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VORWORT 

Neue miniaturisierte Messinstrumente eröffnen neue Möglichkeiten (und Herausforderungen) in der 
kinematischen Geodäsie. Wie die Erfinder der Trägheitsnavigation nicht davon zu träumen wagten, 
dass komplette IMUs (Inertial Measurement Units) nur noch wenige Kubikmillimeter gross sein 
könnten, dachten die Entwickler des Global Positioning System (GPS)  nicht daran, Sportler mit 
kleinen Empfängern auszurüsten. Dank der Spannweite von zivilen Anwendungen konnte die 
Messgenauigkeit dieser ursprünglich militärischen Technologie um Grössenordnungen verbessert 
werden. Dies wird erreicht, indem zusätzliche Signale gemessen werden oder innovative 
Algorithmen vorgeschlagen werden. 

Die Arbeit von Herrn Wägli gehört zur zweiten Kategorie. Sie präsentiert (mit aussergewöhnlicher 
Stringenz) innovative Algorithmen und neue Datenanalyse-Ansätze. Dank der Kombination von 
kleinen GPS-Empfängern mit miniaturisierten (und sehr unpräzisen) Inertialsensoren (vom Typ 
MEMS, Micro-electromechanical) entsteht ein überzeugendes Messinstrument, das die Trajektorie 
eines Skifahrers mit einer relativen Genauigkeit von 0.01% bestimmen kann. Die Mischung von 
hoher Präzision und kleiner Messeinheit erlaubt es, die Bewegungen des Athleten fast ständig 
nachzuverfolgen und aus den gemessenen Positionen, Geschwindigkeiten und Orientierungen 
Leistungsparameter ableiten zu können. Die Anwendung im Skisport ist aufgrund der hohen 
Dynmaik und dem reduzierten GPS-Signalempfang in den Bergen sehr anspruchsvoll. So ist 
nachvollziehbar, dass die Geräte auch in weniger schwierigen Umgebungen eingesetzt werden 
können. Gleichzeitig ist die Forschung auf einem Gebiet, wie dem in der Schweiz so populären 
Skisport, sehr motivierend. 

In seiner Arbeit beweist Adrian Wägli als Erster, dass eine Orientierungs-Genauigkeit von einem 
Grad (RMS) dank der Anordnung mehrerer redundanter MEMS-IMUs erreicht werden kann. Ebenso 
kann Dezimeter-Positionsgenauigkeit während 30 Sekunden ohne den Empfang von GPS-Signalen 
und trotz hoher Dynamik erhalten bleiben. Des Weiteren wurden eine Vielzahl neuer Algorithmen 
und Software-Moduln für die praktische Anwendung sowie innovative Konzepte für die 
kinematische Positionierung und Navigation entworfen. Die ansprechende Kombination von Theorie 
und Praxis wird ein breites Leserspektrum ansprechen. 

Die SGK bedankt sich bei der Akademie der Naturwissenschaften Schweiz (SCNAT) für die 
Übernahme der Druckkosten.  

 

Dr. Jan Skaloud, MER        Prof. Dr. A.Geiger 
Institut für Topometrie        ETH Zürich 
EPF Lausanne          Präsident der SGK 



 

PREFACE 

La disponibilité de nouveaux dispositifs de mesure offre de nouvelles possibilités (et défis) dans la 
géodésie cinématique. Comme les inventeurs de la navigation inertielle n’ont jamais imaginé que des 
centrales inertielles (IMU - Inertial Measurement Units) puissent atteindre la taille de quelques 
millimètres cubes, les concepteurs du Global Positioning System (GPS) ne pensaient jamais équiper 
des sportifs de récepteurs miniaturisés. La variété d’applications civiles améliore de manière 
considérable la précision de mesure de cette technologie d’origine militaire. Ceci peut être atteint 
grâce à des signaux secondaires ou en proposant des algorithmes innovants. 

Le travail d’Adrian Wägli appartient à la dernière catégorie en présentant (avec une rigueur 
exceptionnelle) des algorithmes et approches de traitement de données innovants. Ainsi, des signaux 
de récepteurs GPS bas-de-gamme et de capteurs inertiels miniaturisés (de type MEMS, Micro-
electromechanical, et donc très imprécis) sont intégrés dans un instrument de mesure qui est capable 
de déterminer la trajectoire d’un skieur avec une précision de 0.01%. L’amalgame de haute précision 
et petite instrumentation permet de suivre les mouvements d’un athlète en permanence (100 fois par 
seconde). Des paramètres de performance des athlètes peuvent être déduits grâce à cette observation 
pratiquement continue de positions, vitesses et orientations. L’application de cette technologie dans 
des disciplines telles le ski alpin est très exigeante en raison de la haute dynamique et de la réception 
satellitaire réduite en raison du relief. Mais, comme la méthode a fait ses preuves dans un milieu 
aussi exigeant, elle devrait être utilisable dans des conditions plus favorables. En même temps, la 
recherche dans ce domaine est très motivante comme elle est en relation avec un sport aussi 
populaire. 

Dans son travail, Adrian Wägli démontre pour la première fois qu’une précision d’orientation 
supérieure à 1 degré RMS peut être atteinte grâce à une configuration de capteurs MEMS-IMU 
redondants. De plus, le positionnement autonome d’une précision décimétrique peut être maintenu 
malgré des pertes du signal GPS et des hautes dynamiques pendant des durées allant jusqu’à 30 
secondes. La thèse offre de nombreux algorithmes et modules de logiciels pour des applications réels 
ainsi que des concepts novateurs applicables dans d’autres domaines de la navigation et du 
positionnement cinématique. La combinaison de théorie et d’application pratique est bien présentée 
et va enchanter une large gamme de lecteurs. 

La Commission Suisse de Géodésie (CGS) est reconnaissante envers l’Académie Suisse des 
Sciences Naturelles (ASSN) pour avoir pris à sa charge les coûts d’impression du présent manuscrit. 

 

Dr. Jan Skaloud, MER        Prof. Dr. A.Geiger 
Laboratoire de Topométrie       ETH Zürich 
EPF Lausanne          Président de la CGS 



 

FOREWORD 

The abundance and availability of small positioning devices offers new opportunities (and 
challenges) for the art and science of Kinematic Geodesy. Certainly, as the inventors of inertial 
navigation never dreamed of a full Inertial Measurement Units (IMUs) occupying space of few cubic 
millimeters, the designers of the Global Positioning System (GPS) never thought of placing 
miniature receivers on human beings. Yet, it is the variety of civil application that improves the 
measurement accuracy of the originally military technology by an order (or several orders) of 
magnitude. This can be achieved either by exploiting secondary signals or by proposing innovative 
algorithms.  

The research of Adrian Wägli belongs to the latter category as it presents (with an excellent rigor) 
innovative algorithms and data processing approaches which turn signals from small GPS receivers 
and miniature but very imprecise Micro-electromechanical (MEMS)-IMU into a convincing 
measurement instrument capable of tracking the skier’s 2-G turn with 0.01% accuracy. The amalgam 
of high precision and small instrumentation then allows tracing movement of athletes not once in a 
while, but continuously at 100 times per second. Thus, through the practically continuous 
measurements of 3D position, velocity and orientation, the sportsmen’s performance parameters can 
be deduced. Using it in sports like alpine skiing is very challenging task due to the encountered 
dynamic and the mountain surroundings that block the reception of satellite signals. Therefore, if the 
technology finds its place in such relatively hostile conditions, it can be surely used for other 
purposes in more benign environment. At the same time it represents a very motivating factor for the 
research undertaken at the country to which such sport belongs.  

In his work, Adrian Wägli demonstrates for the first time that redundant configuration of low-cost 
MEMS-IMUs allows determining orientation better than 1 degree RMS and that the autonomous 
positioning of decimeter accuracy is feasible with these sensors up to 30-second long outages of 
GPS signals even in high dynamic. Although the thesis is application-driven, i.e. the work results in 
several algorithms and software modules applicable to real scenarios; it contains, at the same time, a 
number of novel concepts applicable to other domains of navigation and kinematic positioning. The 
nicely presented combination of theory and practice will therefore satisfy a wide spectrum of 
readers.  

The SGC is grateful to the Swiss Academy of Sciences (SCNAT) for covering the printing costs of 
this volume. 

 

Dr. Jan Skaloud, MER        Prof. Dr. A. Geiger 
Institute of Topometry        ETH Zürich 
EPF Lausanne          President of SGC 
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Notation and Abbreviations

Notation

Convention

Vectors are represented by lower-case bold letters, matrices by capital bold letters.

A superscript in a vector indicates a particular frame in which the vector is represented.

Rotation matrices between coordinate systems are defined by a subscript and a superscript
denoting the two coordinate systems, e.g. Rn

b transforms from body frame b to the navigation
frame n.

Angular velocity between two coordinate systems may be expressed either by an angular
velocity vector, e.g. ωbib describes a rotation between the inertial and body frames expressed
in the body frame, or by the corresponding skew-symmetric matrix form:

Ωb
ib =

[
ωbib

]
× =

 0 −ωZ ωY
ωZ 0 −ωX
−ωY ωX 0



Coordinate Frames

The local-level frame (NED) has been selected as navigation frame (index n). By convention
the north axis is labeled x, the east y and the down z. The body frame is indicated by b,
the inertial frame by i, whereas the Earth centered Earth fixed (ECEF) reference frame is
indexed by e.

Position

rn =

 ϕ
λ
h


where ϕ represents the latitude, λ the longitude and h the altitude.
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Greenwich
meridian

Earth
rotation axis

ϕ

λ

Easting

Northing

xECEF

y ECEF

z ECEF

Down

Reference frame notation and definition.

Velocity

vn =

 vN
vE
vD

 =

 (R+ h)ϕ̇
(R+ h) cosϕλ̇

−ḣ


 ϕ̇

λ̇

ḣ

 =

 vN
R+h
vE

(R+h) cosϕ

−vD



Rotation

xb = Rb
n · xn

Rb
n = R1(φ) ·R2(θ) ·R3(ψ)

where φ represents the roll angle, θ the pitch angle and ψ the heading angle.

R1(φ) =

 1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)


R2(θ) =

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)


R3(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1


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0

g0(ϕ, h)

 m
s2

where g0 is the normal gravity. The anomalous gravity field (i.e. gravity anomaly and the
deflections of the vertical) can be safely neglected in this research.

g0(ϕ, h) =
a · gE · cos2 ϕ+ b · gP · sin2 ϕ√

a2 cos2 ϕ+ b2 sin2 ϕ
· [1− 2

a
(1 + f +m− 2f sin2 ϕ)h+

3
a2
h2]

with

m =
a2 · b · Ω2

E

G ·ME

and

gE = 9.7803253359 m/s2 the normal gravity at the equator
gP = 9.8321849378 m/s2 the normal gravity at the pole
G ·ME = 3.986004418× 1014 m3/s2 the gravitational constant
ΩE = 7.292115 · 10−5 rad/s the Earth rotation rate
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−ΩE sinϕ
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−ϕ̇

−λ̇ sinϕ
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Earth’s angular velocity ωeie:
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 rad
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Chapter 1

Introduction

1.1 Context

Spectators of downhill skiing competitions know this confusion: An athlete seems fast, his
carving technique seems perfect, but his timing splits are substandard. On the contrary,
the descents of other skiers seem turbulent, their styles hazardous, but they are fast. Even
professional commentators on TV are sometimes misled in their evaluation based on video
sequences, which then amuses the audience. Wrong evaluations may also occur during training
sessions and in other sport disciplines. In default of appropriate measurement tools, athletes
and coaches largely characterize performances based on their experience and feeling. Their
evaluation could be refined with complementary methods offering precise measurements of
positions, velocities and orientations [169].

The lack of objectivity in sport performance assessment is not the only motivation for the
development of new analysis systems. Firstly, the differences of skills between competitors
tend to diminish in many sports. The demands on material as well as the physical and men-
tal pressure on the athletes are tremendous. Consequently, the evaluation of trainings and
competitions has become a key factor of success. Secondly, the athletes’ performances are
nowadays mainly analyzed by chronometry or video recordings. Material development and
testing is based on repeated measurements with timing cells or wind tunnels. Unfortunately,
these techniques provide few quantitative variables. Furthermore, they are limited by me-
teorological conditions and by the difficulty of replicating postures and movements across
trials.

Satellite-based positioning and inertial navigation systems are interesting alternatives for tra-
jectory evaluation in sports. Many GPS (Global Positioning System) receivers are proposed
for leisure-time sport activities (e.g. FRWD [46], Garmin [52], Polar [139]). Such tools allow
evaluating performance parameters like distances or velocity and height profiles. More precise
satellite positioning systems have been employed for professional performance assessments in
winter sports [171, 31, 10], car racing [75] and rowing [233, 234, 11]. However, the athletes’
environments are often partially composed of areas that may block or attenuate satellite
signals. To overcome this difficulty, Inertial Measurement Units (IMUs) are integrated with
GPS, which also enables an accurate determination of accelerations and orientations. Conven-
tional GPS/INS (Inertial Navigation System) equipment, consisting of dual-frequency GPS
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receivers and tactical-grade INS, provides high accuracies (cm for position, cm/s for velocity
and 1/100 deg for orientation). In the context of sport applications such equipment is not
suitable because it is heavy (a few kg) and expensive (> =C40’000). In recent years however,
Micro-Electro-Mechanical System (MEMS) IMUs as well as low-cost L1 GPS receivers entered
the “navigation world” [95, 96, 36, 57].

MEMS-IMUs present a great potential for sport applications because of their low price and
small size. However, their use in positioning is still in its early stages. Given the context of
high dynamics in sports and the poor quality of inexpensive MEMS sensors, the feasibility of
integration of inertial MEMS with GPS has to be verified - especially considering the mag-
nitude and change of their systematic errors and their sensitivity to temperature changes.
Reference [172] suggested an approach based on a black-box error model. A well-tuned model
was identified as suitable for analyzing particular characteristics of the performance, but re-
quired a certain level of a priori knowledge of the underlying dynamics. Study [171] tested
the synergy of integrating a digital magnetic compass with GPS using a recursive QUEST
(QUaternion ESTimation) algorithm. This approach required accelerations differentiated from
GPS measurement to the orientation computation and thus meant that the derived inertial
accelerations were not independent of GPS. Nonetheless, the results were sufficiently encour-
aging for further consideration of MEMS-type sensors in sports.

This research is part of a technology transfer to the start-up enterprise TracEdge based
at Grenoble, France. The goal of this collaboration is the development of innovative solu-
tions for the performance assessment of outdoor sport disciplines with velocities ranging from
3− 300 km/h.

1.2 Particularities Related to Sport Applications

When developing a GPS/INS system for performance analysis of outdoor sports, the following
issues need to be considered.

• Human aspect. Coaches, athletes and manufacturers are often not familiar with
emerging technologies and have problems to identify their benefits [108], especially if
new approaches modify established routines and work practices. However, innovation is
not thought to replace their expertise, but to provide additional, relevant data that can
help explain their (subjective) interpretation.

• Application to numerous disciplines. Sensors and data processing algorithms ide-
ally cope with a large variety of dynamics (amplitude of motion, vibrations). It has to
be modular to be able to satisfy the accuracy requirements of many disciplines.

• Discontinuous availability of satellite signals. Outdoor sports do not necessarily
guarantee an open sky for satellite reception. Hence, using inertial sensors may help
bridging gaps of satellite reception to ensure the continuity of performance evaluation
and allows observing other performance-relevant parameters (e.g. orientation, accelera-
tion).
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• Physical characteristics of the sensors. Building a wearable system requires the use
of miniaturized and low-power components. In addition, the placement of the sensors
shall neither constrict the athletes’ movements, nor be a risk of injury.

• Limited infrastructure. Most of the “traditional” trajectory assessment tools require
considerable ground infrastructure. Furthermore, performance evaluation is sometimes
time-consuming and results become available only weeks after measurement campaigns.
The obvious benefit of a GPS/INS system is its (global) availability and its fast setup.
Hence, the setting up of external material, like timing cells, video cameras or RFID
tags, can be avoided.

1.3 Objectives

The research focuses on the development of innovative algorithms for the trajectory analysis
in sports. The main objectives are:

1. Elaborate innovative algorithms integrating low-cost satellite navigation and
inertial measurements. As the cost and ergonomic factors favor the use of MEMS-
type inertial sensors and low-cost single-frequency GPS receivers, strategies to mitigate
the effects of their large systematic errors must be developed.

2. Define a methodology for trajectory analysis in sports. Convenient representa-
tion as well as rigorous analysis and comparison of the athletic performance requires
effective modeling algorithms that consider the degree of accuracy of trajectory recon-
struction.

3. Demonstrate and assess the system performance with experiments in sports.
The objective is to prove the feasibility of the integration, demonstrating the accuracy of
the system and point out improvements for performance analysis in sports with respect
to existing methods.

1.4 Methodology

FIG. 1.1 summarizes the methodology for performance evaluation in sports based on GPS/INS
systems. The multi-disciplinary character of the present study defines the various fields that
need to be investigated. The research can be broken down into six chapters:

Sport performance parameter and accuracy requirements. This study first aims at
understanding how athletes, coaches, testers and equipment developers evaluate sport perfor-
mances (Chapter 2). Different categories of sport applications are identified where GPS/INS
systems can bring benefits. Then, their accuracy requirements are defined. Finally, an overview
on current trajectory analysis techniques is given and the sensors that are appropriate for this
research are chosen.

Measurements, models and estimation methods. The efforts described here begin with
the research into the usual approach to GPS/INS integration in which the prevailing sys-
tematic inertial effects are estimated by external GPS measurements. Chapter 3 proposes
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FIG. 1.1: Methodology for performance evaluation in sports.

application specific approximations and quantifies the expected measurement inaccuracies.
Then, the processing and estimation algorithms are introduced that transform the measure-
ments into the desired trajectory parameters.

System performance. Chapter 4 assesses the navigation performance of different system
setups and integration strategies with respect to reference trajectories. The loosely and closely
coupled GPS/INS integration schemes are investigated simultaneously. Moreover, extended
and unscented Kalman filtering are compared. Lastly, the problem of orientation initialization
and the benefits of magnetic MEMS-type sensors for the navigation solution are evaluated.

Advanced modeling and estimation methods. The characteristics of the MEMS-IMU
sensors induce particular investigations with respect to their error model and the possibility
of using numerous sensors to enhance the orientation determination.

• Inertial error modeling. The MEMS-type inertial sensors are prone to large sys-
tematic errors (e.g. biases, scale factors, drifts) which need to be compensated during
the navigation. A simplified error model is proposed in this research which is validated
by comparisons with higher-quality reference signals and evaluations in the navigation
domain (chapter 5).

• Redundant MEMS-IMUs. Different strategies to integrate redundant MEMS-IMUs
are presented in chapter 6. The navigation performance enhancement is assessed as a
function of the geometrical arrangement of the sensors and the integration method. In
addition, direct noise estimation, fault detection, and sensor calibration during uniform
motion and static initialization are investigated.

Applications to sports. Before being employed and accepted by the end users, the superior-
ity of any new development has to be demonstrated. This shall be achieved through testing in
winter and motor sports (chapter 7). Firstly, a methodology for trajectory reconstruction and
comparison is presented. Thereby, special emphasis is put on the accuracy of the estimated
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parameters which determines whether the observed performance differences are statistically
meaningful. Secondly, two applications of trajectory analysis that are particularly in demand
are highlighted.

• Trajectory-derived chronometry. Traditionally, splits are measured based on timing cells.
GPS/INS derived trajectories allow computing intermediate splits on variable sections.

• Orientation-related assessments. The orientation of sport equipment with respect to the
direction of motion is an important parameter for equipment development or technique
analysis. Two examples are presented in this chapter: the derivation of edging and
skidding angles in skiing, as well as the derivation of lateral tire slipping in motorcycling.
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Chapter 2

From Sports to Navigation

This research aims at measuring and comparing trajectories of outdoor sport disciplines by
combination of satellite positioning and inertial navigation. Before explaining certain choices
of algorithms and sensors, it is necessary to understand the accuracy requirements of the con-
sidered sport applications and disciplines. What accuracies are needed and are they technically
feasible and economically efficient? What level of accuracy offer current trajectory determi-
nation methods? And, which are their limitations? The present chapter aims to answer the
above questions and to define the objectives for the subsequent developments.

2.1 Criteria of Sport Applications

A certain number of requirements and expectations have to be respected when designing an
innovative tool for performance assessment in sport.

• Accuracy. The system needs to satisfy the accuracy criteria demanded by the sport
professionals. Often, such requirements are intuitively overestimated.

• Safe and not handicapping for the athlete. Fortunately, the safety is a major
concern of athletes and developers. Indeed, a system carried by an athlete should not
affect his performance nor present a risk for injury, e.g. in case of a crash.

• Cost. To address a large number of customers, the system needs to be affordable.
Targeted are sport professionals and confirmed amateurs who buy heart rate monitors
to follow their performance and who might invest up to =C500 to analyze their trajectory.
Hence, low-cost sensors are to be used with the option to employ higher-end devices for
few cases with increased accuracy requirements and larger budgets.

• Fast setup and processing. Developers and coaches often lack the knowledge about
emerging technologies. In addition, sport professionals like to be independent of external
analysts, either because they do not want to share confidential information or because
of economic restrictions. Thus, a blackbox-like system with minimum user interaction
is preferred. Ideally, the data is processed automatically and transfered to a computer
for performance analysis directly after the effort. Also, the algorithms and sensors shall
be applicable to a wide range of dynamics.
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From Sports to Navigation

• Straightforward to interpret. Unlike position, velocity and orientation profiles are
more difficult to interpret. Experience reveals that they are often in conflict with the
intuitive feeling of testers and trainers. Therefore, good visualization of the data is of
utmost importance. Also, it is important to provide athletes and coaches with perfor-
mance representations which are familiar to them. Finally, each technology has its limits
and therefore features like accuracy indicators can help in gaining confidence into the
tool. In addition, it is practical to associate other performance parameters (e.g. heart
rates, rotations per minute of an engine) with the trajectory.

2.1.1 Accuracy Requirements

Trajectories can be analyzed in terms of position, velocity, acceleration and orientation in
relation of the sensors’ placement. On the other hand, some part of the sport community
is interested also in the motion analysis of segments of the human, the orientation of the
equipment [219, 218] or in the run-to-run comparison of other performance criteria [221].
Other deduced parameters of interest are:

• The distance covered by athletes and average velocities. These can be derived from
position or integrated from velocities, respectively [156].

• Slipping angles which can be derived from the difference between the direction of motion
and the orientation of a body segment or the equipment [75, 221].

• Energy transfer factors [189] combining altitude (potential energy Epotential), velocity
(kinetic energy Ekinetic, friction Ff and drag Fd) as:

∆Epotential = ∆Ekinetic +
∫

(Ff + Fd)ds (2.1.1)

TAB. 2.1 summarizes requirements in terms of timing, position, velocity, and orientation ac-
curacy of sports applications to performance evaluation techniques based on experience and
evaluated through error propagation. Three categories were identified that possess distinct
performance criteria: trajectory comparison, material testing and development, as well as
motion analysis and rehabilitation.

Experience shows that sport professionals tend to overestimate the need in position accuracy.
The cm to dm level positioning is crucial only for a few applications, namely those related to
timing (material testing) and disciplines where small trajectory differences can be important
(e.g. slalom in alpine skiing).

Also, there is often confusion about the needs in terms of absolute and relative accuracies.
For instance, in many disciplines the trajectory shape (meaning high relative accuracy) is
of higher importance than the absolute positioning accuracy. This is true also for energy
transfer computations where relative changes of altitude, velocity and acceleration are more
interesting than absolute values [107].

Measuring body motion is a more complex issue and the subject of many research projects
[99, 100, 146, 14, 236, 56]. At EPFL, the Sport and REhabilitation program (SRE) aims at
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From Sports to Navigation

reconstructing the movements of the human skeleton. It strives at providing athletes quantita-
tive information about their rehabilitation process to avoid too intensive training or premature
return to competition (with the risk of re-injury). However, presenting the algorithms and
sensors applied for the reconstruction of full body motion is beyond the scope of this research.

2.2 Methods for Trajectory Determination

Every discipline of sports has its own techniques for performance analysis. The requirements
for such evaluation methods are discipline specific and depend on its dynamics, ergonomic
requirements and cost. For disciplines in motion over longer sections, the investigation of the
trajectory is of utmost importance. This section and TAB. 2.2 present an overview on methods
for trajectory determination.

TAB. 2.2: Current approaches for trajectory determination in sport.

Position Velocity Acceleration Orientation
Imagery
- Single camera Qualitative Qualitative Qualitative
- Stereo camera system � � � �

Positioning systems
- GPS � � Derived
- INS Relative changes Relative changes � �
- GPS/INS � � � �
- UWB/WLAN �

Other methods
- Optical sensors � Derived �
- Splits Average speed

2.2.1 Imagery

Optical methods employing single cameras and stereo-camera systems can be employed for
trajectory analysis [25].

Single cameras provide qualitative information about the position and motion of an athlete.
A powerful tool using single cameras has been developed by Dartfish (FIG. 2.1, [27]): the
system detects common features in the images taken from two successive athletes (invariant
image retrieval) and then superimposes the trajectory of the athletes [30]. However, as no
quantitative data can be extracted, the conclusions about the sport performance are essen-
tially based on relative comparisons and their interpretation depends on experience. Cliqang
[8] and 3CA-Concept are other examples of such 2D systems.

Stereo-camera systems in stereo-configuration are able to provide highly accurate, quantitative
information about the 3D trajectory and motion of athletes. Three groups of systems can be
distinguished.
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• Systems with active markers that are identified electronically by the cameras. The active
markers are often infra-red LEDs. An example is the Codamotion system [19].

• Passive marker systems using either optical or infra-red cameras. In the former approach,
the points of each marker need to be edited manually, at least in the first frames (e.g.
Ariel APAS ). In infra-red systems, only the markers are visible on the image and are
identified in 3D. Unfortunately, such systems are limited outdoors because of the inter-
ference with the background illumination. Examples are the Vicon system [210], BTS
ElitePlus or Peak Performance Motus.

• Markerless motion capture systems with volume models fitted to the athlete [24]. An
example is the organicmotion system [127].

The accuracy provided by multi-cameras systems depends essentially on the volume in which
the motion is to be analyzed with respect to the geometry of the configuration. Their perfor-
mance also depends on the calibration of the system, often realized with a calibration grid
that is visible by all the cameras. Very high position accuracy (mm) can be reached for vol-
umes up to a few m3 while the accuracy degrades rapidly with increasing range. However,
orientation accuracies are limited to 5 deg [143, 211].

FIG. 2.1: Trajectory visualization with Dartfish Stromotion [27].

Generally, all video systems require a large infrastructure, take long to setup (e.g. synchro-
nization of cameras, determination of the cameras’ position and exterior orientation) and are
not adapted for every day use as well as for training purposes. In addition, these methods
appear vulnerable to meteorological conditions. On the other hand, they may provide complex
information about the athletes’ movement and are therefore widely used for motion analysis
and energy transfer studies.

2.2.2 Satellite and Inertial Navigation

Satellite-based positioning fulfills some of the criteria presented in TAB. 2.1. It has already
proven its effectiveness for performance assessment, tracking of athletes and even rule com-
pliance in disciplines like:

11
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• Motor sports (e.g. car racing [75]).

• Water sports (e.g. rowing [233, 234, 11], windsurfing [58], kitesurfing [16], sailing [178]).

• Aeronautic sports (e.g. paragliding [59], ballooning [43]).

• Winter sports (e.g. alpine skiing [171, 31], ski jumping [10]).

Satellite navigation is also employed for the tracking of athletes during competitions
[200, 179, 98, 199, 178]. Unfortunately, the athlete’s environment is quickly alternating be-
tween open spaces and areas that are adverse to the reception of satellite signals (sudden
satellite masking). Hence, continuous observation of the athlete’s performance is not ensured
for most disciplines. Considering the ergonomic requirements placed on the equipment, to-
day’s technological limits in GPS positioning are quickly reached or even exceeded [88, 106].
On the other hand, dual-frequency GPS receivers are restricted to few sports applications
with higher accuracy needs because of their larger size and cost. In addition, many sports
professionals are interested not only in position and velocity determination but also in ori-
entation and acceleration. These quantities can not be observed directly with GPS. Indeed,
orientations can only be computed based on multi-antenna systems. Accelerations cannot be
observed, but approximated through numerical derivation [15, 171].

Inertial navigation systems (INS) provide standalone navigation. They allow determining
orientations, accelerations and velocity and position changes at very high rates. However, even
in higher-grade instruments, the effects of uncompensated systematic effects accumulate and
the system’s accuracy degrades rapidly with time. Because of their size and cost, high-grade
INS are difficult or even impossible to use for performance evaluation in sports. On the other
hand, low-cost, MEMS-type (Micro-Electro-Mechanical System) IMUs (Inertial Measurement
Units) do not allow standalone navigation because their systematic errors are too large.

By combining satellite and inertial navigation, the drawbacks of each method are successfully
canceled (TAB. 2.3). Indeed, satellite outages are potentially bridged by inertial measure-
ments, while a part of the systematic inertial errors are calibrated when satellite positioning
is available. The combination of the high short-term (relative) accuracy of the INS and long-
term (absolute) accuracy of GPS results smears the variation in positioning performances and
provides data at high rate including good orientation estimates.

2.2.3 Alternative Techniques Based on Position Fixing

Unlike satellite navigation, radio technologies like Ultra-Wide Band (UWB, [124, 126, 125,
119]) or Wireless Local Area Networks (WLAN, [86]) can be employed for positioning. They
perform well indoors while their employment is rather difficult (i.e. due to heavy infrastruc-
ture, short range). Multipath and shadowing of the human body limit the use of such systems
for performance evaluation of athletes [137].

2.2.4 Complementary Methods to Trajectory Determination

Timing cells are often used to measure intermediate splits. The method is widely employed for
(average) performance assessment of athletes, material testing and ranking in competitions.
However, no feedback about the instantaneous performance can be obtained.
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TAB. 2.3: The characteristics of satellite and inertial methods for trajectory determination.

INS GPS GPS/INS

Autonomous
Dependent on

satellite reception

Needs periodic satellite reception
for initialization and the

calibration of inertial sensor errors

No signal outages
Subject to loss of

lock and cycle slips
Bridging of GPS outages

High short-term
accuracy for position

and velocity

High long-term
accuracy for position

and velocity
⇒ High position and velocity accuracy

Accurate orientation
information

No orientation
information

Precise orientation determination

Accurate
acceleration
information

Acceleration not
reliable

Precise acceleration determination

Accuracy degrading
with time

Uniform accuracy
over time

Uniform accuracy over time

High data rate Low data rate High data rate

Other (optical) sensors were developed to provide partial information about a trajectory.
Speed sensors are available for a wide range of applications. In motor sports, optical speed
sensors provide information about the rotation rate of wheels which translates the power of the
engine (FIG. 2.2, left). Optic odometers can be employed to assess the instantaneous velocity
of a vehicle. A similar sensor is being developed in alpine skiing (FIG. 2.2, right): optical
technology provides information about the instantaneous lateral and longitudinal velocity of
a ski which allows the approximate derivation of sliding and edging angles [212]. Alternatively,
speed can be determined with radar sensors by measuring the frequency shift caused by the
Doppler effect (e.g. in alpine skiing [109]). Instantaneous speed at particular spots or velocity
profiles on straightaways can be tracked by external radar installations [226].

FIG. 2.2: Speed measurement in motorcycling (left, [151]) and in alpine skiing (right, [212]).
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2.2.5 Summary

None of the previously presented methods is a “universal” tool for performance assessment
in sports. Indeed, every technique has its advantages and drawbacks. In terms of the offered
accuracies and frequencies of observed parameters, GPS/INS derived trajectories provide
certainly the most attractive alternative that is superior to other methods also at the rapidity
of assessment. However, it cannot restore the athletes’ feeling as the qualitative comparison
based on images is lost. Hence, the presented methods are complementary and should be
selected according to the needs.

2.3 Instrumentation for Satellite and Inertial Navigation

This section aims to identify the interesting setups of satellite and inertial navigation with
respect to performance assessment in sports. The analysis is based on currently available
infrastructure and commercially available hardware while discussing their suitability for sport
applications.

