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Vorwort 

Viele Methoden zur Bestimmung der Bahnen tiefer Erdsatelliten (sogenannter LEOs = Low 
Earth Orbiters), die mit Mikrowellen-Empfängern die Signale der Satelliten des Globalen 
Positionierungs-Systems (GPS) empfangen, wurden in den letzten zehn Jahren entwickelt und 
stetig verfeinert. Die Verfahren sind in der Praxis von Bedeutung, da in Zukunft die meisten 
Nutzsatelliten, deren Mission die Kenntnis genauer Bahnen erfordert, mit GPS-Empfängern 
ausgestattet sein werden. 

Bei der Arbeit von Frau Heike Bock steht nicht die höchste erreichbare Genauigkeit im 
Vordergrund (von etwa einem Zentimeter pro Satellitenkoordinate), sondern Effizienz und 
Robustheit in Kombination mit einer für die meisten Anwendungen ausreichenden Bahn-
Genauigkeit von etwa einem Dezimeter pro Koordinate. Zur Bahnbestimmung bedient sich 
Frau Bock so weit möglich der Produkte des Internationalen GPS-Dienstes (IGS). Die 
Verfahren beruhen also auf allgemein zugänglichen Produkten. 

Als Messgrössen dienen die GPS Code- und Phasen-Beobachtungen. Mit einem kon-
ventionellen Point Positioning werden alle simultanen Code-Messungen zur Bestimmung 
einer LEO Position (und einer LEO-Uhrkorrektur) zur Messepoche genutzt. Dabei lassen sich 
Positionierungs-Genauigkeiten im Bereich weniger Meter erreichen. Die Phasenbeob-
achtungen werden genutzt zur Bestimmung von LEO-Positionsdifferenzvektoren aufeinander-
folgender Messepochen. Die Positionsdifferenzen werden mit der Genauigkeit weniger 
Zentimeter bestimmt. Frau Bock verwendet dann ein von ihr entwickeltes Verfahren, mit dem 
sich die Positionen und Positionsdifferenzen zu sehr genauen Satelliten-Trajektorien 
kombinieren lassen. Die resultierenden Bahnen sind kinematischer Natur, da die 
Bewegungsgleichungen zu ihrer Bestimmung nicht verwendet werden. 

Alternativ können die Positionen und Positionsdifferenzen als Pseudo-Beobachtungen von 
einem Bahnverbesserungsprogramm verwendet werden. Als Resultat erhält man eine 
partikuläre Lösung der Bewegungsgleichungen, welche die Pseudo-Beobachtungen im Sinne 
der Methode der kleinsten Quadrate approximiert. 

Frau Bock hat ihre Verfahren mit grossen Datensätzen (u.a. mit etwa 50 Tagen CHAMP 
Beobachtungen) geprüft. Das angestrebte Ziel (hohe Genauigkeit bei grosser Effizienz und 
Robustheit) konnte leicht erreicht werden. Die Bahnqualität hängt stark von der Früher-
kennung und Eliminierung „schlechter“ Beobachtungen ab. Optimale Resultate werden 
erzielt, wenn zur Datensäuberung eine relativ genaue a-priori-Bahn zur Verfügung steht, was 
zu einem dreistufigen Verfahren führt. Die von Frau Bock entwickelten Verfahren zur 
Datensäuberung eignen sich übrigens in leicht abgewandelter Form auch zur Säuberung von 
Daten statischer GPS-Empfänger. 

Die Schweizerische Geodätische Kommission dankt Frau Heike Bock für diese wichtige 
Arbeit im Bereich der Bestimmung dynamischer und kinematischer LEO-Bahnen. Damit 
konnte ein weiterer gewichtiger Beitrag der Geodäsie im Rahmen der Internationalen 
Zusammenarbeit geleistet werden. Der Schweizerischen Akademie für Naturwissenschaften 
(SANW) sind wir für die Übernahme der Druckkosten zu grossem Dank verpflichtet. 
 
 
 
 
 
 
Prof. Dr. G. Beutler   Prof. Dr. H.-G. Kahle 
Astronomisches Institut   ETH Zürich 
Universität Bern   Präsident der SGK 



Préface 
Beaucoup de méthodes pour la détermination des orbites basses des satellites terrestres (les 
LEOs = Low Earth Orbiters) captant les signaux des satellites du système de positionnement 
global (GPS) à l'aide de récepteurs micro-ondes, ont été développées et continuellement 
affinées ces dix dernières années. En pratique ces méthodes seront importantes dans le futur 
car la plupart des satellites dont la mission exige une connaissance précise des orbites seront 
équipés de récepteurs GPS. 

Madame Heike Bock ne recherche pas la plus haute précision théoriquement possible 
(d'environ un centimètre par coordonnée de satellite), mais par contre l'efficacité et la 
robustesse en combinaison avec une précision suffisante de l'orbite d'environ un décimètre 
pour chaque coordonnée. Pour la détermination des orbites Madame Bock se sert autant que 
possible des produits du service international du GPS (IGS) pour déterminer l'orbite. Les 
méthodes sont basées sur des produits universellement accessibles. 

Les pseudo-distances (codes) et les phases du GPS servent comme observables de base. Avec 
un "point positioning" conventionnel toutes les mesures simultanées de codes (et une cor-
rection de l'horloge) sont utilisées pour déterminer une position du satellite bas pour chaque 
époque d'observation. Ceci permet d'obtenir une précision de la position de quelques mètres. 
Les observations des phases sont utilisées pour déterminer les vecteurs de différences de 
position du LEO à des époques consécutives avec une précision de quelques centimètres. 
Madame Bock a utilisé une méthode - développée par elle-même - avec laquelle l'on peut 
combiner les positions et les différences des positions pour obtenir les orbites très précises des 
satellites. Les orbites résultantes sont de nature cinématique, car les équations du mouvement 
ne sont pas utilisées pour leur détermination. 

Les positions et les différences de positions peuvent être utilisées alternativement comme 
pseudo observations par un programme d'amélioration d'orbites. Il en résulte une solution 
particulière de l'équation du mouvement qui est une approximation au sens de la méthode des 
moindres carrés. 

Madame Bock a contrôlé ses méthodes au moyen de grandes quantités de données (entre 
autres avec env. 50 jours d'observations du satellite CHAMP). Le but requis (haute précision 
ainsi que grande efficacité et robustesse) a pu être facilement obtenu. La qualité des orbites 
dépend beaucoup d'une détection précoce de mauvaises observations et de leur élimination. 
On obtient des résultats optimaux en nettoyant les données au moyen d'orbites à priori, 
relativement précises, ce qui mène à une procédure à trois étapes. Les méthodes développées 
par Madame Bock pour nettoyer les données conviennent également - légèrement modifiées - 
au nettoyage de données GPS de récepteurs statiques. 

La commission suisse de géodésie remercie Madame Bock de ce travail important dans le 
domaine de la détermination d'orbites dynamiques et cinématiques de satellites LEO. Avec 
cette importante contribution à la Géodesie une collaboration internationale pourrait être 
réalisée. Nous remercions également l'académie suisse des sciences naturelles (ASSN) d'avoir 
bien voulu reprendre les frais d'imprimerie. 

 

 

 

 

Prof. Dr. G. Beutler        Prof. Dr. H.-G. Kahle 
Institut d'astronomie        EPF Zurich 
Université de Berne       Président de la (CSG) 



Foreword 

Many methods to determine the orbits of Low Earth Orbiters (LEOs) using the observations 
of spaceborne GPS receivers were developed and refined in the 1990s. These procedures are 
relevant in practice, because most LEOs with missions requiring knowledge of precise orbits 
are (or will be) equipped with GPS receivers. 

In her analysis Ms. Heike Bock is not striving for the highest possible accuracy (which is of 
the order of one centimeter per satellite coordinate), but for efficiency and robustness, 
accompanied by an accuracy of about one decimeter per coordinate– which is sufficient for 
many (if not most) applications. To the extent possible Ms. Heike Bock makes use of the 
products of the International GPS Service (IGS). The procedures are thus based on openly 
available information. 

The orbits are determined using the GPS code and phase measurements. All simultaneously 
recorded code observations are used to perform a conventional point positioning (including 
the determination of the LEO clock correction) at the observation epoch. The resulting 
satellite positions are accurate to a few meters. The GPS phase observations are used to 
determine the position difference vectors of the satellite trajectory referring to subsequent 
measurement epochs. An accuracy of few centimeters is achieved per coordinate of the 
position difference vector. The code-derived positions and the phase-derived position 
differences are then combined (using a procedure developed by Ms. Heike Bock) to result in a 
very accurate purely kinematic satellite trajectory. The orbit is called “kinematic”, because the 
equations of motion, governing the orbit of a satellite, are not used to derive the trajectory. 

Alternatively, the positions and position differences may be used as pseudo-observations in a 
conventional orbit improvement process. The result consists of a particular solution of the 
equations of motion, fitting the pseudo-observations in the sense of the method of least-
squares. 

The procedures developed by Ms. Heike Bock were tested with large amounts of real data 
(including, e.g., 50 days of CHAMP observations). The goal (high accuracy in combination 
with efficiency and robustness) could be easily achieved. The orbit quality heavily depends on 
the ability to detect and eliminate “bad” observations. Optimal results are obtained, when a 
relatively accurate a priori orbit is available for data screening. This requirement leads to a 
three-step procedure to determine LEO orbits. The methods for data screening developed in 
the context of this analysis are very efficient and they may even be used in a slightly modified 
version to screen the data of static (Earth-fixed) GPS receivers. 

The Swiss Geodetic Commission (SGC) thanks Ms. Heike Bock for this important contri-
bution to the field of determining dynamic and kinematic LEO orbits. The work represents an 
integral part in the international cooperation intensively pursued by the SGC over the last 
years. Funds for printing this volume were provided by the Swiss Academy of Sciences, 
which is gratefully acknowledged by the SGC. 
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University of Bern  President of SGC 



 



Contents

List of Figures v

List of Tables xiii

Frequently Used Acronyms xvii

1. Introduction 1

2. General Information 5
2.1 The Global Positioning System – GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Institutions Relevant to this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 The International GPS Service . . . . . . . . . . . . . . . . . . . . . . .. . . . 6
2.2.2 The Center for Orbit Determination in Europe – CODE . . . . . . . . . . . . . . 6
2.2.3 The IGS LEO Pilot Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Low Earth Orbiters Tracking GPS Signals . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 TOPEX/Poseidon . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 MicroLab-1/GPS/MET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 GFO, ØRSTED and SUNSAT . . . . . . . . . . . . . . . . . . . . . . .. . . . 9
2.3.4 CHAMP . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5 SAC-C . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.6 JASON-1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.7 GRACE . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.8 ICESat . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9 GOCE . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Precise Orbit Determination for LEOs Using GPS . . . . . . .. . . . . . . . . . . . . . 17
2.4.1 Dynamic and Reduced-dynamic Strategies . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Kinematic Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Data Pre-processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. Kinematic Point Positioning on the Zero-difference Level 23
3.1 Principles of Processing . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Code Solution . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Code Point Positioning Without A priori Information . . . . . . . . . . . . . . . 28
3.3 Phase-difference Solution . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



Contents

3.4 Combination of Code and Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Neglecting the Correlations . .. . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Estimating Position-differences . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Correct Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Practical Realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Code . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.2 Combined Positions and Phase Only Positions . . . . . . . . . . . . . . . . . . 43
3.6.3 Further Studies . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Satellite Clock Interpolation . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 52

4. Data Pre-processing 57
4.1 Outlier Detection - Principle of Majority Voting . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Iterative Screening Procedure . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 59
4.3 Processing Issues Related to LEOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 GPS Receiver Performance . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Data Quality and Pre-screening Options . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Elevation-dependent Weighting and Cut-off Angle . . . . . . . . . . . . . . . . 71

4.4 Development of a Data Screening Procedure for a Permanent Network . . . . . . . . . . 72
4.4.1 Screening of Code Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Screening of Phase Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5. Dynamic and Reduced-dynamic Orbit Modeling 77
5.1 ProgramSATORB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Gravitational Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Earth Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Solid Earth and Ocean Tides . . .. . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Third-body Perturbations . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.4 Precession, Nutation and Polar Motion . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Non-gravitational Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Atmospheric Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 Direct Solar Radiation Pressure . . . . . . . . . . . . . . . . . .. . . . . . . . 81
5.3.3 Empirical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.4 Earth Albedo . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Measuring the Non-gravitational Forces: Accelerometer Data . .. . . . . . . . . . . . . 82
5.5 Pseudo-stochastic Pulses . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6. Results and Applications 87
6.1 Evaluation of Kinematic Solutions . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 CHAMP 152/2001 and SAC-C 051/2001 . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Different Values for Threshold� . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Different Elevation Cut-off Angles and Elevation-dependent Weighting Functions 92

6.3 IGS Test Campaign – doy 140 to 150/2001 . . . . . . . . . . . . . . . . . . . . . . . . . 98

ii



Contents

6.3.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.2 Data Pre-processing . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 100
6.3.3 Independent Comparison . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.4 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 CHAMP and SAC-C – 055/2002 to 089/2002 . . . . . . . . . . . . . . .. . . . . . . . 131
6.4.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4.3 Solutions with CODE Rapid Products . . . . . . . . . . . . . . . . . . . . . . . 136
6.4.4 Solutions with CODE Final Products . .. . . . . . . . . . . . . . . . . . . . . 155
6.4.5 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.5 Use of Different Gravity Field Models for the Reduced-dynamic Orbit Modeling . . . . 176
6.5.1 Combined Positions as Pseudo-observations . . . . . . . . . . . . . . . .. . . . 177
6.5.2 Code Positions and Phase Position-differences as Pseudo-observations . . . . . . 182

6.6 Stochastic Pulses and Accelerometer Measurements . . . . . . . . . . . . . . . . . . . . 187
6.7 Data Screening Procedure for a Permanent Ground Network . . . . . . . . . . . . . . . 197

6.7.1 Comparison withMAUPRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7. Summary and Outlook 203

Bibliography 209

iii



Contents

iv



List of Figures

2.1 TOPEX/Poseidon satellite.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 MicroLab-1 satellite.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 GFO satellite. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Two satellites launched together on February 23, 1999. . . . . . . . . . . . . . . . . . 11
2.5 CHAMP satellite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Altitude of CHAMP dependent on solar activity. . . . . . . . . . . . .. . . . . . . . . 14
2.7 SAC-C satellite. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 JASON-1 satellite. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 GRACE satellite from above. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 ICESat satellite. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 GOCE - computer aided drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12 Scheme of different processing strategies for LEO GPS data. . . . . . . . . . . . . . . 18

3.1 Processing scheme for kinematic point positioning of a LEO with GPS data. . . . . . . 24
3.2 Flowchart of programLEOKIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Differences of coordinates computed from simulated observations w.r.t. the “true” co-

ordinates of ALGO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Differences of satellite positions w.r.t. the “true” a priori orbit from a code point posi-

tioning with programLEOKIN using simulated data with�apr � ��� m. . . . . . . . . 43
3.5 Differences between positions combined with different weight ratios and the true posi-

tion of ALGO (North-component). . .. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Differences of combined positions w.r.t. “true” ALGO coordinates for different weight-

ing options. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Number of tracked satellites in the simulated observations of ALGO for doy 034/2002. 47
3.8 Differences of combined kinematic positions from simulated code and phase observa-

tions of CHAMP to the a priori orbit used for the simulation. .. . . . . . . . . . . . . 48
3.9 Number of satellites tracked by CHAMP for simulated observations of doy 034/2002. . 49
3.10 Differences of kinematic positions from simulated code and phase observations of

CHAMP w.r.t. the “true” a priori orbit; Enforced interrupts after 1000 epochs. . . . . . 51
3.11 Differences of kinematic positions from simulated code and phase observations of

CHAMP w.r.t. the “true” a priori orbit; Enforced interrupts after 700 epochs. . . . . . . 51
3.12 Influence of using an a priori orbit different from the “true” orbit used for the simulation

of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.13 SA switched off on May 2, 2000 – effect on GPS satellite clocks. . . . . . . . . . . . . 53
3.14 Differences between kinematic positions and the a priori orbit of CHAMP (1) with

linearly interpolated satellite clock corrections. . . . . . . . . . . . . . . . . . . . . . . 55

v



List of Figures

3.15 Differences between kinematic positions and the a priori orbit of CHAMP (2) with
polynomial interpolated satellite clock corrections. . . . . . . . . . . . . . . . . . . . . 55

4.1 Example for the grouping of�i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Satellite body-fixed system (schematically). . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 CHAMP receiver performance for doy 063 to 065, 2002. .. . . . . . . . . . . . . . . 62
4.4 Change in tracking performance after software upload on doy 206/2001. . . . . . . . . 62
4.5 SAC-C receiver performance for doy 063 to 065, 2002. . . . . . . . . . . . . . . . . . 64
4.6 Number of effectively tracked satellites for CHAMP 152/2001 and SAC-C 051/2001. . 65
4.7 Histograms of��� values for SAC-C 051/2001 and CHAMP 152/2001; Vertical line at

�obsscr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8 Histogram of��� values for SAC-C 067/2002 and for CHAMP 145/2001 and

067/2002. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9 Histograms of���i���� in units of� for code and phase-difference observations in the

pre-screening algorithm. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.10 Percentage of deleted observations for different values of�. . . . . . . . . . . . . . . . 70
4.11 Different weighting functionsw�z�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.12 Actions performed for phase observations. . . . . . . . . . . . . . . . .. . . . . . . . 74

5.1 Accelerometer measurements in alongtrack direction for CHAMP, doy 140/2001, 0:00-
6:00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Comparison of accelerometer measurements and models for non-gravitational forces as
a function of the argument of latitude (CHAMP, doy 150/2001, 0:00-12:00). . . . . . . 84

5.3 Number and duration of thruster pulses for CHAMP for different days. . . . . . . . . . 86

6.1 Number of interrupts due to missing phase position-differences and number of jumps
in the kinematic trajectory for solutions C1 to C6, SAC-C 051/2001 and CHAMP
152/2001. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Orbit differences between kinematic trajectories C1 and C2 (left) and C1 and C5 (right)
for SAC-C 051/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Orbit differences between kinematic trajectory C1 and reduced-dynamic orbit C1S (left)
and between C2 and C1S (right) for SAC-C 051/2001. . . . . . . . . . .. . . . . . . . 93

6.4 Orbit differences between kinematic trajectories C1 and C2 (left) and C1 and C5 (right)
for CHAMP 152/2001. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Orbit differences between kinematic trajectory C1 and reduced-dynamic orbit C1S (left)
and between C2 and C1S (right) for CHAMP 152/2001. . . . . . . . . . . . . . . . . . 94

6.6 Number of interrupts and number of jumps, SAC-C 051/2001 and CHAMP 152/2001. . 95
6.7 Orbit differences between kinematic trajectories D2 and D3 (left) and between D2 and

D4 (right) for SAC-C 051/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.8 Orbit differences between kinematic trajectory D2 and reduced-dynamic orbit C1S

(left) and D4 and C1S (right) for SAC-C 051/2001. . . . . . . . . . . . . . . . . . . . 96
6.9 Orbit differences between kinematic trajectories D2 and D3 (left) and between D2 and

D4 (right) for CHAMP 152/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.10 Orbit differences between kinematic trajectory D2 and reduced-dynamic orbit C1S

(left) and D4 and C1S (right) for CHAMP 152/2001. . . . . . . . . . . . . . . . . . . . 97
6.11 Percentage per day of effectively tracked satellites by the CHAMP GPS receiver for

doy 140 to 150/2001. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 99

vi



List of Figures

6.12 Number of tracked satellites by the CHAMP GPS receiver for doy 140 to 150/2001. . . 99
6.13 Number of interrupts due to missing phase position-differences and number of jumps in

the kinematic trajectory for solution A and B, without elevation-dependent weighting,
doy 140 to 150/2001. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.14 Number of interrupts due to missing phase position-differences and number of jumps
in the kinematic trajectory for solution A and solution B, without elevation-dependent
weighting, doy 140 to 150/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.15 Percentage of deleted observations after pre-screening and by entire screening proce-
dure, solutions without elevation-dependent weighting, doy 140 to 150/2001. . . . . . . 105

6.16 Orbit differences between kinematic trajectories for doy 144/2001. . . . . . . . . . . . 108
6.17 Orbit differences between kinematic trajectories and post-fit reduced-dynamic orbit

P3S, doy 144/2001. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.18 Number of interrupts due to missing phase position-differences and number of jumps in

the kinematic trajectory for solution A and solution B, elevation-dependent weighting,
doy 140 to 150/2001. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.19 Number of interrupts due to missing phase position-differences and number of jumps in
the kinematic trajectory for solution A and solution B, elevation-dependent weighting,
doy 140 to 150/2001. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.20 Percentage of deleted observations after pre-screening and by entire screening proce-
dure, solutions with elevation-dependent weighting, doy 140 to 150/2001. . . . . . . . 114

6.21 Orbit differences between reduced-dynamic orbits P3S and P3Se (left) and kinematic
trajectories PB3 and PB3e (right), doy 144/2001. . . . . . . . . . . . . . . . . . . . . . 115

6.22 Orbit differences between reduced-dynamic orbit P3Se and kinematic trajectories PB3
(left) and PB3e (right), doy 144/2001. . .. . . . . . . . . . . . . . . . . . . . . . . . . 115

6.23 RMS errors of reduced-dynamic orbit determination in programSATORB for cIS-
orbits (code positions cI derived without pre-screening used as input), doy 140 to
150/2001. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.24 RMS errors of reduced-dynamic orbit determination in programSATORB, without
elevation-dependent weighting, doy 140 to 150/2001. . . . . . . . . . . . . . . . . . . 117

6.25 RMS errors of reduced-dynamic orbit determination in programSATORB, with eleva-
tion-dependent weighting, doy 140 to 150/2001. . . . . . . . . . . . . . . . . . . . . . 118

6.26 SATORB residuals of code positions without elevation-dependent weighting (left) and
with elevation-dependent weighting (right), doy 142/2001. . . . . . . . . . . . . . . . . 119

6.27 Orbit differences between reduced-dynamic orbits cII3S and pII3S without elevation-
dependent weighting, doy 144/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.28 Number of interrupts due to missing phase position-differences and number of jumps in
the kinematic trajectory, elevation-dependent weighting, cII10Se and pII10Se used as a
priori orbits, doy 140 to 150/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.29 Orbit differences between kinematic trajectories using different a priori orbits of APO
set C, doy 144/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 122

6.30 Orbit differences between kinematic trajectories using different a priori orbits of APO
set P, doy 144/2001. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.31 Improvements in the x-component of the kinematic trajectory with increasing number
of iterations. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vii



List of Figures

6.32 RMS errors of Helmert transformation between orbits from TUM and trajectories gen-
erated withLEOKIN without elevation-dependent weighting, solution A (left bar) and
solution B (right bar), for doys 140 to 150/2001. . . . . . . . . . . . . . . . . . . . . . 125

6.33 RMS errors of Helmert transformation between orbits from TUM and trajectories gen-
erated withLEOKIN with elevation-dependent weighting, solution A (left bar) and so-
lution B (right bar), doy 140 to 150/2001. . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.34 RMS errors of Helmert transformation between orbits from TUM and reduced-dynamic
orbits P3Se, doy 140 to 150/2001. . . . . . . . . . . . . . . . . . . . . . . . .. . . . 126

6.35 Orbit differences between kinematic trajectories (PB3 (left) and PB3e (right)) and TUM-
solutions, doy 144/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.36 Orbit differences between reduced-dynamic orbits (P3S (left) and P3Se (right)) and
TUM-solutions, doy 144/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.37 RMS errors of Helmert transformation between TUM and PB3 (left bar) and TUM and
kinematic positions after five iterations (right bar). . . . . . . . . . . . . . . . . . . . 128

6.38 Differences between the kinematic trajectory after five iterations inLEOKIN and the
TUM-solution, doy 144/2001, RMS 0.12 m. . . . . . . . . . . . . . . . . . . .. . . . 128

6.39 Number of tracked satellites by SAC-C for doy 055 to 089/2002. . . . . . . . . . . . . 132
6.40 Number of tracked satellites by CHAMP for doy 055 to 089/2002. . . . . . . . . . . . 133
6.41 RMS errors per coordinate of orbit determination in programSATORB, SAC-C, no

elevation-dependent weighting, CODE Rapid products, doy 055 to 089/2002. . . . . . . 137
6.42 Number of interrupts due to missing phase position-differences and number of jumps

in the kinematic trajectory for solution A and B, CODE Rapid products, no elevation-
dependent weighting, SAC-C, doy 055 to 089/2002. . . . . . . . . . . . . . . . . . . . 138

6.43 Percentage of deleted observations for solutions using CODE Rapid products and not
applying elevation-dependent weighting, SAC-C, doy 055-089/2002. . . . . . .. . . . 139

6.44 RMS errors per coordinate for reduced-dynamic orbit determination in program
SATORB, SAC-C, elevation-dependent weighting, CODE Rapid products, doy 055 to
089/2002. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.45 SATORB residuals of code positions without weighting (left) and with weighting
(right), SAC-C doy 056/2002.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.46 Number of interrupts due to missing phase position-differences and number of jumps
in the kinematic trajectory for solution A and B, CODE Rapid products, elevation-
dependent weighting, SAC-C, doy 055 to 089/2002. . . . . . . . . . . . . . . . . . . . 143

6.47 Percentage of deleted observations for solutions using CODE Rapid products and ap-
plying elevation-dependent weighting, SAC-C, doy 055-089/2002. . . . . . . . . . . . 144

6.48 RMS errors of Helmert transformation between kinematic trajectories RCB3 and
RCB3e, SAC-C, doy 055 to 089/2002. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.49 Differences between kinematic trajectories RCB3 and RCB3e, SAC-C, doy 079/2002. . 145
6.50 RMS errors of Helmert transformation between RPB3 and RPB3e (left) and between

RP3S and RP3Se (right), SAC-C, doy 055 to 089/2002. . . . . . . . .. . . . . . . . . 146
6.51 Differences between RPB3 and RPB3e (left) and between RPS3 and RPS3e (right),

SAC-C, doy 079/2002. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.52 RMS errors of Helmert transformation between kinematic (RPB3, RPB3e) and reduced-

dynamic orbits (RP3S, RP3Se), SAC-C, doy 055 to 089/2002. . . . . . . . . . . . . . . 147
6.53 Differences between RPB3 and RP3S (left) and between RPB3e and RP3Se (right),

SAC-C, doy 079/2002. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

viii



List of Figures

6.54 RMS errors per coordinate for reduced-dynamic orbit determination in program
SATORB, CHAMP, no elevation-dependent weighting, CODE Rapid products, doy
055 to 089/2002. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.55 Number of interrupts due to missing phase position-differences and number of jumps
in the kinematic trajectory for solution A and B, CODE Rapid products, no elevation-
dependent weighting, CHAMP, doy 055 to 089/2002. . . . . . . . . .. . . . . . . . . 150

6.56 Percentage of deleted observations for solutions using CODE Rapid products and not
applying elevation-dependent weighting, CHAMP, doy 055-089/2002. .. . . . . . . . 151

6.57 RMS errors per coordinate for reduced-dynamic orbit determination in program
SATORB, CHAMP, elevation-dependent weighting, CODE Rapid products, doy 055
to 089/2002. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.58 Number of interrupts due to missing phase position-differences and number of jumps
in the kinematic trajectory for solution A and B, CODE Rapid products, elevation-
dependent weighting, CHAMP, doy 055 to 089/2002. . . . . . . . . .. . . . . . . . . 154

6.59 RMS errors of Helmert transformation between kinematic solutions RPB3 and RPB3e,
CHAMP, doy 055 to 089/2002. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 155

6.60 RMS errors of Helmert transformation between kinematic trajectories RPB3 (top),
RPB3e (bottom) and reduced-dynamic orbits RP3Se (left) and RP3S (right), CHAMP,
doy 055 to 089/2002. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.61 Differences between kinematic solutions RPB3 and RPB3e, CHAMP, doy 079/2002,
RMS 0.06 m. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.62 Differences between kinematic trajectory RPB3 and reduced-dynamic orbit RP3SE
(left) and between RPB3e and RP3Se (right), CHAMP, doy 079/2002. . . . . . . . . . 157

6.63 Number of interrupts due to missing phase position-differences and number of jumps
in the kinematic trajectory for solution A and B, CODE Final products, no elevation-
dependent weighting, SAC-C, doy 055 to 069/2002. . . . . . . . . . . . . . . . . . . . 158

6.64 RMS errors of Helmert transformation between corresponding kinematic solutions us-
ing CODE Rapid (RC and RP) and using CODE Final products (FC and FP), no
elevation-dependent weighting, SAC-C, doy 055 to 069/2002. Left bar: solution A,
right bar: solution B. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 159

6.65 RMS errors of Helmert transformation between post-fit reduced-dynamic orbits RPS
and FPS, doy 055 to 069/2002, SAC-C. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.66 Differences between reduced-dynamic orbit RPS and FPS (left) and kinematic trajecto-
ries RPB and FPB (right) for doy 055, SAC-C. . . . . . . . . . . . . .. . . . . . . . . 160

6.67 RMS errors of the Helmert transformation between solutions FCB and RFCB and be-
tween FPB and RFPB, SAC-C, doy 055 to 069/2002. . . .. . . . . . . . . . . . . . . 161

6.68 RMS errors of the Helmert transformation between solutions RCB and RFCB, and be-
tween RPB and RFPB, SAC-C, doy 055 to 069/2002. . . . . . . . . . . . . . .. . . . 161

6.69 Differences between kinematic trajectories for doy 055, SAC-C. . . . . . . . . . . . . . 162
6.70 Number of interrupts due to missing phase position-differences and number of jumps

in the kinematic trajectory for solution A and B, CODE Final products, elevation-
dependent weighting, SAC-C, doy 055 to 069/2002. . . . . . . . . . . . . . . . . . . . 163

6.71 RMS errors of the Helmert transformation between kinematic solutions using CODE
Rapid and using CODE Final products, elevation-dependent weighting, SAC-C, doy
055 to 069/2002. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

ix



List of Figures

6.72 RMS errors of the Helmert transformation between reduced-dynamic orbits RPSe and
FPSe, SAC-C, doy 055 to 069/2002. . . . . . . . . . . . . . . . . . . .. . . . . . . . 164

6.73 CODE Final products and CODE Final 5-minute clock corrections as clock information,
SAC-C, doy 055 to 069/2002.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.74 Differences between solutions F5PBe and FPBe for doy 055, SAC-C, RMS 0.11 m. . . 165
6.75 Number of interrupts due to missing phase position-differences and number of jumps in

the kinematic trajectory, CODE Final products, no elevation-dependent weighting, no
cut-off angle, SAC-C, doy 055 to 069/2002. . . . . . . . . . . . . . . . . . . . . . . . 166

6.76 Differences between kinematic trajectories FCB (cut-off angle��) and SCB (no cut-off
angle) for doy 055, SAC-C, RMS 0.01 m. . . . . . . . . . . . . . . . . . . . . . . . . 166

6.77 Number of interrupts due to missing phase position-differences and number of jumps
in the kinematic trajectory for solution A and B, CODE Final products, no elevation-
dependent weighting, CHAMP, doy 055 to 069/2002. . . . . . . . . .. . . . . . . . . 167

6.78 RMS errors of the Helmert transformation between corresponding kinematic solutions
using CODE Rapid (RC and RP) and using CODE Final products (FC and FP), no
elevation-dependent weighting, CHAMP, doy 055 to 069/2002. Left bar: solution A,
right bar: solution B. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 168

6.79 RMS errors of Helmert transformation between solutions FCB and RFCB, and between
FPB and RFPB, CHAMP, doy 055 to 069/2002. . . . . . . . . . . . . . . . . . . . . . 169

6.80 RMS errors of Helmert transformation between solutions RCB and RFCB, and between
RPB and RFPB, CHAMP, doy 055 to 069/2002. . . . . . . . . . . . . . . . . . . . . . 169

6.81 Differences between kinematic trajectories of doy 056, CHAMP. . . . . . . . . . . . . 169
6.82 Number of interrupts due to missing phase position-differences and number of jumps

in the kinematic trajectory for solution A and B, CODE Final products, elevation-
dependent weighting, CHAMP, doy 055 to 069/2002. . . . . . . . . .. . . . . . . . . 170

6.83 RMS errors of the Helmert transformation between corresponding kinematic solutions
using CODE Rapid (RCe and RPe) and using CODE Final products (FCe and FPe),
with elevation-dependent weighting, CHAMP, doy 055 to 069/2002. Left: solution A,
right: solution B. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.84 CODE Final products and CODE Final 5-minute clock corrections as clock information,
CHAMP, doy 055 to 069/2002. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 172

6.85 Differences between solutions F5PBe and FPBe for doy 055, CHAMP, RMS 0.11 m. . 173
6.86 Stochastic pulses estimated based on combined positions and different a priori gravity

fields, SAC-C, doy 065/2002. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 178
6.87 Stochastic pulses estimated based on combined positions and different a priori gravity

fields, CHAMP, doy 065/2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.88 Residuals of purely deterministic orbit determination, CHAMP, doy 065/2002. . . . . . 180
6.89 Residuals of orbit determination including stochastic pulses, CHAMP, doy 065/2002. . 181
6.90 Stochastic pulses from orbit determination with gravity model GRIM5-S1 using code

positions and phase position-differences, SAC-C, doy 065/2002. . . . . . . . . . . . . 183
6.91 Values for the stochastic pulses for different orbit fits using code positions and phase

position-differences inSATORB, CHAMP, doy 065/2002. . . . . . . . .. . . . . . . . 184
6.92 Orbit differences when using either combined positions or positions and position-differ-

ences, GRIM5-S1 model, reduced-dynamic orbits, CHAMP, doy 065/2002. . . . . . . . 185
6.93 Orbit differences when using either the GRIM5-S1 model or the TEG-4 model, posi-

tions and position-differences, reduced-dynamic orbits, CHAMP, doy 065/2002. . . . . 185

x



List of Figures

6.94 Orbit differences when using either combined positions with GRIM5-S1 model or posi-
tions and position-differences with TEG-4 model, CHAMP, doy 065/2002,
RMS 0.12 m. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.95 RMS errors (cm) per coordinate of the orbit determination inSATORB for the solutions
ref and 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.96 RMS errors (cm) per coordinate of the orbit determination inSATORB for solutions 1
to 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.97 RMS errors (cm) per coordinate of the orbit determination inSATORB for solutions 5
and 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.98 Estimated biasesb�i� with error bars for solutions 1, 2, 3, and 4 (the horizontal line
represents the published value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.99 Estimated scale factorsa�i� with error bars for solutions 5 and 6 (the horizontal line
represents the published value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.100 Maneuvers performed by CHAMP for days 065 to 068/2002. . . . . . . . . . . . . . . 193
6.101 Estimated stochastic pulses in solutions 2, 3, and 4 for doy 065 and 066/2002. .. . . . 194
6.102 Estimated stochastic pulses in solutions 2, 3, and 4 for doy 067 and 068/2002. .. . . . 195
6.103 Residuals for solutions 1, 2, 3, and 4 for doy 065. . . . . . . . . . . . . . . . . . . . . 196
6.104 Top: RMS errors for kinematic positioning inGPSEST after screening withLEOKIN

