, GPS and INS have a very different
but complementary behavior. Their error spectrum is partially uncorrelated, making them to
ideal synergistic partners [146]. The GPS data allows confining the effects of the systematic
errors in inertial data, while the INS data is capable of bridging the GPS outages (i.e. due
to signal blockage, jamming or spoofing) and smoothing the short-term fluctuations (e.g. due
cycle slips, constellation change, etc.) of the GPS position accuracy. The integrated trajectory
therefore represents the most optimal solution in terms of position and attitude accuracy and
can be outputted at data rates reflecting the whole spectrum of aircraft motion.

INS CP-DGPS GPS/INS
3 Self contained and indepen-
dent system

5 Dependent on satellite re-
ception

Needs periodic satellite recep-
tion for initialization and ca-
libration of IMU errors

3 Signal continuity 5 Signal reception could be
interrupted

Continuous solution

3 High short-time/relative
accuracy for position and ve-
locity

3 High long-time/absolute
accuracy for position and ve-
locity

High accuracy for position
and velocity

3 High short-time/relative
accuracy for attitude

5 No attitude information
availablea

Precise attitude determina-
tion

5 Sensor errors grow with
time

3 Almost time-independent
error behavior

Uniform accuracy over time

5 Influenced by gravity field 3 Insensitive to local gravity
anomalies

Gravity anomalies are leveled
out

aAttitude could be computed using an array of GPS antennas

TAB. 2.7: Complementarity of GPS and INS

Integration Schemes

The most common integration approach is the so-called loosely coupled integration (see
FIG. 2.12). The raw IMU measurements (specific force fb and angular rates ωbib) are integrated
(also called strapdown mechanization) to yield position and attitude (rINS , θINS) at the
IMU output rate (normally 100 to 400 Hz). The position and velocity data (rGPS ,vGPS)
gathered by GPS is processed independently, yielding a sequence of positions and velocities
at a certain frequency (normally 1 to 2 Hz). This data is subsequently feed as updates within
an Extended Kalman Filter (EKF) to derive differences in velocity and position (∆r,∆v).
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These updates are used to estimate the elements of the filter state vector, containing on one
side the error states related to the trajectory (i.e. position δr, velocity δv and orientation δθ)
and on the other side those related to the inertial sensors themselves (i.e. gyro drifts δbg,
accelerometers bias δba).

Another approach is the tightly coupled integration, where the GPS raw measure-
ments (normally double-differenced ambiguities and Doppler measurements) and the inertial
data are feed into a common filter. In this case, GPS measurements can be used in the
filter to correct the INS errors even if the number of visible satellites is not sufficient to
compute an independent GPS position (below 4). Accordingly, this integration scheme is
advantageous for environments with reduced GPS signal receptions (e.g. urban canyons),
and is commonly used for terrestrial mobile mapping systems (e.g. [44]). A good comparison
of the performances of the two presented integration schemes can be found in [192].

FIG. 2.12: Example for loosely coupled EFK integration scheme.

2.5.3 IMU Alignment

The alignment process determines the initial orientation of the IMU. It precedes every survey
mission and is generally done in two stages [144]:

� Coarse alignment: For static coarse alignment the approximate attitude parameters
are estimated using the raw sensor output assuming that nothing but the Earth rotation
and the gravity are measured (so-called accelerometer leveling and gyro-compassing).
Dynamic coarse alignment is using GPS position and velocity data within parts of a
flight with constant heading and speed (thus minimal kinematic acceleration), to deduce
the yaw angle. Roll and pitch are estimated based on the inertial data.

� Fine alignment: The information of the coarse alignment is refined using a Kalman fil-
ter with the misalignment states and external observations (e.g. GPS position/velocity)
as updates.

Static IMU alignment is somehow problematic for inertial systems with poor accuracy (i.e.
low-cost IMU’s), because the level of the gyro drift risks to mask completely the needed
signal from the Earth rotation (15◦/h). Generally, to better separate the inertial errors and
specially the heading uncertainty, it is advised to proceed dynamic maneuvers (e.g. step curves
in figure-eight pattern) within the flight alignment. This enables to observe the misalignment
uncertainties through the velocity errors and to estimate the errors in all channels by using a
filter with DGPS velocity and position updates [145].
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2.5.4 GPS/INS Quality Monitoring

Inertial systems are integrated with GPS to bound the rapid accumulation of systematic in-
ertial errors. The integrated system can bridge gaps in the GPS observations and smooth its
short-term quality fluctuations. However, depending on the flight dynamics (such as strong
vibrations or long near-static phases) and on the abundance of GPS gaps, the accuracy of
trajectory estimated by GPS/INS integration will not be sufficient. One may also encounter a
measurement failure or degradation of one of the components of the IMU (gyros or accelero-
meters). As there is no sensor redundancy within the IMU, a wrong measurement on one
of these sensors may result in situations where the trajectory cannot be computed anymore.
Moreover, also classical GPS/INS integration provides little redundancy and cannot be consid-
ered as a good method for Fault Detection and Exclusion (FDE) due to the following reasons
[148]: Firstly, GPS and inertial sensors do not sense the motion dynamics in the same spectral
band. Second, the integration is normally performed using a Kalman-Filter that is designed
to trust the inertial sensor more than the GPS in case of an unpredicted disagreement. There
exist, however, several theoretical approaches to overcome these problems:

� Sensor redundancy: A redundant IMU is composed of more than three accelerometers
and gyros. Thus, it becomes possible to combine the inertial observations to generate
new “synthetic” measurements, or to modify the mechanization equations to account
for the observation redundancy. Although very popular for increasing system reliability
in avionics [98], the method is novel in the context of DG [23, 48, 189] and not yet
exploited in commercial systems.

� Fault detection via Kalman Filter (KF): The chosen architecture of a KF not only
has an impact on the optimal parameter estimation but also on the capability for FDE.
Organizing the integration through decentralized and federated filtering, where every
sensor or subsystem has its own KF, allows fault detection by comparing the outputs
of these different sub-KF (e.g. [25, 95]).

� Artificial Neural Networks: In the recent years Artificial Neural Networks (ANN)
have been used for the GPS/INS modeling and fault detection. ANN are trained di-
rectly with the data and extract the essential characteristics without implicitly knowing
the underlying physical mathematical model. The disadvantage of this concept is the
dependency of representative training data for different motion scenarios and that any
deviation of these trained scenarios may trigger an alarm that could be considered as a
fault [103].

Mainly due to economic reasons, these INS quality monitoring principles have not yet found
their way into commercial ALS systems. However, the rapid evolution of inexpensive MEMS
sensors (close to tactical-grade accuracy) may remove such constraints. This will enable the
development of redundant DG systems capable of detecting faults in the inertial data.
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Chapter 3

ALS System Calibration and
Point-cloud Processing

ALS data is prone to be affected by systematic errors that often originate from inaccurate and
incomplete system calibration. This chapter discusses the most important system calibration
steps together with their impact on the final data accuracy. In the following, the basic princi-
ples for point-cloud processing, such as strip adjustment, point-cloud classification and digital
elevation model generation are presented.

3.1 System Calibration

The accuracy of a final ALS point-cloud is the sum of all accumulated errors throughout
the entire processing chain of DG. Achieving the highest accuracy requires therefore that all
components of an ALS system are correctly calibrated (see TAB. 3.1). One can distinguish
three main types of calibration:

� Sensor Calibration: Each individual sensor of an ALS system must be calibrated. For
example, the scanning device itself is subject to internal error sources, such as the range-
finder error, the encoder angle error, encoder latency or scanner torsion. In general, these
parameters are calibrated by the manufacturer and are supposed to be stable in time. A
detailed overview of these internal scanning errors can be found in [65, 100]. Also some
elements of the INS have to be pre-calibrated. Depending on the IMU-type, this may
represent axis non-orthogonalities or major parts of the scale factors and bias errors.
The residual errors are time-variant and their values have to be re-estimated after every
flight via the state vector modeling and the Kalman filter.

� System Mount Calibration: The involved sensors in an ALS system cannot physically
all have the same origin and same alignment. These spatial and orientation offsets
must be calibrated after every new installation of the system or its components. They
should, however, remain stable within one configuration. The determination of these
quantities will be discussed in the following sections. Also in this category falls the time
synchronization of the involved sensors. The data of the individual sensors can only be
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merged if they are time-tagged in a common time frame (often GPS time). In most
cases the synchronization scale is governed by a regular pulse-per-second (PPS) signal
emitted by one of the sensors (normally GPS), while the time offset is communicated
with a message (i.e. NMEA/ZDA) over serial or other interface (e.g. [26, 160, 174]).

� Strip adjustment: Even if the system is perfectly calibrated, differences between over-
lapping sections of data (strip overlaps) may occur due to undetected or uncompensated
systematic effects in trajectory determination. Strip adjustment procedures will be dis-
cussed in detail in CHAP. 3.2.

Calibration Time Dependency Calibration
Frequency

Calibration Mode

Scanner Stable At assembly or at the
first mount

Laboratory or within
test flight

INS Random within
bounds

At assembly and for
every mission

In-flight calibration

GPS/Scanner/INS
leverarm

Stable within the
same installation

At new system mount Pre-flight calibration
(lab and/or field)

Scanner/INS
boresight

Stable within the
same installation

At new system mount In-flight calibration

Strip differences Time-variant For every mission In post-processing

TAB. 3.1: Overview of different calibrations involved in ALS.

3.1.1 Boresight Calibration

The most critical part in ALS system calibration is the angular misalignment (or boresight)
between the scanner (s-frame) and the INS system (b-frame). Besides some cardinal rotation,
also known as the mounting matrix (Tb

s), these angular displacements should be small (<
1◦). Hence, the boresight matrix Rb

s can be modeled as a skew-symmetric matrix with the
remaining misalignments in roll(ex), pitch(ey) and yaw(ez):

Rb
s =

 1 −ez ey
ez 1 −ex
−ey ex 1

Tb
s (3.1.1)

The influence of the misalignment in roll, pitch and yaw is illustrated in FIG. 3.1. The
misalignment between the laser and the IMU causes each laser observation to be registered
with an incorrect attitude. A roll error causes a slant range to be incorrectly registered. The
resulting elevation differences increase with the scan angle. The pitch error results in a tilted
range to be recorded as nadir. As the slant range is normally longer, the entire strip tends to
be pushed down. The yaw error induces a skewing in each scan line, namely in the horizontal
coordinates.

The impact of these errors is only visible in overlapping ALS data. When profiling across
areas with elevation gradients (such as tilted roofs), some inconsistencies between different
strips can be revealed. FIG. 3.2 shows a cross-section of a building covered by 8 flightlines,
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FIG. 3.1: Point registration errors due to boresight misalignment (adapted after [101]).

flown in a cloverleaf pattern at different flying heights. The discrepancies due to roll errors
(FIG. 3.2.A) are clearly visible on the inclined and horizontal planes. The errors due to pitch
(FIG. 3.2.B) are not apparent in horizontal planes; however, they have an opposite effect on
inclined planes, where the displacement can be depicted. The influence of the heading error
(FIG. 3.2.C) is much harder to assess within a profile, as the influence is only noticeable at
the outer bounds of the swath.

FIG. 3.2: Visibility of boresight angles on a cross-section plotted separately for roll (A), pitch (B)
and yaw (C) for 8 different strips with different flying heights and directions.

Unlike photogrammetry, ALS boresight errors affect each laser observation individually
and can therefore not be removed by applying e.g. a simple affine transformation to an entire
strip. The differences must be modeled by observing the induced errors in the position of
some control points or on common features (e.g. surfaces).
The adopted approaches for boresight calibration are manifold: [132] proposes a calibration
method based on physical boundaries or cross-sections, that has found its way into ALS
industry (e.g. [105]). [18] presents a method based on slope gradients, this method is imple-
mented in one of the most popular software packages for ALS data handling [162]. However,
these calibration procedures based on slope information, although very popular, are recog-
nized as being sub-optimal since they need human interaction, are non-rigorous and provide
no statistical quality assurance measures [154]. Additionally, they are not able to properly
recover the misalignment in yaw.
More rigorous calibration procedures have emerged in the last few years, modeling the
systematic errors directly in the measurement domain [35, 37, 39]. The so-called LIBOR
approach is a rigorous method for estimating the boresight angles and the range-finder offset
[154]. The technique is based on expressing the system calibration parameters within the
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DG equation separately for each target point, and conditioning a group of points to lie on a
common surface (normally a plane). The plane parameters are estimated together with the
calibration parameters in a combined adjustment model that makes use of GPS/INS-derived
position and orientation as well as the range and encoder angle measures.
Based on the LIBOR-algorithm, [156] presents a methodology that directly identifies points
belonging to a same plane and finds class-correspondences among the flightlines (see FIG. 3.3).
These point clusters are directly fed into the LIBOR-algorithm, yielding a fully automated
procedure for boresight calibration with accuracies at 1/1000◦-level.

FIG. 3.3: Automated plane detection for LIBOR boresight estimation: (A) Raw point-cloud, (B)
Classification of vegetation points, (C) Classification of ground points and roof detection, (D) Roof

groups clustering.

3.1.2 Leverarm Calibration

In a standard ALS system two leverarms have to be determined. First, the eccentricity
between the center of the IMU and the scanner origin (denoted abs) has to be estimated. This
displacement is normally very small, as the IMU and the laser scanner are mounted very
close to each other. Moreover, they may be hidden in one black-box (see FIG. 3.4). Hence,
this leverarm is normally evaluated by the manufacturer. Secondly, the leverarm between
the GPS antenna and the IMU navigation center (denoted as abGPS) needs to be determined
by the system user. Depending on the installation, the eccentricity can be important (>
1 m). Hence, an accurate determination of the GPS/INS leverarm is important for the overall
system accuracy.

The influence of the leverarm can be properly modeled and thus theoretically calibrated
within the EKF. However, due to correlations with other parameters, such approach cannot
match the accuracy of a determination by independent means [155]. The most reliable and
accurate way to observe this leverarm is tachometry (i.e. total station), assumed that the
GPS phase center and the IMU navigation center are identifiable and visible. Spatial offset
calibration is rather complicated when the respective sensor centers are not or badly visible,
or, like in the case of an airplane, the GPS antenna is placed on the fuselage while the
scanner/IMU are placed inside the plane. Additionally, the GPS/INS leverarm has to be
correctly expressed in the b-frame, which implies that the relative orientation of the IMU
with respect to local frame, in which the leverarm needs to be surveyed, is known.
FIG. 3.4 demonstrates a possible solution to overcome these problems by joint GPS and
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FIG. 3.4: Possible procedure for GPS/INS leverarm calibration.

tachometric observations. A common local frame is established by two total stations (T1 and
T2), that are placed such as from at least one of them the defined reference point on the
sensor head can be seen directly (eccentricity abREF defined by the manufacturer, because the
IMU navigation origin is generally not visible from the outside). Subsequently, this reference
point is surveyed by tachometry in the mapping frame defined by T1 and T2. The relative
coordinates of the GPS antenna phase center between T1 and T2 are obtained by static
CP-DGPS. This defines the rotation between the arbitrary mapping frame and the local-level
frame (Rl

m). The rotation matrix Rb
l between the IMU body-frame and the local-level frame

can be recovered either after some static alignment phase or, even better, after landing, when
the INS is well aligned dynamically. Subtracting the coordinates for the reference point and
the GPS antenna (both expressed in a local m-frame) yields amGPS , so the GPS/INS leverarm
can be computed as follows:

abGPS = abREF −Rb
lR

l
mamGPS (3.1.2)

The outcome of such calibration procedure normally delivers sub-centimeter accuracy for the
eccentricity vector, what is fair in the context of ALS.

3.2 Strip Adjustment

Even after ALS system calibration, differences in strip overlaps can still occur [37]. This
either originates from residual calibration errors inducing systematic effects (e.g. bad deter-
mination of yaw angle in boresight) or from dynamically changing effects (i.e. non-sufficient
IMU alignment, changing GPS accuracy within a flight). If these offsets cannot be modeled
and recovered correctly, a seamless and homogeneous dataset cannot be achieved (see e.g. FIG.

3.5). This leads to height models affected by e.g. sudden jumps (steps) along strip borders
[117].
Due to the different origins the correct modeling and recovery of the strip discrepancies is far
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FIG. 3.5: Hillshaded DSM TIN: (A) No strip adjustment, (B) With strip adjustment.

from a trivial task. Based on the type of input data, current strip adjustment methods can
be divided into two main approaches:

� Data-driven calibration: First generation strip adjustment algorithms are one-
dimensional adjustment procedures, as they consider only shifts in height [61, 70, 181].
Their implementation is generally based on reference features (control or tie objects)
in flat horizontal surfaces, where the height offsets are noticeable, well defined, and
easy to measure. However, planimetric offsets in the data may not be entirely compen-
sated. To recover full 3D displacements, other methods are based on surface least square
matching (LSM). The LSM is either applied using a TIN surface [93] or a regular raster
[18, 73, 194]. [16] proposes a method based on the comparison of each laser strip with a
photogrammetrically derived DSM, and on the modeling of the discrepancies between
these two datasets.

� System-driven calibration: [35, 36] propose a model to eliminate the systematic
errors by constraining the laser points to a surface. The error recovery model is based
on modeling the system errors and their effect on the georeferencing of the laser point.
A similar approach is presented by [154] where the laser points are conditioned to lie
on a common planar surface patch without need to know the true surface position and
orientation. However, system driven solutions have a major drawback as they require
system observations (i.e. trajectory, range, encoder angle) as an input. Often these
observations are not available to the end-user. To overcome this problem, [117] presents
a strip adjustment method that models the discrepancies by strip-wise 3D shift, roll and
affine yaw parameters without requiring GPS/INS-trajectory data.

Despite the large number of different strip adjustment procedures, several processing steps
are common to the majority of these procedures:

� Selection of strip overlap: Finding areas with data from several flightlines is rather
trivial. However, the process to automatically identify zones suitable for strip adjust-
ment, such as zones with clearly distinguishable surface patches that vary in orientation
and slope (see FIG. 3.6), remains very challenging.
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� Determination of discrepancies based on selected features: Based on the feature
type (point, line, surface) used for the strip matching, the translations (1D or 3D, for
some methods also rotations) can be computed.

� Application of the corrections to the data: For data-driven methods, the cor-
rections are applied directly to the point-cloud, typically by applying a 3D similarity
transformation, whereas for system-driven methods the translations can be feed back
into a refined sensor model used to reprocess the entire point-cloud.

An exhaustive overview of common strip adjustment procedures and their application can be
found in [136].

FIG. 3.6: Principle of strip adjustment (after [182]).

3.3 ALS Point-cloud Data Processing

3.3.1 Spatial Data Indexing

With the rapidly increasing size of the point-clouds, efficient data mining, querying and
processing have almost become unfeasible without pre-ordering the unorganized raw point
datasets along a spatial dimension (spatial indexing). It is always possible to perform any
query by a “brute-force” process, e.g. computing the distances between the query point and
each of the other data points. Such operations result in high computation time that are grow-
ing quadratically with data size (O(n2)). A possibility to increase the query speed is to use
tree structures to index the data, as for example the kd-tree originally proposed by [13]. At
each node of the tree, the data space is split with a hyperplane along one of the basic di-
mensions (see FIG. 3.7). This procedure allows reducing the computation and query time to
(O(n log n)). The computation time can even be reduced further [97]: Instead of finding e.g.
the exact k -nearest neighbors, the ε-k -nearest neighbors suffice. This so-called approximate
nearest neighbor search was first introduced by [6]. This algorithm was implemented in an
open-source C++ library called ANN [102], which has been used as tool for spatial indexing
and querying of laser data throughout all developments presented in this thesis.
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FIG. 3.7: Example of building up a kd-tree in 2D.

3.3.2 Co-registration

The co-registration of different point-clouds is a very common task in TLS/ALS point-cloud
processing. Most of the time the Iterative Closest Point Algorithm (ICP), first presented by
[15], is used for this purpose. The ICP algorithm uses distance metrics (such as closest point)
between two datasets to be co-registered. For example, a 3D rigid body transformation could
be applied between the corresponding data to determine translations and rotations iteratively.
To support computing efficiency, a kd-tree structure is used for finding closest points. The
target function of the ICP algorithm can be expressed in a general form as:

min
(R,T)

∑
i

‖Mi − (RDi + T)‖2 (3.3.1)

where i refers to the corresponding (closest) points of the datasets M (model) and D (data),
R3×3 is a rotation matrix and T3×1 is the translation vector. The main advantages of the
ICP when dealing with ALS point-cloud co-registration are:

� No need for point-to-point correspondence: Point-clouds to be co-registered may be
very different in sampling rate and scan pattern. As long as the local geometry is well
represented in both datasets, ICP is invariant to such differences.

� Robust performance for surfaces with moderate complexity and high data overlap.

� Can be parametrized to search either only for translations (planimetry, altimetry, 3D),
only rotations or all together.

FIG. 3.8: Difference in distance metrics formulation: (A) Closest point, (B) Normal shooting.
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However, searching for the best correspondence by minimizing the sum of the square distances
metric sometimes leads to problems in convergence speed, accuracy and reliability of the
resulting transform. To mitigate these problems, [21] proposes to replace the distance metric
by a distance measured along the surface normal vector (so-called normal shooting). The
normal vector is defined by locally approximating a tangent plane to the model surface (see
FIG. 3.8).

3.3.3 Point-cloud Geometry Analysis

FIG. 3.9: Neighborhood Np of k -points and the computed principal directions.

Geometric primitives, such as the surface normal vector, curvature or change of curvature are
very interesting parameters for raw point-cloud interpretation and classification. As shown in
[108] and [10], Principal Component Analysis (PCA) of the covariance matrix of a local neigh-
borhood can be used to estimate local surface properties. Based on a kd-tree and approximate
nearest neighbor search, finding of the k-nearest neighbors can be carried out very fast. The
covariance matrix C[3×3] for a sample point p can be computed using the coordinates of the
neighbor points:

C =

pi1 − p̄
...

pik − p̄


T pi1 − p̄

...
pik − p̄

 , ij ∈ Np (3.3.2)

where p̄ is the centroid of the neighborhood Np including k -points (see FIG. 3.9). The covar-
iance matrix can be decomposed into its principal components by eigenvector decomposition:

C · vl = λl · vl, l ∈ {0, 1, 2} (3.3.3)

where C is symmetric and semi-definite. Therefore, its eigenvalues (λ0 < λ1 < λ2) are real
(≥ 0) and the corresponding eigenvectors (v0,v1,v2) form the orthogonal frame correspond-
ing to the principal components (directions/orientations) of the point set defined by Np (see
FIG. 3.9). The eigenvalues λl measure the variation of the points pi, i ∈ Np, along the direction
of the corresponding eigenvectors. They describe the variance in each principal direction. Ac-
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cordingly, the eigenvector v0 corresponding to the smallest variance (thus smallest eigenvalue
λ0) approximates the local terrain normal at point pi:

npi =

nxny
nz

 =
v0

‖v0‖
(3.3.4)

If the point-cloud coordinates are expressed in a local mapping frame (with y-axis towards
north), slope S and aspect A (orientation towards north) can be derived using the local normal
components (see also FIG. 3.10):

Spi = atan


√
n2
x + n2

y

nz

 , S ∈ [0, π/2] (3.3.5)

Api = atan2
(
nx
ny

)
, A ∈ [0, 2π] (3.3.6)

If a neighborhood is a planar region, the variance in the normal direction is low, while for a
surface that is not planar the variance in the normal direction is high. This property can be
used to construct an easy metric to estimate the surface variation (or change in geometric
curvature) Mcc(pi) of point pi:

Mcc(pi) =
λ0

λ0 + λ1 + λ2
, 0 ≤ λ0 ≤ λ1 ≤ λ2 (3.3.7)

This metric is very easy to interpret: If Mcc(pi) = 0, the selected points are perfectly planar,
if Mcc(pi) = 1/3, the points are completely isotropically distributed. λ1 and λ2 describe
the variation of the sampling distribution in the tangent plane and can thus be used e.g.
to estimate the local anisotropy. However, the surface variation (as presented in EQN. 3.3.7)
cannot be considered as an intrinsic feature for a point-sampled surface, as it depends of the
number of points and the radius of the used neighborhood around pi [12]. In [11] another
expression to compute the change in geometric curvature can be found using the mean dot
product of the normal vectors of pi and its neighborhood:

Mcc(pi) =
1
k

k∑
j=1

∣∣npi · nneighbor(j,pi)

∣∣ (3.3.8)

where npi and nneighbor(j,pi) are the normal vectors of pi and its j−th neighborhood point,
respectively, and k is the number of neighborhood points. The advantage of EQN. 3.3.8 is that
the value is normalized by the size of the neighborhood and bounded between 0 and 1. A
similar expression allows the computation of the geometric curvature Mcurv(pi) for a given
point:

Mcurv(pi) =
1
k

k∑
j=1

∥∥npi − nneighbor(j,pi)

∥∥ (3.3.9)
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FIG. 3.10: Color-coded point-cloud by PCA-derived geometric quantities: (A) Curvature (-), (B)
Aspect (◦), (C) Slope (◦).

3.3.4 Point-cloud Filtering and Classification

As ALS is a non-selective mapping method, the acquired data consists of a point-cloud that
includes all kind of objects (e.g. vegetation, buildings, wires, etc.) that have been in the line
of sight of the laser beam. Without the semantic information about the nature of each laser
point, the derivation of value-added products, like Digital Terrain Models, is not possible.
Accordingly, prior to any further processing, the point-cloud must be classified into different
categories (see FIG. 3.11).

FIG. 3.11: (A) Raw point-cloud, (B) Point-cloud classified in ground-, bridge-, vegetation- and
building-points.

The most common classification separates the laser points into bare-ground and non-ground
objects (e.g. trees, buildings, wires). According to [99], current ground classification algorithms
can be grouped into three major categories:

� Directional filtering: These filtering algorithms operate on gridded elevation values
derived by interpolation of the raw point-cloud. The used interpolation techniques are
manifold and include fitting a linear function [107], surface functions [72], morphology
functions [67] or a local mean or minimum value [114]. [141] and [185] propose a slope-
based filtering technique, that works by pushing up vertically a structuring element. [99]
proposes a multi-directional ground filtering algorithm to incorporate a two-dimensional
neighborhood in the directional scanning.

� Neighborhood-based algorithms: The filtering is directly performed in the point-
cloud domain. [29] estimates the ground surface by employing active shape models
by means of energy minimization. Axelsson [8] proposes a progressive TIN densification
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method, where based on some initial points (local minimas) a TIN is computed. Further
points are iteratively added to the TIN based on some geometrical constraints (see FIG.

3.12). Compared to more recent developments, Axelsson’s method is reported to be still
one of the most efficient ground classification algorithms [99, 142]. This method is also
implemented in point-cloud processing software TerraSolid [161].

� Surface-based filters: These filters, also designated as robust interpolation filters,
initially assume that all points belong to the ground and removal of non-ground points
is carried out by stochastic behavior analysis of the terrain (e.g. [71]).

A detailed overview and comparison of different ground filtering algorithms can be found in
[99, 142, 197].

FIG. 3.12: Ground filtering using Axelsson’s method: To be added as a terrain point, the angle α
between the point and its projection on the TIN vertex and the normal distance dTIN of the point to

the vertex plan must be smaller than a certain threshold.

3.4 Digital Elevation Models

Digital Elevation Models (DEM) are discrete representations of a physical surface (terrain).
For the reconstruction of a DEM from unorganized point-clouds generally two methods are
applied:

� Triangulated structure: The surface is modeled as a triangulated surface based on
irregular base points that may be completed with vector/breakline information.

� Raster structure: The surface is represented as a two-dimensional discrete matrix of
data heights.

3.4.1 Triangulation

A triangulation converts the given set of points into a consistent polygonal model (mesh).
The surface is discretized by dividing it into many small elements of geometrical primitives
(e.g. triangles). Triangulation can be performed in 2D or in 3D, according to the geometry
of the input data. For the 2D triangulation, the most popular construction method is the
Delaunay triangulation. The Delaunay criterion ensures that no vertex lies within the interior
of any of the circumcircles of the triangles in the network.
For DEM generation, mostly a 2.5D triangulation is applied, where the triangulation is
performed in 2D and the z-value for each node is attached using an unique elevation function
z = f(x, y) for each point. The generated height surface is commonly called TIN (Triangu-
lated Irregular Network).
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FIG. 3.13: Isometric view of a vertical rock face scanned by ALS modeled by triangulation: (A) 2.5D
triangulation, (B) 3D triangulation.