2.3.1 Overview on GNSS and Processing Methods

GNSS - Today and tomorrow

Currently, two Global Navigation Satellite Systems (GNSS) are operational while the deploy-
ment of others is in preparation (FIG. 2.3). The operational systems consists of the American
NAVSTAR-GPS and the Russian GLONASS (GLObal NAvigation Satellite System). Fur-
thermore, four civil Satellite Based Augmentation Systems (SBAS) are operational or being
developed to overcome the lack of accuracy, integrity, continuity and availability of the existing
GNSS (FIG. 2.3):

• The American Wide Area Augmentation System (WAAS) covering North America.

• The European contribution EGNOS (European Geostationary Navigation Overlay Ser-
vice).

• The Japanese SBAS called Multi-functional Transport SATellites (MTSAT) Satellite-
based Augmentation System (MSAS).

• The Indian GPS/GLONASS And Geo-stationary Augmented Navigation (GAGAN).

In the past 5 years, the GLONASS constellation was composed of 8 − 18 satellites, with
some satellites in maintenance and thus not available for navigation. Recurrent promises
with respect to the completion and modernization of GLONASS have been made [140, 87],
and the complete constellation is most likely to be reached within a few years [142, 141].
Unlike GLONASS, all GPS satellites transmit with the same carrier frequency [132, 94]. The
GPS receivers are therefore electronically less complex and less expensive thanks to their
wider distribution. Some manufacturers combine GPS and GLONASS which increases the
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availability of satellite signals in topographically difficult terrain [79]. However, the current
pricing and processing complexity makes this option so far unattractive for sport applications.
Thus, for this work, only GPS and its augmentations are considered.

Global Navigation Satellite
Systems (GNSS) 

GNSS-I
GPS/GLONASS GNSS-II

WAAS
(USA)

MSAS
(Japan)

EGNOS
(Europe)

Galileo
(Europe)

GLONASS
(Russia)

GPS IIF/III
(USA)

Beidou
(China)

GAGAN
(India)

FIG. 2.3: Overview of Global Navigation Satellite Systems.

The second generation of GNSS (GNSS-II, FIG. 2.3) will consist at least of three global and
several regional satellite navigation systems.

• The modernized GPS. The enhancements will affect the signal structure (new signals,
state-of-the-art modulations) and the ground segment [38, 181, 69, 162, 68, 213, 18].
The new signals will be entirely available after 2015 (satellites are replaced by failure).

• The modernized GLONASS. The frequency band will be narrowed, additional
navigation data will be transmitted (integrity information, timing difference GPS-
GLONASS) and the satellite clocks are promised to become more stable [141, 142, 237].
A second and a third civil frequency will be added, as well as a new search and rescue ser-
vice. In 2010, the constellation is promised to be composed of 24 satellites [142, 140, 87].

• The European GNSS called Galileo. It will offer modern signals [71, 80, 162], interop-
erability with GPS on L1 [201] and innovative value-added services, e.g. for safety of
life applications, [70, 120, 33, 34]. The system is planned to become active in 2010-2012,
with a delay of 2-3 years with respect to the initial plans [69, 50, 51].

• Regional satellite navigation systems like China’s Compass (Beidou 2) satellite system
or the Japanese Quasi-Zenith Satellite System (QZSS).

The above mentioned systems will not be available before the end of the thesis and are
therefore not further considered in this research. However, it is important to underline the
two main benefits that are expected for sport applications when they emerge [55].

• Thanks to the interoperability of GPS and Galileo on certain frequencies (and in partic-
ular L1), the number of available satellites will be doubled. In addition, a combined L1
GPS/Galileo receiver will not be significantly more expensive than the receiver of one
system. Having access to two independent GNSS systems generates essentially availabil-
ity and reliability advantages as discussed in many studies [123, 150, 148, 149].
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• The modern signals will permit a more robust tracking and improve the multipath
rejection. Indeed, the multipath performance of the modulations proposed by Galileo
(BOC) is generally improved compared to existing GPS signals [70]. Their tracking
accuracy is enhanced, thanks to the possibility to transmit side-lobes and because the
BOC signals have lower correlation losses.

GPS signal structure

Based on a fundamental frequency, GPS satellites generate two frequencies L1 (1575.42 MHz)
and L2 (1227.60 MHz, FIG. 2.4). Newer generations of satellites (will) emit additional signals
(L2C since block IIR-M, L5 starting with block IIF). However, they are not yet available
for the entire constellation and are therefore not considered in this research. L1 and L2 are
modulated by phase which allows emitting:

• a data code (satellite ephemeris, coefficients of the ionospheric model, clock parameters
and satellite health).

• pseudo-random codes (Pseudo Random Noise PRN).

Fundamental frequency
f0 =10.23  MHz

L1
1575.42 MHz

C/A code
1.023 M Hz

P1 code
10.23 MHz

L2
1227.60 MHz

P2 code
10.23 MHz

/10

∙154

∙120

FIG. 2.4: GPS signal structure without message.

The coarse/acquisition (C/A) code is modulated on L1 and is available to all users. The
precise P code is modulated on L1 and L2 (P1 and P2) and is reserved to the American
military and its allies. The “protection” is created by adding a W code to the P codes which
creates the so-called Y code (anti-spoofing). Generally, the unauthorized users are not able to
measure P codes. However, the GPS receiver manufacturers have invented signal treatment
techniques that allow either elimination or reconstitution of the Y code by squaring the signal,
cross correlation or Z technology [12].

GPS methods

FIG. 2.5 gives an overview of current GPS positioning techniques that are of interest for
applications in sports.
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GPS

Real-time Post-processing

Standalone Differential Standalone Differential

Code Code Phase Code Phase Code Phase

1-10 m 0.5-2 m 0.05-0.5 m 0.5-5 m 0.5-2 m 0.01-0.1 m

1 2 34

<0.5 m

FIG. 2.5: Current GPS methods. “Code” indicates the use of carrier-phase smoothed
pseudoranges. “Phase” refers to methods where carrier-phase ambiguities are estimated.

• Single Point Positioning (SPP) is the most commonly used method real-time position-
ing method. It is based on a single antenna that is mounted on an athlete (absolute
GPS positioning, À in FIG. 2.5). Ideally, this solution integrates phase-smoothed code
measurements and a space based augmentation system SBAS. This approach results in
a position accuracy of 1-4 m [214, 216, 72, 195, 9, 136]. However, SBAS do not yet cover
the entire globe. In addition, the correction signal must be received from a geostation-
ary satellite that may be low at the horizon (around 30 deg for Swiss latitudes) or by a
terrestrial communication link [196].

• Precise Point Positioning (PPP, Á in FIG. 2.5) uses single- or dual-frequency mea-
surements as well as orbit and clock corrections (near real-time publication of pre-
cise GPS ephemeris data) to achieve submetric or even decimetric position accuracy
[152, 165, 167]. This technique is available world-wide without the need for local aug-
mentation. However, PPP requires continuous signal tracking which is difficult to achieve
in dynamic land applications. Additionally, the conversion rate exceeds the duration of
some sport events. However, it can provide sufficiently accurate results for disciplines
with low dynamics and long duration, e.g. golf [176].

• Dual-frequency carrier-phase measurements offer cm to dm accuracy in dynamic sport
applications [171, 169]. Post-processing algorithms (Â in FIG. 2.5) do not require direct
communication links between the reference station and rover. Thus, users do not have
to bother about the setup of real-time communication devices and the initialization of
GPS receivers. The main drawback of the post-processing approach is the uncertainty
of system performance during data collection, i.e. undetected sensor failure, varying
data quality [154]. Unlike real-time applications, the post-processing algorithms may
recover ambiguities through backward processing, permit backward smoothing and allow
estimating sophisticated clock and atmosphere models which increases their accuracy.
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• Real-time differential applications (Ã in FIG. 2.5) require continuous data exchange be-
tween GPS reference and rover stations. Therefore, additional devices need to be setup
and communication links maintained [168, 169]. The advantage is in providing a po-
sitioning solution without the need of subsequent data downloading, conversions and
computations by the user. Reduced positioning performance can be detected instanta-
neously.

GPS receivers

GPS receivers can be classified according to the number of tracked signals. Dual-frequency
GPS receivers provide highly accurate results, but are only affordable for few sport disciplines
with higher accuracy requirements (FIG. 2.6). The size of dual-frequency receivers has been
reduced tremendously and the receiver boards have now acceptable dimensions for sport
applications. Single-frequency receivers are less accurate, but have a more favorable pricing.
Single-frequency geodetic and low-cost receivers are distinguished. FIG. 2.7 illustrates receivers
of each category. This study aims at exploiting L1 only receivers, and particularly low-cost
receivers, for performance assessment in sport.

L 1 / L 2  differential 

L 1 / L 2  standalone 

10  m 

1  m 

10  cm 

1  cm 

€100 €1'000 €10'000 €100'000 

Position  
accuracy 

Price 

L 1  standalone 

L1 differential

FIG. 2.6: Accuracy-price trade-off between different satellite navigation techniques.

FIG. 2.7: Not to scale: Javad LGG100 (dual-frequency GPS and GLONASS receiver, left),
Thales DG16 (geodetic, single-frequency GPS receiver, middle) and u-blox LEA-5T

(low-cost, single-frequency GPS receiver with access to raw data, right).
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GPS antenna considerations

The quality and placement of the GPS antenna and the connection to the GPS receiver is
particularly important. Indeed, injudicious placement or power losses due to antennas and
cabling, that do not amplify the signal as expected by the receiver, alter the quality of the
resulting positioning. Furthermore, the vertical response pattern and the phase center stability
impact the quality of the received signal [138]. In addition, the physical size of a GPS antenna
is limited by the wavelength of the signal [182]. Falling below these physical constraints will
result in performance losses as well. Globally, patch and helix antennas can be distinguished
(FIG. 2.8). The latter are able to acquire GPS signals in wider angle. Hence, they can be
oriented randomly by the users which is an undeniable advantage in sports.

FIG. 2.8: Not to scale: Antcom L1/L2 Low Profile(Dual-frequency GPS antenna, left) and
Sarantel GeoHelix-S (single-frequency GPS antenna, right).

2.3.2 Inertial Measurement Units

Gyroscope technology

Gyroscopes are angular rate sensors. They generally represent the most expensive part of
an INS and their performance is usually limiting the overall navigation performance. The
design of gyros can be subdivided in five major groups according to the underlying physical
principles [160, 170]. The conservation of the angular momentum leads to the design of rigid
rotor gyros which were successfully implemented on gimbaled platforms. Optical gyros
use the Sagnac effect, i.e. the relativistic principle that speed of light is conserved in rotating
bodies. They are currently employed in most applications of autonomous navigation [191].
Vibratory gyros make use of the principle that a vibrating object tends to keep vibrating
in the same plane, while the rotation of its support induces a Coriolis effect. Coriolis sensors
are also based on accelerometer technology. The angular rates are sensed either from a single
rotating accelerometer or a pair of accelerometers to which a high frequency acceleration has
been applied. This technique is the major design concept in MEMS devices [47]. There are
also other approaches like glass resonators or based on atomic interferometry exploring
the preservation of mass in internal atomic structures. The latter technology has the potential
to become extremely sensitive.
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Accelerometer technology

Accelerometers measure specific forces. Three major groups of accelerometers can be dis-
tinguished [160, 170]. Force-rebalance sensors measure the electrical current (which is
proportional to the force) needed to restrain a mass at a zeros point. Vibratory accelerom-
eters sense frequency differences in a vibrating system as a measure of acceleration. These
sensors are often fabricated using MEMS technology. A new development aims at producing
high performance accelerometers involving MEMS technology and electrostatic levitation
[192].

Sensor quality

The previous sections have illustrated the wide range of available sensors. Accordingly, the
spectrum of achievable accuracies spans several orders of magnitude between the classes and
also within them. Nevertheless, the suitability of gyroscopes and accelerometers for a par-
ticular application concerns not only their stability but also other factors such as sensor’s
dynamic range or its sensitiveness to the environment in which it will operate (e.g. shock,
vibrations, temperature change, acceleration) [170].
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0.05-0.5 2 - 5 . 1 0 
-3 

5 . 1 0 
-5 

G Y R O B I A S 
(deg/hr) 

A C C E L B I A S 
( m / s 2 ) 

M E M S T a c t i c a l N a v i g a t i o n 

< € 1 0 0 > € 4 0’000 € 1 0 0’000 

FIG. 2.9: Accuracy-price trade-off for MEMS-type, tactical-grade and navigation-grade
IMUs.

FIG. 2.9 presents an overview of accuracies and cost for the three major groups of IMUs.
TAB. 3.1 details the error budget for the three categories. The pricing, but also the size and
weight of the sensors limit the use of inertial navigation for many sports to MEMS technology.
Investigating the application of this technology to sports with respect to the mitigation of
their large errors is a major objective of this research.

2.3.3 Other Aspects Related to System Architecture

A tool for trajectory assessment in sports should also include interfaces to other sensors related
to the physical performance (e.g. VO2, heart rate) or the sport equipment (e.g. strain gauges,
torque sensor). Furthermore, data transmission must be foreseen, either for real-time data
exchange (RTK, real-time following of the athletes position) or subsequent data download.
Besides the requirement listed in TAB. 2.1, limitations for weight and form of the sensors are
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specific to each discipline and need to be considered in the system design. This requires the use
of low-power components to reduce battery weight (e.g. asynchronous electronic components
[190]).

Communication link

A further objective of this research is to make the comparison of the athletes’ performance
accessible to the spectators and coaches and to bring it as close to real-time as possible.
Thus, the possibilities of advising athletes in real-time are addressed. Considering GNSS
in differential mode, such approach requires the implementation of a reliable and flexible
communication architecture between sensors placed on athletes (GPS rovers), the GPS master
station and a central server where the performance is monitored, visualized or distributed.

TAB. 2.4 presents a list of currently exploited communication technologies. The choice of the
technology depends on:

• Availability of the communication network at the training and competition sites with
sufficient bandwidth (the required bandwidth is approximately 15 kbps, [169]).

• Robustness of the communication link.

• Power consumption.

• Negligible interferences with GPS.

Radio transmission is the traditional communication link for GPS RTK (Real-Time Kine-
matic). Unfortunately, the technique is sensitive to interferences and has reduced range with
low power transmitters (especially in mountainous regions). Some ISM frequencies (Industrial,
Scientific and Medical radio bands) like 868 MHz provide proprietary data transmission for
low data rates over small baselines (< 10 km) and with small power consumption. Further-
more, wireless mesh architecture provide high bandwidth for a network of a specific coverage
area.

GSM (Global System for Mobile communication) transmission enables a bidirectional point-
to-point communication on a reserved channel. This complicates the transmission of GPS
corrections to multiple stations. In addition, the communication channel is often overloaded
and the connecting time is rather long [168]. On the other hand, GPRS (General Packet Radio
Service) allows the distribution of GPS corrections by the Internet and has a higher (theoret-
ical) bandwidth than GSM. Regrettably, GPRS does not provide a reserved communication
channel. Indeed, the available bandwidth and the availability of the network depends on the
network utilization. Moreover, some hardware problems with GPRS modules were reported
[92]. UMTS (Universal Mobile Telecommunications System) provides a larger bandwidth and
was designed for “highspeed” data download. However, UMTS is less favorable than GPRS
for continuous data transmission and small delays are encountered because of the negotiation
procedure between modem and service provider.

Satellite based communication (SatCom) systems based on LEO (Low Earth Orbit) satellites
provide larger coverage than terrestrial communication networks but still suffer from reduced
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bandwidth (lower than 9, 6 kbps). Cost and power consumption of SatCom modems is ap-
proximately ten times higher than for GPRS modems. Broadband SatCom links are not yet
miniaturized for outdoor activities.

Wireless communication based on Bluetooth (802.15-1), Zigbee (802.15-4), WLAN (802.11),
IrDA (Infrared Data Association) or UWB are sensitive to interferences and have reduced
range (less than 300 m, except with directional transmission).

It follows from the discussion that radio transmission networks are the favorite communication
link for local sport applications. It is proprietary, provides sufficient bandwidth and has limited
cost. Furthermore, the mesh network structure is suitable for the small range of L1-RTK.
Indeed, as the ionospheric modeling is limited by the missing L2 frequency, the transmitted
corrections are valid only for short ranges (< 1 km, FIG. 2.10).

TAB. 2.4: Appropriateness of communication links for sport applications.

Radio GSM GPRS/UMTS SatCom 802.1x
Proprietary + + − + +/−
Data rate + − + − +
Availability + − − + −−
Coverage +/− + + + −−
Cost + − − − +
Power consumption + +/− +/− +/− +

Correction messages
(RTCM, CMR)

Position, velocity

Distributed RTK

GPS data
Inverse RTK 

< 1 km

FIG. 2.10: Communication and RTK infrastructure.

Transmitted data

The communication architecture can be imagined in two ways (FIG. 2.10).

• With inverse RTK, the raw GPS measurements are sent to the master station where
they are processed with the reference data to compute the athlete’s position. As no
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differential processing on the athlete is required, the computation power of the device
carried by the athlete is significantly reduced. The advantage is the one-directional
communication, as well as the employment of cheaper non-RTK capable GPS receivers.
However, the purchase or development of inverse RTK software is required.

• Distributed RTK is an approach proposed by reference [169]. Distributed RTK benefits
from the GPS software integrated in the receiver carried by the athlete which requires
RTK-enabled GPS receivers. The resulting position and velocity is transmitted back to
the base station. The computational load is distributed to the numerous rovers, but the
communication link has to be bi-directional.

In real-time applications, the continuity of the communication link is an important issue. Its
interruption can be handled by implementing a delayed buffer [92]: When no communication
link is available, the data is stored on the rover. As soon as a communication link is established,
the buffered data is transmitted to a central computer for performance analysis.
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Chapter 3

Measurements, Models and
Estimation Methods

To determine the trajectory of an athlete based on satellite and inertial positioning, it is nec-
essary to model various physical observations. The efforts described here began with research
into the usual approach to GPS/INS integration in which the prevailing systematic effects are
estimated by external measurement of positions and velocities. The first part of this chap-
ter presents inertial and satellite measurements and their corresponding error models. In the
second part, different sensor fusion algorithms are compared in order to identify the most
appropriate methods. Finally, the GPS/INS integration algorithms are developed.

3.1 Inertial Measurement Model

3.1.1 Generalized Error Model for Inertial Observations

Accelerometers and gyroscopes are mounted together on platforms. Typically, three orthogo-
nal sensors of both types are used (orthogonal triads), establishing an Inertial Measurement
Unit (IMU). The gyroscopes sense angular velocity ωbib between the body frame and the in-
ertial frame. The accelerometers measure specific force f b (i.e. force per unit mass) along the
axes of the body frame.

Inertial measurements are always affected by random and systematic errors with varying
magnitude according to the sensor’s quality. The following generalized error model can be
formulated [191, 64, 130, 131].

ˆ̀= M` · (S` · `+ b`) + w` (3.1.1)

where ˆ̀ represents the estimated measurement, ` the nominal observation and M` the mis-
alignment matrix. The diagonal matrix S` contains the scale factors, b` is the bias and w`

the measurement white noise vector. TAB. 3.1 indicates typical errors for three categories of
IMU sensors.
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TAB. 3.1: Typical errors of accelerometers and gyroscopes.

Navigation-grade Tactical-grade MEMS-type
Accelerometer
Bias [m/s2] 5 · 10−5 2 · 5−3 0.05− 0.5
Scale factor [ppm] 25− 50 300 30′000
Misalignment [arcsec] 5 60 3600
White noise [m/s2/

√
Hz] 5 · 10−5 5 · 10−4 0.02− 0.2

Gyroscope
Bias [deg/h] 0.005− 0.01 0.1− 10 > 100
Scale factor [ppm] 1 100 150′000
Misalignment [arcsec] 2 60 3600
White noise [deg/h/

√
Hz] 0.001 0.002 0.5

The misalignment matrix M` is defined as:

M` =

 1 −yz zy
xz 1 −zx
−xy yx 1

 (3.1.2)

where xy, xz, yx, yz, zy and zx are the non-orthogonality of the sensor axes defining the body
frame.

The scale factor matrix is defined as:

S` = I + SC` + SRC` + SGM` + SRW` (3.1.3)

where SC` are the constant components of the scale factors, SRC` are random constants vectors
defined by the stochastic processes: SRC` = G(µ, σ), G being a standard Gaussian process with
ṠRC` (t) = 0. SGM` are first-order Gauss-Markov stochastic processes defined as:

ṠGM` (t) = −β · SGM` (t) + wk(t) (3.1.4)

where β = 1/T is the inverse of the correlation time T and wk a zero-mean Gaussian white-
noise process. SRW` is a random walk stochastic process defined by:

ṠRW` (t) = wk(t) (3.1.5)

The bias is defined as:

b` = bC` + bRC` + bGM` + bRW` + bBI` + bGS` · f̂ (3.1.6)

where bC` are the constant components of the bias, bRC` are random constants stochastic
processes, bGM` are first-order Gauss-Markov stochastic processes and bRW` are random walk
stochastic processes (defined as previously for the scale factors). bBI` are the bias instabilities
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investigated by [64, 130, 131]. Finally, the term bGS` is a gravity sensitivity parameter which
has to be added to the specific force measurements of some accelerometers.

The white noise processes w` are defined as:

w`(t) = σ` ·wk(t) (3.1.7)

where σ` is the standard deviation of the white noise processes.

Even though the numerous error terms can be modeled, their estimation during the navigation
processing depends on the dynamics and the type of external measurements. Eventually, some
parameters are sufficiently stable and can be determined by long-term (static or dynamic)
experiments. Measurement biases b are the result of manufacturing imperfections that tend to
vary with the change of environmental conditions. Scale factors S are sometimes determined
under lab conditions, but become variable under high dynamics [193]. Misalignments M result
from the non-orthogonality of the axes that define the body coordinate frame. In kinematic
applications, this effect becomes less significant if frequent maneuvers are performed and
can be assigned to the random error term. However, parameters calibrated under laboratory
conditions are rarely completely stable, even for higher-grade IMUs. Furthermore, note that
some of the previously described error contributions are physically irrelevant for some sensors
(e.g. ring-laser gyroscopes do not require the estimation of g-sensitivity and scale-factors
which are often negligible).

3.1.2 Simplified Error Model for Inertial Observations

Judging that the misalignments, scale factors and constant error terms cannot be decorrelated
efficiently given the complexity of the MEMS sensors, the generalized error model is simplified.
Indeed, only a bias term is considered and its associated errors are modeled as first order Gauss
Markov processes [221, 220, 194].

ˆ̀ = `+ b` + w`

ḃ` = −β` · b` +
√

2σ2
`β` w`

(3.1.8)

where ˆ̀ is the estimated measurement, ` the nominal observation, b` the bias term, w` the
measurement noise and β` = 1/T the inverse of the correlation time T . This process permits
to estimate a wide range of error behaviors as a function of β, from random constants to
random walks.

In chapter 5, it will be experimentally proven that this simplified error model is justified
considering the error characteristics of MEMS-type sensors, typical dynamics in sport appli-
cations and the often short integration intervals.

3.2 Magnetic Measurements

Some MEMS-type IMUs on the market (e.g. Microstrain 3DM-G, Xsens MTi) contain also
a triad of magnetometers. These sensors measure the amplitude of the magnetic field along
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their axis. FIG. 3.1 describes the components of Earth magnetic field and the magnetic mea-
surements.

The azimuth α is the angle between magnetic north and the x-axes of a triple-axis magnetic
sensor in NED configuration (equation 3.2.1). Magnetic north is the direction of the horizontal
component Hh of the magnetic field of the Earth He which is the component perpendicu-
lar to the gravity vector. The azimuth needs to be corrected for the magnetic declination
λ to derive the orientation with respect to the geographic north which is defined by the
Earth’s axis of rotation. The magnetic declination is varying as a function of the position
on the globe and time. It can be retrieved from global or local models, e.g. the World Mag-
netic Model (WMM) produced by the United States National Geospatial-Intelligence Agency
(NGA) [122]. The magnetic inclination δ is the angle of the magnetic vector to the horizontal
plane (equation 3.2.2).

α = arctan
(
−Hy

Hx

)
(3.2.1)

He = Hh

 cos(α)
− sin(α)
tan(δ)

 =

 Hx

Hy

Hz

 (3.2.2)

x = front

y = right

z = down

Declination λ

Hx

Hy

Hz

Geographic
north

Magnetic north

Hh

He

Azimuth α

Inclination δ+ +

-

FIG. 3.1: Representation of the magnetic field of the Earth on the northern hemisphere.

Unfortunately, the Earth magnetic field measurement is disturbed by parasite magnetic fields.
The perturbations can be natural or caused by man-worn objects. Soft perturbations may
be caused by ferrous materials that influence the direction of the Earth magnetic field. Hard
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magnetic disturbances (i.e. sign flipping or complete overmasking) may be caused by magnetic
objects like electrical lines or electronic equipment. These perturbations may vary much faster
in time, e.g. during the communication setup of a telecommunication link. Generally, rotation
and translation parameters are estimated to model the weak magnetic disturbances [90]. In
this research, a simplified model is considered estimating only a bias term.

ĥ = h + dm + wm (3.2.3)

where ĥ is the estimated magnetic field measurement, h the measured magnetic field, dm the
magnetic disturbance and wm the measurement noise. The magnetic disturbance is modeled
as a first order Gauss-Markov process.

ḋm = −βdmdm +
√

2σ2
dm
βdm wdm (3.2.4)

3.3 GPS Observations

The GPS signals and methods were introduced in section 2.3.1. This section details how these
signals are acquired and modeled for positioning.

3.3.1 Code Measurements

Measuring pseudoranges requires knowledge about the PRN codes. By comparing the sig-
nal from the satellite against its copy, the receiver determines a time shift and deduces the
pseudorange between the receiver and the satellite.

ρsr = c · (tr − ts) (3.3.1)

where ρsr is the range between satellite s and receiver r, c the speed of light, tr the time of
signal reception registered by the receiver clock, and ts the time of transmission of the signal,
both expressed in the GPS reference time.

This measurement of range ρsr is subject to numerous errors that need to be modeled and
eliminated in the positioning algorithm.

psLi,r − vsr = ρsr + dρsr + c · (dtr − dts(t− τ)) + T sr + IsLi,r +M s
pi,r + c · (bsLi + bLi,r) (3.3.2)

where psLi,r is the observed pseudorange on Li (L1 or L2) at time t, ρsr the true distance
between the receiver r and the satellite s, dρsr the radial orbital error at transmit time, dtr
the receiver clock error, and dts(t − τ) the satellite clock error considering the propagation
time τ of the GPS signal (τ = ρ/c). T sr is the tropospheric delay, while IsLi,r are the ionospheric
delays on Li. M s

pi,r is the multipath error, bsLi as well as bLi,r are hardware delays and vsr the
residual error.

The clock errors of the receiver and of the satellite are equal on both frequencies because
they are generated by the same oscillators. The troposphere is a diffracting medium. Indeed,
the speed and refraction index do not depend on the wavelength of the signal. Hence, the
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tropospheric error is of the same amplitude for both frequencies. The ionosphere is dispersive
and the ionospheric error IL1 is related to IL2 through the following expression [183, 214].

IL2 =
f2
L1

f2
L2

· IL1 (3.3.3)

Multipath errors M s
Li,r are systematic errors if short observation periods are considered (up to

a few minutes), but may also be interpreted as noise for longer observation periods. Antenna
eccentricities are neglected in this research (max. 1− 2 mm) and are not taken into account
in equation 3.3.2.

TAB. 3.2 indicates the importance of the different error contributions of pseudorange mea-
surements [132]. Even though the satellite clocks have improved [118, 117], that more precise
ephemeris are available [26] and that the evolution of receiver electronics has lowered mea-
surement noise [91], the overall error budget remains representative.

TAB. 3.2: GPS error sources of pseudorange measurements (1σ) [132].

Error source Standard GPS [m] Differential GPS [m]
Ephemeris 2.1 0.0
Satellite clock 2.1 0.7
Ionosphere 4.0 0.5
Troposphere 0.7 0.5
Multipath 1.4 1.4
Receiver measurement 0.5 0.2
Reference station - 0.4

3.3.2 Carrier-Phase Measurements

In carrier-phase measurements, the distance between satellite and receiver is composed of
an integer number of unknown cycles and of the fractional phase measurement. The receiver
counts the changes in number of cycles generated through the motion of the satellite.

ρsr = N s
Li,r · λLi + φsLi,r · λLi (3.3.4)

where ρsr represents the distance between satellite and receiver, N s
Li,r an unknown number of

cycles (carrier-phase ambiguity), φsLi,r the phase measurement and λLi the wavelength.

Accounting for the various error sources in the distance measurements, the carrier-phase
measurements can be modeled by:

Lisr−vsr = λLi ·φsLi,r−vsr = ρsr+dρsr+c·(dtr−dts(t−τ))+T sr −IsLi,r+M s
Li,r+λLi ·Bs

Li,r (3.3.5)

with λLi ·Bs
Li,r = λLi · (N s

Li,r + δN s
Li,r) + c · (bsLi + bLi,r).

The term λLi · Bs
Li,r includes the integer ambiguity N s

Li,r and the “phase windup” effect
δN s

Li,r [155]. The ambiguity N s
Li,r cannot be separated from hardware errors bsLi and bLi,r.
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Hence, Bs
Li,r must be considered as a real value rather than an integer. However, while the

phase windup phenomena is important for geodetic applications, it can be attributed to
measurement noise in this research.

Comparing equations 3.3.2-3.3.4 shows that the code measurements are delayed by the same
amount as the carrier-phase measurements are advanced by the ionosphere (IL1 and IL2).

3.3.3 Carrier-Phase Smoothing

If continuous code and carrier-phase measurements are available, the former can be smoothed
by the carrier-phase [155].

p̃sLi,r(t) = p̄sLi,r + ∆Lisr(t) + 2
f2
L1

f2
L1 − f2

L2

· (∆L1sr(t)−∆L2sr(t)) (3.3.6)

with

∆Lisr(t) = Lisr(t)− L̄i
s
r (3.3.7)

where p̃sLi,r(t) are the carrier-phase smoothed code measurements at time t, Lisr(t) the carrier-
phase measurements at time t expressed in meters. p̄sLi,r and L̄i are the average pseudorange
and carrier-phase measurements over n epochs without cycle slip. The measurement noise is
reduced by a factor

√
n [155].

For single-frequency measurements, carrier-phase smoothing can be performed as described
by [67, 94, 62]:

p̃sL1,r(t) =
1
n
psL1,r +

n− 1
n
· (p̄sL1,r(t− 1) + (L1sr(t)− L1sr(t− 1))) (3.3.8)

3.3.4 Doppler Measurements

The frequency of the received GPS signal differs from the frequency transmitted by the
satellite. This frequency offset is partly due to the Doppler effect which is caused by the
relative motion of the transmitting satellite with respect to the receiver. The Doppler shift
Ds
Li,r can be expressed by the following dot product [132, 93]:

Ds
Li,r = −vs − vr

c
• rs − rr
‖rs − rr‖

· Lisr (3.3.9)

where vs is the satellite velocity, vr the receiver velocity, c the speed of light, rs the satellite
position and rr the receiver position.