(left bar) andMAUPRP (right bar); Bottom: Difference in number of observations used
for positioning,LEOKIN minusMAUPRP. . . . . . . . . . . . . . . . . . . . . . . . 200

6.105 Top: RMS errors for kinematic positioning inGPSEST after screening withLEOKIN
(left bar) andMAUPRP (right bar); Bottom: Difference in number of observations used
for positioning,LEOKIN minusMAUPRP. . . . . . . . . . . . . . . . . . . . . . . . 201

6.106 Doy 055 to 069/2002, data screening differences. . . . . . . . . . . . . . . . . . . . . 202

xi



List of Figures

xii



List of Tables

2.1 Summary of LEOs equipped with GPS receivers.. . . . . . . . . . . . . . . . . . . . . 8

3.1 Mean (�) and standard deviation (�) of the differences to the “true” values (of ALGO)
of a point positioning with simulated code observations using different�apr and differ-
ent linear combinations (LC).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Mean (�) and standard deviation (�) of the differences of the single point positioning
solutions w.r.t the “true” a priori LEO orbit. . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 RMS errors (cm) per component of Helmert transformation between combined kine-
matic trajectories and “true” a priori orbit (Figure 3.8). . . . . . . . . . . . . . . . . . . 49

3.4 RMS errors (mm) of the Helmert transformation between kinematic positions derived
by error-free code and phase-difference observations and the a priori orbit used for the
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Summary of switches in the tracking software of the GPS receiver on CHAMP [Grun-
waldt, 2002]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Summary of switches in the tracking software of the GPS receiver on SAC-C. . . . . . 63

5.1 Perturbing accelerations acting on a GPS satellite. . . . . . . . . . . . . . . . . . . . . 77
5.2 Perturbing accelerations acting on a LEO satellite. . . . . . . . . . . . . . . . . . . . . 78

6.1 Solutions with different threshold value�. . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 RMS errors (m) of Helmert transformation between kinematic solutions C2 to C6 and

C1 and between C1 to C6 and reduced-dynamic solution C1S. . . . . . . . . . . . . . . 91
6.3 Solutions with different elevation cut-off angles and elevation-dependent weighting. . . 94
6.4 RMS errors (m) of Helmert transformation between kinematic solutions and C1, D2,

and C1S for SAC-C (doy 051/2001) and CHAMP (doy 152/2001). . . . . . . . . . . . 95
6.5 Kinematic (LEOKIN) and reduced-dynamic (SATORB) orbits generated in order to

guarantee reliable a priori orbit information. . .. . . . . . . . . . . . . . . . . . . . . 101
6.6 Summary of kinematic solutions computed for the IGS CHAMP test campaign. . . . . 102
6.7 Mean number of interrupts and jumps for solutions without elevation-dependent weight-

ing, doy 140 to 150/2001. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.8 RMS errors (m) of Helmert transformation between all kinematic solutions and the

reduced-dynamic solution P3S for doy 144/2001. . . . . . . . . . . . . . . . . . . . . 107
6.9 Mean number of interrupts and jumps for solutions with elevation-dependent weighting

and� �1, doy 140 to 150/2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.10 Mean number of interrupts and jumps of solutions B with elevation-dependent weight-

ing using APO cII10Se and pII10Se. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xiii



List of Tables

6.11 RMS errors (cm) of improvements between kinematic trajectories of subsequent
iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.12 Mean RMS errors (m) of Helmert transformation betweenLEOKIN solutions and TUM-
solutions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.13 Orbits generated withLEOKIN andSATORB. . . . . . . . . . . . . . . . . . . . . . . 130
6.14 LEO orbit quality usingLEOKIN andSATORB, CHAMP doy 144/2001.. . . . . . . . 131
6.15 Summary of kinematic solutions computed for CHAMP and SAC-C for doy 055 to

089/2002. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.16 Minimum, mean, and maximum number of interrupts and jumps for solutions without

elevation-dependent weighting using CODE Rapid products (RC�, RP�), SAC-C, doy
055 to 089/2002. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.17 Minimum, mean, and maximum number of interrupts and jumps for solutions with
elevation-dependent weighting using CODE Rapid products (RC�e, RP�e), SAC-C. . 143

6.18 Minimum, mean, and maximum number of interrupts and jumps for solutions without
elevation-dependent weighting using CODE Rapid products (RC�, RP�), CHAMP. . . 152

6.19 Minimum, mean, and maximum number of interrupts and jumps for solutions with
elevation-dependent weighting using CODE Rapid products (RC�e, RP�e), CHAMP. . 155

6.20 Minimum, mean, and maximum number of interrupts and jumps for solutions without
elevation-dependent weighting using CODE Final products (FC, FP), SAC-C. . . . . . 158

6.21 Mean RMS errors (cm) of Helmert transformation between corresponding kinematic
solutions using CODE Rapid (RC and RP) and using CODE Final products (FC and
FP) and between corresponding reduced-dynamic solutions (RPS and FPS), SAC-C. . . 160

6.22 Minimum, mean, and maximum number of interrupts and jumps for solutions with
elevation-dependent weighting using CODE Final products (FCe, FPe), SAC-C. . . . . 162

6.23 Mean RMS errors (cm) of the Helmert transformation between corresponding kine-
matic solutions using CODE Rapid (RCe and RPe) and using CODE Final products
(FCe and FPe) and between corresponding reduced-dynamic solutions RPSe and FPSe,
SAC-C.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.24 Minimum, mean, and maximum number of interrupts and jumps for solutions without
elevation-dependent weighting using CODE Final products (FC, FP), CHAMP. . . . . 167

6.25 Mean RMS errors (cm) of the Helmert transformation between corresponding kine-
matic solutions using CODE Rapid (RC and RP) and using CODE Final products (FC
and FP), CHAMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.26 Minimum, mean, and maximum number of interrupts and jumps for solutions with
elevation-dependent weighting using CODE Final products (FCe, FPe), CHAMP. . . . 170

6.27 Mean RMS errors (cm) of the Helmert transformation between corresponding kine-
matic solutions using CODE Rapid (RCe and RPe) and using CODE Final products
(FCe and FPe), CHAMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.28 RMS (m) errors of Helmert transformation between solutions for doy 144/2001,
CHAMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.29 RMS (m) errors of Helmert transformation between solutions for doy 086/2002 using
CODE Rapid products, CHAMP. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 175

6.30 RMS (m) errors of Helmert transformation between solutions for doy 055/2002 using
CODE Rapid products, SAC-C.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.31 RMS error (m) per satellite coordinate of orbit determination inSATORB. . . . . . . . 177

xiv



List of Tables

6.32 RMS errors (m) of Helmert transformation between reduced-dynamic orbits from dif-
ferent orbit determinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.33 Summary of options for different reduced-dynamic orbit solutions. . . . . . . . . . . . 189
6.34 Number of epochs, where stochastic pulses in RSW-directions are set up.. . . . . . . . 193

xv



List of Tables

xvi



Frequently Used Acronyms

AC Analysis Center
AIUB Astronomical Institute of the University of Berne, Switzerland
AS Anti-Spoofing
BKG Bundesamt f¨ur Kartographie und Geod¨asie, Federal Agency of Cartography and

Geodesy, Frankfurt, Germany
C/A-code Coarse-Acquisition, Clear-Access,or Civil-Access code (1.023 MHz)
CDDIS Crustal Dynamics Data Information System, Goddard Space Flight Center, NASA,

USA
CHAMP CHAllenging Minisatellite Payload
CNES Centre Nationale d’Etudes Spatiale, France
CODE Center for Orbit Determination in Europe
CONAE Comisión National de Actividades Espaciales, National Commission on Space Ac-

tivities, Argentina
DCB Differential Code Bias
DOP Dilution Of Precision
DORIS Doppler Orbitography and Radio positioning Integrated by Satellite
doy Day of Year
ERP Earth Rotation Parameter
GFO GEO Follow On
GFZ GeoForschungsZentrum, Potsdam, Germany
GLONASS GLObal NAvigation Satellite System
GOCE Gravity field and steady-state Ocean Circulation Explorer
GPS Global Positioning System
GRACE Gravity Recovery And Climate Experiment
ICESat Ice, Cloud, and land Elevation Satellite
IGS International GPS Service
JPL Jet Propulsion Laboratory, Pasadena, California, USA
LC Linear Combination
LEO Low Earth Orbiter
NASA National Aeronautics and Space Administration, USA
NAVSTAR NAVigation Satellite Timing and Ranging
ONERA Office National d’́Etudes et de Recherches A´erospatiales, Toulouse, France
P-code Precise or Protected code (10.23 MHz)
POD Precise Orbit Determination
PPN Parametrized Post-Newtonian
RINEX Receiver-INdependent EXchange Format
RMS Root-mean-square (error)

xvii



Frequently Used Acronyms

RSO Rapid Science Orbit
SA Selective Availability
SLR Satellite Laser Ranging

xviii



1. Introduction

The Global Positioning System (GPS) has been serving as a satellite system for global navigation and
positioning for at least twenty years. It is operated by the U.S. Department of Defense and consists
of nominally 24 satellites. They are distributed in six orbital planes at an altitude of about 20,000 km
above the Earth’s surface. The GPS satellites emit coherent microwave signals on two frequencies. A
big variety of applications using these signals have been developed during the last twenty years. They
range from navigation to highest precision geodetic applications.

A few of the main topics in global geodetic research using the GPS are, e.g., the determination
of precise orbit information for the GPS satellites, the establishment of a global reference frame, the
determination of high-resolution Earth rotation parameters, and the monitoring of plate motions. GPS
data of a global station network are used for most of these applications. This network is part of the
International GPS Service (IGS).

The IGS was established by the International Association of Geodesy (IAG) in order to promote
international standards for GPS data acquisition and analysis, to deploy and operate a common, com-
prehensive global GPS tracking network, and to provide GPS orbits of highest achievable accuracy. The
IGS is based on the voluntary contribution of a large number of organizations, agencies, and universities.

The Astronomical Institute of the University of Bern (AIUB) in Switzerland contributes to the IGS
since its official start in 1994. The institute hosts the Center for Orbit Determination in Europe (CODE),
one of eight analysis centers of the IGS. The products delivered to the IGS are computed with the Bernese
GPS Software which is developed at the AIUB. The work presented here was developed in this environ-
ment of concentrated knowledge of GPS and its application to Earth’s science.

Already in the early 1980’s GPS receivers were mounted on satellites orbiting in low Earth orbits (up
to about 2000 km). They aimed at demonstrating the capability of tracking the GPS signals with receivers
on-board low Earth orbiting satellites. LANDSAT 5 (1984) was one of the first satellites carrying a GPS
receiver, which tracked, however, only the pseudorange. With the launch of the radar altimeter satellite
TOPEX/Poseidon in 1992, the era of GPS receivers delivering data for precise orbit determination of the
satellite has begun. Presently several satellites use the GPS data as the primary measurements for precise
orbit determination (e.g., CHAMP (launched in 2000), SAC-C (2000), JASON-1 (2001), GRACE A and
B (2002), and ICESat (2003)).

Many orbit determination procedures based on the GPS observations were developed since the advent
of spaceborne GPS receivers. The large variety of approaches may be divided in two groups. One group
deals with the dynamic modeling based on the physical properties of the satellite and its orbit (dynamic
and reduced-dynamic strategies). These strategies were developed already before GPS data became
available for satellites and the models are elaborate. The second group deals with the determination of
kinematic positions for the satellite (kinematic strategies). These strategies were developed as soon as
the GPS as a first continuous tracking system became available for the satellites.

The Low Earth Orbiters (LEOs) nowadays (e.g., CHAMP, SAC-C, JASON-1) are equipped with
many different scientific instruments. Some applications of these instruments need precise orbit infor-
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mation for the processing of their data. The requirements in quality, latency, and availability of the
precise orbit are different. Radar altimetry (TOPEX/Poseidon, JASON-1), e.g., needs a precise knowl-
edge (few centimeters) mainly of the radial component of the orbit. The highest quality of the orbit is
important, e.g., for the determination of the Earth gravity field. This is one main purpose of the CHAMP,
GRACE, and GOCE missions. The latency of the orbit product is not important for this purpose because
the gravity field coefficients are determined in a post-processing mode. A short latency of the orbit is
an important requirement for near real-time applications aiming at providing the corresponding prod-
uct as soon as possible after the measurement (e.g., deriving temperature and pressure profiles from the
measurements of GPS limb sounding antennas as input for weather forecasting).

On many LEOs the GPS receiver is not the only instrument available for precise orbit determination.
Usually the satellites are equipped with a laser retro-reflector array to allow for SLR (Satellite Laser
Ranging) measurements (e.g., TOPEX/Poseidon, CHAMP, JASON-1, GRACE, GOCE). Some satellites
are equipped in addition with the DORIS system (TOPEX/Poseidon, JASON-1), which is an orbit de-
termination system based on microwaves developed by the Centre Nationale d’Etudes Spatiale (CNES,
France). Such independent measuring systems allow for an independent evaluation of the orbits result-
ing from the different orbit determination procedures. External quality control in general improves the
quality of each procedure.

The goal of this work is the development of efficient methods for precise orbit determination of LEOs
using the GPS. The orbits also have to be of a sufficient quality for a big variety of applications.

The focus is on a procedure based on undifferenced observations of the GPS receiver on-board the
LEO satellite. A kinematic strategy is underlying the determination of a precise orbit. The kinematic
approach provides identical orbital accuracies regardless of the altitude of the satellite, because no dy-
namic models are used. The accuracy of the kinematic positions is mainly given by the quality of the
GPS observations.

In the zero-difference point positioning approach the screening of the LEO GPS observations plays
an important role. An elaborate pre-screening procedure was developed here. The options, which may
be selected for the pre-screening procedure, have an impact on the kinematically determined orbits.
This impact was extensively studied in order to evaluate the optimal options for processing GPS data
of different LEO satellites. A reduced-dynamic orbit determination procedure was used and tested in
connection with this pre-screening procedure, because a priori information about the orbit of the LEO
is needed for the data screening in the kinematic approach. The kinematic and the reduced-dynamic
procedures are therefore linked. Kinematic and reduced-dynamic solutions of comparably good quality
are achieved using efficient methods.

In Chapter 2,General Information, the basic facts of the GPS system, institutions relevant to this
work, Low Earth Orbiters (LEOs) carrying a GPS receiver, and different orbit determination strategies
for LEOs are discussed.

Chapter 3,Kinematic Point Positioning on the Zero-difference Level, develops a kinematic proce-
dure which is based on zero-difference GPS observations. Simulations are performed to evaluate the
procedure.

In Chapter 4,Data Pre-processing, the screening algorithm used in our kinematic point positioning
procedure is introduced.

Chapter 5,Dynamic and Reduced-dynamic Orbit Modeling, presents the implementation of the dy-
namic and reduced-dynamic orbit modeling for LEOs. The options to parametrize a dynamic orbit are
explained.

In Chapter 6,Results and Applications, the algorithms developed for this work are tested extensively
and evaluated using GPS data from the LEO satellites CHAMP and SAC-C. For CHAMP two time inter-
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vals in 2001 and in 2002 are used and for SAC-C one in 2002 (the same as for CHAMP). Comparisons
with external solutions are performed for the 2001 campaign for CHAMP. Different gravity field models
are used for the generation of reduced-dynamic orbits of the two satellites and the impact on the reduced-
dynamic orbits is studied. The accelerometer measurements available for CHAMP may be introduced
in the reduced-dynamic orbit determination procedure instead of modeling the non-gravitational forces.
The impact on the achievable orbit quality is considered, as well. The final section of the chapter uses
the tools developed for spaceborne receivers to screen the GPS observations of receivers in a permanent
tracking network. The performance of this by-product is remarkable.

Chapter 7,Summary and Outlook, summarizes our results and discusses possible future develop-
ments and directions of research.
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2. General Information

2.1 The Global Positioning System – GPS

The space observation technique used for this work is the microwave technique of the
NAVSTAR GPS (NAVigation by Satellite Timing And Ranging Global Positioning System), or shortly
GPS, operated by the U.S. Department of Defense. The GPS is a satellite navigation system widely used
also for various Earth Sciences applications.

The space segment of the system nominally consists of 24 satellites (21 operational satellites plus
three active spares). Currently 29 satellites are active. The satellites are distributed over six orbital planes
separated by��� on the equator. The almost circular orbits are inclined by		� w.r.t. the equatorial plane
and the semi-major axis of the orbits is about 26 500 km. The revolution period is half a sidereal day
(��h	
m), which means that for a given observation point on the Earth’s surface the satellite constel-
lation repeats itself after one sidereal day (��h	�m). The GPS observation technique is based on the
microwave signals emitted by the satellites. The signals are derived from the fundamental frequency
(f� � 10.23 MHz) of the satellites’ oscillator. The two carrier frequenciesf� (wavelength� �19 cm,
f� � �	 � f�) andf� (� �24 cm,f� � ��� � f�) are modulated with the codes and the navigation
message to transmit information such as the readings of the satellite clocks, the orbital parameters, etc.
The C/A-code (Coarse-Acquisition, Clear-Access, or Civil-Access) is modulated on theL� carrier only.
The P-code (Precise or Protected) is modulated on both carriers. There exist two possibilities for limiting
the achievable accuracy for civilian users, namely Selective Availability (SA) and Anti-Spoofing (AS).

Selective Availability (SA), the deterioration of the satellite clock frequency (dither), was switched
off on May 2, 2000, 4:00 UTC. This fact facilitates the estimation of the satellite clock corrections and
they can be better predicted. The zero-difference applications requiring the satellite clock information
for processing in particular have taken profit out of this change of policy.

Anti-Spoofing (AS) is a protection against “fake” transmissions by encrypting the P-code to form
the Y-code. AS is fully active, but nowadays methods are known to get rid of part of the deteriorating
effects.

Pseudorange and carrier phase measurements can be acquired on both frequencies (f� andf�). The
pseudorange observation has an accuracy of a few decimeters while the carrier phase is accurate to a few
millimeters. In order to relate the phase measurement with the geometric range, an unknown, but integer
number of wavelengths has to be estimated in the data processing. The data processing is a complex
task and cannot be described in detail here. For a detailed description of the whole GPS satellite system
and fundamental processing aspects we refer to, e.g. [Hofmann-Wellenhof et al., 2001;Springer, 2000;
Schaer, 1999]. The basic facts needed in the context of this work will be described and explained in
Chapter 3.
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2 General Information

2.2 Institutions Relevant to this Work

2.2.1 The International GPS Service

The International GPS Service (IGS) was established by the International Association of Geodesy (IAG)
between 1991 and 1993 and began with its official operations in January 1994. The IGS is part of the
effort of the international scientific community to promote international standards for GPS data acqui-
sition and analysis, and to deploy and operate a common, comprehensive global GPS tracking network.
This was done as a result of the continued growth and diversification of GPS applications.

The IGS is based on the voluntary contributions of a large number of organizations, agencies, and
universities. The following products, based on the contributions of eight analysis centers (ACs), are made
available by the IGS:

� a set of GPS satellite ephemerides, namely final, rapid, ultra-rapid (started in March 2000), and
predicted (terminated in March 2001) ephemerides,

� Earth rotation parameters (ERPs),

� IGS tracking station coordinates and velocities,

� GPS satellite and IGS tracking station clock information,

� station-specific tropospheric zenith path delay estimates (since January 1997), and

� ionosphere maps and other ionosphere products.

In addition, the IGS provides ephemerides of the Russian GLONASS (GLObal Navigation Satellite
System) satellites. A detailed description of the IGS products, their accuracy and latency may be found,
e.g., in [Weber and Springer, 2002] and [IGSCB, 2002].

2.2.2 The Center for Orbit Determination in Europe – CODE

The Center for Orbit Determination in Europe (CODE) is one of eight analysis centers of the IGS. It is
located at the Astronomical Institute of the University of Berne (AIUB) and is a joint venture of:

� the Federal Office of Topography (swisstopo), Wabern, Switzerland,

� the Federal Agency of Cartography and Geodesy (BKG), Frankfurt, Germany,

� the Institut Géographique National (IGN), Paris, France, and

� the Astronomical Institute of the University of Berne (AIUB), Berne, Switzerland.

All CODE solutions and results for the IGS are produced with the Bernese GPS Software [Hugento-
bler et al., 2001]. Currently the development version 5.0 of the software is used. This software version is
also used for the computations made in the context of this work. The official CODE products delivered
to the IGS or the official IGS products are used as input for the data processing, where needed.

For more information about CODE, its involvement in the IGS and the routine data processing we
refer, e.g., to [Schaer, 1999;Springer, 2000;Hugentobler et al., 2002].
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2.2 Institutions Relevant to this Work

2.2.3 The IGS LEO Pilot Project

Many scientific projects are initiated by the IGS. Due to our interest in Low Earth Orbiter (LEO) GPS
data processing, we focus merely on the IGS LEO Pilot Project. Due to upcoming LEO missions carrying
GPS receivers it was recommended at theJoint IGS-GFZ-JPL Workshop on Low Earth Orbiter Missions
in March 1999 at the GeoForschungsZentrum (GFZ) Potsdam, Germany, to initiate a pilot project for the
use of GPS flight receiver data. In January 2000 the “Call for participation” was issued. The IGS LEO
Pilot Project started at theIGS Pilot Project Meeting, February 6-8, 2001, GFZ Potsdam, Germany. The
goals of the IGS LEO Pilot Project are [Boomkamp, 2002]

� to establish and maintain a clear listing of all differences between LEO flight receiver data and
terrestrial GPS data,

� to compare GPS orbits, clocks and EOP (Earth Orientation Parameters) as generated by routine
IGS operations for cases with and without the inclusion of LEO data in the analysis,

� to develop the capability for combined LEO + GPS data processing at a representative number of
Analysis Centers,

� to improve the processing of LEO flight receiver data at points where available processing systems
still prevent a positive impact of LEO data on IGS products,

� to compare the IGS troposphere products for cases with and without LEO data, with the aim of
analyzing benefits that may be obtained

1. from LEO-based GPS observables, e.g., difference data for a LEO that passes through the
line of sight between a ground station and a GPS satellite,

2. from the inclusions of other LEO tracking data types, e.g., DORIS (Doppler Orbitography
and Radio positioning Integrated by Satellite) or SLR (Satellite Laser Ranging), in simulta-
neous processing of GPS and LEO satellites,

� to establish and maintain a list of required analysis capabilities for using LEO data in IGS process-
ing,

� to monitor the existing processing capabilities, compare them with the required analysis capabil-
ities, and take steps to correct deficiencies as far as necessary for completion of the Pilot Project
analysis, and

� to extrapolate the processing requirements that emerge during the Pilot Project into a set of condi-
tions for operational implementation of LEO data in IGS processing.

The starting phase of the project was problematic because prior to mid 2001 new LEO GPS data were
only available from the SAC-C satellite (Section 2.3.5). After the release of the CHAMP (Section 2.3.4)
data in June 2001, the Associate Analysis Centers of the LEO Pilot Project could start to process the data
based on a CHAMP test campaign of eleven days (20-30 May, 2001, doy 140-150). This test campaign
gives to all institutions involved in POD (Precise Orbit Determination) for LEOs the opportunity to
compare their results. The summary of this comparison may be found in [TEST CAMPAIGN, 2002]. The
contributions of the AIUB to the CHAMP test campaign will be described in Section 6.3.
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Table 2.1: Summary of LEOs equipped with GPS receivers.

Satellite Altitude (km) Inclination (degree) Launch date

TOPEX/Poseidon 1336 66 10 August 1992
MicroLab-1/GPS/MET 715 70 9 April 1995
GFO 785 108 10 February 1998
ØRSTED 640/850 96.5 23 February 1999
SUNSAT 640/850 96.5 23 February 1999
CHAMP 470-300 87 15 July 2000
SAC-C 702 98 23 November 2000
JASON-1 1336 66 7 December 2001
GRACE 500-300 89 17 March 2002
ICESat 600 94 12 January 2003
GOCE 250-200 �97 2006

2.3 Low Earth Orbiters Tracking GPS Signals

Satellites in a so-called Low Earth Orbit (LEO) are perfectly suited to be equipped with a tracking system
based on GPS signals. As LEOs we understand satellite orbits with a height below 2000 km above the
Earth’s surface [Martin et al., 2001]. At these altitudes the orbital period varies between less than 90
minutes and two hours. In the Low Earth Orbit the most important non-gravitational force acting on the
satellite is the atmospheric drag decreasing, however, rapidly with increasing height. Atmospheric drag
depends on the atmospheric density which is in turn governed by, e.g., altitude, solar activity, daytime,
season, and geographical longitude and latitude. A large number of satellites can be found in Low
Earth Orbits. The Earth observation satellites of the ERS-, SPOT-, and LANDSAT-missions are, e.g., in
Low Earth Orbits. The Iridium satellites, a satellite constellation for mobile telephone communication
purposes and many scientific missions studying different subjects, e.g., the gravity field or magnetic field
of the Earth, are located in the LEO belt, as well.

The era of GPS receivers used for spaceborne applications began in the early 1980’s. Initially they
were launched into orbit only for demonstration of the concept of satellite tracking with GPS. The first
receivers tracked only the pseudorange (e.g., LANDSAT 5 [Heuberger, 1984]). The first mission us-
ing pseudorange and carrier phase measurements of GPS for orbit determination is the radar altime-
ter mission TOPEX/Poseidon. Some LEOs carrying a GPS receiver put into orbit since the launch of
TOPEX/Poseidon in August, 1992, are summarized in Table 2.1. They are listed in the order of their
launch date. The list is not complete, but gives an overview of different LEO missions using GPS. We
will describe each satellite briefly which should give an impression of the wide field of science objectives
of the different missions. Figures 2.1 to 2.11 give an idea of the physical shape of the satellites. The
satellites CHAMP and SAC-C and in particular the performance of their GPS receivers will be described
in more detail in Chapters 4 and 6.

2.3.1 TOPEX/Poseidon

TOPEX/Poseidon [Fu et al., 1994] is a joint mission coordinated and operated by NASA (National
Aeronautics and Space Administration, USA) and CNES (Centre Nationale d’Etudes Spatiale, France).
It was launched on August 10, 1992 and is still in operation today. The main purpose of the mission
is to measure the ocean topography using a radar altimeter. In addition to the main radar instruments
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Figure 2.1: TOPEX/Poseidon satellite.

the satellite is equipped with a laser retro-reflector array for SLR measurements, a DORIS receiver, and
a GPS Demonstration Receiver (GPSDR). The three latter devices are all used for orbit determination
of the TOPEX/Poseidon satellite. The plane of the circular orbit is inclined by��� with respect to the
equator and the satellite is orbiting at an altitude of 1336 km. A sketch of TOPEX/Poseidon may be
found in Figure 2.1 showing that the GPS antenna is mounted on top of a 4.3 m mast. The GPSDR tracks
(only) up to six satellites simultaneously. Unfortunately, due to the receiver construction, it can track
both frequencies only during periods when AS is turned off [Bertiger et al., 1994].

2.3.2 MicroLab-1/GPS/MET

The MicroLab-1 satellite is carrying the GPS/MET-receiver. The receiver is part of a proof-of-concept
system to generate atmospheric profiles based on observations from GPS satellites occulting at the Earth’s
atmospheric limb as seen from the satellite. For more details on the technique we refer, e.g., to [Mel-
bourne et al., 1994]. In order to serve the sounding experiment the GPS antenna is placed at the rear side
of the satellite. As a result only half of the GPS satellites above the horizon of the satellite can be tracked.
The observational geometry for determining the position of the satellite is, therefore, comparatively poor
and the resulting orbit is not representative for the potential of GPS POD techniques. The satellite was
launched on April 9, 1995. The nearly circular orbit with an inclination of��� has an altitude of about
715 km. Figure 2.2 shows the small MicroLab-1 satellite with the GPS antenna at the rear side. The
TurboRogue receiver tracks up to six satellites simultaneously. Data problems occurred during periods,
when AS was turned on [Bertiger and Wu, 1996].

2.3.3 GFO, ØRSTED and SUNSAT

The satellite GFO (Geosat Follow On) (Figure 2.3, [GFO, 2002]) was launched on February 10, 1998,
into an orbit with an altitude of 785 km and an inclination of��
�. It is equipped with instruments for
the precise measurement in the domain of both, mesoscale and basin-scale oceanography. The satellite
carries a GPS receiver which did, however, never work. The same is unfortunately true for the GPS re-
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Figure 2.2: MicroLab-1 satellite.

Figure 2.3: GFO satellite.
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(a) ØRSTED satellite.

(b) SUNSAT satellite.

Figure 2.4: Two satellites launched together on February 23, 1999.

11



2 General Information

ceiver on the South African satellite SUNSAT [SUNSAT, 2002] launched on February 23, 1999, together
with the Danish satellite ØRSTED (Figure 2.4(a), [ØRSTED, 2002]). SUNSAT is a micro-satellite de-
veloped by graduate students at Stellenbosch University in South Africa. It is shown in Figure 2.4(b). In
addition to the TurboRogue GPS receiver and a laser retro-reflector array, the satellite is equipped with
a CCD (Charged Couple Device) sensor and two different school experiments which were developed by
High School students (see also [SUNSAT, 2002]). Unfortunately, the GPS receiver did not work for the
entire lifetime of the satellite and on February 1, 2001, the functional life of the satellite was ended. The
Danish satellite ØRSTED, launched with the same launch vehicle as SUNSAT, has been developed for
studying the magnetic field of the Earth. The GPS receiver on-board ØRSTED is working well but the
measurements are not sufficient in quantity and quality to be used for reliable POD.

2.3.4 CHAMP

CHAMP (CHAllenging Minisatellite Payload) ([Reigber et al., 1998] and [CHAMP, 2002]) is a German
mission under the leadership of the GFZ in Potsdam, Germany. The partners of this satellite project are
NASA, CNES and AFRL (Air Force Research Laboratories, USA). The main purpose of the satellite is
the study of the Earth’s magnetic and gravity fields. In addition to the BlackJack GPS receiver provided
by NASA/JPL (Jet Propulsion Laboratory), it carries a STAR accelerometer provided by CNES and man-
ufactured by ONERA (Office National d’Etudes et de Recherches A´erospatiales) in Toulouse, France.
The new instrument measures the non-gravitational accelerations acting on the satellite which are mainly
due to atmospheric drag, solar radiation pressure, Earth albedo radiation, and attitude maneuvers. The
usage of these accelerometer measurements allows it to generate a dynamic orbit of the LEO without
modeling the non-gravitational forces which is very helpful for gravity field recovery. A cold gas propul-
sion system has been employed in order to control the attitude and to perform orbit change maneuvers.
The attitude of the spacecraft is not stable over a long time period due to the design of the satellite. The
attitude is corrected by thruster pulses of the cold gas propulsion system, which may happen between
70 and 200 times per day. Figures 2.5(a) and 2.5(b) [CHAMP, 2002] show the satellite system and its
payload.

CHAMP was launched on July 15, 2000. The satellite is orbiting in a nearly circular orbit with
an inclination of
��. The initial altitude was about 470 km. Within its lifetime it will decay to about
300 km due to atmospheric drag and orbital maneuvers. The actual rate of this decay depends on the
solar activity. In Figure 2.6 [CHAMP, 2002] the predicted orbital decay is shown as a function of high
and low solar activity.

In addition to the GPS receiver, the CHAMP satellite is equipped with a laser retro-reflector array
for SLR measurements. The SLR technique is a completely independent technique to determine precise
orbits for the LEO. SLR observations are accurate (� 1 cm), unambiguous and free of atmospheric
propagation effects due to water vapor. This is why the SLR technique is very useful for calibrating the
orbit resulting from the GPS tracking.

A detailed description of the instruments important for POD (GPS receiver, laser retro-reflector array,
accelerometer instrument, and attitude sensor) may be found in [Grunwaldt and Meehan, 2003].

2.3.5 SAC-C

The Earth observation satellite SAC-C was launched on November 23, 2000 [SAC-C, 2002]. It is an
international cooperative mission with the main responsibility at CONAE (Comisi´on National de Activi-
dades Espaciales, National Commission on Space Activities), Argentina and NASA, USA. The SAC-C
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(a) Front.

(b) Rear.

Figure 2.5: CHAMP satellite.
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Figure 2.6: Altitude of CHAMP dependent on solar activity.

mission comprises eleven different instruments. The instrument of interest for POD is the BlackJack
GPS receiver provided by JPL. In addition, the satellite is equipped with a Lagrange GPS/GLONASS
demonstration receiver, which is part of the INES (Italian Navigation Experiment) and should demon-
strate the capability of a secondary attitude determination sensor. The BlackJack GPS receiver has four
antennas, “looking” into the up, down, fore and aft directions. Therefore, the GPS signals may be used
for POD (up), for radio occultations (fore and aft), and for GPS altimetry (down) making use of the GPS
signals reflected by the Earth’s oceans. Figure 2.7 contains a sketch of the SAC-C satellite. SAC-C is
orbiting at an altitude of 702 km and the sun-synchronous orbit has an inclination of�
� with respect to
the equator. Unfortunately the satellite has no SLR reflector or DORIS receiver, rendering independent
comparisons between different POD techniques impossible. The interest of most institutions working in
the field of POD for LEOs in SAC-C tracking data is, therefore, limited – despite the facts that the data
is of good quality and that the modeling of the orbit is simpler than for CHAMP because of the satellite’s
orbital height.

2.3.6 JASON-1

JASON-1 [JASON-1, 2003], the follow-on mission of TOPEX/Poseidon, is equipped with more or less
the same but revised instruments as TOPEX/Poseidon. For JASON-1 the BlackJack GPS receiver is
a primary instrument for orbit determination. In addition, the satellite carries, like its predecessor
TOPEX/Poseidon, a SLR reflector array and a DORIS receiver. The GPS antenna is placed at the side
of the satellite body and is tilted with respect to the axes of the satellite. JASON-1 was launched on De-
cember 7, 2001, and is orbiting at an altitude of 1336 km in an almost circular orbit with an inclination
of ���. Figure 2.8 shows the JASON-1 satellite. The GPS data are available since fall 2002.