Due to the implicit projection onto the x, y-plane, TIN’s may lead to misinterpretation
and mis-modeling of many 3D objects, such as buildings, bridges or vertical rock faces and
overhangs (see FIG. 3.13). Although very popular in the computer vision and TLS community,
rigorous 3D triangulation has not really gained ground in the ALS community. The reasons
for this are manifold:

� 3D Triangulation algorithms are very complex and thus too slow to handle the large
datasets gathered by modern ALS.

� Most software applications used in the mapping and GIS community deal only with
2.5D data (TIN and Raster), where a 2D coordinate can have only one unique height
value.

� Absence of industry standards defining 3D model structures and data formats.

� Classical geo-products, such as DTM/DSM (as raster data) or contour lines derived
from ALS point-cloud data cannot be interpreted correctly using real 3D data (e.g.
crossing contour lines in pendent terrain do not make sense on a map).

However, real 3D modeling finds gradually its way also into the ALS community, especially
for visualization and geomorphological analysis [17] and cultural heritage documentation [77].

3.4.2 Elevation Raster

The storage of irregular-spaced point-cloud data and its associated TIN requires large storage
place, as every single coordinate has to be stored independently. A solution to overcome this
problem is the generation of even-spaced elevation grids, where the x, y-coordinates can be
described by an array and only the z-value has to be stored individually.

Digital Terrain Model (DTM)

DTM’s are generated using the bare-earth (or ground) points, determined by the ground
classification process (see CHAP. 3.3.4). To generate an even-spaced DTM raster, the surface
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can first be modeled by a TIN generated with a 2.5D triangulation (see FIG. 3.14). The DTM
heights are subsequently derived by linear interpolation on the TIN facet. There exist other
interpolation techniques for DTM generation that do not require an intermediate triangulated
surfaces, such as nearest neighbor Inverse Distance Weighting (IDW), kriging and spline in-
terpolation methods [28]. However, the ground point coverage often suffers of reduced point
density in forested areas or has data gaps, due to the non-ground point removal (e.g. build-
ings). Triangulation efficiently closes these gaps prior the interpolation, where the maximal
size of gaps to be “closed” by triangulation can be parametrized by the facet edge length.

Digital Surface Model (DSM)

The term DSM is reserved for representations of the terrain including all surface features
(buildings, vegetation, etc.). For the interpolation of DSM’s, data gaps are less likely to occur.
If the initial point-cloud density is close to the output raster size, assigning the elevation of
the nearest point is a very fast and accurate method for DSM generation.

FIG. 3.14: Typical ALS product generation chain out of irregular spaced point-cloud data: (A) Raw
ground points, (B) Generation of TIN by 2.5D Delaunay triangulation, (C) Interpolation of DTM

grid, (D) Smoothing and derivation of contour lines.

3.4.3 DEM Analysis

Once a gridded surface model is generated, it can be used for a wide-spread of different raster
based analysis. Using the principle of image convolution (operator ?), a large variety of filters
(also called linear operators) can be applied for smoothing (e.g. FIG. 3.14.D) or filtering.
Commonly used filters in DEM processing are the directional gradient filters:

fx =

−1 0 1
−2 0 2
−1 0 1

 , fy =

−1 −2 −1
0 0 0
1 2 1

 (3.4.1)

Applying such or similar filters to height models, different derivate rasters can be computed
(see also FIG. 3.15):
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� Slope raster: Computing the slope value at column c and row r of a height model
DEM can be performed as follows:

S[r, c] = atan
(
Rx[r, c]2 +Ry[r, c]

2
)

(3.4.2)

where Rx is the height gradient grid in x-direction (DEM ? fx) and Ry the height gra-
dient grid in y-direction (DEM ?fy), both obtained by convolution with the respective
filters.

� Aspect raster: The aspect raster A can also be computed as a combination of the
directional gradient grids:

A[r, c] = atan2
(
Ry[r, c]
−Rx[r, c]

)
(3.4.3)

� Hillshade raster: Hillshading corresponds to a hypothetical illumination of a surface
with a chosen position for the artificial light source at an elevation angle ele and azi-
muth angle azi. The illumination values for each cell are computed in relation to its
neighbors. This process greatly enhances the visualization of a height model for analysis
or graphical display (see e.g. FIG. 3.15.D). Using the aspect and slope-grid for a given
DEM, the hillshade grid can be computed by the following formula [31]:

H[r, c] = 255 [cos(90◦ − ele) cos(S[r, c]) + (3.4.4)

sin(90◦ − ele) sin(S[r, c]) cos(azi− 90◦ −A[r, c])]

where the resulting hillshade values are bounded between 0 and 255.

FIG. 3.15: Filtering of raster height model (DEM): (A) DTM color-coded by elevation, (B) DTM
slope grid, (C) DTM aspect grid, (D) DTM hillshade.
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Chapter 4

Point-cloud Quality Assessment

The previous chapters have introduced the different technologies and the mathematical con-
cepts needed in ALS. This section first describes and quantifies the different error sources
contributing to the accuracy of a single laser point coordinate. Second, the theoretical concepts
to assess the accuracy are presented. A novel approach is proposed that yields a final quality
indicator reflecting not only the georeferencing quality but also the scanning geometry. Finally,
based on simulated and real datasets, the validity of the developed methods is assessed and the
possibilities to use such quality indicators for advanced point-cloud processing are investigated.

4.1 Overview of ALS Error Sources

The total ALS error budget can be divided into three major segments (see FIG. 4.1):

1. Navigation errors: This includes the errors influenced by the GPS and the IMU and
their impact on the obtained position and attitude uncertainties used for the georefer-
encing of the laser data. These errors are time-dependent and can vary within a mission.

2. System errors: These errors are related to the laser itself (scan angle encoders, range
finder) and the incertitudes within the system assembly (e.g. boresight, leverarm). They
are normally stable during a mission, or even during several missions, when the system
mount remains unchanged.

3. Scanning geometry errors: This includes the influence of the incidence angle and
the laser beamwidth on the obtained range. These errors are mainly scan-pattern and
topography/target-dependent and their magnitude can vary quickly spatially and tem-
porally.

4.2 ALS Navigation Errors

4.2.1 Trajectory Positioning Errors

The accuracy of the kinematic GPS/INS position is primarly influenced by two factors:
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FIG. 4.1: Main components influencing the total error budget of ALS.

� GPS satellite configuration and signal observability: The number of visible satel-
lites is governed by the satellite constellation and the obstructions either caused by the
topography (skyplot) or by the carrier itself (i.e. antenna masking by wings for banking
airplanes). Other important factors, such as baseline length, relative height difference
and number of available baselines are depending on the ground infrastructure. Apart
from physical obstructions, the signal observability can be degraded by signal blocking
through jamming or interferences. As explained in CHAP. 2.5, the ability of an inertial
system to bridge GPS outages for a certain time without substantial loss off accuracy
largely depends on the quality of the IMU. For a tactical-grade IMU (mostly used in ALS
systems) this time span does not exceed 15 sec, while for navigation-grade instruments
this interval can be as long as 1 to 2 min [144].

� Accuracy of observables: The GPS processing is based on the differential carrier-
phase (CP-DGPS) measurements. If the ambiguities can be resolved correctly, the resid-
ual errors on the baseline vector are relatively small for baselines up to 25 km and ac-
ceptable up to 100 km. TAB. 4.1 shows that for baselines shorter than 10 km, a relative
accuracy of about 10-20 ppm (i.e. 1-2 cm) can be considered as the upper accuracy limit
for a favorable satellite constellation. However, if the ambiguities cannot be resolved
correctly, the accuracy degrades to a typical level of 100 ppm [144]. In order to keep the
GPS error below decimeter-level it is therefore generally recommended not to exceed a
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baseline length of 25 km [1, 3].
In airborne surveys the rover altitudes (on the carrier) may be very different from the
reference altitudes (on ground). Hence, it is important to consider the relative height
biases introduced by unmodeled tropospheric zenith total delay (ZTD). If the real temp-
erature and pressure profiles differ from those assumed by the differential atmosphere
correction model, these biases can be very important. According to [137], for height dif-
ferences of several hundreds of meters, as typically the case in ALS surveys, the relative
ZTD can be up to 0.05 - 0.3 m even if the horizontal baseline is small. A detailed report
on the GPS error in function of baseline length and height difference can be found in
[68].

Troposhere Ionosphere Multipath Noise Orbits
Error [m] 10−2 − 10−3 10−2 − 10−3 10−2 10−3 10−2

TAB. 4.1: Residual effects in CP-DGPS for baseline length < 10 km (after [166]).

4.2.2 Trajectory Orientation Errors

In contrary to the position, attitude determination by GPS/INS largely depends on the INS
quality. The orientation errors budget has to be considered separately per axis, due to its
dependency on dynamics. Generally, a better accuracy can be expected in roll and pitch
determination (as compared to yaw) due to their correlation with the gravitational accel-
eration [143]. The error in yaw is only observable indirectly through the horizontal velocity
error. This error cannot be de-correlated from other inertial errors, unless maneuvers inducing
planimetric accelerations and direction changes (such as banking turns) occur.
The quality of the IMU alignment also has a significant impact on the residual orientation
errors. Usually, the GPS/INS filter keeps on refining the initial alignment throughout the
flight (refer to CHAP. 2.5.3: dynamic alignment). Flight dynamics enable to de-correlate the
misalignment errors from the other error sources and thus strengthen the orientation accuracy.
This means that the orientation accuracies, even with constant GPS quality, evolve during a
mission in function of the abundance and the nature of flight maneuvers (see e.g. FIG. 4.13).
A summary of potential orientation accuracies for today’s most popular inertial sensors used
within ALS can be found in TAB. 4.2.

Navigation grade (∼0.01 deg/h) Tactical grade (∼0.1-3 deg/h)
Time r/p(◦) y(◦) r/p(◦) y(◦)
1 sec 0.0008-0.0014 0.008-0.002 0.001-0.02 0.001-0.05
1-3 min 0.0014-0.003 0.004-0.005 0.005-0.04 0.008-0.1
longer time same as over 1 - 3 min but maneuver-dependent

TAB. 4.2: Inertial attitude determination performance of GPS/INS depending on GPS outage time
and INS quality (after [148]).
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4.3 ALS System Errors

4.3.1 Range-finder and Scanner Errors

The modeling and calibration of the ranging errors is complex and the needed parameters
depend on the internal laser design. [65] proposes a simplified relation to model the encoder
angle errors related to the scanning mechanism:

∆θ(t) = ∆θ0 + θ(t) · sθ (4.3.1)

where ∆θ0 is a zero-offset bias and sθ the scale factor. The latter is of special importance for
oscillating mirrors, where the mirror is highly accelerated or decelerated at the swath border,
thus inducing torsion effects that cause mis-registration of the observed distance.

The ranging accuracy mainly depends on the time-of-flight measurement. For pulsed ranging
systems the absolute accuracy is settled around a few centimeters, whereas continuous wave
systems can reach sub-centimeter ranging accuracy. Atmospheric effects are also known to
contribute systematic and random sources of error into a laser range observation. The size
of these errors is directly proportional to the length of the range (scale-dependent part sr
expressed in ppm). Accordingly, the total range error σρ(r) in function of the range r takes
the following form:

σρ(r) = σρ + 10−6 · sr · r (4.3.2)

However, ALS system providers not always publish the range error according to this rule.
Most modern ALS systems allow changing the PRF (thus amount of energy per pulse). This
has a direct impact on the ranging accuracy. Manufacturers often prefer to state ranging
accuracies in function of different flying heights and different PRF (e.g. [176]).
TAB. 4.3 presents a compilation of values for angular and range measurement accuracies for
a representative selection of ALS sensors.

Sensor Type Range
Error

Angular
Resolution

Beam
divergence

Angular
Uncertainty

Total An-
gular Error

[m] [◦] [mrad] [◦] [◦]
LMS Q-240 0.02+20 ppm 0.005 2.7 0.0387 0.0390
LMS Q-560 0.02a 0.001 0.5 0.0072 0.0073
Falcon III 0.02a 0.002 0.7 0.01 0.0102
ALTM Gemini 0.02a 0.001 0.15-0.3 0.0022 0.0024
ALS-50-II/60 0.02a 0.001 0.15 0.0022 0.0024
aNo scale-dependent part published in official documentation

TAB. 4.3: Ranging and angular accuracy (at 1σ) specifications (adopted after [43]).

4.3.2 Calibration errors

As shown in CHAP. 3.1.2, the GPS leverarm (abGPS) can be determined by tacheometric means
with centimeter to sub-centimeter accuracy. As leverarms propagate one-to-one in to the
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overall coordinate error, their impact is of minor importance. The accuracy of the boresight
(Rb

s) is more critical, as the impact of the boresight uncertainty on the target accuracy is
growing with the range. According to [43], the accuracy of manual adjustment procedures
for boresight angles is normally no better than the intrinsic accuracy of the IMU employed
for attitude measurement. However, boresight determination based on surface conditioning
by least squares adjustment, such as LIBOR (presented in CHAP. 3.1.1), can deliver boresight
accuracies below the average attitude noise level.

4.4 Assessment of ALS Target Accuracy

The projection of the aforementioned individual error sources by the georeferencing formula
(see EQN. 2.2.8) yields the accuracy of the target. This theoretical target accuracy can be
computed by variance propagation. The error model for the propagation proposed in this
research involves 14 error states:

� 6 navigation errors: Namely the errors of the absolute positioning (σX , σY , σZ) and
the orientation (σr, σp, σy) as estimated by the GPS/INS-integration filter. These errors
can rapidly change in time either due to a change in GPS constellation and/or variable
flight dynamics.

� 6 system calibration errors: Here, the residual errors in the boresight angles
(σex , σey , σez) and in the leverarm (σax , σay , σaz) are considered. These components
should vary only with a change in system installation.

� 2 internal ALS errors: The internal ALS error sources are restricted to random
errors in distance and encoder angles only. This reduction is applied because most
ALS manufacturers specify their expected accuracy in terms of these two main error
components and do not specify the individual factors that contribute to the overall
error. The final model considers a range-finder error (σρ), having a constant and a
scale-dependent part (ppm), and the error of the encoder angle (σθ). These errors are
supposed to be intrinsic to every ALS system and are assumed to have a constant
magnitude.

According to these 14 error states and assuming the scanning plane (xszs) the georeferencing
model EQN. 2.2.8 can be re-written such as:

xy
z

m

=

XY
Z

m

+ Rm
b

Rb
s ρ

sinθ0
cosθ

+

axay
az

b (4.4.1)
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where
Rm

b (r, p, y) is the attitude matrix from the IMU body frame to the mapping frame
parametrized by roll, pitch and yaw

Rb
s (ex, ey, ez) is the boresight matrix describing the angular offsets between the scan-

ner frame and the body frame

ρ, θ are the range and encoder angle measurements, respectively, of the laser
scanner

[ax, ay, az]T is the leverarm from the IMU center to the GPS antenna expressed in
the b-frame

Propagating the random errors through the functional model of the laser georeferencing
equation given by EQN. 4.4.1 yields a 3×3 point covariance matrix:

Cxyz =

 σ2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 = FCllFT (4.4.2)

The stochastic model Cll of all observations is given by

Cll
14×14

= diag
[
σ2
x σ2

y σ2
z σ2

r σ2
p σ2

y σ2
ax

σ2
ay

σ2
az

σ2
ex

σ2
ey

σ2
ez

σ2
ρ(r) σ2

θ

]
(4.4.3)

where the range-dependent variance σ2
ρ(r) is computed using EQN. 4.3.2 and the simplifying

assumption is made that all individual error sources are uncorrelated.
The linear functional model (matrix F) is normally obtained by expanding the georeferencing
equation into a Taylor series and truncating after the first term [43, 78]. In order to speed
up the computations, this research proposes to construct the functional model by analytical
derivation of EQN. 4.4.1. Thereby, F takes the form of:

F
3×14

= [Fpos|Fatt|Fleverarm|Fboresight|Frange|Fencoder] (4.4.4)

The detailed formulation and the derivation for the sub-matrices of EQN. 4.4.4 can be found
in Appendix A.

Once Cxyz is computed, the covariance matrix can be decomposed into a horizontal
and vertical ALS navigation error component for every laser point:

σnavxy =
√

Cxyz(1, 1) + Cxyz(2, 2) (4.4.5)

σnavz =
√

Cxyz(3, 3) (4.4.6)

where the superscript nav indicates the origin (system and navigation errors) of the error.
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4.5 Assessment of Scanning Geometry

Conventional ALS error analysis considers the errors as described in CHAP. 4.2 and CHAP. 4.3.
In such analyses, the accuracy of the range measurement is considered more or less constant.
Let us consider the situation presented in FIG. 4.2. The laser points of this dataset, even if
gathered with constant navigation and range measurement accuracy, have a large variation
in their accuracy across the swath. The points inside the overlap area between strip A and
B are likely to have better quality when gathered within strip B (measurements that are
almost perpendicular to the terrain) than within strip A, where the range measurements are
affected by unfavorable geometry.

FIG. 4.2: Adjacent strips with changing geometry.

The impact of the incidence angle and the beamwidth on the total ALS error budget is
acknowledged by many authors [4, 34, 43, 55, 71]. However, its modeling and evaluation has
only found its way into the TLS community (e.g. [58, 86, 164]), where the measurement
environment is easier to control than in the context of ALS (i.e. static scanner location and
orientation, known surface properties, relatively short ranges, etc.).
Assessing the scanning geometry for airborne scans requires a-priori knowledge of the terrain
slope and aspect. Recent developments using the signal of full-waveform laser systems have
shown that certain surface attributes (e.g. slope, terrain cover) can be directly extracted by
signal processing (e.g. [60, 115]). These computations are yet very time consuming as they
require the full return signal for every range to be analyzed. For this reason, fast or near RT
geometry analyses are not possible. Furthermore, full-waveform capacity remains limited to
a relatively small number of systems on the market. In this research a more general approach
is proposed that is suitable for every type of laser system (incl. single pulsed systems). The
novel approach, first presented in [128], is fast enough for in-flight processing and will be
explained in the sequel.

4.5.1 Laser Beam Power Distribution

One of the intrinsic properties of a laser scanner that strongly influences both the point-cloud
resolution and the positional uncertainty is the laser beamwidth. The apparent location
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of the range observation is along the centerline of the emitted beam. However, the real
point location cannot be predicted since it could lie anywhere within the projected beam
footprint. A good demonstration of this uncertainty is presented in [84]. There, the estimate
of uncertainty assumes a uniform level of laser power across the entire beamwidth diameter
and a circular footprint resulting in an angular uncertainty (at 1σ) of one-quarter of the
beamwidth. However, an uniform power distribution within the footprint is typically not the
case. Depending on the laser system, the spatial energy distribution of a pulse may appear
in different shapes.

FIG. 4.3: Relative power distribution of an
OPTECH ALTM LiDAR system (after [43]).

FIG. 4.4: Influence of incidence angle on relative
power distribution: left: α=0◦, right: α=60◦.

FIG. 4.3 shows a typical power distribution of an outgoing laser pulse for the Optech
ALTM LiDAR system. The power across the pulse is not uniform and can be approximated
by a bivariate Gaussian distribution, where 100% of the energy lays within the footprint.
Defining the footprint diameter to be ±3σ (99.7% quantile), the angular uncertainty along
one axis (at the 1σ level) can be approximated by one sixth of the footprint diameter. Based
on this model, the influence of the changing incidence angle on the spatial energy distribution
can be simulated (see FIG. 4.4). The backscattered signal from the target surface will be a
function of the integrated energy distribution across the whole footprint. The amplitude and
the centre of the signal power distribution are further modulated by the incidence angle,
defined as the relative alignment between the beam direction and the normal of the reflecting
surface.

4.5.2 3D Footprint Computation

The first prerequisite for the footprint computation is the (at least approximate) knowledge
of the terrain normal. As shown in CHAP. 3.3.3, this can be performed by means of eigenvalue
decomposition of the covariance matrix obtained from neighboring points. The other crucial
information is the knowledge of the laser beam origin needed to compute the laser beam
direction. These two quantities provide the missing link to the subsequent computation of the
3D footprint as a function of the beam divergence and estimated incident angle. Knowing the

54



Assessment of Scanning Geometry

terrain normal n (using EQN. 3.3.4), and the laser direction l, the incidence angle α can be
computed by

α = acos
(

l • n
|l| |n|

)
(4.5.1)

The laser footprint is modeled as an ellipse formed by the intersection between a cone having
origin O, direction l and beam divergence ε and the local tangent plane with normal n (see
FIG. 4.5). As demonstrated in [19], the intersection of a cone with a plane can be computed
using cone canonicals. The detailed mathematic development to compute a 3D footprint
based on the aforementioned parameters can be found in Appendix B.

FIG. 4.5: Decomposition of the 3D footprint into its vertical and horizontal error components.

Once the main axis of the footprint (major half-axis a and minor half-axis b) are known
in 3D, the footprint can be decomposed into its maximal horizontal and vertical extension
(see FIG. 4.5). Taking into account the assumption of bivariate Gaussian power distribution
within the footprint, the approximate positioning uncertainty in the horizontal and vertical
component due to the scanning geometry can be expressed by

σgeomxy =
1
3
·max

〈∣∣∣∣[ ax
ay

]∣∣∣∣ , ∣∣∣∣[ bx
by

]∣∣∣∣〉 (4.5.2)

and

σgeomz =
1
3
·max 〈|[az]| , |[bz]|〉 (4.5.3)
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4.6 Single Point Quality Indicator

Once all components contributing to the ALS error budget are assessed, this information
can be applied to construct one unique quality attribute for each laser measurement. This “q-
indicator” is constructed as accumulation of random errors coming from the error propagation
of laser georeferencing equation (EQN. 4.4.2) and the scanning geometry analysis (EQN. 4.5.2
and EQN. 4.5.3):

qi =
√
trace (Cxyzi) + σgeom

2

xyi + σgeom
2

zi (4.6.1)

4.6.1 Removal of non-ground Points

The assessment of the scanning geometry depends on the correct estimation of the local
terrain normal. Applying the covariance method, this estimation is only reliable when the
neighborhood of points approximately forms a planar surface. Laser points lying e.g. on
vegetation have no clear geometric structure, hence the derived normal is geometrically not
interpretable. As a consequence, prior to the computation of the incidence angle, the point-
cloud has to be segmented into ground and non-ground points. In general, points on the
ground or on buildings can be characterized by low curvature values (surface can often be
approximated by a plane), whilst scanning points within vegetation and on roof edges generate
high curvature values. These properties allow pre-classifying the laser points using a boolean
test on the geometric curvature value Mcc(pi) (EQN. 3.3.9) with a given threshold tol:

ground point(pi) =
{

TRUE if Mcc(pi) < tol
FALSE if Mcc(pi) ≥ tol

(4.6.2)

In general, the selection of the appropriate threshold depends on the size of the neighborhood
k and the characteristics of the dataset (point density and topography). Further information
about the appropriate choice of the neighborhood size can be found in [9].

4.6.2 Workflow for Q-indicator Computation

FIG. 4.6 and FIG. 4.7 summarize the workflow for the computation of the q-indicator. First,
the error propagation is carried out using the navigation data and their accuracy estimates.
Second, the point-cloud is generated in an arbitrary mapping system, followed by spatial
indexing (see CHAP. 3.3.1). After the computation of the local normal vector and curvature,
the dataset is pre-filtered using EQN. 4.6.2 (see FIG. 4.6.A), removing all points above a cer-
tain curvature threshold. The next step performs the scanning geometry analysis, using the
estimated local terrain normal (FIG. 4.6.B), the laser direction and the beam divergence to
compute the 3D footprint for the remaining laser points (FIG. 4.6.C). Finally, the effects of
the scanning geometry are combined with the previously estimated covariances to construct
one unique quality indicator using EQN. 4.6.1. Thus, every laser point receives a separate q-
indicator value (FIG. 4.6.D) that not only reflects the quality of georeferencing but also the
scanning geometry.
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FIG. 4.6: Steps for q-indicator computation: (A) Pre-classification by threshold on local curvature,
(B) Computation of local normal, (C) Computation of incident angle and 3D footprint, (D)

Computation of final q-indicator.

FIG. 4.7: Generalized workflow for the computation of the q-indicator.

4.7 Error Budget Evaluation

Based on theoretical scenarios as well as on real datasets, this section investigates the contri-
bution of the aforementioned error components on the total point-cloud error budget.
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4.7.1 Theoretical Analysis

The analysis presented in this section focuses on the error behavior of a standard long-range
ALS system in function of the flying height, the scan angle and the scanning geometry. Three
scenarios have been established for this purpose:

1. Nadir scan on a perfectly plane surface (FIG. 4.8)

2. Nadir scan on a tilted surface with a slope of 30◦ (FIG. 4.9)

3. Tilted scan (with roll = 30◦) towards surface with a slope of 30◦ (FIG. 4.11)

For all three scenarios the previously presented quality indicators (σnavxy , σ
nav
z , σgeomxy , σgeomz , qi)

have been computed for flying heights from 500 up to 2000 m and a theoretical FOV of
50◦ (θ = ±25◦). For the a-priori system and navigation accuracies the values published by
[43] have been retained. These values are representative for a standard long-range ALS system
with narrow beam setting. Rigorously performed system calibration and good GPS/INS data
quality during the flight is assumed.

System calibration parameters
Boresight σex

= σey
= 0.001◦, σez

= 0.004◦

Leverarm σax = σay = σaz = 0.01 m
Intrinsic ALS parameters
Range-finder σρ = 0.04 + 15 ppm
Encoder angle σθ = 0.00018◦

Beam divergence ε = 0.3 mrad
Assumed navigation accuracies
Position σX = σY = 0.04 m, σZ = 0.06 m
Attitude σr = σp = 0.005◦, σy = 0.008◦

TAB. 4.4: A-priori system and navigation accuracies for theoretical error analysis.

Scenario 1

The plots in FIG. 4.8 show that the vertical component of the navigation error (σnavz ) is
almost exclusively driven by the vertical accuracy of the used position, thus the GPS (σZ =
0.06 m). For the horizontal accuracy (σnavxy ), the uncertainty in attitude has a larger impact,
as the change in orientation is proportionally related (by distance) to a change in horizontal
coordinates. Accordingly, for σnavxy , the error growth is almost linear with the flying height.
The plot also reveals the quality degradation towards the swath boundaries. On one side this
is caused by the increased range at the swath border (thus increasing range-finder error due
to the range-dependent part of σρ), on the other side, due to increased angular uncertainty.
The lower two sub-plots show the impact of the scanning geometry on the horizontal and
vertical accuracy. For σgeomxy , the lower-left plot depicts the growth of the error with the scan
angle. This can be explained by the increased footprint, that evolves as function of the range
and the incidence angle: The shape of the footprint changes from a perfect circle at nadir
(perpendicular incidence angle α = 0◦) to an ellipse enlarged by the deteriorating incidence
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FIG. 4.8: Scenario 1: Horizontal and planimetric target accuracies in function of scan angle and
flying height (assumptions: nadir scan on flat terrain).

angle (in this case α = θ) and increased range (in this case: range = h/ cos (θ)). As the
vertical projection of the footprint is always zero on a flat surface, σgeomz (solid line) remains
0 throughout the swath. The dotted line in the lower-right plot represents the overall quality
indicator qi. This value is primarily governed by σnavxy and σgeomxy . The influence of the footprint
on the total uncertainty increases with the height to reach more than 60% in flying heights
above 1500 m.