The Doppler shift can be converted to a pseudorange rate observation by the following ex-
pression [132, 93]:

ṗsLi,r − vsr = ρ̇sr + c · ḋtr (3.3.10)

where ṗsLi,r is the pseudorange rate observation, ρ̇sr the true pseudorange rate, ḋtr is the
receiver clock drift to the delta range measurement and vsr the residual error.
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3.3.5 Differential GPS

Differential GPS (DGPS) permits reducing the systematic errors in satellite positioning
(TAB. 3.2) by comparison of the observations between GPS receivers in vicinity, i.e. a static
GPS receiver (master m) and a mobile GPS receiver (rover r). For single-frequency measure-
ments, this hypothesis is valid for distances up to approximately 3−5 km [94]. Assuming that
two receivers are affected by the same atmospheric errors, the latter can be eliminated from
equations 3.3.5-3.3.2 together with the satellite clock errors ∆ts(t− τ) and the orbital errors
dρ. The so-called single differences lead to the following expressions:

∆psLi,mr−vsmr =∆ρsmr + c ·∆dtmr +∆M s
pi,mr + c ·∆bLi,mr

∆Lismr −vsmr =∆ρsmr + c ·∆dtmr +∆M s
Li,mr +λLi ·∆Bs

Li,mr

∆ṗsLi,mr−vsmr =∆ρ̇smr + c ·∆ḋtmr
(3.3.11)

where single difference operator ∆ of quantity x is defined as:

∆xsmr = xsm − xsr (3.3.12)

The unknowns related to the GPS receivers, i.e. single-differenced receiver clock error ∆dtmr,
receiver clock drift ∆ḋtmr, hardware error ∆bLi,mr, can be eliminated by differentiating be-
tween satellites (double-differences):

∇∆pzsLi,mr−vzsmr =∇∆ρzsmr +∇∆M zs
pi,mr

∇∆Lizsmr −vzsmr =∇∆ρzsmr +∇∆M zs
Li,r +λLi · ∇∆Bzs

mr

∇∆ṗzsLi,mr−vzsmr =∇∆ρ̇zsmr
(3.3.13)

where z indicates the reference satellite and where double difference operator ∇ of quantity
x is defined as:

∇∆xzsmr =∆xzmr −∆xsmr
=(xzm − xzr)− (xsm − xsr)

(3.3.14)

3.4 GPS/INS Sensor Fusion

3.4.1 Integration Constraints

To combine the satellite and inertial measurements, the two systems need to be time syn-
chronized and the observation of one system needs to be identified in the second. Different
scenarios can be envisaged.

• A mathematical relation between the sensor placement can be expressed.

– If GPS antenna and IMU are rigidly fixed with respect to each other, GPS coordi-
nates, velocities or raw GPS measurements (pseudoranges, carrier-phase measure-
ments) can be employed to calibrate the inertial sensors (section 3.4.3).
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– More sophisticated constraints can be expressed when reconstructing general com-
plex movements. For instance, by introducing constraints related to the human
skeleton, the body motion can be reconstructed with inertial sensors distributed
on the appropriate body parts [14].

• Non-holonomic constraints can be imposed to particular dynamics, e.g.:

– The zero velocity updates (ZUPTs) are used when the IMU is stationary and free
from vibrations, which is very often the case at the beginning or at the end of a
sport performance. Then, the external velocity measurements can be considered as
zero.

– For car navigation, the lateral and vertical velocities are zero if the vehicle is not
skidding [57, 166, 186, 229].

– In many sports, athletes experience zero lateral acceleration when they change from
a left to a right turn (e.g. motor cycling, alpine skiing). This information could be
deduced from a GPS derived trajectory (i.e. change in sign of the curvature).

• Eventually, additional information can be integrated.

– Magnetometers measure the Earth magnetic field and potentially improve the ori-
entation estimation.

– Employing an array of GPS antennas provides external attitude observations. How-
ever, such setups are impractical for sport applications.

– Redundant inertial sensors can improve the navigation performance on many levels
and are discussed in chapter 6.

– Other external measurements may be introduced to the GPS/INS algorithm to
improve the navigation solution. This may include punctual velocity measurements
(e.g. measured by radar) or position updates (e.g. determined by Radio Frequency
IDentification (RFID) tags or special setups for the determination of the GPS
antenna position as described by [10]).

Non-holonomic constraints are specific to the dynamics and cannot be generalized easily for
other disciplines. Therefore, with the exception of ZUPTs, these constraints are not further
investigated in this research. For the same reasons, additional (external) information than
those provided by GPS, redundant IMUs and magnetometers are not considered in this work.
However, the geometric relation between the placement of the GPS antenna and the inertial
sensor will be exploited.

3.4.2 Integration Strategy Trade-offs

Extended Kalman Filtering (EKF) is widely used in GPS/INS integration. Although it has
proven its effectiveness with higher-grade inertial sensors, its dependency on correct (phys-
ical) models, the underlying Gaussian assumption and linearization may limit its use when
working with MEMS-type sensors. The linearization dependency might be a limiting factor
(e.g. for filter convergence) in sports because of the high dynamics endured in some disci-
plines. Therefore, this section discusses alternative integration strategies with respect to their
operation in sport applications (TAB. 3.3).
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Linearization dependency

In conventional GPS/INS integration, the state distribution of the EKF is approximated by
a Gaussian random variable which is then propagated analytically through the (first-order)
linearization of the non-linear system. In contrast, Particle Filters (PF) and Sigma-Point KF
(SPKF) propagate the state covariance according to the non-linear model (for the SPKF at
least to the second-order). Hence, the prediction mode can be improved. Unlike EKF and
SPKF, PFs make no assumption on the probability density function (PDF) and might reveal
a superior numerical accuracy to other filtering methods. Hence, PFs give an approximate
solution to an exact model, rather than an optimal solution to an approximate model as the
EKF does [65]. However, they are computationally expensive for high-dimensional systems
with large sampling rates.

The derivation of Jacobians for system and measurement models required in EKF is nontrivial
and may lead to implementation difficulties. Furthermore, EKF only tolerates small errors.
Otherwise, the first-order approximations may cause biased solutions and inconsistency of
the covariance update which can lead to filter instability. Second order filters may improve
filter stability, but the calculation of the second order derivatives (Hessians) is nontrivial and
computationally expensive [202]. Iterative versions of KF as well require high computation
power and are therefore not retained.

Model and prior knowledge dependency

The KFs are based on simplified, physically meaningful error models which are established
according to prior knowledge and experience. Artificial Intelligence (AI), on the other hand,
may be appropriate when the uncertainty in model structure is large, complex or varies in
time, as it can be the case for MEMS-type sensors. Therefore, many AI-based algorithms
(Artificial Neural Networks [17], neuro-fuzzy KF [1], Adaptive Neuro-Fuzzy Inference System
[115]) have been developed which have sometimes shown improved error behavior compared to
other filtering methods under steady conditions. On the other hand, it is questionable whether
empirical models applied in AI are better suited to decorrelate signals from errors especially
in cases where the varying dynamics make training sequences short and thus less appropriate.
Additionally, AI methods do not use any statistical information as input, nor do they output
statistics associated with the solution, unless methods of cross-validation are applied [115].
Thus, AI-based methods are not very suitable for trajectory smoothing and therefore appear
less appropriate for applications that require the estimation of realistic confidence levels.

Sensor dependency and parameter tuning

Tuning the measurement covariance matrix R and the system noise matrix Q of the EKF
can be time consuming and requires experience and background in both, satellite and inertial
navigation. The stochastic parameters may significantly vary even for sensors of similar qual-
ity. On the contrary, model-less algorithms based on AI can perform the self-following and
tuning under steady dynamics. Unfortunately, this assumption cannot be satisfied in sports,
where rapid filter convergence is a major criterion. In addition, adaptive KF [230, 73] are not
retained because of the mentioned difficulty to tune the statistical models over short time
periods and because of the increased demand in computational power.
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Computational cost and convergence

A comparison of the compared integration methods is given in TAB. 3.3. PF are computa-
tionally expensive because of the large number of particles that need to be propagated. Their
computational demands are prohibitive for high-dimensional systems and short integration
times, especially in the perspective of implementing the filter in real-time. On the other hand,
references [202, 205, 166, 96] report that the computational complexity of SPKF is equivalent
to EKF (O(n3)). Furthermore, the same sources mention the faster convergence of the SPKF
states compared to the EKF. Therefore, and with respect to the other criteria of TAB. 3.3,
SPKF seems to be an appropriate alternative to EKF for sport applications. Hence, both,
the EKF and SPKF, were implemented and will be presented simultaneously. Section 4.3
compares their performance in sport applications.

TAB. 3.3: Comparison of different GPS/INS integration strategies for sport applications.

EKF PF SPKF AI
Importance for

sport applications
Linearization dependency − + + + medium
Model dependency − − − + medium
Prior knowledge dependency − − − + medium
Sensor dependency − − − + low
Parameter tuning/training human human human self low
Computational cost + − + − medium
Convergence + +/− + − high
Appropriateness for sports + − + −

3.4.3 Kalman Filtering

The following sections present the general principles of Kalman filtering and highlight the
differences between EKF and SPKF. The algorithms are detailed in Appendices A and B.
Later, section 3.6 develops the implementation of the two filters for GPS/INS integration.

General structure of the algorithm

Kalman filtering consists of 3 steps (FIG. 3.2).

• During the initialization step, the state vector and the corresponding covariance ma-
trix are initialized. In the GPS/INS application, this consists of the computation or
introduction of an initial orientation and eventually the estimation of initial sensor
biases. Initial position and velocity are usually taken from the GPS measurements.

• Then, the state vector and covariance matrix are propagated in time based on a pre-
diction model as long as no external measurements are available for updates. In the
depicted example, the position state is propagated through distance and direction mea-
surements. The covariance increases in time along the trajectory.
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• As soon as external measurements become available, the state vector and covariance
are updated. In the example, the position measurement improves the position estima-
tion based on the extrapolation with distance and direction measurements. Generally,
the accuracy of the state vector is improved, i.e. the updated position is closer to the
reference trajectory.

Initialization State prediction Measurement
update

Distance

Initialization

True
trajectory

Direction

Measurement
update

Prediction

Extrapolated position

Position measurement

Updated position

Position standard deviation

Direction measurement

Distance measurement

FIG. 3.2: Principle of Kalman filtering.

State propagation

The state propagation is based on a motion model which is normally expressed as a system
of non-linear equations. The following section and FIG. 3.3 describes how this motion model
is applied in the EKF and the SPKF.

The EKF is an adaptation of the KF to non-linear functions that are approximated by lin-
earization. The state is propagated based on motion model constituted of equations f . Mean-
while, the covariance matrix is predicted based on the transition matrix Φ which is obtained
from the linearization of f . Hence, in the case of strong dynamics and reduced sampling rate,
this first-order approximation of Φ may be inaccurate.

The SPKF gets rid of the linearization of the motion model through the (non-linear and hence
accurate) propagation of a set of Sigma Points (SP) that represent the statistical properties
(average and covariance) of the state vector. The predicted state and corresponding covariance
are derived from a weighted average of the propagated sigma points (associated weights wmi
and wci , developed in Appendix B.1).

In SPKF, the variance of the state is represented by a set of SPs whose propagation in time
follow the same non-linear function as the mean value. The SPs, as well as their weights,
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FIG. 3.3: Comparison of the state and covariance propagation based on EKF and UKF with
a 2D example [204].

can be chosen in various ways. The main approaches are the Central Difference Filter (CDF)
and the Unscented Kalman Filter (UKF). The difference between the two methods lies in the
approximation of the posterior covariance term. The CDF has a smaller absolute error in the
fourth order term and also guarantees positive semi-definiteness of the posterior covariance
[204]. In contrast, the UKF can handle the non-positive semi-definiteness with two scaling
parameters (α and β, [204]).

Because of the simplicity and limited computational cost, a Square-Root (SR) version of the
UKF with non-additive error model has been implemented for this usage. This method is an
adaptation of the SR-UKF [202] and the scaled unscented transformation exploited for the
spreading of the SPs [84]. The proposed algorithm chooses n+ 2 SP (n being the number of
states) that match the first two moments while minimizing the third order moments (called
spherical simplex SP [83]). The algorithm of the SR-UKF is described in detail in Appendix
B.1.
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Update stage

The update stage in Kalman filtering is composed of three steps (Appendices A and B.4).
Firstly, the gain matrix is computed. It is based on the predicted state and the measurement
covariance. Secondly, the state vector is updated: It is corrected by the gain and the difference
between the predicted and measured observations. Finally, the predicted state covariance
matrix is updated based on the measurement covariance and filter gain.

Unlike the EKF, the UKF does not require the calculation of partial derivatives of the mea-
surement model with respect to the state variables. Furthermore, it does not require any
matrix inversion which may improve the stability of the filter.

Comparison of EKF and UKF

TAB. 3.4 summarizes the important differences between the EKF and UKF. The EKF requires
the derivation of the motion and the measurement model. Both derivations are sometimes
not trivial and may be source of errors, especially during model testing. Unlike the EKF, the
UKF does not propagate the covariance linearly, but the linearization is based on a second-
order approximation. Therefore, the EKF is limited depending on the dynamics, the sampling
rate and the corresponding prediction times [22] and might cause the divergence (or slower
convergence) of the filter. Both filters assume a Gaussian distribution for the underlying
probability density function and have the same computation complexity (O(n3), [204]).

TAB. 3.4: Comparison of the characteristics of the EKF and UKF [84, 204].

EKF UKF

State propagation Non-linear
Second-order approximation
minimizing the third order

Covariance
propagation

Linear approximation
Second-order approximation
minimizing the third order

Implementation
Motion and measurement model
derivatives → Implementation

difficulties and error source

No linearization, rapid
implementation even for complex

models and model evaluation

Convergence

Filter stability limited by the
dynamics and the sampling rate

(linear motion during the
integration interval)

Stable, faster convergence under
higher dynamics

Computation
complexity

O(n3) O(n3)

Probability density Gaussian Gaussian

3.4.4 Optimal Smoothing

In post-processing, the navigation performance can be improved through the appropriate
selection of the processing direction. Indeed, the visibility of satellites often varies along the
tracks. Furthermore, favorable situations for sensor calibration (static periods, large dynamics)
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may be located at either end of the trajectories. In addition, the navigation performance can
be improved by smoothing which is the combination of results obtained by processing the
trajectories in forward and/or backward direction.

The following fixed-interval smoothing algorithm combines forward and backward filtered
data sets in the least squares sense [103, 166]. It can be implemented for the EKF and the
UKF.

Ps= (P−1
f + P−1

b )−1

xs = x+
f + PsP−1

b (x+
b − x+

f )
(3.4.1)

where x is the predicted (superscript −) or adjusted (superscript +) state vector with cor-
responding covariance matrix P. Indexes f , b and s indicate forward or backward processed
and smoothed states or covariances.

If the data are processed in one direction (forward or backward), the Rauch-Tung-Striebel
(RTS) algorithm [54] can be applied. However, it requires knowledge about the Φ matrix and
is thus reserved to EKF.

xs,k = x+
k + Jk · (xs,k+1 − x−k+1)

Ps,k = P+
k + Jk · (Ps,k+1 −P−k+1) · JTk

(3.4.2)

with

Jk = P+
k ·Φ

T
k · (P

−
k+1)−1 (3.4.3)

where index k and k + 1 indicate two successive measurement epochs.

3.5 Implementation of GPS Processing

3.5.1 Definition of the State Vector

For the GPS processing, the state vector contains the correction terms of the position and
velocity parameters, as defined by:

δx =



δϕ
δλ
δh
δvN
δvE
δvD

 (3.5.1)

where

• the position errors (δrn) are defined by equation C.1.6.

• the velocity errors (δvn) are defined by relation δv̇n = 03×1.
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In this research, double-differenced, phase-smoothed GPS code and Doppler measurements
are employed. However, if single-differenced GPS measurements are to be exploited, the time
difference between the master and rover receiver ∆δtmr would need to be evaluated and hence
to be added to the state vector. If carrier-phase measurements are used directly, the state
vector is augmented by the ambiguity term N for each visible satellite. Thus, its size becomes
variable.

3.5.2 Initialization

The initial position and velocity are determined by parametric adjustments of the double-
differenced, phase-smoothed GPS code and Doppler measurements based on the first and
third relation of equations 3.3.13.

3.5.3 State Propagation

For the state propagation in GPS processing, a constant velocity model is implemented.
Models based on more sophisticated state prediction may improve the navigation solution,
but have not been investigated in this research.

(vn)k+1 = (vn)k
(rne )k+1 = (rne )k + D−1 · (vn)k ·∆t

(3.5.2)

where D is defined as:

D−1 =

 1
M+h 0 0

0 1
(N+h) cosϕ 0

0 0 −1

 ≈
 1

R+h 0 0
0 1

(R+h) cosϕ 0
0 0 −1

 (3.5.3)

M and N are the principal ellipsoidal radii of curvature. They can be replaced by the average
radii of curvature R =

√
M ·N . In some sport applications, the displacements are generally

restricted to a few kilometers. There, R can be approximated based on the initial position.

M =
a(1− e2)

(1− e2 sin2 ϕ)( 3
2

)

N =
a

(1− e2 sin2 ϕ)( 1
2

)

(3.5.4)

M and N depend on the ellipsoidal latitude ϕ. Linearizing vN = (M + h) · ϕ̇ leads to:

δvN = (δM + δh) · ϕ̇+ (M + h) · δϕ̇ (3.5.5)

where

δM = −3Me2 sinϕ cosϕδϕ (3.5.6)

As δM << δh, the dependence of M on ϕ can be neglected in this work. A similar demonstra-
tion can be made for N . The algorithm can be simplified by choosing a mean Earth radius,
e.g. R = 6378 km.
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3.5.4 Measurement Updates

GPS double-differenced pseudorange measurements

Double-differenced carrier-phase smoothed L1 pseudorange measurements are introduced at
the update stage. Review the first expression of equations 3.3.13:

∇∆pzsmr − vzsmr = ∇∆ρzs−mr +∇∆M zs
mr (3.5.7)

where

∇∆pzsm,r =(pzm − pzr) − (psm − psr)
∇∆ρzs−m,r =(ρz−m − ρz−r )− (ρs−m − ρs−r )

(3.5.8)

where ρs−r is the predicted pseudorange between GPS receiver r and satellite s.

Multipath can be identified by evaluating the difference ρs−r − psr. If this is the case, the
affected observation can be removed. More complex multipath mitigation methods can be
found in the literature [53, 231, 13, 206]. However, their evaluation is beyond the scope of this
research. Appendix C.3.2 presents the linearization of equation 3.5.7 for the EKF updates.

GPS double-differenced Doppler measurements

Unlike carrier-phase measurements, Doppler measurements are unambiguous and thus theo-
retically insensitive to cycles slips. For GPS processing, double-differenced L1 Doppler mea-
surements are introduced at the update stage based on the third expression of equations 3.3.13:

∇∆ṗzsmr − vzsmr = ∇∆ρ̇zs−mr (3.5.9)

where

∇∆ṗzsmr =(ṗzm − ṗzr) − (ṗsm − ṗsr)
∇∆ρ̇zs−m,r =(ρ̇z−m − ρ̇z−r )− (ρ̇s−m − ρ̇s−r )

(3.5.10)

with

ρ̇s−r = (vs − vr) •
rs − rr
‖rs − rr‖

. (3.5.11)

Appendix C.3.2 presents the derivation of equation 3.5.9 for EKF.

3.6 Implementation of GPS/INS Integration

3.6.1 Definition of the State Vector

In this research, the local-level frame has been chosen as navigation frame. The advantage of
the local-level frame is that its axis are aligned to the local east, north and down directions. As
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the definition of the local-level frame is based on the vertical to the reference ellipsoid, geode-
tic coordinate differences result from the integration which makes the state interpretation
straightforward.

The state vector contains the correction terms of the navigation parameters as well as the
significant part of the systematic errors of the inertial and magnetic measurements (sections
3.1 and 3.2), as defined by:

δx =



δϕ
δλ
δh
δvN
δvE
δvD
δεN
δεE
δεD
δbfx
δbfy
δbfz
δbωx
δbωy
δbωz
δdmx
δdmy
δdmz



(3.6.1)

where

• the position errors (δrn) are defined by equation C.1.6.

• the velocity errors (δvn) are defined by equation C.1.13.

• the orientation errors (δεn) are defined by equation C.1.20.

• the accelerometer biases (δbfb) are defined by equation 3.1.8.

• the gyroscope biases (δbω) are defined by equation 3.1.8.

• the magnetic disturbance (δdm) are defined by equation 3.2.4. The magnetic disturbance
terms are normalized to limit numerical instabilities.

Employing double-differenced, phase-smoothed GPS code and Doppler measurements, the
state vector is the same in the loosely and in the closely coupled approach (section 3.6.4).
Therefore, neither time differences between the master and rover receiver ∆δtmr, nor ambi-
guity terms N for each visible satellite need to be estimated.

Acceleration terms are not included in the state vector. Indeed, accelerations derived from
GPS measurements are fully correlated to the velocities which leads to a lack of observability.
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3.6.2 Initialization

Position and velocity states are initialized by GPS measurements. Alternatively, if the athlete
is not moving, the initial coordinates can be introduced manually. The coarse alignment
method applied in conventional GPS/INS integration considers two pairs of vectors which
are both available in the local-level frame (n), which is also the navigation frame, and the
body-frame (b). The local-level projection of these two vectors is known from the model of the
Earth (gravity and Earth rotation) while the body frame projections are obtained from the
sensor measurements (specific force and angular rate). Unfortunately, the error characteristics
of the MEMS gyroscopes (noise level > 0.1 deg/s/

√
Hz, systematic errors of several deg/s)

do not allow sensing the Earth’s rotation rate. Hence, the conventional alignment methods
cannot be employed. Therefore, two alternative approaches exploiting MEMS magnetometers
are envisaged: A modified coarse alignment and a quaternion based algorithm. Both will be
presented in the sequel.

Modified coarse alignment method

The MEMS magnetic measurements and the a priori known magnetic field of the Earth offer
a pair of vectors that replace the gyroscope measurements. The orientation of a rigid body
Rb
n can be determined from the following relation:[

−f b mb −f b ×mb
]

= Rb
n

[
ḡn mn ḡn ×mn

]
(3.6.2)

where f b is the specific force measurement, ḡn the normal gravity vector, mb the magnetic
observation and mn the Earth magnetic field deduced from any global or local reference model
(e.g. the World Magnetic Model of [122]). f b and mb can be averaged over a period during
which the sensor does not move.

In the coarse alignment algorithm the rotation matrix must be converted to quaternion form.
This step is potentially unstable. Indeed, in the cases where the trace of the rotation matrix
equals -1 and the off-diagonal terms are skew-symmetric, a zero quaternion is generated.

Quaternion estimation algorithm

Exploiting again the Earth’s gravity and magnetic fields, the initial orientation can also be
found based on weighted (wk) observations and their external reference expressed as unit
vectors (Wahba’s problem [223]):

J(qbn) =
1
m

m∑
i=1

wk(bi −Rb
nni)

2 (3.6.3)

where J is a cost function, m = 2 represents the number of used sensors (magnetometers
and accelerometers) and qbn the orientation expressed as quaternion (equation 3.6.4). bi is a
measurement in the body frame (magnetic observation mb or specific force f b) and ni the
corresponding reference value (magnetic field mn and normal gravity ḡn).
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In this work, the orientation is preferably expressed in quaternion form [191]. Quaternions are
a four-parameter attitude representation method based on Euler’s theorem which states that
a transformation from one coordinate frame to another can be performed by a single rotation
of a given magnitude about a vector. The four elements of the quaternion q are functions of
the vector u and the magnitude of rotation u:

q =


cos
(
u
2

)
ux
2 sin

(
u
2

)
uy
2 sin

(
u
2

)
uz
2 sin

(
u
2

)
 (3.6.4)

where ux, uy and uz are the components of the vector u with magnitude u =
√
u2
x + u2

y + u2
z.

An elegant solution for quaternion based algorithms is referred to as the QUEST (QUaternion
ESTimation) algorithm [159]. The orientation can be found unambiguously when minimizing
expression

J(qbn) =
1
2

2∑
i=1

wk(bi −Rb
nni)

2 (3.6.5)

with the condition (qbn)T · qbn = 1.

In contrast to the coarse alignment algorithm, the QUEST algorithm directly provides a
quaternion which is employed in the strapdown navigation without further transformation.

Adaptation for dynamic initialization

If the initialization is to be performed under dynamic conditions, the specific force measure-
ment needs to be corrected for the kinematic acceleration. This acceleration can be derived
from GPS measurements in the navigation frame and fed back to the coarse alignment or to
the QUEST algorithm:

fn = an + (ωnin + ωnie)× vn − gn (3.6.6)

where an and vn are the acceleration and velocity vectors derived from GPS respectively
[171, 15]. Furthermore, the gyroscope measurement can be accounted for between epochs by
means of the elegant recursive QUEST (REQUEST) algorithm [7, 95].

3.6.3 Strapdown Inertial Navigation

Inertial navigation is unique among navigation technologies because of its autonomous char-
acter. As inertial sensors operate without reference to external signals, they are not affected
by atmospheric conditions, line-of-sight obstructions or other obstacles inherent to other nav-
igation systems based on position fixing (e.g. indoor, underground).
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Orientation prediction

The orientation of the inertial sensor with respect to the navigation frame at time k (qnb )k|k
can be propagated to time k + 1 by applying [193]:

(qnb )k+1|k+1 = (qnn)k+1|k · (qnb )k|k · (qbb)k|k+1 (3.6.7)

The quaternion qbb expresses the rotation of the body frame (index b) between two successive
epochs which is derived from the gyroscopes. It can be defined as a function of the rotation
vector ubb:

(qbb)k|k+1 =

 cos(‖u
b
b‖

2 )
ubb
‖ubb‖

sin(‖u
b
b‖

2 )

 (3.6.8)

where u̇bb ≈ ωbib are the rotation rates measured by the gyroscopes. This leads to:

ubb =
∫ tk+1

tk

u̇bb dt ≈ (ωbib)k · (tk+1 − tk) (3.6.9)

The rotation quaternion (qnn)k+1|k describes the relative motion of the navigation frame (index
n) at instant tk with respect to instant tk+1. It is opposite in phase to the rotation vector unn.
This is taken into account by the negative sign of unn in equation 3.6.10:

(qnn)k+1|k =

[
cos(‖u

n
n‖
2 )

− unn
‖unn‖

sin(‖u
n
n‖
2 )

]
(3.6.10)

where

unn ≈ ωnin ·∆t (3.6.11)

This algorithm propagates qnb , qbb and qnn at equal rates. Reference [153] describes a more
general algorithm where qnb is not necessarily propagated at the same frequency as the body
frame rotation ωbib or the navigation-frame rotation ωnin. The suggested algorithm has not
been tested, although its application reduces the number of mathematical operations without
affecting the numerical precision.

Velocity prediction

Once the orientation of the sensors at time tk+1 is known, the velocity can be integrated from
the specific force measurements f b:

(vn)k+1 = (vn)k + (∆vng/cor)k+1 + (∆vnf )k+1 (3.6.12)
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where

(∆vng/cor)k+1 =
∫ tk+1

tk

gn − (2 · ωnie + ωnen)× vn dt

≈ [(gn)k − (2 · (ωnie)k + (ωnen)k)× (vn)k] · (tk+1 − tk)
(3.6.13)

and

(∆vnf )k+1 =
∫ tk+1

tk

Rn
b f
bdt

≈ (Rn
b )k+1|k · f bdt = (Rn

b )k+1|k · f b ·∆t
(3.6.14)

vn represents the velocity with respect to the navigation frame n, ωnie the rotation rate of the
Earth expressed in the navigation frame, ωnen the rotation rate of the local geographic frame
with respect to the Earth fixed frame. (Rn

b )k+1/k is the matrix expression of (qnb )k+1/k which
can be derived from equation 3.6.7:

(qnb )k+1|k = (qnn)k+1|k · (qnb )k|k (3.6.15)

The accelerations an are extracted from equations 3.6.13-3.6.14.

(an)k+1 = (Rn
b )k+1|k(f

b)k + gn (3.6.16)

Position prediction

The position term rn can be predicted as follows:

(rn)k+1 = (rn)k +
1
2
·D−1((vn)k+1 + (vn)k) · (tk+1 − tk) (3.6.17)

where D is defined by equation 3.5.3.

Higher-order extrapolations could be applied to rn and vn for very high dynamics, e.g. by
extrapolating the previous states by 1

2∆t [193]:

xk+ 1
2

=
3
2
xk −

1
2
xk−1 (3.6.18)

This extrapolation can be applied to rn and vn before the state propagation. This guarantees
that all derived variables (e.g. ωnin) are predicted automatically according to the same ex-
trapolation scheme. The extrapolation has been tested in skiing and motorcycle experiments
and did not result in improved navigation accuracy. It seems that the dynamics encoun-
tered in theses applications as well as the sampling frequencies and sampling regularity of
the sensors do not justify the increased computational effort. However, as the sampling fre-
quency of MEMS-type sensors is not stable, robust integrators could improve the navigation
performance [147].
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Propagation of the inertial error states

The states representing the inertial sensor errors (gyroscope, accelerometer and magnetometer
biases) are modeled as first order Gauss-Markov processes. Hence, their propagation can be
expressed as:

(bωbib)k+1 =(1− βbω(tk+1 − tk))(bω)k
(bfb)k+1 =(1− βbfb (tk+1 − tk))(bfb)k
(dm)k+1 =(1− βdm(tk+1 − tk))(dm)k

(3.6.19)

Backward state propagation

The backward mechanization equations can be easily derived from equations 3.6.7 (orientation
prediction), 3.6.12 (velocity prediction) and 3.6.17 (position prediction) and 3.6.19 (extra
states prediction). The change in sign of ∆t switches the mentioned equations to backward
mode. Only in equation C.2.22, the absolute value |∆t| has to be applied.

3.6.4 Measurement Updates

In the loosely coupled approach (FIG. 3.4), GPS coordinates and velocities are fed to
the filter as external aiding to the INS measurements. In addition, magnetometer measure-
ments are introduced at the update stage. In the closely coupled approach (FIG. 3.5), the
double-differenced carrier-phase smoothed GPS pseudorange and Doppler measurements are
integrated with the INS measurements. Again, the magnetometer measurements are intro-
duced as external aiding.

Closely coupled methods allow integrating GPS and inertial measurements even if the number
of observed satellites drops below four [187, 224]. In this approach, GPS data from individual
satellites can be used or rejected at the measurement update of the Kalman filter. According
to [161, 225], the closely coupled approach is more robust for an incomplete constellation
(and especially for very poor geometry with PDOP > 50) and it offers superior performance
compared to loosely coupled systems under these circumstances. When the number of satellites
falls below three, the positioning accuracy deteriorates rapidly and is dominated by the errors
of inertial navigation. Study [187] has reported in simulations that for partial GPS outages
lasting 20 s, the horizontal position error was improved by a factor of 15 when only two GPS
satellites were visible. However, when the satellite geometry was reasonable (i.e. > 4 SVs),
the closely coupled approach did not show significantly better performance than the loosely
coupled [161].

GPS coordinate

To integrate GPS coordinates with IMU measurements, the coordinates of the GPS antenna
can be expressed with respect to the IMU navigation center taking into account the lever-arm
vector ob.

on = Rn
b · ob =

[
oN oE oD

]T (3.6.20)
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FIG. 3.4: Flow chart of the loosely coupled GPS/INS integration.

Accounting for this lever-arm, the GPS coordinate measurement model can be expressed as
follows:

hr(x̂−k ) = rnIMU + D−1Rn
b · ob + wr (3.6.21)

where wr is the position measurement noise. Appendix C.3.1 presents the derivative of equa-
tion 3.6.21 for the EKF.

GPS velocity

Differentiating expression 3.6.21, the GPS velocity measurement model can be expressed as
follows:

hv(x̂−k ) = vnIMU + δRn
b o

b (3.6.22)

Knowing that δRn
b = [ωnnb×]Rn

b , the expression transforms to:

hv(x̂−k ) = vnIMU + ωnnb ×Rn
b o

b + wv (3.6.23)

The derivative of equation 3.6.23 for the EKF is given in Appendix C.3.1.

GPS double-differenced pseudorange measurements

In the closely coupled approach, the double-differenced, phase-smoothed GPS code are intro-
duced as external aiding to the INS measurements (equation 3.5.7):

∇∆pzsmr − vzsmr = ∇∆ρzs−mr +∇∆M zs
mr (3.6.24)
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FIG. 3.5: Flow chart of the closely coupled GPS/INS integration.

The predicted pseudorange ρs−r between GPS receiver r and satellite s can be derived from
the satellite’s position rs and the predicted position of the GPS antenna considering the lever
arm ob between GPS antenna and the IMU position rn:

ρs−r =
√

(g(rs)− g(rn + D−1Rn
b o

b)T · (g(rs)− g(rn + D−1Rn
b o

b) (3.6.25)

where g is the function that converts geographic to Cartesian coordinates.

Appendix C.3.2 presents the linearization of equation 3.3.13 for the EKF updates.

GPS double-differenced Doppler measurements

In the closely coupled approach, double-differenced L1 Doppler measurements are introduced
as external aiding to the INS measurements (equation 3.5.9):

∇∆ṗzsmr − vzsmr = ∇∆ρ̇zsmr (3.6.26)

Appendix C.3.2 presents the derivation of equation 3.3.13 for EKF.