2.3.7 GRACE

GRACE (Gravity Recovery And Climate Experiment) [GRACE, 2003] may be viewed as the follow-
on mission of CHAMP. The mission consists of two satellites orbiting the Earth in the same orbital
trajectory following each other in a distance of 220 km� 50 km. A K-band link between the two
spacecrafts provides a new and independent observation type for mapping the gravity field of the Earth.
The satellites were launched on March 17, 2002, and are equipped both, with a BlackJack GPS receiver,
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Figure 2.7: SAC-C satellite.

Figure 2.8: JASON-1 satellite.
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Figure 2.9: GRACE satellite from above.

Figure 2.10: ICESat satellite.

with a laser retro-reflector array, and with an accelerometer instrument. The inclination of the orbit is

�� and the orbit altitude was initially 500 km. As can be seen in Figure 2.9 the GRACE satellites are
similar in construction to the CHAMP satellite (apart from the boom which is not required in the case
of the GRACE satellites). The GPS POD antenna is placed in the middle of the satellite body and not
at its aft end as in the case of CHAMP. The GPS tracking data of the twin satellites are expected to be
available in mid of 2003.

2.3.8 ICESat

The ICESat (Ice, Cloud, and land Elevation Satellite) mission is designed for measuring the mass bal-
ance of ice sheets, cloud and aerosol heights, optical densities, vegetation and land topography. The
Geoscience Laser Altimeter System (GLAS) and the GPS receiver are the only scientific instruments on
board the ICESat spacecraft. The satellite (Figure 2.10, [ICESAT, 2002]) was launched on January 12,
2003 into an orbit of 600 km height and an inclination of��. The GPS tracking data will be available
in summer 2003.
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Figure 2.11: GOCE - computer aided drawing.

2.3.9 GOCE

The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission will be the first Earth
Explorer Mission in the Living Planet Programme of the European Space Agency (ESA) [Visser and
Van den IJssel, 2000; GOCE, 2002]. The two key instruments are a three-axis gradiometer and a
GPS/GLONASS receiver. The baseline mission duration is 20 months and the reference orbit is a dawn-
dusk sun-synchronous orbit at a mean altitude of 250 km during the first half of the mission, and approx-
imately 240 km during the second half [Battrick, 1999]. Figure 2.11 shows a computer-aided drawing of
the GOCE satellite.

2.4 Precise Orbit Determination for LEOs Using GPS

The LEOs carrying GPS receivers have in general also other scientific instruments on-board. The purpose
of the GPS receiver is in most cases to provide data for a precise orbit determination of the LEO. The
scientific exploitation of the data of the other instruments often requires precise satellite positions. Hav-
ing continuous GPS tracking data available for POD is a big advantage over alternative POD methods,
where a precise trajectory may be reconstructed only through elaborate orbit models.

Much work was performed in the last decade to develop and evaluate different orbit determination
strategies for LEOs using GPS. The approach depends on requirements like precision, latency, and avail-
ability. The orbital altitudes of the satellites range between about 300 km and 2000 km, leading to differ-
ent perturbation characteristics. The orbit determination strategies may be divided into two main groups,
thedynamic andreduced-dynamic strategies on one hand and thekinematic strategies on the other hand.
The GPS data processing procedures for the LEO are common to both groups. These procedures may
be distinguished by their differencing level namely the zero-difference (ZD), double-difference (DD), or
triple-difference (TD) level of the original observations. All strategies make direct or indirect use of the
GPS ground network, the IGS network. Direct use is made if the observations of the ground stations
are used together with the LEO GPS data for the processing (DD and TD). Indirect use is made if the
observations of the ground stations are not used for the LEO GPS data processing (ZD), in which case
the ground based observations are required to estimate GPS clock corrections. In any case ground station
data are required to compute precise GPS satellite orbits.
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LEO Data
Pole

GPS Clocks
Station Data

Station Coordinates
Troposphere Parameter

phase observations

Zero-differences with
epochwise differenced Zero-differences Triple-differences

LEO Clock

GPS Orbits

Double-differences

Ambiguities

LEO Trajectory

Figure 2.12: Scheme of different processing strategies for LEO GPS data.
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The different procedures for the LEO GPS data processing are illustrated by Figure 2.12. All proce-
dures require GPS orbits, Earth rotation information, and LEO GPS data as input for the processing. The
GPS orbits and Earth rotation parameters are taken either from the IGS (or one of its analysis centers) or
they may be estimated together with the LEO orbit. On the right hand side Figure 2.12 shows the TD and
DD approaches requiring GPS data of an array of terrestrial receivers as well as the coordinates and tro-
posphere information of these stations. The two ZD approaches on the left hand side do not need these
data, but precise GPS clock corrections at a high sampling rate (30 seconds) are required. In the two
approaches in the center of the figure, the well-known ZD and the DD procedures, the ambiguities have
to be estimated as real values making the procedures complex and time-consuming. The ZD approach
displayed in the leftmost part of Figure 2.12 is the approach developed in this work. Subsequently the
two groups of orbit determination strategies are described in more detail.

2.4.1 Dynamic and Reduced-dynamic Strategies

The dynamic and reduced-dynamic orbit determination strategies are the best-known strategies for LEO
POD based on GPS tracking data. They are both demonstrated for the first time for TOPEX/Poseidon,
see, e.g., [Bertiger et al., 1994], [Schutz et al., 1994]. The principles described in the two references are
based on double-differencing the LEO GPS data using GPS data of an array of terrestrial receivers. The
parameters for the LEO and for all GPS satellites are then estimated simultaneously. The parameters for
the LEO are related to a dynamical orbit model. Some of the recent missions (CHAMP (Section 2.3.4),
GRACE (Section 2.3.7)) are equipped with an accelerometer measuring the non-gravitational forces
acting on the satellite. Using the measurements of the new instrument type allows it to replace the
modeling of the non-gravitational forces by the measurements of the accelerometer. This approach was
demonstrated for the first time for CHAMP [Koenig et al., 2001] and is used for GRACE, as well.

Mathematical models of the forces acting on the LEO and mathematical models of the physical prop-
erties of the LEO are required for the dynamic and reduced-dynamic strategies. The equation of motion
is solved using the technique of numerical integration (see, e.g., [Beutler, 2004]). The GPS measure-
ments are represented by a particular orbit which is in turn established by a least squares adjustment with
the initial conditions and the dynamical parameters as unknowns. The model errors limit the dynamic
strategies. They result in systematic errors growing with the arc length. Introducing empirical parame-
ters, e.g., once-per-revolution parameters or stochastic pulses, in the parameter estimation process allows
it to attenuate these errors. This is the key element of the reduced-dynamic strategies. Empirical parame-
ters reduce the influence of possible deficiencies of the dynamical models on the estimated orbit. Lower
orbits require more empirical parameters than higher ones because it is virtually impossible to use ade-
quate models for the atmosphere and for the Earth’s gravity field (at least initially). The gravity models
developed prior to the data of the recent gravity missions CHAMP or GRACE are, e.g., not capable of
providing the higher order terms of the gravity field with sufficient precision for low orbits.

Subsequently we will develop a reduced-dynamic strategy for LEO orbit determination to provide,
on the one hand, good a priori orbit information for our kinematic point positioning procedure and
to generate, on the other hand, reduced-dynamic orbits based on kinematic positions as the best orbit
product which is possible with the two procedures developed in this work. In Chapter 5 the particular
reduced-dynamic strategy and the algorithms behind it will be explained in more detail.
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2.4.2 Kinematic Strategies

Kinematic POD procedures estimate the satellite position for each observation epoch based on the GPS
observations only. Kinematic strategies do not need any information concerning the gravity field and
other parameters of the dynamical orbit models. The precision of the kinematic positions therefore
uniquely depends on the precision of the observations, on the strength of the observation geometry, and
on the quality of the GPS orbit and clock products used. The number (and distribution) of the GPS
satellites observed simultaneously by the spaceborne receiver is of crucial importance for the accuracy
of the kinematic positions. If less than four observations are available per epoch no position can be
determined. These missing positions as well as data gaps, e.g., due to receiver resets, lead to interrupts in
the trajectory of the LEO which in turn may cause problems when using the kinematic positions as orbit
information for an independent analysis of other data of the satellite. This is not the case for a dynamical
orbit solution, because this orbit is continuous by construction and has no gaps no matter whether there
are data gaps or not.

An example for a kinematic strategy using TD observations may be found, e.g., in
[Grejner-Brzezinska et al., 2002] and [Byun, 2003]. In [Svehla and Rothacher, 2002], e.g., we may
find both a ZD and a DD approach including the fixing of ambiguities to integer numbers. The ZD
approach which may be found in [Bisnath and Langley, 2001] uses filtering techniques for determining
the kinematic positions. It is an approach using epoch-differenced phase observations. The kinematic
point positioning procedure developed for this work is a ZD approach, as well. Epoch-differenced zero-
difference phase observations are used to establish the position-differences between subsequent observa-
tion epochs with a conventional least squares adjustment technique. This procedure will be explained in
more detail in Chapter 3.

2.5 Data Pre-processing

Pre-processing GPS data is an important issue for all applications. In order to have cleaned data available
for the kinematic point positioning approach we have to find a suitable procedure for pre-processing the
ZD LEO GPS data. Screening differenced GPS data is much easier because common errors may be
removed or greatly reduced by forming the differences. Receiver and satellite clocks are prominent
examples. Different procedures are available for screening ZD data of terrestrial stations. One of them
is the code smoothing implemented in the programRNXSMT [Springer, 2000] of the Bernese GPS
Software. At CODE ZD observations of the IGS stations are processed to estimate clock corrections.
Screening of ZD observations is currently based on thisRNXSMT program. The programMAUPRP
will replace it, however, in the near future. The original purpose of the programMAUPRP [Hugentobler
et al., 2001] in the Bernese GPS Software is the data screening of phase DD observations. The program is
now extended to screen phase ZD observations, as well. It promises to be more reliable thanRNXSMT.
The ZD screening algorithm inMAUPRP is based on the epoch-differences of the phase observations
to individual satellites. Information concerning the GPS orbits and the satellite clock corrections are
required for the screening procedure, station coordinates are required as well as a priori information.

The programMAUPRP is also able to pre-process ZD LEO data but we decided to develop a com-
pletely new screening algorithm. It is based on a receiver- and epoch-wise cleaning of the data and
requires IGS products like orbits and clock corrections, and a priori information about the receiver. We
developed this pre-screening algorithm primarily for the data pre-processing of LEO data (Chapter 4).
Since the pre-processing works very well for spaceborne receivers its application to the data of ground
based receivers was logical. Results for terrestrial receiver data (Section 4.4) are presented and compared
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with results of the programMAUPRP (Section 6.7).
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3. Kinematic Point Positioning on the
Zero-difference Level

3.1 Principles of Processing

As mentioned in Section 2.4.2 a special zero-difference approach was developed for kinematic point
positioning of a GPS receiver. Before providing a detailed description of the developed procedure, we
have to discuss the requirements and assumptions made.

As a first prerequisite we assume that the GPS orbits and ERPs are known from the IGS or from
one of its analysis centers (e.g., CODE). The GPS clock corrections are provided by the IGS, as well,
but unfortunately, except of JPL, only with a sampling rate of five minutes. As will be shown in the
following sections we need the precise clock corrections every 30 seconds if we want to reach the best
possible result with our kinematic point positioning procedure. JPL provides 30-second clock corrections
to the IGS (since May 1999). They are not ideal for our application, however, because many epochs are
missing. We need clock information for the GPS satellites for each epoch the GPS satellites are observed.
To get such continuous 30-seconds clock corrections for the GPS satellites an efficient procedure was
developed and described by [Bock et al., 2000] and [Bock et al., 2003]. The procedure is based on
the same zero-difference approach as the kinematic point positioning procedure to be explained in this
chapter.

Let us first give an overview of the principles of the processing approach in order to get a better
understanding of the data flow, the processing steps, and the dependencies between different steps, which
will be described in more detail in the following sections. The processing scheme required for the
processing of GPS data from a LEO is shown as a flow diagram in Figure 3.1. The approach may be
applied to moving receivers such as LEOs, but also to stationary receivers. Subsequently the processing
of LEO data is taken as an example because the procedures were initially developed for LEOs and
because more complex algorithms are required for the kinematic point positioning of a LEO than for a
terrestrial station.

GPS orbits, ERPs and clock corrections are assumed to be known and held fixed in our kinematic
solutions. Based on this information the kinematic orbit is determined in an iterative procedure composed
of three steps:

� In a first processing step only the code observations of the LEO are used to estimate kinematic
positions without knowledge of a priori positions (see Section 3.2.1). The estimated positions have
an accuracy of the order of the code observations (i.e. a few meters). They are used as pseudo-
observations to determine a reduced-dynamic orbit (see Chapter 5). This reduced-dynamic orbit is
then used as a priori orbit for the second step.

� The second processing step consists of a screening procedure using only the code observations of
the LEO. A second reduced-dynamic orbit, determined with the resulting positions, is then used
as a priori orbit for the third and final step.
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Figure 3.1: Processing scheme for kinematic point positioning of a LEO with GPS data.
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� In the third step the phase and the code observations are used. From the phase measurements time-
differenced observations are formed to eliminate the phase ambiguities. As a consequence only
position-differences can be estimated (see Section 3.3). These position-differences have accuracies
corresponding to the accuracy of the phase observations (mm to cm). Positions and position-
differences can be combined to precise kinematic positions by an efficient algorithm described in
Section 3.4.

The second and third processing step allow for a data screening based on the knowledge of an a priori
orbit (see Chapter 4).

An alternative procedure to get a good a priori orbit within two steps is to use phase-difference
observations already in the second step of the described procedure. The first a priori orbit is the same
but in the second step we produce directly combined positions based on the first a priori orbit. These
combined positions may then be used for the generation of a new a priori orbit. This a priori orbit is then
used for the third step, the final kinematic positioning of the receiver.

The two different procedures are compared in Chapter 6 and evaluated to find the more efficient and
more reliable one for our requirements.

The processing sequence explained by Figure 3.1 is designed for kinematic point positioning of a
LEO. In the following sections we will develop the algorithms behind this processing scheme for the
code (Section 3.2) and for the phase observations (Section 3.3) in a more general way. The procedure
may be well suited for processing GPS observations stemming from any moving object carrying a GPS
receiver.

3.2 Code Solution

Let us use the following notation:

j is the index (superscript) of a particular GPS satellite,j � �	 � � � 	 ns, wherens is the number
of satellites observed at one epoch.

m is the index of the frequency used (m �1, 2).
t is the signal reception time (in GPS time).

 j is the signal propagation time between satellitej and the receiver.
�j is the geometrical distance between satellitej (at signal emission timet�
j) and the receiver

(at signal reception timet), also called “slant range”
��rj � r��.

rj�t� 
 j� is the position of the satellitej at signal emission timet� 
j.
r�t� is the position of the receiver at signal reception timet.
c is the speed of light.
t� is the reading of the receiver clock at signal reception time.
� is the error of the receiver clock at timet with respect to GPS time. The true signal reception

time t may be written ast � t� � �.
�j is the error of the clock of satellitej at timet� 
j w.r.t. GPS time.
�r is the periodic relativistic effect on the receiver due to the eccentricity of its orbit (varying

velocity and height in the Earth’s potential).
�jr is the periodic relativistic effect on the GPS satellitej due to the eccentricity of its orbit

(varying velocity and height in the Earth’s potential).
T j is the signal delay due to tropospheric refraction.
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Ijm is the signal delay on carrierm due to ionospheric refraction,Ij� � Ij 	 Ij� �
f�
�

f�
�

Ij.

The pseudorange between GPS satellitej and the receiver then reads as

pjm � �j � c � �j � c � � � c � �jr � c � �r � T j � Ijm� (3.1)

The above observation equation is written in a very general form. Not all terms in this equation are
required to model a particular type of data. The signal delay due to tropospheric refractionTj , e.g., is
not relevant for a spaceborne receiver because the troposphere extends only up to an altitude of about
20 kilometers and the satellite is orbiting well above this height. To process data from a terrestrial
receiver we introduce the tropospheric delay, e.g., from an official IGS solution or we model it using
a standard model, e.g., the Saastamoinen model. The periodic relativistic effect�r, on the other hand,
is only relevant for a spaceborne receiver. This relativistic effect for a receiver is due to the varying
receiver velocity and height in the Earth’s potential as a consequence of the eccentricity of the orbit and
is computed according to [McCarthy, 1996]

�r �
�� � r � �r

c�
	 �jr �

�� � rj � �rj
c�

� (3.2)

The periodic effect with an amplitude of some 4 nanoseconds (1.3 meters) is small for a typical LEO
when compared to the same effect for GPS satellites (50 nanoseconds or 15 meters). Without applying
the correction the effect will be absorbed as a periodic signal into the clock correction of the spaceborne
receiver. The clock rates of the GPS satellites are offset by�f�f � ���� � �����[ICD, 2000] to
compensate for the constant relativistic effects. For spaceborne LEO receivers it is not clear from the
data whether the frequency offset is applied to the receiver clock. For a receiver orbiting in a Low Earth
Orbit the offset is about�f�f � r��� � �����.

The terms for the tropospheric delay and the periodic relativistic correction of the receiver clock will
be left in the observation equation. Depending on whether spaceborne or terrestrial data are processed,
one of the terms is set to zero.

As mentioned already, GPS orbits and ERPs (and, if necessary, the tropospheric delays) are fixed
to the official solutions of the IGS or of one of its analysis centers. The official 5-minutes GPS clock
corrections are used in a densification step to constrain the 30-seconds clock corrections [Bock et al.,
2003]. Apart from the position and the clock correction of the receiver, the delay due to the ionospheric
refractionIjm is the only remaining unknown in eqn. (3.1). As opposed to the tropospheric refraction,
the ionospheric refraction affects the signal received by a spaceborne receiver, because the ionosphere
extends to an altitude of 1500 kilometers, well above the orbital altitude of most of the LEOs. The
signals received by a LEO are, therefore, delayed due to ionospheric refraction. The absolute delay is
not as large as for GPS signals arriving on the Earth’s surface but the short-period variations are more
pronounced than those caused by the lower regions of the ionosphere [Schaer, 1999]. In addition, the
high velocity of the LEO (of about 7 km/s) implies more rapid variations of the ionospheric refraction
than those observed by a receiver on the Earth’s surface. Since the ionospheric refraction is frequency-
dependent, the so-called “ionosphere-free” linear combinationpj of the P1- and P2-measurements may
be formed using the formula

pj �
�

f�� � f��
�
�
f�� � pj� � f�� � pj�

�
� (3.3)

The resulting observation equation for one code measurement to satellitej then reads as
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pj � �j � c � �j � c � � � c � �jr � c � �r � T j� (3.4)

The unknowns in this equation (3.4) are the three Cartesian coordinatesx	 y andz of the position vector
r and the clock correction� of the receiver. If more than four GPS satellites are observed simultaneously,
we may estimate these parameters using a least squares adjustment for each individual epoch. To this
purpose we have to linearize eqn. (3.4) for each satellitej. The linearization is a Taylor series of first
order which, using the model functionF �x� � F �x	 y	 z	 c � ��, looks like

pj � F �x� �
F �x�

x
(3.5)

� �j � c � � � c � �j � c � �r � c � �jr � T j

� xj � x

jrj � rj � dx�
yj � y

jrj � rj � dy �
zj � z

jrj � rj � dz � c � d�	

with the corrections of the model parametersdx	 dy	 dz, andc � d�. We use the following notation:

l is the vector of the observations.
v is the vector of residuals.
A is the first design matrix with the elements�F �x�

�x

���
x�x�

.

x � x� � dx is the vector of the unknown model parameters.
dx is the vector with the corrections of the model parameters (i.e.,dx	 dy	 dz	 c � d�).
x� is the vector with approximate (a priori) model parameters.
l� F �x�� is the vector with the “observed-minus-computed” terms (O-C).

The scheme for the least squares adjustment may be written as

�l� F �x��� � v � A � dx� (3.6)

The corresponding normal equation (NEQ) system is

ATA � dx � AT � �l� F �x��� (3.7)

with
l � �p�	 p�	 � � � 	 pns�T (3.8)

A �

�
BBBBB�

��e��T �
��e��T �
� � � � � �
� � � � � �

��ens�T �

�
CCCCCA (3.9)

dx � �dx	 dy	 dz	 c � d��T (3.10)

F �x�� � �
���r� � r����� c � �� � c � �� � c � �r � c � ��r � T �	 (3.11)���r� � r����� c � �� � c � �� � c � �r � c � ��r � T �	

� � � 	

jrns � r�j� c � �� � c � �ns � c � �r � c � �nsr � T ns�T
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and

�ej�T � �
xj � x

jrj � rj 	
yj � y

jrj � rj 	
zj � z

jrj � rj�� (3.12)

ej is the unit vector pointing from the receiver atr�t� to satellitej at rj�t � 
 j�. The specific form of
matrixA in column four implies that we are actually introducingc � � as parameter (and not the clock
correction� itself). The dimension of matrixA is ns x 4, where 4 is the number of epoch-specific
unknowns (x	 y	 z	 c � �). Let us furthermore assume that all code observations have the same standard
deviation�c

var�p� � ��c (3.13)

P c �
�

��c
�E�

Matrix E is a unit matrix of dimensionns x ns. The weight matrixPc has the dimensionns x ns. From
the functional model in eqn. (3.6), the stochastic model in eqn. (3.13), and the O-C termsl�F �x�� � �p
(vector withns elements) we obtain the final form of the NEQ system for the code positioning procedure
for one epoch

ATP cA � dx � ATP c � �p� (3.14)

ATP cA is the NEQ matrixN and the inverse of the NEQ matrix (N��) is the variance-covariance
matrix of the estimated parameters.The solution of eqn. (3.14) is an array containing the three coordinates
of the position vector and the clock correction of the receiver.

dx �N�� �ATP c � �p� (3.15)

The accuracy obtained is limited by the code observations quality (0.5 m to few meters). This point
positioning is done independently for each observation epoch. Data screening issues, which are very
important for the data processing, will be dealt with in Chapter 4.

3.2.1 Code Point Positioning Without A priori Information

So far we assumed that the position of the receiver is approximately known a priori. When processing
the observations of a terrestrial station we may normally assume that a priori coordinates of the station
are available. If we process data stemming from a moving object carrying a GPS receiver, e.g., data of a
LEO, no a priori information concerning the position of the moving object may be available. Therefore
we need an initial run of point positioning (using the code observations), where the a priori position is
not needed. For this purpose we use the so-called “Bancroft”- algorithm [Bancroft, 1985], explained also
in [Kleusberg and Teunissen, 1996]. The algorithm is based on squaring the observation equation (3.4).
Two solutions of this quadratic equation result for each observation epoch. When using the “Bancroft”-
algorithm no data pre-processing can be performed prior to the least squares adjustment. Plausibility
checks may make use of the estimated root-mean-square (RMS) error of the code observations a poste-
riori. It may be, however, that few errors in the code observations are not detected.

The orbit may now be used as a priori orbit for a second point positioning step with the algorithm ex-
plained above. Within this second step we may now invoke an efficient data screening to be explained in
detail in Chapter 4. The question arises why we have to determine a dynamical orbit using the positions
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3.3 Phase-difference Solution

of the first and second step in order to obtain an a priori orbit instead of taking directly the code posi-
tions as a priori information for the code and phase-difference processing. The complicated procedure is
necessary because the code positions are affected by outliers and because of the relatively high measure-
ment noise of one to three meters. The accuracy of the positions is not sufficient for pre-processing the
phase-differences with the approach developed subsequently. In the case of processing data from another
moving receiver, e.g., on an airplane or a car, the code positions have to be smoothed, e.g., by a low-pass
filter, before using them as a priori positions for the phase-difference processing.

3.3 Phase-difference Solution

The algorithm for processing the phase observations is in principle the same as that for the code obser-
vations. The observation equations of the phase measurement contain, however, in addition the initial
phase ambiguityNj

m as an unknown parameter

�jm � �j � c � �j � c � � � c � �jr � c � �r � T j � Ijm � �m �N j
m� (3.16)

The ionosphere-free linear combination�j may be used for the phase observations. The equation for the
observation referring to satellitej then reads as

�j � �j � c � �j � c � � � c � �jr � c � �r � T j �
�

f�� � f��
�f�� � �� �N j

� � f�� � �� �N j
� �� (3.17)

The phase ambiguity term may be eliminated by taking the difference of subsequent phase observations.
The epoch-difference between epochi andi� � (i � �	 � � � 	 n number of epochs) of the ionosphere-free
linear combination of a phase measurement��ji from the receiver to satellitej reads as

��j
i
� �j

i
� �j

i��
� �j

i
� �j

i��
� c � ��j

i
� �j

i��
� � c � ��

i
� �

i��
� (3.18)

�c � ��jri � �jri��� � c � ��ri � �ri��� � T j
i
� T j

i��

� ��j
i
� c ���j

i
� c ���

i
� c ���jri � c ���ri ��T j

i
�

The phase-difference observations to different GPS satellites are, by construction, independent. We may
thus study the stochastic model independently for each satellite. Subsequent phase-difference observa-
tions are mathematically correlated because observation�j

i��
is contained in��j

i
and��j

i��
. Let the

O-C term be��j
i

and let us define

����
j
�T

�
�
�
��j� � ��j�	

��j� � ��j�	 � � � 	
��jn � ��jn��

�
� (3.19)

The vector���
j

hasn� � elements. Obviously, we may compute the difference observations from the
undifferenced ones through the matrix operation

���
j
� C � ��j

(3.20)
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3 Kinematic Point Positioning on the Zero-difference Level

where

C �

�
BBBBBBBBBB�

�� � � � � � � � � � � �
� �� � � � � � � � � � �
� � �� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � �� �

�
CCCCCCCCCCA
� (3.21)

Assuming that var��� � ��� � E, the basic rule to compute the variance-covariance matrix of a linear
combination of a random vector says that

var����
j
� � var���j� � C � var��� �CT � ��� �CCT (3.22)

where

CCT �

�
BBBBBBBBBB�

� �� � � � � � � �
�� � �� � � � � � �
� �� � �� � � � � �

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � ��
� � � � � � � �� �

�
CCCCCCCCCCA
� (3.23)

Using the standard deviation of the code observable as weight unit, we may compute the weight matrix
for the phase-difference array of the observations to one satellitej as follows:

P��j �
��c
���
� �CCT ���� (3.24)

The matrix�CCT ��� has the simple structure

�CCT ��� �
�

n
�

�
BBBBBBB�

n� � n� � � � � �
n� � ��n� �� � � � �
n� � ��n� �� � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � n� �

�
CCCCCCCA
� (3.25)

This weight matrix has to be symmetric. Its general element is computed as

�CCT ���ik �
i � �n� k�

n
	 k � i� (3.26)

The weight matrixP for all phase observations and all epochs is a superposition of the matricesP��j

for all satellitesj � �	 �	 � � � 	 ns with dimensionns�n� �� x ns�n� �� and may be written as

P �
��c

n � ���
�

�
BBBBBBB�

�n� �� �E �n� �� �E � � � � �E
�n� �� �E ��n� �� �E � � � � �E
�n� �� �E ��n� �� �E � � � � �E

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � �n� �� �E

�
CCCCCCCA
� (3.27)
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3.3 Phase-difference Solution

For simplicity, we assume that allns satellites are observed for alln epochs in which caseE above is
a unit matrix of dimensionns x ns. The realistic case, where this assumption is no longer true, will be
handled in Section 3.4.2. The observation equation for thens phase-difference observations pertaining
to epochi may be written as

�A
i��
� dx

i��
�A

i
� dx

i
� ���

i
� ��

i��
� � w

i
	 i � �	 � � � 	 n	 (3.28)

wherewi is the array of residuals. The matricesA
i

have the same form as the first design matrix in
eqn. (3.9) for the code observations. All phase-difference observation equations may then be written in
the following convenient matrix form

A � dx���� � w (3.29)

with

A �

�
BBBBBBB�

�A
�

�A
�

� � � � � �
� �A
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� � � � � � �
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� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � �An�� �An

�
CCCCCCCA
� (3.30)

A has the dimensionns � �n � �� x  � n, wheren is the number of epochs considered. Most of the
elements of matrixA are zero as can be seen in the defining eqn. (3.30). The entire NEQ system for the
phase-difference observations then reads as

ATPA � dx �ATP ����� (3.31)

InsertingA from eqn. (3.30) andP from eqn. (3.27) one may show that

ATPA �

�
BBBBBBB�

� �N �� � �N �� � � � � �N �n

� �NT
�� � �N �� � � � � �N �n

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � �Nnn

�
CCCCCCCA

(3.32)

with

N lm � AT
l Am	

l	m � �	 �	 � � � 	 n

� � ��c
��
�

� n��
n

� � ��c
��
�

� ��
n

(3.33)

and
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3 Kinematic Point Positioning on the Zero-difference Level

ATP ���� �
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�
CCCCCA (3.34)
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(3.35)

TheP
ik

matrices are the sub-matrices of matrixP defined by eqn. (3.27) and are proportional to the
unit matrix.

One has to take into account that there is not enough information in the epoch-differenced phase
observations to reconstruct the trajectory or positions of the receiver. Forn epochs there are�n unknown
parameters andns � �n � �� observations. Assuming one measurement per 30 seconds result in 2880
epochs per day. Assuming furthermore that eight satellites are observed simultaneously (for each epoch),
we obtain � �

� unknown parameters and
 � �
�� observations. Theoretically, there are more than
enough observations to estimate the parameters. We estimate, however, only position-differences and
have, therefore, no information available about the absolute position of the receiver. The NEQ system is
therefore singular. We have to add at least one initial position to make the system regular. A better option
is to add the corresponding code observations to make the parameter estimation procedure regular. This
is done by a combination of the results associated with the two different measurement types.

3.4 Combination of Code and Phase

According to the assumptions made we haven independent code point positioning solutions correspond-
ing to then epochs. To simplify the equations we may use�c as weight unit which is the reason why in
the following no weight matrices will show up in the NEQ system associated with the code observations.
Formally, we may write all our epoch-wise code solutions into one NEQ system (eqn. (3.14))

ATA � dx �AT � �p (3.36)

where

ATA �

�
BBBBBBB�

AT
�A� � � � � �

� AT
�A� � � � �

� � � � � � � � � � � �
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nAn

�
CCCCCCCA
� (3.37)
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3.4 Combination of Code and Phase

The dimension of the entire system is � n x  � n. From the construction of this NEQ system we know
that it is actually broken up inton independent systems of dimension four.

The NEQ system containing the code and phase-difference observations to all satellites – assum-
ing exactly identical observation scenarios for code and phase measurements, e.g. no cycle slips –
eventually results by adding the (block diagonal) code NEQ system (3.36) to the superposition of all
phase-difference contributions (3.31). The resulting NEQ matrix assumes the form:

N �

�
BBBBBBB�

��� �� �N�� � �N �� � � � � �N�n

� �NT
�� ��� �� �N�� � � � � �N�n

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � ��� �� �Nnn

�
CCCCCCCA
� (3.38)

In view of the structure (eqns. (3.32) and (3.33)) of the phase-difference contributions, and in view of the
actual definition of the original first design matrix in eqn. (3.9) we may safely state that the off-diagonal
blocks in the resulting NEQ are small in absolute value when compared to the diagonal terms, as long
as the numbern of epochs without cycle slips is “big” which makes the factors� small w.r.t. � (see
eqn. (3.33)). This fact allows it to come up with a good approximation of the correct solution.

Let us write the structure of the correct NEQ system including all code and phase-difference obser-
vations in the following symbolic way:

N � dx � b (3.39)

where
N �N � � �N � (3.40)

N � contains only the �  diagonal blocks of typeATi Ai. It can thus be said thatN� can easily
be inverted step by step, one step corresponding to one epoch. We will further address this problem in
Section 3.4.3, where we discuss an approximate solution of eqn. (3.39). In Sections 3.4.1, 3.4.2, and 3.4.3
we develop algorithms to combine code observations and phase-difference observations with increasing
levels of statistical correctness.

3.4.1 Neglecting the Correlations

Although it is not correct from the statistical point of view to disregard the mathematical correlations
between subsequent phase-difference observations, it is nevertheless instructive to develop the resulting
NEQ contribution from the observations based on this assumption. Moreover, and often this is a sufficient
justification, the resulting structure of the NEQ system becomes comparatively simple, allowing for a
straight-forward and efficient solution. We consider this approach as azero-order approximation, which
is also useful for the development of the correct solution.

We thus assume in this subsection that the weight matrix associated with the phase-differences is not
given by eqn. (3.24) for allns satellites per epoch, but rather by

P �
��c

� � ���
�E (3.41)

whereE is the unit matrix. The factor of two results because of the difference of two independent phase
observations with variance���.
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3 Kinematic Point Positioning on the Zero-difference Level

Obviously, the contributions of the phase-differences to the resulting NEQ system formally are iden-
tical with eqn. (3.31), with the understanding, however, that the weight matrix is given by the relation in
eqn. (3.41). The right hand side of the resulting NEQ system is given by
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�

�AT
� �����

bl � AT
l � �pl � ��c

����
�

�AT
l �
�
���l�� ����l

�
	

l � �	 �	 � � � 	 n� �

bn � AT
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(3.42)

The matrix of the NEQ system is slightly different from the form in eqn. (3.38):
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(3.44)

The NEQ matrix has a band structure with one diagonal and seven parallels to the diagonal on each side
(corresponding to two position and two clock parameters). All other elements are zero. The solution
of the NEQ system thus may be found by very efficient algorithms, despite the fact that the number of
parameters may be rather large (see, e.g., [Press et al., 1992]). The explicit inversion of the NEQ matrix
(eqn. (3.43)) may be neglected under these circumstances. In a first step, the NEQ matrix is stored in a
compact form to save space. This form is used to perform a LU (Lower-Upper) decomposition, which is
then followed by a back-substitution step in order to obtain the solution vector.

3.4.2 Estimating Position-differences

Let us introduce here a modification of the task leading to an algorithm of comparable efficiency. The
idea is to perform the estimation of the kinematic positions in three steps:

� The first consists of the estimation of positions of the receiver using only the code observations.

� The second step consists of the estimation of position-differences using only the phase-difference
observations.

� The third and last step consists of the combination of positions and position-differences.