Scenario 2

In the second scenario (FIG. 4.9), the impact of the tilted scanning surface on the error
distribution can be depicted immediately. The quality degradation is not anymore sym-
metric around the nadir scan (θ = 0◦), but distorted towards the swath border with
longer ranges. This distortion increases with the flying height, as the range discrepancies
between the right swath border (θ = 25◦, range ≈ 1.5 × h) and the left swath border
(θ = −25◦, range ≈ 0.87× h) are scaled by the flying height. The effect of these large range
differences and the change in scanning geometry (θ = 25◦ → α = 55◦, θ = −25◦ → α = 5◦)
can also be seen in the geometric horizontal accuracy plot. Here the accuracy degradation is
scaled by a factor 4 between the swath extremities for a flying height of 2000 m. In a tilted
terrain, as the case in this scenario, the footprint size also influences the vertical accuracy,
albeit their total contribution is of minor importance compared to the horizontal dilution of
precision. The q-indicator plot (dotted lines in lower-right plot) highlights the unbalanced
accuracy numbers within a same scan, as the points gathered at the left swath border are
almost 3 times as accurate as those gathered at the right boarder. This example demonstrates
clearly the uneven quality distribution within a dataset due to changes in scanning geometry.
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FIG. 4.9: Scenario 2: Horizontal and planimetric target accuracies in function of scan angle and
flying height (assumptions: nadir scan on tilted terrain).

FIG. 4.10: Scenario 2: Repartition of total ALS error budget in function of flying height
(assumptions: nadir scan on tilted terrain with slope of 30◦).

FIG. 4.10 shows the relative repartition of errors for this scenario in function of the fly-
ing height, assuming a scan in the middle of the profile. The left sub-plot indicates the
distribution (in percent) of error sources without considering the scanning geometry: For
short ranges, the main part of the error comes from the position uncertainty, whereas for
long ranges the attitude uncertainty covers the major part of the total error budget.
The right sub-plot reveals the important impact of the scanning geometry on the total error,
especially for long ranges, where it stands for almost on third of the total error budget. If
the beam divergence would be larger (e.g. short-range scanners have up to 3 mrad beam
divergence), the contribution of the scanning geometry to the total error budget would even
be larger.
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Scenario 3

The third scenario depicts a practical solution to mitigate the impact of the scanning geometry
on the point accuracy. In this case, the scanner is tilted towards the slope, hence reproducing
a scanning geometry similar to scenario 1 and reducing the incidence angles considerably.
The error behavior is again very similar to the first scenario, where the error is the smallest
in the middle of the profile and the quality degrades towards the outer bounds of the swath.
Compared to scenario 2, FIG. 4.11 shows that the accuracy is homogeneous throughout the
scanning profile and up to 50% better for points at the outer bounds of the swath for higher
flying altitudes.

FIG. 4.11: Scenario 3: Horizontal and planimetric target accuracies in function of scan angle and
flying height (assumptions: scan with roll = 30◦ on tilted terrain).

4.7.2 Error Budget for long-range ALS system

System and Flight Setup

The proposed approach was tested on a dataset collected in June 2006 near Gurtnellen (Can-
ton Uri, Switzerland) using the Optech ALTM 3100 laser scanner mounted in nadir configura-
tion on a helicopter. The flight was carried out with narrow beam setting (beam divergence =
0.3 mrad), a scan rate of 71 kHz and a mean flying height over ground of 1000 m. The dataset
is characterized by very steep slopes (up to 90◦) and large elevation differences (up to 1000 m)
within the same strip. The flight planning was unfavorable, as the flight direction was parallel
to the slope contour (see FIG. 4.12). These characteristics are ideal to reveal quality variations
due to changing scanning geometry.
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FIG. 4.12: Setup for Gurtnellen
flight.

FIG. 4.13: Estimated navigation accuracies (RMSE) after
GPS/INS integration for Gurtnellen dataset.

Results

The GPS/INS data was processed using the PosProc software package from Applanix. FIG.

4.13 shows the results of the navigation accuracy estimates after smoothing. The leverarm
calibration was carried out by tachometric measurements and the boresight was determined
by the LiBOR algorithm (see CHAP. 3.1.1). The intrinsic ALS error parameters were provided
by the system manufacturer as published in [78].

System calibration parameters
Boresight σex

= σey
= 0.0002◦, σez

= 0.003◦

Leverarm σax = σay = σaz = 0.01 m
Intrinsic ALS parameters
Range-finder σρ = 0.09 + 0 ppm
Encoder angle σθ = 0.00018◦

Beam divergence ε = 0.3 mrad

TAB. 4.5: A-priori system and calibration accuracies for error analysis with ALTM3100 system valid
for the Gurtnellen dataset.

FIG. 4.14 illustrates the distribution of errors modeled by the error propagation as described
in CHAP. 4.4. The range (FIG. 4.14.a) in nadir is about 1000 m, while at the extremities of the
swath it oscillates from about 500 m (upper part) to 1500 m (lower part) respectively. It can
be observed that the horizontal accuracy (FIG. 4.14.b) is mainly governed by the absolute
value of the range. The vertical accuracy (FIG. 4.14.c) however, is also strongly influenced
by the encoder angle. As predicted in the theoretical analysis of the previous section, the
best vertical accuracy is achieved in the nadir. Generally, it can be stated that the point
uncertainty increases with increasing range and encoder angle. It is also worth mentioning
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that the accuracy variations follow a very homogeneous pattern with no sudden changes.

FIG. 4.14: Estimated point accuracies by error propagation (without scanning geometry analysis) for
extract of Gurtnellen dataset: (a) ALS range length, (b) Estimated horizontal accuracy (σnavxy ), (c)

Estimated vertical accuracy (σnavz ). The blue dots represent the projected helicopter positions.

The situation changes considerably when the effect of the incidence angle on the target
accuracy is considered. FIG. 4.15 demonstrates the results of the scanning geometry analysis
(as described in CHAP. 4.5). Unlike the navigation accuracy estimates (FIG. 4.14), the error
distribution becomes inhomogeneous. The scanning geometry directly depends on the terrain
topography, therefore abrupt changes in the scanning quality can occur. The dataset is
characterized by a large variation in the incident angles (FIG. 4.14.a), especially in the middle
part where slopes up to 90◦ occur. Correspondingly, a strong vertical accuracy degradation
in this region has to be expected. The plot of the vertical accuracy (FIG. 4.14.c) affirms this
assumption. The horizontal accuracy (FIG. 4.14.b) has a slightly different behavior. Here, the
absolute range value is the predominant factor, as the horizontal footprint size is proportional
to the distance of the laser head to the ground point. Hence, the quality degradation is larger
towards the lower part of the slope.

FIG. 4.15: Impact of scanning geometry on the target accuracy for Gurtnellen dataset: (a) Laser
incident angles, (b) Horizontal geometric accuracy (σgeomxy ), (c) Vertical geometric accuracy (σgeomz ).

The non-ground points have been previously removed.
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4.7.3 Error Budget for short-range ALS System

Test Setup

Another evaluation was performed using a dataset flown in April 2007 near Sion (Canton
Valais, Switzerland) using the Scan2map-system (see CHAP. 6.1). In comparison to the long-
range system deployed in the previous test, this system has a 10 times larger beam divergence
(Scan2map: ε =3 mrad, ALTM 3100 (narrow beam setting): ε =0.3 mrad).
To clearly assess the impact of the scanning geometry, a particular test setup has been chosen
(see FIG. 4.16). Two strips covering the same area with different scanning geometries were
acquired. For this purpose, two flightlines were flown in parallel to a strongly sloped mountain
ridge (40 to 45◦). Strip 1 (red) was flown in a nadir configuration (roll ≈ 0◦), resulting in poor
intersection geometry in the lower (sloped) part of strip, whereas the second strip (green) was
flown tilting the laser scanner towards the slope (roll ≈ 20◦), thus improving the intersection
angle (analog to scenario 2 in CHAP. 4.7.1).
For independent ground control, 60 GCP’s (blue dots in FIG. 4.16 and FIG. 4.17) were surveyed
by RTK (σxyz ≈ 0.02 m) in the strip overlap area. These measurements were used to compute
punctual height differences to the height models formed by the points belonging to strip 1
and 2, respectively.

FIG. 4.16: Setup of test flight near Sion for q-indicator validation.

Results

The results of the comparison between the strip-wise height models and the GCP’s are listed
in TAB. 4.6. As expected, the data of strip 2 fits better to the GCP’s than strip 1. Both strips
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are affected by a bias (10 cm and 5 cm respectively). However, due to the strong slope, it is
impossible to evaluate whether these biases originate from a horizontal or vertical error in
the ALS data.
The position and navigation accuracy remained nearly constant throughout the two flight-
lines (σxyz ≈ 0.1m,σr,p ≈ 0.005◦, σp ≈ 0.01◦). Additionally, the flightlines were planned
and executed such as the mean ranges (ρ ≈ 200m) were nearly identical for both strips.
Accordingly, the estimated contributions of the navigation errors (σnavxy , σ

nav
z ) were almost

identical for both lines (see TAB. 4.6). The observed differences in point-cloud accuracy
between data gathered in strip 1 or 2 should essentially come from the different scanning
geometries (strip 1: α ≈ 50◦, strip 2: α ≈ 14◦). This is confirmed by the estimated quality
indicator (strip 1: qi = 0.3m, strip 2: qi = 0.26m), whereas the horizontal channel (σnavz )
has the most significant contribution.

Strip Comparison Computed quality indicators
ALS data - GCP’s Navigation Scanning geometry

∆Z |∆Zmax| RMS∆Z σ∆Z σnavxy σnavz α σgeomxy σgeomz qi
[m] [m] [m] [m] [m] [m] [deg] [m] [m] [m]

1 -0.10 0.29 0.12 0.07 0.07 0.06 50.6 0.10 0.27 0.30
2 -0.05 0.23 0.08 0.06 0.07 0.07 14.1 0.12 0.21 0.26

TAB. 4.6: Strip-wise height differences with GCP’s and computed quality indicators.

FIG. 4.17 reveals the non-homogeneity of the quality distribution in the case of a poor
intersection geometry (strip 1). While the qi-values in the upper part of the strip and on
the flat road segment are below 0.25 m (clear green colored), the points gathered near the
declivity just above the road suffer of strongly reduced accuracy (dark red colored). This effect
can also be seen in the profile AB plotted in FIG. 4.17. For strip 2, the quality distribution is
more homogeneous, with a highly increased accuracy (as compared to strip 1) in the strongly
sloped lower part.

FIG. 4.17: Extracts and cross-profiles of strips color-coded by q-indicator.
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Overall, this practical example highlights the substantial influence of the scanning geo-
metry on the final target accuracy. If the accuracy estimation procedure should provide
truthful point-cloud quality information, analyzing the scanning geometry is crucial. Addi-
tionally, if a dataset with homogeneous data quality should be achieved, this aspect should
be considered and the flight planning and scanner configuration adopted accordingly.

4.8 Use of Quality Indicators in Point-cloud Processing

The profiles plotted in FIG. 4.17 illustrate a typical situation where a point-cloud consists of
points that originate from different flightlines, thus having different accuracies. Computing the
q-indicator of each individual point allows discriminating between “good quality” and “poor
quality” points. This offers new possibilities to develop coherent QA/QC procedures and to
increase the efficiency and quality in point-cloud processing and DSM/DTM generation.

4.8.1 Metadata Generation

With ALS becoming a well-established technology, the clients start demanding good docu-
mentation about the data origin, quality and processing history. [90] e.g. states that nowadays
the compilation of metadata must be considered as an integral part of the ALS production
workflow.
The capability to document the expected quality quickly and automatically by explicitly
demonstrating the compliance (or lack of it) with the project specifications, represents a
valuable asset when delivering comprehensive quality reports to the client [128]. FIG. 4.18
depicts some possibilities how to employ the quality indicators to produce such quality meta-
data. The shown quality maps were computed for a scan line acquired over a steep terrain by
a nadir scan. They were generated by linear interpolation of the point-wise quality indicators
(A: σnavxy , B: σnavz , C: qi) to a regular raster map.

4.8.2 Strip Adjustment

Strip adjustment algorithms are based on the analysis of discrepancies in strip overlap. The
methods to perform the subsequent derivation of correction values are manifold (see CHAP.

3.2). However, all these methods consider that all used points, at least within the same strip,
have the same quality. As previously shown, this assumption is not correct. Especially points
situated at the outer border of the flightlines, typically where overlap analysis usually occurs,
often have degraded accuracy, most notably in inclined terrain. The use of the q-indicator
to weight points when solving for strip adjustment parameters will most certainly lead to
improved accuracy and reliability of the results. This may enhance the quality of the derived
strip correction values.

4.8.3 Ground Classification and DTM Generation

Most of todays ground classification algorithms show a high affinity towards low points, re-
gardless of their origin and quality [128]. Using the q-indicator could increase the robustness
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FIG. 4.18: Quality maps derived from nadir scan on sloped terrain: (A) Horizontal navigation
accuracy map, (B) Vertical navigation accuracy map, (C) 3D quality (qi) map.

of automated ground classification by considering only good quality points for the first itera-
tion and adding points of lower quality subsequently.
To reach a DTM/DSM of high quality, sometimes visual inspection and manual editing is
still necessary, particularly for data representing complex topography (e.g. mountain ridges,
strongly sloped terrain, dense urban environment) [91]. Here, critical areas are examined
visually and improved by reclassifying groups of points based on subjective decisions. In-
troducing q-indicators as an additional basis for deciding which points to prefer in manual
classification (e.g. ground/non-ground) can help the operator to make more objective deci-
sions, overall improving the quality of the end product.
For the gridding process, such indicator could also be used to increase the accuracy of the
interpolation, by e.g. applying a weighting scheme to the node points [123]. More practical
examples of the applicability of point-wise q-indicators within DTM generation and quality
description will be presented in CHAP. 5.3.3.
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Chapter 5

Surface Quality Assessment

In the previous chapter different ways to assess the accuracy of a single laser point have
been discussed. In the ALS context however, laser measurements are rarely used as single
values. A laser point-cloud is rather considered as a discretized representation of a continuous
surface. The transfer from a single point measurement to a continuous surface model calls
for new QA/QC-concepts, such as the analysis of the data coverage, point density and model
accuracy. Accordingly, this chapter discusses surface-related quality indicators that describe
the quality of the final geo-products derived from ALS raw data.

5.1 Data Coverage Analysis

5.1.1 Factors influencing the Point Density

Together with the point accuracy, the raw point-cloud density (normally expressed in
points/m2) is a key parameter. This parameter is often specified by the clients requirements
and directly influences the main ALS mission settings (see FIG. 5.1):

� Flying height over ground

� Field of view (FOV)

� Ground speed of carrier

� Pulse repetition rate or line rate

� Scan pattern (often explicitly defined by the hardware)

� Strip overlap

The flying height together with the FOV directly influences the swath of a flightline. Together
with the pulse repetition rate (PRF) and the scan pattern these parameters condition the
across-track point spacing. For the along-track point spacing the ground speed is the most
critical component. Within certain bounds, most modern ALS systems allow modifying the
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FIG. 5.1: Main parameters defining data coverage and point density for a line scanner system.

FOV and the PRF, whereas the scanning pattern is given by the functional principle of the
laser (see CHAP. 2.3.3). The speed of the carrier is bound by the avionic characteristics of the
carrier and the operation mode, whilst the flying height is limited by the power of the laser
diode versus the terrain type (reflectivity). The strip overlap can be influenced by the flight
planning. In function of the accuracy and point density to be achieved for a particular mission,
these parameters have to be optimized under the constraint of economic efficiency (synonym
to minimal flying time). For most missions, especially if a raster height model should be
delivered, there is also an economic interest to achieve an even distribution of the raw point-
cloud (across-track = along-track). This adds a further constraint to the flight planning.
Often the clients requirements also prescribe a certain ground point density to be achieved.
In order to meet these specifications e.g. in forested areas, the abundance of foliage (thus
selection of appropriate survey season) and the laser ground penetration rate (influenced by
beamwidth, scan pattern and PRF) have to be considered.

5.1.2 2D Point Density

In most cases the point density is expressed as a 2D-function and represented as a 2D density
raster map (see FIG. 5.2.B). In other words, the laser points are first projected into 2D, then
a raster with a certain cell-size c is spanned over the covered area by the raw point-cloud.
Thirdly, for every cell, the number n of projected laser points contained in one cell are counted.
Finally, this count is normalized by the surface of the cell to obtain a 2D density value for a
given resolution c:

ρ2D

[c×c]
= n/c2

[
points/m2

]
(5.1.1)

Such 2D density maps are straightforward to interpret and are therefore often employed as
metadata to monitor the QA/QC process accompanying the height model production process
(e.g. [5, 196]).
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FIG. 5.2: Point density computation in 2D (left part) and 3D (right part) for a cell-size of 5 m. (A)
Raw laser point-cloud color-coded by 2D density, (B) 2D density grid (C) Raw point-cloud

color-coded by 3D-density, (D) Raster with projected 3D-density.

5.1.3 3D Point Density

Depending on the terrain and the scan characteristics the 2D point density concept is not
always appropriate. In the case of a strongly tilted terrain or forested areas (including the
canopy) the 2D projection of the points leads to an over-estimation of the surface-based point
density. The illustration in FIG. 5.2.B depicts such a situation: Although the sloped part of
the terrain has been scanned with equivalent point density than the flat part, the 2D density
map indicates 3 to 4 times higher density values (green colored areas) in the tilted areas than
in the flat areas.
One way to overcome this problem is the computation of a rigorous 3D point density, where the
points are not projected for counting but their density is considered in a certain volume. The
3D density (ρ3D) can be computed searching the kd-tree of a 3D dataset Pn for the number of
neighboring points around a query point within a certain circular region [125]. Subsequently
the count is normalized by the considered surface or volume. Using such approach, the point
density of vertically scanned features can be represented either by coloring directly the point-
cloud by the ρ3D−value (FIG. 5.2.C) or by projecting this value into a raster map (see FIG.

5.2.D).

5.1.4 Data Extent and Gap Analysis

Depending on the scanning pattern, the reproduction of the data extent (perimeter of ground
surface covered with laser data) can be evaluated by two methods:

1. Direct derivation through connection of swath-border points to form polylines represent-
ing the right and left swath border in each scan-line: This method is easy to implement
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for scanning patterns where the end of a scanning profile can either be determined by
an increased time jump between two subsequent measures (e.g. for line scanners) or by
extracting the measures corresponding to maximum/minimum encoder-angle readout
(e.g. for oscillating mirror). However, this procedure cannot be applied for other scan-
ning principles such as nutating and elliptical mirrors, because the border points are
not identifiable only based on laser observations.

2. Indirect computation by vectorizing the borders of the density map (see FIG. 5.3): This
method works independently of the scanning principle. However, RT delivery of scan-
border information is not possible, as the computation can only be started once a
strip-wise density raster is produced.

FIG. 5.3: Derivation of extent and data gaps: (A) Raw point-cloud color-coded by elevation, (B)
Derived 2D density map, (C) Density map classified in cells above given density threshold (green)

and below (red), (D) Vectorized extent and gaps. The black dots in (A) and (B) refer to the carrier
positions.

The derivation of data gaps requires some previous density analysis. In the ALS context, a
data gap is defined as a zone within the data extent that either has not been scanned at all
(e.g. dark surface giving no laser return or missing strip overlap) or in which the point density
falls below a certain threshold. As shown in FIG. 5.3, such gaps can be derived directly from
the density map by classification and aggregation of gap zones in the raster domain (FIG.

5.3.C). In the latter, these zones can be vectorized for better transmission of information
(FIG. 5.3.D). The implemented strategy for extent and gap detection is presented in detail in
CHAP. 6.7.5.

5.2 Internal Data Accuracy

The occurrence of ALS strip overlaps introduces a certain data redundancy, because an area
is scanned twice or more at different times and settings (range, incidence angle, etc.). As
discussed in CHAP. 3.2, the observed discrepancies in strip overlaps can be compensated (to
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a certain extent) by a strip adjustment. Yet, the observed discrepancies also present a good
opportunity for estimating the internal accuracy of an ALS point-cloud. If the ALS system
is correctly calibrated and the navigation solution is reliable, these discrepancies should lay
within the predicted measurement accuracy. If the differences are larger and/or follow some
systematic trends, they provide evidence for some unresolved problems in the chain of geo-
referencing (e.g. wrong calibration values or trajectory solution of poor quality). This section
presents possible methods to estimate the internal point-cloud accuracy within strip overlaps.
For this purpose, three scenarios have been established:

(A) Flight with correctly calibrated system and good quality trajectory data (σxyz <
0.1m,σatt < 0.01◦).

(B) Flight with error in boresight calibration (δroll = 0.1◦).

(C) Flight with poor trajectory quality (float ambiguities) in parts of the flight.

5.2.1 Strip Difference Map

The easiest way to monitor discrepancies between strips is to subtract the height grids (either
DSM or DTM) derived from the adjunct flightlines. This produces a so-called strip difference
map (e.g. [116]). Such representation can reveal if the occurring height differences are ran-
domly distributed (within the system measurement noise), or are subject to systematic effects.

FIG. 5.4: Strip difference maps for different scenarios: (A) Calibration and trajectory ok, (B) Error
in boresight (δroll = 0.1◦), (C) Error in trajectory (wrong ambiguity fix in one of the strips).

FIG. 5.4 depicts the difference maps for the aforementioned scenarios. The two adjacent
strips were flown in opposite direction. For scenario A no systematic shifts can be seen.
Except on the building borders, the height differences are mainly within the system accuracy
(±5 cm in this case). For scenario B, the strip difference map depicts a systematic behavior as
the differences change from positive to negative values across track. This is a clear indicator
for a problem in the roll orientation, either provoked by wrong boresight calibration or poor
trajectory orientation. The case for scenario C is different, as the differences do not follow
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a homogeneous pattern. The sudden increase in height difference is a strong indicator that
the trajectory in one of the strips suffers of severe quality degradation, e.g. due to wrong
ambiguity resolution. The utility of such strip difference maps for in-flight quality monitoring
will be discussed in CHAP. 6.7.10.

5.2.2 Translation and Rotation Detection by ICP

Planar shifts and/or rotations between strips cannot be evaluated with height difference maps.
The full recovery of 6D strip differences is only possible with surface matching techniques,
such as least-square matching (LSM) or ICP (see CHAP. 3.3.2). Rather than processing the
complete strip overlap at once, matching techniques are often applied in distinct sample
zones. TAB. 5.1 shows the strip differences (translations and rotations) computed by ICP for
the three scenarios. The data and model points were extracted from two sample zones within
the overlap (see FIG. 5.6 for zone location):

� For scenario A, the results depict 3D strip translations in the order of magnitude of
∆xyz = 0.1 m for both sample zones. This reflects the achievable accuracy for post-
processed GPS trajectory.

� For scenario B, the translations are also very small, but the detected discrepancies in
orientation (especially roll and yaw) are significant (|∆roll| ≈ 0.2◦), delivering evidence
for a problem in attitude determination.

� For scenario C, the discrepancies detected in zone 1 are within the expected accuracy,
whereas zone 2 indicates a mis-match in height between the strips (∆z = 0.17m).

Besides the possibility to detect rotational discrepancies, scenario C reveals another essen-
tial advantage of the ICP compared to the strip difference map. Strip differences are not
stringently constant (e.g. [94]). Hence, they cannot be described as a set of constant shifts
for one overlap. ICP can model locally changing differences, as the method can be applied at
many distinctive sample zones within a strip overlap.

Sc
en

ar
io

Sample zone
1 2

∆x ∆y ∆z ∆r ∆p ∆y ∆x ∆y ∆z ∆r ∆p ∆y
[m] [m] [m] [deg] [deg] [deg] [m] [m] [m] [deg] [deg] [deg]

A -0.06 -0.03 0.02 -0.06 0.03 -0.1 -0.08 -0.03 0.01 0.02 0.02 -0.01
B -0.01 0.02 -0.01 -0.24 0.08 -0.25 0.01 0.01 -0.01 -0.17 0.09 -0.22
C -0.05 -0.1 0.02 -0.06 0.02 -0.11 0.04 -0.1 0.17 -0.02 0.02 -0.13

TAB. 5.1: Estimation of strip discrepancies using ICP for scenarios shown in FIG. 5.4 and samples
zones defined in FIG. 5.6.
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Influence of Geometry on Discrepancies Recovery

One problem of the ICP is the stability of the solution. As presented in CHAP. 3.3.2, ICP is
based on a local search algorithm to recover correspondence between two points by minimizing
the square sum of distances between possible corresponding points. Certain surface geometries
lead to a minimizing transform that is not unique. Let us e.g. consider two point-clouds
of perfectly horizontal planar surfaces to be matched: Once matched, there are still three
remaining degrees of freedom: translation in the xy-direction and rotation around the z-axis.
There exist other geometrical features that can not constrain the 6 degrees of freedom (as
shown in FIG. 5.5). [41] proposes a concept for a stability measure based on covariance analysis
of the model points pi and the normal ni at point pi for a dataset to be matched:

Cp
[6×6]

=

 Ct
[3×3]

. . .

. . . Cr
[3×3]

 = FFT,where F =
[
p1 × n1 . . . pk × nk

n1 . . . nk

]
(5.2.1)

where Cp is the covariance matrix expressing the torque (pi×ni) and force (ni) components
contributed by each point. This matrix can further be used to analyze whether the dataset
has any unconstrained transformations by examining the eigenvalues (λ1 ≤ . . . ≤ λ6) and the
eigenvectors (x1, . . . ,x6) of the covariance matrix. Each of these eigenvectors corresponds to
a general “screw” motion that can be interpreted as a rotation and a translation along this
axis. An eigenvalue λk that is very small compared to λ6 corresponds to a sliding direction.
This property can be applied to construct a stability index

cs = λ1/λ6 (5.2.2)

that can be used to analyze if the selected dataset is prone to constrain sufficiently the ro-
tations and translations to be correctly recovered by ICP. [112] proposes a adaptation of the
method by splitting the matrix Cp into two sub-matrices Ct (only components related to
translations) and Cr (components related to rotations) and proceeding the eigenvalue decom-
position independently. Analog to EQN. 5.2.2, different stability indexes for the translations
and rotations can be constructed:

cts = λct1/λct3, crs = λcr1/λcr3 (5.2.3)

This is of interest if e.g. only translations between datasets have to be detected, accordingly
cts enables to measure the stability of the translation detection separately.

FIG. 5.5: Some examples of shapes unable to constrain 6D motion (after [41]).
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Strategy for Strip Discrepancies Detection

TAB. 5.2 presents the computed stability indexes for the sample areas indicated in FIG. 5.6.
The stability indexes for zones 1 and 2 (several buildings) are much higher than for zone 3 (flat
area with no building or terrain relief). This reflects the difference in geometrical information
of the data points fed into the ICP algorithm. Accordingly, the general strategy to estimate
strip discrepancies can be described as follows:

1. Automatically select sample zones in strip overlaps and compute geometrical stability
indexes (cts, crs) for each zone.

2. Based on some dynamically adapted threshold, remove sample zones that do not satisfy
a given stability criteria (cts < threshold cts, crs < threshold crs).

3. Indicate areas where detected strip discrepancies are inconsistent with predicted point-
cloud accuracy.

FIG. 5.6: Sample zones within strip overlap for
computation of strip differences by ICP

Sample Stability indexes
zones cs cts crs
1 0.0679 0.1625 0.0787
2 0.0734 0.1878 0.0813
3 0.0002 0.0102 0.0002

TAB. 5.2: ICP stability index for 3 different
sample zones in strip overlap.

5.3 Height Model Data Accuracy

5.3.1 Factors influencing DTM Accuracy

For the generation of DTM’s from ALS data, the required processing steps, the associated
error sources and the possibilities to estimate these errors can be summarized as follows (see
FIG. 5.7):

� Georeferencing of point-cloud: The laser data and the trajectory are merged to
obtain a point-cloud in a desired datum. The accuracy of the individual point can be
assessed by single point error propagation (as discussed in CHAP. 4), whilst the raw point
density can be measured by a density map (see CHAP. 5.1.1).
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� Ground classification: The density of the remaining ground points after classification
has a very strong impact on the final DTM quality [89]. For example [56] emphasizes
the impact of vegetation on DTM accuracy, as dense canopy strongly degrades the
ground penetration capacity of the laser beam. Therefore, independently of the applied
classification algorithm, the density and spatial distribution of the ground points mainly
depend on the topography and land cover of the scanned area. Another important factor
is the correctness of the classified points. For instance, if only a single laser point situated
on a tree is wrongly classified as ground point, this may (depending on the applied
interpolation method) influence the resulting DTM heights over a large area. Ideally,
the correctness of the classification should be measured by some sort of confidence factor
ri for each laser point scaling the individual point variance. However, this remains a very
challenging task, as actually no algorithm is capable of correctly classifying all points
and deliver additional confidence information. Hence, the correctness of the ground
classification has to be controlled by visual inspection of the resulting surface [128].