Magnetic measurements

The measurements of the magnetic compass can be integrated based on the following relation
[194]:

hm(x̂−k ) = Rb
n[hn]× εn − dm + wm (3.6.27)

where εn are the misalignment errors defined by relation C.1.10.
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Chapter 4

GPS/MEMS-IMU System
Performance

This chapter describes the navigation performance of MEMS-IMUs integrated with GPS.
Firstly, the performance of satellite positioning with GPS receivers of different quality is as-
sessed based on experiments in sports. The same GPS data is then integrated with the MEMS-
IMUs based on the previously described loosely and closely coupled integration schemes. The
integration performance is interpreted for complete and partial (< 4 SV) satellite constella-
tions. Then, the benefits of RTS smoothing, magnetic measurements and UKF are analyzed.
Finally, the initial alignment methods are evaluated.

4.1 Experimental Setup

Throughout the system evaluation, the findings are supported by experiments. These exper-
iments come from racing environments where references of superior accuracy are provided in
both the measurement and the navigation domains.

Downhill skiing is an ideal discipline for testing of the proposed integration methods because
of the important dynamics encountered and due to the difficult satellite reception imposed
by the mountainous environments. To investigate the navigation performance of the low-cost
L1 GPS/MEMS-IMU setup, the instruments were mounted in a backpack (FIG. 4.2) together
with a reference system, comprising a dual-frequency GPS receiver (Javad Legacy) and a
tactical-grade IMU (Litton LN200 ). Three orthogonally placed MEMS sensors (Xsens MTi)
were fixed rigidly to the reference IMU with a constant lever arm together with a low-cost
GPS receiver (u-blox AEK4 ). A dozen of downhill runs of approximately one minute duration
were performed by a professional skier. Each run was preceded by a static initialization phase
of 2− 3 min (FIG. 4.1, left).

A slope at Plaine-Joux (France) has been chosen because its south-facing slope offers good
satellite reception and almost no satellite masking above 20 deg. The reference GPS receivers
(Topcon Maxor-660T and u-blox AEK4 ) were placed at the start. This limited the distance
between the reference and the rover GPS receiver to 500 m. The velocity profile of a typical
run is given in FIG. 4.1 (right). On the average, 6 satellites were visible during the downhill
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runs. The PDOP (Position Dilution Of Precision) values were varying between 1.1 and 1.9,
which is an optimal scenario.
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FIG. 4.1: Angular rotation rate around the z-axis (left) and velocity profile (right)

The gates were determined by post-processing of static, dual-frequency GPS measurements.
Their position accuracy is estimated at 2 cm (position) and 5 cm (altitude).

Unless otherwise specified, the results presented in the sequel refer to the skiing experiment.
However, other experiments with varying setups have been conducted with (parts of) the
equipment presented above, in other disciplines and under different dynamics, e.g. motorcy-
cling (FIG. 4.2).

GPS antennas

L1/L2 GPS receiver
(Javad Legacy)

Reference IMU
(LN200)MEMS-IMU

(xsens MTi)

Low-cost L1 receiver
(u-blox AEK4)

Tetrahedron
with 4 Xsens MTi

GPS antennas

FIG. 4.2: Experimental setup mounted on a professional skier and on a motorcycle.

4.2 GPS/MEMS-IMU Performance

The integration strategy is investigated in three steps. Firstly, the accuracy provided by differ-
ent GPS receivers is assessed, i.e. geodetic receivers with fixed/float carrier-phase ambiguities
and low-cost receivers with smoothed carrier-phase measurements. Secondly, the MEMS-IMU
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measurements (100 Hz) were integrated with GPS updates (1 Hz) based on the loosely and
closely coupled integration approaches. Again, the performance of distinctive GPS algorithms
and L1 measurements with different quality is evaluated. The third part refines the assess-
ment of the performance provided by the two integration strategies. Here, the GPS data sets
are resampled by removing satellite measurements over a different time intervals (5 − 40 s).
It is important to stress that an outage of 40 s corresponds to two thirds of the run with
only 10 s of satellite data remaining after the start and before the arrival. The SVs with
small elevation were removed first, which corresponds to artificially increasing the surround-
ing topography leading to artificially reduced satellite constellations. All comparisons were
performed for 6 independent downhill runs.

4.2.1 Satellite Navigation

The performance of different solutions is assessed with respect to the reference solution pro-
vided by the dual-frequency GPS/INS (Litton LN200 ) trajectory processed by commercial
software packages [116, 4]. FIG. 4.3 and TAB. D.1 summarize the root mean square errors
(RMSE) of GPS solutions based on different processing schemes and receivers. A commer-
cial software package [116] succeeded in fixing the carrier-phase ambiguities with the dual-
frequency GPS receiver during 95% of the time. However, their resolution becomes difficult
with (geodetic and low-cost) single-frequency GPS receivers. Therefore, two alternative ap-
proaches were investigated: Estimating float ambiguities with a commercial software package
[116] (“float”) or employing carrier-phase smoothed pseudoranges (“smoothed p”) based on
the algorithm presented in section 3.5.
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FIG. 4.3: 3D position and velocity RMSE of differential GPS solutions for 6 downhill runs
(approximately 150000 samples) as a function of the GPS receiver hardware (geodetic L1

and L1/L2, low-cost L1) and the ambiguity resolution approach (fixed and float ambiguities,
carrier-phase smoothed pseudoranges).

The L1/L2 solution presents an average position accuracy below decimeter level despite the
difficulty in maintaining fixed ambiguities because of the rapidly changing signal reception

53



GPS/MEMS-IMU System Performance

due to the mountainous environment. Indeed, the ambiguities remain float on certain por-
tions of the track. The position accuracy decreases for the single-frequency solutions to a
level of 30 cm using the same receiver and to half-meter level using the low-cost receiver. The
accuracy is clearly improved when float ambiguities are estimated instead of using carrier-
phase smoothed pseudoranges (improvement of 30− 50%). Except in the case of the low-cost
receiver, there is no significant accuracy difference between the horizontal and vertical com-
ponents. In the velocity domain however, the accuracy differences are much smaller between
the GPS solutions. Indeed, the velocity computation is independant of the ambiguity resolu-
tion and uses the same observations (Doppler measurements). It is more surprising that the
quality of the GPS receiver does not significantly improve the velocity estimation. Except the
solution with the low-cost receiver and float ambiguities all solutions provide dm/s accuracy.
The larger velocity error in this case is probably originated by differing filter settings in the
GPS processor, i.e. a commercial software [116] where not all parameters can be controlled.

4.2.2 GPS/MEMS-IMU Integration

The L1 GPS observations from geodetic and low-cost receivers were integrated with MEMS-
IMU measurements based on the loosely and closely coupled integration schemes presented
in section 3.6.4 and compared to the reference solution. FIG. 4.4 and FIG. 4.5 summarize the
RMSE of the GPS/INS solutions for 6 downhill runs.
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FIG. 4.4: 3D position, velocity and orientation RMSE of 6 downhill runs based
(approximately 150000 samples) on the loosely coupled approach.

FIG. 4.4 illustrates the position, velocity and orientation RMSE in the loosely coupled ap-
proach (TAB. D.2). The position accuracy is mainly driven by the accuracy of differential
GPS (with floating ambiguities or carrier-phase smoothed pseudo-range measurements) and
thus corresponds to the values presented in FIG. 4.3 and TAB. D.1. Except for the low-cost
receiver, there is no significant accuracy difference between the horizontal and vertical compo-
nents. The integration of the MEMS-IMU measurements hardly affects the velocity accuracy.
The obtained orientation performance is comparable in all approaches. Roll and pitch errors
range from 0.5 − 1.5 deg on average, while heading errors are slightly larger (1 − 3 deg).
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This can be explained by the limited observability of the heading angle (section 6.6.4). The
presented navigation performance is confirmed by independent findings where comparable
accuracy levels were reached [57, 96, 36].

FIG. 4.5 summarizes the difference between loosely and closely coupled integrations schemes
(TAB. D.3). The discrepancies are negligible and may originate from the filter settings in the
GPS processing.
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FIG. 4.5: Comparison between loosely and closely coupled approaches using carrier-phase
smoothed pseudoranges. 3D position, velocity and orientation RMSE of 6 downhill runs

(approximately 150000 samples).

FIG. 4.6 illustrates the rapid convergence of the orientation estimation after the start. Despite
the large initial orientation error, the filter converges after a few seconds. In parallel, the bias
terms converge as soon as the varying dynamics allow decorrelating them. Fast convergence
of the filter parameters is crucial for sport applications of relatively short duration (e.g. alpine
skiing).
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FIG. 4.6: Convergence of the orientation (left) and of the accelerometer and gyroscope biases
(right) after the start.
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4.2.3 GPS/MEMS-IMU Integration during Reduced Satellite Reception

Overall performance

The previous section has reported that the loosely and closely coupled approaches performed
equally under reasonable satellite constellations (> 4 SVs). However, an accuracy improve-
ment can be expected for the closely coupled strategy under partial satellite constellations
[187, 224, 161, 225]. Such scenarios can be simulated by resampling GPS data sets and re-
moving satellites observations over a variable period of time (5 − 40 s). In this section, two
integration strategies are analyzed under such conditions in terms of position, velocity and
orientation accuracies. The evaluation is based on the skiing experiment (section 4.1) and L1
GPS measurements from the geodetic receiver.
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FIG. 4.7: Accuracy improvement of the closely coupled integration approach with respect to
the loosely coupled approach as a function of the number of SVs and the number of

considered satellites.

The overall accuracy improvement provided by the closely coupled integration approach with
respect to the loosely coupled approach is computed for each data set based on:

RMSEgain =

{
RMSEl
RMSEc

− 1 if RMSEl
RMSEc

> 1
1− RMSEl

RMSEc
if RMSEl

RMSEc
< 1

(4.2.1)

where RMSE is the root mean square error during the periods with partial satellite blockage.
Index l denotes loosely coupled integration, index c closely coupled integration. This expres-
sion yields positive values when the closely coupled approach outperforms the loosely coupled
integration.
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FIG. 4.8: Trajectory during 40 s of reduced satellite reception (3 satellites) applying a closely
and a loosely coupled integration strategy.

The average improvement of the position, velocity, and orientation error is visualized in
FIG. 4.7. It can be seen that the loosely coupled integration performs slightly better under
complete satellite constellations (label “all” on the x-axis). At the critical number of 4 visible
SVs, the performance of the closely coupled approach is marginally better (10 to 30%). With
further decrease of tracked SVs, the improvement provided by the closely coupled approach
increases and becomes maximum for 3 SVs and a GPS outage duration of 40 s. The trajectory
depicted in FIG. 4.8 illustrates this behavior: The closely coupled solution follows very well
the reference track whereas the loosely coupled solution diverges considerably. For fewer than
3 SVs, the improvement provided by the closely coupled integration is less important and the
difference is again marginal for one tracked satellite.

Position and orientation accuracy

The improvement in position and orientation accuracy provided by the closely coupled inte-
gration scheme is analyzed for partial satellite constellations.

FIG. 4.9 shows the position errors for different durations of satellite tracking outages (10 s,
15 s, 20 s and 30 s). For outage times up to 15 s, the difference in performance between both
approaches is marginal. The vertical component presents a peak at 4 satellites which is less
dominant in the closely coupled approach. In such situations where no redundant satellites
are available, the filter probably overweights the remaining pseudoranges with respect to the
inertial solution. On the other hand, for outage times longer than 20 s the closely coupled
approach outperforms the loosely coupled strategy, with a major improvement at 3 SVs.
However, for cases with 3 or less satellites and reduced satellite reception longer than 30 s,
the position error increases rapidly in correspondence to MEMS-inertial sensor characteristics.
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FIG. 4.9: Position RMSE during 10 s (a), 15 s (b), 20 s (c) and 30 s (d) of reduced satellite
reception as a function of the number of satellites.

During such scenarios, neither approach is appropriate to satisfy accuracy requirements in
sports (TAB. 2.1).

The evolution of the orientation errors is slower in time. Hence, the difference between the
integration approaches becomes apparent only for larger outages (FIG. 4.10). There, the closely
coupled strategy performs better. With this approach, the orientation error remains bounded
and satisfactory results can be achieved even for only 2 SVs.

GPS outages up to 5 s are frequent in sport applications, whereas outages longer than 30 s are
less frequent (e.g. in alpine skiing through satellite masking due to the changing surrounding).
Indeed, most outages are less than 15 s. These investigations have revealed that the filter was
capable of bridging typical outages without significant loss of navigation accuracy. Thus,
MEMS-IMU measurements can be integrated with GPS to obtain sufficiently accurate results
during GPS outages up to a few seconds in spite of the high dynamics like in ski racing.

The loosely coupled strategy provides similar performance at full or partial satellite constel-
lation (more than 3 SVs) which confirms the findings in [161]. For 3 SVs and outages larger
than 15 s the closely coupled approach is certainly better but this difference becomes negligi-
ble at 2 SVs and diminishes completely at 1 SV. This confirms the simulations presented by
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FIG. 4.10: Orientation RMSE during 10 s (a), 20 s (b), 30 s (c) and 40 s (d) of reduced
satellite reception as a function of the number of satellites.

[187, 224]. Therefore, the closely coupled integration can provide better results under certain
circumstances.

The analyzed data corresponds to a period of one hour during which the satellite geometry
did not change significantly. Hence, no general conclusion for arbitrary satellite constellations
is possible. However, the closely coupled strategy seems to possess important advantages in
situations with reduced satellite reception and is therefore recommended.

4.2.4 Benefits of RTS Smoothing

Through backward smoothing, a large part of the random errors and drifts inherent to
inertial navigation can be removed. FIG. 4.8 and 4.11 illustrate the navigation performance
improvement by RTS smoothing. The trajectory starts to diverge between GPS updates
when inertial measurements with remaining errors are integrated. At the GPS updates, the
INS errors are calibrated. The drift due to inaccurate inertial error modeling decreases along
the trajectory.
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FIG. 4.11: Trajectory smoothing based on the RTS algorithm.

4.3 Benefits of UKF

This section assesses the performance of the EKF and SR-UKF. Indeed, theoretical consid-
erations in section 3.4.2 revealed the suitability of the two approaches for sport applications.
Therefore, the previously investigated trajectories were reprocessed using both methods and
compared to the reference tracks.

4.3.1 Navigation Performance

TAB. 4.1 compares the RMSE and maximum errors between 6 reference trajectories and those
obtained by EKF and SR-UKF integration of L1 GPS with MEMS-IMU. The differences of
the RMSE are negligibly small (cm-level for position, 0.3 deg for orientation) and are mainly
driven by differential GPS accuracy (with floating ambiguities). On the other hand, the max-
imum errors are larger for the SR-UKF, notably for the orientation. These maximum errors
occur at the beginning or at the end of the run (FIG. 4.12). As soon as the filter parameters
have converged the two filters provide identical results. These findings are confirmed by the
studies presented in [225]: Loosely and closely coupled interpolation schemes and UKF have
reported to calibrate MEMS-IMU with similar accuracies.

The covariance comparison gives also similar results for both filters. This is demonstrated by
plotting the covariance of the orientation and the bias during a selected run in FIG. 4.13. The
covariance decreases rapidly after the start of the skier (at 10s).

4.3.2 Implementation Aspects

From the implementation point of view, the UKF approach sometimes encounters problems
with the positive semi-definiteness of the S matrix after the Cholesky update [22]. Indeed, in
the standard UKF, the covariance P is computed recursively. This requires calculating the
matrix squareroot S · ST = P at each step (by Cholesky factorization). On the other hand,
the Square-Root implementation of the UKF (SR-UKF) propagates S directly [203, 166].
Theoretically, this guarantees the positive semi-definiteness of the UKF during the covariance
propagation. Practically, the positive semi-definiteness of the S matrix is occasionally still
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TAB. 4.1: Comparison of the mean and maximum errors of the EKF and UKF for 6 runs.

EKF UKF Difference
N [m] 0.25 0.25 0.00
E [m] 0.20 0.17 0.03

RMSE h [m] 0.19 0.17 0.02
rl [deg] 1.52 1.36 0.16
pt [deg] 1.80 1.81 -0.01
hd [deg] 2.04 1.94 0.10
N [m] 1.01 1.05 0.04
E [m] 0.73 1.08 0.35

Max. h [m] 1.20 1.39 0.19
Error rl [deg] 2.26 2.53 0.27

pt [deg] 2.79 2.92 0.13
hd [deg] 3.37 3.90 0.53
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FIG. 4.12: Position, velocity (left) and orientation errors (right) of the smoothed EKF and
SR-UKF solutions during run #11.

not met after the Cholesky update [22]. The Frobenius norm and the modified Cholesky
factorization [114] can help to overcome this problem.

Furthermore, longer computational times were noticed with the SR-UKF implementation as
compared to the EKF which confirms results presented by [180]. On the other hand, the
previously mentioned references indicate that both algorithms are O(n3) [202, 205, 166, 96].
However, the observed differences might come from the choice of the programming language
(Matlab, [101]) where the implementation of some functions (e.g. the matrix inversion) is
highly optimized, whereas others are less (SP generation, update equations, covariance recon-
struction). Additionally, the EKF system matrix F was derived analytically which reduces
the computational load.

Considering the increased processing time and the encountered numerical instabilities, the
SR-UKF approach seems to be less interesting for the sport application. On the other hand,
the SR-UKF remains a straightforward approach for testing other (more complex) models

61



GPS/MEMS-IMU System Performance

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

Time [s]

O
rie

nt
at

io
n 

ac
cu

ra
cy

 [d
eg

]

 

 

EKF - forward rl
EKF - forward pt
EKF - forward hd

UKF - forward hd
UKF - forward pt
UKF - forward rl

Start

0 10 20 30 40 50 60 70 800

0.1

0.2

0.3

0.4

0.5

Ac
ce

le
ro

m
et

er
s 

[m
/s

2
]

 

 

0 10 20 30 40 50 60 70 800

1

2

3

4

5

Time [s]

A
ng

ul
ar

 ra
te

 [d
eg

/s
]

EKF - forward x
EKF - forward y
EKF - forward z

UKF - forward y
UKF - forward z

UKF - forward x

Start

FIG. 4.13: Orientation (left) and bias covariance estimation (right) of the forward processed
EKF and SR-UKF solutions during run #11.

(e.g. closely-coupled integration, hybridization with other sensors). Furthermore, it might
provide better results than the EKF in the case of large initial attitude errors [37, 166] or
under different dynamics as it was demonstrated in the studies [23, 22].

4.4 Magnetic Sensors

To evaluate the benefits of magnetic updates during the navigation process, magnetic obser-
vations were fed to the loosely coupled EKF based on relation 3.6.27. Dual-frequency GPS
coordinates and velocities were input to limit the contribution of the GPS observation errors
on this investigation.
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FIG. 4.14: Coordinate (left) and velocity (right) update innovations (run without GPS
outages, forward filtering, with and without magnetic updates).

FIG. 4.14 depicts the coordinate and velocity innovations of a run processed in forward di-
rection (< 1.0 m for the coordinate updates and < 1.0 m/s for the velocity updates). They
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are efficiently reduced by the RTS smoothing algorithm (FIG. 4.11). However, no systematic
improvement is realized by the application of magnetic updates.

Magnetic updates are useful for orientation estimation and potentially help to bridge the
gaps in GPS positioning. A simulation with artificial satellite outages (TAB. 4.2) shows that
the maximum orientation error is slightly reduced (less than 1 deg) by considering the mag-
netic observations. On the other hand, the magnetic updates do not improve the position
and velocity estimation systematically (TAB. 4.2, FIG. 4.14). Reference [197] noted the sensi-
tivity of magnetic sensors to high-frequency accelerations. This effect was also mentioned in
study [221]. Nevertheless, these observations are indispensable during the sensor orientation
initialization [171].

TAB. 4.2: Differences between the maximum position, velocity and orientation errors (with
and without magnetic updates). Negative values indicate an improvement.

Position [cm] Velocity [cm/s] Orientation error [deg]
Difference E N h vE vN vD rl pt hd

GPS updates at 1 Hz -0.2 0.5 1.7 -1.0 0.6 0.7 0.3 -1.3 -0.6
GPS outage of 5 s -6.0 -0.6 -1.8 -3.8 -0.6 -1.8 0.3 -0.8 -0.6
GPS outage of 10 s -7.0 -34.1 9.6 -1.8 -2.2 1.3 -0.1 -0.5 -0.8
GPS outage of 15 s 18.2 54.9 1.2 -0.8 8.2 3.6 0.4 -0.7 -1.0
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FIG. 4.15: Trajectory smoothing based on the RTS algorithm (with magnetic measurements).

4.5 Orientation Initialization

The initial alignment is a critical phase in GPS/MEMS-IMU integration. Two methods for
the initialization of the orientation were previously introduced in section 3.6.2. The first
algorithm is a modified coarse alignment approach where the gyroscope measurements are
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replaced by magnetic measurements. The second method is a quaternion based approach
using also accelerometer and magnetometer observations.

4.5.1 Evaluation based on Simulations

Firstly, the sensitivity of the algorithms to sensor biases is investigated. Indeed, it is important
to verify whether the orientation error caused by typical accelerometer biases and magnetic
disturbances can be tolerated. For this purpose, a synthetic set of inertial and magnetic
measurements was generated. The measurement biases were alternatively added to each axis
(FIG. 4.16). The accelerometer measurements were “fixed” at normal gravity and the magnetic
measurements to the value of the Earth magnetic field at the position (46 ◦N , 7 ◦E, 1775 m)
and time (2007).

Typical accelerometer biases encountered with the MEMS-type sensors amount to 0.2 m/s2.
Such biases cause maximum orientation errors of approximately 2 deg (FIG. 4.16, left). On the
other hand, soft magnetic disturbances and magnetometer biases have a much larger impact
on the initial orientation. Indeed, these errors can range up 0.2 T/T and cause orientation
errors up to 20 deg (FIG. 4.16, right). Experience shows, however, that such errors are rapidly
mitigated by the GPS updates and do not generate numerical instabilities in the KF. Hard
magnetic disturbances (i.e. sign flipping or complete overmasking) induce variable orientation
errors up to 50 deg which may cause filter divergence. Such cases can be provoked by the
vicinity of other electronic accessories (e.g. computers) or metallic components of the sport
equipment (e.g. in motorsports). In some cases the absolute value of the sensor bias can be
reduced by sensor pre-calibration (chapter 5, [222]).
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FIG. 4.16: Initial orientation error as a function of the initial accelerometer bias (left) and of
the initial magnetometer bias or magnetic disturbance (right).

4.5.2 Experimental Evaluation

The limitations of both initialization algorithms with respect to the MEMS sensor error
characteristics are also analyzed using the tactical-grade GPS/INS as reference. The errors
of the modified coarse alignment and of the QUEST algorithm are illustrated in FIG. 4.17 for
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one run. As depicted in the example, both algorithms converge rapidly after the start as soon
as the dynamics increases and the inertial biases decorrelate from the orientation estimate
[220]. The initial differences between the two solutions (< 0.5 deg) are negligible and have no
impact on the filter convergence.
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FIG. 4.17: Comparison of the coarse alignment and QUEST algorithm for the orientation
initialization (run #11).
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Chapter 5

MEMS-IMU Error Modeling

MEMS-type inertial and magnetic sensors are prone to very large and variable measure-
ment errors. Although sensor calibration by the manufacturers (temperature, misalignments)
removes its important part, the residual effect do not provide sufficiently accurate measure-
ments for standalone inertial navigation. Therefore, permanent sensor error compensation
during navigation becomes mandatory. Realistic estimation of the noise parameter in the in-
ertial sensors is important for correct tuning of the KF. Moreover, the stochastic part of the
inertial sensor errors is required for the simulations presented in section 6.6. For sensor cali-
bration, turn tables and climatic chambers are used in industry. Ideally, the determination of
the noise characteristics is also based on dynamic experiments with changing environmental
conditions (e.g. temperature, pressure, vibrations). There, IMUs of higher quality can be used
as reference.

In this chapter, the noise parameters are determined based on static and dynamic experi-
ments. The MEMS sensor’s output is compared to the reference signals provided by a higher-
grade IMU. This information is used to verify the relevance of the proposed error model
(section 3.1.2) and parameter estimation [222].

5.1 Static Evaluation by Allan Variance

The complexity of the observed errors is usually separated by terms of different time vari-
ations. Indeed, the origins of these terms is often linked to the oscillator environment (e.g.
temperatures changes, vibrations) but they may also be internal (e.g. thermal noise). Several
variance techniques have been developed for the analysis of these perturbations such as the
Allan variance, the Hadamard variance or the total variance [76, 207, 208, 209]. The simplest
of these methods is the Allan variance. This method was successfully applied to the modeling
of the inertial sensor errors in [74, 35, 184, 228].

The Allan variance is a method where the root mean square random error is represented as
a function of the averaging time. It was invented in 1966 by David Allan and was originally
employed to study the stability of oscillators [2]. In 1998, the IEEE standard introduced this
technique as a noise identification method [66]. This method can be used to determine the
characteristics of the underlying random processes that perturb data. The Allan variance

67



MEMS-IMU Error Modeling

considers five basic noise processes which can be expressed in the appropriate notation for
inertial sensors (FIG. 5.1), namely [64]:

• The difference between the real analog value and the encoded digital value is called
quantization error. This error is due to the bit resolution of the analog-to-digital
converter, which is either rounded or truncated.

• White noise is a random process which is characterized by a flat PSD which means
that every frequency is of equivalent importance in the random process.

• The bias instability originates from electronic or other sensors’ components susceptible
to random flickering [74].

• Random walk noise can be characterized by a trajectory consisting of taking successive
random steps. This process is controlled by the differential equation defined in the
relation 3.1.5.

• The error terms considered so far are all random processes. It is, however, useful to
determine the behavior of the Allan variance under systematic (deterministic) effects.
One such error is the rate ramp.

Moreover, a first-order Gauss-Markov process as well as a sinusoidal noise can be identified
in the Allan variance plot [74, 35, 121]. In this work, the Allan variance is applied as a tool
for modeling of inertial sensor errors.

Averaging Time

A
lla

n 
de

vi
at

io
n

 

 

σ
BI

ln(2)/p)1/2

T
BI

Q
z

σ
WN

σ
RW

C
RR

2
1/2

3 1/2 31

Bias instability
slope = 0

White noise
slope = -1/2

Random walk
slope = 1/2

Rate ramp
slope = 1

Quantization Noise
slope = -1

FIG. 5.1: Schematic sample representation of Allan variance.

5.2 Static Estimation of the Noise Parameters

In this section, the previously described parameters of the error model are estimated. After re-
moval of the mean offset and scale-factor (trend) determined through parametric adjustment,
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the stochastic component of the bias, the bias instability and the white noise are approximated
using the Allan variance method.

Static experiments of three hours were conducted in three different environmental conditions
(e.g. temperature, pressure). In order to provide inputs to the Allan variance analysis, the
static measurements of the considered sensor (Xsens MTi) were recorded. These periods are
considered long enough to give sufficiently significant results [64].
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FIG. 5.2: Estimation of the static noise parameters for the gyroscopes (left) and Allan
variance results for the accelerometers (right) of the Xsens MTi. The dotted lines indicate

the standard deviations of the measurements.

TAB. 5.1: Noise estimates for Xsens MTi using Allan variance [64].

White noise Bias Instability Random walk
σWN TBI [s] σBI σRW

Gyroscopes [deg/s/
√

Hz]
Gyro X, Y, Z 4.3 · 10−2 60 2.1 · 10−3 1.1 · 10−5

from manufacturer 1.0 · 10−2 − − −
Accelerometers [m/s2/

√
Hz]

Accelerometer X 7.2 · 10−3 0.6 2.2 · 10−3 7.5 · 10−6

Accelerometer Y 1.3 · 10−3 9 1.2 · 10−4 1.3 · 10−6

Accelerometer Z 2.1 · 10−3 35 2.0 · 10−4 −
from manufacturer 2.0 · 10−3 − − −

FIG. 5.2 illustrates that all gyroscopes have a similar behavior and that they are scarcely
affected by variations in the environment. Unlike the gyroscopes, the accelerometers are af-
fected by environmental variations and each sensor has a different behavior. As a result,
the noise parameter of each sensor needs to be estimated individually. TAB. 5.1 summarizes
the calibrated value and their corresponding accuracy [64]. The estimated values reveal an
important variability of the error characteristics for each sensor axis. In addition, the ex-
perimentally obtained values are different from the specification of the manufacturer. Hence,
employing calibrated parameters derived from experimental data could improve the tuning of
the Kalman filter.
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Ideally, the noise characteristics of the MEMS-IMU sensors would be estimated based on
experiments in various environmental conditions and different dynamics. As the accuracy of
the Allan variance decreases rapidly with increasing cluster size, the duration of the downhill
skiing experiments was too short to retrieve numerical results.

5.3 Dynamic Error Model Investigation

To investigate the suitability of the MEMS error model as proposed in section 3.1.2, the raw
data of 3 MEMS-IMUs (Xsens MTi) and a tactical-grade IMU (Litton LN200 ) were compared
during a dozen of ski downhills of approximately 1 min duration (experimental system setup
described in section 4.1).

5.3.1 Estimation of the Relative Alignment of the MEMS-IMU

Before a comparison between MEMS and reference IMU measurements can be performed, the
physical misalignment between the two systems had to be determined. These were estimated
by feeding the GPS/MEMS-IMU integration algorithm with the reference orientation angles
provided by the reference solution using the following observation model [222, 215]:

h(x̂−) = (I3 + B) ·ϕLN200 + wϕ

Ḃ = −βB ·B +
√

2σ2
BβB wϕ

(5.3.1)

where B is the skew-symmetric form of the misalignment angles, ϕLN200 are the orientation
angles of the reference solution, wϕ the measurement noise and βB the inverse of the corre-
lation time T ”fixed” to infinity. The accuracy of the misalignment angles is limited by the
accuracy of the MEMS orientation determination and is estimated to 0.5 deg (1σ).

5.3.2 Estimation of the Reference Values for the Inertial Sensor Errors

With the reference signals corrected for the misalignment, the raw signals could be compared
directly. From the observed differences, biases b and scale factors s were estimated through
parameter adjustment of the following model, assuming that drifts can be neglected for data
sets of short duration (2− 5 min):

`LN200 − v = (1− s) · `MEMS + b (5.3.2)

During the static initialization, only biases could be computed. The absence of dynamics
during this period did not permit to isolate scale factors. On the other hand, during the runs
the signals decorrelated to a greater extent and the estimation of the scale factor became
possible.

By comparing the biases estimated on the static portions before and after the runs and
considering that the duration of the runs does not exceed one minute, the adjustment of
drifts can be neglected. For longer data sets however, the correlation time could take into
account the error drifts.
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5.3.3 Error Model Analysis

TAB. 5.2 summarizes the results for a representative data set. When comparing the estimated
mean biases with their standard deviations during static initialization, they often show to
be irrelevant. This is further shown in FIG. 5.3 (left) and 5.5 (left). On the other hand, the
biases observed during the run are statistically meaningful and better determined (FIG. 5.3
(right) and 5.5 (right)). The scale factors for the accelerometers are statistically significant
(FIG. 5.4), whereas those for the gyroscopes proof to be insignificant (FIG. 5.6). However,
the correlations between the accelerometer biases and scale factors remain large (0.9 for the
“horizontal” axis, 0.3 for the “vertical” axis) which explains the difficulty to decorrelate the
two error contributions.

TAB. 5.2: Estimated biases and scale factors during the static initialization and during a
representative run. Shaded cells indicate statistically meaningless values.

Static Initialization fx[m/s2] fy[m/s2] fz[m/s2] ωx[deg/s] ωy[deg/s] ωz[deg/s]
Bias 0.008 0.171 0.020 -0.11 0.51 1.38
Std. bias (1σ) 0.022 0.024 0.027 0.12 0.14 0.16
Downhill run fx[m/s2] fy[m/s2] fz[m/s2] ωx[deg/s] ωy[deg/s] ωz[deg/s]
Bias -0.049 0.039 -0.145 -0.21 0.38 1.39
Std. bias (1σ) 0.003 0.003 0.009 0.01 0.01 0.01
Scale factor [-] 0.0046 -0.0533 -0.0223 -0.0051 -0.0118 0.0004
Std. scale factor [-] (1σ) 0.0006 0.0009 0.0011 0.0212 0.0357 0.0250
Correlation [-] 0.93 0.32 0.98 0.31 0.43 0.14

1 2 3 4 5 6 7 8 9 10
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

z 
ac

ce
le

ro
m

et
er

 b
ia

s 
[m

/s
2

]

 

 

Sensor 1
Sensor 2
Sensor 3

Trial number

1 2 3 4 5 6 7 8
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

z 
ac

ce
le

ro
m

et
er

 b
ia

s 
[m

/s
2
]

 

 

Sensor 1
Sensor 2
Sensor 3

Trial Number

FIG. 5.3: Biases and standard deviations (1σ) observed during the static initialization (left)
and dynamic phase (right) for the z-axis of 3 accelerometers.