34



3.4 Combination of Code and Phase

Due to the separation of the procedure we have to find a possibility to estimate position-differences using
the phase-difference observations. Let us, therefore, have a closer look at the structure of the phase-
difference observation at epochti. By the decomposition

dxi
�
� dxi�� � d�xi (3.45)

of the vectordxi, whered�xi obviously is the improvement of the vectorxi � xi��, we may rewrite
the observation equation (3.28) as

Ai � d�xi � �Ai � dxi�� � ���i � ��i��� � wi (3.46)

with �Ai � Ai � Ai��. Assuming an error of one meter in the position ofxi�� (dxi�� � 1 m), the
absolute value�Ai � dxi�� is at maximum one centimeter for a spacing of 10-30 seconds between the
observations and a typical velocity ofj�rj � 7 km/s for a LEO. The neglect of the term�Ai � dxx��
in eqn. (3.46) would, therefore, cause a maximum error of one centimeter in the resulting position-
difference. Let us therefore neglect the term for the further processing.

The NEQ system resulting for alln�� vectorsd�xi	 i � �	 �	 � � � 	 n has a block diagonal structure
with n � � blocks for then � � epoch differencesti � ti��. We obtain an estimate for the difference
vectord�xi as a solution of the system

�AT
i Ai� � d�xi � AT

i ����i	 i � �	 �	 � � � 	 n� (3.47)

The position- (and clock correction-) differences between subsequent epochsti�� andti are obtained as
the sum of the a priori differences and the solution of the simple, epoch-specific NEQ system (eqn. (3.47)).
The similarity and the analogy to the absolute position and clock correction estimates at epochsti	 i �
�	 �	 � � � 	 n are striking when comparing the NEQ system (eqn. (3.36)) for the code observations with the
system in eqn. (3.47) for phase-difference observations. Let us use the following notation:

� xc�i is the position estimate as obtained from the code observations of epochti,

� x��i � x��i�� is the position-difference as obtained from the phase-difference observations of
epochsti andti��.

How are then position estimates resulting from eqn. (3.36) combined with then � � position-
difference estimates from eqn. (3.47)? The adjusted positions and position-differences are simply in-
terpreted as observations of the positions (with identity matrices as first design matrices) and with the
inverses of the variance-covariance matrices of the position and position-difference estimates as weight
matrices.

The “observation equations” read as

E � �xi � xc�i � �vc�i
E � ��xi � �xi���� �x��i � x��i��� � �v��i	

(3.48)

where we denote the estimated positions and clock corrections at timeti resulting from the combination
of all code position and phase position-difference estimates as�xi. �vc�i and�v��i are the residuals of the
corresponding code positions and phase position-differences.

Using the standard deviation of the code observation as weight unit and using the inverse of the
variance-covariance matrix of each epoch of the code positioning as weight matrix, we obtain the fol-
lowing NEQ contributions from the code observations

�ETPE� � �x � ETP � xc (3.49)
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3 Kinematic Point Positioning on the Zero-difference Level

where
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and
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with

P i � AT
i Ai� (3.52)

The NEQ contribution from the phase observations may be given by the form

�ETPE� � �x � ETP ��x� (3.53)

where
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with

P i �
��c
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i Ai (3.55)

and

�xT� � �x��� � x���	 � � � � � � 	x��n � x��n��� � (3.56)

At last we have

E �

�
BBBBB�

�E �E � � � � � � � � �
� �E �E � � � � � �
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�
CCCCCA � (3.57)

The resulting system of equations for the determination of�xi is again a NEQ system. It follows in an
elementary way from the above NEQ systems for position and position-differences as

M � �x � b (3.58)
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whereM is of band-diagonal structure
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The right hand sides of eqn. (3.58) may be written as
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where the epoch-specific arraysbi have to be computed as:
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The NEQ system (3.58) has band-diagonal structure with one diagonal and seven non-zero parallels to
the diagonal on both sides of the diagonal. The system is, as every NEQ system, symmetric. The solution
of this special NEQ system follows the same pattern as described in Section 3.4.1.

In the above derivations we have assumed that we have identical observation scenarios for phase and
code and that the samens satellites have been observed at alln epochs. In the general case we should
allow for different first design matricesAic andAip for code and phase and for different epochs.

Kinematic procedures have the disadvantage that a “jump” may occur in the kinematic trajectory
if the phase-connection is lost between two subsequent epochs. For our procedure this is the case if
no phase-derived position-difference is available for one or more epoch-differences. In this case the
connection between two subsequent epochs is missing, leading to two separate sequences of positions.
The two sequences derive their absolute definition from the code positions of the two sequences. The
NEQ matrixM is then actually divided into several independent matricesM�	M�	 � � � 	Mg	�, where
g is the number of gaps in the phase-difference processing. The code accuracy is not sufficient to assure
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3 Kinematic Point Positioning on the Zero-difference Level

the connection to the previous sequence and therefore a jump of some ten centimeters may occur. The
results of Section 3.6.2 give an impression of the size of these jumps and of the effect on the quality of
the combined kinematic positions.

3.4.3 Correct Correlations

Despite the fact that we will not focus on the statistically correct solutions, but rather on approximate
treatments, we nevertheless develop the correct formulae.

The NEQ system emerging from the correct combination of code and phase-difference observations
is of the form of eqn. (3.40), where the absolute values of the elements of matrix�N are small compared
to the (absolute values of the) non-zero elements of matrixN�. For the subsequent matrix inversion it is
convenient to write the matrixN as

N �N � � �N �N � �
�
E �N��

� � �N
�

(3.63)

with
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In view of the assumptions concerning the size of the elements of the matrices we may write the inverted
matrixN�� approximately as follows

N�� �
�
E �N��

� � �N
�
�N��

� � (3.65)

By construction,N� is of a block-diagonal structure with blocks of dimension 4 x 4. The inverse thus
may be computed easily, block by block, where we have to assume that the individual blocks are regular.
For later use we write the individual blocks of matrixN� in the following way:
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Using the approximation of eqn. (3.65) and taking into account the actual form of matrixN��
� the

solution of the NEQ system (eqn. (3.39)) may be written as
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we may write the solutiondx as

dx � dx� �N��
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where we may write
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The�N�i matrices are the sub-matrices of matrix�N defined by eqn. (3.64). Eqn. (3.70) shows how
the solution vector may be computed in an efficient way by first computing a first order approximation
dx� of the solutiondx. In the following section we will summarize the approximations for kinematic
point positioning on the zero-difference level with the epoch-wise differenced phase observations, which
were implemented and tested in the context of this work.

3.5 Practical Realization

It is our stated goal to develop an efficient approach for kinematic point positioning on the zero-difference
level. Therefore, we will focus on the solution of eqn. (3.58) for the combination of the code positions
and phase position-differences. This solution promises to meet our requirements. The disadvantage of
this approach is the neglect of the correlations between subsequent phase-difference observations.

For a better understanding of the studies made in this context we will briefly and schematically
explain the flowchart (Figure 3.2) of the programLEOKIN we have developed for the kinematic point
positioning for a moving GPS receiver. Figure 3.1 shows the general scheme for processing LEO data.
Figure 3.2 now illustrates the flow of the data within our programLEOKIN performing a zero-difference
kinematic point positioning.

LEOKIN is based on an epoch-by-epoch processing. In the main epoch loop both, the code and the
phase-difference processing, take place. After the pre-screening of the code observations (the algorithm
will be explained in Chapter 4) the receiver clock is synchronized to GPS time. The receiver clock has to
be known with an accuracy better than one microsecond and the approximate value is saved for the phase
processing. The position of the receiver and an improved receiver clock correction are then estimated
using the code observations of the current epoch corrected by the approximate receiver clock correction.
The matrixAT

i Ai is saved for the combination of the code with the phase-difference solutions. In a
second block the phase-differences are processed. For this purpose the observations of the previous
epoch have been saved and the differences are formed for the satellites observed in the current and the
previous epoch. The phase-differences are pre-screened in a similar way as the code observations (see
Chapter 4). In the next step the position-difference for the current epoch-difference is estimated and the
phase observations of the actual epoch are saved for the next epoch-difference. The matrixATi PAi of
the phase-difference processing is saved for the later combination, too. The processing of the next epoch
starts again with code processing. When the code positions and phase position-differences for all epochs
have been estimated, the matrixM and the vectorb are set up according to eqns. (3.60) and (3.62). At
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Figure 3.2: Flowchart of programLEOKIN.
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the same time the matrixM is stored in a space-saving way and the algorithm described in [Press et al.,
1992] is applied to the band-diagonal NEQ system in order to solve for the combined positions.

Figure 3.2 is the skeleton for our kinematic point positioning approach. ProgramLEOKIN saves
both the combined positions and the estimated positions (derived from the code observations) and the
estimated position-differences (derived from the phase-difference observations). The combined positions
as well as the positions and position-differences may be used by an orbit determination program as
pseudo-observations to determine a fully deterministic or a reduced-dynamic orbit (see Chapter 5).

In the following sections we will refer to this skeleton to explain modified procedures or studies made
within a special step. In the next sections we will validate the developed approach based on simulations.

3.6 Simulations

3.6.1 Code

Terrestrial Station

Our approach is designed for processing data of any roving or static station carrying a GPS receiver. The
simplest roving station is a fixed terrestrial station. The receiver is, in fact, not moving w.r.t. an Earth-
fixed system, which makes it well-suited for validating the procedure. We simulate in a first step data for
a terrestrial receiver to validate the code point positioning procedure. The input data for the simulation
for doy (day of year) 034/2002 (February 3, 2002) are

� CODE rapid orbits,

� Earth rotation parameters of the CODE rapid processing,

� broadcast clock corrections for the GPS satellites, and

� IGS2000-coordinates [Ferland, 2002] for station ALGO (ALGOnquin Park, Ontario, Canada).

With these input data we simulate error-free code observations for station ALGO to validate the point
positioning approach. The result of a point positioning using the programLEOKIN has to be compared
with the a priori coordinates of the station ALGO used in the simulation. The result of this test is
satisfactory: the “true” coordinates of Algonquin are reproduced virtually error-free.

In a second step we simulate code observations with an a priori standard deviation of�apr � ��� m
for the two frequencies L1 and L2. The differences of these positions in comparison to the “true” values
are shown in Figure 3.3(a) (North-, East-, and Up-direction). Figure 3.3(b) shows the differences for a
simulation of observations with�apr � ��	 m and Table 3.1 summarizes mean and standard deviation
values of these two simulations using the ionosphere-free linear combination (P3) of the observations.
The third row of this table are mean and standard deviation values for the same observations simulated
with �apr � ��	 m but only the P1-code measurements are used for the point positioning. Taking into
account that the noise of the ionosphere-free linear combination is three times larger than that for P1- or
P2-measurements [Beutler et al., 1990], we get for the simulation with�apr � ��� m a standard deviation
of �P� � � m. The expected precision�pos for a point position is then�pos � �P�� DOP (Dilution Of
Precision) [Kleusberg and Teunissen, 1996]. The DOP-value is an indicator for the geometry defined by
the GPS satellite constellation above the observing site. The better the satellite geometry, the smaller the
DOP-value, and the better the expected positioning accuracy. The DOP-value can be separated in three
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Figure 3.3: Differences of coordinates computed from simulated observations w.r.t. the “true” coordi-
nates of ALGO.

Table 3.1: Mean (�) and standard deviation (�) of the differences to the “true” values (of ALGO) of a
point positioning with simulated code observations using different�apr and different linear
combinations (LC).

�apr LC �N � �N (m) �E � �E (m) �U � �U (m) �c��A � �c��A (m)

1.0 m P3 0.1189� 3.4043 0.0058� 2.2379 -0.0867� 6.0409 -0.0416� 4.2241
0.5 m P3 0.0267� 1.5150 0.0270� 1.0146 0.03012� 2.7197 0.0253� 1.8879
0.5 m P1 0.0059� 0.5007 0.0030� 0.3449 0.0161� 0.9057 0.0066� 0.6307

components (North, East, and Up). The mean DOP-values and the corresponding values of the expected
precision for the station ALGO are (�apr � ��� m)

�
NDOP

� ����	 	 �N � � m (3.71)

�
EDOP

� ����
 	 �E � ��
 m

�
UDOP

� ����
� 	 �U � ��� m�

Table 3.1 shows that the accuracy of the positions of ALGO derived from simulated code observations
meet the expectations. The different noise of the three components is due to the constellation and the
design of the GPS satellite system. The inclination of the satellite orbits ofi � 		� causes, e.g., for
stations at mid-latitude on the Northern hemisphere a bad satellite coverage of the Northern sky. Thus
the North-component of the station is worse than the East-component. The Up-component shows the
largest error. This is expected due to the observation geometry (and the necessity to estimate a receiver
clock correction).

Low Earth Orbiter

The focus of this subsection is the recovery of the kinematic trajectory for a LEO using simulated obser-
vations. The same input characteristics as in the case of the terrestrial station are used for the simulation.
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Figure 3.4: Differences of satellite positions w.r.t. the “true” a priori orbit from a code point positioning
with programLEOKIN using simulated data with�apr � ��� m.

Instead of the coordinates of the station we use an a priori orbit of a LEO, in this case the Rapid Science
Orbit (RSO) [Koenig et al., 2002] of CHAMP computed by GFZ for doy 034/2002. In a first step we
simulate error-free code observations. The simulated CHAMP data are then used for a code point po-
sitioning procedure. The point positioning starts from an a priori orbit, where the same orbit was used
as in the simulation. The “true” a priori orbit is reproduced within one to two millimeters difference.
This result is expected because the orbits compared here are stored in the precise orbit format (SP3, [Re-
mondi, 1989]) where the last significant digit of the coordinates is one millimeter. Even if no a priori
orbit, but the “Bancroft”-algorithm is used in programLEOKIN for the point positioning, the solutions
agree within one to two millimeters with the orbit used for the simulation, as well.

In a second step we simulate data with an a priori sigma�apr � ��� m for the P1- and P2-code
observations. After the point positioning using an a priori orbit we compare the resulting positions with
the a priori orbit used for the simulation of the data. The differences are shown in Figure 3.4 and in
Table 3.2, where we find the mean and standard deviation values of these differences. Both, the mean
and the standard deviation values correspond to the expected values considering that the ionosphere-
free linear combination of the P1- and P2-measurements is used. As mentioned above the noise of the
ionosphere-free linear combination is three times larger than that for P1 and in addition the DOP-values
have to be taken into account. The mean DOP-values (X, Y, Z) and the expected accuracies for CHAMP
on doy 034 are

�
XDOP

� ���	�� 	 �X � ��� m (3.72)

�
Y DOP

� ��
�	� 	 �Y � ��� m

�
ZDOP

� ����
� 	 �Z � ��� m�

These values are reflected by the values in Table 3.2.

3.6.2 Combined Positions and Phase Only Positions

Simple Example: Static Positioning

Before analyzing our methods for kinematic point positioning using GPS code and phase-difference
observations with programLEOKIN we apply our algorithms to a very simple static example.
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3 Kinematic Point Positioning on the Zero-difference Level

Table 3.2: Mean (�) and standard deviation (�) of the differences of the single point positioning solutions
w.r.t the “true” a priori LEO orbit.

�apr �x � �x (m) �y � �y (m) �z � �z (m)

1.0 m 0.140� 1.966 0.141� 2.735 0.098� 3.118

For this purpose we “freeze” one particular observation scenario (station Algonquin, doy 055/2002,
�h�m��s UTC), when eleven GPS satellites were observed. With this frozen scenario 2880 observations
are simulated with a noise of�c � 1.0 m for the code and�p � 0.01 m for the phase observations. This
means that the results are not affected by the movements of the satellites and the Earth, and by different
satellite constellations (leading to different DOP-values). In addition we assume that the observations
are not affected by tropospheric or ionospheric refraction. The algorithms explained previously for esti-
mating the code point positions, for estimating the phase position-differences, and for the combination
of the two results are used. The relative weight between code and phase-differences for the combination
is �� � p� � ����� � � � ����. Subsequently, we confine ourselves to showing only the development of
the North-component of the station. The figures for the East- and the Up-component show in principle
the same pattern except for the noise level, which is larger for the North- than for the East-component
and larger for the Up- than for the North-component.

The differences of the combined positions w.r.t. the “true” position of ALGO are shown in Figure 3.5
(top), where the correct relative weight (� � ����) between the code positions and the position-differences
for the combination was used. Obviously, there is a signal in the residuals which is not expected. We
reduce the weight of the code positions in order to reduce the impact of the code positions on the com-
bined positions. Figure 3.5 shows the differences for solutions with increasing reduction of the weight of
the code positions from the second (factor 10) to the fifth figure (factor 10’000). The signal disappears
the more the weight of the code positions is reduced.

These examples (Figures 3.5) demonstrate that the code positions have a big impact on the combined
positions if they are used with their normal relative weight w.r.t. the phase position-differences. The main
purpose of using the code positions for the combination is the regularization of the NEQ-system. But
for the regularization we need in principle only one position for one phase-connected observation series.
As we have, on the other hand, a series of code positions we would like to profit from all of them and
therefore we introduce all code positions into the combination process but with a lower weight. If we use
a too low weight of the code positions (Figure 3.5 (bottom), factor 10’000) the absolute definition is lost
and the combined positions may have an offset w.r.t. the true solution. Figure 3.5 (second) shows that a
reduction with a factor 10 is not sufficient to reduce the signal of the code positions. One of the solutions
with reduction factor of 100 or 1’000 seems to be the most reasonable solution. The sequences with
continuous phase position-differences are in practice rather shorter than 2880 epochs. Data gaps and data
problems in the phase are causing interrupts in the series of phase-differences. The shorter the sequences
with connected phase-differences the less the code positions help to provide the absolute definition of the
combined positions. We will, therefore, use the factor of 100 to reduce the code weight in order to avoid
the appearance of a code-induced signal in the combined positions, but also to avoid loosing too much
strength of the absolute definition of the combined positions by the code. In practice this means that the
contributions of the code (AT

i Ai) for the combination in eqns. (3.60) and (3.62) are reduced by a factor
of 100. This simple example of static positioning shows that our approach based on zero-difference code
and epoch-wise differenced phase observations gives reliable results if we downweight the contribution
of the code positions. Subsequently we will focus on the recovery of the kinematic trajectory of both, a
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Figure 3.5: Differences between positions combined with different weight ratios and the true position of
ALGO (North-component).
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Figure 3.6: Differences of combined positions w.r.t. “true” ALGO coordinates for different weighting
options.

terrestrial station and a LEO, using simulated code and phase-difference observations.

Terrestrial Station

The simulations made for the kinematic code point positioning of a terrestrial station in Section 3.6.1
can be repeated for the combined code and phase-difference point positioning. As a zero-test we start
with the simulation of error-free code and phase observations for the terrestrial station ALGO. The com-
bined kinematic positions resulting from the error-free observations show a noise w.r.t. the coordinates of
ALGO due to rounding errors, which is expected for the zero-test. Subsequently we use three different
solutions, named A, B, and C, based on the experience we gained with the static positioning example.
The three solutions are characterized as follows:

� Solution A: The relative weight for the combination between code positions and phase position-
differences is given by the ratio��c � � � ��p.

� Solution B: The weight of the code positions is reduced by a factor 100.

� Solution C: Only the position-differences derived from the phase-difference observations are used
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Figure 3.7: Number of tracked satellites in the simulated observations of ALGO for doy 034/2002.

for the combination (only the first position is fixed to the a priori position to regularize the NEQ
system.)

If we look at simulated data with�p � 0.01 m for the phase observations (��p �
p
�� 0.01 m) and�c �

1.0 m for the code observations, the differences between the combined positions and the true coordinates
of ALGO (Figure 3.6 (top)) reveal the following pattern: Solution A shows a clear signal. Figure 3.6
(middle) shows the results for Solution B. The strong signal in the differences has disappeared, but there
are small “jumps” in the differences, e.g., at epoch 1445 (arrows in Figure 3.6). This jump is due to the
fact that the observation geometry has changed by a “new” (rising) satellite at this epoch. Prior to epoch
1445 six satellites were tracked, afterwards seven. During one day, the satellite constellation and there-
fore the observation geometry changes rather often. Figure 3.7 shows the number of tracked satellites
in the simulated data of ALGO. All “jumps” in the differences are connected with such constellation
changes but not all constellation changes lead to visible “jumps” in the differences.

As a last test only the phase-derived position-differences were used to determine the position of
ALGO (Solution C). Since the NEQ system for the combination then becomes singular, we introduce
the a priori position of ALGO for the position at the first epoch. The combination algorithm is in this
case a simple algorithm summing up the position-differences. The differences of Solution C w.r.t. the
true position of ALGO are reproduced in Figure 3.6 (bottom). Similar characteristics as in Solution B
are observed for Solution C. The difference to Solution B resides in a small drift in the differences. The
position-differences have an error specified by the observation accuracy of the phase observations. In
this phase-only solution the position-differences are added up as well as the errors according to the error
propagation. This leads to the drifts in the differences for Solution C. In Solution B the code positions
have still a high enough weight to prevent that the combined positions are drifting away from the “true”
position due to the summing up of the errors. The compromise is, as already mentioned in the previous
section, to reduce the code weight by a factor 100 for the combination of the code positions with the
phase position-differences. By this means we obtain an absolute definition of the coordinates which is
strong enough, but we avoid a signal in the combined positions stemming from the quality of the code
positions.
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Figure 3.8: Differences of combined kinematic positions from simulated code and phase observations of
CHAMP to the a priori orbit used for the simulation.

Low Earth Orbiter

Together with the simulation of the error-free code observations of CHAMP error-free phase observations
are simulated for doy 034/2002. Using these error-free code and phase observations to reproduce the orbit
by the combined kinematic positions results in differences w.r.t. the a priori orbit used for the simulation
of up to one millimeter – an expected result.

For the simulation of normally-distributed phase observations we choose a root mean square error
of �p � 0.01 m for the L1- and L2-frequency (��p �

p
�� 0.01 m). For the code observations�c is

1.0 m for L1 and L2. Solutions A, B, and C are computed and compared to the a priori orbit of CHAMP
used for the simulation of the data. For this purpose a Helmert transformation with three translation
parameters is performed between the orbits.

Figure 3.8 (top) shows the differences between the combined positions of Solution A and the a priori
CHAMP orbit. Figure 3.8 (middle) shows the corresponding differences for Solution B. The signals
in the differences for Solution A stem from the code positions. In Solution B the code signals are
smoothed but the differences show not only white noise. The small jumps and the remaining signals
are caused by constellation changes and a bad observation geometry. Figure 3.9 shows the number of
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Table 3.3: RMS errors (cm) per component of Helmert transformation between combined kinematic tra-
jectories and “true” a priori orbit (Figure 3.8).

x (cm) y (cm) z (cm)

Solution A 13.1 14.2 11.6
Solution B 7.9 8.6 10.4
Solution C 12.7 14.3 16.6

0 500 1000 1500 2000 2500
4

6

8

10

12

14

16

Epoch

T
ra

ck
ed

 s
at

el
lit

es

Figure 3.9: Number of satellites tracked by CHAMP for simulated observations of doy 034/2002.

tracked satellites for the simulated data of CHAMP on doy 034/2002. One clearly sees that the number
of tracked satellites and therefore the satellite constellation changes more rapidly than for a terrestrial
station (Figure 3.7), a fact which is due to the rapid movement of the satellite. The LEO revolves around
the Earth in approximately 90 to 100 min and therefore sees nearly the entire GPS constellation within
this time interval.

Figure 3.8 (bottom) shows the differences for Solution C. The influence of the code positions in
Figure 3.8 (top) and the reduced signal in Figure 3.8 (middle) is obvious. The differences between
Solution B (middle) and C (bottom) are not as pronounced as between Solution A (top) and B (middle).
The tendency of Solution C in the case of a LEO is the same as for Solution C for the terrestrial station.
The differences show a slight drift w.r.t. the line representing the true solution. The RMS errors of
the Helmert transformations in Figure 3.8 are summarized in Table 3.3. The same conclusions as for
the terrestrial station may be drawn. Solution B is the most reasonable choice for the combination of
code positions with phase position-differences. These examples with simulated GPS code and phase
observations of a LEO show that the kinematic trajectory of a LEO could be reconstructed to within a
decimeter (assuming a noise of 0.01 m for the phase observations) by the kinematic point positioning
procedure developed here.

3.6.3 Further Studies

Subsequently, two further studies have been performed using simulated LEO GPS data. These are studies
on the impact

� of enforced interrupts and
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3 Kinematic Point Positioning on the Zero-difference Level

� of using different a priori orbit/position.

Enforced Interrupts

As mentioned in Section 3.4.2 one deficiency of kinematic point positioning procedures reside in the
fact that jumps occur if the connection between two subsequent epochs is not given by the phase mea-
surements. In the case of theLEOKIN procedure a jump occurs in the combined kinematic positions if
there is no phase-derived position-difference available for one or more epoch-differences. The problem
is not only caused by missing position-differences due to data quality but also because of data gaps due
to receiver resets or due to interrupts during data download periods. In this section we will simulate such
interrupts in order to study the size of the resulting jumps and in order to see how these jumps affect the
combined positions.

The simulated code and phase data used for the computations of the previous section are used here
again. We enforce interrupts in the phase-difference processing in order to introduce a jump in the
combined positions. We simulate two different cases. We enforce interrupts in the phase-difference
processing

� after 1’000 subsequent epochs (500 minutes) and

� after 700 subsequent epochs (350 minutes).

Figure 3.10 shows the differences of Solution A (top) and Solution B (bottom) for the first case (interrupts
after 1’000 epochs) w.r.t. the a priori orbit used for the simulation. Figure 3.11 shows the differences for
the second case with enforced interrupts after 700 epochs (Solution A (top) and Solution B (bottom)).
Solutions A and B have been computed for both cases to show the different impact of the interrupts
on the sequences of connected positions. The effect of the interrupts is obviously different for the two
cases and for the two solutions A and B. The size of the jumps in the coordinates reaches values up
to 30 centimeters while some of the interrupted position-differences do not at all affect the coordinate
results of the combined positions. These jumps in the kinematic trajectory are of course not real, but
a characteristic feature of this zero-difference approach with phase-differencing from one epoch to the
next. We have to be aware of this issue during the data processing and we have to find ways to reduce
the number and the size of these jumps.

Different A priori Orbit or Position

Up to now all results for simulated observations of the LEO have been derived by using the “true” orbit
used for the simulation as a priori orbit for the kinematic point positioning inLEOKIN. An additional
test was performed in order to study the impact of the quality of the a priori orbit. In practice, the
a priori orbit used is a deterministic or reduced-dynamic orbit defined by code positions or combined
positions (see Section 3.1). This orbit has an accuracy of about half a meter, a fact which may have an
influence on the resulting positions. For our test we use an a priori orbit, which was generated by an
orbit determination procedure using the code-derived positions. Figure 3.12 (top) shows the differences
between this a priori orbit and the orbit (RSO) used for the simulation. The RMS error of a Helmert
transformation between the two orbits is 13.9 cm. Figure 3.12 (middle) shows the differences of the
estimated positions using the new a priori orbit w.r.t. the estimates when using the “true” orbit. To this
scale the differences are rather small. Figure 3.12 (bottom) shows, however, that differences up to a few
centimeters do exist. The differences are attributed to the pre-processing which critically depends on the
quality of the a priori orbit (see also Chapter 4). The example shows that the quality of the a priori orbit
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Figure 3.10: Differences of kinematic positions from simulated code and phase observations of
CHAMP w.r.t. the “true” a priori orbit; Enforced interrupts after 1000 epochs.
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Figure 3.11: Differences of kinematic positions from simulated code and phase observations of
CHAMP w.r.t. the “true” a priori orbit; Enforced interrupts after 700 epochs.
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Figure 3.12: Influence of using an a priori orbit different from the “true” orbit used for the simulation
of the data; Top: Differences between original a priori orbit and new a priori; Middle:
Differences in resulting kinematic positions; Bottom: Zoom of x-component.

is a critical issue in our kinematic point positioning procedure. We should produce the best possible a
priori orbit with our dynamic orbit determination procedure. This is in a first approximation an orbit
derived from code positions or an orbit derived from combined positions (described in the second step
of Figure 3.1). The more we iterate the procedure described in Figure 3.1 using combined positions the
better the kinematic positions and therefore the a priori orbit gets. In order to meet our goal of developing
an efficient procedure we confine ourselves to using the three steps described in Section 3.1.

3.7 Satellite Clock Interpolation

Our method depends on the availability of highly accurate GPS satellite clock corrections. These cor-
rections should be available at 30-second intervals if we want to process 10-second (or even higher rate)
data. Such satellites clock corrections currently are only available from JPL. The deficiency of these
JPL clock corrections is that many epochs are missing. This is why an efficient procedure to generate
30-second clock corrections was developed [Bock et al., 2000, 2003]. The procedure was developed at a
time when SA was still switched on, i.e., when the satellite clock frequency was dithered in order to limit
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Figure 3.13: SA switched off on May 2, 2000 – effect on GPS satellite clocks.

the accuracy of unauthorized real-time positioning. With SA enabled an interpolation of the available
5-minute clock corrections from IGS to 30-second clock corrections was not possible with an acceptable
accuracy. On May 2, 2000, SA was switched off and the satellite clocks are no longer disturbed by the
dithering (see Figure 3.13). The question arises whether it is now possible to (linearly) interpolate the
5-minute clock corrections to 30-second intervals to process zero-difference data with a 30-second or
even 10-second sampling without loosing accuracy. The question shall be answered using 5-minute, 30-
second, and 10-second clock correction estimates. Our starting point are the CODE Rapid GPS satellite
clock corrections of doy 034/2002 with a sampling of 5 minutes. These clock corrections are derived
from a global network of up to 90 stations. In addition we have downloaded 1-second GPS data available
at the IGS data center at CDDIS (Crustal Dynamics Data Information Center) [CDDIS, 2002] for doy
034/2002,�h��m��s to h	m��s (21 stations). In a first step we compute 30-second clock corrections
based on phase-difference observations and constrain them to the CODE Rapid 5-minute clock correc-
tions [Bock et al., 2003]. In a next step we repeat the procedure with 10-second sampling of the 1 Hz
observations and constrain the resulting corrections to the 30-second clock corrections obtained in the
previous step. From now on we have three sets of clock corrections with different sampling rates, namely
5-minute, 30-second, and 10-second available. We can now simulate GPS data for CHAMP based on
the 10-second clock corrections together with the other input data already used for the simulations in
Sections 3.6.1 and 3.6.2. For the simulation no observation noise is introduced for code and phase on
the two frequencies in order to isolate the effect of the interpolation of the clock corrections on the re-
sulting kinematic positions. No pre-screening of the data is performed for the same reason. We use
a linear interpolation of the satellite clock corrections (Figures 3.14(a) to 3.14(d)) and an interpolation
with a polynomial of degree three (Figures 3.15(a) and 3.15(b)). Figures 3.14(a), 3.14(c), and 3.15(a)
show the results for the combined positions from error-free code and phase-difference observations. The
plots show the differences w.r.t. the CHAMP orbit used for the simulation. Figures 3.14(b), 3.14(d),
and 3.15(b) are the corresponding “zooms” of the y-component of the differences from�h��m��s to
�h��m��s. The structure of the differences is better visible in these figures. Table 3.4 summarizes the
corresponding RMS errors of the Helmert transformations. In the first line the RMS errors for the “zero-
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3 Kinematic Point Positioning on the Zero-difference Level

Table 3.4: RMS errors (mm) of the Helmert transformation between kinematic positions derived by error-
free code and phase-difference observations and the a priori orbit used for the simulation.

x (mm) y (mm) z (mm)

10 second ��� ��� ���

30 second ��� ��� ���

5 minutes ���� ���� ����

5 minutes (2) ���� ���� �	��

test” solution with the 10-second clock corrections are listed.
Clearly, the linear interpolation of the 5-minute clock corrections to 30-second intervals is not suffi-

cient if highest accuracy is the goal. The position errors introduced by the clock interpolation are up to
20 cm, which is not acceptable for a point positioning with phase observations. The interpolation of the
5-minute clock corrections with a polynomial of degree three is not significantly better (see bottom line
in Table 3.4). On the other hand, one recognizes that a linear interpolation of the 30-second clock correc-
tions to the 10-second intervals is sufficient to obtain 10-second clock corrections of sufficient accuracy.
The RMS errors of the Helmert transformation between the a priori orbit and the kinematic positions are
of the order of three to five millimeters (Table 3.4) using the interpolated 30-second clock correction to
the 10-second intervals.

Interpolation is a good alternative considering the fact that the widely used sampling rate within the
IGS is 30 second and that at present only a network of about 40 stations delivers one second data (each 15
minutes) to the IGS data centers. These are the only data which might be used for computing 10-second
clock corrections. The effort to compute 10-second clock corrections is of course considerably higher
than that of computing 30-second clock corrections using up to 120 stations and constraining these
estimates to the official IGS 5-minute clock corrections. The clock corrections interpolated from 30-
second values have an accuracy that is comparable to the original derived 10-second clock corrections. In
addition the interpolated 10-second clock corrections have less gaps than the 10-second clock corrections.
It may even happen that some satellites are not tracked by more than two stations of the small network
of 40 stations. In this case we cannot estimate a clock correction for this particular epoch and for this
particular satellite (which depends on redundant observations). When estimating the 30-second clock
corrections using a network of up to 120 stations the redundancy is high and the estimation of clock
corrections robust.

Highest accuracy may not be achieved by interpolating the 5-minute clock corrections to a 10-second
interval but the results are promising that it should be possible without a big loss in accuracy. This could
be very important because the 5-minute clock corrections are officially available at the IGS and the 30-
second clock corrections have to be produced by our own procedure. In order to evaluate the effect
of interpolated 5-minute clock corrections in comparison to the usage of interpolated 30-second clock
corrections on real data we will compute a series of data with both clock informations and show the
results in Section 6.4.
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(a) Linear interpolated 30-second clock corrections.
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(c) Linear interpolated 5-minute clock corrections.
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Figure 3.14: Differences between kinematic positions and the a priori orbit of CHAMP (1) with linearly
interpolated satellite clock corrections.
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(a) Interpolated 5-minute clock corrections with a polynomial of
degree 3.
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Figure 3.15: Differences between kinematic positions and the a priori orbit of CHAMP (2) with polyno-
mial interpolated satellite clock corrections.
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4. Data Pre-processing

For all applications of GPS data an efficient pre-processing and data screening of the observations is
essential. It is in particular an important issue for the processing of spaceborne receiver data. The data
screening of the GPS observations in the programLEOKIN consists of two steps:

1. The data are pre-screened based on a priori information about the position of the receiver combined
with a “majority voting” algorithm. Observations which are detected as outliers in this step are
excluded from the following processing.

2. The least-squares adjustment step includes an iterative procedure where bad observations may be
detected and can be excluded from the processing.