� Interpolation: In the final step of DTM processing the individual points are con-
nected to a continuous surface function describing the height for each location within
the perimeter. To correctly assess the influence of each laser point on the interpolated
surface, the interpolation should ideally be accompanied by some point-to-surface error
propagation process. This process should consider on one side the input variance of the
node points and on the other side, the output sampling rate, determining if the newly
computed surface values are interpolated (over-sampling of surface) or extrapolated
(sub-sampling of surface).

FIG. 5.7: General workflow for DTM production from ALS data and possible steps for QA/QC.
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5.3.2 Empirical DTM Quality Assessment

As illustrated in FIG. 5.8, height accuracy assessment for DTM’s is generally limited to the
collection of punctual independent measurements (GCP’s) gathered within the survey area.
Subsequently, these are compared to the model heights at the given location (e.g. [51, 56]).
This method has a major drawback as the estimated vertical accuracies cannot be generalized
and only hold for areas that are covered by GCP’s. Moreover, GCP’s are often gathered on
reference surfaces, where the point density is high, having low declivity and hard land cover
(such as parking lots, sports field, etc.). Correspondingly, the issued height accuracies often
over-estimate the model precision for parts of the DTM having other characteristics. Hence,
the ASPRS guidelines for reporting vertical LiDAR accuracy [38] recommend to evaluate
only the “fundamental” vertical accuracy in open, flat terrain and to specify additional
relaxed vertical accuracies for different land cover classes (i.e. open terrain, tall weeds and
crops, forested areas, urban areas, etc.).

FIG. 5.8: Example for DTM quality control by GCP (marked as s) measurements.

There exist several methods to improve the general applicability of GCP derived height
accuracies. The so-called Koppe formula for example allows expressing the height accuracy
σH in function of the height measuring accuracy σZ , the planimetric measuring accuracy σG
and the terrain slope α:

σH = σZ + σG tanα (5.3.1)

[63] proposes an extension of EQN. 5.3.1, where the DTM accuracy is computed considering
the slope and the initial point density:

σH =
a√
n

+ b tanα (5.3.2)

where n is the point density in points/m2 and (a, b) are terrain-dependent constant coeffi-
cients. However, the drawback of this methods remains its general applicability, as the model
coefficients have to be determined empirically using large datasets with well known reference
heights. In general, these values are not transmissible one-to-one across datasets of different
type and accuracy.

78



Height Model Data Accuracy

Horizontal Error Assessment

Although horizontal errors in ALS data can be several times larger than height errors [184],
recommendations regarding horizontal accuracy reporting have less been investigated [123].
This is mainly rooted in the fact that laser points do not carry semantic information and often
the point density is too coarse for precisely locating distinct surface features [38]. Lately,
several methods to assess the horizontal accuracy have been developed: For instance [133]
proposes the so-called back-projection, where features in imagery are compared with their
counterparts in the point-cloud. Methods without need of photogrammetric data are reported
in [24], deploying signalized targets identifiable in the laser intensity image or in [49], using
surface matching techniques.

5.3.3 Automated DTM Quality Assessment

The standard approach to perform DTM quality assessment remains highly correlated to the
site conditions (such as slope, undergrowth, vegetation cover) and the mission parameters
(such as flying height, employed equipment, etc.). There is also a consensus in the ALS
community that there should be a differentiation in DTM quality analysis between precision,
absolute and relative accuracy and reliability. Hence, a quality measure should also give an
answer to questions such as how dense the data is, or how the accuracy is distributed. One
way to respond to these questions are the generation of data distribution maps, such as the
density map (see CHAP. 5.1.2), depicting the amount of discretization of the terrain surface, or
the distance map, indicating the distance to the nearest data point for each pixel center (e.g.
[64]). This section proposes a novel procedure that enables the generation of a DTM quality
map encapsulating all these factors assuming that the following two conditions are hold:

� The accuracy (σx, σy, σz) of each ground point involved in DTM generation is known.

� The DTM is represented as a regular raster where the height values are calculated by
projecting the cell center coordinates on the corresponding facet of the TIN which nodes
are the irregular sampled ground points as depicted in FIG. 5.9.

Computation of DTM Quality Map

Let us consider the plane equation for a facet (with nodes a,b,c) of a TIN (FIG. 5.9):

ax+ by + cz + d = 0,where n =

ab
c

 =

nxny
nz

 (5.3.3)

is the normal vector of the facet that can be computed by

n = (c− a)× (b− a) (5.3.4)

By inserting EQN. 5.3.3 into EQN. 5.3.4 and introducing the node coordinates of point a, the
height value Zi for a given 2D coordinate (Xi, Yi) can be directly computed by

Zi = d− aXi − bYi (5.3.5)
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where

a =
nx
nz

=
(yc − ya)(zb − za)− (zc − za)(yb − ya)
(xc − xa)(yb − ya)− (yc − ya)(xb − xa)

b =
ny
nz

=
(zc − za)(xb − xa)− (xc − xa)(zb − za)
(xc − xa)(yb − ya)− (yc − ya)(xb − xa)

d = axa + bya + za

Applying the law of error propagation to EQN. 5.3.5, the direct estimate of the height accuracy
of Zi can be formulated such as:

σ2
Zi

= FCllFT. (5.3.6)

where Matrix F can be constructed as the partial derivatives of EQN. 5.3.4 and the node
coordinates:

F =
[
∂Zi
∂xa

∂Zi
∂ya

∂Zi
∂za

∂Zi
∂xb

∂Zi
∂yb

∂Zi
∂zb

∂Zi
∂xc

∂Zi
∂yc

∂Zi
∂zc

]
(5.3.7)

The stochastic model Qll is constructed using the variance information for each node:

Cll
9×9

= diag
[
σ2
xa

σ2
ya

σ2
za

σ2
xb

σ2
yb

σ2
zb

σ2
xc

σ2
yc

σ2
zc

]
(5.3.8)

FIG. 5.9: Propagation of individual point errors to DTM height by TIN interpolation.
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Depending on the raster cell-size (c), it can be determined whether the newly computed
height value is based on a interpolation or extrapolation process. The Nyquist-Shannon
sampling theorem [138] states that if a function x(t) contains no frequencies higher than f , it
can be completely reconstructed by points spaced 1/2f apart. Adopting this theorem to DTM
generation, it can be deduced that a original sampling of half cell-size is needed to correctly
describe the terrain features of the given output frequency (in our case c). Accordingly, if a
pixel center coordinate is closer than c/2 to the initial node, the new value can be assumed as
correctly interpolated. Hence, the terrain features at the output sampling rate are correctly
represented. If the distance is larger than c/2, the height is supposed to be extrapolated. To
incorporate this interpolation/extrapolation process into the DTM quality analysis, the 2D
distance (dmin) of the pixel center coordinate to the nearest node (see FIG. 5.9) is applied to
scale the computed height accuracies by the factor s to produce a height reliability index rz:

rz =
√
s · σ2

Zi

{
s = dmin

c + 0.5, if dmin ≤ c
2

s = 2dmin
c , if dmin > c

2

(5.3.9)

Finally, this index can be computed for every grid cell of the DTM and can be represented
as a raster, serving as DTM quality map.

Application Example

FIG. 5.10.D shows such a quality map computed for an ALS point-cloud where the distribu-
tion of automatically classified ground points (see FIG. 5.10.A) is very disparate and contains
important data gaps, i.e. due to dense vegetation and water cover. The triangulation process
is closing these data gaps (see FIG. 5.10.B). In these areas, the derived DTM values (FIG.

5.10.C) are distant from the initial node points. They cannot be considered as trustful as
they are the result of an extrapolation process. Due to the scaling of the height variance (σ2

Zi
)

yielding the height reliability index rz (see EQN. 5.3.9), the final quality map reflects the reli-
ability deterioration for such areas (see e.g. water surface in upper part of DTM). The visual

FIG. 5.10: (A) Automatically classified ground points color-coded by elevation, (B) DTM-TIN, (C)
DTM raster interpolated from TIN, (D) DTM quality map superposed on DTM color-coded by

index rz (cells with rz < 0.1 are transparent).
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inspection of the hillshaded DTM (FIG. 5.10.C) allows identifying several wrongly classified
points that can be seen as single peaks in pyramidal form (marked yellow in figure). As the
slope of these incorrect TIN facets is normally much steeper than the slope of its neighbors,
the resulting height variance (using EQN. 5.3.6) is much larger. This enables highlighting such
areas of incorrectly classified points, as they appear as zones with decreased height accuracy
(dark red).

Applicability of DTM Quality Map

Similar to the concept discussed in CHAP. 4.8.1, these quality maps can be employed as quality
metadata associated to the DTM. These quality maps indicate areas where the height values
are reliable and areas where they should be considered with precaution. DTM quality maps
also represent a valuable asset to estimate the accuracy of DTM derived quantities (i.e slope,
aspect). The availability of such cell-wise quality indicator allows constructing weighting
schemes for DTM’s generated by merging data of different sources and accuracies (e.g. [190]).
Additionally, applying the laws of error propagation, the height accuracies of the merged
rasters can be estimated. The applicability of such concept for in-flight processing will be
discussed in CHAP. 6.7.10.
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Chapter 6

Implementation

Chapters 2 to 5 have presented the scientific background of the ALS technology and the differ-
ent concepts to perform ALS data quality assessment. This chapter focuses on the challenges
to incorporate such concepts in a fully functional in-flight quality monitoring tool. The im-
plementation of such a tool together with its integration into an existing ALS system will be
described in detail.

6.1 Handheld Airborne Mapping System

EPFL possesses a short-range laser system called Scan2map. This system was used as platform
to implement the in-flight QC concepts presented in this thesis. The following section provides
a short overview about the history of this system and the employed hardware components.

6.1.1 History of Scan2map

The development of an airborne mapping system, called HELIMAP®, started in 1998 at
the Swiss Federal Institute of Technology (EPFL) as a response to the requirements of SLF
Davos in mapping avalanches and snow transport [59, 177]. The most attention was payed
on high resolution and accuracy (10 − 15 cm), low cost and system portability (such as inde-
pendence from a carrier [158]). The sensor block was designed to be light and small enough
to be handheld by an operator. At the beginning, the system was based on handheld analog
photogrammetry operated from the side of a helicopter. The system then progressively inte-
grated GPS positioning, GPS/INS georeferencing, a high resolution CCD camera and finally
a laser scanner unit. In 2005, a commercial spin-off company was founded [178] that exploits
the system commercially for all kinds of large-scale airborne mapping projects.
Under the new name Scan2map, the Geodetic Engineering Laboratory (EPFL-TOPO) has
continued its developments. Currently, the Scan2map-system integrates the latest in sensor
technology and in sensor orientation and calibration. The system operates in missions re-
lated to natural hazard management and corridor mapping while serving the academia as a
unique research tool. When needed, its data are exploited by universities, mapping-agencies,
administrations and rescue services (e.g. [92, 159]).
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6.1.2 Concept

The system concept adopts a modular design with off-the-shelf sensors and modern commun-
ication links to facilitate upgrades or hardware replacements. Its basic architecture allows the
combination of different sensors (LiDAR, digital camera, IMU and GPS) without requiring a
dedicated carrier for its utilization. Its structure and the “handheld” or “hook-on” mounting
(see FIG. 6.1) is unique world-wide and represents number of advantages that can summarized
as follows [159]:

� Lightweight carbon-aluminum structure that combines GPS/INS/LiDAR with a high
resolution digital camera to a common compact sensor block (40x40x25 cm/12 kg). The
block can be handheld or suspended on the side of a helicopter.

� Optimal setup for large-scale/small-area airborne surveying in demanding topography.

� Very little installation time (< 30 min) is required, thus allowing fast deployment on a
short notice. Due to the sensor structure, boresight and GPS leverarm are not needed
to be re-calibrated for different installations.

� Oblique and nadir surveying can be performed within the same flight. As shown in FIG.

6.2, the usual accuracy degradation due to the high incidence angle on steep surfaces is
eliminated by turning the sensor head towards the slope, simulating a scanning geometry
comparable to flat terrain (see also CHAP. 4.7.1 Scenario 3). This is achieved either
manually (handheld installation) or during the setup (suspended installation).

� The scanner and the digital camera have a similar FOV of 60◦ and 56◦, respectively.
The flying parameters (height and speed) can be kept optimal for both devices.

FIG. 6.1: Scan2map-system suspended on the
winch of a helicopter.

FIG. 6.2: Manual rotation of scanner towards
slope to improve scanning geometry.
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6.1.3 Hardware System Architecture

As illustrated in FIG. 6.3, the Scan2map-system can be divided into three main segments that
intercommunicate via a common high-speed Ethernet assuring fast data exchange between
the segments and the devices within:

� Sensor Head: The sensor head consists of navigation and remote-sensing devices, all
rigidly joined by a carbon-aluminum structure. Besides the sensors, the structure also
contains anchorage points for safety cables and suspension as well as handles for manual
steering (see also FIG. 6.1). A button for manual image triggering is connected to one
handle together with a switch for accepting automatic trigger from a PC. The automated
triggering is based on RT analysis of the navigation data and optionally also the scanner
data.
The scanner (FIG. 6.3.A) is a short-range 2D scanner (RIEGL LMS-Q240-60i). Its FOV
is 60◦ and the instrument has a maximum range of 450 m at 80% reflectance [119]. The
rotating-mirror mechanism provides linear, unidirectional and parallel scan lines with a
programmable rate up to 80 scans/s (10 kHz). The beam divergence is 3 mrad. Contrary
to most today’s airborne scanners, this instrument adapts a shorter laser wavelength of
900 nm that assures favorable reflection also on fresh snow.
The digital camera (FIG. 6.3.B) is a Hasselblad H2 with focal length of 35 mm. Attached
to the lens is the digital back Imacon Xpress 132C. The hosted CCD chip has 5448×4080
pixels (22 Mpix) with 9µm pixel size. The shutter aperture generates a pulse that is
interfaced via X-sync bus of the H2 camera to the event marker input of the GPS
receiver.
The sensor head also incorporates a tactical-grade IMU (FIG. 6.3.C) (Litton LN200/A1)
and a GPS-L1L2/GLONASS airborne antenna (FIG. 6.3.D). The antenna is mounted
on a carbon pole that can change its orientation with respect to scanner/camera plane
from 15◦ to 90◦ according to the mapping requirements.

� Data Rack: The sensor head is connected via cables to the data rack, a solid cube
placed inside the helicopter that assures instrument power supply, command, data syn-
chronization and data storage. The LOG-PC (Panasonic Toughbook CF-19) is charged
with the data acquisition and logging of the raw GPS, IMU and scanner measurements.
The scanner data is directly transmitted using the Ethernet and logged on the LOG-PC.
The GPS dual-frequency data passes through the GPS receiver and is sent to the NAV-
PC for logging. The IMU is connected to the Ethernet via a specially designed interface
[160, 183] that synchronizes the incoming inertial data in the GPS time frame and trans-
mits them to the LOG-PC. The camera events are time-stamped by the dual-frequency
GPS receiver, and this information is further processed by the LOG-PC. The taken
images are stored on an external image bank that allows taking up to 850 pictures
at full resolution. Finally, an uninterrupted power supply ensures seamless switching
between helicopter and 24 VDC battery power.

� Controlling and Guidance: This segment consists of the NAV-PC (Panasonic Tough-
book CF-19) connected through Ethernet to the data rack. The pilot screen (8 inch
XClear TFT-screen) for pilot guidance is connected with a VGA cable to the NAV-PC.
The NAV-PC is dedicated to mission and system control, pilot guidance, ALS data pro-
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cessing and quality analysis. The functional principle of the different software modules
involved in these processes will be explained in detail in the following sections.

FIG. 6.3: General architecture of the Scan2map-system.

6.2 Flight Preparation

6.2.1 Flight-plan

Although not directly linked to the in-flight quality assessment, the flight-plan preparation is a
crucial step in order to obtain the required mapping quality and its elaboration is worthwhile
to be elucidated. The previously discussed particularities of the Scan2map-system also have
a strong impact on the flight-plan establishment. The flexibility in gaze direction (due to the
handheld mode) as compared to classical ALS systems (i.e. fixed installation of the laser head
on a plane), involves more accurate flight-planning where the virtual swath for a given flight-
line should be computed. For this purpose a flight-planning module (called MissionPlanner
hereafter) has been developed (see FIG. 6.4). The main features of the MissionPlanner are
[127]:

� Interactive drawing of flightlines where the obliquity (roll-angle) and height system
(absolute height, constant height over ground, height over ground at starting point) can
be specified.
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� Computation of a virtual swath based on scanner characteristics (FOV, max. range),
flightline characteristics (height and obliquity) and a coarse DTM of the area.

� Point-cloud accuracy prediction based on the scanning geometry (reconstructed using
the virtual laser direction and the DTM) and a-priori assumptions about the navigation,
range-finder and calibration accuracies.

� Computation of virtual data coverage maps to control whether the planned lines result
in sufficient strip overlaps.

� Survey time estimation based on planned lines and the assumed flying speed on a
flightline and during transfer.

� Export of trajectory to Almanac-module (see next section) for GPS constellation anal-
ysis.

� Export of flight-plan in xml-format to flight management system HELIPOS (see CHAP.

6.8).

FIG. 6.4: GUI of MissionPlanner: Example of range estimation for one flightline with 30◦ obliquity.

6.2.2 Analysis of GPS Constellation

For mapping missions at low altitudes and in demanding topography, partial GPS satellite
masking by the relief is very frequent and can lead to situations where a good navigation
solution cannot be guaranteed (e.g. [110]). As the GPS constellation changes constantly, the

87



Implementation

impact of terrain masking is not only dependent on the position and its associated horizon
(also called skyplot), but also on the time when the mission is flown during the day. The
modeling of the GPS constellation implemented in the Almanac-module considers these ad-
ditional constraints. It computes satellite visibility maps for given 3D waypoints at a given
time and deduces GPS constellation characteristics (such as DOP values, min. number of vis-
ible satellites) for each waypoint independently (see FIG. 6.5). To determine the most optimal
flying time, the tool also features an algorithm, that searches for the most optimal starting-
time: For every starting-time, the waypoint with the worst GPS characteristics (high DOP
values, low number of visible satellites) is stored and compared to the worst-case for the other
starting-times. This finally yields a plot of the evolution of the GPS quality throughout the
day for a given flight (see FIG. 6.6).

FIG. 6.5: Almanac module analyzing GPS constellation
for a given flight-plan.

FIG. 6.6: Plot to indicate best flight time
based on flight-plan and given time window.

6.3 In-flight Quality Assessment Tool (IQUAL)

As mentioned in the introductory chapter, the presented in-flight quality assessment tool
(called IQUAL hereafter) was developed as an integrated effort at the EPFL-TOPO labora-
tory. The external contributions will be referenced wherever applicable. This section provides
a general overview of the IQUAL architecture and functionalities. The different modules will
be presented in more detail in the sequel.

6.3.1 General Strategy

As shown in CHAP. 6.1, the Scan2map-system is based on a modular design on the hardware
level, with the Ethernet as a backbone for interfacing the individual elements. This modular
design approach has also been adopted on the software level to allow scalable distribution of
tasks across a network of computers. The setup and implementation of the different software
modules for data acquisition, synchronization and processing was guided by the following
principles [130]:
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� Independence of system functionalities: The vital functionalities, such as raw data
logging, synchronization and pilot guidance, must be independent from the extended
functionalities (RT point-cloud processing and quality analysis) in order to avoid any
disturbance with the needed functionalities for a successful data acquisition.

� Performance scalability: The second goal promises handling different scanning rates
by means of separating modules individually (or in groups) across different computa-
tional platforms.

� Centralized monitoring and control: Despite the fact that the acquisition and
processing is split on different modules, the information and the control of the individual
functionalities must be communicated to one central interface.

6.3.2 Communication

The fundamental prerequisite for achieving the goals mentioned in the previous section is a
fast communication across all hardware and software components. The Ethernet with TCP/IP
protocol has been chosen for this purpose. In the particular case of the Scan2map-system,
the Ethernet communication is already built-in in the scanner and IMU modules [160], while
the GPS receiver needed to be interfaced to the network. The timing scale is governed by a
1 PPS signal sent by the GPS receiver and the timing offset is communicated between the
modules via Ethernet. Based on the client-server architecture developed by [169], the different
modules can send (as server) and receive (as client) data packages through socket ports
whose corresponding IP addresses and port numbers can be freely chosen. Accordingly, the
modules can be placed either on one computer or distributed on several computers connected
to a network, where each module can be addressed by the corresponding IP-address of the
computer and the associated ports.

6.3.3 Software Modules

FIG. 6.7 depicts the software modules and interconnections involved in IQUAL. The modules
can be divided into three categories:

1. Data logging: All hardware devices have a proprietary data logging software module.
These modules can run on different processors if needed. Each module is responsible
for storing the raw data and for passing them together with a status message to the
connected clients. The logging modules are:

� ALS DataLogger [147]

� IMU DataLogger [183]

� GPS DataLogger [170]

2. Data processing: The modules dedicated to in-flight data processing connect to the
data acquisition modules by Ethernet to gather the necessary input data. These modules
are:

� GPSQUAL: RT GPS quality analysis tool [165]
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� GIINAV: The RT strapdown inertial navigation and GPS/INS integration engine
[168]

� LIEOS: RT laser point-cloud georeferencing engine [150]

� LIAN: The LIDAR data ANalysis module

3. Guidance and Controlling: The control module HELIPOS runs as a separate in-
stance (usually on a different processor) and connects to all data acquisition and pro-
cessing modules in order to monitor their performance by means of status messages.
HELIPOS is also in charge of the pilot guidance.

FIG. 6.7: IQUAL: Software architecture and inter-modular communication.

6.3.4 Inter-modular Communication

The data streams presented in FIG. 6.7 can be divided into three phases [131]:

1. Data acquisition: As soon as the system is started, the raw measurements are trans-
mitted through proprietary devices to the data loggers and stored on disk. From the
receiver the timestamps for each image event are communicated to the GPS data log-
ger. The latter transmits the raw GPS measurements to the GPSQUAL-module that
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performs a RT quality check. From there, the actual position (including a GPS quality
flag) is transmitted to HELIPOS for displaying and to GIINAV for GPS/INS integration.
GIINAV receives the GPS position and velocity solution as well as IMU measurements
to compute RT attitude and position estimates and their respective variances. The re-
sulting trajectory information is transmitted at the original IMU output rate (400 Hz)
to the LIEOS module. GIINAV also broadcasts trajectory information (position and
attitude) at 1 Hz to HELIPOS for display and system control purposes.

2. Online: LIEOS generates the point-cloud by merging the trajectory with the laser
measurements broadcast by the ALS data logger (see CHAP. 6.6). In addition, the point-
cloud coordinates and all information needed for the error propagation is saved to a file.
The RT swath boundaries are directly sent to HELIPOS for displaying (see CHAP. 6.8).

3. Offline: LIEOS stops the georeferencing and the computed point-cloud of the previous
flightline is loaded to LIAN (see CHAP. 6.7). The strip is analyzed as one block and the
outcome is sent to HELIPOS for displaying in form of vector and raster data (see CHAP.

6.8).

Splitting of Online and Offline Phase

The distinction between the online and offline phase is made by the system operator. By press-
ing the on/offline button on the HELIPOS-GUI (see FIG. 6.24), the operator communicates
to LIEOS, whether the system is online, thus activating the georeferencing of the point-cloud,
or offline (e.g transfer flight, turn over from one flightline to the other), where no laser data
will be used.
The reasons for implementing this control mechanism are manifold: The temporal splitting of
the two main tasks (i.e. the RT georeferencing vs. strip-wise data analysis) allows keeping the
CPU requirements at reasonable level. Performing both tasks in parallel would significantly
increase the computational burden and could threaten the RT monitoring capacity. Addition-
ally, by pressing the on/offline button in the HELIPOS application, the operator ensures that
the computationally demanding analyses (such as the error propagation) are carried out only
over the areas of interest.

6.4 GPS Quality Analysis Module (GPSQUAL)

The main task of GPSQUAL is to broadcast a quality flag for every GPS position that should
reflect the likelihood of fixing the differential carrier-phase ambiguities in PP (see FIG. 6.8).
The availability of technologies enabling RT resolution of the ambiguities (such as RTK) can-
not be guaranteed for every survey mission. Hence, the tool must be capable of evaluating
the likelihood for ambiguity resolution based on the raw GPS observations only. For this
purpose GPSQUAL integrates a selection of the quality check approaches presented in CHAP.

2.4.4 into a single algorithm. The algorithm adopts a “best from available” strategy [165],
where the used checking mechanism is selected and adapted automatically in function of the
collected raw data and the availability of additional information. To increase the computa-
tional efficiency, GPSQUAL is directly implemented as an embedded thread within the GPS
Datalogger.
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FIG. 6.8: GPS DataLogger GUI: Display of GPS position and quality flag issued by GPSQUAL.

6.4.1 Quality Indicators

GPSQUAL employs the following indicators (in order of their availability) to perform the
GPS signal quality evaluation and to predict the likelihood to fix the ambiguity in PP:

� Analysis of the GPS constellation

� Carrier-phase tracking loop output analysis

� Cycle slip detection

� Receiver Autonomous Integrity Monitoring (RAIM)

� RTK

Method GPS Phase Cycle slip RAIM RTK
constellation tracking loop detection

Availability always always always Rx dependent locally
Reliability of
information

very high high high very high high

Accuracy of ambi-
guity fix prediction

fair good good fair very good

Technical feasibility very good very good very good very good fair
External costs none none none Rx dependent high

TAB. 6.1: Comparison of different GPS quality indicators used in GPSQUAL.

Except RTK and RAIM, all indicators depend on raw GPS observations only. The applica-
bility of the proposed strategy is therefore independent of the used GPS positioning mode.
Nevertheless, the usability for predicting the ambiguity resolvability remains only indicative.
The best prediction can be achieved by solving the ambiguities directly on-the-fly using RTK.
TAB. 6.1 summarizes the respective strengths and weaknesses of the individual indicators in
function of availability, prediction accuracy and external costs. More details about the differ-
ent quality indicators implemented in GPSQUAL can be found in [165].
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6.4.2 Quality Flags

The final quality attribute computed by GPSQUAL can have three levels (FIG. 6.9):

� Good: The ambiguities should be fixed in PP without problem or are already fixed in
the RTK operation. The expected 3D position accuracy should be below 0.1 m.

� Critical: It is most likely that the ambiguities can only be resolved partially or with
low reliability. This equals to a float status under RTK. The GPS position accuracy is
expected to be between 0.1 and 0.5 m.

� Bad: No ambiguity fix possible (standalone mode in RTK), the expected accuracy
equals the float ambiguities or carrier-phase smoothed code solution (expected posi-
tioning accuracy > 0.5 m).

FIG. 6.9: Workflow for quality flag generation within GPSQUAL.

The use of such quality flags is twofold: Firstly, the quality flag associated to each GPS
position is immediately presented to the system operator as color-coded quality marks (see
CHAP. 6.8). Secondly, for the purpose of ALS point-cloud quality analysis, the outputted
position covariance of the GPS/INS integrated solution can be adopted to anticipate the
achievable accuracy in PP. This yields more realistic position accuracy estimates which are
subsequently used as input values for the strip-wise error propagation (see CHAP. 6.7.9).