FIG. 5.3 to 5.6 give examples of the estimated biases and scales factors for 3 MEMS-IMU
sensors and 8-10 ski runs.

The accelerometer biases estimated during the static initialization have similar values for all
runs (FIG. 5.3, left). However, the accelerometer biases and scale factors adjusted during the
dynamic portion of the run vary considerably between the tracks (FIG. 5.3, right and FIG. 5.4).
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FIG. 5.4: Scale factors and standard deviations (1σ) observed for the z-axis of 3
accelerometers.

1 2 3 4 5 6 7 8 9 10
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y 
gy

ro
sc

op
e 

bi
as

 [d
eg

/s
]

 

 

Sensor 1
Sensor 2
Sensor 3

Trial number

1 2 3 4 5 6 7 8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y 
gy

ro
sc

op
e 

bi
as

 [d
eg

/s
]

 

 

Sensor 1
Sensor 2
Sensor 3

Trial number

FIG. 5.5: Biases and standard deviations (1σ) observed during the static initialization (left)
and dynamic phase (right) for the y-axis of 3 gyroscopes.

Scale factors and biases are highly correlated which can be seen in their temporal evolution.
Indeed, a change in the bias (FIG. 5.3, right) causes a change of the scale factor (FIG. 5.4).
Moreover, they seem to be correlated between MEMS-IMU sensors, i.e. the accelerometer
biases of all 3 sensors increase during trial #5. This emphasizes the difficulty to separate
biases and scale factors with statistical significance. Thus, the results of the accelerometer
scale factors have to be interpreted with caution.

Considering the standard deviations of the gyroscope biases, the difference between the bi-
ases adjusted during the static initialization and during the dynamic portion is statistically
irrelevant (TAB. 5.2). Unlike the accelerometer biases, the gyroscope biases converge to stable
values with increasing experiment duration (FIG. 5.5, right). Moreover, the gyroscope scale
factors vary much less between the trials than the accelerometer biases (FIG. 5.6). This may
be explained by the observability of the gyroscope biases which is better than the observabil-
ity of the accelerometer biases [227]. Furthermore, the sensor’s temperature increases at the
beginning of the experiment and becomes constant towards the end.
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FIG. 5.6: Scale factors and standard deviations (1σ) observed for the y-axis of 3 gyroscopes.

5.3.4 Relevance to Kalman Filtering

The biases deduced from the raw static signals are now compared to those estimated by the
EKF during the GPS/INS integration (FIG. 5.7). The comparison to their respective standard
deviations shows that the obtained differences are statistically insignificant.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

D
i�

er
en

ce
 in

 b
ia

s 
es

tim
at

io
n 

[m
/s

2
]

 

 

x
y
z

4 6 7 8 10
Trial number

4 6 7 8 10
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D
i�

er
en

ce
 in

 b
ia

s 
es

tim
at

io
n 

[d
eg

/s
]

 

 

x
y
z

Trial number

FIG. 5.7: Difference between the accelerometer (left) and gyroscope (right) biases estimated
with the GPS/INS integration and those deduced from the raw data comparison during the

run (MEMS sensor #1). The error bar indicates the standard deviation of the difference
(1σ).

FIG. 5.7 shows that the biases estimated from the comparison of the raw signals are equivalent
to those estimated by the GPS/INS integration based on EKF. However, which parameters
provide the best navigation performance (position, velocity, orientation)? Would it be prefer-
able to employ calibrated biases or scale factors? To answer these questions, the estimated
biases and accelerometer scale factors obtained from the comparison to the reference signals
were then fed back to the EKF. Either the biases estimated by the EKF or the calibrated
biases from the raw data comparison were applied. The accelerometer scale factors were alter-
natively applied to the raw measurements. TAB. 5.3 illustrates the performance of the EKF
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for one representative downhill run. Correcting the specific force measurements with the ad-
justed scale factors impacts the results only negligibly. The differences turn out to be below
centimeter-level and of a few hundredths of a degree for the orientation. When applying the
calibrated biases instead of estimating them with the EKF, the results are worse. Neverthe-
less, the differences are small (at the centimeter level and of the order of a few tenth of a
degree) and therefore it can be claimed that the biases estimated by the EKF and those de-
duced from the comparison to the reference measurements are coherent. As listed in TAB. 5.3,
applying the calibrated accelerometer scale factors does not improve the navigation quality.
This is most likely due to the large correlation with the estimated biases. Hence, extend-
ing the MEMS error model by constant scale factors does not lead to improved navigation
performance of the integrated system in the context of this application (downhill skiing).

TAB. 5.3: Accuracy of position and orientation as function of the applied biases and scale
factors (run #10).

Estimate bias by GPS/INS integration Yes Yes No No
Apply calibrated biases No No Yes Yes
Apply calibrated accelerometer scale factors No Yes No Yes

N [m] 0.36 0.35 0.46 0.46
E [m] 0.39 0.39 0.45 0.45

RMSE h [m] 0.42 0.43 1.36 1.36
rl [deg] 0.87 0.95 2.67 2.68
pt [deg] 0.56 0.53 3.95 3.92
hd [deg] 0.70 0.91 1.11 1.10

5.4 Investigation of more Complex Error Models

The previous investigation showed that the simplified inertial error model was able to de-
termine correctly the sensor biases. Furthermore, it was shown that other error terms (e.g.
scale factors) could not be estimated at a statistically significant level. On the other hand,
independent research with higher-grade IMUs [113, 112] indicated that more sophisticated er-
ror models, e.g. ARMA processes (Auto-Regressive and Moving Average), provided superior
performance than that based on GM processes. Hence, it remains to be seen whether addi-
tional modeling might also bring benefits in the case of MEMS-type IMUs. For this reason,
the MEMS-IMU signals were analyzed together with the reference signals based on Artificial
Neural Networks (ANN).

An ANN was set up with a “log-sigmoid” activation function and a network configuration
1-4-4-1 (FIG. 5.8, [77, 232]). The network was trained for a MEMS-type IMU by means of
reference inertial measurements presented in section 4.1 [63]. After training, the ANN was
applied to the subsequent MEMS-IMU signals of the same downhill run. For the purpose of
comparison, the MEMS-IMU signals were also corrected for a constant bias. FIG. 5.9 illustrates
the residual measurement error of fx computed with both modeling approaches. The RMSE
and the standard deviation of the two solutions were computed and compared. TAB. 5.4
summarizes the improvement of the RMSE and its standard deviation when modeling the
signal with ANN instead of subtracting a constant bias.
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FIG. 5.8: ANN employed for inertial error estimation.

The RMSE does not show any systematic improvement. The average RMSE improves by 3%
for trail #11, but worsens for trail #9 and #10 (-14% and -23%). On the other hand, the
reduction of the standard deviation (10− 18%) indicates that the ANN is able to model part
of the remaining systematic error in the MEMS-IMU data. Indeed, the presence of random
walks is confirmed by the autocorrelation plots of the MEMS gyroscopes in FIG. 6.9.

TAB. 5.4: Error model improvement with ANN.

Trial #9 Trial #10 Trial #11
RMSE σ RMSE σ RMSE σ

fx -3% -1% -10% -3% -23% -1%
fy 52% -26% 19% 19% 31% -22%
fz -6% -5% -34% -1% -30% -2%
ωx 11% -12% 23% -17% -34% -15%
ωy -59% -15% 61% -18% 9% -18%
ωz 90% -48% 79% -42% 32% -46%

Average 14% -18% 23% -10% -3% -17%

Based on this investigation, it would be premature, however, to conclude that more complex
error models (like ANN) improve the error modeling for this particular application. Firstly,
the ANN was trained with reference inertial signals which would not be available normally.
It is questionable whether the ANN could be trained with the same efficiency with GPS
observations. Indeed, section 5.3 has unveiled the difficulty to decorrelate the different error
contributions in such a case. Secondly, when applying the parameters of the ANN to other
runs, the signals were significantly deteriorated. This confirms the limitation of the ANN in
cases where the systematic effects vary by their nature or due to the dynamics and environ-
mental conditions (section 3.4.2).
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Chapter 6

Performance Improvement through
Redundant IMUs

The investigations described previously reveal position accuracies ranging from few cm to half-
meter accuracy depending on the quality of the employed GPS receiver. However, velocity
and orientation accuracies have shown to be less sensitive to the quality of GPS observables.
Hence, to improve the quality of these parameters, two possibilities can be envisaged: The
first alternative consists of the integration of higher-grade IMUs which is impractical for
sport applications (chapter 2). The second possibility targets at improving the navigation
performance employing redundant sensors. While using redundant GPS receivers would not
reduce the system’s limitations inherent to satellite navigation (section 2.2.2), using redundant
MEMS-IMU seems to be an ergonomically and economically viable alternative. Indeed, these
devices can be highly miniaturized and hence it is possible to exploit numerous MEMS-IMU
sensors for enhancing the navigation performance.

The IMU redundancy can improve the GPS/INS integration performance on several levels.
Firstly, noise estimation can be achieved directly from the data and the stochastic parame-
ters are hence closer to reality. Secondly, the noise level can be reduced and defective sensors,
spurious signals and sensor malfunctioning can be detected and isolated. Furthermore, sensor
error calibration (and hence orientation estimation) becomes conceivable even during uni-
form motion or static initialization. Due to the improved navigation accuracy, redundant
IMUs bridge the gaps in the GPS data more effectively. Finally, more accurate orientation
determination is expected with redundant IMU configurations.

Redundancy in inertial navigation has been investigated with higher-order IMUs [21]. Several
authors have presented results for simulations and emulations, as well as theoretical deriva-
tions for MEMS-IMU, but - to the author’s knowledge - the first experimental results using
MEMS-type sensors have been openly published by [217, 6]. Based on simulations and theo-
retical derivations, reference [188] has found an accuracy improvement of 33% with MEMS-
IMUs placed on a tetrahedron. Emulations with MEMS-SRIMU presented by [128] resulted
in performance improvements of 20− 34%.

The first part of this chapter presents the theoretical basis of IMU redundancy. It covers
geometrical considerations about the spatial configurations of inertial sensors, as well as the
theoretical basis of noise reduction achieved with sensor redundancy. Then, it presents an
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algorithm that estimates the evolution of noise level during the processing. Furthermore,
algorithms for the estimation of inertial sensor errors and the orientation during static initial-
ization are introduced. In addition, the most commonly used Fault Detection and Isolation
(FDI) algorithm, the parity space method, is tested. Finally, three algorithmic options for
the integration of GPS data with redundant MEMS-IMUs are discussed. The second part of
this chapter assesses the performance of the first two algorithms based on simulations and
controlled experiments in skiing (orthogonally-redundant IMUs) and motorcycling (skew-
redundant IMUs).

6.1 INS Redundancy Approaches in Inertial Navigation

FIG. 6.1 and FIG. 6.2 summarize different levels on which redundancy can be generated in
inertial navigation [3].

• Redundancy at system level: Several GPS/INS components are formed and processed
individually. Fault detection is applied on the resulting navigation solutions.

NAV proc 1GPS/INS 1

GPS/INS 2

GPS/INS 3

NAV proc 2

NAV proc 3

Fault 
detection

FIG. 6.1: Redundancy at system level.

• Redundancy on IMU or multi-IMU level. In the first geometry, individual IMUs are
processed together or individually. Fault detection algorithms can be used before or
after the navigation processing. In the second configuration, a multi-IMU sensor (e.g.
SRIMU) is processed in one or multiple navigation processors. Fault detection is gener-
ally performed before the navigation process.

NAV proc 1IMU 1

GPS

Fault
detection

Navigation 
constraints

IMU 2

IMU 3

NAV proc 2

NAV proc 3

NAV proc 1
Fault 

detection

GPS

Multi-
sensor IMU NAV proc 2

NAV proc 3

FIG. 6.2: Redundancy on IMU level (left) and on multi-IMU level (right).

System redundancy is not attractive for the sports application in terms of cost and size.
However, inertial sensor redundancy can reduce measurement noise and improve navigation
accuracy. Therefore, this research will focus on noise level estimation, detection and isolation
of spurious signals or defective sensors. Finally, two geometries for IMU sensor redundancy
will be highlighted (orthogonally and skew-redundant IMU).
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6.2 Geometrical Arrangement of Redundant IMUs

Redundant IMUs have been used since early days of inertial technologies in safety critical
operations such as in the control of civil, military or space aircrafts. Such applications require
sensor redundancy to create fault-tolerant systems which are able to detect and isolate faulty
sensors (i.e. FDI). If two sensors are placed collinear to each other, it is possible to detect a
fault that occurs in either one of the sensors. To isolate the erroneous device at least three
sensors are required. Traditionally, nine sensors were used in a three-dimensional system (three
per axis).

Theoretically, any geometrical combination of inertial sensors is possible. In 1974, reference
[185] proposed a first theory to optimally position any number of sensors. It also proved that
less than nine sensors (four in theory) were required to isolate faults in a three-dimensional
space. This theory essentially considers two situations: firstly, when sensors are equally spaced
on a cone of half-angle α and, secondly, when one sensor is placed along the central cone axis
while the remaining sensors are positioned equally around a cone of half-angle α. The optimal
half-angle α corresponds to the configuration in which the variance is minimized (FIG. 6.3).
Other configurations that have been considered are based on platonic solids [188]. Information
filter [188] or the method of partial redundancies [64] can be applied to determine the optimal
angle α as a function of the number and quality of sensors.

x
y

z

72 deg 

α

x
y

z

90 deg

α

FIG. 6.3: Inertial sensors placed on a cone (left), on a cone and its axis (center) and platonic
solids (right).

In practice, however, triads of MEMS-IMU sensors are available for modest cost. Hence, two
configurations for redundant IMUs can be considered (FIG. 6.4):

• Orthogonally redundant IMUs.

• Skew redundant IMUs (SRIMUs).

Skew-redundant IMUs (SRIMUs) are composed of a redundant number of inertial sensors
that are arranged according to a well-defined geometry [128, 185, 134]. Intuitively, they have
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FIG. 6.4: Orthogonally-redundant (left) and skew-redundant IMUs (right).

a higher information volume and are thus preferable. Indeed, this strategy was adopted in
[21, 188]. However, as far as sensor triads are employed, the orientation between triads is
irrelevant with respect to the optimality of the information content [64]. Nonetheless, a sensor
failure alters this conclusion and the triads’ relative orientation becomes important. Therefore,
the cone setup and the approach employing platonic solids are considered. The cone approach
presents the advantage that the amount of redundancy of the vertical axis can be varied
with respect to the redundancy of the horizontal plane by changing the cone’s half-angle.
This is an interesting option when IMUs are used together with GPS, because the vertical
performance is reduced by a factor 2 − 3 with respect to the horizontal plane due to the
satellite geometry. However, the motion of athletes is complex and involves large rotations
around all axes. Hence, the approach using platonic solids, e.g. a tetrahedron, seems to be
appropriate.

6.3 Noise Reduction and Direct Noise Estimation

Combinations of redundant inertial sensors not only lower the measurement noise, but also
offer the possibility to estimate its level during the processing with the help of adaptive filters.
Indeed, the noise figures can evolve during the processing and adapt to particular situations
(e.g. increased vibrations).

6.3.1 Noise Reduction

From n independent measurements x1, ..., xn (with their respective variances σx1, ..., σxn),
their best estimate x̂ can be computed. Assuming homogeneous measurements (constant
σxi), its variance σx̂ can be derived as [235, 191]:

σx̂ =

√√√√ n∑
i=1

w2
i · σi =

σxi√
n

(6.3.1)
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where the wi are weighting factors.

According to equation 6.3.1, the noise affecting the best estimate x̂ derived from measurements
of 4 MEMS-IMU is supposed to be 2 times lower than the noise of the individual MEMS-IMU.
Hence, the expected noise reduction for such configuration is of 50%.

Such theoretical reduction of the noise was verified by comparing the differences between the
MEMS-IMU measurements and their best estimate to the reference measurements provided
by a tactical-grade IMU (LN200 ). Thereafter, a parametric compensation was performed to
remove systematic errors. Thus, the remaining differences were considered to be composed of
white noise only. The averaged noise of the 4 MEMS-IMU gyros was estimated to 0.0194 rad/s,
whereas the noise level of their best estimate amounts to 0.0101 rad/s. Hence, the experimental
noise reduction is of approximately 48% which confirms the validity of the theoretical model.
FIG. 6.5 illustrates these results graphically.
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FIG. 6.5: Illustration of the angular rate measurements of 4 MEMS-IMUs in comparison to
the reference measurements from a tactical-grade IMU.

6.3.2 Direct Noise Estimation

The use of multiple IMUs also offers the possibility to estimate the eventually varying noise
level of the inertial data during the processing. The resulting adaptation of the stochastic pa-
rameters may improve the navigation performance and make the filter more stable. Moreover,
it can improve the FDI performance which also depends on the correctness of the noise model.
The algorithm proposed in this research is designed for a system setup composed of triads of
inertial sensors and is presented in Appendix E.0.4. The reference noise level was estimated
using the data of the tactical-grade IMU. The results are presented in FIG. 6.6. Hence, the
algorithm provides results that are comparable to those obtained from the reference signal.
It allows adapting the stochastic model of the KF during the processing.

The impact of correct noise estimation is further investigated by comparing the results of the
GPS/INS integration with and without noise estimation. The orientation errors are slightly
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reduced, approximatively 3% [64]. The other navigation states are only negligibly affected.
However, the noise reduction might provide larger benefits when the noise level is expected to
vary to a greater extent or when the noise-level input to the EKF substantially differs from
reality. Furthermore, direct noise estimation reduces user interaction and user knowledge
which is important which facilitates the automation of the processing. In addition, noise
variations (especially from MEMS accelerometers, section 5.1) can be determined on-line.
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FIG. 6.6: Comparison between the noise-level estimates using SR-IMUs and the noise-level
determined with the reference signals for a selected portion of the experiment.

6.4 Fault Detection and Isolation

FDI algorithms for inertial navigation were thoroughly investigated in the past. The most
commonly used approach is the parity space method [61, 188, 48, 49, 185, 104], but other
approaches such as artificial neural networks have also been examined [89]. The complexity of
implementation of an efficient FDI system is increased when using MEMS-type IMUs. Indeed,
their poor performance (i.e. noise density variations, large systematic measurement errors
compared to the random errors) often creates false alarms as well as an increases the possibility
of misdetection of faulty measurements [188]. In this non-safety critical application, the parity
space method with MEMS-IMUs is investigated in the scope of increasing the navigation
performance (e.g. prevention of gross errors, improving filter stability). The detailed algorithm
is based on references [185, 64].

Decision Variable

The method performs composite statistical tests. Indeed, the fault detection can be viewed
as a choice between two hypotheses concerning the absence or the presence of erroneous
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measurements. The hypothesis test is based on a decision variable D that is compared to a
threshold variable T . The decision variable D is computed as follows [185]:

v = [IM −A · (AT ·A)−1 ·AT ] · z (6.4.1)
D = vT · v (6.4.2)

where M is the number of measurements (M = 12 in the case of 4 sensor triads), N = 3
is the number of independent parameters, A the matrix which transforms the state space to
the measurement space (equation 6.5.4), z represents the vector of measurements and v the
residuals of the least squares adjustment.

Assessment of the Threshold

The threshold T can be obtained from:

T (pFA, r, σ2
n) = σ2

n ·Q−1(pFA|r) (6.4.3)

where pFA is the probability of false alarm, r = M −N is the redundancy, Q−1(χ2|r) = 1−
P (χ2|r), P (χ2|r) is the chi-square probability function, and σ2

n is the measurement noise level
estimated by the previously discussed algorithm (0.1 rad/s/

√
Hz). Assuming a probability of

false alarm of 5% (pFA = 0.05), the threshold values for our system is T0.05(pFA = 0.05) =
0.0155 rad2/s2.

Now, the theoretical threshold is compared to an optimized threshold that minimizes the sum
of the probability of false alarm and that of misdetection [42] while taking into account the
reference measurements provided by the tactical-grade IMU. Assuming that all measurements
with a difference exceeding a threshold of 3.5 σdiff (variance of the difference vectors) are
erroneous, the value of T is computed that minimizes the sum of false alarms and misdetections
(T = 0.0156 rad2/s2). Thus, the theoretical threshold values computed with the parity space
method and the empirical best threshold value are of the same order of magnitude.

Experimental Analysis

FIG. 6.7 presents the values of D and T and indicates when fault and correct measurements are
detected successfully as well as the occurrence of misdetections and false alarms. The figure
illustrates the difficulty of finding a good threshold value. Indeed, even with the best possible
T value, approximately 76% of the faults are not detected. The Stanford plot in FIG. 6.8
highlights the important number of false alarms; the false-alarm-to-fault ratio is roughly
35%. The performance of the test is 1− (pFA+pMD) = 96.4%. Regarding the performance of
the isolation algorithm, 74.4% of faults are correctly isolated (FIG. 6.7). Considering a second
threshold T (pFA = 0.01), an overall performance of 95.8% is reached.

Before applying the parity space method, the Gaussian assumption needs to be verified. Com-
paring the MEMS-IMU measurements to the reference measurements reveals quasi-Gaussian
distribution (FIG. 6.9, [217]). However, the autocorrelation plots of the MEMS gyroscopes
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FIG. 6.7: Estimation of the best threshold for FDI and fault isolation.

reveal that a large proportion of the non-faulty noise measurement are composed of colored
noise (FIG. 6.10). Indeed, the autocorrelations suggest that the errors are mainly composed
of white noise and of random walk. Hence, the assumption of strictly Gaussian white noise
errors in the parity space approach is not valid with MEMS-IMUs.

The presented investigation unveils the need for a more complex FDI model. One possibility
would be to obtain a realistic T by training an artificial neural network with a large number
of real or emulated measurements in which faults occurs frequently. Nevertheless, employing
the FDI approach is considered a valuable addition to detect gross errors, enhance navigation
performance and improve the EKF stability. As shown, the parity space method is capable
of isolating an important part of the measurement errors and hence partially fulfills this
objective.

6.5 System and Observation Model for the Redundant IMU
Integration

The following sections review three mechanizations approaches described by [21]. Firstly, the
inertial measurements are combined within the observation space to generate a synthetic set
of observations that are then integrated by the standard GPS/INS algorithm. In the second
approach, the mechanization equations are adapted to account for the redundant measure-
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FIG. 6.8: Evaluation of the FDI performance (pFA = 5%).

ments. The third algorithm imposes geometrical constraints between the inertial sensors at
the update stage.

6.5.1 Synthetic IMU Integration

In this approach, the redundant IMU data is merged into a synthetic set of measurements
before being introduced to the GPS/INS algorithm based on the single IMU mechanization
(FIG. 6.11). While fusing the IMU data, defective sensors can be detected and realistic noise
and covariance terms can be estimated [21]. However, the “compound” biases estimated by
the EKF cannot be back-projected to the individual sensors.

In a first step, synthetic measurements ωb, f b and mb need to be generated from the individual
measurements `bω, `bf and `bm.

ωb =Πω `
b
ω

f b =Πf `
b
f

mb=Πm `
b
m

(6.5.1)

The above relation requires estimating the orthogonal projectors Π` for the angular rates,
Πf for the linear accelerations and Πm for the magnetic measurements.

Πω =(AT
ω P`bω`bω

Aω)−1 AT
ω P`bω`bω

Πf =(AT
f P`bf`bf

Af )−1 AT
f P`bf`bf

Πm=(AT
mP`bm`bm

Am)−1 AT
mP`bm`bm

(6.5.2)
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and their accuracy:

Pωbωb =AT
ω P`bω`

b
ω

Aω

Pfbfb =AT
f P`bf `

b
f

Af

Pmbmb =AT
mP`bm`

b
m

Am

(6.5.3)

Aω, Af and Am matrices transform the data from the actual sensor axes to the three orthog-
onal axes of the predefined body frame b. Their rows contain the direction cosine vectors of
the angular rate sensor and accelerometer axes.

Aω =


Rbω1
b

...
Rbωi
b

...
Rbωn
b

 Af =


Rbf1
b

...

Rbfi
b

...

Rbfn
b

 Am =


Rbm1
b

...
Rbmi
b

...
Rbmn
b

 (6.5.4)
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FIG. 6.11: Principle of mechanization based on a synthetic IMU.

Rbi
b is given by:

Rb
bi = R3(ψ) ·R2(−θ) (6.5.5)

6.5.2 Extended IMU Mechanization

Similar to the synthetic approach, the extended mechanization also allows detecting defective
sensors and estimating noise and covariance terms (FIG. 6.12). Moreover, this method permits
modeling and estimation of the systematic errors separately for each sensor. However, pursuing
this methodology requires the modification of GPS/INS software to accommodate the new
expression of the mechanization equations.

IMU 1

IMU 2

IMU 3

GPS

NAV solNAV proc

FIG. 6.12: Principle of mechanization based on an extended IMU mechanization.

To estimate individual sensor errors, the strapdown navigation equations C.1.7-C.1.20 need
to be reviewed accordingly [21]. The velocity error model thus becomes:

v̇n = ΠfRn
b `
b
f − (ωnin + ωnie)× vn + gn (6.5.6)

where Πf is defined by equation 6.5.2. The orientation error model is derived after modifica-
tion of equation C.1.18.

ω̂bnb = Πω
ˆ̀b
ω − R̂b

nω̂
n
in (6.5.7)

After differentiation, this leads to generalizations of equations C.1.13-C.1.20:
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δv̇n = −(Rn
bΠf`

b
f )× εn + Rn

bΠfδ`
b
f − (ωnin + ωnie)× δvn − (δωnin + δωnie)× vn + δgn

ε̇n = Rn
bΠωδ`

b
ω − δωnin − ωnin × εn

(6.5.8)

The derivation of the system and observation model for the EKF is presented in Appendix
E.0.5.

6.5.3 Geometrically-Constrained Mechanization

As for the extended mechanization, the geometrically constrained mechanization allows es-
timating the individual sensor errors. In this approach, multiple navigation solutions are
computed (one for each IMU) and compared at regular time intervals (FIG. 6.13). This is,
however, at the cost of increased computational effort and important modifications of the
GPS/INS software. Furthermore, defective sensors can be detected and realistic noise terms
estimated only if the constraints are imposed after each integration step.

NAV sol 1

Constraints

NAV procIMU 1

GPS

IMU 2

IMU 3

NAV proc

NAV proc

NAV sol 2

NAV sol 3

FIG. 6.13: Principle of mechanization based on a geometrically-constrained IMU
mechanization.

Consider that two IMUs are employed. Both units are integrated using the standard IMU
mechanization. The relative orientation between them (i.e. the relative orientation Rb2

b1 and
the lever arm ob2b1) can be modeled and estimated as random constants supposing their direct
determination is not sufficiently accurate [21].

Ṙb2
b1 =03×3

˙ob2b1 =03×1

(6.5.9)

At predefined stages, the following observations can be added with a high weight.

Rn
b1 =Rn

b2R
b2
b1

rn1 =rn2 −Rn
b1o

b1
b2

vn1 =vn2 −Rn
b1 · (Ωb1

ni + Ωb1
ib + Ωb1(bω)) · ob1b2

(6.5.10)
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6.6 Navigation Performance Improvement

6.6.1 Algorithm Selection

The derivation of a synthetic IMU is the most straightforward approach as it does not require
any modification of the standard GPS/INS algorithm. Unlike the extended and geometrically-
constrained method, this approach does not allow to feedback sensor errors, which might yield
less optimal navigation performance. On the other hand, the IMU error model investigation in
chapter 5 has reported that the MEMS-IMU biases are relatively stable for the short trajecto-
ries encountered in some sports (e.g. lap, downhill). Furthermore, the same investigation has
pointed out that the simplified error model was suitable for the considered application and
sensors. The geometrically-constrained approach represents an interesting option for system
calibration if the relative sensor geometry is insufficiently known. As mentioned, the compu-
tational effort is increased considerably compared to the first two approaches. In addition, it
is more sensitive to sensor failures because defects can only be noticed at the update stage
and the measurement faults can generally not be isolated.

In the sequel, the synthetic IMU approach will be compared to the approach based on extended
IMU mechanization. The navigation performance improvement through the use of redundant
MEMS-IMU is evaluated with experiments and orthogonally- and skew-redundant configura-
tions. Furthermore, data sets consisting on varying numbers of IMU triads are emulated from
real trajectories. The algorithms related to the emulation of the inertial measurements are
presented in Appendix F.

6.6.2 Assessment Based on Experiments

Orthogonally-redundant configuration

In the skiing experiment, two redundant MEMS-IMU sensors (Xsens MTi) in orthogonal
configuration are integrated at 100 Hz with the L1 and the L1/L2 DGPS solutions at 1 Hz
(FIG. 6.4, left). The use of two MEMS-IMU reduces the noise level of the measurements
by a factor of

√
2. In such configuration, measurement outliers can neither be detected nor

identified. Nevertheless, an accuracy improvement was noticed for the orientation (20− 30%,
TAB. 6.1) while the position and velocity states were not improved significantly. The perfor-
mance improvement is similar for both integration approaches and equivalent with respect to
the employment of single or dual-frequency differential processing.

TAB. 6.1: Orientation improvement with two orthogonally redundant MEMS-IMUs
compared to the average performance of the single sensors.

L1 L1/L2
Synthetic Extended Synthetic Extended

rl -37% -24% -43% -20%
pt -25% -5% -7% 8%
hd -34% -24% -32% -22%

The estimated synthetic biases represent approximately the average of the biases estimated
after processing of the individual MEMS-IMUs (FIG. 6.14).
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FIG. 6.14: Individually estimated biases compared to the synthetic IMU bias (left) and to
the biases estimated by the extended mechanization (right).

Skew-redundant configuration

In a second experiment, a regular tetrahedron consisting of 4 MEMS-IMU was set up (FIG. 6.4,
right). To investigate the performance of the multi-IMU system, it was fixed rigidly to a
reference system consisting of a tactical-grade IMU (Litton LN200 ) and differential, dual-
frequency GPS (Javad Legacy) [173]. The system was installed on a motorcycle (FIG. 6.15).
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FIG. 6.15: Orientation error (left) and position, velocity and acceleration error (right) after
integration of a single sensor (individual) and after extended mechanization.

As previously shown for this setup, the inertial measurement noise is reduced by a factor of
2 due to the measurement redundancy (FIG. 6.5, right). FIG. 6.16 summarizes the navigation
performance of this particular GPS/MEMS-SRIMU system. The orientation accuracy of the
system has now improved to less than 1deg. The experiment confirms previous findings where
the velocity and orientation accuracies are almost invariant with respect to the accuracy of
GPS aiding (e.g. L1 or L1/L2 differential code and carrier-phase). Furthermore, the acceler-
ation is efficiently smoothed and improved. However, the “integrated” states (position and
velocity) are less affected. The position accuracy is largely improved using dual-frequency
GPS processing with ambiguity fixing, while hardly no improvement can be observed for
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single-frequency GPS receivers. Indeed, the random part of the positioning error is reduced
by a similar amount for single- and dual-frequency GPS processing. However, the system-
atic component for dual-frequency DGPS is much lower which explains the distinct accuracy
enhancement.
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FIG. 6.16: RMSE of the tested MEMS-SRIMU system integrated with L1 DGPS (left) and
L1/L2 DGPS (right).

FIG. 6.16 and TAB. 6.2 summarize the performance improvement of the GPS/MEMS-SRIMU
system compared to the average accuracy of the solutions computed with the single MEMS-
IMUs. An average improvement of 30% is obtained for the synthetic IMU approach. The
extended mechanization performs slightly better than the synthetic approach (average im-
provement of 46%). This can be explained by the estimation of the individual biases and the
FDI scheme that can run in parallel to the filter (rather than in cascade as in the synthetic
IMU approach). However, the navigation performance is not improved by 100% as could be
expected from the noise reduction. Indeed, residual correlations between the inertial mea-
surements as well as the correlations between the filter states most likely limit the accuracy
progression.