In Section 4.1 we explain in detail the first step of the screening which has been newly developed for
the programLEOKIN. Section 4.2 describes the second step. The options to modify the performance
of the pre-screening algorithm as well as other pre-processing issues of particular importance for the
determination for LEO orbits are outlined (Section 4.3). Eventually, we will present a complete data
screening procedure for zero-difference applications of permanent networks (Section 4.4).

4.1 Outlier Detection - Principle of Majority Voting

Outlier rejection is based on the principle of “majority voting”. In order to explain the principles un-
derlying the algorithm we briefly review the general principles of the programLEOKIN as shown in
Figure 3.2. In a first step the code observations are processed for each epoch and the receiver clock is
synchronized to GPS time (Section 3.2). In the second step the phase-differences between subsequent
epochs are processed (Section 3.3). Both processing steps are preceded by the screening procedure.

Let us have a look at the code observations of the receiver for a particular epoch. The unknowns in the
code observation equations (3.1) pertaining to one epoch are the three coordinatesx	 y	 z, and the clock
correctionc�� of the receiver. For our data pre-screening algorithm we do not only use precise GPS orbits
and clock corrections but also the a priori information available concerning the position of the receiver. If
reliable and accurate information of this kind is available, only the receiver clock correctionc � � remains
as unknown in eqn. (3.1). The fact that the receiver clock correction should be, within the accuracy of the
code, the same for all code observations of one epoch is the key assumption for the data pre-screening
procedure. The procedure is robust due to only one unknown (receiver clock correction) and promises
to find reliably the outliers. From the statistical point of view normally distributed measurements with
a standard deviation� are within 3�� of the expected value with a probability of 99.73%. This means
that the difference between two clock corrections derived from the observations to satellitesi and j,
respectively, should with the same probability lie within� �p� � �c � � � �cscr , where�c is the standard
deviation of the ionosphere-free linear combination of the code observations. Our algorithm is set up in
the following way:
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1. All possible differences are formed between the receiver clock corrections
�i � �c � ��i	 i � �	 � � � 	 ns computed for each satellitei. A check is performed whether the
absolute value of each difference is smaller than� � �cscr :

��ij � j�i � �j j 
 � � �cscr 	 i � �	 �	 � � � 	 ns � �� j � i� �	 i � �	 � � � 	 ns� (4.1)

All �j meeting the above condition with a particular�i are assigned to the same group as�i. Figure 4.1
shows that different groups may result for the observations of one epoch. It may happen that two clock
corrections (A� �i and B� �j) meeting the above condition are already assigned to a particular group,
e.g., A to group one (X) and B to group two (O) (Figure 4.1). In this case all members of the second
group are assigned to the first group. In our example this means that all values�i are finally in one group.
The example illustrates that not all differences between the��is of one group are necessarily within the
limits of � � �cscr . In this example the largest difference between the��is is about�� � �cscr . In the worst
case this difference is� � �ns� �� � �cscr . This is due to the design of the pre-screening algorithm and we
may influence the size of the group with matching clock corrections (�i) by changing the value of�cscr .
The smaller�cscr the smaller the absolute difference between the smallest and the largest�i of a group
will be.

2. The values��i of the group with the largest number of members (“majority voting”) are used to
compute a mean value��� and a standard deviation��� .

3. Each receiver clock correction�i of the processed epoch is compared with this mean value���

(���i � j�i � ���j).
�i �

�
b � ���i 
 � � ���
c � ���i � � � ��� (4.2)

where

b means that the observation is accepted, but has to be checked within the following iterative
least squares adjustment step, and

c means that the observation is definitely an outlier.

If the difference���i is larger than a given multiple� of the computed��� (e.g.,� � ��) the observa-
tion is marked as an outlier and not used in the following point positioning procedure.� is a defining
parameter of the algorithm. If the data would have no systematic errors, all differences���i would be
with a probability of 99.73% within� � ��� (� � � 3). Since we cannot completely avoid systematic
errors in the data (insufficient a priori information, biased GPS clock corrections, etc.), this assumption

X OX OOX X O

A B

= 3*sigma

XX XXX X X

~10*sigma

X

Figure 4.1: Example for the grouping of�i.
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is not met. That is why we provide the possibility to select the value for� manually. If we would choose
a large value for� (e.g.,� � 30) the pre-screening will only detect extreme outliers and the other bad
observations remaining in the processing have to be found in the second step, the iterative least squares
adjustment step. The data quality after the pre-screening depends therefore on the screening options.
The performance of the algorithm may be influenced by modifying the following input parameters:

� the�c for arranging the observations�i into groups (depends on the code data quality),

� the standard deviation for setting the rejection threshold (it may either be derived from the obser-
vations��i � ��� or specified as fixed value��fix), and

� the factor�.

The same pre-screening algorithm is applied to the phase-difference observations where the�c is replaced
by
p
� ��p (the factor

p
� arises because the difference of two phase observations is analyzed) and where

�i is the receiver clock correction difference of subsequent epochs derived from the phase observations
to satellitei.

The key factor limiting the performance of the pre-screening approach is the quality of the a priori
information. This is in particular the case when processing LEO data. For the point positioning with the
code this is not a serious problem, but for the screening of the phase-differences the quality of the a priori
information is critical (see Section 3.4). Bad a priori information may “mimic” bad phase observations
which would then be erroneously removed as outliers by the screening algorithm. To be sure that this
does not happen the rejection threshold should not be set too small. This implies that a second screening
step has to follow in order to find all observations deteriorating the solution.

4.2 Iterative Screening Procedure

The second data screening step is included in the least-squares adjustment step. It follows the same
scheme for the code as for the phase-difference processing. We will explain it based on the code pro-
cessing.

1. The code observations of the processed epoch which have been accepted by the pre-screening
procedure are used to generate a position estimate. No solution can be computed for a particular
epoch if the number of satellites per epoch isns � 4 and the procedure stops.

2. The solution is checked whether the RMS error of the position estimate is smaller than an exter-
nally specified threshold. If yes, the solution is accepted. If not, a series ofnsa solutions (nsa
is the number of accepted observations in the processing) is computed, where one observation is
removed in each attempt.

3. The solution with the smallest RMS error is selected and the observation which was excluded for
this solution is marked as an outlier.

4. Point 2 and 3 are iterated as long as the solution is not accepted and more than four observations
are available.

It is clear, that this second data screening step is not as robust as the first pre-screening step. We have
four unknowns (x	 y	 z	 c � �) and between five and eight or ten observations depending on the number of
tracked satellites. This means that the degree of freedom of this adjustment is small and the identification
of outliers is difficult.
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4.3 Processing Issues Related to LEOs

The processing issues of particular importance for LEOs include not only the pre-screening based on the
principle of “majority voting”. Other issues, such as cut-off angle and elevation-dependent weighting of
the observations have to be considered as well.

The zenith direction of a LEO spacecraft may be defined by the unit vector

ez
�
�

r

jrj 	 (4.3)

wherer is the geocentric unit vector of the satellite. This definition is independent of the attitude of the
satellite and of the place where the GPS antenna is mounted. The limit of the zenith angle is given by the
Earth’s limb at approximately 110 to 115 degrees for a satellite at 400 to 700 km altitude.

The zenith direction of the GPS antenna is defined as the normal to the receiving antenna’s micro-
chip array. This zenith direction must be given in the body-fixed coordinate system of the satellite. We
thus need information about the attitude of the satellite, i.e., the orientation of the satellite body in the
inertial system to relate the two zenith directions. This second zenith angle is relevant for the discussion
of multipath caused by the surface of the satellite body or for the use of GPS antenna patterns to model
phase center variations.

If the GPS antenna is placed on the top of the satellite body both definitions may be identical. If
the antenna is not on the top of the satellite body as, e.g., in the case of GPS/MET (Section 2.3.2) and
JASON-1 (Section 2.3.6), the two zenith angles are different.

The nominal orientation of a typical body-fixed system of a LEO (e.g., of CHAMP) is given schemat-
ically in Figure 4.2. The body-fixed Cartesian coordinate system is defined by the X-, Y-, and Z-axis.
Normally the body-fixed Z-axis is pointing towards the geocenter of the Earth. The body-fixed X-axis
is perpendicular to the Z-axis and is pointing approximately into the flight direction (only approximately
because of the orbital eccentricity). The body-fixed Y-axis completes the Cartesian right-handed system.
For CHAMP the difference between the real and the nominal attitude (the real Z-axis of the body-fixed
system and the direction to the geocenter) is in most cases at maximum two degrees (maximum five cen-
timeters for the antenna offset vector) and is corrected if it is getting too large by the cold gas propulsion
system which leads to several attitude maneuvers during one day. In the case of CHAMP the differences
are small enough that normally the nominal attitude may be used for the determination of the orientation
of the GPS antenna and for the correction of the antenna offsets to the center of mass. Real attitude data
are available for CHAMP, as well.

To get an idea what can be expected concerning quantity and quality of the GPS data for a LEO we
will first have a look at the performance of the GPS receivers of CHAMP and SAC-C. We focus on the
performance of these satellites because most LEO GPS data analyzed here stem from the two spacecrafts.

4.3.1 GPS Receiver Performance

CHAMP

The CHAMP satellite is orbiting in a near-circular orbit with an inclination ofi � 
�� and an orbit
altitude between 470 km (at the beginning) and 300 km (at the end of the mission). The BlackJack
GPS receiver on-board CHAMP has 16 channels for each frequency. They are not only dedicated to
the POD antenna on top of the satellite but also to the GPS limb sounding antenna at the rear side of
the satellite body and to the experimental GPS altimetry antenna at the bottom of the satellite body. At
maximum twelve channels are available for the POD antenna. At the beginning of the mission only the
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Figure 4.2: Satellite body-fixed system (schematically).

Table 4.1: Summary of switches in the tracking software of the GPS receiver on CHAMP [Grunwaldt,
2002].

Switch at doy Max. number of Switch for a short period Max. number of
tracked satellites tracked satellites

199/2000 7
026/2001 - 027/2001 8
041/2001 - 042/2001 8

047/2001 6
054/2001 - 056/2001 8

081/2001 8
129/2001 (24 h test) 9

064/2002 10
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Figure 4.3: CHAMP receiver performance for doy 063 to 065, 2002 (software switch during break).
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Figure 4.4: Change in tracking performance after software upload on doy 206/2001.

POD antenna was switched on; because of software problems the tracking capability was limited to seven
satellites [Loyer, 2000]. In the meantime the receiver tracks up to ten satellites simultaneously (Status:
April 10, 2003).

For all zero-difference kinematic approaches at least four good observations must be available be-
cause otherwise no position can be determined. Therefore, it is important to know how many satellites
can be tracked at maximum by the receiver on-board a LEO. Table 4.1 lists the maximum number of
satellites tracked by the GPS receiver on-board CHAMP for different time periods. After the activation
of the GPS receiver on doy 199/2000 (July 17, 2000) the receiver tracked up to seven satellites with its
POD antenna. The receiver was then commanded to track up to eight satellites simultaneously on doy
081/2001 (March 22, 2001). On doy 064/2002 (March 5, 2002) the receiver was eventually able to track
up to ten satellites.

Figure 4.3(a) shows the number of tracked satellites for doy 063 to 065/2002. The receiver actually
tracked up to eight satellites until it stopped tracking on doy 064 for several hours. After this break,
during which the software change took place, it started again with tracking up to ten satellites simulta-
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Table 4.2: Summary of switches in the tracking software of the GPS receiver on SAC-C.

Switch at doy Max. number of Switch for a short period Max. number of
tracked satellites tracked satellites

327/2000 8
191/2001 6

220/2001 - 222/2001 9
222/2001 6

223/2001 7
036/2002 12
089/2002 8

neously. Figure 4.3(b) shows the histogram of the observations for doy 063 to 065/2002 as a function of
the zenith angles of the observed satellites. Each day is represented by one of the three bars for each bin.
On doy 064 few observations were made due to the interruption lasting for several hours. Furthermore
we recognize the increased number of tracked satellites on doy 065 by a larger number of observations
with zenith distances between 65 and 85 degrees. The increase of the maximum possible number of
tracked satellites improves the observation geometry and is therefore very useful for the kinematic POD
approaches for CHAMP.

Another very useful change in the tracking performance of the CHAMP receiver was made on doy
206/2001. On this day an upload of the tracking software was made [Grunwaldt, 2002] and the effects
can be seen in Figure 4.4. Before doy 206 the receiver tracked satellites also below the local horizon (90
degrees), but after the upload it tracked only satellites above the local horizon. This fact is important for
the data processing as will be seen in Section 4.3.3.

SAC-C

The Earth observation satellite SAC-C (Section 2.3.5) is orbiting at an altitude of 702 km and the sun-
synchronous orbit has an inclination ofi � �
�. The BlackJack GPS receiver on-board SAC-C has
twelve channels. Table 4.2 lists the most important changes of the tracking software on SAC-C we have
identified. At present the SAC-C receiver is tracking up to eight satellites simultaneously (Status: April
10, 2003).

Figures 4.5(a) and 4.5(b) display the same information for SAC-C as Figures 4.3(a) and 4.3(b) for
CHAMP. The two related figures to SAC-C show, as expected, a more balanced performance for the
three days because no software switch was made during this time interval for the SAC-C receiver.

4.3.2 Data Quality and Pre-screening Options

Data quantity is in general a good indication for the performance of a GPS receiver and therefore, in a
certain sense, also for the quality of the results to be expected. The number and lengths of data gaps are
an important criterion for the performance of a GPS receiver, as well. In particular for kinematic point
positioning we absolutely need observations to determine the position at a specific epoch. This is an
essential difference w.r.t. the approaches based on dynamic orbit modeling, where gaps may be bridged
(to some extent) by the equation of motion of the satellite. The data sets of both satellites, CHAMP and
SAC-C, have data gaps which may be attributed to receiver resets or to the downlink periods.
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Figure 4.5: SAC-C receiver performance for doy 063 to 065, 2002.

We have seen that different screening options may be needed to optimize the pre-processing proce-
dure. Studies were performed to get insight concerning the effect of the options. The following tests are
based on data stemming from SAC-C of doy 051/2001 (February 20, 2001). From CHAMP we use the
GPS data of doy 152, 2001 (June 1, 2001). Figure 4.6 shows the number of effectively tracked satellites
for the two days considered. The SAC-C data have no gap and the CHAMP data have one gap of about
15 minutes and in addition two single epochs are missing.

The data sets are ideal for studying the pre-processing options outlined in Section 4.1 and other
processing issues.

Let us first study the numerical values for��� , the RMS error of the clock correction terms��i of
the biggest group of ”good” observations. As��� is actually computed from the clock corrections it is
a measure for the data quality. All available data were used for this test, implying that the observations
tracked below the local horizon were used, as well. Figures 4.7(a) to 4.7(d) give the histograms of��� for
all epochs of the day considered. The a priori standard deviation used for the code and phase screening
are�cscr � 1.0 m (�c � 0.7 m) and�pscr � 0.01 m (�p � 0.005 m), respectively, for both satellites. The
selected value for�obsscr is marked by a vertical line. The percentage of observations in total used for
the determination of the values for��� are given in the figures, too.

The histograms of��� are different for the two receivers. Obviously, the data of the CHAMP receiver
are noisier than those of the SAC-C receiver. For SAC-C�cscr � 1.0 m is representative for the histogram
of ��� (Figure 4.7(a)). For the phase observations the histogram of��� is narrower than expected from
the introduction of�pscr � 0.01 m. For CHAMP, on the other hand,��� of the code observations show a
broader histogram. The same is true for��� obtained from the phase observations.

For SAC-C the values of�cscr � 1.0 m and�pscr � 0.01 m seem to be appropriate, but for CHAMP
these values seem to be too optimistic. This behavior may be due to the observations gathered below
local horizon. The conclusion from this test is to adopt the values to�cscr � 1.5 m and�pscr � 0.015 m
for CHAMP.

Figures 4.7(e) and 4.7(f) show the histogram of��� using�cscr � 1.5 m and�pscr � 0.015 m.
A broader histogram is obtained for��� than in the corresponding Figures 4.7(c) and 4.7(d) for both,
the code and the phase observations. The percentage of observations used for the determination of���
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Figure 4.6: Number of effectively tracked satellites for CHAMP 152/2001 and SAC-C 051/2001.

is, on the other hand, ten percent higher for the code observations and five percent higher for the phase
observations, if we use the bigger value for�obsscr . The question whether the values of 1.0 m and 0.01 m,
or, alternatively, 1.5 m and 0.015 m should be used in practice, will be answered at the end of this section
after having studied all options relevant for the performance of the pre-screening algorithm.

One day of data for each satellite is of course not representative for a long data set of the two satellites.
Figures 4.8(a) and 4.8(b) for instance show the histograms of��� using�cscr � 1.0 m and�pscr � 0.01 m
for SAC-C on doy 067/2002. These more recent data of SAC-C show a similar performance as the data
of doy 051/2001 with the difference that approximately ten percent more observations are used for the
determination of��� . The difference between the two days is that the receiver tracked up to twelve
satellites simultaneously on doy 067/2002 instead of eight on doy 051/2001.

Figures 4.8(c) and 4.8(d) show the histograms of the��� values using�cscr � 1.0 m and�pscr �
0.01 m for CHAMP on doy 145/2001. This day is only one week before doy 152/2001, the data analyzed
in Figure 4.7, but shows a rather different behavior. As the last example we include the histogram of
the ��� values for CHAMP on doy 067/2002 (Figures 4.8(e) and 4.8(f)). This day falls into the time
period where the receiver did no longer track below the local horizon and where up to ten satellites
were observed simultaneously. The histograms are similar to the histograms of doy 145/2001 with the
difference that the percentage of observations used for the determination of the corresponding��� is
higher and the histogram of��� of the code observations is slightly narrower than for doy 145/2001.
The two examples of CHAMP seem to indicate that the data quality of doy 152/2001 is worse than
normal. We will nevertheless use this data set for further studies to get insight into the performance of
the pre-screening algorithm for data of a relatively bad quality.

Next, we study���i, the difference between each�i and the mean value��� defined by eqn. (4.2).
The pre-screening procedure checks whether the values of���i lie within the limits defined by� � ��� of
eqn. (4.2). Therefore, we study histograms of the ratios���i���� .

These histograms may be found in Figures 4.9(a) and 4.9(b) for SAC-C 051/2001. For CHAMP

65



4 Data Pre-processing

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

σγ (m)

P
er

ce
nt

ag
e

Observations used for det. of σγ: 86.1 %

SAC−C 051/2001

(a) Code -�cscr � 1.0 m.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

σγ (m)

P
er

ce
nt

ag
e

Observations used for det. of σγ: 87.3 %

SAC−C 051/2001

(b) Phase -�pscr � 0.01 m.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

σγ (m)

P
er

ce
nt

ag
e

Observations used for det. of σγ: 79.7 %

CHAMP 152/2001

(c) Code -�cscr � 1.0 m.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

σγ (m)

P
er

ce
nt

ag
e

Observations used for det. of σγ: 79.0 %

CHAMP 152/2001

(d) Phase -�pscr � 0.01 m.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

σγ (m)

P
er

ce
nt

ag
e

Observations used for det. of σγ: 89.7 %

CHAMP 152/2001

(e) Code -�cscr � 1.5 m.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

σγ (m)

P
er

ce
nt

ag
e

Observations used for det. of σγ: 84.3 %

CHAMP 152/2001

(f) Phase -�pscr � 0.015 m.

Figure 4.7: Histograms of��� values for SAC-C 051/2001 and CHAMP 152/2001; Vertical line at
�obsscr .
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Figure 4.8: Histogram of��� values for SAC-C 067/2002 and for CHAMP 145/2001 and 067/2002.
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152/2001 both examples (the first using�cscr � 1.0 m and�pscr � 0.01 m and the second using�cscr �
1.5 m and�pscr � 0.015 m) are included in Figures 4.9(c) and 4.9(d) and in Figures 4.9(e) and 4.9(f).
The ratios on the horizontal axes are given in units of� (see eqn. (4.2)). The bar on the right hand side
in each figure is the sum of all ratios larger than� � 20. Two versions are given for each histogram,
where the one to the left contains the entire information, the one on the right is cut at three percent on
the vertical axis.

The values of the ratios depend directly on the distribution of the��� (Figures 4.7(a) to 4.7(f)). The
histograms of code and phase-differences are different. There are differences between the histograms
for CHAMP and SAC-C, as well. As a consequence, the proper choice of the factor� determining the
rejection threshold (� � ���) for outliers depends also on the data quality. As expected the histograms for
the two examples for CHAMP are different. The histograms of the first example are broader for both, the
code and the phase, when compared to the second example. For the phase-differences the distribution is
the same for the bins� �12, implying that the rejection of large outliers is the same no matter which
�pscr is selected. For the code observations a similar conclusion cannot be drawn due to the higher
percentage of the ratios in all bins� � 3.

The question is whether it is reasonable to select a threshold of, e.g.,� � 3 or one with� � 3, in
which case observations of a moderate quality are included and would contribute to a more stable point
positioning solution. On the other hand, if the rejection threshold is set to a big value, bad observations
can deteriorate the quality of the point positions. Tests were carried out using� � 2, 3, 5, 10, 20, 30 and
40 to identify the optimum value.

Figures 4.10(a) and 4.10(b) show the percentage of deleted observations for SAC-C on doy 051/2001
for different values of the threshold value� for code and for phase-difference observations.
Figures 4.10(c) and 4.10(d) give the same information for CHAMP on doy 152/2001 for the first ex-
ample (�cscr � 1.0 m,�pscr � 0.01 m), Figures 4.10(e) and 4.10(f) for the second example (�cscr �
1.5 m,�pscr � 0.015 m). The lower curves correspond to the percentage of observations deleted by the
pre-screening procedure. The upper curves correspond to the percentage of observations removed by
the complete point positioning procedure, i.e., they include the observations marked due to the rejection
criterion in the iterative least squares adjustment step.

The figures show a very different behavior for SAC-C and for CHAMP, as could be expected from
inspecting Figures 4.9(a) to 4.9(f). For the code observations of SAC-C in Figure 4.10(a) the difference
between the two curves is above 3% for all values of�. A larger value of� means that many observations,
which are actually outliers, pass the pre-screening algorithm. In this case the bad observations have to
be found during the least squares adjustment step. The flattening of the upper curve in Figure 4.10(a)
indicates that most of them are found for� � 10. The decrease of the percentage from� � 2 to� � 10 is
remarkable. The curves give no information on which is the correct percentage of deleted observations.
It seems, however, that the percentage for� �2 or 3 is too large.

On the other hand, Figure 4.10(b) for the phase-difference processing shows that both curves are
flatter than for the code processing and nearly coincide. This means that in the case of the phase-
difference processing most bad observations are already rejected by the pre-screening algorithm almost
independently of the value of�. This indicates that the phase observations show more or less only
extreme outliers due to cycles slips or phase resets. For CHAMP the curves look different. The decrease
of the percentage of removed code observations with increasing values of� is more pronounced than
for SAC-C, but the difference between the upper and lower curve is less pronounced. For the phase
observations this difference is larger than for SAC-C and the percentage of deleted observations is also
larger. For 2
 � 
 10, the percentage is clearly larger for the first example (Figure 4.10(d)) of CHAMP
than for the second one (Figure 4.10(f)). These diagrams underline once more that there are significant
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(b) Phase-differences –�pscr � 0.01 m
– SAC-C 051/2001.
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(c) Code –�cscr � 1.0 m – CHAMP
152/2001.
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(d) Phase-differences –�pscr � 0.01 m
– CHAMP 152/2001.
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(e) Code –�cscr � 1.5 m – CHAMP
152/2001.
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(f) Phase-differences –�pscr � 0.015 m
– CHAMP 152/2001.

Figure 4.9: Histograms of���i���� in units of� for code and phase-difference observations in the pre-
screening algorithm.
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(b) Percentage of deleted phase-difference observa-
tions – SAC-C 051/2001 –�pscr � 0.01 m.
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(c) Percentage of deleted code observations –
CHAMP 152/2001 –�cscr � 1.0 m.
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(d) Percentage of deleted phase-difference observa-
tions – CHAMP 152/2001 –�pscr � 0.01 m.
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(e) Percentage of deleted code observations -
CHAMP 152/2001 -�cscr � 1.5 m.
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(f) Percentage of deleted phase-difference observa-
tions - CHAMP152/2001 -�pscr � 0.015 m.

Figure 4.10: Percentage of deleted observations for different values of�.
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differences of data quality of the two receivers on CHAMP and on SAC-C, respectively, for the days
considered. If we compare the two CHAMP examples we recognize that there are remarkable differences
in the two curves for� � 20. For� � 20 the differences are marginal and it does not matter which value
for �obsscr was used.

In summary we may state that the pre-screening algorithm is working reliably for different receiver
data. To make the procedure robust we have to take the data quality into account, i.e., the pre-screening
options have to be selected according to the data performance and quality of the receiver. The studies
performed to test the pre-screening options let us conclude that in the case of CHAMP and SAC-C the
choice of�cscr � 1.0 m,�pscr � 0.01 m, and 10
 � 
 20 seems to be appropriate. This choice is
appropriate for CHAMP, too, because we have seen that the lower data quality on doy 152/2001 is an ex-
ception, but that the pre-screening algorithm with the above recommended values still gives satisfactory
results. Nevertheless these are only preliminary results because we looked only at the performance of the
pre-screening algorithm itself. Whether the kinematic point positioning solution is better with a small
or a large value for� can be concluded only when we study the impact of the values on the resulting
kinematic positions in Chapter 6.

4.3.3 Elevation-dependent Weighting and Cut-off Angle

The cut-off angle as well as the function used for the elevation-dependent weighting of observations
significantly influence the resulting kinematic positions. [Rothacher et al., 1998] propose to give an
observation at zenith distancez of a terrestrial station a weight of

w�z� � cos� �z�� (4.4)

It is an open question whether this weighting scheme is appropriate for LEO GPS data, as well. LEO
observations at low elevations are not corrupted by tropospheric refraction (only directly at the Earth’s
limb they are corrupted), but multipath effects may nevertheless be an important source for degradation of
low-elevation data quality – in particular because a LEO may track satellites at zenith angles significantly
larger than��� (up to��	� � ����). In fact, CHAMP and SAC-C tracked in their early mission times
satellites below the local horizon, which raised the question whether such observations are of any use
at all. This question is implicitly answered for CHAMP by the fact that today (since doy 206/2001) no
observations are gathered below the local horizon of the spacecraft.

Studies were nevertheless made to see whether low elevation observations improve the point posi-
tioning, if an appropriate weighting is used. A simple modification of the weighting function (4.4) allows
it to include observations atz � ���

w�z� � cos� �� � z�	 (4.5)

Figure 4.11 shows the weighting functionw�z� for � � 1 and� � 0.75, where the weights down to
z � ���� are given. The “stretching factor”� is obviously useful.

Multipath may heavily degrade the observations at low elevations. It is therefore also important to
study the contribution of observations at zenith angles
�� 
 z 
 ���. Further studies and results made
by using different modifications of the developed pre-screening algorithm, different weighting functions
and different cut-off angles for LEO data are presented in detail in Chapter 6.
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Figure 4.11: Different weighting functionsw�z�.

4.4 Development of a Data Screening Procedure for a Permanent
Network

A new pre-processing procedure based on the observations of one roving receiver had to be developed
for processing GPS observations of spaceborne GPS receivers. As the trajectory of the spaceborne
receiver may be modeled over long time spans (hours or even days) with accuracies on the level of few
centimeters, this particular case of kinematic positioning is very closely related to static positioning. It is
thus tempting to apply the pre-processing algorithms developed for LEOs to the case of static positioning,
as well.

Excellent a priori information concerning the “trajectory” of a fixed receiver is available for stations
included in the IGS network. The algorithm allows it to develop a data screening procedure for code and
phase observations based on a station- and epoch-wise processing of the data. The requirements for such
a procedure are the availability of:

� precise station coordinates in the ITRF,

� precise orbit information for the GPS satellites in the Earth-fixed system (ITRF),

� precise 30-seconds clock corrections for the GPS satellites (including DCBs, Differential Code
Biases), and

� tropospheric delay estimates for the stations – not mandatory.

These requirements are met, e.g., by the stations of the IGS network and the products delivered by
CODE (Section 2.2.2) to the IGS. These products include station coordinates, orbits, ERPs, DCBs, and
troposphere estimates. The 30-seconds clock corrections are computed by the procedure described in
[Bock et al., 2000] and [Bock et al., 2003] using the 5-minutes clock corrections computed by CODE.

The original programLEOKIN for zero-difference kinematic point positioning as shown in its simple
form in Figure 3.2 is not yet capable of serving as a self-contained data screening tool. We have to add
the options to

� generate a list of the code and phase observations excluded by the pre-screening algorithm and the
least squares adjustment in the code or the phase-difference processing, and to

� generate a list of the epochs where new ambiguities for specified satellites have to be set up for the
phase observations.
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With this concatenated list of problem cases we may then use the programSATMRK of the Bernese GPS
Software [Hugentobler et al., 2001] to modify the observation files accordingly.

Thanks to the excellent a priori information concerning the station coordinates it was possible to
modify the pre-screening algorithm for the phase-difference observations. For the data screening of the
phase observations of terrestrial stations we classify the values�i not according to relation (4.2) but
according to

�i �

�	

	�

a � ��� 
 � � ���
b � ��� 
 � � ���
c � ��� � � � ���

(4.6)

where

a means that the observation is accepted,

b means that the observation is accepted, but has to be checked within the following iterative least-
squares adjustment step, and

c means that the observation is definitely an outlier.

Subsequently observations meeting the condition “a” of eqn. (4.6) will be accepted without further con-
trol, implying that these observations cannot be rejected by the estimation process for the position-
differences after the pre-screening. The observation is so to speak “protected against rejection”. Obser-
vations corresponding to the values of�i meeting condition “b”, on the other hand, are checked again
during the estimation process. It may be that they are helpful for a stable determination of the position-
difference or they may disturb the solution. In the case of a terrestrial station the a priori information is
more precise than in the case of a LEO. That is why we protect the observations meeting the condition
“a” against rejection. These observations have to be okay. The least squares adjustment step becomes
more robust due to this protection. It may be that we have eight observations passing the pre-screening
algorithm. Six of them meet condition “a” and two meet condition “b”. In the least squares adjustment
now only the two observations of condition “b” may be responsible for a possible deterioration of the
solution. It may be that both have to be excluded but it may also be that one is remaining in the process-
ing because it stabilizes the position. Observations classified in “c” in the test of eqn. (4.6) are marked
as outliers and added to the above mentioned list.

This modification of the pre-screening algorithm of the phase observations has the advantage that
unnecessary iterations in the kinematic point positioning procedure are avoided and that the detection of
bad observations disturbing the solution gets more reliable. The modification is not made for the code
processing because the quality of the code observations is very different for different GPS receivers.
Since we screen all code data with the same�cscr the usage of the modification would be not as reasonable
as for the phase-difference processing.

The actions performed due to bad observations are slightly different for code and phase observations.
Therefore, we explain both procedures separately.

4.4.1 Screening of Code Observations

Since the point positioning and therefore also the pre-screening algorithm is based on a station- and
epoch-wise processing of the data it is sufficient to outline the procedure of code observations for an
epoch and one station. If the following criteria are not met by the observations, theP�- and P�-
measurement of the specified satellite and epoch are marked and excluded from the further processing of
the data:
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Figure 4.12: Actions performed for phase observations.

� The difference betweenP� andP� has to be smaller than a specified value (e.g., 30 m).

� Orbit and clock correction information has to be available for the observed GPS satellite of the
processed epoch.

� The test value�i has to be in category “b” in eqn. (4.2); the point positioning procedure has to
confirm that the observation is okay and useful.

� At least four observations have to be available for the epoch.

4.4.2 Screening of Phase Observations

When screening phase observations, observations may be marked or flagged for setting up a new ambi-
guity. The criteria which have to be met by a good phase observation of one epoch-difference are the
following:

� Orbit and clock correction information have to be available for the observed GPS satellite for both
epochs.

� The test value�i has to be classified as “a” or “b” in eqn. (4.6). If the second condition “b” is met
the estimation process has to confirm that the observation-difference is okay.

� At least four observation-differences have to be available for the epoch-difference considered.

� The satellite has to be observed at both epochs in order to form the difference.

If one of the above conditions is not met, the case-dependent actions illustrated in Figure 4.12 are in-
voked. The first line in Figure 4.12 stands for the case that no observations are available to a satellite
for a longer period before the receiver starts to track the satellite. In this case we have to set up a new
ambiguity at the first epoch the satellite is observed. At this moment it is not clear, however, whether this
observation is of acceptable quality. This may not be checked until the difference with the observation of
the next epoch is formed. If the observations then should be rejected the third line of Figure 4.12 applies.
The second line illustrates the case where the observation-difference for the considered epoch-difference
is recognized as an outlier. In this case the observation of the first epoch of the epoch-difference is
marked as bad and at the second, the current epoch we set up a new ambiguity.
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If a cycle slip has occurred between these two epochs for this satellite we have marked the observation
of the first epoch unnecessarily. But with our processing strategy of forming independent differences
from one epoch to the next we may not recognize whether a bad observation-difference is due to an
outlier or to a cycle slip. To be on the safe side, we mark in all these cases the observation of the first
epoch.

The third line of the figure can just be seen as the continuation to the second line. If we found a bad
observation-difference related to a particular epoch-difference, where at the first epoch a new ambiguity
already was set up, we mark this first observation and “move” the new ambiguity flag to the observation
of the current epoch.

The validation and application of this data screening procedure for zero-difference observations of a
terrestrial network is presented in Section 6.7.
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5. Dynamic and Reduced-dynamic Orbit
Modeling

Kinematic point positions (e.g., fromLEOKIN) may be used as pseudo-observations in an orbit determi-
nation process based on a physical orbit model in order to generate a dynamic or reduced-dynamic orbit.
Our work also deals with dynamic and reduced-dynamic strategies for LEO precise orbit determination
(LEO-POD). As already mentioned in Section 2.4 the physical models for the perturbing forces are more
complicated for low Earth orbiting satellites than for satellites orbiting at higher altitudes, such as GPS
or GLONASS. The orbit of a high orbiting satellite is in general sufficiently well parametrized by initial
conditions and a few dynamical parameters. For LEOs the force field is usually not known with sufficient
precision (e.g., the higher degree and order terms of the gravity field or the atmospheric drag) and the
orbit determination procedure has to allow for a stochastic component in the satellite motion [Beutler,
2004].

Table 5.1 [Rothacher, 1992] lists the perturbing accelerations acting on a GPS satellite and Table 5.2
those acting on a LEO. Obviously, the perturbations due to the gravity field of the Earth are larger by
several orders of magnitude for LEOs. The impact of lunar and solar gravitational attraction, on the other
hand, is slightly smaller for LEOs because only the relative acceleration w.r.t. the geocenter defines the
perturbation. The effect of the radiation pressure depends mainly on the factorQ

m
(ratio area-to-mass) of

the satellite. The perturbation due to atmospheric drag mainly depends on the altitude of the satellite and
the Q

m
ratio.