6.5 RT GPS/INS Integration Engine (GIINAV)

6.5.1 Integration Strategy

The navigation module GIINAV consists of a RT strapdown inertial navigator combined with
an Extended Kalman Filter (EKF) for GPS/INS integration based on the work presented in
[168, 171, 172]. The integration scheme follows a loosely-coupled approach, i.e. GPS position
and velocity measurements are used to update the EKF state vector which is composed of
a total of 22 elements, including the nine basic navigation errors (position, velocity and at-
titude) and the most significant inertial sensor errors (accelerometer/gyro biases and scale
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factors) [168]. The reference trajectory around which the linearization of the EKF occurs is
provided by the local-level strapdown inertial navigation algorithm which is by itself a self-
contained navigation solution affected by errors. The errors estimated by the EKF are in turn
used to continuously correct this strapdown navigation solution and calibrate on-the-fly the
inertial sensor measurements, as depicted in FIG. 6.10.
The inertial data is processed at its original sampling rate (i.e. 400 Hz in the current configu-
ration of the Scan2map), while the GPS data rate is typically set to one second. The results
can be stored to a file, displayed in RT (see FIG. 6.12) and transmitted to different clients via
socket connection.

FIG. 6.10: GIINAV GPS/INS integration scheme (adapted after [171]).

6.5.2 IMU Alignment

One of the critical parts of the integration algorithm is related to its initialization, in parti-
cular the determination of the initial orientation of the system. IMU alignment in combined
GPS/INS systems is less critical than in standalone inertial systems. For the GIINAV navi-
gation module, it is sufficient to know in which quadrant the heading lies, and orientation
convergence to a few hundreds of a degree is attained thanks to GPS aiding. For standalone
inertial systems, the alignment procedure has to attain this level of accuracy by itself, as no
aiding is available to progressively improve this estimation.
Within GIINAV, the operator has the option to select among three coarse alignment modes
(see FIG. 6.11):

� Static alignment: The initial attitude determination is carried out by gyrocompass-
ing. The IMU deployed in the Scan2map-system has tactical-grade accuracy (gyro-drift
of approximately 1 deg/h) and could therefore be used for static alignment by gyro-
compassing according to the requirements of a combined GPS/INS system. However,
it is very difficult to guarantee static conditions once the system has been installed
(suspended on the winch). For this purpose, and for ensuring maximum operation flex-
ibility, the static initialization can be constrained to a very short time provided that an
approximate heading is known using some external information.
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� Transfer alignment: This mode applies if the user has some knowledge about the
initial orientation of the system (e.g. heading from an external compass reading).

� In-flight or dynamic alignment: The GPS velocity vector is used to approximately
align the IMU.

To accommodate to the particular constraints imposed by the Scan2map-system and the
coarse alignment procedures described previously, the fine alignment procedure uses a cus-
tomized version of the large-heading error model proposed in [69] which tolerates well larger
initial uncertainties. Hence, it is possible to completely initialize or re-initialize the system
in-flight without imposing much restriction on the dynamics (even for a helicopter). The RT
navigation performance of GIINAV will be discussed in CHAP. 7.1.

FIG. 6.11: GIINAV GUI: Selection of the settings
for the IMU initialization.

FIG. 6.12: GIINAV GUI: Display of the EKF
results in RT.

6.6 RT ALS Georeferencing Engine (LIEOS)

The main role of the georeferencing module is to generate the laser point-cloud while on a
flightline. As depicted in FIG. 6.7, the inputs to LIEOS are the LiDAR raw data (time, encoder
angle, range and intensity) and the RT trajectory estimate outputted by GIINAV. For the
output, LIEOS stores all laser point-cloud coordinates into a file and transmits points related
to the swath characteristics (i.e. boarder and nadir points) to the flight-management module
HELIPOS for displaying (see CHAP. 6.8). If aerial images are taken on a same mission, LIEOS
can also compute the exterior orientation (EO) elements and the projection center (PC) for
each image event. This data can be logged to a file and transmitted to HELIPOS for display.
Although principally designed for in-flight use, the georeferencing engine can also be used for
off-line processing [150].
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6.6.1 Configuration

The georeferencing algorithms implemented in LIEOS are optimized to allow processing
throughput of “tens of thousands” points per second considering that the computational
load per laser-return is influenced by several factors:

� Frequency of trajectory output

� Selected output datum/coordinate system

� Choice of the georeferencing/registration algorithm

As the first two factors vary per ALS system or its setup (e.g. scanner rates may vary from
10 to 180 kHz, trajectory rates from 10 to 400 Hz) and from one mapping project to another,
all these settings are programmable via configuration files or the LIEOS GUI (see FIG. 6.13):
In the processing settings, the user can select between different datums and projections, such
as local plane coordinates, geodetic WGS84 coordinates (lat,long), UTM and local national
mapping systems (e.g. Swiss national grid). In the algorithm settings, the point-cloud cal-
culation method and the interpolation methods for position and attitude are configurable.
The output settings enable to choose among different output formats (ASCII, LAS, TSCAN
binary and proprietary binary format) and point selection method (complete line, only nadir
point, only border points).

FIG. 6.13: LIEOS GUI: Selection of output datum
an format and DG algorithm settings.

FIG. 6.14: LIEOS DOS-Shell: Display of actual
processing status.

6.6.2 Georeferencing Algorithm

The point-cloud calculation method is of great importance for the performance of LIEOS,
as the module should handle different laser data rates without loosing its RT georeferencing
capability. Besides the implementation, the computation speed largely depends on the avail-
able processing power. Another way to influence dynamically the georeferencing speed is to
perform either a data thinning (e.g. not all laser measurements are georeferenced in RT) or to
adapt the algorithmic efficiency, thus admitting some loss of precision. Hence, to allow a most
general use, the data thinning is configurable and three different georeferencing methods are
implemented [130]:
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� Coarse: The coarse option is an approximate method of sub-metric accuracy that is
especially advantageous if the point-cloud is requested in the geographical coordinates.
It is based on a spherical approximation of the georeferencing equation (EQN. 2.2.8)
expressed in geographical coordinates.

� Approximate: Despite its name, the approximate method provides residual distortions
at sub-centimeter level (in most flight scenarios) and regardless of the terrain character-
istics [80, 153]. Its choice is especially advantageous, if a) the registration is requested
in the national coordinates, b) the ratio scanner/trajectory sampling is relatively high
[80].

� Rigorous: The rigorous method is optimized for speed, but uses no approximations.
It performs the calculation of the laser point-cloud coordinates in a Cartesian system
(EQN. 2.2.8) and then applies its rigorous transformation to the specified datum and
projection.

The performance of LIEOS, in terms of accuracy and computational speed, will be discussed
in detail in CHAP. 7.1 and CHAP. 7.4.1.

6.7 LiDAR Quality Analysis Module (LIAN)

LIAN represents the core of IQUAL as it performs on one side the in-flight analysis of the geo-
referenced point-cloud and on the other side the transmission of information about the data
coverage and accuracy to the system operator. The LIAN module is in charge of computing
these quantities using the raw point-cloud generated by LIEOS. To alleviate the comprehen-
sion of the different processes, in the sequel all explications refer to steps indicated by a capital
letter in FIG. 6.15 (capital letters marked with ∗ indicate optional steps).

6.7.1 Concept

LIAN is not implemented as standalone application but turns as a separate thread that is
entirely managed within the LIEOS module. This ensures a good level of interaction between
LIEOS (as data provider) and LIAN (as data analyzer).
If the system-status is online (FIG. 6.15.A), the LIEOS-thread is georeferencing the point-
cloud. As soon as the system is offline (FIG. 6.15.B), the georeferencing of the point-cloud is
stopped and the LIAN-thread is started (FIG. 6.15.C). It loads the strip-wise point-cloud file
(ALSfile) generated in the previous pass into the memory.
At best, the LIAN processing should finish prior to the start of a new flightline, where the
processor is charged again by the RT georeferencing. Nevertheless, this is not necessary and
LIAN is still allowed to run in the background of LIEOS during the subsequent line. Only
if at the end of the next line LIAN has not finished the analysis, a hard termination of the
LIAN-thread is imposed. To avoid such situations, the LIAN implementation is targeted to be
as quick and efficient as possible. For this purpose only the raw point-cloud data of the current
flightline is loaded and further processed. All intermediate results are saved to external binary
files. The naming of these files enables the unambiguous identification of each data type and
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FIG. 6.15: LIAN/LIEOS workflow and communication with HELIPOS module.

its affiliation to a certain flightline 〈f〉 and flight zone 〈Z〉. Hence, once the LIAN-processing
terminated, all internal memories dedicated to the LIAN-thread can be freed without any
loss of information.

6.7.2 Configuration

The achievable LIAN performance and accuracy is in direct trade-off with the processing
speed. The analyses should accommodate different ALS missions (thus different accuracy and
point density requirements) and different scanners. Therefore almost all processing parameters
are modifiable by the user either directly using the GUI (FIG. 6.16) or by a configuration file
(see e.g. FIG. 6.17). Based on the operator’s needs and the available processing power, the
analysis can be restricted to a “basic” in-flight QC, including extent and gap detection
and DSM/hillshade computation or enlarged to “advanced” in-flight QC, performing au-
tomated DTM generation followed by a full error propagation and quality map production.
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Hence, depending on the project requirements and available processing power the algorithm
can be parameterized by:

� Density raster resolution (cd) and point density definition (2D or 3D)

� Minimum required point density (dmin) and vector generalization threshold (gtol)

� ALS data thinning rate (st) and thinning type (point-wise versus line-wise)

� DSM/DTM raster resolution (cdem)

� Point quality map resolution (cQM )

FIG. 6.16: LIAN GUI: Selection of the settings for
LIAN processing.

FIG. 6.17: Extract of LIAN configuration file for
definitions of calibration and ranging accuracies.

6.7.3 Data Filtering

Prior any further processing by LIAN, the loaded raw point-cloud is passed through a fil-
tering and outliers removal process (FIG. 6.15.D). To avoid incoherent height values, laser
measurements with ranges below a certain threshold (typically rmin = 10 m) are removed, as
they generally represent non-desired measurements (e.g. scanned parts of carrier, zero-range
points) and are of no interest in the further processing. Isolated points that occur below
(e.g. due to multi-path) and above ground (e.g. cloud reflections) have also to be removed.
Depending on the available computational power and the size of the file the module selects
between two methods for point removal:

� N -nearest neighbors search: For every point his n-neighbors in a given volume are
searched. If the number of neighbors is smaller than a given threshold, the point is
considered to be isolated and is removed. This method is accurate and reliable but also
time-consuming as a kd-tree has to be constructed for the whole dataset prior to the
search and every point has to be tested individually.
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� Threshold on height variance: This method is based on the mean height value (Z̄)
and the standard deviation (σz) of all heights to construct a boolean test:

∆Zi =
∣∣Zi − Z̄∣∣{Leave point i if ∆Zi ≤ kσZ

Remove point i, if ∆Zi > kσZ
(6.7.1)

Where k is the threshold that can be adopted in function of the terrain characteristics.
This method is very quick, but may remove possibly correct points when the height
difference (thus the variance) in the terrain is important and the threshold is not adapted
accordingly.

To speed up the processing further, the raw data can also be thinned by a factor st using
either point-wise thinning (only every nth point is retained) or line-wise thinning (only every
nth scanline is read). The influence of the thinning on the accuracy of the analysis will be
discussed in CHAP. 7.4.2.

6.7.4 Strip Overlap Control and Zone Handling

Once the thinning process is finished, LIAN computes a density grid for the actual strip (FIG.

6.15.E), where the density raster cell-size (cd) and the density computation dimension (2D or
3D: see CHAP. 5.1.1) can be defined by the user. A crucial step in the whole processing chain
is to check whether the strips of the actual and the previous flightline have overlapping parts
or not and should be considered as continuous zones or not (FIG. 6.15.F). The main reason for
this mechanism is the possibility to detect whether the analysis should be summarized over
several strips (thus computationally more demanding) or if the information from the previous
strips can be ignored and the analysis can start from scratch.

Testing the Overlap

The control of the overlap is performed by comparing the density grid of the actual strip
with the one of the previous strip (if strip exists). An overlap is detected if for at least one
pixel coordinate both density rasters have a valid value (ρ > 0). Depending on the result, two
different actions take place:

1. Merging of strips to one zone: If the overlap check is positive, the scanned area is
considered as one zone and the density grids of the previous line (DENSf−1) and actual
line (DENSf ) are merged together to construct one unique density grid (DENSf∗) by
summation of the density values for a grid location x, y1:

DENSf∗[x, y] = DENSf−1[x, y] +DENSf [x, y] (6.7.2)

Hence, in the overlapping part the values of the new density grid DENSf∗ cummu-
late the initial point densities. Finally, the merged grid is saved to a binary raster file
(DENSfile) and serves as foundation for the subsequent analyses.

1Valid for all operations merging raster A and B to C: if A[x, y] = NaN → C[x, y] = B[x, y], if B[x, y] =
NaN → C[x, y] = A[x, y], if A[x, y] = NaN and B[x, y] = NaN → C[x, y] = NaN
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2. Initialization of new zone: If the algorithm cannot detect an overlap, the two strips
are supposed to have no semantic link. Accordingly, a new scanning zone is initialized,
by incrementing the zone ID 〈Z++〉. No merge is performed, the density file is saved
“as is” to a file.

6.7.5 Extent and Gap Detection

Once the density grid is available (either merged or not) the extent and gap detection starts
(FIG. 6.15.G). Using the minimum density threshold (dmin), the cells in the grid are classi-
fied to NoData, Above-threshold and Below-threshold. Subsequently, the extent polygon is
extracted using the boundary vectorization algorithm presented as pseudo-code in ALG. 6.1.
The algorithm is based on a two-step procedure (see FIG. 6.18): First, starting at the upper
left pixel, the algorithm searches for the polygon start node by testing whether a change
from NoData to Data-pixel occurs. Second, the pixel transitions are investigated clock-wise
from the start node to find a new NoData/Data transition, equivalent to a new node. If the
found node is not already used in the polygon, it is a added and serves as new start node for
the search of the next node. This procedure is repeated until the initial start node has been
reached again.

FIG. 6.18: Vectorization of laser data extent and gaps: (A) Density raster classified into
NoData(NaN)-pixels and Data-pixels with density above threshold (green) and below (red), (B)

Data pixels above threshold were classified to NoData in order to apply vectorization algorithm for
the data gap.

LIAN defines gaps as zones within the data extent that either have no data (e.g. not
covered by strip, no returns, etc.) or where the point density falls below a certain thres-
hold (see CHAP. 5.1.4). According to this definition, once the extent has been detected, all
NoData-pixels within the extent are supposed to be gaps and can be classified as pixels of
density 0 (see hatched pixel in FIG. 6.18.B), whilst the grid values above dmin are classified
to NoData. Hence, new Data/NoData-pixel transitions appear that identify the gap borders.
Subsequently, the vectorization of the gap zones can continue using the same procedure as
for the extent.
The advantage of the proposed vectorization algorithm compared to more sophisticated
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Algorithm 6.1 LIAN extent and gap vectorization algorithm
Require: RASTER D of size (row, col)

for r = 1 : row do
for c = 1 : col do

if isNaN(D[r, c]) and isNum(D[r, c+ 1]) then
rs = r + 0.5, cs = r {Find Polygon start node}
AddtoPolygon(rs, cs)
goto FINDNEXTNODE

end if
end for

end for
FINDNEXTNODE
for α = 0 : 45 : 360◦ do
rl = rs + sin (α− δα)/

√
2, cl = cs + cos (α− δα)/

√
2 {left-hand side pixel address}

rr = rs + sin (α+ δα)/
√

2, cr = cs + cos (α+ δα)/
√

2 {right-hand side pixel address}
if (isNaN(D[rl, cl]) and isNum(D[rr, cr])) or (isNum(D[rl, cl]) and isNaN(D[rr, cr])) then
rs = (rl + rr) /2, cs = (cl + cr) /2 {newly found node becomes starting point}
if IsNotInPolygon(rs, cs) then
AddtoPolygon(rs, cs) {Add node if not already used in polygon}
goto FINDNEXTNODE

else
if α = 360◦ then

goto POLYGONCLOSED {all nodes were found}
end if

end if
end if

end for
POLYGONCLOSED
Polygon(r1,i, c1,i)→ Polygon(X1,i, Y1,i) {Convert from pixel to map coordinates}

implementations (e.g. [22]) is its computational efficiency and the capacity to produce simple
geometries. They can be generalized further by using e.g. the Douglas-Peucker generalization
algorithm [27]. Hence, the amount of data that has to be transmitted to HELIPOS by sockets
(see CHAP. 6.8.2) can be drastically reduced without loss of information. The achievable
polygon accuracy in function of the point-cloud accuracy and the cell-size will be discussed
in CHAP. 7.3.1.

6.7.6 DSM and Hillshade Generation

Optionally LIAN performs a DSM computation using the filtered raw point-cloud (FIG. 6.15.H)
as input. To keep the DSM computation as fast as possible, LIAN interpolates the DSM
heights from the raw point-cloud using the nearest neighbor search in 2D. The height value
of the point closest to the pixel center is directly taken as new elevation value. Subsequently,
based on the result of the overlap check, the actual DSM (DSMf ) is either merged with the
one from the previous flightline (DSMf−1) or saved “as is” to a binary grid (DSMfile). For
merging DSM height values at the cell location x, y the following rule is applied:

DSMf∗[x, y] =
DSMf−1[x, y] +DSMf [x, y]

2
(6.7.3)
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Hence, in the overlapping parts the new DSM heights correspond to the averaged cell values
of the initial DSM.
The subsequent hillshade computation (FIG. 6.15.I) is based on the complete DSM (i.e.DSMf∗
in the case of strip overlap). The computation uses intermediate slope and aspect grids to
derive the hillshade (see CHAP. 3.4.3). The illumination source (azimuth a and elevation angle
e) can be specified by the user. The result is saved as a 1-byte binary grid to a file (HILLfile).

6.7.7 Image Footprint Computation

Although not directly related to the point-cloud quality analysis, LIAN also performs an
estimation of the image data coverage (FIG. 6.15.J). This is achieved by virtually projecting
the image borders (for each image) on the DSM computed in the previous step. The necessary
image exterior orientation elements (projection center coordinates and image orientations) are
provided by the LIEOS georeferencing engine. The interior orientation parameters, such as
CCD size, pixel size and principal point coordinates, are depending on the camera type and
are provided by the operator. Using these elements, LIAN intersects the image rays (dotted
lines in FIG. 6.19) along the CCD border with the previously computed DSM to reconstruct
the 3D image footprint. The final result are 2D footprint polygons and an image coverage
map (see FIG. 6.20), where the pixel value corresponds to the number of images in which the
pixel location can be seen.

FIG. 6.19: In-flight footprint computation by projection
of image borders on DSM.

FIG. 6.20: Example for an image coverage
map.

6.7.8 Ground Classification

The correct assessment of the scanning geometry requires a foregoing rough ground clas-
sification (see CHAP. 4.6). Within LIAN, the removal of non-ground points can either be
performed by threshold on the curvature value (EQN. 4.6.2), or by running a ground clas-
sification algorithm. For all computations in LIAN the algorithmic efficiency has absolute
priority. Hence, to avoid time-consuming surface reconstruction, the classification algorithm
implemented in LIAN operates entirely in the point-cloud domain (see ALG. 6.2). It is based

103



Implementation

on the point-cloud geometry analysis as presented in CHAP. 3.3.3. The key-parameter is the
local terrain normal (EQN. 3.3.4). As a further advantage, these quantity can be directly
re-used for the incidence angle estimation necessary for 3D footprint computation.

Adopting the strategy presented by [8], the proposed algorithm first searches for points
that serve as first approximation of the ground. These initial points are defined as lowest
points within a given cell (see FIG. 6.21), where the cell-size is governed by the maximum
building-size parameter b. These points are subsequently used as query points to search
for other points belonging to the ground until all points are classified. Similarly to the
point-cloud segmentation technique proposed in [175], this is achieved by a region-growing
approach that compares the estimated local terrain normals and the orthogonal distance of
the points to the tangent plane at the query point. Let us consider a point pq ∈ R3 identified
as ground point. The query point pj can also be classified as ground if the following criteria
are met (see FIG. 6.22):

pj ∈ ground⇔

{
αq

j ≤ αp
dq

j ≤ dp
(6.7.4)

where αp (usually around 20◦) is the threshold for the directional difference of the normal and
dp (usually around 0.5 m) is the threshold on the orthogonal distance to the tangent plane at
point pq. The orthogonal distance dqj from point pj to the tangent plane (⊥nq) at point pq
is computed by

dqj =
∥∥∥rqj · nq∥∥∥ ,where rqj = pq − pj (6.7.5)

The angular difference αqj in direction of the normal nj and nq is computed by

αqj = acos
(

nj • nq
‖nj‖ ‖nq‖

)
(6.7.6)

The general performance of the proposed ground classification algorithm in comparison to
other implementations in commercial software packages will be discussed in CHAP. 7.3.3.

FIG. 6.21: Initial start points (black dots) and found
ground points (red dots) after one iteration.

FIG. 6.22: Comparison of tangent plane
distance and normal direction for two points.
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Algorithm 6.2 LIAN ground classification algorithm
Require: Point-cloud dataset P with n points, Classification parameters k, b, αp, dp

for i = 1 : n do
Cxyzi

= ComputeCovariance(pi, k)
ni = ExtractLocalNormal(Cxyzi

) {compute local normal for every point}
end for
Pqp = GetLowestPointsWithinpixel(P, b) {Find set of initial query points}
while 1 do

if Pqp = [ ] then
break {All query-points were used, classification is over}

end if
pq = Pqp[1] {define actual query-point}
Pnqp

= GetNeighborPoints(pq, k)
for j = 1 : k do

if isNotWithin(Pnqp
[j],Pqp) then

pj = Pnqp
[j] {Point not now used as query-point so perform test}

if PointOnSameP lane(pq,pi, αp, dp) then
pj → ground point
AddToQueryPoints(pj) {Add newly found point as query-point}

end if
end if

end for
end while

6.7.9 Error Propagation

The computational workflow for error propagation and scanning geometry analysis imple-
mented in LIAN follows the one presented in FIG. 4.7. The only difference is that the pre-
filtering based on the local curvature can be replaced by the ground classification procedure
presented in the previous section. All the needed quantities to perform a full error propagation
and scan geometry analysis are provided by the system:

� The navigation accuracies (σxyz, σrpy) and the laser origin coordinates are interpolated
in LIEOS.

� The raw laser measurements (range ρ and encoder angle θ) are directly transmitted
from the laser.

� The local terrain normals (n), needed for the incidence angle computation and the point
class attribute c used for pre-filtering are computed in the ground classification step (see
previous section) and passed to the propagation engine.

� The flight-invariant parameters, such as the calibration accuracies (σbore, σleverarm),
range-finder accuracy (σρ+ppm), encoder angle accuracy (σθ) and beam divergence (ε)
are inputted by the system operator using the configuration files (see FIG. 6.17).

For non-ground points (i.e. vegetation) the analysis of the scanning geometry makes no sense.
Appropriately, only the points belonging to the ground are inputted into the propagation
engine (FIG. 6.15.L). The direct output of the propagation engine are point-wise accuracy
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estimates for the navigational part (σnavxy , σ
nav
z ), the dilution of precision due to the scanning

geometry (σgeomxy , σgeomz ) and the global quality indicator (qi). Depending on the desired quality
argument, LIAN directly generates a point quality map (QMf ) by linearly interpolating the
point-wise quality metrics in a regular raster (FIG. 6.15.M). This raster map is either saved
“as is” or, in the case of strip overlap, merged with the quality map of the previous flightline
(QMf−1) according to the following rule:

QMf∗[x, y] =

{
QMf [x, y] if QMf [x, y] ≤ QMf−1[x, y]
QMf−1[x, y] if QMf [x, y] > QMf−1[x, y]

(6.7.7)

Accordingly, within a strip overlap, it is always the strip offering the better point quality
(thus smaller value) that is retained.

6.7.10 DTM Generation

If required by the operator, the classified point-cloud can be used to generate a DTM (FIG.

6.15.N). The cell-size cDEM is definable by the user. If the point-wise quality indicators are
available, LIAN can also compute a DTM quality map (FIG. 6.15.O), using the approach
presented in CHAP. 5.3.3. If an overlap is detected, the actual and previous DTM are merged.
If no DTM quality map is available, EQN. 6.7.3 is applied (averaging of height values in strip
overlap), otherwise the height values in the overlapping parts are constructed as a weighted
average (see FIG. 6.23):

DTMf∗[x, y] =
w1 ·DTMf [x, y] + w2 ·DTMf−1[x, y]

w1 + w2
(6.7.8)

The respective weights w1 and w2 are computed as the inverse of the squared DTM reliability
index (rz) values of the respective DTM quality maps. Applying the laws of error propagation,
the values of the merged DTM quality map (QDTMf∗) for a given location x, y can be
computed using the following formula:

QDTMf∗[x, y] =

√√√√( 1
QDTMf−1[x, y]2

+
1

QDTMf [x, y]2

)−1

(6.7.9)

Strip Difference Map

If a strip overlap occurs, LIAN offers the possibility to directly compute strip difference
maps (FIG. 6.15.P) that can be displayed in HELIPOS. As discussed in CHAP. 5.2, these strip
difference maps are a good indicator to estimate the internal data accuracy. Theoretically the
strip differences could be evaluated using DSM’s. However, such difference maps often suffer
of systematic blunders near building edges or areas with vegetation (see e.g. FIG. 5.4) that
may blur the real discrepancies. Hence, within LIAN, the strip difference grid DIFF f,f−1 is
computed using the DTM’s of the adjacent strips:

DIFF f,f−1[x, y] = DTMf [x, y]−DTMf−1[x, y] (6.7.10)
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FIG. 6.23: Example for DTM grid merge weighted by DTM reliability index.

6.8 Flight Management and Monitoring Module (HELIPOS)

6.8.1 Concept

The control module HELIPOS acts as GUI between the operator and the previously described
modules. It has two major functions:

� To provide standard Flight Management System (FMS) functionalities such as flight-
plan handling and pilot guidance.

� To control the system settings and to monitor the data quality and coverage.

The required input data for guidance and system controlling is provided by the previously
described modules. FIG. 6.24 depicts the most important visualization and controlling features
available to the operator:

(A) Status log: All important status messages from the data loggers (GPS/IMU/LiDAR)
are gathered and listed in this window.

(B) GPS/INS info: The current position, speed, heading and GPS quality indicators (e.g.
DOP, number of visible satellites, GSPQUAL quality flag) can be displayed. When
GIINAV is running, the integrated trajectory (including RT attitude) can be presented
instead.

(C) Scanner info: The measured distance by the laser and the swath coverage (in percent)
is displayed. This improves the navigation for flightlines where a constant height over
the topography is required.

(D) Online/offline button: Control button to switch between online and offline mode.
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(E) Flight-plan management toolbox: Different flight-plans and flightlines can be loaded
and activated. The line attributes (such as height, heading or sensor head attitude) can
be displayed for each line.

(F) Layer control: GIS-like control for displaying or deactivating different data layers on
the base map.

(G) Tracking short-cuts: buttons to load the flight-plan, activate the cross-track indicator
(J) and enable/disable tracking

(H) Quality map short-cuts: Buttons for loading and displaying strip-wise results from
LIAN.

(I) Display window: Map window for the layer-wise display of raster and vector data.

(J) Cross-track indicator tool: Indication of perpendicular distance of carrier to active
flightline.

FIG. 6.24: HELIPOS GUI

For the purpose of pilot guidance and system control, HELIPOS offers two different views
within the same instance (see FIG. 6.25):

� The controller view, where all available information can be displayed (i.e. flightlines,
map data, RT position, RT swath, data extent and gaps).
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� The pilot view, where only the map data, the current flightline, position, heading and
the line alignment tool are displayed.

Both views run within the same application and are cross-linked. This enables the opera-
tor to rapidly control the pilot’s display by changing e.g. the view extent (zoom, pan) or
by highlighting or deactivating different layers. The display of these different views can be
separated on two monitors. Practically, this is realized by connecting an extended monitor to
the controller laptop using the VGA output. The external monitor can be smaller, e.g. in the
case of the Scan2map-system a standard 8 inch TFT-screen is used (see FIG. 6.25).