TAB. 6.2: Performance improvement of the average and maximum errors by the
MEMS-SRIMUs compared to the performance of the individually integrated MEMS-IMU

sensors.

RMSE Maximum error
Synthetic Extended Synthetic Extended

-29% -35% -71% -94%
-41% -51% -77% -94%
-5% -19% -27% -82%
-37% -61% -82% -95%
-50% -67% -81% -93%
-7% -44% -25% -74%
-57% -67% -80% -87%
-28% -41% -59% -80%
-21% -27% -45% -69%

TAB. 6.2 also recapitulates the performance enhancement with respect to the maximum errors.
It is of 61% for the synthetic IMU approach and even more substantial for the extended
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mechanization where the maximum errors are reduced by a factor of 2. FIG. 6.15 illustrates how
the peaks of the orientation errors in the single MEMS-IMU/GPS integration are smoothed
out by the extended mechanization.

6.6.3 Assessment Based on Emulation

In this section, a fictional system composed of one and ten MEMS-IMUs through the emula-
tion of inertial measurements is studied. Position, velocity and orientation parameters com-
puted with the reference system are assumed to represent the true motion, i.e. not affected by
errors. The measurements are simulated along this “true” path. After adjusting the position
and orientation parameters by cubic spline function, the latter are derivated with respect to
time to compute specific force, angular rate and magnetic measurements (equation F.1.11).
Then, the deterministic error terms assessed by parametric adjustment and the stochastic
terms determined by the Allan variance method in chatper 5 are added. Finally, the emulated
inertial measurements are integrated together with the dual-frequency DGPS solution. The
resulting position, velocity and orientation errors are presented in FIG. 6.17 to 6.19 for both,
the synthetic and extended mechanization approaches. The previously described experimental
results are indicated as well.
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FIG. 6.17: Influence of the redundancy on the position error (left) and the maximum
position error (right).
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FIG. 6.18: Influence of the redundancy on the velocity error (left) and the maximum velocity
error (right).
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FIG. 6.19: Influence of the redundancy on the orientation error (left) and the maximum
orientation error (right).

As expected, these results depict an inverse correlation between navigation errors and the
number of IMUs. Furthermore, the curve tendencies appear to have a comparable form to the
expected noise reduction (

√
n where n is the number of triads). However, residual correlations

between inertial measurements, as well as correlations between filter states, limit the reduc-
tion of navigation errors (i.e. errors in position, velocity and orientation) compared to the
noise reduction. The extended mechanization is generally superior to the synthetic approach.
Significant improvement is noticeable for both methods when the number of sensors exceeds
five.

6.6.4 Notes on the Observability

When redundant IMUs are employed, the observability of the error states further decreases.
The estimated synthetic biases represent the mean value of the individual estimates (i.e. sim-
ilar to those depicted in FIG. 6.14). On the other hand, the biases estimated in the extended
mechanization do not always follow their separate estimates (FIG. 6.14). The covariance anal-
ysis (FIG. 6.20) of the state vector reveals that the individual biases have small correlations
(0.2-0.3) with the other terms and therefore do not explain the encountered differences. The
explanation can be found through the study of the observability of the system. Indeed, a
system composed of system matrix F, observation matrix H and n states is observable if the
observability matrix O has rank n [177].

O =


H

H · F
...

H · Fn−1

 (6.6.1)

According to this approach, a single MEMS-IMU system is completely observable. Indeed,
the observability matrix has rank 15 which corresponds to the number of states. However,
the observability of the individual states depends essentially on the encountered dynamics.
Indeed, orientation angles and bias terms are not completely observable under limited motion
[227]. There is also a lack in observability when magnetic updates are performed at a higher
rate than GPS updates. Actually, they only control the orientation but not the displacement.
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FIG. 6.20: State correlations in extended mechanization for 4 IMUs. Error state order:
position (3), velocity (3), orientation (3), accelerometer biases (12), gyroscope biases (12).

bfx1 is the abbreviation for the bias of accelerometer x of sensor #1.

On the other hand, the system has full rank if the magnetic updates are performed at the
same frequency as GPS updates.

In the extended mechanization approach, the number of states increases to 33, but the rank of
the observability matrix remains 15. Therefore, the observability of the sensor biases is reduced
in favor of the navigation states (position, velocity and orientation). Indeed, the presented
approach is not optimal for the observation of the actual bias states. The observability can be
improved by constraining the inertial measurements ` at the update stage by the following
relations:

ˆ̀
f,bj = Rbj

bi · ˆ̀
f,bi (6.6.2)

where ˆ̀
f,bj is the estimated inertial measurement in body frame bj. Rbj

bi is the rotation matrix
between sensor i and sensor j given by relation 6.5.5.

The observation matrix H for 4 IMUs is extended to:

H =
[

012×3 012×3 012×3 R 012×12

012×3 012×3 012×3 012×12 R

]
(6.6.3)

where

R =


03 Rb1

b2 03 03

03 03 Rb2
b3 03

03 03 03 Rb3
b4

03 03 03 03

 (6.6.4)
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6.6.5 Orientation Initialization and Inertial Error Estimation

The orientation initialization algorithms described in section 3.6.2 can be applied through the
bias of a synthetic IMU (relations 6.5.1) or through least squares adjustment with the inertial
and magnetic measurements. Assuming that the inertial and magnetic biases of all sensors
are uncorrelated, the synthetic measurements become less and less affected by systematic
(as well as random) errors with increasing sensor number. Thus, an enhanced orientation
can be estimated (FIG. 6.21). Then, the initial bias terms for each sensor can be derived.
Indeed, during static initialization or uniform motion (an ≈ 03), the accelerometer bias bf
and magnetic perturbation bm can be derived from equations 6.5.1 thanks to the redundant
measurements.

bf =Af ·Rb
n · (gn − (2 · ωnie + ωnen) · vn) + `bf

bm=Am ·Rb
n · hn + `bm

(6.6.5)

During static initialization (vn = 03), relation 6.6.5 simplifies further.

The computation of the gyro bias is less straightforward. ubb can be derived from rela-
tions F.1.1-F.1.5. Then, bω becomes

bω = Aω ·
ubb
∆t

+ ωbib. (6.6.6)
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FIG. 6.21: Comparison of the orientation initialization of 2 single and a synthetic IMU.
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Chapter 7

From Navigation to Performance
Assessment in Sport

Trajectories determined by GPS and GPS/INS are characterized by a succession of discrete
sample points (position, velocity and orientation). For convenient representation and efficient
analysis, however, it is useful to represent trajectories as continuous curves. To compare tra-
jectories, the positioning accuracy of the trajectories needs to be considered and may require
additional filtering or trajectory matching steps. This chapter first outlines the developed
trajectory modeling and comparison approaches. The methods are illustrated with concrete
examples from performance assessment in sport. The second part presents two other ex-
amples for the exploitation of GPS/INS data in sports: application of GPS/INS for timing
and derivation of additional information from the orientation estimates in alpine skiing and
motorcycling.

7.1 Trajectory Modeling Approaches

Representing a trajectory by mathematical functions rather than by a set of discrete points
creates a basis that is not only better suited for subsequent analysis (e.g. derivating curvilinear
distance, curvature estimation) but can also contribute to data filtering. Indeed, GPS, and to a
smaller account GPS/INS, trajectories are affected by noise of higher frequency and may also
present residual outliers which need to be removed as well as data gaps (FIG. 7.1). Furthermore,
sport professionals like to visualize trajectories as continuous curves and to resample data sets
at arbitrary data rates for synchronization with other trajectory information (e.g. forces, heart
rates).

7.1.1 Cubic Splines Smoothing

Cubic splines are piecewise polynomials of the third degree that fit between adjustment points.
Thanks to their piecewise character, they can take local particularities of any data interval
into account. Furthermore, they respect the continuity in position, velocity (first-order deriva-
tive) and acceleration (second-order derivative) on the right and left of the adjustment points.
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FIG. 7.1: Measurement noise, random outliers and data gaps in GPS data.

Reference [102] demonstrated that the spline function minimizes the second-order derivative,
i.e. the acceleration and the velocity variation, for a set of given initial conditions. This corre-
sponds to the physics of athlete’s motion. Hence, cubic splines are particularly well adapted
for trajectory interpolation in sport applications. This smoothing spline f(x) minimizes the
cost function J as:

J = λ
N∑
k=1

w(j) [y(j)− f(x(j))]2 + (1− λ)
∫ tN

t0

λ(t)
[
d2

dt2
f(t)

]2

dt

f(t) =
∑
k∈Z

g(k)ϕ(t− tk)

ϕ(t− tk) =
n∑
i=1

(t− tk)4−icki

(7.1.1)

The first quadratic term of expression 7.1.1 represents the error contribution of the approxi-
mation f(t) with respect to the adjustment points y(j). When the local weights w(j) increase,
the smoothing effect of the interpolation is reduced. The second term imposes a constraint on
the smoothness of the approximation. If λ = 0, the spline corresponds to the least-squares fit
of a straight line to the data points. On the other hand, if λ = 1, the spline becomes a natural
cubic spline interpolant that follows the data. ϕ(t − tk) represents the polynomial piecewise
basis and g(k) their associated coefficients. Smoothing splines minimize the cost function J
as a function of the smoothing parameter λ. A detailed description of the spline algorithm
can be found in [29, 28].

Through the definition of an appropriate weighting function w(j), references [97, 171] have
developed an effective method representing trajectories derived from dual-frequency differ-
ential GPS (FIG. 7.2). Small weights are attributed to the points during transition periods
where carrier-phase ambiguities are fixed and float (ntrans). Such strong de-weighting avoids
discontinuities in the modeled trajectory due to sudden drops of accuracy while relying on the
movement prediction due to athlete’s inertia. For other transition epochs, w(j) is linearly in-
creasing in time from wtrans to the final value of wfloat, which is the value of w(j) for epochs
of float ambiguities outside the transition periods. This method has proven to be effective
in filtering the dual-frequency GPS trajectory for sudden jumps due to abrupt changes in
satellite constellation or in the measurement accuracy (FIG. 7.3).
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FIG. 7.3: GPS trajectory with changing accuracy and ambiguity status.

However, the previously described method becomes less adequate for differential GPS posi-
tioning using single-frequency data. Indeed, carrier-phase ambiguities can rarely be resolved
with L1 DGPS, especially with low-cost receivers under dynamic conditions. As shown in
section 4.2.1, L1 DGPS offers reduced accuracy in positioning, but not necessary in veloc-
ity estimates. Outliers in position are more frequent than with dual-frequency trajectory. To
make matters worse, other distinctive information is absent (e.g. number of visible satellites,
DOP) or inaccessible, like the stochastic parameters related to the tracking performance in
low-cost receivers (e.g. Phase Lock Loop). For these reasons, the spline smoothing is found
to be ineffective for single-frequency data.

7.1.2 Additional Kalman Filtering

In the case of poor positioning but acceptable velocity accuracy, Kalman filtering of position
and velocity results provides an alternative solution for additional trajectory smoothing. As
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for GPS processing (equation 3.4.3), a constant velocity model was implemented for state
propagation.

(vn)k+1 =(vn)k
(rne )k+1 =(rne )k + D−1 · (vn)k ·∆t

(7.1.2)

Other models based on more sophisticated state prediction may improve the navigation so-
lution, but have not been investigated. EKF and SPKF were implemented and provided
equivalent results. Particle filtering has been investigated by study [105] with similar results
as for the KF. However, their increased computational complexity and the difficulties related
to the Sampling Importance Re-sampling (SIR, [65]) render this approach less effective than
KF. After filtering, the trajectory is interpolated by cubic splines for convenient analysis.

FIG. 7.4 illustrates trajectory reconstruction by KF with subsequent spline interpolation using
single-frequency GPS derived positions of poor accuracy. The simple spline smoothing without
additional Kalman prefiltering is also shown for comparison. It can be seen that the trajectory
based on cubic spline smoothing of the GPS positions does not pass gates 5 to 7. On the other
hand, the Kalman filtered trajectory respects the ground truth (represented by the gates)
much better thanks to the accuracy of the provided velocity estimates.
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FIG. 7.4: L1 DGPS trajectory modeled with smoothing splines and KF.

7.1.3 Limitations of Trajectory Modeling

Interpolation and smoothing with cubic splines does not guarantee exact reproduction of
adjustment points and therefore can introduce additional interpolation errors. Accordingly,
such an approach should be used cautiously on data of uniform accuracy. The additional KF
and spline interpolation reduce efficiently the high frequency noise in the trajectory data.
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However, they cannot remove systematic errors, e.g. constant position offsets in L1 DGPS
(FIG. 7.5). Such systematic effects need to be considered for comparison between trajectories
or visualization with respect to reference points (e.g. gates, street boundaries).
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FIG. 7.5: Two sets of L1 DGPS trajectories showing a constant position offset.

7.2 Trajectory Matching

7.2.1 Problem Definition

Systematic errors in the position domain originate mainly by the limited performance of phase-
smoothed code DGPS. If such (GPS or GPS/MEMS-IMU) trajectories are to be compared,
analyzed or visualized, this effect must be mitigated. FIG. 7.6 illustrates a case where the
trajectory is systematically displaced. The offset trajectory does not cross the gates correctly.
Therefore, the velocity comparison will be distorted. The example shows that the compari-
son of trajectories with poor positioning accuracy only becomes conceivable after trajectory
matching and correction. This section describes two trajectory matching approaches, presents
experimental results and points out risks related to such operations.

V
el

oc
ity

Time

Reference trajectory

To-be-compared trajectory 
after matching

Timing gate

Systematic 
position error

Correct gate 
intersection 

Wrong gate 
intersection 

Correct velocity 
at timing gate 

Wrong velocity 
at timing gate

To-be-compared trajectory

FIG. 7.6: Trajectory matching where a curve is affected by a systematic position error.
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7.2.2 Extension of Cubic Spline Smoothing

The smoothing spline expression 7.1.1 can be extended by an additional term representing
the closeness of the polynomial fit with respect to external geometrical constraints K as:

J =
N∑
k=1

w(j) [y(j)− f(x(j))]2 + λ1

∫ tN

t0

λ(t)
[
d2

dt2
f(t)

]2

dt+ λ2

∫ tN

t0

w(f(t))dt

f(t) =
∑
k∈Z

g(k)ϕ(t− tk)

w(f(t)) =
∑
k∈Z

G(k)θ(f(t)−K)

ϕ(t− tk) =
n∑
i=1

(t− tk)4−icki

(7.2.1)

where the first two terms correspond to the cubic spline expression (equation 7.1.1). w(f(t))
takes into account external constraints K which are related to the measurements x(j)
through the relation θ. G defines their respective weight. The equation system becomes
multi-dimensional. In contrast to relation 7.1.1, the system does no longer consist of lin-
ear equations. Therefore, no simple solution for G can be found. Furthermore, expressing
geometrical constraints K and their associated weights G is difficult. The success of such
operation depends on the relative geometry of the trajectory and the gates (section 7.2.5). As
several trajectory points might be affected by the geometrical constraints, more sophisticated
adjustment methods might be required (e.g. dynamic networks [20]).

7.2.3 Eigenvector Approach for Feature-Based Correspondence

Reference [164] proposes an eigenvector approach for establishing a correspondence between
two sets of points. The approach was developed for computer vision, but can be adapted to
trajectory matching.

First, consider two trajectories with easting and northing coordinates. A proximity matrix H
is computed for each trajectory.

H = e−
r2i,j

2·σ2 (7.2.2)

where ri,j = ‖xi − xj‖. σ controls the interaction between features. A large value of σ will
allow more possibilities for correspondences.

Next, the eigenvalue decomposition of H is computed.

H = VDVT (7.2.3)

The diagonal matrix D contains the (positive) eigenvalues along its diagonal in decreasing
size. The modal matrix V is orthogonal and has the eigenvectors e as its column vectors. Each
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row of V can then be thought of as a feature vector f containing the n modal coordinates of
feature i.

V =
[

e1 ... en
]

=
[

f1 ... fn
]T (7.2.4)

The final stage is to correlate the two sets of feature vectors yielding the association matrix
Z.

zi,j = ‖fi − fj‖2 (7.2.5)

zi,j reflects the confidence in the match between xi and xj , As the trajectories have different
numbers of points, their number of modes will differ. Therefore, the least significant modes
(corresponding to the smallest eigenvalues) are truncated.

The algorithm allows detecting correspondences of rotated, translated and distorted features.
However, the sign of each eigenvector is not unique. This disadvantage can be overcome by a
sign correction [163] or by considering only the most important modes (i.e. those corresponding
to the largest eigenvalues) [39]. Furthermore, the value of σ significantly influences the number
of correspondences detected by the algorithm. Generally, with increasing values of σ, more
correspondences can be found [39].

Once the correspondences between the trajectories are correctly evaluated, the trajectories
can be matched. To do so, a 2D Helmert transformation [78] can be applied estimating a
rotation (ω) and translation (∆E, ∆N) between two trajectories or trajectory segments. As
the scale of the GPS trajectories is sufficiently stable, no scaling factor between the two
trajectories is estimated.[

E1

N1

]
=
[

cosω sinω
− sinω cosω

] [
E2

N2

]
+
[

∆E
∆N

]
(7.2.6)

After compensation, the statistical significance of the rotation can be estimated. Indeed, if
ω > 3 · σω, the rotation is considered to be statistically meaningless at a threshold of 99,7%
and a second computation without estimation of the rotation may be performed.

7.2.4 Position Accuracy Improvement through Trajectory Matching

The eigenvector approach has been implemented for the matching of two trajectories. The
easting and northing coordinates that are employed in the matching algorithm can be selected
according to various schemes:

• A first approach matches all the trajectory points (FIG. 7.7). The size of the H and Z
matrices as well as the computation time are important. This approach assumes that the
translation and rotation are identical for the entire trajectory. However, this is usually
not true as the satellite constellation may vary during the trajectory duration.

• In a second strategy, the trajectory is delimited (e.g. by timing gates, FIG. 7.8) and
independent Helmert parameters are estimated for each trajectory segment. The size of
the H and of the Z matrices is reduced accordingly.
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• Thirdly, only characteristic points of the trajectory (points of maximum curvature,
inflection points, FIG. 7.9) are retained for the matching. The curvature parameter can
be derived from GPS and GPS/INS trajectory (Appendix G.1). Again, the computation
complexity is reduced thanks to the reduced number of points. This approach can also
be applied to trajectory segments.
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FIG. 7.7: Matching correspondences of the entire trajectory.

-1080 -1070 -1060 -1050 -1040 -1030 -1020 -1010 -1000 -990 -980
1810

1815

1820

1825

1830

1835

Easting [m]

N
or

th
in

g 
[m

]

gate 6

gate 7

gate 8

gate 9

gate 10

gate 11

gate 12

gate 13

gate 14

 

 

L1/L2 geodetic
L1 low-cost
L1 low-cost after matching
CorrespondencesSegment delimiter

FIG. 7.8: Matching correspondences of the trajectory by segments.
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FIG. 7.9: Matching correspondences of the trajectory by characteristic points.
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FIG. 7.7 to 7.9 present the correspondences calculated between two trajectories introduced in
FIG. 7.5. The evolution of the differences in position between the two tracks is illustrated in
7.10. TAB. 7.1 summarizes the translation values computed by the three approaches. Rotation
angles were found to be statistically insignificant in this case. The average offset computed
on the entire trajectory indicates that the main part of the systematic offset in the north
direction was removed thanks to the matching algorithm. The east coordinate error is less
important in this case and is not well estimated. The altitude correction can be also applied
after successful finding of the correspondences.
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FIG. 7.10: Evolution of the position difference.

TAB. 7.1: Performance Comparison of three matching algorithms. The “average offset”
corresponds to the mean offset between the L1 and L1/L2 trajectories.

Easting Northing Altitude Rotation Correspondences
[m] [m] [m] [−] [found/possible]

Entire trajectory -0.310 1.881 -1.338 - 178/190
Segment 0.084 1.876 -1.410 - 180/182
Characteristic points -0.019 1.927 -1.386 - 31/31
Trajectory to gates -0.618 1.884 -1.611 - 100/151
Average offset -0.161 1.890 -1.386 - -

All three approaches match trajectories mutually. However, the boundary constraints cannot
be taken into account as in the case of geometrically constrained smoothing splines. Hence,
the trajectory comparison is facilitated after matching, but its topological correctness can
not be guaranteed. For this reason, the trajectories are preferably matched to a reference
trajectory that respects the “ground truth” (as is the case of the examples in FIG. 7.7 to 7.9).
Such an “ideal” curve can be obtained from previous trials or synthetically designed based
on experience. FIG. 7.11 illustrates results of the trajectory matching, where the reference
trajectory was generated interpolating the trajectory gates with a a cubic spline.
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FIG. 7.11: Matching correspondences of the trajectory to the gates.

7.2.5 Risk Related to Trajectory Matching

Different trajectories on the same track may originate not only from systematic errors in posi-
tioning but also reflect the reality of distinct choices. Indeed, 7.12 illustrates two geometrically
identical trajectories where athlete B anticipates the turns whereas athlete A chooses a direct
path. Matching these trajectories would time-distort the information related to the perfor-
mance evaluation. In such a case, the geometry of the trajectory and of the local boundaries
does not allow expressing a unique condition. Moreover, the approach based on constrained
smoothing splines is not applicable. Hence, the methodology of trajectory matching must
be applied after careful evaluation of the position errors, the trajectories’ geometry and the
available boundary constraints.

Time

Velocity

Athlete A (reference trajectory) 

Athlete B after trajectory matching
Athlete B (to-be-compared trajectory) 

Correct correspondances
Wrong correspondances

FIG. 7.12: Risk related to trajectory matching.

7.3 Trajectory Comparison

The evaluation of trajectories may include the comparison of timing splits, their shape, ve-
locities, and orientation. Relative timing splits - whether between real or virtual gates - can
be studied once the trajectories are reconstructed.
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7.3.1 Spatial Trajectory Comparison Approach

Problem definition

The analysis of the athletic performance trajectories is often based on datasets that were
recorded at different times. This situation occurs, for example, in downhill skiing competi-
tions or training in which skiers make sequential (not simultaneous) runs. Such trajectories
cannot be compared by considering only the differences in coordinates or velocities recorded
at the same instant in time (as could be done for real-time comparison between two competi-
tors). FIG. 7.13 (left) depicts the position of two athletes sampled at the same time interval.
Obviously, athlete A is faster than B (the sampling points of athlete B are closer to each
other). Their velocity profiles with respect to the time from the start are given in FIG. 7.13
(right). An accurate explanation could not be given for the substandard performance of ath-
lete B based on the simple time- or distance-based comparison. Indeed, the temporal profiles
can be considered as trajectories with a common frame but which are affected by a drift.
Thus, it is not very useful to compare them directly. A better approach is to compare the
tracks spatially in increments smaller than the gate crossings.
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(To-be-compared

trajectory)

GPS positions

Smoothed trajectories

V
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Time from start

Athlete B

Athlete A
(reference)

FIG. 7.13: Trajectory and velocity evaluation based on distance or time comparison.

The easiest approach to compare two trajectories spatially is to identify the points which
are closest (Euclidean distance) to each other on either curve. However, this method does
not ensure a rigorous comparison between several trajectories because the sampling points
are not located on a common cross-section of the track. To make matters worse, this error
increases if the sampling rate is small and the velocities are high. In addition, intermediate
times for real or virtual gates cannot be assessed by this approach.

Proposed approach

To compare trajectories, the GPS or GPS/INS datasets are first matched to the ground truth
and modeled as continuous curves (section 7.1.1). Then, a reference trajectory is selected (e.g.
the faster athlete, the mathematical model of an optimal course). The comparison is achieved
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by intersecting equitemporal planes that are perpendicular to the reference track with all
the to-be-compared trajectories. FIG. 7.14 (left) shows a simplified schematic of a reference
trajectory and a single trajectory that will be compared to it. Based on the intersection time
of both trajectories with the plane, the differences between the athletes are computed. Of
course, the coordinate differences between the trajectories are of utmost importance, but also
any other attributes attached to the trajectories can be compared in a straightforward manner
(e.g. elapsed time, velocities, accelerations, heart rates). Additional splits and (virtual) gates
can be easily computed and interposed between the timing cells or gates. Thanks to this
approach, the performance can be evaluated at any preselected time or distance interval.
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(reference)
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FIG. 7.14: Principle of spatial trajectory comparison. The rectangles represent the plane
spanned by a set of real or virtual gates (left). Velocity comparison derived from spatial

trajectory comparison (right).

Expressing the vertical plane to a reference trajectory as:

a · E + b ·N + c · h+ d = 0 (7.3.1)

where a, b, c and d are the parameters of the plane (FIG. 7.15, right), the normal vector to
the plane is given by: a

b
c

 =

 vE
vN
vh

 (7.3.2)

Taking the difference between the two following expressions, d is eliminated and the intersec-
tion point of trajectory B with the plane [EBNBhB] is determined iteratively.

a · EA + b ·NA + c · hA + d = 0
a · EB + b ·NB + c · hB + d = 0

}
→ a·(EA−EB)+b·(NA−NB)+c·(hA−hB) = 0 (7.3.3)
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If the intersection with a real gate is sought (FIG. 7.15, left), the following equation system
needs to be solved supposing a vertical plane (c = 0).

a · ER + b ·NR + d = 0
a · EL + b ·NL + d = 0
a · EP + b ·NP + d = 0

→ −(EL−ER)·NP+(NL−NR)·EP+NR·EL−NL·ER = 0 (7.3.4)

,

,
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FIG. 7.15: Gate intersection.

Once the intersection time is computed, any parameter related to this period (e.g. velocity,
heart-rate) can be compared. The orientation comparison is less straightforward because the
orientation angles do not belong to a vector space [135]. The orientation differences between
two trajectories can be determined based on the following relation:

Rn
b1 = (I−∆Rn

b ) ·Rn
b2 (7.3.5)

where Rn
b1 is the reference orientation and Rn

b2 the to-be-compared orientation. ∆Rn
b is the

skew-symmetric matrix with the orientation differences.

The given example on spatial comparison clearly illustrates the superior performance of ath-
lete A in the first section of the track (FIG. 7.14, right). In the second section, the performance
is identical for both contenders, as indicated by the overlapping trajectory lines. Alternatively,
the abscissa could indicate the distance from the start and highlight different sections on the
track (sectors, intermediates, gates, etc.).

7.3.2 Methodology for Trajectory Comparison

FIG. 7.16 summarizes the methodology for trajectory comparison. GPS or GPS/MEMS-IMU
trajectories with post-processed dual-frequency GPS data can be compared after cubic spline
smoothing (section 7.1.1). On the other hand, single-frequency GPS trajectories require spe-
cial treatment because of their limited position accuracy. L1 DGPS trajectories may necessi-
tate additional Kalman filtering (section 7.1.2). Both, single-frequency GPS and GPS/MEMS-
IMU trajectories, need then to be matched to avoid biased comparisons. Reference trajectories
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are adjusted to boundary constraints, if they were measured. Finally, the other trajectories
are matched and compared to the adjusted reference trajectory (section 7.2).

The presented methodology has already found its commercial adaptation in a software package
dedicated to the performance analysis in sports (FIG. 7.17, [198]).
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Cubic spline
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FIG. 7.16: Methodology for trajectory comparison.

7.3.3 Alternative Methods for Trajectory Comparison

Even though the presented strategy for trajectory comparison is rigorous, it suffers from some
drawbacks. Firstly, it is a two-step solution consisting of a trajectory determination followed
by the comparison. Some knowledge of the first step is ignored in the second (e.g. correlations
between the states). Hence, the method is numerically not optimal. Secondly, the intersection
of the to-be-compared trajectory with the plane perpendicular to the reference trajectory is
computationally expensive. Therefore, two other methods were explored, but did not yet lead
to efficient alternatives. For the sake of completeness, they are presented in the sequel.
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FIG. 7.17: GPS chronometry displayed on the user interface of the commercial trajectory
analysis software [198]. The screen on the left displays a trajectory modeled from

positioning data logged in a ski course. The screen on the right shows speed (red line),
distance traveled (pink line), and altitude (white line) along various sections of the course.

The table gives the numerical data and allows performing gate-to-gate comparisons.

Point distribution models

Studies [144, 145] present a model based on Point Distribution Models (PDMs) to qualify
robot performance. The PDM corresponds to the representation of the trajectories by a set
of chosen points transformed from the trajectory space to the space of deformation modes.
To determine whether two sets of trajectories are similar, a Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) can be performed.

A PCA has been applied to 10 runs of alpine skiing where 8 runs were recorded by a profes-
sional skier (section 4.1) and two runs by an amateur (FIG. 7.18-7.19). The trajectory cluster
corresponding to the professional skier is quite compact which is certainly related to his tech-
nical abilities. The difference between the amateur and the professional skier is clearly visible
for run 2, where the amateur made a technical fault at the lower part of the track (around
gate 6).

A second example described in section 7.4 compares two pairs of skis based on 10 downhills.
As FIG. 7.20 depicts, there is no statistically meaningful difference between the two pairs of
ski. Indeed, the difference is smaller than the variance of the two clusters which corresponds
to the investigation presented in section 7.4.
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FIG. 7.18: The 10 downhills analyzed in the PCA. The lateral displacements quantifiy the
technical error of the amateur skier on his second run (around gate 6).
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FIG. 7.19: The two principal modes of behavior of 10 downhills. More than 80% of the
energy is contained in the first two deformation modes (right). The first deformation mode

clearly isolates the run where the amateur skier made an error near gate 6.

Unlike the PCA, the LDA focuses on the maximum difference between clusters, optimizes
the ratio between inter-cluster and intra-cluster variance. If the affiliation of trajectories to a
group (cluster) is known, this method might provide statistically concluding results.

Time-dependent networks

References [44, 45] focus on analyzing the behavior of the route selection by identifying the
path a person would take to go from one location to another. Discrete choice models capture
correlations that allow the modeler to control the trade-off between the simplicity of the model
and the level of realism. The key concept of capturing correlation is called a subnetwork.
The importance and originality of this approach lies in the possibility to capture the most
important correlation without considerably increasing the model complexity. Unfortunately,
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FIG. 7.20: Comparison of ski 29 and 101 with a PCA.

this method does not allow extracting directly quantitative information about trajectory
differences.

7.3.4 Visualization Aspects

The visualization of the trajectories and that of compared parameters is critical when ad-
dressing sport professionals.

To simplify the comparison, metric coordinates are first computed in a local Transverse Mer-
cator projection. This map projection guarantees negligible distortions for the scale of the
networks considered in sports (rarely > 10 km) [175] and allows expressing metric coordi-
nates of small values which are more easy to interpret.

The experience shows that the interpretation of trajectory parameters with respect to time
is difficult. Indeed, the evaluation is facilitated if these parameters are illustrated on the
trajectory itself and eventually with respect to known ground features. Section 7.6.1 presents
a case related to the evaluation of drifting tires. FIG. 7.30 (right) reports the evolution of the
slipping angle as a function of time. It is difficult to interpret these values without the relation
to the track geometry. Therefore, FIG. 7.29 represents the slipping angle as a function of their
location which allows pertinent conclusions about the tires and the technique of the driver,
i.e. that the motorcycle is inclined even on the straight parts of the curve and this inclination
is compensated by lateral acceleration (FIG. 7.30, left).

Another important aspect for correct interpretation is the indication of statistical significance.
The varying navigation state accuracies are assessed by introducing a quality indicator. In
one dimension, the quality indicator is a confidence interval (e.g. x±σx). In 2D, the standard
deviation σd of the coordinate difference d between two trajectories A and B computed
by error propagation based on the accuracies of both trajectories (σE,A, σN,A, σE,B, σN,B,
FIG. 7.21) is:

σd =
1
d

√
∆E2 · (σ2

E,A + σ2
N,A) + ∆N2 · (σ2

E,B + σ2
N,B) (7.3.6)

Based on this indicator, correct conclusions about the significance of the performance dif-
ferences can be made. This is illustrated by two trajectories compared in FIG. 7.21. The
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trajectories’s position can be considered as different only at sections with no overlap between
the “snakes” formed around the trajectory by the quality indicators. The accuracy can be used
to clearly highlight when the observed phenomenon is statistically meaningful, as illustrated
in FIG. 7.22 (dotted line around the trajectory).