Dynamical orbits (when compared to the kinematic orbits) have the advantage of being continuous
and without gaps. For applications requiring continuous precise orbit information a kinematic solution
may not be the optimum. On the other hand, precise knowledge of the physical models describing the
forces acting on the satellite is required in order to generate a dynamical solution.

Table 5.1: Perturbing accelerations acting on a GPS satellite.

Perturbation Acceleration
m�s�

Two-Body Term of Earth’s Gravity Field ��	�
Oblateness of the Earth 	 � ���

Lunar Gravitational Attraction 	 � ����
Solar Gravitational Attraction � � ����
Other Terms of Earth’s Gravity Field � � ����
Radiation Pressure (direct) � � ���
Y-Bias 	 � �����
Solid Earth Tides � � ����
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Table 5.2: Perturbing accelerations acting on a LEO satellite.

Perturbation Acceleration
m�s�

Two-Body Term of Earth’s Gravity Field 
��
Oblateness of the Earth � � ����
Other Terms of Earth’s Gravity Field � � ����
Lunar Gravitational Attraction � � ����
Solar Gravitational Attraction  � ����
Atmospheric Drag 	 � ����
Radiation Pressure (direct) � � ���
Albedo  � �����

5.1 Program SATORB

The programSATORB is the tool used subsequently for the dynamic and reduced-dynamic orbit deter-
mination procedure. Positions and, possibly, position-differences are used as observations in the orbit
determination process. For our applications the positions (and position-differences) are the result of pro-
gramLEOKIN. The positions may either be derived only from code observations or they are the result
of the combination of code positions with phase-derived position-differences (Section 3.4). Alterna-
tively, positions and position-differences (also fromLEOKIN), may be introduced as separate observa-
tion types into the orbit determination process. They are weighted in programSATORB according to
their estimated RMS errors in programLEOKIN or according to a user-defined weight ratio between
positions and position-differences. To make use of these two separate observation types has an advan-
tage compared to using the combined positions. The artificial jumps in the combined positions due to
interrupts in the phase-difference processing or due to data gaps are not present in the positions and
position-differences. They are combined in the dynamic orbit determination process following the phys-
ical models. Pseudo-stochastic pulses may compensate insufficiencies of the model and do not have to
compensate for artificial problems in the combined positions due to the jumps. The better the physical
models the fewer stochastic pulses have to be set up.

The equations of motion of the LEO are based on the parametrized post-Newtonian mechanics (PPN-
approximation) and integrated using a collocation technique described in [Beutler, 2004]. Models for the
following perturbing forces are implemented inSATORB:

� Gravitational forces (and gravity-related effects):

– Earth gravity field,

– solid Earth tides,

– ocean tides,

– third-body perturbations of the Sun and the Moon,

– relativistic PPN corrections,

– precession, nutation, and polar motion.

� Non-gravitational forces:

– atmospheric drag,
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– direct radiation pressure, and

– Earth albedo radiation pressure.

Non-gravitational forces may also be taken into account by analyzing accelerometer measurements in
the orbit determination process.

The following parameters may be estimated optionally and in addition to the six osculating elements:

� up to nine empirical parameters,

� scale factor for atmospheric drag,

� scale factor for direct radiation pressure,

� albedo parameter, or

� pseudo-stochastic pulses at pre-defined epochs.

When using accelerometer measurements one may in addition solve for

� scale factors and

� biases for the accelerometer data.

Subsequently, the models and algorithms are explained in detail.

5.2 Gravitational Forces

5.2.1 Earth Potential

The gravity field of the Earth is usually represented by spherical harmonic functions. A consequent
use of normalized Legendre polynomials avoids numerical problems related to high degree and order
terms. Several sets of coefficients are available and can be used for the orbit determination. The models
used for our studies in dynamical orbit determination are the JGM-3 [Tapley et al., 1996], GRIM5-
S1 [Biancale et al., 2000], EGM96 [Lemoine et al., 1998], TEG-4 [Tapley et al., 2000] and EIGEN-
1S [Reigber et al., 2002]. The maximum degree and order can be selected depending on the satellite
being processed. The perturbations due to the gravity field for the higher satellites like GPS are modeled
with sufficient accuracy by using the spherical harmonics up to degree and order eight. For the LEOs
this is not sufficient and we have to use expansions of degree and order 70 or more. For LEO orbits
it proved to be problematic that most gravity models do not provide sufficiently accurate high degree
and order coefficients. As gravity models are available using CHAMP data for the computation of the
model (TEG-4 and EIGEN-1S), the situation improved and the new models represent the gravity field
much better than the older gravity models. The issue of using different gravity models is addressed in
Section 6.5.

5.2.2 Solid Earth and Ocean Tides

The tidal potential used inSATORB conforms to the IERS Standards 1996 [McCarthy, 1996]. In total
17 constant and frequency-dependent terms are used with a harmonic expansion up to degree and order
four. The permanent tide is handled according to the gravity field used and the solid Earth pole tide is
applied. The gravity potential added by ocean tides are represented by constant and frequency-dependent
terms from the CSR3.0 global ocean tide model [Eanes and Bettadpur, 1995].
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5.2.3 Third-body Perturbations

The perturbations due to Sun and Moon are computed using the DE200 JPL Development ephemerides
[Standish, 1990]. The perturbations from major planets are not implemented.

5.2.4 Precession, Nutation and Polar Motion

Precession and nutation are implemented following the IAU resolutions 1976 and 1980, respectively
( [Seidelmann, 1992]), and for the polar motion the IERS Bulletin A or the IGS values are used.

5.3 Non-gravitational Forces

The modeling of the non-gravitational forces is not standardized to the same extent as the modeling of
the gravitational forces. In the following sections the models used inSATORB for the non-gravitational
forces are briefly characterized.

5.3.1 Atmospheric Drag

The determination of the perturbation due to the atmospheric drag acting on the satellite is one of the
most difficult tasks in modeling the low Earth orbiting satellites, because the atmospheric density along
the satellite orbit is not precisely predictable. In these heights not many measurements are available to
determine an exact model of the density of the higher atmosphere and its time variation. Nevertheless,
several models exist and we use the MSISe-90 (Mass Spectrometer and Incoherent Scatter) [Hedin, 1987,
1991] model for computing the density of the higher atmosphere. The MSISe-90 gives the density as a
function of the

� height above the Earth’s surface,

� day of year,

� geodetic longitude and latitude,

� daytime,

� true solar time,

� solar flux F10.7 cm, and the

� planetary magnetic indexAp.

The MSISe-90 model thus takes seasonal variations of the air density, variations with local time and
geographic location as well as with solar activity into account.

With the density��r� based on the MSISe-90, the perturbing accelerationaat for a spherical satellite
due to the atmosphere may be expressed as [Beutler, 2004]

aat � �C
�
� ��r� � Q

m
� �r� � �r

j �rj � (5.1)

C is the drag coefficient for the atmospheric drag,� 
 C 
 ��	.

80



5.3 Non-gravitational Forces

Q is the cross-sectional area of the satellite in the relevant direction for the atmospheric drag.
m is the mass of the satellite.
�r is the velocity vector of the satellite in the Earth-fixed frame.

We may choose constant values forC	Q andm using a spherical satellite model (cannon ball model).
The three parameters are different for each satellite being processed. More realistic satellite models
requiring knowledge of the satellite dimensions, surface properties, and attitude are not currently imple-
mented. In addition to the a priori model (eqn. (5.1)) programSATORB offers the possibility to estimate
a scale factorsat for the atmospheric drag

a�at � sat � aat (5.2)

in order to adapt the atmospheric drag computed by eqn. (5.1) to the actual properties (C	Q	m) of the
satellite. The main uncertainty of the model is the atmospheric density and its variations with time and
location at the altitude of the satellite.

5.3.2 Direct Solar Radiation Pressure

The acceleration due to solar radiation pressure mainly depends on the shape and on the reflection char-
acteristics of the satellite body. For a spherical satellite it may be expressed as [Beutler, 2004]

arp � �
�C

�
� A�

e

jr � rsj�
� S
c
�
�Q

m
� r � rsjr � rsj � (5.3)

�C is the coefficient for direct radiation pressure.
r is the geocentric vector of the satellite.
rs is the geocentric vector of the Sun.
Ae is the astronomical unit,Ae � ���	���
������ m [Lang, 1992].

S is the Solar constant,S � ����
 W
m� [Lang, 1992].

c is the velocity of light.
�Q is the cross-sectional area of the satellite in the relevant direction for solar radiation pressure (di-

rection Sun� satellite).
m is the mass of the satellite.

As opposed to atmospheric drag affecting the satellite continuously, solar radiation pressure acts only if
the Sun is not eclipsed (as seen by the satellite). If the satellite is in the Earth’s shadow, the perturbation
due to the solar radiation pressure is zero. In the same way as for the atmospheric drag we have the
possibility to choose the numbers�C	 �Q, andm corresponding to the satellite considered inSATORB. A
scale factorsrp for the direct radiation pressure may be estimated

a�rp � srp � arp� (5.4)

5.3.3 Empirical Parameters

In addition to the direct radiation pressure represented by eqn. (5.3) we may introduce empirical radiation
pressure parameters in the DYX-directions (D: direction to the sun, Y: direction of the solar panel axis, X:
perpendicular to D and Y (right-handed system)). Such a decomposition of the perturbing accelerations
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may, however, even make sense for a satellite without solar panels. The Y-direction is perpendicular
to the direction to the line Sun – satellite and perpendicular to the direction satellite – geocenter. The
parametrization consists of three constant terms (D0	 Y0	X0) and one once-per-revolution cosine- and
sin-term (DC	DS	 YC	 YS	 XC	XS) in each direction. The acceleration is set to zero if the satellite is in
the shadow. The model is given by�

B� aD

aY

aX

�
CA �

�
B� D0 � DC � cos u � DS � sinu

Y0 � YC � cos u � YS � sinu
X0 � XC � cos u � XS � sinu

�
CA (5.5)

whereu is the argument of latitude at the timet considered. This model corresponds to the so-called
CODE Extended Radiation pressure model used at the CODE Analysis Center which was originally
developed to account for the solar radiation pressure for the modeling of GPS satellite orbits [Beutler
et al., 1994].

We may also set up similar empirical parameters in an orbit-fixed reference frame in RSW-directions
(R: radial, S: in flight direction, perpendicular to R (alongtrack), W: perpendicular to R and S (crosstrack)),
[Colombo, 1989]. The model for the RSW-directions is

�
B� aR

aS

aW

�
CA �

�
B� R0 � RC � cos u � RS � sinu

S0 � SC � cos u � SS � sinu
W0 � WC � cos u � WS � sinu

�
CA � (5.6)

These parameters (R0	 S0	W0	 RC	 SC	WC	 RS	 SS	WS) are estimated as constants for the arc consid-
ered.

5.3.4 Earth Albedo

The Earth albedo perturbationaal (due to the sunlight reflected by the Earth’s surface) is small compared
to the direct radiation pressure. It depends on the position of the satellite relative to the sunlit hemisphere
of the Earth. The same input parameters (�C	 �Q	m) and a spherical satellite model with homogeneous
surface properties are assumed to model the effect. The area of the Earth visible from the satellite is
divided into a given number of surface elements. For each surface element illuminated by the Sun the
amount of light scattered into the direction of the satellite is computed using the Lambert reflection law.
This very simple model assumes a constant albedo for the entire Earth’s surface. The Earth’s albedo may
be estimated in the orbit improvement procedure.

5.4 Measuring the Non-gravitational Forces: Accelerometer Data

CHAMP carries a three-axes accelerometer instrument on-board (Section 2.3.4). An accelerometer mea-
sures all non-gravitational forces acting on the satellite, e.g., atmospheric drag, radiation pressure, Earth
albedo, the movements of the satellite due to maneuvers, etc. in a particular direction. The instrument
measures (in essence) the movements of a proof-mass in a self-contained cage. This is realized in the
case of CHAMP by measuring the electrostatic forces acting on the proof-mass placed in a cage in the
center of mass of the satellite. The maximum deviation of the proof-mass from the center of mass is two
millimeters. The six pairs of electrodes (three for linear and three for angular accelerations) placed in
the walls of the cage are used for both the generation of the electrostatic field keeping the proof-mass
at its location and for measuring the changes of the capacitance due to position changes of the proof-
mass. Based on the measurement of the capacitance, the electrostatic field is stabilized by applying the
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Figure 5.1: Accelerometer measurements in alongtrack direction for CHAMP, doy 140/2001, 0:00-6:00.

corresponding voltage on the opposite electrodes [CHAMP, 2002]. The output of the instrument are the
six accelerations (three linear and three angular). For orbit modeling the linear accelerations are relevant
because they may be used to calculate the surface forces (in particular atmospheric drag). The mea-
sured values may, however, not directly be interpreted as accelerations but need to be modified using the
transformation

Facc�i� � a�i� �m�i� � b�i�	 i � �	 �	 �� (5.7)

The constantsa�i� (scale factor) andb�i� (bias) are applied to the measurementsm�i� of direction i.
For CHAMP these are the radial-, alongtrack-, and crosstrack-direction. The values fora�i� andb�i�
may either be introduced as known – from a calibration procedure – into the orbit model or they may be
estimated in the parameter estimation process.

The original measurements provided by the instrument have a sampling rate of one second and show
spikes which are partly related to thruster pulses and boom oscillations. The pre-processing of the ac-
celeration measurements is performed at GFZ prior to data release [Foerste, 2001]. Pre-processing is
performed in two steps. In a first step a second-degree polynomial is fitted to the 1-Hz data for 10-
second intervals in order to identify and remove spikes and outliers. After a second fit with a polynomial
of second degree a normal point is constructed for each 10-second interval. These normal points are
released as Level 2 data to the users of the accelerometer data.

Figure 5.1 shows these pre-processed accelerations in the alongtrack direction for a time window
of six hours for doy 140/2001. A signal related to the orbital revolution of CHAMP (about 93 minutes
for doy 140/2001) can clearly be identified. The main non-gravitational forces acting on the satellite in
alongtrack direction are the atmospheric drag and, depending on the position w.r.t. the Sun, the direct
solar radiation pressure.

Figure 5.2 compares the accelerometer measurements and the models for non-gravitational forces
implemented inSATORB for the first twelve hours of doy 150/2001. The argument of latitude is used as
independent argument. The three components, radial, alongtrack, and crosstrack, are shown separately.
The left-hand figures are the accelerometer measurements in the corresponding directions and the right-
hand figures are the accelerations given by the models for the same time interval. The radial component
of the accelerometer measurements shows a strange pattern. One accelerometer diode in radial direction
failed but the information can be recovered by forming a specific linear combination of the other mea-
surements [Perosanz et al., 2003]. The signal in the radial direction has, therefore, not the same accuracy
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Figure 5.2: Comparison of accelerometer measurements and models for non-gravitational forces as a
function of the argument of latitude (CHAMP, doy 150/2001, 0:00-12:00).
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as that in the other two directions. The alongtrack and the crosstrack components show a similar behavior
for the accelerometer measurements and the models. The differences are mainly due to the insufficient
accuracy of the models for the non-gravitational forces. The jumps in the model accelerations are due to
eclipses. They are barely visible in the accelerometer measurements.

Accelerometer data were used for some tests. Results may be found in Section 6.6.

5.5 Pseudo-stochastic Pulses

The orbit determination procedure has to allow for a stochastic component in the orbit movement because
the parametrization of a low satellite orbit with the initial conditions and dynamical parameters is usually
not sufficient. The procedure implemented inSATORB may be characterized as follows [Beutler, 2004]:

� Each resulting orbit (or arc) is continuous.

� Each arc is represented piece-wise by conventional ordinary differential equation systems (deter-
ministic equations of motion).

� At pre-determined epochs the orbit is allowed to suffer velocity changes�vi in pre-determined
directionsi. These velocity changes are a consequence ofpseudo-stochastic pulses.

� Pseudo-stochastic pulses�vi are conventional parameters of a classical least squares adjustment
process.

� Each pseudo-stochastic pulse is characterized by an a priori variance.

The part of the NEQ system containing the contributions of the pulses may be formed by linear combi-
nations from a reduced NEQ system (including only the initial osculating elements and the dynamical
parameters). This feature is extremely time saving because no variational equations have to be inte-
grated for the stochastic pulse parameters. Additional optimization of processing time is achieved by
only saving the reduced NEQ component for each pulse epoch. Based on that information the NEQ is
reconstructed for the full parameter vector just before inverting the NEQ system.

The pseudo-stochastic pulses may be set up in the R-, S-, and W-directions. They may be set up at
pre-determined epochs with a specified spacing (e.g., every 30 minutes) or at epochs which are defined,
e.g., to maneuvers of the satellite.

The CHAMP satellite, e.g., frequently performs maneuvers. Usually, they are due to the satellites’
attitude. The maneuvers may nevertheless have a non-negligible effect on the orbit, e.g., due to a mis-
alignment of thruster pairs or due to not fully balanced firings of the thruster pairs. Figure 5.3 shows
the number and duration of the thruster pulses for four different days. The duration of the pulses is
limited to three seconds. A maneuver is initiated when the real attitude of the satellite differs by more
than a certain value from the nominal attitude. The circles in Figure 5.3 correspond to maneuvers which
have happened according to accelerometer measurements but were initially not recorded by the satellite
system. After a pre-processing of the maneuver and accelerometer data (performed at GFZ, Potsdam,
Germany) these maneuver epochs are added to the list of pulses with an unknown duration and direction.
Figure 5.3 shows that the attitude maneuvers normally take place at regular time intervals. There are
several maneuvers directly following each other which are performed for the fine-tuning of the attitude.
Stochastic pulses may be set up at the maneuver epochs to absorb possible orbit movements caused by
the pulses. A few studies made in this context are outlined in Sections 6.6.
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Figure 5.3: Number and duration of thruster pulses for CHAMP for different days (: maneuver recorded
by the satellite system;�: additional maneuver with unknown duration added after pre-
processing of the data).
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6. Results and Applications

The quality of kinematic orbits of LEOs computed by the programLEOKIN as explained in Chapter 3
strongly depends on the pre-processing of the observations. A first part of this chapter is, therefore,
devoted to the impact of different pre-processing options on the resulting kinematic positions (see Chap-
ter 4). The kinematic trajectories are compared with reduced-dynamic orbits (see Chapter 5) or, if avail-
able, with orbits from external sources.

The first section introduces the criteria used for the evaluation of kinematic solutions. It is followed
by results from different pre-processing options applied to data sets for CHAMP and SAC-C covering
different time intervals. The first example is based on data from one day of CHAMP (doy 152/2001) and
one day of SAC-C (doy 051/2001). The second example is based on the data set of the IGS CHAMP
test campaign in May 2001 (doy 140 to 150/2001). The third example is based on a data set spanning 35
days in 2002 (doy 055 to 089/2002) of SAC-C and CHAMP.

In subsequent sections different gravity field models are compared based on dynamic orbit solutions
for CHAMP and SAC-C. The impact of stochastic pulses, which may be set up in the reduced-dynamic
orbit procedure, are studied. The use of accelerometer measurements instead of models for the non-
gravitational forces is the topic of one section. Results and comparisons of the data screening approaches
for zero-difference observations for ground stations (see Section 4.4) are presented in the final section.

6.1 Evaluation of Kinematic Solutions

The evaluation of kinematic solutions is difficult without external comparisons. We have to define criteria
to evaluate the results from programLEOKIN. Two criteria are important quality indicators for kinematic
solutions:

1. the number of interrupts in the combined solution due to missing phase position-differences and

2. the number of jumps in the kinematic trajectory exceeding a specified threshold.

3. RMS error of a Helmert transformation between kinematic and reduced-dynamic orbit.

Jumps are caused by position-differences corrupted by bad observations. Such jumps may be identified
by comparing the kinematic trajectory with a dynamic or reduced-dynamic orbit. These orbits have no
gaps and are continuous for the entire arc. Jumps in the kinematic trajectory may therefore be detected
by analyzing the difference between the kinematic and a dynamic orbit, e.g., the a priori or the post-fit
orbit. The procedure used to find these jumps is the following:

1. Form the differences between three-dimensional positions of kinematic and dynamic trajectories.

2. Form the differences of these difference vectors between two subsequent epochs. A jump in the
kinematic positions will then manifest itself as an outlier in an otherwise smooth curve.
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6 Results and Applications

3. For a moving interval of ten epochs:

� Exclude each of the ten points one after the other,

– fit a polynomial of degree two through the remaining nine points,

– check the residuals of the excluded points,

– mark a point as outlier if the absolute value of its residual is larger than a specified limit.

� If a position was marked as an outlier the procedure is repeated with the remaining points of
the interval. Eventually all outliers in the interval are identified.

4. If the same point is showing a residual of more than the specified limit in more than eight succes-
sive moving intervals, a jump in the kinematic trajectory is assigned to the corresponding epoch-
difference.

An interrupt in the kinematic trajectory due to a missing position-difference always occurs if there is a
data gap. An interrupt may also occur if not enough phase-difference observations are left due to outliers
such that no position-difference can be computed for this epoch-difference. In general, an interrupt may
lead to a large jump in the trajectory (Section 3.6.3). If the jump is larger than the specified limit (we used
eleven centimeters for this purpose), this interrupt is included in the number of jumps of the kinematic
trajectory w.r.t. the dynamic orbit. If the interrupt does not result in a large jump in the kinematic
trajectory, it does not appear in the number of jumps of the kinematic trajectory.

These two criteria defined above are used to evaluate the kinematic solutions computed byLEOKIN.
The smaller the number of interrupts and the number of jumps the better the solution.

In addition, the percentage of observations deleted by the pre-screening algorithm is an important
criterion for the evaluation of a kinematic solution. If the kinematic trajectory has few interrupts and
jumps but if instead a big number of observations is excluded due to a too narrow pre-screening threshold
the corresponding options may not be correct.

The resulting kinematic trajectories and the reduced-dynamic orbits are saved as tabular positions in
the SP3-format ([Remondi, 1989]). For comparison purposes a Helmert transformation with estimating
a translation (three unknown parameters) is performed between these positions. If we compare several
orbits with a ”reference” orbit, the resulting RMS errors of the Helmert transformation indicate the
quality of the orbits considered w.r.t. the ”reference” orbit.

The kinematic trajectory resulting fromLEOKIN which is supposed to be the best is used for gener-
ating a reduced-dynamic orbit withSATORB. The code positions and phase position-differences of the
kinematic solution are used as independent observation types inSATORB (see Section 5.1) in order to
avoid data problems stemming from the jumps in the combined positions. This reduced-dynamic orbit is
the best result we may produce withLEOKIN andSATORB. This orbit then may be used as “reference“
orbit for comparison purposes in order to evaluate the quality of all other kinematic and reduced-dynamic
orbits produced for a particular data set.

6.2 CHAMP 152/2001 and SAC-C 051/2001

We compare different pre-screening and -processing options for the two satellites CHAMP and SAC-C.
The data used for this example (doy 051/2001 for SAC-C, doy 152/2001 for CHAMP) are described in
Section 4.3.2. Input data for each day are

� GPS orbits and ERPs of the CODE Rapid processing,
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6.2 CHAMP 152/2001 and SAC-C 051/2001

� 30-second clock corrections for the GPS satellites [Bock et al., 2000] (GPS broadcast clock cor-
rections used for alignment to GPS time), and

� the corresponding reduced-dynamic orbit for CHAMP or SAC-C derived by the procedure ex-
plained in Figure 3.1 (only code observations).

The data are processed with the following basic options:

1. �cscr � 1.0 m and�pscr � 0.01 m,

2. the weight of the code positions is reduced by a factor 100 for the combination (in addition to the
normal weight ratio ofwc � wp � � � ����),

3. no cut-off angle is used for the observations, and

4. an elevation-dependent weighting is applied to the observations with the weighting functionw�z� �
cos� ��� � z�.

In Section 4.3.2 we have studied the influence of different pre-processing options on the pre-processing
itself. In this section we compute different solutions with one or two options changed in order to get an
impression of the influence of the options on the kinematic solution.

6.2.1 Different Values for Threshold �

The threshold value� is an important pre-screening option. It decides which observations are excluded
from the further processing in the pre-screening step (see eqn. (4.2)). The remaining observations
are used for the kinematic point positioning. This is done iteratively in order to find the observations
which passed erroneously the pre-screening procedure and disturb the solution. The question is therefore
whether a narrow pre-screening with a small value for� is preferable or a pre-screening which excludes
only the extreme outliers due to a large value for�. The observations which pass the pre-screening and
still disturb the solution should then be found in the iterative least squares adjustment step. It may be
possible that in the case of a larger value for�, observations which would be excluded with a smaller�
may contribute to a more stable point position. We have to remember that the GPS receivers on-board the
LEO satellites often do not track many satellites and the degree of freedomf (number of observations
minus number of parameters) is rather small for the epoch-wise kinematic point positioning (f � �� �).
Therefore each observation is important for a controlled solution. The small value forf is, on the other
hand, the problem why we need the described pre-screening procedure. In this procedure, only the re-
ceiver clock parameter has to be estimated while the position is fixed at its a priori value. This makes
the procedure much more robust to find the outliers than the iterative least squares adjustment step with
four unknowns and a corresponding small degree of freedom. The requirement for the pre-screening
algorithm is, however, that a priori orbit information of sufficient accuracy (better than half a meter) is
available.

Solutions with different values for� are computed in order to study the effect on the resulting kine-
matic positions. Table 6.1 characterizes the solutions. The value� is varied from 3 to 40. Figure 6.1
shows the results for SAC-C 051/2001 (top) and for CHAMP 152/2001 (bottom). It shows for each so-
lution C1 to C6 two bars. The left bar represents the number of interrupts in the kinematic trajectory due
to missing phase position-differences and the right bar represents the number of jumps in the kinematic
trajectory w.r.t. a reduced-dynamic orbit due to incorrect position-differences.
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6 Results and Applications

Table 6.1: Solutions with different threshold value�.

Solution C1 C2 C3 C4 C5 C6

� � 3 5 10 20 30 40

3 5 10 20 30 40
0

15

30

45

60 SAC−C 051/2001

C1 C2 C3 C4 C5 C6

β =

3 5 10 20 30 40
0

30

60

90

CHAMP 152/2001

C1 C2 C3 C4 C5 C6

β =
Solution

Figure 6.1: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory (right bar) for solutions C1 to C6, SAC-C 051/2001 (top)
and CHAMP 152/2001 (bottom).
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6.2 CHAMP 152/2001 and SAC-C 051/2001

Table 6.2: RMS errors (m) of Helmert transformation between kinematic solutions C2 to C6 and C1 and
between C1 to C6 and reduced-dynamic solution C1S.

C1 C2 C3 C4 C5 C6

SAC-C C1 - 0.04 0.15 0.35 0.30 0.43
C1S 0.16 0.16 0.22 0.40 0.34 0.45

CHAMP C1 - 0.02 0.16 0.64 0.72 0.71
C1S 0.10 0.11 0.20 0.65 0.73 0.72

The number of jumps in the kinematic trajectory is increasing with increasing threshold value� for
both satellites. This means that bad observations which are not excluded by the pre-screening due to a big
value of� are not identified as outliers by the iterative least squares adjustment. These bad observations
deteriorate the solution and lead to the jumps in the kinematic trajectory. The number of interrupts due
to missing position-differences, on the other hand, does not depend much on� for both satellites. This
means that no additional interrupts are produced due to the different pre-processing option.

We use the positions and position-differences from solution C1 in order to fit a reduced-dynamic
orbit through these “pseudo-observations”. This reduced-dynamic orbit C1S (1-day arc) is parametrized
as follows:

� six osculating elements,

� nine empirical parameters in RSW-directions, and

� pseudo-stochastic pulses every ten minutes.

The gravity field model EIGEN-1S (120x120) and models for atmospheric drag and direct radiation
pressure are used. Eight iterations are performed to guarantee convergence of the solution.

Table 6.2 shows the RMS errors of a Helmert transformation with three translation parameters be-
tween the kinematic trajectories of C2 to C6 and C1 and the kinematic trajectories C1 to C6 and C1S. It
seems that only solutions C1 and C2 are of comparably good quality. Figure 6.2(a) shows the differences
between solution C1 and C2 and Figure 6.2(b) between C1 and C5 for SAC-C. Figure 6.3(a) shows the
differences between the kinematic trajectory C1 and the reduced-dynamic orbit C1S for SAC-C 051/2001
and Figure 6.3(b) those between C2 and C1S. The differences between C1 and C2 for SAC-C are small
(up to 15 cm). Those between C1 and C5 are ten times larger underlining that C5 with a� � 30 is
not of good quality. The differences between the kinematic trajectories C1 and C2 are so small that the
differences of these kinematic trajectories w.r.t. the reduced-dynamic orbit C1S (Figure 6.3) do not allow
to prefer one of the solutions.

Figures 6.4(a) and 6.4(b) show the differences between the kinematic trajectories C1 and C2 and
between C1 and C5 for CHAMP. The differences between C1 and C2 for CHAMP have the same magni-
tude as the corresponding differences for SAC-C except for a small sequence at the end of the day which
reaches up to 35 cm (z-component). The differences between C1 and C5 show three major problem
sequences, i.e., at the beginning, between�h and��h, and at the end of the day.

Figure 6.5 shows the differences between the kinematic trajectory C1 and C1S (left) and between
C2 and C1S (right) for CHAMP 152/2001. The differences between C1 and C2 are also in the case of
CHAMP so small that no solutions may be preferable when inspecting the differences to C1S. One thing
can be recognized however: The big jump between the kinematic trajectories C1 and C2 (Figure 6.4(a))
at the end of the day stems from the kinematic solution C2 (compare with Figure 6.5(b)).
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(a) Kinematic trajectories C1 – C2, RMS 0.04 m.
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(b) Kinematic trajectories C1 – C5, RMS 0.30 m.

Figure 6.2: Orbit differences between kinematic trajectories C1 and C2 (left) and C1 and C5 (right) for
SAC-C 051/2001.

Some observations included in C5 significantly deteriorate the kinematic solution. Decimeter ac-
curacy of a kinematic solution withLEOKIN is not possible with� � 30 (C5 and C6). The studies
underline the importance of the pre-screening. The iterative least squares adjustment step following the
pre-screening is obviously not reliable enough to find all bad observations disturbing the solution. The
results heavily depend on the pre-screening option�.

The percentage of deleted observations is an additional indication on how to select the optimum
options. This is already illustrated by Figures 4.10(a) and 4.10(b) for SAC-C and by Figures 4.10(c) and
4.10(d) for CHAMP. In Section 4.3.2 the conclusion was drawn that the choice of 10
 � 
 20 seems
to be appropriate for the CHAMP and the SAC-C receiver data. Together with the information from this
section we note that the solutions C1 (� � 3) and C2 (� � 5) are optimal for both satellites, CHAMP
and SAC-C, on the days considered. It seems that in solution C1 all outliers were actually rejected. On
the other hand, some good observations may be included in solution C2 (which were excluded in C1) due
to insufficient a priori information (GPS orbits, clock corrections, or a priori orbit for the LEO). These
additional observations may stabilize the kinematic solution in particular in cases where otherwise only
four observations would have been available.

6.2.2 Different Elevation Cut-off Angles and Elevation-dependent Weighting
Functions

It is not clear a priori whether observations to satellites tracked below the local horizon of the receiver
improve or deteriorate a kinematic point positioning. Such observations may be affected, e.g., by mul-
tipath. One may hope to minimize the impact of multipath by using an elevation-dependent weighting
scheme (see Section 4.3.3). Using all observations but weighting them promises a gain of observation
information for the kinematic solution.

Test solutions are performed with� � 3, varying elevation cut-off angles and weighting functions.
Table 6.3 summarizes the solution characteristics. Figure 6.6 shows the number of interrupts and number
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(a) Kinematic trajectory C1 – reduced-dynamic orbit
C1S, RMS 0.16 m
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Figure 6.3: Orbit differences between kinematic trajectory C1 and reduced-dynamic orbit C1S (left) and
between C2 and C1S (right) for SAC-C 051/2001.
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(a) Kinematic trajectories C1 – C2, RMS 0.02 m.

             
−3

0

3

6

9

M
et

er

CHAMP 152/2001 X

             
−3

0

3

6

9

M
et

er

Y

0  4 8  12  16 20  24
−3

0

3

6

9

M
et

er

Z

Hours

(b) Kinematic trajectories C1 – C5, RMS 0.72 m.

Figure 6.4: Orbit differences between kinematic trajectories C1 and C2 (left) and C1 and C5 (right) for
CHAMP 152/2001.
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(a) Kinematic trajectory C1 – reduced-dynamic orbit
C1S, RMS 0.10 m
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Figure 6.5: Orbit differences between kinematic trajectory C1 and reduced-dynamic orbit C1S (left) and
between C2 and C1S (right) for CHAMP 152/2001.

Table 6.3: Solutions with different elevation cut-off angles and elevation-dependent weighting.

C1 D1 D2 D3 D4 D5 D6

Elev. cut-off angle no no �� �� �� ��� ���

Elev.-dep weight. yes no no yes yes no yes
Factor� 3/4 - - 3/4 1 - 1

of jumps for SAC-C 051/2001 (top) and for CHAMP 152/2001 (bottom). Table 6.4 lists the RMS errors
of the Helmert transformations between the solutions. Figure 6.7 shows the differences between D2
and D3 (Figure 6.7(a)) and between D2 and D4 (Figure 6.7(b)) for SAC-C 051/2001. Figure 6.9 shows
the differences between the corresponding solutions for CHAMP 152/2001. Figure 6.8(a) shows the
differences between the kinematic trajectory D2 and the reduced-dynamic orbit C1S and Figure 6.8(b)
those between D4 and C1S for SAC-C 051/2001. Figures 6.10(a) and 6.10(b) show the differences
between the corresponding solutions for CHAMP 152/2001.

It is obvious that the solutions D5 and D6 (elevation cut-off of���) are of poor quality for both satel-
lites due to the large number of interrupts and jumps. We may conclude from this fact that observations
between�� and��� elevation are very important for a stable point positioning solution. They have to be
included into the processing.

Solutions C1 and D1 (no elevation cut-off) are the best for SAC-C regarding the number of interrupts
and jumps in the kinematic trajectory. Solution D2 has the same number of interrupts but the number of
jumps in the trajectory is slightly larger.