FIG. 6.25: Intercommunicating windows for controller and pilot view within HELIPOS (left) and
standard setup using extended screen within helicopter (right).

6.8.2 Communication with other Modules

HELIPOS communicates with the other modules by socket messages. The ports of the data
servers from which the messages are received can be configured in the port-settings window
(see FIG. 6.26). Based on the latency of the information that is received, the system distin-
guishes between RT communication (messages within a flightline) and delayed communication
(information available after the flightline).

RT Communication

All primary data loggers act as server and deliver uni-directional RT information to HELIPOS
(as a client): GPSQUAL (embedded in the GPS datalogger) sends 1 Hz GPS position and
a quality flag (i.e. good, critical, bad) for each epoch. The ALS data logger provides direct
information about the scan range and the percentage of the covered swath at 1 Hz. GIINAV
transmits attitude and integrated position information at 1 Hz and LIEOS delivers swath bor-
der coordinates (1 Hz) and image EO (at event rate). HELIPOS also acquires status messages
from all data loggers, as they evolve.
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FIG. 6.26: HELIPOS port settings
FIG. 6.27: Definition of vector message to send

extent and gap polygons from LIAN to HELIPOS.

Delayed Communication

The results provided by LIAN are only available once a strip is computed and its analysis
is finished. As shown in FIG. 6.15, LIEOS is in charge of sending the outcome of LIAN to
HELIPOS. Depending on the data type (vector or raster) and the size, three options are
implemented:

(A) Vector data send: The vectorized extent and gap polygons are read from the LIANfile
by the LIEOS-thread and sent polygon by polygon as socket messages to HELIPOS
(FIG. 6.15.S). To prevent a surcharge of the HELIPOS display, the sending of the next
polygon is initiated only once HELIPOS acknowledges the correct reception and the
drawing of the former polygon. FIG. 6.27 shows the protocol of such message: The
message ID identifies the data type to expect. The PolygonType-field describes the
nature of polygon (either extent or gap). This information allows HELIPOS to draw
the polygons into the appropriate layer. The CoordSyst-field defines the datum of the
points coordinates. This information indicates whether the received coordinates have to
be reprojected before displaying. The last field in the header (NPoints-field) indicates
the number of node points to expect. Every socket message is ended with a message
delimiter code (MsgEnd-field). This enables to check the correct decoding of the message
at reception and to acknowledge a decoding failure if necessary.

(B) Raster data send: Raster data is less suitable to be sent by sockets, as the
amount of data to transmit is usually considerably larger than for vector data.
LIEOS possesses a mechanism to send raster data package-wise through the Ether-
net (FIG. 6.15.T). FIG. 6.28 explains this procedure based on a hillshade grid (coded as
1 byte): The message starts with a raster header, where the geo-location of the raster

110



Flight Management and Monitoring Module (HELIPOS)

(XUL, YUL, xdim, ydim,cell-size) and the number of bytes (called base) used to store a
single pixel value are defined. The last field of the header indicates the number of raster
data blocks to come. The header is sent as a standalone message prior to the raster data
blocks. FIG. 6.28 shows the construction of such a data block for the first raster row,
where until pixel 4 only NoData-pixels occur. The architecture of a data block is such
that the first field indicates the 1D start-pixel address, the second the number of values
to come followed by the values themselves. The latter are coded with the data-length as
indicated in the header (base). The first data block is sent after the correct decoding of
the header is acknowledged. Afterwards, the other data blocks are sent using the same
send-reception-acknowledgment procedure and the raster is reconstructed piece-wise in
HELIPOS.

(C) File reference: To limit the communication load, the previously described procedure
for rasters is only applied for data that has to be quickly available and that can be coded
with a reduced data-length. E.g. hillshade grids are bounded between 0 and 255 and can
be coded as 1 byte. However, most of the time the operator does not need to visualize
the raster results immediately. In addition, many of the grids generated by LIAN (i.e.
DSM, DTM) have non-integer pixel values which requires coding as doubles (8 bytes).
Sending doubles-length data packages would certainly saturate the communication link
and endanger the important RT messages. The file reference procedure avoids such
congestion. This procedure passes the information on the current LIAN working di-
rectory to HELIPOS once the LIAN-thread has started (see FIG. 6.15.U). After each
strip, HELIPOS checks automatically the availability of the LIAN result files in this
directory and activates the quality map loading buttons (FIG. 6.24.H) as soon as the
grids are available. By pressing these buttons, the data is directly read from the files
and displayed in the appropriate layers.

FIG. 6.28: Message structure to send binary rasters through socket to HELIPOS.

6.8.3 Pilot Guidance

An important task of HELIPOS is to guide the pilot over a previously established flight-plan
(see CHAP. 6.2) using the available navigation data. In commercial ALS systems the pilot

111



Implementation

guidance is optimized for small-scale/large-area projects carried out with airplanes. There,
the graphical display is often equipped with an artificial horizon to control the banking and an
“ILS2-like” screen indicating the horizontal and vertical deviations from the actual flightline
(e.g. [66, 74, 168]). Such functionality is quite useful for long-range ALS missions with long
parallel flightlines with constant speed and altitude. Scan2map missions are essentially flown
with helicopters in geographically demanding terrain and low height over ground. Thus, the
flight-plans are more complex, i.e. having short non-parallel flightlines with changing alti-
tudes and changing obliquities. Especially in the alpine environment, helicopter pilots cannot
exclusively focus on the flight-plan as they have to continuously monitor the surroundings to
detect endangering objects (such as high hanging wires and cables). In this context, ILS-like
guidance is not optimal, because it requires too much attention of the pilot. To accommodate
these particular conditions, HELIPOS adopts a solution where the planimetric and altimetric
navigation are split into two segments:

� Planimetric navigation: The planimetric navigation is fully under the pilots responsi-
bility. The display on the pilot screen (FIG. 6.25) shows the base map, the active flight-
line, the actual and past positions and heading (deduced from GPS velocity vector).
Additionally, the cross-track indicator (FIG. 6.24.J) monitors the projected perpendicu-
lar 2D-displacement from the actual flightline.

� Altimetric navigation: The GPS/INS-info section (FIG. 6.24.B) displays the absolute
height. This information can be used for flightlines with constant elevation. The scanner-
info section (FIG. 6.24.C) displays the actual laser range (thus height over ground). This
is of particular interest, if the flight-planning requires a constant altitude above ground
(often the case for corridor mapping). To prevent a visual overflow in the pilot screen,
this information is only displayed in the controller screen. Eventual vertical corrections
are communicated to the pilot using the voice channel.

Although the operator can define the appropriate map extract for the pilot manually (by
using the pan and/or zoom functions), HELIPOS also features an automated pan algorithm,
that moves the visible map extract in function of the actual GPS position and the projected
flight direction.

6.8.4 In-Flight Quality Data Display

The main advantage of HELIPOS compared to commercial FMS are its versatile possibilities
for displaying quality-relevant data in RT or on operators demand. These are:

� RT swath lines are displayed as colored polygons in separate layers for each flightline
(see FIG. 6.24 and FIG. 6.29.A): This visualization permits following in RT the data cover-
age of the laser and to anticipate corrections to further lines if necessary. Superimposing
the swath border of two adjacent lines allows immediate detection of insufficient strip
overlaps.

2Instrument Landing System
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� RT GPS quality flags are displayed to the operator by color-coding each GPS position
with the quality flag provided by GPSQUAL (see FIG. 6.24). The color-coded GPS
positions (red → bad, orange → critical, green → good) immediately highlight parts
of a flight where the resolution of the ambiguities in the PP may be difficult. Based on
this information, the operator can react in consequence and repeat parts of the flight.

� Extent and gap polygon display: FIG. 6.29.A shows the display of the computed
extent (yellow) and the data gaps (red) as semi-transparent polygons. Extent and gaps
are displayed in different layers and can be visualized independently. The gap polygons
depict areas where the density requirements are not fulfilled. Together with the map
information beneath, the operator can decide whether the indicated gap is problematic,
thus requiring re-acquisition of this area, or is of minor importance. E.g. in FIG. 6.29.A
the two major gaps are within the river, thus re-acquisition is not required.

� DSM/DTM hillshade display: HELIPOS can display strip-wise DSM hillshade
images (see FIG. 6.29.B). The visualization has no direct quality-relevant information.
However, the correct scan of the ground relief can be seen immediately and enables to
monitor if certain features (such as buildings, bridges, etc.) are covered with sufficient
points to be modeled correctly.
The display of the DTM hillshade (FIG. 6.29.D) indicates the quality of the automated
ground classification. This information can be used to verify if, for example, the ground
penetration of the scanner in forested areas is sufficient. Optionally, also the DTM
quality map can be displayed. This provides direct information on the reliability of the
DTM heights.

� Image footprints display: If images are taken, their trigger positions (computed by
LIEOS) can be mapped in RT in the controller view (see red dots in FIG. 6.29.C). Once
the flightline is finished, LIAN performs the footprint computation for every individ-
ual image and processes them to one coverage raster. This raster can be displayed in
HELIPOS. If the images are further used for orthophoto production or stereo-restitution,
this plot provides immediate information if certain areas are not sufficiently covered by
image data.

� Strip height difference map: As soon as a strip overlap between two consecutive
flightlines occurs, LIAN can compute a strip difference map by subtracting the corre-
sponding DTM’s. This map provides useful information about the internal accuracy and
can also highlight eventual problems in the ground classification. (FIG. 6.29.E) depicts
such situation where in the flat parts the height differences are below 20 cm, whereas in
the sloped parts, mainly due to “rough” DTM modeling large discrepancies occur.

� Point-cloud quality map: If the full error propagation is enabled, HELIPOS can load
and display the strip-wise generated quality maps (see e.g. FIG. 6.29.F and FIG. 6.24).
The quality map allows identifying scanned regions, where the point-cloud accuracy does
not meet the mission requirements, directly in-flight. The color-coding of the quality map
(idem for all other quality rasters) is programmable and can be adapted using a legend
editor.
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FIG. 6.29: Display options in HELIPOS: (A) Semi-transparent display of extent (yellow) and gap
(red) polygons, (B) Hillshaded DSM computed in-flight, (C) Image PC positions (red dots) and

footprint map color-coded after image coverage, (D) Hillshaded DTM computed in-flight, (E) Strip
difference map, (F) Point quality map.
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Chapter 7

Results and Performance Analysis

This chapter is dedicated to the analysis of the performance of IQUAL. The accuracies of the
different quantities computed in-flight, such as RT trajectory, point-cloud, data extent and gap
vectors and quality indicators, are assessed by comparisons with the post-processed solution.
To cope with the time-constraints imposed by in-flight processing, a special attention is drawn
to the adopted strategies to increase the computational speed.

7.1 RT Trajectory and Point-cloud Accuracy

This section assesses the performance of the RT GPS/INS integration engine (GIINAV) and
the RT georeferencing engine (LIEOS). Special attention is payed on assessing the influence
of the GPS positioning mode (Single Point Positioning versus RTK) on the quality of the
integrated navigation solution and on the point-cloud accuracy.
For all flights evaluated in this section, appropriate GPS reference stations close to the sur-
vey area were installed (baseline length < 10 km, ∆H < 300 m). The time of flight was se-
lected considering the GPS constellation (PDOP < 3.5). Hence, the post-processed GPS/INS
trajectory (computed with WayPoint GrafNav for CP-DGPS computation and Applanix
PosProc for GPS/INS Integration) and the resulting point-cloud were of excellent quality
(σxyz < 5 cm, σattitude < 0.01◦) and served as reference for the test-cases presented hereafter.

7.1.1 Single Point Positioning (SPP)

Integrated Trajectory

FIG. 7.1 shows the difference in trajectory estimation (position, attitude and velocity) between
the integrated RT solution using SPP (computed by GIINAV) and the post-processed results
based on CP-DGPS for a flight conducted in April 2009 near Mollis (Canton Glarus, Switzer-
land). The red lines in the upper left sub-plot depict when the system was on a flightline. The
differences in attitude (roll/pitch/yaw: RMS < 0.05◦) correspond to what can be expected by
the filtered solution using SPP GPS aiding and are primarily driven by the accuracy grade
of the IMU (in this case: tactical-grade IMU). The differences in absolute position are more
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important (RMS planimetry > 2 m, RMS altimetry > 1.5 m) and typical for the SPP mode
(see CHAP. 2.4.3). The plot also highlights that the SPP solutions are biased and not ran-
domly distributed around zero. The differences rather follow a trend (e.g. North component),
reflecting the changes in satellite geometry. The correspondence for the integrated velocities
is much better due to the influence of the IMU data [130].

FIG. 7.1: Comparison of trajectory computed in RT (using SPP) and in PP (using CP-DGPS) for
Mollis dataset (dataset length ≈ 15 min)

RT Point-cloud Accuracy

The histograms in FIG. 7.2 depict the distribution of the differences between the point-cloud
computed in RT and the one computed in PP. For this flight, the height over ground was
approximately 250 m. An angular uncertainty of 0.05◦ at a range of 250 m yields a positioning
uncertainty of approximately 0.2 m in the laser point coordinate. Thus, the angular discrep-
ancies had a minor impact on the final georeferencing quality. As errors in position propagate
directly to the georeferenced point, the East and North differences are similar (RMSE ≈
0.9 m, RMSN ≈ 1.2 m) to those of the trajectory (see FIG. 7.1). The RMS of the height dif-
ferences as well corresponds to the point-positioning accuracy in the vertical channel.
Analog to the carrier positions, the histograms also reveal biases in point coordinates (ap-
proximately 1 m in each direction). The biases are much larger than the variances, reflecting
that the relative accuracy is normally much better than the absolute accuracy. The influence
of the relative and absolute RT point-cloud accuracy on the validity of the LIAN results will
be discussed in CHAP. 7.3.1.
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FIG. 7.2: Histograms of difference in point-cloud coordinates computed in RT and in PP (based on
1.4 million points) for Mollis dataset.

Summary of SPP Performance

TAB. 7.1 summarizes the RT positioning accuracy for the aforementioned test flight and for
another flight conducted near Lausanne (detailed plots in Appendix C). TAB. 7.2 recapitulates
the resulting point-cloud accuracies. For each flight the mean differences and the standard
deviation along the three axes are provided. The last column presents the RMS of the 3D
differences. The presented flights are representative for typical Scan2map-missions and allow
benchmarking the achievable accuracies using SPP. Both datasets deliver 3D positioning
accuracies between 2 to 4 m. This order of magnitude is also valid for the point-cloud accuracy,
as the contribution of the attitude uncertainties (≈ 0.05◦) on the point-cloud accuracy remains
below meter-level for ranges shorter than 1000 m.
Overall, for short to mid-range scanning missions, the achievable absolute 3D accuracy for a
RT point-cloud using SPP is settled between 2 to 5 m. Considering that the typical length
of a flightline in a Scan2map-missions is around 2 to 5 min, the relative accuracy within a
flightline is normally much better (meter to sub-meter level).

Mean difference [m] Standard deviation[m] RMS [m]
Flight X Y Z X Y Z |XY Z|
Mollis -0.59 -1.55 1.37 0.31 0.93 0.71 2.47
Lausanne -1.29 -1.02 2.89 0.59 0.83 1.79 3.72

TAB. 7.1: Summary of accuracies of integrated position estimates for flights with SPP.

Mean differences [m] Standard deviation [m] RMS [m]
Flight X Y Z X Y Z |XY Z|
Mollis -0.92 -1.18 1.19 0.24 0.25 0.30 2.0
Lausanne 0.95 0.81 -2.07 0.93 1.02 2.31 3.6

TAB. 7.2: Summary of point-cloud differences (RT versus PP) for both flights.
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7.1.2 RTK

RTK requires a communication link for RT transmission of the GPS measurements or its
corrections from the reference to the rover receiver. This section presents the results of three
test flights using either Radio or GPRS for the RTK communication link.

Radio Communication

A test flight using RTK with a radio communication link (emitting power: 2 W) was conducted
in June 2008 near Sion (Switzerland). On board of the helicopter two GPS receivers (rovers)
were connected through a splitter to the same antenna. One receiver (JAVAD Legacy) was
configured in SPP mode while the other (TOPCON Hiper Pro) received the RTK corrections.
The raw observations of both receivers were also stored for carrier-phase post-processing. To
improve signal reception, a semi-rigid radio antenna was directly mounted on the mapping
sensor head pointing downwards.

FIG. 7.3: Comparison of trajectory computed in
RT (using RTK-Radio) and in PP (using

CP-DGPS) for Sion 08 dataset.

FIG. 7.4: Distance between base receiver and rover
and influence on radio link quality (expressed in %)

for Sion 08 dataset.

The two upper plots of FIG. 7.3 depict the differences in integrated position solutions
between the RT solution (with RTK Radio link, GPS/INS integration with GIINAV) and the
trajectory obtained in PP. As the differences in the East and North components (expressed
in a local mapping frame) are similar, only the North component is shown in the plot. The
horizontal red bars in the upper-left sub-plot indicate periods when the system was on a
flightline, thus marking intervals with increased accuracy requirements. The blue vertical
lines indicate periods where only a standalone GPS solution could be provided.
In the case of fixed RTK positions, the obtained differences are mostly below 10 cm in the
altimetric and planimetric channel, respectively. Nevertheless, the effect of standalone solu-
tions is demonstrated through sudden accuracy losses in the integrated navigation solution
(blue vertical bars in upper plots of FIG. 7.3). This is either caused by the reduced quality or
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total loss of the radio signal for some parts of the flight. The accuracy of the attitude is not
better than for SPP (RMS < 0.05◦). This can be explained by the fact that the estimation
of the attitude is principally depending on the accuracy of the GPS velocity, less influenced
by the used GPS positioning mode.
A good quality of the communication link is the prerequisite for the successful application of
RTK via radio for ALS. The signal strength and the baseline length have both strong impact
on the link quality [165]. FIG. 7.4 depicts the evolution of the radio link quality (expressed
in %) for the given test flight. The quality predominantly decreases during transfer periods
(thus increased velocity) and in turns where, due to the banking angle, the receiver antenna
is no longer oriented vertically. This effect could probably be reduced by employing dedicated
airborne radio antennas mounted on the helicopter fuselage.

GPRS Communication

Another mission was flown in April 2009 near Chur (Switzerland). This time, the RTK
satellite corrections were obtained from the swipos-NAV service of the Swiss Federal Office of
Topography (Swisstopo). This service provides nation-wide corrections from the Automated
GNSS Network (AGNES). The correction was sent to the RTK rover receiver (JAVAD
Alpha-G2T) via Internet using the NTRIP protocol [47] and GPRS communication. The
second receiver (JAVAD Legacy) connected to the same antenna was configured in SPP
mode. The virtual reference station (VRS) technique was employed (see CHAP. 2.4.4).

FIG. 7.5: Comparison of trajectory computed in RT (RTK-GPRS) and in PP (using CP-DGPS) for
Chur dataset.

FIG. 7.5 displays the difference between the PP solution and the RT solution using GPRS
communication link. As in the radio example, the obtained differences for the fixed RTK
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positions are generally below 10 cm. The impact of float (red areas) and standalone (blue
areas) solutions on the integrated position accuracy is apparent. These situations essentially
occur during the transition phases of the flight where the GPS signal reception is affected
either by obstructions due to the environment (high mountains) or by the helicopter itself
(large banking angle). It should be noticed that even in the PP-step, the ambiguities could
not be fixed for a portion of the flight (the large red interval on the right-hand part of the
plots). This fact highlights the importance of monitoring the RTK ambiguity status within
the flight, as it identifies immediately potential problems in solving the ambiguities in PP.

7.1.3 Summary of RTK Performance

To test the accuracy limitations of the RTK approach, another flight using the swipos-
NAV/GPRS service was conducted in July 2009 near Sion. This flight took place under
ideal conditions regarding the GPS constellation (PDOP < 2) and the RTK infrastructure.

Achievable RT Positioning Accuracy with RTK-GPS/INS

The upper plot of FIG. 7.6 depicts the coordinate differences (RTK minus PP) for non-
integrated GPS positions for the Sion 09 dataset. During 98.1% of the flight the ambiguities
could be fixed, resulting in generally very small differences (< 0.05 m). Nevertheless, the plot
depicts that some epochs are affected by larger discrepancies (|∆Emax| = 0.4 m, |∆Nmax| =
1.6 m, |∆Umax| = 0.8 m). However, these sudden “jumps” are not problematic as they occur
during sharp turns where the laser data is not used. Additionally, such short positioning
quality degradations (< 2 sec) are generally filtered out by the GPS/INS integration process.
This is confirmed by the lower plot of FIG. 7.6 presenting the differences for the integrated
positions (RTK/GIINAV - PP/PosProc). Here, the outliers have disappeared (|∆Emax| =
0.1 m, |∆Nmax| = 0.1 m, |∆Umax| = 0.15 m) and the 3D RMS is below 0.05 m.

FIG. 7.6: Comparison of differences for non-integrated RTK-GPS positions (upper plot) and
RTK-GPS/INS integrated positions (lower plot) for Sion 09 dataset.
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Mean difference Standard deviation RMS
GPS Solution Epochs X Y Z X Y Z XYZ
mode type [%] [m] [m] [m] [m] [m] [m] [m]

Standalone 15.7 0.01 0.03 -0.10 0.06 0.11 0.17 0.23
RTK Float 0.0 - - - - - - -
Radio Fixed 84.3 0.01 0.02 -0.08 0.03 0.05 0.08 0.13
(Sion 08) All 100.0 0.01 0.02 -0.09 0.04 0.06 0.10 0.15

On flightline 41.7 0.02 0.03 -0.07 0.03 0.07 0.10 0.15
Standalone 5.2 0.08 0.07 0.17 0.53 0.22 0.16 0.62

RTK Float 4.8 0.58 0.08 0.08 0.33 0.25 0.29 0.78
GPRS Fixed 90.1 -0.01 -0.01 0.06 0.08 0.05 0.06 0.13
(Chur) All 100.0 0.03 0.00 0.07 0.20 0.09 0.10 0.25

On flightline 71.5 0.03 -0.01 0.05 0.20 0.07 0.08 0.23
Standalone 1.9 0.00 -0.01 -0.05 0.02 0.06 0.03 0.09

RTK Float 0.0 - - - - - - -
GPRS Fixed 98.1 0.00 0.00 -0.02 0.03 0.03 0.03 0.05
(Sion 09) All 100.0 0.00 0.00 -0.02 0.03 0.03 0.03 0.06

On flightline 20.4 0.01 0.00 -0.01 0.01 0.02 0.02 0.04

TAB. 7.3: Summary of GPS/INS integrated position accuracies for flights using RTK.

TAB. 7.3 summarizes the difference in RT positioning accuracy for the three discussed
test flights using RTK. For each flight, the percentage obtained for each GPS solution type
(fixed, float, standalone) is indicated as well as the percentage of observations occurring
during a flightline. Compared to the SPP results (TAB. 7.1), the overall accuracy is improved
by a factor of nearly 20. The results also indicate that the proportion of fixed and float
solutions is higher for GPRS than for Radio (94.9% and 98.1% versus 84.3%), highlighting
the good availability of the mobile network in the flown regions.
For the Sion 08 dataset, besides the bias in the height channel (∆Z = -0.1 m: most probably
originating from an error in the reference station height coordinates), all mean differences
are below 0.05 m when the ambiguities could be fixed on-the-fly. This indicates that RTK by
Radio communication can provide very good results, when some precautions to sustain good
communication link quality are taken (i.e. sufficient emitting power, rigid antenna type).
The two flights using RTK-GPRS are representative for the bandwidth of achievable accu-
racies with this technology. The Chur dataset was affected by several phases having float or
standalone solutions, pulling down the overall 3D accuracy to approximately 20 cm. For the
Sion 09 dataset, the rate of fixed solutions is much higher (98.1%), resulting in an overall
3D positioning accuracy of 0.05 m. This probably represents the upper accuracy limit for RT
GPS/INS positions using RTK technology.

Achievable RT Point-cloud Accuracy with RTK-GPS/INS

FIG. 7.7 plots the histograms of the point-cloud differences for the Sion 09 flight. Unlike
the point-cloud computed for the Chur dataset, the differences are nearly unbiased and are
of the same order of magnitude for all axes. TAB. 7.4 regroups the point-cloud differences
for the three presented RTK flights. For the Chur and Sion 08 dataset (see histograms in
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Appendix C) the 3D RMS is about 0.15 m, whereas for the Sion 09 dataset, 3D sub-decimeter
point-cloud accuracy was achieved, delineating the optimal achievable accuracy for in-flight
point-cloud generation.

FIG. 7.7: Histograms of coordinate differences for point-cloud computed in RT for Sion 09 dataset.

Mean differences [m] Standard deviation [m] RMS [m]
GPS mode X Y Z X Y Z XYZ
RTK-Radio (Sion 08) 0.04 0.01 -0.1 0.06 0.07 0.03 0.15
RTK-GPRS (Chur) 0.05 0.04 0.02 0.11 0.08 0.08 0.17
RTK-GPRS (Sion 09) 0.01 0.02 -0.02 0.05 0.07 0.03 0.09

TAB. 7.4: Summary of point-cloud differences (RT versus PP) for flights with RTK.

For a whole spread of applications, sub-decimeter point-cloud accuracy is largely suffi-
cient. This indicates clearly the large potential for RTK in the context of ALS, enabling the
generation of point-clouds directly in-flight for projects where a short hand-over time is more
important than a marginal accuracy gain that could be achieved by post-processing the data.
Furthermore, RTK technology provides the best possible RT control of the quality of the
GPS phase data (see also CHAP. 2.4.4).

7.2 Trajectory Quality Analyses (GPSQUAL)

When RTK is not available, GPSQUAL is a crucial component of the overall in-flight ALS
data quality analysis. Its role is to predict the likelihood to fix the ambiguities in the PP
step. This section evaluates the pertinence of the quality flags issued in-flight. The flags are
compared to the ambiguity status issued by GrafNav, i.e. the industry-standard software for
GNSS PP.

7.2.1 Application Example

FIG. 7.8 shows the quality flags (green → good, orange → critical, red → bad) that were
computed in-flight for a Scan2map-mission near Erstfeld (Switzerland) where only SPP was
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FIG. 7.8: GPS quality flags recorded for flight near Erstfeld (Switzerland).

available. The flight was carried out within a challenging alpine environment where high
mountains in east, south and west caused strong obstructions. The reception of the GPS
signal was particularly difficult immediately after takeoff. This is well represented by the
quality flags provided by GPSQUAL that indicate poor quality (red dots) at the beginning
of the flight (see FIG. 7.8). For the rest of the flight, the GPS quality was mainly labeled good
with some intermittent critical phases.
FIG. 7.9 compares the recorded quality flags with the post-processed ambiguity status issued
by GrafNav. This status has three levels:

1. Float solution → red

2. Ambiguity fixed in one processing direction (forward or backward) → blue

3. Ambiguity fixed in both processing directions → green

FIG. 7.9: Comparison of GPSQUAL quality flags with ambiguity status for post-processed solution.

The plot illustrates the high congruence between the epochs labeled bad (red) by GPSQUAL
and the float PP solution. In the starting period, characterized by alternate good (green) and
critical (yellow) solution, the PP algorithm manages to fix the ambiguities only partially and
only in one direction. Only after tGPS = 217413 sec the ambiguities are predominately fixed in
both directions. Nevertheless, in this phase several short intermittent critical periods occur in
sharp turns (see FIG. 7.8). They do not stringently overlap with phases where the ambiguity
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fix was possible only in one direction. However, periods with one-directional ambiguity fix
(blue bars) remain sporadic and are very short (max. 3 sec). They do not have a negative
impact on the accuracy of the integrated GPS/INS solution. For such short time intervals the
loss of GPS accuracy can be mitigated by the inertial data.

7.2.2 General Validity of Quality Flags

Comparisons between the RT quality flags and the post-processed ambiguity status were
carried out for several flights [165]. These evaluations have shown that in most cases intervals
labeled “critical” by GPSQUAL are not problematic as long as they remain intermittent with
good data and do not exceed a certain duration (< 10 seconds). However, already epochs of 3
to 5 sec duration labeled “bad” are significant as they lead in almost every case to situations
where the ambiguities cannot be fixed in the PP step. If this occurs on a flightline, the
operator should consider to re-fly the concerned portion in order to prevent situations where
the post-processed GPS position will be affected by unacceptable quality degradation.