A

B
± 3σB

± 3σA

d A

B
±3σd

Position 
difference 
significant

Position 
difference 

not significant

FIG. 7.21: Trajectory comparison methodology based on accuracy indicators: Trajectories B
is significantly different from trajectory A if it does not overlap the buffer of ±3σd around

trajectory B.
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FIG. 7.22: GPS/MEMS-IMU trajectory with accuracy indicator (1σ). Satellite masking
decreased the positioning accuracy near gate 6, but the INS helped to bridge the GPS gaps

efficiently.

Another use of accuracy indicators is demonstrated in FIG. 7.23. There, the velocity profiles
of two runs in a giant slalom are depicted and their respective differences augmented by a
quality indicator (±σ). Gate intersections are plotted to provide an external reference. The
data presented here was collected by a skier equipped with a low-cost L1 GPS receiver and
a triple-axis MEMS-IMU. Based on this figure, the performance of the skier during the two
runs can be evaluated gate by gate, but only at moments where such difference is marked as
significant (shaded areas).
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FIG. 7.23: Velocity comparison based on the spatial comparison algorithms and illustration
of the accuracy indicator. The shaded areas indicate where the skiers’ velocity difference was

significant.

7.4 Position-Based Chronometry

A frequently asked question in the sports domain is the accuracy of position-based chronom-
etry compared to the traditional approach based on timing cells. Contrary to the traditional
discrete character of chronometry with timing cells, the timing based on GPS or GPS/MEMS-
IMU trajectories is continuous. This fact has several advantages.

• Comparisons can be made over smaller sections, e.g. between two gates.

• It can include topological aspects such as finding an ideal line by comparing different
tracks.

• Other parameters related to a defined section of the track (e.g. heart rate, velocity) can
be compared.

• While timing cells provide only discrete measurements, trajectory-based timing provides
a flexible approach that is independent of the skier’s posture.

115



From Navigation to Performance Assessment in Sport

The theoretical accuracy of timing derived from trajectories can be deduced from the following
basic relation:

∆t =
∆x
v

(7.4.1)

Hence, considering a speed v of 80 km/h and a relatively large (differential) positioning error
∆x of 0.4 m leads to a timing error ∆t of 1.8/100 s.

The following investigation, undertaken in collaboration with TracEdge and the German
ski federation (DSV), demonstrates the feasibility of GPS chronometry and illustrates its
advantages over the traditional approach [218]. A professional downhill skier was equipped
with an L1/L2 GPS receiver (Javad Legacy). He performed 10 super-G-like runs alternating
two pairs of skis (Number 29 and 101). Three timing splits were measured (start, intermediate,
and arrival) using a professional timing system. The timing gate locations were determined
in post-processing based on L1/L2 measurements with sub-decimeter accuracy.

The purpose of the test was twofold.

1. Determine the faster ski (for DSV).

2. Compare the accuracy of position-based chronometry to the traditional approach based
on timing cells.

Intersecting the GPS trajectories with the timing gates as depicted in FIG. 7.15 (page 109)
allows determining intermediates based on positioning which can then be compared to those
of the timing cells (TAB. 7.2).

To answer the question about the faster ski, the average split of the two skis is computed.
The difference between the average splits (29− 101) amounts to 5− 8/100 s with a standard
deviation of 27 − 74/100 s (TAB. 7.2). As the standard deviation is much larger than the
average difference, there is no statistical proof that ski 101 is faster than ski 29. To reach a
conclusion about the faster ski, the test setup has to be reviewed.

Secondly, the accuracy of position-based chronometry is assessed. The difference between the
individual splits derived by positioning and splits derived from timing cells is 2 − 7/100 s
with a standard deviation of 5 − 8/100 s. In addition, the standard deviation of the time
differences between the two sets of skis is similar for both methods (TAB. 7.2). Hence, both
methods provide similar accuracies and lead to the same conclusion about the performance
difference of the two skis.

A constant time difference between the two timing methods can be explained by the accuracy
of the gate coordinates. However, the varying differences are caused by numerous factors.

• Firstly, the carrier-phase ambiguities could only be fixed during the first five runs due
to adverse satellite signal reception conditions (northern exposure, slope bounded by
woods). This explains the somewhat larger differences during the last five runs with
floating ambiguities. Indeed, the varying accuracy of GPS positioning with float ambi-
guities is a major source of error: A positioning error of 50 cm at 60 km/h results in a
timing error of 3/100 s. The experience, however, shows that the splits derived from L1
GPS data are only negligibly noisier than those derived from L1/L2 data because the
relative position errors vary slowly.
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• Secondly, the fact that the GPS antenna is placed on the helmet whereas the timing cells
are intersected by the skier’s feet or hands is a potential source of error: A longitudinal
change in position of the skier’s head with respect to his feet of 20 cm will cause a timing
error of 1.2/100 s. However, if he intersects the split with his hands, the difference could
become significant and might explain certain differences.

Unfortunately, the chronometry system based on the timing cells used in the test was not
certified, and, therefore, no assertion about its timing accuracy can be made. Nevertheless,
the timing accuracies achieved with both methods are equivalent. This demonstrates that
position-based chronometry is an interesting alternative offering additional flexibility for eval-
uating the performance. Indeed, many virtual splits can be introduced without extra cost.
This allows refining the evaluation of the skis depending on the slope, wind or snow conditions.

TAB. 7.2: Comparison between traditional and GPS chronometry.

Start-Intermediate Start-Arrival Ambiguity
Ski Cell [s] GPS [s] Diff. [1/100 s] Cell [s] GPS [s] Diff. [1/100 s] status
29 16.54 16.62 -8 36.73 36.76 -3 90% fixed
101 16.62 16.70 -8 36.75 36.78 -3 90% fixed
29 16.70 16.75 -5 36.68 36.72 -4 90% fixed
101 16.40 16.48 -8 36.39 36.42 -3 90% fixed
29 16.61 16.67 -6 36.66 36.68 -2 90% fixed
101 16.44 16.56 -13 36.44 36.51 -6 Float
29 16.58 16.59 -1 36.82 36.71 12 Float
101 16.45 16.44 1 36.55 36.45 9 Float
29 16.75 16.92 -17 37.45 37.61 -15 Float
101 17.00 17.10 -10 37.90 37.91 0 Float

Average splits [s]
29 16.63 16.71 36.87 36.9
101 16.58 16.66 36.81 36.81

Standard deviation of the average splits [1/100 s]
29 9 13 33 40
101 25 27 63 63

Time difference ski 29-101 [1/100 s]
5 5 6 8

Standard deviation of the time difference ski 29-101 [1/100 s]
27 30 71 74

Average time difference GPS-Cell [1/100 s]
-7 -2

Standard deviation difference time GPS-Cell [1/100 s]
5 8
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7.5 Orientation Related Assessment - Skiing

For the development and performance analysis of some sport equipment or the evaluation of
the athlete’s technique, sport professionals rely on the knowledge about its orientation with
respect to the direction of motion. In alpine skiing, the determination of accurate orientations
of a ski is the prerequisite for analyzing acting forces. The latter needs to be decomposed with
respect to the terrain to analyze potential and kinetic energies, as well as joint loading and
energy transfers during a turn. Moreover, the edging and skidding angles can be assessed in
relation to the technique of a skier.

Data from GPS/MEMS-IMU provide a new possibility to obtain such information more ac-
curately and faster in comparison to optical methods (section 2.2.1). For a complete investi-
gation, both skis need to be equipped with GPS antennas and MEMS-IMU sensors to recover
the position and orientation parameters (FIG. 7.24). Based on the slope information derived
from a digital terrain model Rslope

n , the orientation of the sensor with respect to the ski Rb
ski

and the sensor orientation from the GPS/MEMS-IMU integration Rn
b , the orientation of the

ski with respect to the slope Rslope
ski can be computed.

Rslope
ski = Rslope

n ·Rn
b ·Rb

ski (7.5.1)

The local referential (xslope, yslope, zslope) is defined as follows (FIG. 7.24): the xy-plane rep-
resents the local surface with the x-axis aligned to the maximum slope of the terrain. The
heading is the angle between this fall line (xslope) and the direction of the ski (xski). The roll
describes the edging angle of the ski.

x ski

zski

x slope

y slope

zslope

Roll/Edging
50°

Heading
30°

y ski

Direction 
of motion

Orientation 
of the ski

Skidding 
angle δ

GPS antennas

MEMS-
IMUs

FIG. 7.24: Definition of the reference frames and illustration of the heading and roll (edging)
angles in alpine skiing.

The zoom on the two turns illustrated in FIG. 7.25 allows studying the technique of the athlete.

• During the turn initiation À, the ski is flat (Roll angle φ = 0 deg).

• The steering phase of the turn Á lasts until the ski’s orientation reaches the fall line
(Heading angle ψ = 0 deg). During this phase, the roll (edging) angle increases gradually
and reaches its maximum (approximately 50 deg).
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FIG. 7.25: Illustration of the roll (edging), heading and skidding angles during two turns.

The skidding of the skis can be obtained by analyzing their orientation with respect to the
velocity vector also obtained by GPS/MEMS-IMU. First, the direction of the trajectory α
can be derived from the velocity components vN and vE (FIG. 7.24).

tan(α) =
vN
vE

(7.5.2)

Furthermore, the GPS/INS integration yields the heading ψ of the ski. Combining the two
variables provides the skidding angles of the ski δ = ψ − α. In this example, the skidding
angle is zero at the initiation and increases during the first phase of the curve (FIG. 7.25). To
study the carving and slipping phases of a turn, it is interesting to display the skidding angles
with respect to the trajectory (FIG. 7.261). The left figure illustrates a trajectory where the
athlete anticipated the curves by sliding, whereas on the right figure he carved the curves as
properly as possible. The images of FIG. 7.27 underline the different technique of the athlete.

7.6 Orientation Related Assessment - Motorcycling

The accurate knowledge of position, velocity and orientation data is important for different
aspects of motorcycling. In the sequel, innovative approaches with the GPS/MEMS-IMU sys-
tem are described for this application. The following investigation is based on the experimental
setup described in section 4.1 (FIG. 7.28).

1reproduced with the agreement of Swiss Federal Institute for Snow and Avalanche Research Davos (SLF)
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FIG. 7.26: Skidding angles of a run where the turns were anticipated with drifting (left) and
of a run where the curves were carved as properly as possible (right).

FIG. 7.27: Drifting (left) and carving (right).

7.6.1 Reference Frame Aspects

Similarly to the skiing experiment, the core information is provided from GPS/MEMS-IMU.
Related to that are the derived quantities (i.e. accelerations, tire slips) visualized with respect
to the parameters related to the motorcycle, e.g. torque or throttle (FIG. 7.30). FIG. 7.29 gives
an example where the lateral slipping of the back wheel of the motorbike is visualized on two
turns of the track.

When studying the motorcycle performance, various parameters are determined in different
reference frames, e.g. in the reference frame fixed to the motorcycle (abbreviated with moto)
and in the reference frame fixed to the track (abbreviation track, FIG. 7.28). Measurements
(e.g. force or torque) can be converted between the two frames considering the rotation matrix
Rn
b which expresses the orientation of the MEMS-IMU (body frame b) with respect to the

navigation frame n (which is estimated in the GPS/MEMS-IMU integration), the slope of the
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FIG. 7.28: GPS/MEMS-IMU system setup.
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FIG. 7.29: Lateral slipping angles visualized on the GPS/MEMS-IMU derived trajectory.

track Rtrack
n (derived from a terrain model) and the misalignment of the MEMS-IMU with

respect to the motorcycle Rb
moto.

xtrack = Rtrack
n ·Rn

b ·Rb
moto · xmoto (7.6.1)

where x stands for observations in either frame.

7.6.2 Computation of the Lateral Slipping of Tires

The lateral slipping of tires can be observed directly with the use of GPS/INS derived results
(section 7.5). FIG. 7.30 illustrates the estimated slipping angle with respect to the throttle
and the traction/braking torque at the rear wheel respectively. The corresponding roll angle
and the lateral acceleration are plotted as well (FIG. 7.30, left). The confidence level of the
slipping angle (1σ ≈ 1 deg) highlights the accuracy of the estimated slipping (FIG. 7.30,
right). The presented experiment was conducted in winter and therefore the experienced
dynamics were small. Nevertheless, statistically significant drifts were observed during the
turns. The determined lateral acceleration is consistent with the roll angle. It can be noted
that the motorcyclist was inclined even on a great portion of the straight lines contrary to
his subjective feeling (FIG. 7.29). As revealed by FIG. 7.30, this inclination was compensated
by the lateral acceleration.
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FIG. 7.30: Motorbike trajectory analysis: Torque, lateral accelerations, throttle and slipping
angles with accuracy indicator (1σ). The black vertical lines indicate the beginning of the

turns.

7.6.3 Evaluation of the Tire Characteristics

The “magic formula tire model” defined by [129] provides a mathematical expression from
which forces and moments acting longitudinally or laterally from the road on the tire can be
related to its slipping (FIG. 7.31).

Y (X) = y(x) + ∆y
x = X + ∆x
y(x) = D · sin(C · arctan(B · x− E · (B · x− arctan(B · x))))

(7.6.2)

where

• X represents the lateral slipping angle δ or the longitudinal slipping κ (equation 7.6.3).

• Y stands for the lateral force Fy, the aligning torque Mz or longitudinal force Fx.

• B, C, D, E, ∆x and ∆y are constant coefficients.

The constant coefficients are usually determined by laboratory experiments (on a drum). The
GPS/MEMS-IMU system permits the calibration of these deterministic parameters in situ.
First, force and torque measurements need to be referenced with respect to the road. This
becomes possible due to the orientation determined by GPS/INS. The lateral slipping angle
computed from GPS/INS needs only to be corrected for the steering of the front wheel, the
tire radius variation due to speed, load and roll angle as well as the suspension pitch. The
latter can be measured directly by means of linear potentiometers. The determination of the
longitudinal slipping requires the knowledge of the longitudinal velocity of the motorbike (vsx
obtained from GPS/INS) and that the tire at the contact patch (vx measured by means of
digital speed sensors after compensation for the tire radius variation).

κ = −vsx
vx

(7.6.3)

Hence, the combination of all these measurements permits evaluating tires directly in the field.
This calibration reflects the actual characteristics of the surface (e.g. temperature, roughness)
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and therefore refines laboratory findings. The peak value of Y is often situated at approxi-
mately 10 deg of slipping and slipping angles up to 30 deg can be modeled. In this range,
the accuracy of the slipping angles accounts therefore for 3 − 10% of the error, whereas the
torque and force measurements can be determined with an accuracy of 5% · Y .

Y

x

∆y D

y

X

∆x

Force/ Moment

Tire
slipping

FIG. 7.31: Explanation of the coefficients of the “magic formula tire model” (equation 7.6.2).

7.6.4 Other Perspectives

Orientation determination also provides the essential data for the analysis of vibrations of a
motorcycle. Indeed, the study of tire-related vibrations is today very important in motorbike
racing. The so-called “chattering” vibrations may appear at the curves’ entry, apex or exit
and enforce the rider to reduce its speed. Currently, the evaluation of chattering is largely
based on (subjective) driver information. This feeling is important, but it needs to be refined
by means of numerical and experimental approaches [32]. One approach consists in using
hybrid eigenvector bases to perform a modal synthesis [158, 157]. The vibratory behavior of
a given tire is depending on two external parameters: ground load (vertical) and roll angle.
To build the modal basis, a modal analysis is carried out in laboratory and provides the
eigenfrequencies and eigenmodes for discrete values of these parameters. Then, vibration
measurements are realized on the track and dedicated software is applied to identify the
frequencies where chattering exists (rider data). The hybrid model is then used to reduce or
cancel the chattering vibrations.

The efficiency of such a predictive model depends on the quality of experimental data. The
use of the low-cost L1 GPS/MEMS-IMU system combined with a force measurement unit
(body reference frame) allows determining accurate roll angles and evaluating the vertical
force in the local reference frame. These two parameters are required for the definition of the
precise dynamic conditions under which the vibrations appear.
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Chapter 8

Conclusions and Perspectives

8.1 Conclusions

This research aimed at developing methods for performance analysis in sports based on trajec-
tories derived from low-cost GPS and INS. Several aspects and algorithms have been presented
and investigated by means of simulations and experimental testing. This section highlights
the major findings. Firstly, the developed GPS/INS integration algorithms and their naviga-
tion performance are summarized. Secondly, the trajectory analysis strategy is recapitulated.
Finally, recommendations for the selection of GPS/INS systems for different sport disciplines
are given.

Methods and System Performance

The developed approach focuses on strapdown inertial navigation with light-weight and low-
cost MEMS-type inertial sensors. In this approach, the inertial errors are mitigated through
loose or close coupling with external GPS measurements. As MEMS-IMUs are subject to
large systematic errors, a simplified error model was suggested and investigated. Furthermore,
methods based on redundant MEMS-IMUs aiming at improving the orientation accuracy were
evaluated. These methods and their performance are outlined in this section.

Integration algorithm. Extended and unscented Kalman filters have been identified as
the most appropriate GPS/INS integration methods for the sport application because of
their rapid convergence and reasonable computational complexity. Unlike the EKF, the UKF
does not require the linearization of the system model for state and covariance propagation.
Experiments revealed that the performance of both filter types was numerically equivalent.
On the other hand, the UKF implementation tends to be computationally more expensive
and numerically less stable than the EKF.

Inertial error model. The suitability of the proposed, simplified inertial error model was
evaluated through a comparison of raw measurements between the tactical-grade reference
IMU and the MEMS-IMU. It has been demonstrated that the numerous MEMS-IMU er-
rors sources cannot be decorrelated effectively. The simplified approach allows appropriate
modeling of the quickly evolving inertial sensor errors. Indeed, the differences between the
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biases based on raw signal comparison and those estimated by the KF has been proven to be
statistically insignificant.

As the conventional alignment methods used in GPS/INS are not applicable because of the
sensor characteristics of the MEMS-IMU sensors, two alternatives were proposed. The first
method is a modified coarse alignment algorithm where the sensing of the Earth’s rotation
rate is replaced by the measurement of the Earth’s magnetic field. The second approach is a
quaternion estimation method, also based on accelerometer and magnetometer measurements.
Even though the performance of the two methods is satisfactory, the latter is preferred because
of the absence of numerical singularities.

System performance. The loosely and closely coupled GPS/MEMS-IMU integration algo-
rithms have been evaluated under reasonable satellite constellations (> 4 SVs). Under such
conditions, the loosely coupled integration strategy provides slightly increased performance
over the closely coupled approach, however the difference is marginal. The position accuracy
is mainly driven by the precision of differential GPS ranging from dm accuracy for dual-
frequency DGPS to 0.7 m with single-frequency DGPS and low-cost receivers. On the other
hand, the velocity and orientation accuracy (0.2 m/s and 1-2 deg respectively) are less af-
fected by the choice of receiver hardware, and they are hardly influenced by the MEMS-IMU
integration approach.

Both, loosely and closely coupled integration schemes, were analyzed under less favorable
satellite constellations (≤ 4 SVs) with single-frequency DGPS from geodetic receivers. For
constellations consisting of 3 SVs, the closely coupled approach clearly outperforms the loosely
coupled method and allows maintaining a submetric position accuracy during up to 30 s of
reduced satellite signal reception. For the orientation, good results can be achieved even with
only 2 SVs and via closely coupled integration. However, for satellite outages longer than 20 s
with less than 2 SVs in view, the navigation errors are dominated by the inertial sensor errors
and exceed the accuracy requirements for sports applications.

Inertial redundancy. A wide range of position accuracies can be covered depending on
the GPS processing strategy and receiver quality. Hence, for applications with high position
accuracy demands, dual-frequency receivers are recommended if cost and ergonomics are
not obstacles. To improve the orientation accuracy, other approaches are required. A system
of redundant IMUs provides an economically and ergonomically viable solution to improve
navigation performance. Simulations and experiments have demonstrated that the orientation
performance can be improved by 30 − 50% with 4 sensors in skew-symmetric configuration.
In addition, the following recommendations regarding the integration of redundant inertial
sensors are given.

• Two integration approaches have been investigated: an algorithm based on a synthetic
IMU, where the observations are fused into a compound set of measurements, and
an extended mechanization approach, where the state vector is increased by individual
biases per sensor. The second method is found to be more optimal for system calibration
because the error characteristics of the individual sensors are considered separately.
Furthermore, fault detection and direct noise estimation can be performed within this
integration procedure whereas the synthetic approach requires cascade processing.

• Inertial error estimation is feasible even during static inertial alignment or during uni-
form motion, which enhances also the estimation of the initial orientation.

126



Conclusions

• Employing redundant IMUs enables direct noise estimation. Hence, less prior knowledge
about the sensor characteristics and the dynamics is required.

Methodology for Trajectory Analysis in Sports

Trajectory modeling. For visualization convenience and for synchronization with other
performance-relevant measurements, trajectories are modeled as continuous curves. As the
quality of the GPS positioning varies with the receiver hardware and processing algorithms, a
flexible approach for trajectory modeling was proposed. Dual-frequency GPS positions and ve-
locities are conveniently smoothed by cubic splines. On the contrary, trajectories from single-
frequency (and especially low-cost) GPS receivers are preferably preprocessed by additional
Kalman filtering. Indeed, making use of the superior accuracy of the velocity measurements,
the position quality can be increased. In addition, a matching algorithm was proposed that
mitigates to a certain extent the systematic effects remaining in single-frequency GPS posi-
tioning. It is based on feature-based correspondence. Furthermore, the inclusion of accuracy
indicators is indispensable to evaluate the significance of the performance parameters because
it allows taking into account the varying navigation state accuracies.

Trajectory comparison. Besides the analysis of individual trajectories, the comparison of
numerous trajectories is of utmost importance for sport applications. For this purpose, a
spatial comparison method was introduced where equitemporal planes perpendicular to a
reference track intersect with the other trajectories. Two main advantages of this method
were highlighted.

• The performance can be evaluated at any preselected time or distance interval. Ad-
ditional splits and (virtual) gates can be easily computed and interposed between the
timing cells or gates. Thus, this approach presents an interesting alternative to tradi-
tional timing methods.

• Not only coordinate differences between the trajectories can be determined, but also
any other attributes attached to the trajectories can be compared in a straightforward
manner (e.g. elapsed time, velocities, accelerations, heart rates).

Trajectory-derived parameters. Besides the analysis of position, velocity and orientation,
GPS/INS trajectories allow retrieving additional parameters for performance evaluation. For
instance by comparing the trajectory of the ski to its orientation, its skidding angles can be
derived. Combining this data with a digital terrain model allows determining the heading
and edging of the skis. Similarly, the lateral slipping angles can be computed in motorcycling.
The knowledge about the orientation of the motorbike is further required to correctly exploit
torque and force measurements and to study the vibratory behavior of the pneumatics.

Recommendations

Three categories of sport applications, that rely on accurate trajectory determination, were
identified: trajectory comparison, material testing and development, as well as motion anal-
ysis and rehabilitation. The choice of the adopted GPS/MEMS-IMU integration approach
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eventually depends on the targeted application. Indeed, the cm to dm level for position ac-
curacy is crucial only for few applications, namely those related to timing (material testing)
and those disciplines where small trajectory differences are important. Therefore, the use of
dual-frequency GPS receivers is reserved to few sport applications with higher accuracy needs
and larger budgets. On the other hand, redundant MEMS-IMUs can be exploited when im-
proved orientation estimation is required. TAB. 8.1 summarizes recommendations for the use
of GPS/INS systems for the identified sport applications.

TAB. 8.1: Recommendations for trajectory determination in sports.

Trajectory comparison
- Post-mission L1 DGPS/MEMS-IMU
- Real time (e.g. TV broadcasting) L1 GPS
- Chronometry L1/L2 DGPS, evtl. coupled to MEMS-IMU
Material testing and development
- Tire development, ski testing L1 or L1/L2 DGPS/MEMS-IMU, evtl. SR-IMU
- Vibrations L1 DGPS/MEMS-IMU at 400 Hz, evtl. SR-IMU
- Gliding and aerodynamic properties L1 or L1/L2 DGPS/MEMS-IMU
Motion analysis and rehabilitation
- Evaluation of the athlete’s motion L1 DGPS/MEMS-IMU (at lumbar #1)
- Energy transfer L1 DGPS/MEMS-IMU (at lumbar #1)

8.2 Perspectives

During the development of this work, new research challenges have emerged that are worth
further investigations.

GPS/MEMS-IMU integration automation. For a wider use, the GPS/MEMS-IMU sys-
tems need to be further automated. Unfortunately, optimal GPS processing and GPS/INS
integration are far from being self-acting methods and require a lot of experience about the
employed sensors and the mechanisms of the algorithms. Hence, future research should focus
on the following aspects:

• Post-processing of GPS data is certainly more optimal for performance assessment
because more sophisticated models can be exploited, e.g. for ambiguity resolution or
cycle-slip detection. On the other hand, most GPS receivers offer real-time differential
processing. If the communication setup can be effectively automated, this alternative
can save user interaction at the cost of (slightly) reduced navigation performance.

• Separating position and velocity estimation during the processing makes more effective
use of all available satellite measurements [41, 40]. In such a processing scheme, the
accuracy of the velocity estimates and the relative positioning are potentially improved.

• Currently, the system initialization is performed on manually selected, static periods
at the beginning or at the end of the runs. This phase can be automated by selecting
static sections, or periods with constant orientation and speed. Likewise, static periods
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during the sport performance should be recognized to perform re-initializations of the
system. Knowledge about these intervals can then be considered in adaptive KF [111].

Inertial redundancy. Redundant IMUs are already used in many fields (e.g. aviation,
robotics, virtual reality). In addition, the extension of this concept to MEMS-IMUs could
be attractive to a wide range of applications (e.g. reliable low-cost navigation systems, air-
borne mapping, pedestrian navigation). The closer investigation of the following aspects could
improve the navigation performance when using redundant (MEMS-)IMUs.

• Although the extended mechanization approach performs slightly better than the nu-
merically less optimal synthetic IMU, it was reported that the estimated biases do not
always correspond to the physical biases. This problem might be explained by the re-
duced observability of the system and might be overcome by geometrically constraining
the inertial measurements. However, this hypothesis needs further investigation to assess
the entire potential of the extended mechanization.

• The presented fault detection and identification approach based on the commonly used
parity space method is unacceptable in case of redundant MEMS-IMUs for safety-critical
applications. Thus, new methods need to be developed.

Performance evaluation in sports. The proposed trajectory modeling and comparison
algorithms provide accurate results. However, it is a cascade approach and hence sub-optimal.
Indeed, some information from GPS/INS processing is not introduced into the trajectory
comparison algorithm. In addition, ground constraints and reference trajectories would ideally
be integrated already during the GPS/INS integration.

The contribution of GPS/INS has been highlighted in skiing and motorcycling. However,
trajectory determination, analysis and comparison can be of interest to many more disciplines:

• GPS-only applications limit the study of the performance during the different phases
of a stroke (drive and recovery). Thanks to the high measurement frequency of the
MEMS-IMUs, a profound analysis of the effectiveness of the strokes in rowing becomes
conceivable.

• For the development of boats, its drifting could be evaluated with a GPS/INS system.
Another interesting topic is the detection of false-starts in sailing. Indeed, today this is
mainly done visually with limited accuracy (estimated to 1 m by professional referees).
The generalized use of the low-cost GPS/INS system would reduce the subjectivity of
this procedure.

• As soon as the system is capable of providing real-time results, it will provide interesting
topics for the media. Displaying not only position and velocity, but also orientations of
the athlete or equipment will enhance the appreciation of the sport performance. An
experiment has been conducted at EPFL for the “Patrouille des Glaciers” which is an
off-track skiing race in the Swiss Alps. Several teams have been equipped with low-
cost GPS. Their performance was visualized on Internet and in the arrival area. Not
only position was displayed, but also physiological measurements like heart rate, oxygen
saturation of hemoglobin and SpO2 [133].
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• Other developments at EPFL target the reconstruction of the body motion based on
measurements of artificial magnetic fields [110] and MEMS-IMUs. In this context, the
GPS/INS could provide the basic information about the trajectory and absolute orien-
tation which will be completed by the relative motion of the human body.

• Energy transfer computations in sports are complex because they require the determi-
nation of the center of gravity of athletes. Reference [174] has shown that the lumbar
point rather than the center of mass can be employed for the determination of kinetic
and potential energies in running. Evaluating an anatomic point is experimentally easier
and can be achieved e.g. with GPS/INS. Similar investigations are currently ongoing
for downhill skiing and could be envisaged for other disciplines.
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Appendix A

Extended Kalman Filter Algorithm

FIG. A.1 summarizes the equations and operations of the GPS/INS integration with an EKF
[85, 191, 81]. The MEMS-IMU measurements are propagated over time and updated by
GPS measurements at predefined epochs. The state prediction corresponds to the strapdown
inertial navigation described in section 3.6.3. The mathematical derivation of the covariance
prediction and the update stage is described in Appendix C. The filter initialization is detailed
in section 3.6.2.
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FIG. A.1: Extended Kalman filter algorithm.
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Appendix B

Unscented Kalman Filter Algorithm

B.1 Algorithm

This section details the scaled UKF algorithm described in [166]. A non-linear system process
with non-additive noise is assumed.

xk+1 = f(xak) = f(xk,wk) (B.1.1)
Qk = E(wkwT

k ) (B.1.2)

By augmenting the state x by the noise vector w, the effect of the noise on the covariance
propagation can be described naturally. As a result, the derivation presented in C.2.2 is no
longer required.

xa =
[

x
w

]
(B.1.3)

Pa =
[

P 0
0 Qk

]
(B.1.4)

where superscript a indicates the augmented state. Thus, the system model with non-additive
noise can be written as:

xk+1 = f(xak) ≡ f(xk,wk) (B.1.5)
Qk = E(wk,wk) (B.1.6)

B.2 Initialization

The unscented transformation is required to generate the sigma points (SP) of the UKF.
First, the state vector and the covariance matrix need to be initialized.

x̂a0|0 =
[

x0

0

]
Pa

0|0 =
[

P0 0
0 Q0

]
(B.2.1)
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Unscented Kalman Filter Algorithm

In the second step, the p = n + 2 SPs and weights that capture the mean and variance in a
n-dimensional space are generated [82]. w0 needs to be selected within 0 ≤ w0 ≤ 1. w0 = 0.5
seems to be an appropriate choice. The other n+ 1 weights are computed with:

wi =
1− w0

n+ 1
(B.2.2)

Then, the spherical simplex SPs can be derived by the subsequently described iterative pro-
cess. Let Xj

u,i be the ith SP in a j-dimensional space. The first points capturing the mean
and covariance in a one-dimensional space are found to be:

w1 = w2 =
1− w0

2{
X1
u,0,X

1
u,1,X

1
u,2

}
=
{

0,− 1√
2w1

,
1√
2w1

} (B.2.3)

Respecting the mean and covariance condition, the following SPs for the two-dimensional case
can be determined by:

{
X2
u,0,X

2
u,1,X

2
u,2,X

2
u,3

}
=

{[
0
0

]
,

[
− 1√

2w1

− 1√
6w1

]
,

[
1√
2w1

− 1√
6w1

]
,

[
0
2√
6w1

]}
(B.2.4)

FIG. B.1 illustrates the generation of SPs in the one- and two dimensional space.
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FIG. B.1: Sigma point generation illustrated in the one- and two-dimensional space.

For j = 2 to n, the vector sequence can be expanded as follows:

For i = 0:

Xj
u,0 =

[
Xj−1
u,0

0

]
= 0n×1 (B.2.5)
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For i = 1 to j:

Xj
u,i =

[
Xj−1
u,i

− 1√
j(j+1)w1

]
(B.2.6)

For i = j + 1:

Xj
u,i =

[
0(j−1)×1

j√
j(j+1)w1

]
(B.2.7)

This leads to a vector sequence of n+ 2 SPs of dimension n×1. An increase of one dimension
in the state space adds a new SP and increases their dimension by one element.

After computing the SPs, their weights for mean (index m, equation B.2.8) and covariance
(index c, equation B.2.9) have to be determined.

wmi =

{
w0−1
α2 + 1 for i = 0 with 10−4 ≤ α ≤ 1,

wi
α2 for i 6= 0.