When we analyze the results from CHAMP we have to keep in mind that the CHAMP receiver is
no longer tracking below the local horizon since doy 206/2001 (Section 4.3.1). This means that for
the processing of data after doy 206/2001 it is no longer possible to include observations below the
local horizon. Though doy 152/2001 is prior this date we have a look on the solutions D2, D3, and D4
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Figure 6.6: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory (right bar), solutions C1, D1 to D6, SAC-C 051/2001 (top)
and CHAMP 152/2001 (bottom).

Table 6.4: RMS errors (m) of Helmert transformation between kinematic solutions and C1, D2, and C1S
for SAC-C (doy 051/2001) and CHAMP (doy 152/2001).

D1 D2 D3 D4 D5 D6

SAC-C C1 0.04 0.06 0.04 0.08 0.19 0.20
SAC-C D2 0.05 - 0.04 0.10 0.18 0.21
SAC-C C1S 0.17 0.18 0.17 0.18 0.21 0.23

CHAMP C1 0.05 0.05 0.01 0.05 0.09 0.09
CHAMP D2 0.03 - 0.05 0.09 0.11 0.11
CHAMP C1S 0.11 0.11 0.10 0.11 0.12 0.12
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(a) Kinematic trajectories D2 – D3, RMS 0.04 m.
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(b) Kinematic trajectories D2 – D4, RMS 0.10 m.

Figure 6.7: Orbit differences between kinematic trajectories D2 and D3 (left) and between D2 and D4
(right) for SAC-C 051/2001.
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(a) Kinematic trajectory D2 – reduced-dynamic orbit
C1S, RMS 0.18 m.
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(b) Kinematic trajectory D4 – reduced-dynamic orbit
C1S, RMS 0.18 m.

Figure 6.8: Orbit differences between kinematic trajectory D2 and reduced-dynamic orbit C1S (left) and
D4 and C1S (right) for SAC-C 051/2001.
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(a) Kinematic trajectories D2 – D3, RMS 0.05 m.
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(b) Kinematic trajectories D2 – D4, RMS 0.09 m.

Figure 6.9: Orbit differences between kinematic trajectories D2 and D3 (left) and between D2 and D4
(right) for CHAMP 152/2001.

             
−0.6

−0.3

0

0.3

0.6

M
et

er

CHAMP 152/2001 X

             
−0.6

−0.3

0

0.3

0.6

M
et

er

Y

0  4 8  12  16 20  24
−0.6

−0.3

0

0.3

0.6

M
et

er

Z

Hours

(a) Kinematic trajectory D2 – reduced-dynamic orbit
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(b) Kinematic trajectory D4 – reduced-dynamic orbit
C1S, RMS 0.11 m.

Figure 6.10: Orbit differences between kinematic trajectory D2 and reduced-dynamic orbit C1S (left)
and D4 and C1S (right) for CHAMP 152/2001.
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only. Concerning the number of interrupts and jumps solutions D2 and D3 are identical, solution D4
has slightly more jumps in the kinematic trajectory. Figure 6.9(a) shows the differences between the
kinematic trajectories of D2 and D3. The offset of a few small sequences is remarkable. The RMS error
of the Helmert transformation is five centimeters (Table 6.4). The offset between short sequences may
be recognized in the differences between solution D2 and D4 (Figure 6.9(b)), as well. When we inspect
the differences of the kinematic trajectories (D2 and D4) w.r.t. the reduced-dynamic orbit C1S we can
recognize that solution D2 shows the bigger jumps in the kinematic trajectory.

The question whether elevation-dependent weighting of the observations is appropriate or not for
CHAMP can, however, not be answered at this point of the studies.

Figure 6.6 shows that the observations below the local horizon do neither improve nor disturb the
kinematic solution in the case of CHAMP. The GPS POD antenna on-board CHAMP does, however,
not have a direct sight to the satellites below the local horizon. One may therefore question the sense of
using these observations.

The SAC-C receiver is still tracking below the local horizon, today. The solutions C1 and D1 without
applying a cut-off angle show the best performance. The observations below the local horizon slightly
improve the kinematic solution. In the case of SAC-C the GPS antenna may track the satellites below
the local horizon and therefore it could make sense to use these observations.

The analyzed example of one day for each satellite CHAMP and SAC-C shows the big influence
of different pre-processing options on the resulting kinematic positions. Therefore it is important to
find the optimum options for the pre-processing of the observations. A clear answer could be given
concerning the value of�. The most reasonable choice is� � 3 or 5 because for larger values of� the
bad observations remaining in the processing cannot be identified by the iterative least squares adjustment
step. The studies about elevation-dependent weighting and cut-off angle options only showed clearly that
the observations between�� and��� elevation are very important for a stable point positioning and they
have to be used in the kinematic point positioning procedure inLEOKIN.

The findings of this section will be used when processing more data of CHAMP and SAC-C. The
evaluation of the best pre-processing options for the kinematic point positioning of each satellite will
then be easier.

6.3 IGS Test Campaign – doy 140 to 150/2001

The IGS CHAMP test campaign was initiated by the IGS LEO Pilot Project (Section 2.2.3) and covers
a time interval of eleven days (May, 20 to 30, doy 140 to 150, 2001). The institutes and groups con-
tributing to the Pilot Project processed the CHAMP GPS tracking data and produced orbits for CHAMP.
The resulting orbits were compared by the Analysis Center Coordinator (ACC) of the project (Henno
Boomkamp of ESOC, Darmstadt) [TEST CAMPAIGN, 2002].

Our (AIUB) contribution to the test campaign is based on the following input data:

� GPS orbits and ERPs from the CODE Final processing,

� GPS 30-second clock corrections (using CODE Final solutions for troposphere zenith delays and
station coordinates) fixed on the 5-minute CODE Final clock corrections, and

� CHAMP L1 and L2 phase and code observations.

First we check the CHAMP GPS data quality for the eleven days of the campaign. Detailed studies of data
pre-processing are performed and explained in the following section in order to select the optimal options
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Figure 6.11: Percentage per day of effectively tracked satellites by the CHAMP GPS receiver for doy
140 to 150/2001. Black: eight satellites, white: seven satellites, gray: six satellites.
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Figure 6.12: Number of tracked satellites by the CHAMP GPS receiver for doy 140 to 150/2001.

for the processing of the entire data set and the determination of the kinematic positions. Subsequently,
the kinematic solutions are compared with solutions from an external source. The reduced-dynamic
solution generated by the Technical University of Munich, Germany, is used for this purpose. The studies
based on the data of the eleven days in 2001 for CHAMP are summarized in the concluding section.

6.3.1 Data Quality

Figure 6.11 shows for each day the fraction of the day for which a given number of satellites was tracked.
During the time period of the test campaign the CHAMP receiver could track up to eight GPS satellites
simultaneously (Table 4.1). The figure gives the percentage of time where eight (black), seven (white),
or six (gray) satellites where tracked. Figure 6.12 shows the number of tracked satellites as a function of
time for the eleven days. The CHAMP GPS receiver shows a similar performance during the entire time
span. Some data gaps exist, they last from one epoch to several minutes.

99
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6.3.2 Data Pre-processing

The pre-processing performance was studied as a function of:

� different values for the threshold�,

� the weight ratio of code and phase for the combination,

� elevation-dependent weighting of the observations,

� different a priori orbit information for the pre-screening of the data, and

� different iterative procedures to achieve the kinematic solutions.

Two basic options for data processing inLEOKIN were never changed:

� �cscr � 1.0 m,�pscr � 0.01 m, and

� a cut-off angle of��.

The a priori orbit for the zero-difference kinematic point positioning withLEOKIN is generated by a
two-step procedure (Section 3.1) in order to get an a priori orbit which has at least an accuracy of less
than half a meter. Each step contains oneLEOKIN and oneSATORB run. We follow two different
approaches (APO set C and P) for generating the reduced-dynamic orbit used as a priori orbit for the pre-
screening inLEOKIN. This is done to find the most appropriate and reliable procedure for generating
a reduced-dynamic orbit serving as a priori orbit. The kinematic and reduced-dynamic orbits generated
for this purpose are summarized in Table 6.5.

The reduced-dynamic orbits are generated inSATORB with the following models and parameters:

� Models for gravitational forces:

– Earth gravity field model EIGEN-1S (degree and order 120),

– tidal potential, ocean tides,

– third body perturbations of Sun and Moon,

– precession, nutation, and polar motion,

� Models for non-gravitational forces:

– atmospheric drag,

– direct radiation pressure,

� Parameters estimated:

– six osculating elements,

– nine empirical parameters in RSW-directions (three constant and six periodic terms),

– pseudo-stochastic pulses in RSW-directions with a spacing of 90 or 20 min (see Table 6.5).
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Table 6.5: Kinematic (LEOKIN) and reduced-dynamic (SATORB) orbits generated in order to guarantee
reliable a priori orbit information.

Solution Source Description

cI LEOKIN Kinematic code positions,
generated without a priori information

cIS SATORB Reduced-dynamic orbit, cI positions
as observations,
spacing for stochastic pulses: 90 min

A priori orbit (APO) set C

cII� LEOKIN Kinematic code positions,
cIS used as a priori information,
individual value for�

cII�e with elevation-dependent weighting
cII�S SATORB Reduced-dynamic orbit, cII� or
cII�Se cII�e positions as observations,

spacing for stochastic pulses: 20 min

A priori orbit (APO) set P

pII� LEOKIN Combined kinematic positions based on code
and phase observations,
cIS used as a priori information,
individual value for�

pII�e with elevation-dependent weighting
pII�S SATORB Reduced-dynamic orbit, pII� or
pII�Se pII�e positions as observations,

spacing for stochastic pulses: 20 min
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Table 6.6: Summary of kinematic solutions computed for the IGS CHAMP test campaign (C stands for
APO set C, P for APO set P, A for a normal code weight for the combination, B for one which
is reduced by a factor of 100, e for elevation-dependent weighting).

APO set C APO set P
no elev.-dep.weight. elev.-dep.weight. no elev.-dep.weight. elev.-dep.weight.

� 
 3 CA3 CB3 CA3e CB3e PA3 PB3 PA3e PB3e
� 
 5 CA5 CB5 CA5e CB5e PA5 PB5 PA5e PB5e
� 
10 CA10 CB10 CA10e CB10e PA10 PB10 PA10e PB10e
� 
20 CA20 CB20 CA20e CB20e PA20 PB20 PA20e PB20e
� 
30 CA30 CB30 CA30e CB30e PA30 PB30 PA30e PB30e

Eight iterations are performed to ensure convergence of the solution.
TheLEOKIN run to generate solutions cII�, cII�e, pII�, or pII�e is the starting point for the follow-

ing set of test solutions. The pre-screening option� and elevation-dependent weighting or not dedicated
to the particular test solution are used for this point positioning inLEOKIN, too. In this way we guaran-
tee a consistent use of the same set of options throughout all steps of the procedure. This implies that we
generate different a priori orbits for each solution. In some examples we will, however, use the same a
priori orbit for different solutions for specific comparisons.

Table 6.6 summarizes the final kinematic solutions computed for the data set from the IGS CHAMP
test campaign withLEOKIN. For all solutions code and phase observations are used. The first capital of
the solution identifier stands for the a priori orbit set used (C: based on code only, cII�S or cII�Se, P:
based on code and phase, pII�S or pII�Se), and the notation A or B denotes the weighting scheme for the
code positions in the combination. Solution A uses the “normal” relative weight ofwc � wp � � � ����

between code positions and phase position-differences for the combination. Solution B further reduces
the weight of the code positions by a factor of 100 for the combination of code and phase. The number
(3, 5, 10, 20, and 30) denotes the value used for� and the “e” at the end stands for elevation-dependent
weighting.

The example of doy 152/2001 for CHAMP indicated no clear answer whether elevation-dependent
weighting of the observations is appropriate for the GPS observations of CHAMP. In order to find an
answer we produced kinematic solutions without and with elevation-dependent weighting. First we
inspect the solutions without elevation-dependent weighting.

Solutions Without Elevation-dependent Weighting

Figure 6.13 shows the number of interrupts and jumps for APO set C and Figure 6.14 for APO set P. The
three bars for each day stand for the number of interrupts due to missing position-differences (left bar),
the number of jumps in the kinematic trajectory w.r.t. a dynamic orbit for solution A (middle bar) and
for solution B (right bar). The number of interrupts needs to be given only once because it is the same
for solutions A and B. Table 6.7 summarizes the mean values of the interrupts and jumps of all solutions
for all eleven days. Figure 6.15 shows the percentage of deleted observations as a function of the value
of � for code and phase observations and for APO set C and P for all eleven days. The top figures show
the percentage of observations deleted by the pre-screening algorithm. The bottom figures show the total
percentage of observations removed by the complete procedure, which is the sum of the percentage of
the top figures, of observations below the cut-off angle, and of observations deleted by the iterative least
squares adjustment step.
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Figure 6.13: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and B (right bar), without
elevation-dependent weighting, doy 140 to 150/2001.

Table 6.7: Mean number of interrupts and jumps for solutions without elevation-dependent weighting,
doy 140 to 150/2001.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

� � 3 11 20 15 10 19 13
� � 5 11 20 15 10 20 14
� �10 10 24 18 10 23 17
� �20 11 31 26 11 28 21
� �30 12 38 32 11 34 28
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Figure 6.14: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and solution B (right bar),
without elevation-dependent weighting, doy 140 to 150/2001.

104



6.3 IGS Test Campaign – doy 140 to 150/2001

3 5 10 20 30
0

 

5

 

10

 

15

 

20

Beta

P
er

ce
nt

ag
e

Code, pre−screening

3 5 10 20 30
0

 

5

 

10

 

15

 

20

Beta

P
er

ce
nt

ag
e

Code, all deleted observations

(a) Code observations, APO set C.
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(b) Phase observations, APO set C.
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(c) Code observations, APO set P.
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(d) Phase observations, APO set P.

Figure 6.15: Percentage of deleted observations after pre-screening and by entire screening procedure,
solutions without elevation-dependent weighting, doy 140 to 150/2001.
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The number of interrupts and the number of jumps is increasing with increasing values of� for
both APO sets (Figures 6.13 and 6.14). However, the number of interrupts is increasing not as much
as the number of jumps. It is remarkable that nearly all solutions A have more jumps in the kinematic
trajectory than solutions B. This means that the deweighting of the code positions has a strong impact
on the combined solution. As we have seen in Section 3.6.2 the deweighting causes a smoothing of
the combined positions. This smoothing is reflected in the difference of the number of jumps between
solution A and B. Regarding the mean number of interrupts and jumps in Table 6.7 the solutions PB
show the best performance. As expected the solutions with� �3 or 5 are the most reasonable solutions,
because all bad observations are found which disturb the kinematic solutions for� � 5. The iterative
least squares adjustment step cannot find these observations in the cases� � 5.

The percentage of deleted observations is similar when using either APO set C or set P. The large
difference (about ten percent) between the percentage of deleted observations after the pre-screening
and of all deleted observations is due to the cut-off angle of��, indicating that about ten percent of the
observations have an elevation angle below��. These observations are already marked and excluded
from the processing before the pre-screening is applied to the remaining observations. Apart from this
large difference the two curves are parallel which means that during the iterative least squares adjustment
step not many additional observations are excluded. This in turn means that an observation which is not
excluded in the pre-screening step remains in the processing and may disturb the solution.

As mentioned in the previous section (Section 6.2) and in Section 4.2 the degree of freedom is small
in the least squares adjustment step. The clear identification of an outlier is therefore not guaranteed.

The percentage of deleted code observations decreases with increasing�. The curve for deleted phase
observations is flat and there is no significant difference between different values for�. This means that
the differences between the solutions are mainly due to the impact of code observations which are left in
the processing for big values of�.

Let us now compare different solutions. All kinematic solutions which were computed for doy
144/2001 are inspected in detail. We generated in addition a reduced-dynamic orbit inSATORB which
is based on the code positions and the phase position-differences of the kinematic solution PB3 before
the combination. This reduced-dynamic orbit P3S uses the same parameters as the reduced-dynamic
orbit pII3S used as a priori orbit for the kinematic solutions PA3 and PB3 except that the time interval
between the stochastic pulses is set to ten minutes. This reduced-dynamic orbit seems to be the best
possible orbit which can be produced with the available procedures inLEOKIN andSATORB for the
solutions without elevation-dependent weighting. The positions and position-differences are used as
independent observation types inSATORB to avoid problems that may be introduced by jumps in the
combined kinematic positions caused by missing phase position-differences.

A Helmert transformation with three translation parameter is performed between the different trajec-
tories and the RMS errors are shown in Table 6.8. The upper part of the table lists the RMS errors of
the Helmert transformations for APO set C, the middle part those for APO set P. The rightmost column
gives the RMS errors for the comparisons to the reduced-dynamic orbit P3S. The two small tables at the
bottom of the table are two cross comparisons of the B3 solutions with all solutions of the other APO
set.

It can be seen that the differences between the A and B solutions for each APO set are rather big.
These values reflect the fact that the deweighting of the code positions for the combination in solutions
B has a big impact on the kinematic solution. The differences within the A or B sets of solutions,
respectively, are smaller. The solutions B compare better with each other than solutions A and the
solutions using APO set P compare better than the solutions using APO set C. This indicates that the
value of� has a smaller impact on the kinematic positions than the downweighting of the code. The
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Table 6.8: RMS errors (m) of Helmert transformation between all kinematic solutions and the reduced-
dynamic solution P3S for doy 144/2001.

APO set C
A5 A10 A20 A30 B3 B5 B10 B20 B30 P3S

A3 0.04 0.11 0.16 0.17 0.14 0.15 0.17 0.20 0.21 0.17
A5 - 0.10 0.15 0.16 0.15 0.16 0.18 0.20 0.22 0.18
A10 - 0.09 0.11 0.20 0.21 0.22 0.24 0.24 0.23
A20 - 0.05 0.23 0.23 0.25 0.25 0.26 0.26
A30 - 0.24 0.24 0.25 0.26 0.26 0.27
B3 - 0.03 0.08 0.11 0.14 0.12
B5 - 0.07 0.10 0.13 0.13
B10 - 0.06 0.10 0.16
B20 - 0.08 0.19
B30 - 0.21

APO set P
A5 A10 A20 A30 B3 B5 B10 B20 B30 P3S

A3 0.04 0.10 0.16 0.17 0.14 0.14 0.15 0.17 0.17 0.17
A5 - 0.09 0.14 0.16 0.15 0.15 0.16 0.17 0.17 0.18
A10 - 0.10 0.13 0.20 0.20 0.20 0.21 0.21 0.22
A20 - 0.08 0.23 0.23 0.23 0.23 0.24 0.25
A30 - 0.23 0.23 0.23 0.23 0.23 0.25
B3 - 0.02 0.05 0.08 0.08 0.11
B5 - 0.04 0.08 0.08 0.12
B10 - 0.06 0.07 0.13
B20 - 0.04 0.15
B30 - 0.15

CA3 CA5 CA10 CA20 CA30 CB3 CB5 CB10 CB20 CB30

PB3 0.15 0.16 0.21 0.24 0.25 0.06 0.07 0.12 0.15 0.17

PA3 PA5 PA10 PA20 PA30 PB3 PB5 PB10 PB20 PB30

CB3 0.15 0.15 0.20 0.24 0.23 0.06 0.07 0.08 0.11 0.10
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(a) Kinematic trajectories PB3 – PA3, RMS 0.14 m.
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(b) Kinematic trajectories PB3 – PA3 (zoom), RMS
0.14 m.
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(c) Kinematic trajectories PB3 – PB30, RMS 0.08 m.
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(d) Kinematic trajectories PB3 – CB3, RMS 0.06 m.

Figure 6.16: Orbit differences between kinematic trajectories for doy 144/2001.
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(a) Kinematic trajectory PB3 – reduced-dynamic orbit
P3S, RMS 0.11 m.
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(b) Kinematic trajectory PA3 – reduced-dynamic orbit
P3S, RMS 0.17 m.
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(c) Kinematic trajectory PB30 – reduced-dynamic or-
bit P3S, RMS 0.15 m.
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(d) Kinematic trajectory CB3 – reduced-dynamic or-
bit P3S, RMS 0.12 m.

Figure 6.17: Orbit differences between kinematic trajectories and post-fit reduced-dynamic orbit P3S,
doy 144/2001.
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impact is smaller on solutions B than on solutions A. The solution with the smallest differences to all
other solutions is PB3 (APO set P, solution B,� � 3).

The following impacts on the resulting kinematic positions are inspected in more detail:

� downweighting of the code positions for the combination,

� different values for�, and

� different a priori orbits.

We take four typical solutions, PB3, PA3, PB30, and CB3. At first we will have a look at the differences
of the latter three solutions w.r.t. solution PB3 (Figure 6.16) resulting after the Helmert transformation
(with three translation parameters). The largest differences can be found for the comparison between
PB3 and PA3 (RMS 0.14 m, Figure 6.16(a) and 6.16(b)). It seems that the differences are mainly due
to a few outliers. Figure 6.16(b) is a zoom of the differences to the same scale as in Figures 6.16(c) and
6.16(d). In this figure (Figure 6.16(b)) we can recognize that the differences between solutions PB3 and
PA3 are more pronounced than the differences of the two other comparisons. The differences between
PB3 and PB30 are smaller (RMS 0.08 m, Figure 6.16(c)), which means that the downweighting of the
code positions results in larger differences for the kinematic positions than increasing the value for�.
The kinematic trajectories with the smallest differences of these three comparisons are solutions CB3
and PB3 (Figure 6.16(d)). The only difference between CB3 and PB3 is the used a priori orbit (cII3S for
CB3 and pII3S for PB3). This means that the a priori orbit has some impact on the kinematic solution.
The differences are rather small (RMS 0.06 m), however. More details will be provided below.

The four kinematic trajectories are also compared to the reduced-dynamic orbit P3S explained above
(code positions and phase position-differences of PB3 as observations, stochastic pulses every ten min-
utes). Figure 6.17 shows the corresponding differences for the four solutions. The differences in Fig-
ure 6.17(a) confirm the good quality of the PB3 solution. The differences between the kinematic trajec-
tory PB3 and the reduced-dynamic orbit P3S are the smallest. The differences in Figure 6.17(a) clearly
show the jumps which are present in the kinematic trajectory of solution PB3. The differences between
PA3 and P3S do not fit completely in the scale of the plot (Figure 6.17(b)). We recognize that the dif-
ferences look very different to those in Figure 6.17(a). The jumps in the kinematic trajectory can be
recognized, as well, but the variations in the sequences between these jumps are more pronounced than
in Figure 6.17(a). These significant differences between Figures 6.17(a) and 6.17(b) are caused by the
downweighting of the code positions with a factor of 100 for solution PB3. The differences between
PB30 and P3S (Figure 6.17(c)) and between CB3 and P3S (Figure 6.17(d)) are larger but show similar
characteristics as those between PB3 and P3S.

As a summary of these detailed comparisons we note that the downweighting of the code positions
with a factor 100 has the biggest impact on the resulting kinematic positions. The impact of a different
value for� is smaller but not negligible. The smallest impact results from using different a priori orbits
for the pre-screening in programLEOKIN.

Solutions With Elevation-dependent Weighting of the Observations

The same solutions as described above were repeated with elevation-dependent weighting of the obser-
vations (with� �1) in order to study its impact on the kinematic solutions. Figures 6.18 and 6.19 show
the number of interrupts and jumps for APO sets C and P. Table 6.9 summarizes the corresponding mean
values.
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Table 6.9: Mean number of interrupts and jumps for solutions with elevation-dependent weighting and
� �1, doy 140 to 150/2001.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

� � 3 11 16 15 10 14 14
� � 5 10 15 14 10 14 14
� �10 13 26 23 10 16 15
� �20 10 19 18 10 17 17
� �30 12 32 30 10 22 21

The solutions are not as homogeneous as the solutions without elevation-dependent weighting (see
Figures 6.13 and 6.14). We recognize outliers for APO set C, e.g., CA10e and CB10e (the “e” stands
for elevation-dependent weighting, see Table 6.6) for doy 140 and 146. These solutions show a strongly
increased number of interrupts and jumps in comparison to the solutions with smaller values for�. Op-
posed to the solutions without elevation-dependent weighting, the solutions A are of the same quality as
solutions B. In a number of cases they even show the same number of jumps in the kinematic trajectory.
The code observations at low elevations thus seem to be responsible for problems in the combined po-
sitions in solutions A. In the solutions with elevation-dependent weighting these problems are already
taken into account for solutions A and therefore the differences to solutions B are not pronounced. In
the solutions without elevation-dependent weighting these problems at low elevations are deweighted in
solutions B due to the deweighting factor for the code positions. Therefore the improvements w.r.t. solu-
tions A are larger.

This fact indicates that the elevation-dependent weighting is important mainly for the code observa-
tions. An impact on the phase observations cannot be derived from the current results.

Figure 6.20 shows the percentage of deleted observations. The curves are very similar to those of the
solutions without elevation-dependent weighting (Figure 6.15). This is not surprising because the pre-
screening algorithm is based on unweighted observations and has therefore, except for the used a priori
orbit, the same performance as for the solutions without elevation-dependent weighting. A difference
may only occur in the percentage of observations excluded by the iterative least squares adjustment step.

The mean values in Table 6.9 indicate that the best solutions are those denoted by PBe. The solutions
PB3e and PB5e show the best performance.

A reduced-dynamic orbit P3Se is generated withSATORB using the positions and position-differ-
ences of the kinematic solutions PB3e as input, which is the best possible orbit we may achieve with our
LEOKIN andSATORB procedures. In order to get an idea of the accuracies of the best kinematic solu-
tions fromLEOKIN, we compare them with the reduced-dynamic orbit. The differences of orbit P3Se to
the corresponding reduced-dynamic orbit P3S generated for the solutions without elevation-dependent
weighting are shown in Figure 6.21(a). The RMS error of a Helmert transformation between the two
orbits is 0.09 m. Figure 6.21(b) shows the differences between the two kinematic trajectories PB3 and
PB3e. Comparison between the figures show a similar range of variations and, to a certain extent, com-
mon features. The orbit differences between the kinematic orbit PB3 and the reduced-dynamic orbit P3Se
are shown in Figure 6.22(a) and those between PB3e and P3Se in Figure 6.22(b). The kinematic solution
involving elevation-dependent weighting (PB3e) seems to perform marginally better in the comparison
with the reduced-dynamic orbit P3Se. The differences in the patterns between the two Figures 6.22(a)
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Figure 6.18: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and solution B (right bar),
elevation-dependent weighting, doy 140 to 150/2001.
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Figure 6.19: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and solution B (right bar),
elevation-dependent weighting, doy 140 to 150/2001.
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(a) Code observations, APO set C.
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(b) Phase observations, APO set C.
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(c) Code observations, APO set P.
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(d) Phase observations, APO set P.

Figure 6.20: Percentage of deleted observations after pre-screening and by entire screening procedure,
solutions with elevation-dependent weighting, doy 140 to 150/2001.
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(a) Reduced-dynamic orbits P3S – P3Se, RMS
0.09 m.
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(b) Kinematic trajectories PB3 – PB3e, RMS 0.10 m.

Figure 6.21: Orbit differences between reduced-dynamic orbits P3S and P3Se (left) and kinematic tra-
jectories PB3 and PB3e (right), doy 144/2001.
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(a) Kinematic trajectory PB3 – reduced-dynamic orbit
P3Se, RMS 0.12 m.
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(b) Kinematic trajectory PB3e – reduced-dynamic or-
bit P3Se, RMS 0.10 m.

Figure 6.22: Orbit differences between reduced-dynamic orbit P3Se and kinematic trajectories PB3 (left)
and PB3e (right), doy 144/2001.
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6 Results and Applications

and 6.22(b) are too small, however, to take a clear decision which of the two kinematic solutions is the
better one.

Reduced-dynamic Orbits

The reduced-dynamic orbits (Table 6.5) serving as a priori orbits for the pre-screening inLEOKIN are
of different quality because they use different solutions of code positions or combined positions as input
and use a priori information or not.

First we have a look at the RMS errors per coordinate of the orbit determination using the kinematic
positions inSATORB. Figure 6.23 shows the RMS errors for the cIS-orbits (code positions derived
without a priori information as input). Figure 6.24 shows the RMS errors corresponding to the cII�S-
and pII�S-orbits (without elevation-dependent weighting,� � 3, 5, and 10). Figure 6.25 shows the same
RMS errors for the cII�Se- and pII�Se-orbits (with elevation-dependent weighting,� � 3, 5, and 10).

As expected the RMS errors for the cIS-orbits are comparatively big because the code-derived po-
sitions used as input were generated without pre-screening inLEOKIN. The RMS errors of the orbit
determinations for APO set C (cII�S, cII�Se) are larger than those for APO set P (pII�S, pII�Se). The
kinematic positions used for cII�S and cII�Se are code positions only and have therefore noise charac-
teristics corresponding to the accuracy of the code observations. The kinematic positions used for pII�S
and pII�Se, on the other hand, are based on a combination of code and phase-difference positions in
LEOKIN. They have a lower noise and, as a consequence, the RMS errors of the orbit determination are
smaller. The RMS errors are, therefore, not directly an indicator for the accuracy of the orbit. The RMS
errors increase slightly with increasing value of� for the orbits derived with positions from solutions
without elevation-dependent weighting (Figure 6.24). In the case of the orbits derived with positions
from solutions with elevation-dependent weigthing (Figure 6.25) this behavior can only be recognized
for the orbits of APO set C (Figure 6.25(a)). For the orbits of APO set P no clear tendency depending on
the value� can be recognized in the RMS errors.

The reduced-dynamic orbits based on code only (APO set C) show a smaller RMS if elevation-
dependent weighting is activated – indicating that the weighting scheme is appropriate for the code
observations. The reduced-dynamic orbits of APO set P show smaller RMS errors for the solutions with
elevation-dependent weighting, as well.

The conclusion is that the model for the elevation-dependent weighting is appropriate in particu-
lar for the code observations of the CHAMP receiver. A confirmation of this conclusion is given in
Figure 6.26. It shows the residuals (RSW-directions) of the kinematic code positions fromSATORB
for the solution without (Figure 6.26(a)) and with (Figure 6.26(b)) elevation-dependent weighting. The
residuals are smaller for the solution with elevation-dependent weighting – clearly indicating that the
elevation-dependent weighting model is preferable when compared to the model without weighting.
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Figure 6.23: RMS errors of reduced-dynamic orbit determination in programSATORB for cIS-orbits
(code positions cI derived without pre-screening used as input), doy 140 to 150/2001.
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Figure 6.24: RMS errors of reduced-dynamic orbit determination in programSATORB, without
elevation-dependent weighting, doy 140 to 150/2001.
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(a) cII�Se, APO set C, code positions of cII�e used as in-
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(b) pII�Se-orbits, APO set P, combined positions of pII�e
used as input.

Figure 6.25: RMS errors of reduced-dynamic orbit determination in programSATORB, with elevation-
dependent weighting, doy 140 to 150/2001.
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(a) Residuals of cII3 positions w.r.t. cII3S-orbit, RMS
2.62 m.
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(b) Residuals of cII3e positions w.r.t. cII3Se-orbit, RMS
1.53 m.

Figure 6.26:SATORB residuals of code positions without elevation-dependent weighting (left) and with
elevation-dependent weighting (right), doy 142/2001.

The same kind of analysis can be performed for the phase observables by analyzing the position-
difference residuals in programSATORB for the case that positions and position-differences are used as
independent observation types. No clear answer results in this case: neither of the two sets of residuals
is better. This means that for the phase observation currently no clear answer may be given. Since the
current implementation ofLEOKIN does not allow to weight code and phase independently, we always
weight the two types together in our experiments if elevation-dependent weighting is enabled.

Figure 6.27 shows the differences between the orbits of cII3S and pII3S (RMS 0.23 m) for doy
144/2001. Figure 6.27 in essence characterizes the accuracy of the APO-set-C-orbits. External compar-
isons will support this statement.

Nevertheless, we will inspect the differences in more detail. The differences show an offset in the
x-coordinate. This is not a problem for the pre-screening because for the code screening the magnitude of
this offset is small enough. For the pre-screening of the phase-difference observations this offset should
not be critical either, because only position-differences of the a priori orbit are required for the pre-
screening. In addition to an offset we can recognize oscillations in the differences between the reduced-
dynamic orbits which have an amplitude of up to half a meter. These oscillations in the differences
between cII3S and pII3S cause the differences in the kinematic trajectories shown in Figure 6.16(d).

The reduced-dynamic orbit, which is used as a priori orbit for the pre-screening inLEOKIN, is an
important factor for the quality of the resulting kinematic positions when assuming that the other factors
influencing the positioning are minimized (downweighting of the code positions, small value for�, and
elevation-dependent weighting). This implies that we use solutions of type B, with� � 3 or 5, and with
elevation-dependent weighting for the following tests. In our previous studies different a priori orbits
have been used for the solutions, e.g., solution PB3e uses the a priori orbit pII3Se and PB5e the a priori
orbit pII5Se. A comparison of the two kinematic trajectories would show us not only the differences due
to the different value for� (3 or 5) but also the differences resulting from the different a priori orbits
used (pII3Se or pII5Se).
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Figure 6.27: Orbit differences between reduced-dynamic orbits cII3S and pII3S without elevation-
dependent weighting, doy 144/2001.

In order to separate these two influences on the solutions we repeat the computation of the kinematic
solution PB3e and PB5e (this time using pII10Se as a priori orbit), and the computation of the kinematic
solutions CB3e and CB5e (this time using cII10Se as a priori orbit). The orbits cII10Se and pII10Se
are of different quality than the a priori orbits used originally for the solutions (cII3Se, cII5Se, pII3Se,
and pII5Se) (see Figures 6.24 and 6.25). With these tests we may evaluate the impact of the a priori
orbit on the resulting positions. Figures 6.28(a) and 6.28(c) show the number of interrupts and jumps for
these solutions and Figures 6.28(b) and 6.28(d) show once again the corresponding information of the
original solutions (Figures 6.18 and 6.19). Table 6.10 lists the mean number of interrupts and jumps of
the new solutions. If we compare these mean values with the mean values in Table 6.9 we recognize a
significant increase in the number of interrupts and jumps in the case of the solutions using cII10Se as a
priori orbit. In the case of the solutions using the a priori orbit pII10Se there is no difference (compare
Figure 6.28(c) with Figure 6.28(d)). Figure 6.28(a) shows that for some days the a priori orbit cII10Se is
not of sufficient accuracy to guarantee a reliable pre-screening resulting in more interrupts and jumps than
for the original solutions CB3e and CB5e (Figure 6.28(b)). Figure 6.29 shows the differences (from a
Helmert transformation) between the original kinematic solutions (CB3e (left) and CB5e (right)) and the
newly generated solutions with cII10Se as a priori orbit. The RMS errors of the Helmert transformation
are 0.04 m and 0.08 m, respectively. Figure 6.30 shows the differences for the corresponding solutions
using APO set P. The RMS errors of the Helmert transformation are 0.01 m and 0.04 m. These figures
confirm the findings of Figures 6.28(a), 6.28(c), and Table 6.10. In the case of using a priori orbits of type
C the reduced-dynamic orbits serving as a priori orbits are more sensitive to data problems (remaining in
the code positions due to a larger�). Due to these data problems the resulting reduced-dynamic orbit may
not be of sufficient accuracy to serve as reliable a priori orbit inLEOKIN. In the case of using a priori
orbits of APO set P the reduced-dynamic orbits generated with combined positions based on a larger
value for� the differences are small. The data problems due to larger value for� are also present in the
code positions. Due to the combination with the phase-derived position-differences and the deweighting
of the code positions the effect is weakened.