7.3 ALS Point-cloud Quality Analysis (LIAN)

This section focuses on the evaluation of the quality indicators computed by LIAN. In con-
trary to the previously assessed modules, these indicators are not computed in RT but their
computation is delayed strip-wise as processing starts after each flightline completion.

7.3.1 Data Extent and Gap Polygons

As explained in CHAP. 6.7.5, the vectorization of the data extent and gap polygons imple-
mented in LIAN is based on the density grid. Hence, the accuracy of the resulting polygons
is depending on two factors: The accuracy of the point-cloud used to derive the density grid
and the cell-size c of the grid.
TAB. 7.5 compares the outcome of the LIAN data extent and gap detection algorithm based
on a 2D density grid derived from a point-cloud based on SPP positioning (RMSxy = 1.5 m)
and RTK positioning (RMSxy = 0.1 m), respectively. The results based on the post-processed
point-cloud were used as reference. To assess the impact of the spatial resolution, the analysis
was also performed using two different density grid cell-sizes (2 m and 5 m). The point density
threshold was set to a minimum of 1 point/m2. The results presented in TAB. 7.5 reveal that
the accuracy of the 2D boundaries is primarily governed by the resolution of the used density
grid. In the SPP-mode for example, the 2D RMS error on the borders is about 0.9 m (for
c=2 m) and 2.3 m (for c = 5 m), respectively. Logically, increasing the cell-size has the trade-
off of loss of resolution (thus accuracy) but also the benefit to reduce the computation-time.
FIG. 7.10 visually compares the gap and extent borders detected by LIAN (using a density grid
with c=5 m), either based on SPP (red lines) or RTK (blue lines). The borders derived from
the post-processed data (green lines), serve as reference. The figure reveals that the location
and geometry of the borders is properly recovered for both RT positioning modes. It can be
concluded that for the purpose of in-flight extent and gap detection, the point-cloud accuracy
achieved by SPP (around 2 to 4 m) and a 5 m density grid is largely sufficient. Additionally,
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as the relative accuracy of the laser point-cloud is less affected by the absolute positioning
error, the geometrical integrity of the detected borders can be guaranteed.

Difference to reference data
Density grid with c = 2 m Density grid with c = 5 m

Point-cloud Polylinea Areab Polylinea Areac

RMSxy RMSxy |max∆XY | |∆Area| RMSxy |max∆XY | |∆Area|
[m] [m] [m] [%] [m] [m] [%]

SPP 1.5 0.9 3.1 5.5 2.3 7.3 7.1
RTK 0.1 0.4 2.2 3.2 1.4 5.1 4.8

a2D differences measured perpendicular to reference line
bMean surface difference computed for 22 gap polygons
cMean surface difference computed for 15 gap polygons

TAB. 7.5: Comparison of extent and gap lines derived from a flightline using a density grid with 2 m
and 5 m cell-size (LIAN settings: ρmin = 1point/m2, minimum gap surface = 250m2).

FIG. 7.10: Extent and gap lines (ρmin = 1 point/m2, , minimum gap surface = 250m2) computed for
flightline using the CP-DGPS, RTK and SPP navigation solution. The displayed density raster (c =

5 m) and the overlaid point-cloud correspond to the CP-DGPS solution.

7.3.2 Point-cloud Quality Map

Besides the scanning geometry, the point-cloud quality map issued by LIAN should reflect
the impact of the navigation accuracy on the final point accuracy. To test the adequacy of the
inherent model this section presents an evaluation based on data discrepancies between two
adjacent strips (called strip 1 and 2 hereafter) computed based on two different scenarios:

(A) Both strips benefit from good GPS data: The ambiguities can be fixed in the forward
and backward processing.
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(B) Critical GPS data is emulated for strip 2: The resolution of the ambiguities in PP is
partially impossible.

FIG. 7.11 depicts the general layout of this evaluation. The green line indicates the smoothed
navigation RMS error in height of the “original” data (scenario A), whereas the blue line
represents the z position RMS of the data used for scenario B. This dataset was generated by
artificially degrading the original GPS dataset during strip 2 by partial masking of satellite
signals. The original dataset was acquired using the Scan2map-system. The system and flight
characteristics are summarized in TAB. 7.6.

FIG. 7.11: Comparison of the smoothed
navigation Z RMS error for both scenarios.

System Calibration parameters
Boresight σex = σey = 0.002◦, σez =

0.007◦

Leverarm σax = σay = σaz = 0.01m
Intrinsic ALS parameters
Range-finder σρ = 0.02 + 20 ppm
Encoder angle σθ = 0.005◦

Beam divergence ε = 3mrad
Flight parameters
Mean point density d ≈ 6 points/m2

Av. height over
ground

h = 250m

TAB. 7.6: Flight parameters and a-priori system
and calibration accuracies.

Comparison of Quality Maps

FIG. 7.12 shows the quality flags (as dots) computed by GPSQUAL and the quality maps
computed by LIAN for strip 2 in both scenarios. For scenario A, the GPS quality flags remain
good (green colored) throughout strip 2, whereas in scenario B the predicted GPS positioning
quality oscillates between critical and bad (orange and red colored). As the quality map is
based upon a full error propagation using the RT GPS quality flags to scale the position
variances, the quality maps reflect the difference in GPS positioning quality (scenario A:
qi = 0.32 m, scenario B: qi = 0.4 m). The quality maps also demonstrate the spatial non-
homogeneity in point accuracy, entailed by the impact of the scanning geometry and the
varying laser range. For instance, points scanned at the outer borders of the swath have a re-
duced accuracy, explainable by the unfavorable incidence angle as compared to points acquired
in the middle/nadir of the strip, where the laser range is shorter and almost perpendicular to
the terrain.

Evaluation of Strip Differences

For both scenarios height difference grids were computed in the overlapping parts of strip 1
(used as reference strip) and 2 (see FIG. 7.13). Additionally, 3D strip differences were computed
using the ICP-algorithm. This provided global 3D-translation parameters between the two
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FIG. 7.12: RT GPS quality flags (dots) and
q-indicator quality maps computed for strip 2 for

both scenarios.

FIG. 7.13: Height difference grids computed for
the overlapping parts of strip 1 and 2 for both

scenarios.

adjacent strips. TAB. 7.7 shows a summary of the results, where the XYZ-differences computed
by ICP and the Z differences (∆Z) computed by the difference grids can be compared to the
mean quality map values (qi) predicted during the flight (see FIG. 7.12).
The values for the norm (|XY Z|) of the 3D-displacement (computed by ICP) and the mean
quality indicator do not correspond completely, but the order of magnitude is similar. The
difference can be explained by the contribution of the footprint size to the computation of qi:
For an average flying height of 250 m and beam divergence of 3 mrad, the resulting footprint on
the ground is larger than 60 cm, thus significantly contributing to the qi-value. This reduced
spatial resolution is partially recovered by the high point density (6 points/m2). One can
also say that there is a difference of concept: The qi-value represents the 3D accuracy for a
individual laser point, whereas the ICP recovers the differences of two datasets considering
a model match, comparing several hundreds of points at once. Obviously, if the mean point
density is high, mapping the qi-value furnishes a rather too pessimistic estimation of the 3D
accuracy of the complete height model.

Scenario Strip difference on point-cloud computed in PP RT
ICP Grid quality map

∆X ∆Y ∆Z |∆XY Z| ∆Z qi
[m] [m] [m] [m] [m] [m]

A 0.08 0.05 -0.01 0.09 -0.01 0.32
B 0.12 0.18 -0.11 0.24 -0.12 0.40

TAB. 7.7: 3D strip differences (strip 2 - strip 1) computed by ICP, height differences computed by
difference grid and mean RT quality indicator for strip 2.
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7.3.3 Ground Classification and DTM Generation

The accuracy evaluations for point-clouds generated in-flight using RTK have pointed out
that sub-decimeter accuracy is within reach. However, whether the DTM generated in-flight
can reach similar accuracy levels not only depends on the accuracy of the initial point-cloud,
but also on the achieved ground point density (thus ground penetration rate) as well as on
the correctness of the automated ground filtering (see CHAP. 5.3.1). This section assesses the
quality of the ground classification algorithm implemented in LIAN. For this purpose a DTM
automatically generated by LIAN is compared with a DTM computed with a reference ground
classification algorithm (in this case: Terrasolid TerraScan [8]).

FIG. 7.14: Comparison of ground classification algorithms: (A) Original DSM, (B) 1 m DTMtscan,
(C) 1 m DTMlian overlaid with DTM difference map, (D) DTMlian overlaid with DTM quality map.

The letters AB refer to the profiles depicted in FIG. 7.15.

Test Setup and Classification Performance

To assess the quality of the ground classification implemented in LIAN, a dataset with chal-
lenging topography was selected (see FIG. 7.14.A), that includes strongly sloped parts and
varying land cover. FIG. 7.14.B depicts the DTM generated by TerraScan (called DTMtscan

hereafter). FIG. 7.14.C and FIG. 7.14.D show the DTM generated by LIAN (DTMlian). Both
DTM’s were generated automatically applying the default settings of the respective classifi-
cation algorithms (no tuning of parameters for result improvement). FIG. 7.14.C also plots the
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DTM difference grid (DTMtscan − DTMlian). The associated color-coding depicts that the
height differences occur essentially in the strongly sloped part, whereas in the flatter parts
the differences are below 10 cm.
FIG. 7.15 plots the cross-sections AB across the classified point-cloud by LIAN (A) and Terra-
Scan (B). These profiles allow identifying differences in the classification performance: In
the strongly sloped part, the TerraScan classification outperforms LIAN as it recovers more
ground portions within the escarpment. Due to the strong slope in this area (> 80◦), varying
classification results provoke large differences in surface construction (see white dotted lines).
This can provoke height discrepancies reaching several meters. In the less inclined parts, both
algorithms perform almost equally as they separate correctly the vegetation cover from the
bare earth. However, the TerraScan algorithm tends to include isolated low points to the
DTM, that are e.g. caused by laser multi-path (see yellow circle). In TerraScan the selection
of the initial ground points is exclusively based on the search of lowest points within a certain
area [8]. This assumption may lead to “spikes” or “peaks” in the DTM causing large local
height errors [128]. The LIAN algorithm is not affected by this problem, because the terrain
is builded up applying a region-growing process (see CHAP. 6.7.8). There, the initially selected
ground point is only maintained when the search around this point is successful (i.e. delivers
new ground points). This is typically not the case for isolated low points.

FIG. 7.15: Profiles across point-clouds classified by: (A) LIAN algorithm, (B) TerraScan algorithm.

Use of DTM Quality Map

Without visual inspection and correction a DTM generated by automated ground classifica-
tion cannot be considered as error-free. The automated DTM quality assessment (see CHAP.

5.3.3) is implemented in LIAN and allows identifying regions within a DTM that may suffer
of degraded accuracy. FIG. 7.14.D shows the DTM quality map computed by LIAN for the
aforeshown example. Areas with an estimated height reliability index rz < 0.1 m are trans-
parent, whereas areas with poorer reliability are colored according to the legend shown aside.
The comparison of FIG. 7.14.C and FIG. 7.14.D reveals that the DTM quality grid reports poor
quality exactly in these areas where the DTM difference map reveals the most important dis-
crepancies. Hence, the DTM quality map is an essential component to assess the correctness
of a DTM generated automatically in-flight, as it highlights areas where the DTM should not
be used without further data inspection. This methodology is also applicable in PP, where
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e.g. zones requiring manual classification corrections could be identified automatically, thus
drastically reducing the time spent on visual data inspection.

7.4 Computational Performance

To cope with the time-constraints of a RT computational environment, the execution effi-
ciency of the algorithms is crucial. This section investigates the performance (in terms of
computation-time) of the critical components of the in-flight quality assessment tool. All per-
formance tests were carried out using a DELL Latitude 820 laptop (Intel(R) DualCore CPU
T7600 @ 2.33 GHz, 2 GB RAM).

7.4.1 RT Computations

RT Georeferencing

Within the RT processing chain, the DG of laser data is the computationally most demand-
ing task as it has to handle trajectory data at 400 Hz and laser data at 10 kHz. FIG. 7.16
illustrates the performance of LIEOS for georeferencing one million laser measurements in a
local mapping frame. The raw binary data reading and the georeferencing task itself require
about 5 sec (corresponds to a processing rate of approx. 200 kHz). For the tested dataset,
the computation-time was nearly invariant to the different georeferencing methods (coarse,
approximate, rigorous) implemented in LIEOS (see CHAP. 6.6). Simultaneous georeferencing
and data logging increases the processing time. If the data is logged to an ASCII file, the
computation-time exceeds 20 sec (≈ 50 kHz). However, it the data is stored in some optimized
binary format, as typically the case in IQUAL, the slowing-down of the process is moderate,
resulting in a processing rate of approx. 150 kHz. This example shows that in the current
configuration LIEOS is capable of performing RT DG for scanning rates larger than 100 kHz.

FIG. 7.16: Computation-time for georeferencing 1 mio laser measurements with LIEOS.
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RT Data Display

The computation of RT quality indicators used for display HELIPOS (i.e. GPS position and
quality flags, swath borders and laser range all at 1 Hz) requires very little computation-
time. Within the whole process, the most important latency is introduced by the drawing
and rendering of the data on the map (i.e. color-coded dots for GPS positions, polylines for
swath, etc.). Although HELIPOS implements an optimized display refreshment algorithm
where only the part of the map affected by changes is re-drawn, important time delays due
to the graphical refreshment can occur. They can be as long as 1 sec, especially when pan or
zoom function are used in parallel, thus requiring an entire screen update. Nevertheless, these
latencies are principally hardware-dependent and could be reduced by using e.g. computers
with more powerful graphic boards.

7.4.2 Strip-wise Computations

The time-constraints within LIAN are less compelling than those for the aforementioned
modules. LIAN starts the computations only once a flightline is completed. Theoretically,
LIAN analyses do not stringently have to be finished before the end of the next flightline
(see CHAP. 6.7.1). However, for the manageability of the flight, it is preferable to provide all
quality relevant information as fast as possible.

FIG. 7.17: Computation-time for LIAN for point-cloud with 500’000 points.

FIG. 7.17 depicts the computation-time of LIAN for a full quality analysis (using the
default LIAN settings) on a point-cloud with 500’000 points for different optimization scenar-
ios. The lowest horizontal bar indicates the needed time when no algorithmic optimizations
are performed. The upper bars indicate the processing time for the cumulated optimization
steps. For the scenario without code optimization, FIG. 7.17.A illustrates that the “basic” QC
steps, such as data reading and filtering, density grid computation, extent and gap detection
and DSM computation, require only very little computation-time (ca. 5 sec). The predom-
inant part of the computation-time is used for the “advanced” QC steps, such as ground
classification (ca. 65 sec) and error propagation (ca. 35 sec). In the sequel, several strategies
to reduce the computational burden of the two latter processing steps are presented.
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Aggregated Normal Computation (B)

Both the analysis of the scanning geometry and the ground classification algorithm require
the computation of local normals for every point. Within LIAN, this is performed by com-
puting the local covariance matrix for the points within a certain neighborhood Np of size k
and subsequent principal component analysis (PCA) (see CHAP. 3.3.3). If the computation is
rigorous, the covariance matrix and the PCA have to be performed for every single laser point.
However, in cases where the local curvature is low, the change in normal vector orientation
for neighboring points remains minimal. FIG. 7.18 illustrates a method taking benefit of this
property: If the local curvature Mcc (computed using EQN. 3.3.7) of a point pi is smaller than
a certain threshold Mccmax, the computed normal npi can be assigned to the other points
that are within a certain distance dmax to the original point (see ALG. 7.1). Thus, for all points
within the neighborhood Np⊥ no covariance computation is necessary anymore. For the ex-
ample presented in FIG. 7.17.B the reduction of computation-time is fairly low (time reduction
of 3.2 sec or ≈ 3%). However, for datasets with smooth topography the time reduction can
reach up to 20% of the total processing time.

FIG. 7.18: Local normal computation by aggregation.

Data Tiling (C)

Most algorithms used in the ground classification and error propagation step have a non-
linear relationship between the size n of the dataset and the computation-time (see e.g.
red line in FIG. 7.19). For instance, the construction of a kd-tree for spatial indexing (see
CHAP. 3.3.1), necessary prior to any data query, has a logarithmic growth in computation-
time (O(n log n)). In order to bound the time for spatial indexing and data querying, LIAN
implements a dataset tiling procedure, where the point-cloud is subdivided into regular data
blocks (typically 50’000 points) based on the timestamp (see FIG. 7.20). To avoid incoherent
results at the tile borders, the tiles are defined with a certain overlap (typically 5000 points).
Subsequently, the different algorithms (i.e. ground classification) are applied tile-by-tile and
the point-cloud is only merged at the end of the process. This procedure allows keeping the
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Algorithm 7.1 Fast normal computation by aggregation
Require: Dataset Pn ∈ R3, parameters k,Mccmax, dmax
IPn

= GetAllPointIndexes(Pn) {Initially use all points to compute normals}
while 1 do

if IPn
= [ ] then

break {All normals are computed, processing is over}
end if
i = IPn

[1] {Get first index in list of points with no normal assigned until now}
In = GetNeighborPointIndexes(p[i], k)
COVi = ComputeCovarianceMatrix(p[In])
ni = ComputeNormal(COVi)
Mcci = ComputeLocalCurvature(COVi)
if Mcci < Mccmax then

for j = 1 : k do
if distance(p[i],p[In[j]]) < dmax then

n(In[j]) = ni {Assign normal of center point to neighbor}
RemoveFromIndexList(IPn , In[j]) {Remove index to avoid recomputation of normal}

end if
end for

end if
end while

computation-time linearly proportional to the size of the dataset (see dotted line in FIG.

7.19). The therewith achievable increase in efficiency can also be seen in FIG. 7.17.C, where
the computation-time is reduced by more than 40% when implementing the tiling.

FIG. 7.19: Computation time for ground
classification without and with tiling.

FIG. 7.20: Example of point-cloud tiling by
timestamp.

Factorization of Covariance Computation (D)

For the error propagation, LIAN applies EQN. 4.4.2 to compute the 3×3 covariance matrix for
every laser point. Accordingly, for each point a matrix multiplication of complexity O(2n2p)
([n × p] × [p × p] × [p × n], where n=3 and p=14) has to be performed. The construction
of the qi-indicator (see EQN. 4.6.1) only requires the diagonal elements (variances) of the
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covariance matrix. Hence, the off-diagonal elements are of no use and their computation is
not necessary. LIAN adopts a strategy to compute directly the diagonal elements. This is
achieved by performing a complete factorization and aggregation of repetitive terms for the
matrix multiplication. Coding these terms directly (as simple multiplications) for the matrix
elements of interest, reduces the computational burden for the covariance matrix estimate
by more than 90%. For the total processing chain, this results in further reduction of the
computation-time of almost 30% (see FIG. 7.17.D).

Selective Data Thinning (E)

Within LIAN, the individual quality indicators (σnavxy , σ
nav
z , σgeomxy , σgeomz , qi), computed for

every laser point, are used to generate a quality map of a given cell-size (typically 1-2 m).
Applying the full error propagation to a dataset with much higher sampling rate than the
output quality map is not optimal. Moreover, the point-clouds are often non-homogeneous in
point density. FIG. 7.21.A depicts such situation, where due to the changing forward velocity
the scan lines are either “stretched apart” or “squeezed together”. The selective thinning
algorithm implemented in LIAN overcomes this problem by removing points that are within
a certain spherical neighborhood of the query point (FIG. 7.21.B). This has several benefits:
First, the amount of data that has to be fed into the propagation engine is strongly reduced.
Second, the dataset is homogenized and has a sampling rate close to the desired cell-size for
the quality map. For the example illustrated in FIG. 7.17.E, the selective thinning reduces the
computation-time by more than 5 sec (13% improvement).

FIG. 7.21: Homogenization of point-cloud density by selective thinning: (A) Original dataset, (B)
Thinned dataset (color-coded by elevation).

Data Skipping (F)

For the purpose of in-flight quality assessment, processing the ALS data at the full data rate
is not implicitly required. The data skipping can already occur directly in the georeferencing
step. However, the performance evaluation presented in CHAP. 7.4.1 has proven that LIEOS
can handle the initial data rate of 10 kHz for the Scan2map-system without problem. Thus,
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it is advisable to perform the data skipping only when reading the point-cloud data to LIAN.
This has the substantial benefit that the point-cloud computed in-flight is complete and
could directly be used in the PP-step.
FIG. 7.17.F highlights the reduction in computation-time when reading only every third
laser point (skip-factor 3) to LIAN (-21.5 sec or 57% improvement compared to scenario
E). Nevertheless, the reduction in computation-time comes together with a loss of spatial
data resolution and probably also reduction in the assessment accuracy. Hence, the skipping
factor has to be selected appropriatley by maximizing the computational efficiency without
substantial loss in the pertinency of the data analysis. If the approximate flying height,
carrier speed and PRF of the laser are known the achievable point density can be predicted.
Coupling this information with the current LIAN settings (i.e. cell-size of density grid, DSM,
DTM and quality map) the optimal skipping value can be determined prior to every mission.
For standard Scan2map-missions such skipping factor typically spans between 2 and 4.

Datasets Grid difference
No optimization - cumulated optimizations (B-F)
∆Z σZ RMSZ |∆Zmax|
[m] [m] [m] [m]

Density grid -0.003 0.16 0.16 1.04
DTM grid -0.11 0.35 0.37 15.7
Quality grid 0.002 0.09 0.09 9.1

TAB. 7.8: Comparison of LIAN result grid computed by default algorithm (no computation
optimization) and using all optimizations (including skip-factor 3).

TAB. 7.8 assesses the compliance of three LIAN result grids (density grid, DTM grid and
quality grid) computed once with configuration FIG. 7.17.A (no optimization applied) and
once with configuration FIG. 7.17.F (cumulated optimizations). Although the computation-
time between the two scenarios is reduced by a factor 6.5 (from 105.2 sec to 16.1 sec), the
differences for the density grid and the quality grid are minimal and irrelevant for the purpose
of the in-flight quality assessment. As the extent and gap computations are based on the
density grid, their validity is not altered by initial point skipping.
The DTM grid is more affected by the quality degradation due to data skipping. As the
amount of initial points is drastically reduced, the ground classification in sloped areas
becomes problematic. Accordingly, the DTM accuracy principally suffers in those areas. Yet,
the computation of the DTM quality map (as shown in FIG. 7.14.D) allows pinpointing such
areas.
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Chapter 8

Conclusion and Perspectives

This research aimed at developing a methodology to perform in-flight processing and quality
assessment of Airborne Laser Scanning (ALS) data. The theoretical concepts have been pre-
sented, followed by the description of the implementation in a fully functional software and by
performance investigations using emulated and experimental testings. This section first high-
lights the major contributions of the author. Secondly the performance of the developed system
is summarized. Finally, perspectives for future developments and research activities are given.

8.1 Summary of Contributions

The achievement of in-flight ALS data processing and quality assessment capabilities required
the development of new methods both on a theoretical/conceptual level and on an algorith-
mic/engineering level. Accordingly, the main contributions of the author can be divided in
these two categories:

Theoretical/conceptual contributions

� The research presented a methodology to perform a full error propagation for ALS data
based on a 14 error states model. As a novelty, the functional model is constructed by
direct analytical derivation, resulting in highly increased processing speed as compared
to numerical derivation by Taylor series expansion.

� A novel approach to assess the impact of the incidence angle and the beamwidth on
the total ALS error budget has been introduced. The scanning geometry is assessed
quantitatively by estimating the local terrain normal directly from the laser point-cloud
by means of principal component analysis of the covariance matrix. This information
provides the missing link to the subsequent computation of the 3D footprint.

� This research has introduced the concept of an individual quality indicator for every
single laser measurement that reflects not only the georeferencing quality but also the
scanning geometry. Its validity has been assessed in simulated and experimental test-
ing. It was shown that such quality indicator can be very valuable within ALS data
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processing, e.g. for the generation of quality metadata, for strip adjustment, ground
classification and surface modeling.

� Based on the Iterative Closest Point (ICP) algorithm, a methodology to assess the inter-
nal ALS data accuracy has been developed. Contrary to strip difference maps reporting
only height differences, this method is capable of detecting translational and rotational
discrepancies in strip overlaps. In addition, using the ICP stability measure, a concept
to perform automated ICP sample area selection has been disclosed.

� An innovative method to perform automated DTM quality assessment has been dis-
cussed. The proposed procedure enables the construction of a DTM quality map. This
map regroups the main factors influencing DTM quality such as point accuracy and
density, terrain slope, ground classification correctness and sampling distance. Addi-
tionally, the usability of the DTM quality map to perform weighted grid merging has
been demonstrated.

Algorithmic/engineering contributions

� A mission planner module has been developed that allows the computation of vir-
tual scan coverages for given flightline and scanner characteristics based on a coarse
DTM. The tool also features a point-cloud accuracy estimation including the scanning
geometry and a rigorous spatio-temporal GPS constellation modeling for a planned
trajectory.

� The in-flight quality assessment tool IQUAL has been described. A modular design ap-
proach has been proposed, that allows scalable distribution of tasks across a network of
computers. Specially designed TCP/IP communication protocols, adapted for optimized
data exchange between modules in real-time (RT), have been developed.

� As the core of the research, the LiDAR Analysis module (LIAN) was presented. The
module incorporates basic QA/QC (Quality Assurance/Quality Control) functionalities,
such as density grid computation, automated ALS data extent and gaps detection, DSM
hillshade generation and image footprint computation. Advanced in-flight QC includes
automated ground classification and DTM generation, computation of strip differences
and an error propagation engine, yielding point and surface quality maps.
An innovative workflow has been designed that handles the import, export and merge
of intermediate strip-wise QC results. This allows coping with time-constraints imposed
by the in-flight processing.

� The HELIPOS module, responsible for the centralized monitoring and control of all
IQUAL functionalities, has been presented. HELIPOS has full Flight Management Sys-
tem (FMS) capabilities and excels with versatile possibilities for displaying quality-
relevant data in RT or on operators demand.

� Several strategies to improve the computational efficiency of RT point-cloud processing
have been suggested. This includes methods like aggregated normal computation, tiling,
covariance factorization and data thinning. Their successful implementation into LIAN
has been demonstrated by experimental testings.
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8.2 Conclusions

In-flight QA/QC Functionalities. The current industry-standard QA/QC approach for
ALS only considers the evaluation of the most important quality parameters (i.e. homogeneity,
completeness and accuracy) in post-processing (PP). This research has proposed a tool called
IQUAL that achieves ALS data processing and full quality assessment directly during data
acquisition. Ordered by their operation mode (latency), the most important functionalities of
IQUAL are:

(A) RT Computations

� RT GPS quality flags computation

� RT GPS/INS integration

� RT georeferencing and swath display

(B) Delayed or strip-wise computations

� Data extent and gap detection

� Image footprint detection

� DSM and hillshade generation

� Automated ground classification

� Full error propagation and point quality map generation

� DTM and DTM quality map generation

Besides the RT GPS/INS integration and the RT swath display, all other functionalities are
novelties and do not exist in any commercial FMS suite known to the author.

Integration into the Scan2map-system. The developed in-flight QA/QC tool (IQUAL)
has been embedded into the ALS system called Scan2map. The system design was tailored to
the needs of challenging close-range ALS missions, characterized by complex flight-plans and
changing sensor orientation (nadir, oblique). IQUAL has been successfully tested in many
commercial survey missions using the Scan2map-system. The user-friendliness and the er-
gonomics of the proposed GUI was evaluated and validated. These evaluations have also
shown that the provided QC information is necessary to assure data acquisition satisfying
the requirements in terms of data coverage, accuracy and homogeneity. By enabling such
analysis in-flight, the operator is immediately informed if a part of the mission is affected
by unacceptable quality degradation. Adequate countermeasures can be taken immediately
during data acquisition (e.g. re-flying a flightline, adopting the sensor orientation).