(B.2.8)

wci =

{
w0−1
α2 + 2 + β − α2 for i = 0,

wi
α2 for i 6= 0.

(B.2.9)

α may be chosen in the interval 10−4 ≤ α ≤ 1, whereas β = 2 is optimal for Gaussian
distributions.

Cholesky factorization is applied to obtain the square root matrix Sa0|0 such that Sa0|0 ·S
Ta

0|0 =
Pa

0|0. Then, the scaled SPs are computed as follows:

Xa
i,0|0 = x̂a0|0 + α · Sa0|0 ·X

a
u,i (B.2.10)

B.3 Prediction

The SPs are first transformed through the system model.

Xi,k|k−1 = f(Xa
i,k−1|k−1) (B.3.1)

f is defined in section 3.6.3 and equations 3.6.7 (orientation prediction), 3.6.12 (velocity
prediction), 3.6.17 (position prediction), as well as equation 3.6.19 (extra states prediction).

Then, the mean and covariance is computed based on the propagated SPs Xi,k|k−1.

x̂−k =
p−1∑
i=0

wmi Xi,k|k−1 (B.3.2)

P−k =
p−1∑
i=0

wci∆Xi,k|k−1∆XT
i,k|k−1 (B.3.3)
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where ∆Xi,k|k−1 = Xi,k|k−1 − x̂−k .

Special treatments are required when averaging position and orientation because they do not
belong to a vector space. In the position domain, the position of each of the SPs Xi,k|k−1 can
be transformed to the e-frame where the position weighted mean is given by:

r̂ek|k−1 =
p−1∑
i=0

wmi · rei,k|k−1 (B.3.4)

The weighted average of the quaternions can be computed based on various algorithms.

• Weighted average [22].

• Spherical linear interpolation [22].

• Convergence algorithm [166].

The three algorithms have been investigated in [22]. For large covariances, the spherical lin-
ear interpolation algorithm and the convergence algorithm outperform the weighted average.
However, the weighted average algorithm is the fastest algorithm and it provides sufficiently
accurate results for decreasing covariances.

Then, the state and covariance are augmented.

x̂ak|k−1 =
[

x−k
0

]
Pa
k|k−1 =

[
P−k 0
0 Qk

]
(B.3.5)

Finally, the SPs are updated applying a Cholesky factorization to the new covariance matrix
Pa−
k|k−1 such that Sa−k|k−1 · S

Ta−
k|k−1 = P−k|k−1.

Xa
i,k|k−1 = x̂a−k−1 + α · Sa−k|k−1 ·X

a
u,i (B.3.6)

B.4 Measurement Update

Firstly, the SPs are transformed through the measurement model.

Zi,k|k−1 = h(Xi,k|k−1) (B.4.1)

The measurement models derived for the EKF are applied (section 3.6.4): Equation 3.6.21
for position updates, equation 3.6.23 for velocity updates and equation 3.6.27 for magnetic
measurement updates.

[166] applies a special treatment to the position updates in order to avoid an ill-conditioned
covariance matrix as position is expressed in terms of the geodetic latitude and longitude.
Further evaluation is necessary in order to justify this approach.
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Measurement Update

The predicted measurements are then derived from the transformed SPs.

ẑ−k =
p−1∑
i=0

wmi · Zi,k|k−1 (B.4.2)

The covariance between the states and the measurements Pxz,k as well as the covariance of
the innovation sequence Pzz,k is given by:

Pxz,k =
p−1∑
i=0

wci ·∆Xi,k|k−1 ·∆ZTi,k|k−1 (B.4.3)

Pzz,k =
p−1∑
i=0

wci ·∆Zi,k|k−1 ·∆ZTi,k|k−1 + Rk (B.4.4)

where ∆Zi,k|k−1 = Zi,k|k−1 − ẑ−k .

The following update equations are similar to the EKF approach: Compute the gain matrix
Kk, the innovations and update the covariance matrix P+

k :

Kk = Pxz,k ·P−1
zz,k (B.4.5)

x̂+
k = x̂−k + Kk · (zk − ẑ−k ) (B.4.6)

P+
k = P−k + Kk ·Pzz,k ·KT

k (B.4.7)

Finally, Sa+
k can be computed by applying Cholesky factorization to Pa+

k to update the scaled
SPs.

Xa
i,k|k = x̂a+

k + α · Sa+
k ·X

a
u,i (B.4.8)
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Appendix C

GPS/INS Navigation State Error
Models and Covariance Prediction
for EKF

C.1 Error Model Derivation

C.1.1 Position Errors Model

In the local-level mechanization, the position can be represented in geographic coordinates rn

= [ϕ λ h]T . Its derivation can be expressed introducing the velocity vector vn = [vN vE vD]T .

ṙn = D−1 · vn (C.1.1)

Equation C.1.1 can be transformed as follows:

vn = D · ṙn (C.1.2)

Linearizing equation C.1.2 leads to:

δvn = D · δṙn + δD · ṙn (C.1.3)

where

δD · ṙn =
(
∂D
∂ϕ

δϕ+
∂D
∂λ

δλ+
∂D
∂h

δh

)
· ṙn = Dr · δrn (C.1.4)

and

Dr =

 0 0 ϕ̇

−λ̇(R+ h) sinϕ 0 λ̇ cosϕ
0 0 0

 (C.1.5)

Substituting equation C.1.4 into equation C.1.3 leads to the error equation for the position.

δṙn = D−1 · δvn −D−1 ·Dr · δrn (C.1.6)
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C.1.2 Velocity Errors Model

The navigation equation in the n-frame for the velocity is expressed in function of the specific
force measurements fn, the gravity vector gn, the gyroscope measurements Ωn

in, the Earth
rotation Ωn

ie and the velocity vn.

v̇n = fn − (ωnin + ωnie)× vn + gn (C.1.7)

The estimated specific force term f̂n can be expressed introducing the direction cosine matrix
Rn
b and the orientation errors En.

f̂n = R̂n
b f̂
b = (I−En) ·Rn

b · (f b − δf b) (C.1.8)

where the true orientation Rn
b is related to the estimated orientation R̂n

b and the orientation
errors En defined by equation C.1.10 as follows:

R̂n
b = (I−En) ·Rn

b (C.1.9)

En is the skew-symmetric matrix representing the misalignment errors.

En = [εn]× =

 0 −εD εE
εD 0 −εN
−εE εN 0

 (C.1.10)

Linearizing equation C.1.8, δfn can be expressed as:

δfn = fn − f̂n = Rn
b · δf b − fn × εn (C.1.11)

Setting ω̂nin = ωnin - δωnin, ω̂nie = ωnie - δωnie and neglecting second-order effects, the linearization
of equation C.1.7 leads to:

δv̇n = −fn× εn + Rn
b δf

b− (ωnin +ωnie)× δvn− (δωnin + δωnie)×vn + δgn +
∂g
∂x

δx (C.1.12)

where δgn is the error in the gravity term. ∂g
∂xδx is the change of gravity due to an error

in position and can be safely neglected when working with MEMS-IMU sensors and when
updating the state vector frequently.

δv̇n = −fn × εn + Rn
b δf

b − (ωnin + ωnie)× δvn − (δωnin + δωnie)× vn + δgn (C.1.13)

C.1.3 Orientation Errors Model

The time derivative of equation C.1.9 leads to:

ˆ̇Rn
b = Ṙn

b − ĖnRn
b −EnṘn

b (C.1.14)
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Covariance Prediction

The rate of change of the Rn
b can be expressed in terms of the orientation errors.

ˆ̇Rn
b = R̂n

b Ω̂
b
nb (C.1.15)

Introducing equation C.1.9 and setting Ω̂b
nb = Ωb

nb − δΩn
nb, equation C.1.15 leads to:

ˆ̇Rn
b = (I−En)Rn

b (Ωb
nb − δΩn

nb) (C.1.16)

Comparing equation C.1.14 and C.1.16 and neglecting second-order effects, the following
expression for ε̇n can be expressed in vector form:

ε̇n = Rn
b δω

b
nb (C.1.17)

Thus, the orientation errors are directly proportional to the errors of the body frame rate of
change of the angular velocity. δωbnb can be determined by subtracting the angular velocity
of the navigation-level frame with respect to the inertial frame from the absolute angular
velocity measured by the gyroscopes.

ω̂bnb = ω̂bib − R̂b
nω̂

n
in (C.1.18)

After some modifications and neglecting second-order effects, linearizing δωbnb becomes:

δωbnb = ωbib −Rb
nω

n
in + R̂b

nE
nωnin (C.1.19)

Substituting C.1.19 into C.1.17 leads to the error equation for the orientation.

ε̇n = Rn
b δω

b
ib − δωnin − ωnin × εn (C.1.20)

C.2 Covariance Prediction

C.2.1 System Matrix

The state covariance matrix propagates as:

P̃k = Φk−1P̂k−1ΦT
k−1 + Γk−1Qk−1ΓTk−1 (C.2.1)

The transition matrix Φ can be computed based on the system matrix F.

Φ = eF∆t

≈ I + F∆t+
(F∆t)2

2!
+

(F∆t)3

3!

(C.2.2)

where

∆t = tk+1 − tk (C.2.3)
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The system matrix F can be expressed as follows:

F =



03×3 03×3

Fmain Rn
b 03×3 09×3

03×3 Rn
b

03×9 −βf · I3×3 03×3 03×3

03×9 03×3 −βω · I3×3 03×3

03×9 03×3 03×3 −βdm · I3×3

 (C.2.4)

where Fmain is defined as follows:

Fmain =

 F11 F12 F13

F21 F22 F23

F31 F32 F33

 (C.2.5)

Based on equation C.1.6, F11, F12 and F13 can be derived.

F11 = −D−1Dr =

 0 0 − ϕ̇
R+h

λ̇ tan(ϕ) 0 − λ̇
R+h

0 0 0

 (C.2.6)

F12 = D−1 (C.2.7)
F13 = 03×3 (C.2.8)

The derivation of the velocity terms is more complex. First, two components of equation C.1.13
have to be computed. Set:

Ω = ωnin + ωnie = ωnen + 2ωnie =

 (2ΩE + λ̇) cosϕ
−ϕ̇

−(2ΩE + λ̇) sinϕ

 (C.2.9)

Note that at v = 20 m/s:

ωnen =

 0
−3 · 10−6

3 · 10−6

 rad
s

< ωnie =

 0
5 · 10−5

−5 · 10−5

 rad
s

(C.2.10)

Derivating equation C.2.9 with respect to position leads to:

∂Ω
∂r

=

 −2ΩE sinϕ 0 − vE
(R+h)2

0 0 vN
(R+h)2

−2ΩE cosϕ− λ̇
cosϕ 0 − vE

(R+h)2
tanϕ

 (C.2.11)

Derivating equation C.2.9 with respect to velocity leads to:

∂Ω
∂v

=

 0 1
R+h 0

− 1
R+h 0 0
0 tanϕ

R+h 0

 (C.2.12)
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Now, compute δΩ× vn:

δΩ× vn = −vn × δΩ = [−vn]× (
∂Ω
∂r

δr +
∂Ω
∂v

δv)

=


−vE(2ΩE cosϕ+ vE

(R+h) cos2 ϕ
) 0 v2E

(R+h)2
tanϕ− vDvN

(R+h)2

2ΩE(vN cosϕ− vD sinϕ) + vEvN
(R+h) cos2 ϕ

0 − vE
(R+h)2 cosϕ

(vN sinϕ+ vD cosϕ)

2ΩEvE sinϕ 0 v2E
(R+h)2

+ v2N
(R+h)2

 δr

+


vD
R+h

vE
(R+h) tanϕ 0

0 vD
R+h + vN

R+h sinϕ 0
− vN
R+h − vEvN

(R+h) 0

 δv
(C.2.13)

Evaluate Ω× δvn:

Ω× δvn =


0 −2(ΩE + vE

(R+h) cosϕ) sinϕ 2 vN
R+h

2
(

ΩE + vE
(R+h) cosϕ

)
sinϕ 0 2

(
ΩE cosϕ+ vE

(R+h)

)
−2 vN

R+h −2
(

ΩE + vE
(R+h) cosϕ

)
cosϕ 0

 δv
(C.2.14)

Based on equation C.1.13, the velocity terms of the system matrix can be determined.

F21 =


−vE

(
2ΩE cosϕ+ λ̇

cosϕ

)
0 λ̇ sinϕ

(R+h)vE −
ϕ̇

(R+h)vD

2ΩE (vN cosϕ− vD sinϕ) + λ̇
cosϕvN 0 − λ̇

(R+h)(vN sinϕ+ vD cosϕ)

2ΩEvE sinϕ+ ∂g0(ϕ,h)
∂ϕ 0 λ̇ cosϕ

(R+h)vE + ϕ̇
(R+h)vN −

2g
R + 6

R2h

(C.2.15)

F22 =

 vD
R+h −2(ΩE + λ̇) sinϕ ϕ̇

(2ΩE + λ̇) sinϕ vD+vN tanϕ
R+h (2ΩE + λ̇) cosϕ

−2ϕ̇ −2(ΩE + λ̇) cosϕ 0

 (C.2.16)

F23 = − [fn×] = −
[
Rn
b f
b×
]

=

 0 fD −fE
−fD 0 fN
fE −fN 0

 (C.2.17)

Note: The term 6
R2h can be safely neglected.

Based on equation C.1.20, the velocity terms of the system matrix become:

F31 =


ΩE sinϕ 0 λ̇ cosϕ

(R+h)

0 0 − ϕ̇
(R+h)

ΩE cosϕ+ λ̇
cosϕ 0 − λ̇ sinϕ

(R+h)

 (C.2.18)

F32 =

 0 − 1
R+h 0

1
R+h 0 0

0 tanϕ
R+h 0

 (C.2.19)
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F33 = −[ωnin]× =

 0 −(ΩE + λ̇) sinϕ ϕ̇

(ΩE + λ̇) sinϕ 0 (ΩE + λ̇) cosϕ
−ϕ̇ −(ΩE + λ̇) cosϕ 0

 (C.2.20)

C.2.2 System Noise Model

The gamma matrix is given by:

Γ =



03×3 03×3

I9×9 −Rn
b 03×3 09×9

03×3 −Rn
b √

2βfb · I3×3

09×9 09×6
√

2βω · I3×3 √
2βdm · I3×3

 (C.2.21)

Qk is given by:

Qk = |∆t| · diag(σ2
r σ2

v σ2
ε σ2

f σ2
ω σ2

w
fb
σ2
wbω

σ2
wdm

) (C.2.22)

The system noise matrix Qww can then be integrated from:

Qww =
∫ ∆t

0
φ(t) · Γ ·Qk · ΓT · φ(t)Tdt

≈
∫ ∆t

0
(I + F(t) ·∆t) · Γ ·Qk · ΓT · (I + F(t) ·∆t)Tdt

(C.2.23)

Neglecting higher order terms (≥ O(∆t2), [60]), Qww becomes:

Qww ≈ Γ ·Qk · Γ ·∆t (C.2.24)

This simplification avoids the integration of F and seems appropriate knowing that the choice
of the noise parameters of Qk is arbitrary and essentially based on the experience.

C.3 Measurement Model Derivation

C.3.1 Loosely Coupled Integration

At epochs where position, velocity and magnetometer observations are sufficiently accurate,
the measurement matrix and its covariance matrix have the following form:

H =

 Hr

Hv

Hm

 (C.3.1)

R =

 Rr

Rv

Rm

 (C.3.2)

where Hr, Hv, Hm are the measurement matrices for position, velocity and magnetometer
observations and Rr, Rv, Rm the corresponding covariance matrices. Their derivation is
developed in the sections C.3.1 and C.3.3.
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GPS coordinate updates

Linearizing equation 3.6.21 leads to:

Hr =
[

I3×3 + δ(D−1)on 03×3 −D−1On 03×9

]
(C.3.3)

where On = [on×] = [Rn
b · ob×] and where

δ(D−1)on =

 0 0 − aN
(R+h)2

aE tanϕ
(R+h) cosϕ 0 − aE

(R+h)2 cosϕ

0 0 0

 (C.3.4)

The covariance matrix is given by:

Rr =

 ( σrNR+h)2 0 0
0 ( σrE

(R+h) cosϕ)2 0
0 0 σ2

rD

 (C.3.5)

GPS velocity updates

Setting ωnnb = Rn
bω

b
ib − ωnin, equation 3.6.23 can be derivated to find:

Hv =
[

OnD1 I3×3 + OnD2 On(Ωn
in + 2Ωb

nb) 03×3 −OnRn
b 03×3

]
(C.3.6)

where

D1 =
∂ωnin
∂r

=

 −ΩE sinϕ 0 − vE
(R+h)2

0 0 vN
(R+h)2

−(ΩE cosϕ+ vE
R+h) 0 vE tanϕ

(R+h)2

 (C.3.7)

D2 =
∂ωnin
∂v

=

 0 1
R+h 0

− 1
R+h 0 0
0 − tanϕ

R+h 0

 (C.3.8)

The covariance matrix is given by:

Rv =

 σ2
vN 0 0
0 σ2

vE 0
0 0 σ2

vD

 (C.3.9)

C.3.2 Closely Coupled Integration

The measurement matrix has the following form:

H =

 HDDp

HDDφ̇

Hm

 (C.3.10)
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The covariance matrix becomes:

R =

 RDDp

RDDφ̇

Rm

 (C.3.11)

The derivation of HDDp,NED, HDDφ̇,NED, Hm and the covariance terms is presented in the
sections C.3.2 and C.3.3.

GPS double-differenced pseudorange updates

After accounting for the lever-arm effect defined in equation 3.6.21, the measurement matrix
for the first expression of equation 3.3.13 HDD,ECEF can by derivated in the e-frame as
follows:

(∇∆pzsLi,mr −∇∆ρzs−mr )− vzsmr = HDD,ECEF

 ∂x
∂y
∂z

 (C.3.12)

where

HDD,ECEF =
[

∆xz

ρz−r
− ∆xs

ρs−r

∆yz

ρz−r
− ∆ys

ρs−r

∆zz

ρz−r
− ∆zs

ρs−r

]
(C.3.13)

with a size of HDD,ECEF is [nsat− 1× 3]. Then, HDDp yields:

HDDp = HDD,ECEF ·Hf ·Hr (C.3.14)

where Hf is the derivative of the transformation function from curvilinear to cartesian coor-
dinates with respect to the position rn. Hr is given by equation C.3.3.

The measurement covariance matrix can be derived by double error propagation:

RDDp = F∇∆p,∆p · F∆p,p ·Rp · FT
∆p,p · FT

∇∆p,∆p (C.3.15)

where

F∇∆p,∆p =
[

Insat −Insat
]

(C.3.16)

and

F∆p,p =


1
1
1 −Insat−1

1
1

 (C.3.17)

and where nsat is the number of satellite measurements retained for the computation.
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GPS double-differenced Doppler updates

The system matrix HDDφ̇,ECEF can be expressed in the e-frame as follows:

(∇∆ṗzsmr −∇∆ρ̇s,i−mr )− vzs = HDDφ̇,ECEF



∂x
∂y
∂z
∂ẋ
∂ẏ
∂ż

 (C.3.18)

with

HDDṗ,ECEF =
[
azsmr bzsmr czsmr dzsmr ezsmr fzsmr

]
(C.3.19)

where m indicates the master receiver, r the rover receiver, s an arbitrary satellite number
and z the reference satellite. The coefficients azsmr, b

zs
mr, c

zs
mr, d

zs
mr, e

zs
mr, f

zs
mr are given by:

azsmr =
[

1
ρz−r
− (∆xz−)2

(ρz−r )3
−∆xz−∆yz−

(ρz−r )3
−∆xz−∆zz−

(ρz−r )3

] ∆ẋz−

∆ẏz−

∆żz−

 (C.3.20)

−
[

1
ρs−r
− (∆xs−)2

(ρs−r )3
−∆xs−∆ys−

(ρs−r )3
−∆xs−∆zs−

(ρs−r )3

] ∆ẋs−

∆ẏs−

∆żs−

 (C.3.21)

bzsmr =
[
−∆xz−∆yz−

(ρz−r )3
1
ρz−r
− (∆yz−)2

(ρz−r )3
−∆yz−∆zz−

(ρz−r )3

] ∆ẋz−

∆ẏz−

∆żz−

 (C.3.22)

−
[

∆xs−∆ys−

(ρs−r )3
1
ρs−r
− (∆ys−)2

(ρs−r )3
−∆ys−∆zs−

(ρs−r )3

] ∆ẋs−

∆ẏs−

∆żs−

 (C.3.23)

czsmr =
[
−∆xz−∆zz−

(ρz−r )3
−∆xz−∆zz−

(ρz−r )3
1
ρz−r
− (∆zz−)2

(ρz−r )3

] ∆ẋz−

∆ẏz−

∆żz−

 (C.3.24)

−
[
−∆xs−∆zs−

(ρs−r )3
−∆xs−∆zs−

(ρs−r )3
1
ρs−r
− (∆zs−)2

(ρs−r )3

] ∆ẋs−

∆ẏs−

∆żs−

 (C.3.25)

dzsmr =
∆xz−

ρz−r
− ∆xs−

ρs−r
(C.3.26)

ezsmr =
∆yz−

ρz−r
− ∆ys−

ρs−r
(C.3.27)

fzsmr =
∆zz−

ρz−r
− ∆zs−

ρs−r
(C.3.28)

The size of HDDṗ,ECEF is [nsat − 1 × 3]. HDDṗ can be derived accounting for the rotation
Rn
e from the Earth fixed reference frame to the NED frame. Hv is given by equation C.3.6.

HDDṗ = HDDṗ,ECEF ·HRne ·Hv (C.3.29)
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The measurement covariance matrix can be obtained similarly to RDD (equation C.3.15).
Unlike for the pseudorange measurements, no correlations between the measurements to the
same satellite are introduced because only phase differences are measured.

C.3.3 Magnetic Updates

Derivating equation 3.6.27 leads to:

Hm =
[

03×3 03×3 Rb
n[hn]× 03×6 −I3×3

]
(C.3.30)

The covariance matrix is given by:

Rm = σm · I3×3 (C.3.31)
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Appendix D

System Performance

TAB. D.1: Position and velocity RMSE of differential GPS solutions for 6 downhill runs
(approximately 150000 samples). The right column indicates the estimated accuracy of the

reference trajectories.

Geodetic L1/L2 Geodetic L1 Low-cost L1 Reference
Fixed (95%) Float Smoothed p Float Smoothed p Accuracy

N [m] 0.027 0.301 0.344 0.304 0.577 0.05
E [m] 0.021 0.161 0.146 0.301 0.405 0.05
h [m] 0.020 0.294 0.504 0.644 0.980 0.05
vN [m/s] 0.105 0.105 0.117 0.208 0.136 0.02
vE [m/s] 0.115 0.115 0.118 0.189 0.108 0.02
vD [m/s] 0.141 0.141 0.152 0.350 0.194 0.02

TAB. D.2: Position, velocity and orientation RMSE of 6 downhill runs based on the loosely
coupled approach (approximately 150000 samples).

Geodetic L1/L2 Geodetic L1 Low-cost L1
Fixed (95%) Float Smoothed p Float Smoothed p

N [m] 0.132 0.245 0.323 0.570 0.570
E [m] 0.066 0.203 0.159 0.497 0.624
h [m] 0.044 0.187 0.401 1.358 1.159
vN [m/s] 0.076 0.117 0.122 0.156 0.186
vE [m/s] 0.066 0.107 0.152 0.140 0.157
vD [m/s] 0.049 0.069 0.086 0.188 0.304
rl [deg] 1.14 1.52 0.66 1.71 0.56
pt [deg] 1.15 1.80 0.64 1.95 0.73
hd [deg] 1.75 2.04 2.72 2.62 3.58
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TAB. D.3: Position, velocity and orientation RMSE of 6 downhill runs based on the loosely
and the closely coupled approach and carrier-phase smoothed pseudoranges (approximately

150000 samples).

Geodetic L1 Low-cost L1 Reference
Loosely Closely Loosely Closely Accuracy

N [m] 0.323 0.313 0.570 0.657 0.05
E [m] 0.159 0.180 0.624 0.657 0.05
h [m] 0.401 0.442 1.159 1.340 0.05
vN [m/s] 0.122 0.136 0.186 0.163 0.02
vE [m/s] 0.152 0.144 0.157 0.158 0.02
vD [m/s] 0.086 0.140 0.304 0.218 0.02
rl [deg] 0.66 0.51 0.56 0.91 0.01
pt [deg] 0.64 0.58 0.73 0.96 0.01
hd [deg] 2.72 3.57 3.58 3.08 0.03
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Appendix E

GPS/INS Mechanization with
Redundant IMUs

E.0.4 Direct Noise Estimation

The algorithm proposed below is designed for a system setup composed of triads of inertial
sensors [64].

Firstly, the norms which are less sensitive to the orientation of the inertial (and magnetic)
measurements are computed at each instant k and for every sensor i.

¯̀
i(k) =

√
`2xi(k) + `2yi(k) + `2zi(k) (E.0.1)

where i = 1, ..., n and n being the number of sensor triads. Squared differences are then
computed to form the d matrices.

d¯̀(n, k) =

 (¯̀
1(k)−

∑n
j=2

¯̀
j(k)

n−1 )2

...

(¯̀
n(k)−

∑n−1
j=1

¯̀
j(k)

n−1 )2

 (E.0.2)

An averaging time T (typically a few seconds) is chosen (FIG. E.1). Assuming all sensors’
errors to be uncorrelated and identical, the noise is directly estimated.

σ`(k, T ) =

√√√√ 1
n

∫ k+T

k−T
(
n∑
i=1

d¯̀(i, k)) · dt (E.0.3)

E.0.5 Generalized Extended Kalman Filter Implementation

The following modifications to the standard GPS/INS mechanization have to be made. For
the orientation propagation, equation 3.6.9 has to be modified as:

ubb ≈ Πω(`bω)k · (tk+1 − tk) (E.0.4)
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TT

tk

dr / df

FIG. E.1: Schematic representation of the averaging window.

The accelerometer measurements are integrated in the velocity strapdown equation 3.6.12
and equation 3.6.14.

(∆vnf )k+1 ≈ (Rn
b )k+1|kΠf · (`bf )k ·∆t (E.0.5)

The generalized system matrix F can be expressed as follows (m gyroscopes, n accelerometer
and magnetometer p):

F =



03×m 03×n
Fmain Rn

b ·Πf 03×n 09×p
03×m Rn

b ·Πω

0m×9 −βf · Im×m 0m×n 0m×k
0n×9 0n×m −βω · In×n 0n×k
0k×9 0k×m 0k×n −βdm · Ik×k

 (E.0.6)

The gamma matrix Γ becomes:

Γ =



03×3 03×3

I9×9 −Rn
b ·Πf 03×3 0(m+n+k)×(m+n+k)

03×3 −Rn
b ·Πω √

2βfb · Im
0(m+n+k)×9 0(m+n+k)×6

√
2βω · In √

2βdm · Ik

 (E.0.7)

The generalized position update model (equation C.3.3) is given by:

Hr =
[

I3×3 + δ(D−1)on 03×3 −D−1On 03×(m+n+k)

]
(E.0.8)

The generalized velocity update model (equation C.3.6) is given by:

Hv =
[

OnD1 I3×3 + OnD2 On(Ωn
in + 2Ωb

nb) 03×m −OnRn
b ·Πω 03×k

]
(E.0.9)

168



The magnetic error model (equation 3.6.27) becomes:

hm(x̂−k ) = ΠmRb
n[hn]× εn − dm + wm (E.0.10)

which leads to:

Hm =
[

03×3 03×3 Rb
n[hn]× 03×(m+n) −Ik×k

]
(E.0.11)
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Appendix F

Simulation of GPS and
MEMS-IMU Data

The purpose of this simulation is to analyse the capability of the EKF to model biases
(and scale factors) and to test its robustness against various error sources (e.g. bad GPS
coordinates, high measurement noise).

F.1 Measurement Simulation

F.1.1 Gyroscope Measurements

The strapdown equation for the orientation term can be expressed in the following way
(equation 3.6.7):

(qnb )k+1|k+1 = (qnn)k+1|k · (qnb )k|k · (qbb)k|k+1 (F.1.1)

It follows that:

(qbb)k|k+1 = (qbn)k|k · (qnn)k|k+1 · (qnb )k+1|k+1 (F.1.2)

where (qbn)k|k = (qnb )ck|k, (qnn)k|k+1 = (qnn)ck+1|k and where (qnn)k+1|k is defined by equa-
tion 3.6.10. c indicates the complex conjugate of the corresponding quaternion. The qbb quater-
nion is defined as a function of the rotation vector u:

(qbb)k|k+1 =

 cos(‖u
b
b‖

2 )
ubb
‖ubb‖

sin(‖u
b
b‖

2 )

 (F.1.3)

Thus:∥∥∥ubb∥∥∥ = 2 · arccos(qbb(1)) (F.1.4)
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Simulation of GPS and MEMS-IMU Data

This leads to:

ubb =
1

sin(‖u
b
b‖

2 )

∥∥∥ubb∥∥∥ · qbb(2 : 4) (F.1.5)

and

ωbib =
ubb
∆t

(F.1.6)

Redundant measurements can be generated by rotating ωbib to frame bi:

ωbii,bi = Rbi
b ω

b
ib (F.1.7)

where

Rb
bi = R3(ψ) ·R2(−θ) (F.1.8)

F.1.2 Specific Force Measurements

The strapdown equation for the velocity term can be expressed in the following way:

(vn)k+1 =(vn)k + ((gn)k − (2(ωnie)k + (ωnen)k)× (vn)k) · (tk+1 − tk)
+ (Rn

b )k|k · (f b)k · (tk+1 − tk)
(F.1.9)

The time differential of vn can be derived.

˙(vn)k+1 =
(vn)k+1 − (vn)k

tk+1 − tk
= (gn − (2ωnie + ωnen)× (vn)k) + (Rn

b )k|k · (f b)k
(F.1.10)

Setting v̇n = an (the ”local” acceleration vector), fb can be found transforming equa-
tion F.1.10:

(f b)k = (Rb
n)k|k · (an − gn + (2 · ωnie + ωnen)× (vn)k) (F.1.11)

Redundant accelerometer measurements can be generated as described in equation F.1.7.

F.1.3 Magnetometer Measurements

The magnetometer measurements are modeled based on a model of the Earth’s magnetic field
(expressed as hn).

hb = Rb
n · hn (F.1.12)

Redundant magnetometer measurements can be generated according to equation F.1.7.
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Measurement Simulation

F.1.4 Error Simulation

Biases and white noise are applied to the simulated measurement as defined in section 3.1.

f b= f̂ b−bfb−wfb

ω = ω̂ −bω −wω

h = ĥ −dm −wm

(F.1.13)

where f b modeled specific force
f̂ b true specific force
bfb accelerometer bias
wfb measurement (white) noise
ω modeled angular rate
ω̂ true angular rate
bω bias of the angular rate measurements
wω measurement (white) noise
h modeled magnetic field
ĥ true magnetic field measurement
dm magnetic disturbance
wm measurement (white) noise
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Appendix G

Trajectory Matching

G.1 Curvature

The curvature can be estimated form the horizontal velocity (vE , vN ) and acceleration terms
(aE , aN ).

c2D =
vE · aN − vN · aE

(v2
E − v2

N )
3
2

(G.1.1)

The normal vector to a trajectory can be derived from the eigenvector of the covariance vector
[5].

Cov(x, y) = E
[
(x− µx)(y − µy)T

]
(G.1.2)

The normal vector n corresponds to the eigenvector with the largest eigenvalue, while the
tangent vector corresponds to smallest eigenvalue. Then, the curvature can be derived through

c2D =
1

2k + 1

k∑
j=−k

‖n(t)− n(t− k)‖ (G.1.3)

where n(t) it the normal vector at time t and its jth neighborhood points. k is the number of
neighborhood points that are considered.

G.2 Helmert Transformation

The functional model of the Helmert transformation is given by:

wE = cosω · E2 + sinω ·N2 + ∆E − E1

wN = − sinω · E2 + cosω ·N2 + ∆N −N1
(G.2.1)

where E and N are the coordinates in the first (index 1) or second (index 2) coordinate
system. ω is the rotation between the two systems, while ∆E and ∆N are the translation
with respect to east and north. wE and wN represent the misclosure terms of the Helmert
transformation in east and north direction.
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