SPP Operating Mode. The evaluation of several test flights operating in SPP mode
have illustrated that the achievable absolute accuracy for a point-cloud generated in-flight is
situated at a 2 to 4 m level, whereas the relative accuracy is typically at a sub-meter level.
Further evaluations have shown that such accuracy proved to be largely sufficient to control
the completeness of the scanning mission in terms of its coverage and density.
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Additional experiments have depicted that the adopted strategy to anticipate the final quality
of post-processed ALS datasets yields conclusive results. A first evaluation has demonstrated
the capacities of GPSQUAL to identify parts of a flight that might be problematic in CP-
DGPS. The point quality map generated in-flight was able to predict the quality deterioration
of the point-cloud computed in PP.

RTK Operating Mode. Several test flights using RTK have shown that under optimal
conditions, point-clouds generated in-flight can reach sub-decimeter accuracy. Additionally,
the integrity control of the GPS code and phase measurements is more reliable by solving the
ambiguities directly on-the-fly. As all the necessary processing steps needed for producing a
final geo-product can be performed in-flight, the delivery of a final mapping product directly
after landing becomes possible without substantial loss of accuracy. Hence, the potential
benefits using RTK technology for ALS missions are multiple:

� As the whole chain of the data processing can be automated, ALS becomes more eco-
nomic and faster in production.

� The quality of all data sources can be controlled integrally and directly within the flight.

� The technology is potentially viable for a new type of monitoring missions where short
reaction and hand-over time are crucial (i.e. natural hazards, homeland security, etc.).

System Performance. The performance evaluations have shown that LIEOS could per-
form RT georeferencing for a LiDAR with a PRF up to 100 kHz.
By applying initial data skipping the LIAN performances are scalable. The basic QC opera-
tions, such as data extent and gap detection, are very fast (i.e. less than 5 sec for 0.5 million
points) and could cope with higher data rates. The advanced QC functionalities, such as
ground classification and error propagation require more computation time (i.e. about 25 sec
for 0.5 million points). Their applicability may be limited for systems with data rates exceed-
ing 50 kHz.
It is important to mention that the performances of the system are largely depending on
the employed processors. The use of more powerful computers (i.e. industrial racks) could
certainly reduce the computation time drastically and would render possible the use of full
IQUAL functionalities for much higher data rates.

Portability. The necessity of performing QA/QC as early as possible in the processing
chain is acknowledged by the ALS community (e.g. [30]). Hence, the availability of a tool
such as IQUAL would most certainly represent a substantial economic benefit for all types
of ALS systems. Most likely, ALS service providers will expect such functionality for future
generations of ALS systems.
Although IQUAL in its current configuration is tightly connected to the hardware devices
used in the Scan2map-system, the whole architecture was designed to achieve most optimal
portability and scalability. Thus, adopting IQUAL for other commercial-off-the-shelf systems
is possible, under the condition that the system providers unfold the necessary information
to interface their hardware.
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8.3 Perspectives

During this work, several new scientific and engineering challenges have emerged that would
make further investigations worthwhile.

Improvement of Point-cloud Post-Processing. Although RT processing was the driv-
ing force behind the developments in this research, the majority of the presented tools are as
valuable in RT as in PP. The availability of the q-indicator may lead to a paradigm change in
point-cloud processing: Today, most point-cloud processing algorithms misleadingly assume
a homogeneous point-cloud accuracy. Knowing the variance for each individual point creates
new possibilities:

� Automated generation of comprehensive, complete and accurate point-cloud and surface
quality metadata.

� Improvement of ground filtering and segmentation algorithms.

� Optimization of DSM/DTM interpolation algorithms.

� Possibility to estimate the height model accuracies without use of external control mea-
surements.

� Improvements in strip adjustment procedures.

This research has already delivered some indicative examples. However, the potential of point-
wise variance information to improve processing and QA/QC of ALS data has not nearly been
exhausted.

Automated Guidance. In its current design, IQUAL is limited to visually displaying
quality relevant information. Based on the provided information, the operator has to decide
without assistance by the system what might be his optimal reaction. Further developments
should incorporate an anticipation and correction strategy. The software could e.g. predict
degrading GPS constellation considering the broadcast ephemeris, a coarse DTM and the
flight-plan. Alternatively, an adaptation of the flight-plan may be automatically proposed if
e.g. an insufficient strip overlap is detected. In a further step, such system could be adapted to
perform automated data acquisition and quality control for mapping missions with unmanned
autonomous vehicles (UAV).

Increase of Computational Speed. The current computation-time is the limiting factor
for the applicability of the in-flight QA/QC concepts. Especially the point-cloud data querying
and derivation of variance information (i.e. data classification, error propagation) requires high
computing power. Graphics Processing Units (GPUs) inside graphics cards might be a solution
as they have tremendous parallel processing capabilities. For example [40] demonstrates that
parallel processing using a standard graphic card accelerates the k-nearest neighbor search
(one of the most frequent operations in LIAN) up to a factor of 120. Adapting the software
to parallel processing would open the field to in-flight data analysis for ALS data originating
from systems with much higher PRF or even recording the full-waveform signal.
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[124] R. B. Roth and J. Thompson. PRACTICAL APPLICATION OF MULTIPLE
PULSE IN AIR (MPIA) LIDAR IN LARGE-AREA SURVEYS. In Proceed-
ings of the XXI ISPRS Congress, Beijing, China, 2008.

[125] M. Rutzinger, B. Hoefle, and N. Pfeifer. Detection of high urban vegetation with
airborne laser scanning data. In ForestSAT07, Montpellier (France), May 2007.

[126] C. Satirapod and P. Homniam. GPS Precise Point Positioning Software for
Ground Control Point Establishment in Remote Sensing Applications. Jour-
nal of Surveying Engineering (ASCE), 132(1):11–14, 2006.

[127] P. Schaer. MissionPlanner: Software for flight planification for Scan2map-
system. Swiss Federal Institute of Technology, Lausanne, 2008.

151



Bibliography

[128] P. Schaer, J. Skaloud, S. Landtwing, and K. Legat. Accuracy Estimation for Laser
Point Cloud including Scanning Geometry. In 5th International Symposium on
Mobile Mapping Technology (MMT2007), Padua, Italy, 2007.

[129] P. Schaer, J. Skaloud, Y. Stebler, P. Tomé, and R. Stengele. Airborne LiDAR: In-
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Appendix A

Derivation of Sub-matrices

The ALS observation equation for an arbitrary laser point xp expressed in an arbitrary map-
ping frame m can be written as:

xmp =

XY
Z

m

+ Rm
b (r, p, y)

Rb
s (ex, ey, ez)ρ

sin θ
0

cos θ

+

axay
az

b (A.1)

where
Rm

b (r, p, y) is the attitude matrix from the IMU body frame to the mapping frame
parametrized by roll, pitch and yaw.

Rb
s (ex, ey, ez) is the boresight matrix describing the angular offsets between the body

frame and ALS frame

ρ, θ are the range and encoder angle measurements, respectively, of the laser
scanner

[ax, ay, az]T is the leverarm from the IMU center to the GPS antenna expressed in
the b-frame

For the purpose of the error analysis, 14 error states are retained:

� 3 positioning errors: σX , σY , σZ

� 3 attitude errors: σr, σp, σy

� 3 leverarm calibration errors: σax , σay , σaz

� 3 boresight calibration errors: σex , σey , σez

� 2 internal laser range-finder errors: σρ, σθ

Accordingly, the functional model can be written as

F
3×14

= [Fpos|Fatt|Fleverarm|Fboresight|Frange|Fencoder] (A.2)

For simplification of the calculations the m-frame is defined as local tangent plane, with East,
North and Up component.
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Derivation of Sub-matrices

Auxiliary Expressions

Computations in the s-frame

Computation of position vector xs in the scanner frame

xs =

ρ sin(θ)
0

ρ cos(θ)

 (A.3)

Computations in b-frame

Assuming a mounting matrix (Tb
s = I3), and small angular displacements (< 1◦), the boresight

matrix Rb
s can be modeled by a skew-symmetric matrix with the remaining misalignments in

roll(ex), pitch(ey) and yaw(ez):

Rb
s =

 1 −ez ey
ez 1 −ex
−ey ex 1

 (A.4)

Using EQN. A.3 and EQN. A.4 the position vector xb in the body-frame can be expressed such
as:

xb =

axay
az

b

+ Rb
sx
s =

 ax + ρ sin(θ) + eyρ cos(θ)
ay + ezρ sin(θ)− exρ cos(θ)
az − eyρ sin(θ) + ρ cos(θ)

 (A.5)

Re-arranging the elements of a 3D vector in a 3D matrix such as Xb∗ = [xb×] leads to

Xb =

 0 −xb3 xb2
xb3 0 −xb1
−xb2 xb1 0

 (A.6)

Computations in the l-frame (NED)

The rotation matrix from the b-frame to the l-frame is the transpose of Rb
l (see EQN. 2.2.4):

Rl
b =

[
cos(p) cos(y) sin(r) sin(p) cos(y)− cos(r) sin(y) cos(r) sin(p) cos(y) + sin(r) sin(y)
cos(p) sin(y) sin(r) sin(p) sin(y) + cos(r) cos(y) cos(r) sin(p) sin(y)− sin(r) cos(y)
− sin(p) sin(r) cos(p) cos(r) cos(p)

]
(A.7)

The position vector xl in the local-level (ned) (mapping) frame can be expressed as:

xl = Rl
bx
b (A.8)

By re-arranging the elements of a 3D vector in a 3D matrix such as: Xl∗ = [xl×]

Xl =

 0 −xl3 xl2
xl3 0 −xl1
−xl2 xl1 0

 (A.9)
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Computations in the m-frame

Approximating the mapping frame by the ENU frame, the rotation matrix to pass from the
b-frame to the m-frame is given by

Rm
b = TENU

NEDRl
b (A.10)

where TENU
NED is the rotation matrix to express the coordinates in the local tangent plane

frame:

TENU
NED =

0 1 0
1 0 0
0 0 −1

 (A.11)

The rotation matrix relating the s-frame to the m-frame is given by

Rm
s = Rm

b Rb
s (A.12)

Euler Angle Derivatives

The transformation matrix to express the angular rate vector such as ∂Rb
l = Rb

lΨ
l
bl can be

written as:

Ψl
bl =

− cos(p) cos(y) sin(y) 0
− cos(p) sin(y) − cos(y) 0

sin(p) 0 −1

 (A.13)

The angular rate vector to express the derivatives of the boresight angles (∂Rb
s = Rb

sΨ
s
bs)

takes the following form:

Ψs
bs =

− cos(β2) cos(β3) sin(β3) 0
− cos(β2) sin(β3) − cos(β3) 0

sin(β2) 0 −1

 (A.14)

where the boresight angles β1, β2, β3 can be extracted from Rb
s:

β1 = atan2
(

Rb
s[3, 2]

Rb
s[3, 3]

)
= atan2(ex) (A.15)

β2 = atan2

(
−Rb

s[3, 1]√
Rb
s[1, 1]2 + Rb

s[2, 1]2

)
= atan2

(
−ey√
1 + e2x

)

β3 = atan2
(

Rb
s[2, 1]

Rb
s[1, 1]

)
= atan2(ez)

159



Derivation of Sub-matrices
P

a
rt

ia
l

d
e
ri

v
a
ti

v
e
s

U
si

ng
th

e
au

xi
lia

ry
ex

pr
es

si
on

s
in

tr
od

uc
ed

be
fo

re
,

th
e

fu
nc

ti
on

al
m

od
el

F
ca

n
be

ex
pr

es
se

d
as

th
e

pa
rt

ia
l

de
ri

va
ti

ve
s

w
it

h
re

sp
ec

t
to

th
e

di
ffe

re
nt

er
ro

r
so

ur
ce

s.

P
os

it
io

n
u

n
ce

rt
ai

n
ti

es

F
p
o
s

3
×

3

=
[ ∂x p ∂

X
∂
x

p

∂
Y

∂
x

p

∂
Z

] =
[ 10

0
0

1
0

0
0

1

]
(A

.1
6)

A
tt

it
u

d
e

u
n

ce
rt

ai
n
ti

es

F
a
tt

3
×

3
=
[ ∂x p ∂

r
∂
x

p

∂
p

∂
x

p

∂
y

] =
T
E
N
U

N
E
D

X
l Ψ

l bl
(A

.1
7)

F
a

tt
[1
,1

]
=
−

(s
in

(p
)(
a

x
+
ρ

si
n
(θ

))
−

si
n
(r

)
co

s(
p
)a

y
−

co
s(
r
)
co

s(
p
)(
a

z
+
ρ

co
s(
θ
))

)
co

s(
p
)
co

s(
y
)+

(c
o
s(
p
)
co

s(
y
)(
a

x
+
ρ

si
n
(θ

))
+

(s
in

(r
)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
a

y
+

(c
o
s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
(a

z
+
ρ

co
s(
θ
))

)
si

n
(p

)

F
a

tt
[1
,2

]
=

(s
in

(p
)(
a

x
+
ρ

si
n
(θ

))
−

si
n
(r

)
co

s(
p
)a

y
−

co
s(
r
)
co

s(
p
)(
a

z
+
ρ

co
s(
θ
))

)
si

n
(y

)

F
a

tt
[1
,3

]
=
−

co
s(
p
)
co

s(
y
)(
a

x
+
ρ

si
n
(θ

))
−

(s
in

(r
)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
a

y
−

(c
o
s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
(a

z
+
ρ

co
s(
θ
))

F
a

tt
[2
,1

]
=
−

(−
si

n
(p

)(
a

x
+
ρ

si
n
(θ

))
+

si
n
(r

)
co

s(
p
)a

y
+

co
s(
r
)
co

s(
p
)(
a

z
+
ρ

co
s(
θ
))

)
co

s(
p
)
si

n
(y

)+

(−
co

s(
p
)
si

n
(y

)(
a

x
+
ρ

si
n
(θ

))
−

(s
in

(r
)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))
a

y
−

(c
o
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))

(a
z

+
ρ

co
s(
θ
))

)
si

n
(p

)

F
a

tt
[2
,2

]
=
−

(−
si

n
(p

)(
a

x
+
ρ

si
n
(θ

))
+

si
n
(r

)
co

s(
p
)a

y
+

co
s(
r
)
co

s(
p
)(
a

z
+
ρ

co
s(
θ
))

)
co

s(
y
)

F
a

tt
[2
,3

]
=

co
s(
p
)
si

n
(y

)(
a

x
+
ρ

si
n
(θ

))
+

(s
in

(r
)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))
a

y
+

(c
o
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))

(a
z

+
ρ

co
s(
θ
))

F
a

tt
[3
,1

]
=
−

(−
co

s(
p
)
si

n
(y

)(
a

x
+
ρ

si
n
(θ

))
−

(s
in

(r
)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))
a

y
−

(c
o
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))

(a
z

+
ρ

co
s(
θ
))

)
co

s(
p
)
co

s(
y
)−

(c
o
s(
p
)
co

s(
y
)(
a

x
+
ρ

si
n
(θ

))
+

(s
in

(r
)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
a

y
+

(c
o
s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
(a

z
+
ρ

co
s(
θ
))

)
co

s(
p
)
si

n
(y

)

F
a

tt
[3
,2

]
=

(−
co

s(
p
)
si

n
(y

)(
a

x
+
ρ

si
n
(θ

))
−

(s
in

(r
)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))
a

y
−

(c
o
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))

(a
z

+
ρ

co
s(
θ
))

)
si

n
(y

)−
(c

o
s(
p
)
co

s(
y
)(
a

x
+
ρ

si
n
(θ

))
+

(s
in

(r
)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
a

y
+

(c
o
s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
(a

z
+
ρ

co
s(
θ
))

)
co

s(
y
)

F
a

tt
[3
,3

]
=

0

L
ev

er
ar

m
u

n
ce

rt
ai

n
ti

es

F
le
v
er
a
r
m

3
×

3
=
[ ∂x p ∂

a
x

∂
x

p

∂
a

y

∂
x

p

∂
a

z

] =
R
m b

=
[ cos(

p
)
si

n
(y

)
si

n
(r

)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
)

co
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
)

co
s(
p
)
co

s(
y
)

si
n
(r

)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

)
co

s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

)
si

n
(p

)
−

si
n
(r

)
co

s(
p
)

−
co

s(
r
)
co

s(
p
)

]
(A

.1
8)

160



B
or

es
ig

h
t

u
n

ce
rt

ai
n
ti

es

F
bo
r
e

3
×

3
=
[ ∂x ∂

e x
∂
x

∂
e y

∂
x

∂
e z

] =
R
m b

X
b
Ψ
s bs

(A
.1

9)

F
b
o
r
e
[1
,1

]
=
−

((
si

n
(r

)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))

(a
z
−
e y
ρ

si
n
(θ

)
+
ρ

co
s(
θ
))

+
(c

o
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))

(−
a

y
−
e z
ρ

si
n
(θ

)
+
e x
ρ

co
s(
θ
))

)
co

s(
β
2
)
co

s(
β
3
)−

(c
o
s(
p
)
si

n
(y

)(
−
a

z
+
e y
ρ

si
n
(θ

)
−
ρ

co
s(
θ
))

+
(c

o
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))

(a
x

+
ρ

si
n
(θ

)
+
e y
ρ

co
s(
θ
))

)
co

s(
β
2
)
si

n
(β

3
)+

(c
o
s(
p
)
si

n
(y

)(
a

y
+
e z
ρ

si
n
(θ

)
−
e x
ρ

co
s(
θ
))

+
(s

in
(r

)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))

(−
a

x
−
ρ

si
n
(θ

)
−
e y
ρ

co
s(
θ
))

)
si

n
(β

2
)

F
b
o
r
e
[1
,2

]
=

((
si

n
(r

)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))

(a
z
−
e y
ρ

si
n
(θ

)
+
ρ

co
s(
θ
))

+
(c

o
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))

(−
a

y
−
e z
ρ

si
n
(θ

)
+
e x
ρ

co
s(
θ
))

)
si

n
(β

3
)−

(c
o
s(
p
)
si

n
(y

)(
−
a

z
+
e y
ρ

si
n
(θ

)
−
ρ

co
s(
θ
))

+
(c

o
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))

(a
x

+
ρ

si
n
(θ

)
+
e y
ρ

co
s(
θ
))

)
co

s(
β
3
)

F
b
o
r
e
[1
,3

]
=
−

co
s(
p
)
si

n
(y

)(
a

y
+
e z
ρ

si
n
(θ

)
−
e x
ρ

co
s(
θ
))
−

(s
in

(r
)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))

(−
a

x
−
ρ

si
n
(θ

)
−
e y
ρ

co
s(
θ
))

F
b
o
r
e
[2
,1

]
=
−

((
si

n
(r

)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
(a

z
−
e y
ρ

si
n
(θ

)
+
ρ

co
s(
θ
))

+
(c

o
s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
(−
a

y
−
e z
ρ

si
n
(θ

)
+
e x
ρ

co
s(
θ
))

)
co

s(
β
2
)
co

s(
β
3
)−

(c
o
s(
p
)
co

s(
y
)(
−
a

z
+
e y
ρ

si
n
(θ

)
−
ρ

co
s(
θ
))

+
(c

o
s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
(a

x
+
ρ

si
n
(θ

)
+
e y
ρ

co
s(
θ
))

)
co

s(
β
2
)
si

n
(β

3
)+

(c
o
s(
p
)
co

s(
y
)(
a

y
+
e z
ρ

si
n
(θ

)
−
e x
ρ

co
s(
θ
))

+
(s

in
(r

)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
(−
a

x
−
ρ

si
n
(θ

)
−
e y
ρ

co
s(
θ
))

)
si

n
(β

2
)

F
b
o
r
e
[2
,2

]
=

((
si

n
(r

)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
(a

z
−
e y
ρ

si
n
(θ

)
+
ρ

co
s(
θ
))

+
(c

o
s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
(−
a

y
−
e z
ρ

si
n
(θ

)
+
e x
ρ

co
s(
θ
))

)
si

n
(β

3
)−

(c
o
s(
p
)
co

s(
y
)(
−
a

z
+
e y
ρ

si
n
(θ

)
−
ρ

co
s(
θ
))

+
(c

o
s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
(a

x
+
ρ

si
n
(θ

)
+
e y
ρ

co
s(
θ
))

)
co

s(
β
3
)

F
b
o
r
e
[2
,3

]
=
−

co
s(
p
)
co

s(
y
)(
a

y
+
e z
ρ

si
n
(θ

)
−
e x
ρ

co
s(
θ
))
−

(s
in

(r
)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
(−
a

x
−
ρ

si
n
(θ

)
−
e y
ρ

co
s(
θ
))

F
b
o
r
e
[3
,1

]
=
−

(−
si

n
(r

)
co

s(
p
)(
a

z
−
e y
ρ

si
n
(θ

)
+
ρ

co
s(
θ
))
−

co
s(
r
)
co

s(
p
)(
−
a

y
−
e z
ρ

si
n
(θ

)
+
e x
ρ

co
s(
θ
))

)
co

s(
β
2
)
co

s(
β
3
)−

(s
in

(p
)(
−
a

z
+
e y
ρ

si
n
(θ

)
−
ρ

co
s(
θ
))
−

co
s(
r
)
co

s(
p
)(
a

x
+
ρ

si
n
(θ

)
+
e y
ρ

co
s(
θ
))

)
co

s(
β
2
)
si

n
(β

3
)+

(s
in

(p
)(
a

y
+
e z
ρ

si
n
(θ

)
−
e x
ρ

co
s(
θ
))
−

si
n
(r

)
co

s(
p
)(
−
a

x
−
ρ

si
n
(θ

)
−
e y
ρ

co
s(
θ
))

)
si

n
(β

2
)

F
b
o
r
e
[3
,2

]
=

(−
si

n
(r

)
co

s(
p
)(
a

z
−
e y
ρ

si
n
(θ

)
+
ρ

co
s(
θ
))
−

co
s(
r
)
co

s(
p
)(
−
a

y
−
e z
ρ

si
n
(θ

)
+
e x
ρ

co
s(
θ
))

)
si

n
(β

3
)−

(s
in

(p
)(
−
a

z
+
e y
ρ

si
n
(θ

)
−
ρ

co
s(
θ
))
−

co
s(
r
)
co

s(
p
)(
a

x
+
ρ

si
n
(θ

)
+
e y
ρ

co
s(
θ
))

)
co

s(
β
3
)

F
b
o
r
e
[3
,3

]
=
−

si
n
(p

)(
a

y
+
e z
ρ

si
n
(θ

)
−
e x
ρ

co
s(
θ
))

+
si

n
(r

)
co

s(
p
)(
−
a

x
−
ρ

si
n
(θ

)
−
e y
ρ

co
s(
θ
))

L
as

er
ra

n
ge

u
n

ce
rt

ai
n
ti

es

F
r
a
n
g
e

3
×

1

=
[ ∂x p ∂

ρ

] =
R
m s

 si
n
θ

0
co

sθ

 
(A

.2
0)

F
r
a

n
g
e
[1

]
=

(c
o
s(
p
)
si

n
(y

)
+

(s
in

(r
)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))
e z
−

(c
o
s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))
e y

)
si

n
(θ

)+

(c
o
s(
p
)
si

n
(y

)e
y
−

(s
in

(r
)
si

n
(p

)
si

n
(y

)
+

co
s(
r
)
co

s(
y
))
e x

+
co

s(
r
)
si

n
(p

)
si

n
(y

)
−

si
n
(r

)
co

s(
y
))

co
s(
θ
)

F
r
a

n
g
e
[2

]
=

(c
o
s(
p
)
co

s(
y
)
+

(s
in

(r
)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
e z
−

(c
o
s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
e y

)
si

n
(θ

)+

(c
o
s(
p
)
co

s(
y
)e

y
−

(s
in

(r
)
si

n
(p

)
co

s(
y
)
−

co
s(
r
)
si

n
(y

))
e x

+
co

s(
r
)
si

n
(p

)
co

s(
y
)
+

si
n
(r

)
si

n
(y

))
co

s(
θ
)

F
r
a

n
g
e
[3

]
=

(s
in

(p
)
−

si
n
(r

)
co

s(
p
)e

z
+

co
s(
r
)
co

s(
p
)e

y
)
si

n
(θ

)
+

(s
in

(p
)e

y
+

si
n
(r

)
co

s(
p
)e

x
−

co
s(
r
)
co

s(
p
))

co
s(
θ
)

161



Derivation of Sub-matrices
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Appendix B

Computation of 3D Laser Footprint

A point x on the cone with origin O must satisfy the condition:

[x−O]TM [x−O] = 0, where M = lT · l− cos (ε/2)2 · I3×3 (B.1)

A point x lying on the local tangent plane is defined by

x = x0 + x1d1 + x2d2 (B.2)

Combining EQN. B.2 with EQN. B.1 results in a quadratic equation:

c1x
2
1 + 2c2x1x2 + c3x

2
2 + 2c4x1 + 2c5x2 + c6 = 0 (B.3)

where c1 = dT1 Md1, c2 = dT1 Md2, c3 = dT2 Md2

c4 = lTMd1, c5 = lTMd2, c6 = lTMl

EQN. B.3 can be re-written in a homogeneous matrix form:

XTCX = 0, where C =

c1 c2 c4
c2 c3 c5
c4 c5 c6

 =

CR
[2×2]

Ct
[1×2]

Ct
T

[2×1]
Cδ

[1×1]

 (B.4)

where C is the conic matrix. The canonical form of the conic Cc can be defined by transforming
the matrix C through a rotation R[2×2] and a translation t:

Cc =

Cc1 0 0
0 Cc2 0
0 0 Cc3

 = HTCH, with H =

(
R

[2×2]
t

[1×2][
0 0

]
0

)
(B.5)

Cc defines the canonical conic such as

Cc1x
2
c1 + Cc2x

2
c2 + Cc3 = 0 (B.6)

This can be re-written in the well-known equation for a 2D ellipse

x2
c1

a2
+
x2
c2

b2
= 1, with a =

√
−cc3/cc1, b =

√
−cc3/cc2 (B.7)
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Computation of 3D Laser Footprint

The parameter b represents the semi-minor axis and a the semi-major axis of the ellipse. The
corresponding 2D vectors can be written such as

a2D = aex,b2D = bey (B.8)

where ex and ey are the unity vectors in x and y-direction, respectively. It can be shown that
the main axis of the 3D ellipse must coincide with the projection of the laser beam l on the
plane, expressed as l∠ (see FIG. B.1). If the local plane is parameterized by vectors d1 and d2

forming an orthogonal base with the normal n, the projection l∠ of the laser direction l on
the plane can be computed by

l∠ = d1 (l • d1) + d2 (l • d2) (B.9)

Using this information, the axis of rotation ω and the rotation angle θ between a2D and a3D

can be computed:

ω =

ωxωy
ωz

 = a2D × l∠, θ = acos
(

a2D • l∠
|a2D| |l∠|

)
(B.10)

The transition from 2D to 3D is performed with Rodrigues’ rotation formula expressing a
rotation by an angle θ around a fixed axis ω:

R3D
2D = I + ω̃ sin θ + ω̃2 (1− cos θ) , ω̃ =

 0 −ωz ωy
ωz 0 −ωz
ωy ωz 0

 (B.11)

Finally the 3D semi-minor and semi-major axis can be computed:

a3D = R3D
2D · a2D,b3D = b

(
a3D

|a3D|
× n

)
(B.12)

FIG. B.1: Computation of 2D footprint by intersection of laser cone with local tangent plane and
subsequent re-projection into 3D.
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Appendix C

Comparison RT - PP

FIG. C.1: Comparison of trajectory computed in RT (using SPP) and in PP (using CP-DGPS) for
Lausanne dataset.
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Comparison RT - PP

FIG. C.2: Histogram of coordinate differences (SPP -PP) for Lausanne dataset.

FIG. C.3: Histogram of coordinate differences (RTK-Radio - PP) for Sion 08 dataset.

FIG. C.4: Histogram of coordinate differences (RTK-GPRS -PP) for Chur dataset.
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