This shows that the a priori orbit is a key element in our zero-difference kinematic point position-
ing procedure. If we use different a priori orbits for our procedure we get different results. This is a
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Table 6.10: Mean number of interrupts and jumps of solutions B with elevation-dependent weighting
using APO cII10Se and pII10Se.

APO cII10Se APO pII10Se
Interrupts Jumps Interrupts Jumps

� � 3 14 22 10 14
� � 5 14 22 10 14
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(a) A priori orbit cII10Se.

0

10

20

30

40

β= 3

140 141 142 143 144 145 146 147 148 149 150
0

10

20

30

40

β= 5

Day of Year

(b) Original a priori orbits cII3Se and cII5Se (see Fig-
ure 6.18, other scale).
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(c) A priori orbit pII10Se.
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(d) Original a priori orbits pII3Se and pII5Se (see
Figure 6.19, other scale).

Figure 6.28: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory (right bar), elevation-dependent weighting, cII10Se (top
left) and pII10Se (bottom left) used as a priori orbits, right: plots with original a priori orbits
used, doy 140 to 150/2001.
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(a) Differences between original solution CB3e and
CB3e using cII10Se as a priori orbit, RMS 0.04 m.

−0.6

−0.3

0.0

0.3

0.6

M
et

er

X

−0.6

−0.3

0.0

0.3

0.6

M
et

er

Y

0 4 8 12 16 20 24
−0.6

−0.3

0.0

0.3

0.6

M
et

er

Z

Hours

(b) Differences between original solution CB5e and
CB5e using cII10Se as a priori orbit, RMS 0.08 m.

Figure 6.29: Orbit differences between kinematic trajectories using different a priori orbits of APO set
C, doy 144/2001.
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(a) Differences between original solution PB3e and
PB3e using pII10Se as a priori orbit, RMS 0.01 m.
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(b) Differences between original solution PB5e and
PB5e using pII10Se as a priori orbit, RMS 0.04 m.

Figure 6.30: Orbit differences between kinematic trajectories using different a priori orbits of APO set P,
doy 144/2001.
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6.3 IGS Test Campaign – doy 140 to 150/2001

Table 6.11: RMS errors (cm) of improvements between kinematic trajectories of subsequent iterations.

PB3 – Iter. 2 – Iter. 3 – Iter. 4 – PB3 –
Day Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 5
140 9 4 2 1 11
141 4 1 1 0 4
142 41 37 10 3 11
143 4 2 1 0 4
144 4 1 0 0 5
145 5 2 1 0 6
146 5 1 0 0 7
147 6 2 1 0 10
148 6 2 1 0 7
149 8 3 1 0 11
150 5 2 1 0 6

disadvantage of this efficient point positioning procedure.
We have seen on the other hand that the pre-processing of the observations is not reliable enough for

� � 5. We therefore only have to consider the solutions with� � 3 and 5. The differences showing up
when we use a different a priori orbit are, in particular for APO set P, within reasonable limits.

The reduced-dynamic orbit which is used as a priori orbit for the pre-screening of the observations
for the kinematic point positioning inLEOKIN has to be produced with care. The differences between
APO set C and P show that the latter approach seems to be more reliable for generating a priori orbits
with the requested accuracy. This means that we should use code and phase-difference observations
(APO set P) for generating reduced-dynamic orbits serving as a priori orbits.

Iterative Kinematic Point Positioning

A possibility to converge to a reliable solution may be to perform an iterative kinematic point positioning
in the programLEOKIN. The combined positions of the previous iterations will enter as new a priori
positions into the next point positioning step. The procedure may be repeated as long as the differences
between the iterations is significant.

The advantage of this procedure is that the iterations do not involve the time-consuming orbit inte-
gration step with programSATORB. A disadvantage is that excluded epochs cannot be recovered in a
subsequent step.

In order to study this procedure we take as an initial point positioning solution PB3 with the corre-
sponding APO pII3. Subsequently we process each of the eleven days and perform up to five iterations
in LEOKIN. Finally we perform a Helmert transformation (with three translation parameters) between
the kinematic positions from subsequent iterations. Table 6.11 lists the RMS errors of the Helmert trans-
formations for the eleven days.

Figure 6.31 shows the improvements in the x-component of the kinematic positions with increasing
iterations for doy 142 (Figure 6.31(a)) and 145/2001 (Figure 6.31(b)). The differences between the
iterations are converging to zero. The solutions reach (except doy 142) a limit where the RMS errors
of the improvements are smaller than two centimeters after four iterations (Table 6.11). The column on
the right-hand side of Table 6.11 gives the RMS errors of the Helmert transformation between the initial
solution PB3 and the solution after five iterations. These RMS errors are within eleven centimeters for
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Figure 6.31: Improvements in the x-component of the kinematic trajectory with increasing number of
iterations.

the eleven days. We will compare these kinematic positions resulting after five iterations in the next
section with an independent solution for the CHAMP orbits in order to evaluate whether this iterative
positioning helps to improve the kinematic trajectory.

6.3.3 Independent Comparison

In order to assess the external accuracy of the kinematic trajectory, the kinematic positions are compared
with an independent external solution. Fortunately, the data from the IGS CHAMP test campaign were
processed by a number of institutions. One of the best solutions in a comparison between all contributions
is the solution from the Technical University of Munich (TUM), Germany. This solution was performed
with an enhanced version of the Bernese GPS Software, Version 4.2. The solutions are zero-difference
reduced-dynamic orbits for CHAMP generated by the main parameter estimation programGPSEST.
The GPS orbits and clock corrections are assumed to be known from CODE processing. The GPS phase
observations of CHAMP are directly used in the orbit estimation procedure (code observations were only
used to synchronize the receiver clock). The phase ambiguities, epoch-wise LEO clock parameters, and
the dynamical orbit parameter are estimated together. The reduced-dynamic orbit is parametrized with

� six initial conditions,

� nine Solar radiation pressure parameters,

� one scaling factor for the atmospheric drag, and

� pseudo-stochastic pulses every nine minutes in alongtrack (constraints:� � ���
 m/s), crosstrack
(� � ���
 m/s), and radial (� � ���
 m/s) direction.

The TUM solution was generated without elevation-dependent weighting of the observations. Fig-
ures 6.32(a) and 6.32(b) show the RMS errors of a Helmert transformation (with three translation pa-
rameters) between our kinematic solution series A and B without elevation-dependent weighting with
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Figure 6.32: RMS errors of Helmert transformation between orbits from TUM and trajectories generated
with LEOKIN without elevation-dependent weighting, solution A (left bar) and solution B
(right bar), for doys 140 to 150/2001.

� � 3 and 5 for both APO sets and the TUM orbits. Table 6.12 summarizes the mean RMS errors for
the solutions without elevation-dependent weighting in the upper part of the table. Most of solutions A
are worse than solutions B.

In addition we have a look at comparisons of the solutions with elevation-dependent weighting of the
observations with the TUM-solutions (Figure 6.33). It is remarkable that the solutions with� � 3 and 5
show a slightly better performance (Table 6.12 (bottom)) than the solutions without elevation-dependent
weighting. This confirms our recommendation of using the elevation-dependent weighting model in
LEOKIN.

Figure 6.34 shows the RMS errors of a Helmert transformation between the TUM-solutions and
the reduced-dynamic solutions P3Se for all eleven days. As the comparisons between the kinematic
trajectories and the TUM-solutions these comparisons are in the range of 10 to 15 cm.

Figure 6.35(a) shows the differences between the TUM-solution and solution PB3 (Helmert RMS
0.11 m) for doy 144/2001, Figure 6.35(b) those between TUM and PB3e (Helmert RMS error 0.09 m) for
doy 144/2001. The differences show many jumps. These jumps are contained in theLEOKIN solutions
because the TUM-solution is a reduced-dynamic orbit and is, therefore, continuous and has no jumps
in the trajectory. Solutions PB3 and PB3e have both 14 interrupts due to missing position-differences.
The differences for both solutions show similar characteristics. The solution with elevation-dependent
weighting (PB3e) is slightly better.

Figure 6.36(a) shows the differences between the reduced-dynamic orbit P3S and TUM (Helmert
RMS error 0.10 m) for doy 144/2001 and Figure 6.36(b) those between P3Se and TUM (Helmert RMS
error 0.09 m).

Finally, we have a look at the differences between the TUM-solutions and theLEOKIN solutions
resulting after five iterations. Figure 6.37 shows the RMS values for the differences between TUM
and PB3 solutions (left bar) and between TUM and the solutions after five iterations (right bar). The
kinematic positions after five iterations show no improvement in comparison with the TUM-solutions.
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6 Results and Applications

Table 6.12: Mean RMS errors (m) of Helmert transformation betweenLEOKIN solutions and TUM-
solutions.

Solutions without elevation-dependent weighting

APO set C APO set P
Solution A Solution B Solution A Solution B

� � 3 0.16 0.14 0.16 0.12
� � 5 0.17 0.14 0.17 0.13

Solutions with elevation-dependent weighting

APO set Ce APO set Pe
Solution A Solution B Solution A Solution B

� � 3 0.13 0.13 0.12 0.11
� � 5 0.12 0.12 0.12 0.11
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Figure 6.33: RMS errors of Helmert transformation between orbits from TUM and trajectories generated
with LEOKIN with elevation-dependent weighting, solution A (left bar) and solution B
(right bar), doy 140 to 150/2001.
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Figure 6.34: RMS errors of Helmert transformation between orbits from TUM and reduced-dynamic
orbits P3Se, doy 140 to 150/2001.
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(a) Kinematic trajectory PB3 (without elevation-
dependent weighting) – TUM-solution, RMS 0.11 m.
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(b) Kinematic trajectory PB3e (with elevation-
dependent weighting) – TUM-solution, RMS 0.09 m.

Figure 6.35: Orbit differences between kinematic trajectories (PB3 (left) and PB3e (right)) and TUM-
solutions, doy 144/2001.
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(a) Reduced-dynamic orbit P3S (without elevation-
dependent weighting) – TUM-solution, RMS 0.10 m.
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(b) Reduced-dynamic orbit P3Se (with elevation-
dependent weighting) – TUM-solution, RMS 0.09 m.

Figure 6.36: Orbit differences between reduced-dynamic orbits (P3S (left) and P3Se (right)) and TUM-
solutions, doy 144/2001.
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Figure 6.37: RMS errors of Helmert transformation between TUM and PB3 (left bar) and TUM and
kinematic positions after five iterations (right bar).
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Figure 6.38: Differences between the kinematic trajectory after five iterations inLEOKIN and the TUM-
solution, doy 144/2001, RMS 0.12 m.

Figure 6.38 shows the differences between the solutions for doy 144/2001.
These comparisons show that the external accuracy of the final kinematicLEOKIN and reduced-

dynamicSATORB solutions is within 10 to 15 centimeters w.r.t. the TUM-solutions for an appropriate
set of processing options.

6.3.4 Summary

Many kinds of LEO orbits may be generated using the programsLEOKIN andSATORB. The orbits
directly emerging fromLEOKIN are pure kinematic orbits. They do not make use of the fact that the
LEO is obeying the equations of motion.LEOKIN may make use of a priori orbit information, but
only for the purpose of screening the raw code and phase-difference observations. It is undoubtedly a
disadvantage of the kinematic orbits that gaps may occur – whenever data problems did not allow it to
generate point positions using code and/or position-differences using the phase observable. For many
applications it is therefore appropriate and useful to consider the results of programLEOKIN only as an
intermediary tool to generate a dynamic or reduced-dynamic orbit.

The orbits resulting from programSATORB are dynamic orbits or so-called reduced dynamic orbits.
They are solutions of the equations of motion using rather elaborate orbit models (see section 5.1).
The positions and possibly the position-differences generated by programLEOKIN are used as pseudo-
observations in a conventional orbit determination process.SATORB solves for quantities characterizing
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6.3 IGS Test Campaign – doy 140 to 150/2001

the initial state vector (six parameters), normally for nine dynamical parameters (constant and once-per-
revolution terms in the three orthogonal directionsR (radial),S (along track) andW (out of plane). In
addition, pseudo-stochastic pulses (velocity changes) are set up in the same three directions at regularly
distributed epochs (details see section 5.5). It is important that the number of unknowns is at least one to
two orders of magnitude smaller than the number of pseudo-observations. One may therefore expect that
the dynamic or reduced-dynamics orbits emerging fromSATORB are much less prone to data problems
than those resulting fromLEOKIN. Also, as it is assumed that the LEO trajectory solves the equations
of motion, gaps do not exist. It is thus possible to generate a table (ephemeris) of equidistant (in time)
rectangular satellite positions withSATORB, either in the inertial or in the Earth-fixed system.

In order to evaluate the performance of programLEOKIN extensive studies were performed using
data of the IGS CHAMP test campaign (doy 140 to 150/2001). Most of the tests confirm the conclusions
drawn in Section 6.2 for the data of CHAMP for doy 152/2001.

Tests were performed to find the best possible value for the pre-screening parameter�. A choice of
� � 3 or 5 is recommended. If higher values for� are used “bad” observations may still reside in the data
and disturb the kinematic solution. Code observations are more delicate – for the phase observations it
makes hardly any difference whether� �3 or� �30 is used. This indicates that the phase pre-screening
is only important for the identification of large cycles slips and phase resets.

We studied the effect of downweighting of the code-derived positions when combining code positions
and phase position-differences. Kinematic solutions not using elevation-dependent weights with the code
positions downweighted by a factor of 100 (solutions B) give a better performance than the kinematic
solutions with the normal relative weight of code and phase for the combination (solutions A).

Studies concerning the use of elevation-dependent weights reveal a better performance of solutions of
type A and B when considering elevation-dependent weighting. The code observations at low elevations
have an impact on the kinematic solutions which is expressed by outliers in the code positions leading
to more jumps in the kinematic trajectory w.r.t. a reduced-dynamic orbit. In the case of solution B these
outliers may be smoothed due to the deweighting of the code positions. In the case of applying an
elevation-dependent weighting these observations are already deweighted in the code positioning step
and may not have such a large impact on the resulting combined positions for solutions A and B. Further
inspections on this issue by comparing the residuals of the orbit determinations in programSATORB
using code positions derived without weighting and code positions derived with weighting confirmed
the conclusion that the elevation-dependent weighting model is preferable when compared to the model
without weighting.

For the phase observations no clear conclusion concerning the weighting could be drawn. Since
LEOKIN currently does not allow to apply the weighting model independently on code and phase, we
use always the weighting for both observations types of the CHAMP receiver. An alternative, which
was not studied for this work, could be to apply the elevation-dependent weighting only to the code
observations.

After an independent comparison of the kinematic solutions with solutions generated at the Technical
University of Munich, Germany, the conclusion can be drawn that the application of elevation-dependent
weighting on the observations slightly helps to improve the kinematic point positioning solution. This
conclusion implies that we use a value for� which is smaller than ten and that the code positions are
deweighted by a factor 100 for the combination with the phase-derived position-differences.

We tried to find the most reliable way to generate a reduced-dynamic orbit for the pre-screening
procedure inLEOKIN. The most reasonable and reliable procedure to generate a priori orbits is to use
combined code and phase-difference derived positions (APO set P) (using a reasonable value for� (i.e.
� 
 5)). For� � � the solutions generated with APO set C are, however, of comparable quality as
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6 Results and Applications

Table 6.13: Orbits generated withLEOKIN andSATORB.

Solution Source Description

cI LEOKIN Kinematic orbit based on code observations,
without a priori orbit information

cIS SATORB cI positions as observations, 15 deterministic parameters,
spacing for stochastic pulses: 90 min

cII3e LEOKIN Kinematic orbit based on code observations,
using orbit cIS as a priori orbit,
with elevation-dependent weighting

cII3Se SATORB cII3e positions as observations, 15 deterministic parameters,
spacing for stochastic pulses: 20 min

cII3 LEOKIN Kinematic orbit based on code observations,
using orbit cIS as a priori orbit,
without elevation-dependent weighting

cII3S SATORB cII3 positions as observations, 15 deterministic parameters,
spacing for stochastic pulses: 20 min
(without elevation-dependent weighting)

pII3e LEOKIN Kinematic orbit based on code and phase observations,
using orbit cIS as a priori orbit
with elevation-dependent weighting

pII3Se SATORB pII3e positions as observations, 15 deterministic parameters,
spacing for stochastic pulses: 20 min

PB3e LEOKIN Kinematic orbit based on code and phase observations,
using orbit pII3Se as a priori orbit
with elevation-dependent weighting

P3Se SATORB PB3e positions and position-differences as observations,
15 deterministic parameters, spacing for stochastic pulses: 10 min

those generated with APO set P. The reduced-dynamic orbits of type C (using only code positions for the
generation of the reduced-dynamic orbit) have an accuracy of about 30 cm, the orbits of type P (using
combined positions) of about 15 cm.

In order to fix the order of magnitude of the various strategies (withLEOKIN andSATORB) we take
the orbits generated for one particular day (144/2001) of the IGS test campaign in 2001 and compare
”all possible orbits” with the presumably best possible orbit, namely the one generated at TUM in a
reduced-dynamics mode using the Bernese GPS software (see Section 6.3.3 for details).

The orbits are characterized in Table 6.13, their quality is described by Table 6.14 using the root
mean square error (RMSext) per satellite coordinate of a Helmert transformation with three translation
parameters between the orbital positions considered and the ”external” orbit positions (TUM-solutions).
The error RMSint, also contained in Table 6.14, characterizes the RMS error per coordinate of a trans-
formation between the orbit considered and the presumably best possible orbit P3Se achievable with the
programsLEOKIN andSATORB. Comparison of RMSint with RMSext shows the rapid convergence of
the described orbit determination process to an orbit comparable in quality with the best external orbit
(TUM). This fact is important when dealing with LEO orbits, for which no independent estimates are
available (in an operational environment, this is the normal case).
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Table 6.14: LEO orbit quality usingLEOKIN andSATORB, CHAMP doy 144/2001.

Solution Code Phase Orbit Program RMSint(m) RMSext(m)

cI Y N N LEOKIN 2.71 2.56
cIS Y N - SATORB 0.47 0.48
cII3e Y N Y LEOKIN 1.38 1.36
cII3Se Y N - SATORB 0.29 0.33
cII3 Y N Y LEOKIN 2.11 2.12
cII3S Y N - SATORB 0.29 0.30

pII3e Y Y Y LEOKIN 0.15 0.13
pII3Se Y Y - SATORB 0.15 0.13
PB3e Y Y Y LEOKIN 0.11 0.09
P3Se Y Y - SATORB – 0.11

The next section deals with the kinematic solutions for a longer data series for CHAMP and SAC-C
in 2002. These data sets are processed with the aim to confirm the findings from this section but also to
answer additional questions concerning the data pre-processing. As a reference orbit we will use an orbit
of type P3Se to compare with, because no external reference orbit is available for this time interval.

6.4 CHAMP and SAC-C – 055/2002 to 089/2002

The more recent data set we processed stems from a time interval of 35 days in 2002 (doy 055 to
089/2002). GPS data from both satellites, CHAMP and SAC-C, were analyzed.

First, we inspect the quality of the tracking data from these days. Then, we address different issues
using this longer data series. A general overview of the different solutions is followed by a section that
considers the kinematic solutions using CODE Rapid products as input and by a corresponding section
for the solutions using CODE Final products. Finally, a summary of all solutions and results from the
2002 LEO/GPS data series is presented.

6.4.1 Data Quality

Figure 6.39 shows the number of satellites tracked by SAC-C for doy 055 to 089/2002. The SAC-C
receiver tracked up to twelve satellites simultaneously for almost the whole time interval. Starting from
doy 089/2002 the SAC-C receiver tracks only up to eight satellites simultaneously (see also Table 4.2).
Unfortunately, the SAC-C data contain a long data gap from doy 058,	h�m�s to doy 061,�hm��s.

Figure 6.40 shows the number of satellites tracked by CHAMP for doy 055 to 089/2002. The GPS
receiver on-board CHAMP tracked up to eight GPS satellites simultaneously prior to doy 064/2002.
After that date it was able to track up to ten satellites (see also Table 4.1). The CHAMP data have a
longer data gap on doy 064 from�h�	m	�s to ��h��m�s. During this data gap the CHAMP receiver
software update was performed allowing the GPS receiver to track up to ten satellites simultaneously.

There are a few additional data gaps for both satellites lasting from one epoch up to several minutes,
but in general the performance of the two spaceborne receivers was rather good (except for SAC-C after
doy 086).

After the long data gap on doy 064 for CHAMP the number of gaps per day has decreased. Most
of the days even show no data loss at all. Starting from doy 077 a barely visible, but important, change

131



6 Results and Applications

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
0

3

6

9

12

N
um

be
r 

of
 s

at
.

SAC−C

70 71 72 73 74 75 76 77 78 79
0

3

6

9

12

N
um

be
r 

of
 s

at
.

80 81 82 83 84 85 86 87 88 89
0

3

6

9

12

N
um

be
r 

of
 s

at
.

Day of Year 2002

Figure 6.39: Number of tracked satellites by SAC-C for doy 055 to 089/2002.

in the data performance has occurred: the number of epochs with only four or five tracked satellites has
decreased. This is a big advantage for kinematic point positioning, because at least four observations are
needed to determine a position. If we have more than four observations available the redundancy of the
solution increases, and therefore the solutions are better controllable.

There are only two days without data gap (doy 070 and 074) for SAC-C. Starting with doy 086
the receiver performance is very bad. The time intervals without any tracked satellites are longer than
the time intervals with more than three tracked satellites. It is, therefore, difficult to generate reliable
kinematic solutions after doy 085.

6.4.2 Data Processing

In addition to the GPS data of the two LEO satellites with a sampling of ten seconds the following input
data were needed and used for our tests:

� CODE Rapid GPS orbits,
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Figure 6.40: Number of tracked satellites by CHAMP for doy 055 to 089/2002.
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� ERPs of the CODE Rapid processing, and

� 30-second clock corrections for the GPS satellites with the GPS broadcast clock corrections used
for alignment to GPS time.

For doy 055 to 069/2002 we used in addition a second set of input data

� CODE Final GPS orbits,

� ERPs of the CODE Final processing, and

� 30-second clock corrections for the GPS satellites constrained to the CODE Final 5-minute clock
corrections.

These two sets of input data are used to compare kinematic results as a function of input information
of different accuracy. The official IGS Rapid product is available with a delay of 17 hours after the day
considered and the IGS Final product with a delay of 10 days after the week considered. The analysis
centers have to provide their results before the combination of all contributions may take place. For the
Rapid products not as many GPS observation data may be used as for the Final products. The Final
products have a better quality than the Rapid products. For more details about the IGS products we refer
e.g., to [Weber and Springer, 2002] and [IGSCB, 2002].

Solutions with the following input data and options inLEOKIN are performed and analyzed for
CHAMP and SAC-C:

� DOY 055 – 089/2002: CODE Rapid products

1. no elevation-dependent weighting and a cut-off angle of��,

2. elevation-dependent weighting and a cut-off angle of��.

� DOY 055 – 069/2002: CODE Final products

1. no elevation-dependent weighting and a cut-off angle of��,

2. elevation-dependent weighting and a cut-off angle of��,

3. CODE Final 5-minute clock corrections as GPS clock information (using linear interpolation)
and elevation-dependent weighting with a cut-off angle of��,

4. SAC-C: no elevation-dependent weighting and no cut-off angle.

Table 6.15 summarizes the solution types. The common values of�cscr � 1.0 m and�pscr � 0.01 m are
used. We have seen in the previous examples that� � 10 results in outliers residing in the “screened”
data. We have seen this problem also in the kinematic solutions for� � 10 and partly for� � 5. We
want to see whether the kinematic solutions of the 2002 data series show the same sensitivity mainly for
the code observations. Indeed we use� �5 and 10 only for the solutions generated using the CODE
Rapid products. For the remaining solutions we confine ourselves to the best possible kinematic solution
with � � 3. The two procedures (APO set C and P) to generate reduced-dynamic orbits serving as a
priori orbits explained in the previous section are used (see Table 6.5). The options for the reduced-
dynamic orbits inSATORB are the same as for the reduced-dynamic orbits of the IGS CHAMP test
campaign (six osculating elements, nine empirical parameters in RSW, stochastic pulses every 90 and
20, respectively, see Section 6.3.2). Solutions A (normal relative weight� � ���� between code positions
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Table 6.15: Summary of kinematic solutions computed for CHAMP and SAC-C for doy 055 to 089/2002
(R stands for Rapid, F for Final, S for SAC-C, C for APO set C, P for APO set P, A for a
normal code weight for the combination, B for a code weight reduced by a factor of 100, and
e for elevation-dependent weighting).

CODE Rapid products, doy 055 to 089/2002
APO set C APO set P

no elev.-dep.weight. elev.-dep.weight. no elev.-dep.weight. elev.-dep.weight.
� 
 3 RCA3 RCB3 RCA3e RCB3e RPA3 RPB3 RPA3e RPB3e
� 
 5 RCA5 RCB5 RCA5e RCB5e RPA5 RPB5 RPA5e RPB5e
� 
10 RCA10 RCB10 RCA10e RCB10e RPA10 RPB10 RPA10e RPB10e

A priori orbits from processing with CODE Final products
� 
 3 RFCB RFPB

CODE Final products, doy 055 to 069/2002
APO set C APO set P

no elev.-dep.weight. elev.-dep.weight. no elev.-dep.weight. elev.-dep.weight.
� 
 3 FCA FCB FCAe FCBe FPA FPB FPAe FPBe

Official 5-minute GPS clock corrections from CODE Final processing used
� 
 3 F5PAe F5PBe

SAC-C
no cut-off angle no cut-off angle

� 
 3 SCA SCB SPA SPB
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6 Results and Applications

and phase position-differences) and B (code positions deweighted with a factor 100 for the combination)
are computed for nearly all versions.

We start with the solutions based on the CODE Rapid products as input for the GPS orbits and clock
corrections. We analyze the solutions for SAC-C first and then those for CHAMP. Finally, the solutions
using the CODE Final products are inspected, again first for SAC-C and then for CHAMP.

6.4.3 Solutions with CODE Rapid Products

SAC-C: No Elevation-dependent Weighting and Cut-off Angle ��

Let us first study the reduced-dynamic orbits (RcIS, RcIIS, and RpIIS, see Table 6.5, R stands for Rapid)
used as a priori orbits for the pre-screening inLEOKIN. Figure 6.41 shows the RMS errors per coordinate
of the reduced-dynamic orbit determinations for the solutions without elevation-dependent weighting for
SAC-C in programSATORB.

The RMS errors for the RcIS-orbits (Figure 6.41(a)) are the largest which is no surprise because they
are based on code positions only. These code positions are derived without a priori orbit information in
LEOKIN and therefore no pre-screening of the data was possible.SATORB allows it to screen the “ob-
servations”. No use was made of this option, however. These RcIS-orbits are the basis for all subsequent
kinematic solutions computed with the CODE Rapid products as input for SAC-C.

The RMS errors for the RcII�S- and RpII�S-orbits are smaller. The RMS errors for the RcII�S-
orbits (APO set C) (Figure 6.41(b)) are around two meters. These are code-only orbits, as well. The
corresponding code positions (RcII�) were, however, generated inLEOKIN using the pre-screening
option (using the RcIS-orbit). The RMS errors reflect the accuracy of the code positions of SAC-C.

The RMS errors for the reduced-dynamic orbits of APO set P (RpII�S) (Figure 6.41(c)) are for most
days� 30 cm. These reduced-dynamic orbits are based on combined code positions and phase position-
differences. The combined positions obviously have a much better accuracy than the code-only positions
used for APO set C.

The RMS errors are missing for some days. For doy 059 and 060 no data are available. For doy
087 and 088 it is impossible withLEOKIN to compute a reasonable kinematic solution with the few
data available (see Figure 6.39). For doy 081 it is impossible to generate reduced-dynamic orbits for
APO set P withSATORB. The RcIS-orbit has an RMS error of 54 m for the orbit determination of the
reduced-dynamic orbit with code-only positions in programSATORB. This shows already that there are
severe data problems for this day. Even if we choose the screening option in programSATORB it is
not possible to generate a reasonable orbit for this day. At about noon probably a maneuver took place
because if we set up a new arc after 740 minutes (��h��m) the results for the two arcs are reasonable.

We want to follow the same processing procedure for all days considered and do not make any
exception by splitting up the 24-hours arc, for example. It is obvious that it is not recommended to use
the reduced-dynamic orbits of type C for doy 081/2002 for the pre-screening inLEOKIN but with this
example we may show what happens if we nevertheless do it.

Figure 6.42 shows the results of the RC�- and RP�-solutions for doy 055 to 089 (cut-off angle
��, no elevation-dependent weighting). Each day is characterized by three bars. The left bar gives the
number of interrupts due to missing position-differences, the middle bar the number of jumps in the
kinematic trajectory for solution A, and the right bar the corresponding number of jumps for solution B.
Table 6.16 summarizes the minimum, mean, and maximum numbers for all solutions. Figure 6.43 shows
the percentage of deleted observations for the code and the phase observations.

The number of interrupts and jumps for doy 086 is comparatively large for all solutions. This is due
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Figure 6.41: RMS errors per coordinate of orbit determination in programSATORB, SAC-C, no
elevation-dependent weighting, CODE Rapid products, doy 055 to 089/2002.
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Figure 6.42: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and B (right bar), CODE
Rapid products, no elevation-dependent weighting, SAC-C, doy 055 to 089/2002.

Table 6.16: Minimum, mean, and maximum number of interrupts and jumps for solutions without
elevation-dependent weighting using CODE Rapid products (RC�, RP�), SAC-C, doy 055
to 089/2002.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

� � 3 6 17 39 5 20 82 5 18 57 6 18 38 5 20 77 5 18 54

� � 5 6 17 38 5 20 88 5 19 62 6 18 38 5 20 79 5 19 60

� �10 6 17 33 5 20 84 5 19 69 6 17 34 5 21 84 5 19 65
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(a) Code observations, APO set C.
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(b) Phase observations, APO set C.
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(c) Code observations, APO set P.
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(d) Phase observations, APO set P.

Figure 6.43: Percentage of deleted observations for solutions using CODE Rapid products and not ap-
plying elevation-dependent weighting, SAC-C, doy 055-089/2002.

139



6 Results and Applications

to the data performance which gets worse during this day (see Figure 6.39). Many data gaps and epochs
with fewer than four tracked satellites do occur. The data quality of this day is barely sufficient for our
kinematic positioning approach inLEOKIN.

On nearly all days the number of jumps for solution A is larger than for solution B. We already
saw a similar behavior for the CHAMP solutions of the 2001 IGS CHAMP test campaign. The code
observations at low elevations may be responsible for problems in the combined positions in solutions
A.

The number of interrupts and jumps does not significantly increase with increasing values of� as it
was observed in previous examples. There is no significant difference between the solutions for APO set
C and P. The numbers in Table 6.16 are similar for all solution types. All maximum numbers correspond
to the problematic day 086.

Figure 6.43(a) shows the percentage of deleted code observations and Figure 6.43(b) the percentage
of deleted phase observations when using APO set C. Each curve represents one of the 30 days. For
doys 059, 060, 087, and 088 no solutions exist and the percentage of deleted observations for doy 081
is out of range (more than 40 % for code and more than 20 % for phase observations). The percentage
of all deleted observations includes the observations excluded by the pre-screening, by the iterative least
squares adjustment step, and due to the cut-off angle. The curves for the deleted code observations
show a slight decrease with increasing value of�. The curves representing the percentage of deleted
phase observations are in most cases rather flat. The percentage is nearly the same for most values of�
considered. The differences in the resulting kinematic positions are therefore mainly due to the different
amount of deleted code observations for different values of�.

We mentioned that the percentage of deleted observations is out of range for doy 081 for APO set
C. This underlines that a priori orbits with an RMS inSATORB larger than ten meters are simply not
acceptable for further analysis.

Figure 6.43(c) and 6.43(d) show the corresponding curves for the solutions with APO set P. They
have in essence the same characteristics as those using APO set C. The uppermost curve in the bottom
figure of Figure 6.43(c) corresponds to the solutions for doy 089. As we can see in Figure 6.39 the
data performance of this day is still bad and it is not an ideal day for a kinematic point positioning of
the satellite. The reason for the high percentage of deleted code observations in Figure 6.43(c) is thus
due to bad data performance, which does not allow for a reliable kinematic point positioning. The a
priori orbits generated based on only few point positions have reasonable small RMS errors for the orbit
determination but the bad data performance is, as in the case of doy 086, at the limit of being usable for
a kinematic point positioning withLEOKIN.

The solutions using the CODE Rapid products as input data, no elevation-dependent weighting of
the observations, and a cut-off angle of�� are of similar quality for all days except doys 081, and 086 to
089. The different values for� do not have such a large impact as expected from the previous examples.

SAC-C: Elevation-dependent Weighting and Cut-off Angle ��:

Figure 6.44 shows the RMS errors per coordinate for the reduced-dynamic orbit determination in
SATORB for APO set C and P, when applying an elevation-dependent weighting of the observations
in LEOKIN. The differences w.r.t. Figure 6.41 are in most cases not significant. The largest difference
may be recognized for the a priori orbits of APO set P with� � 10. The RMS errors in Figure 6.44(b)
are slightly larger than those in Figure 6.41(c). It seems that observations which are not excluded from
the data due to the larger value of� have a larger impact on the kinematic solution and the a priori orbit
if we use an elevation-dependent weighting of the observations.
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Figure 6.44: RMS errors per coordinate for reduced-dynamic orbit determination in program
SATORB, SAC-C, elevation-dependent weighting, CODE Rapid products, doy 055 to
089/2002.
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(a) Residuals of RcII3 positions w.r.t. RcII3S orbit,
RMS 1.66 m.
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(b) Residuals of RcII3e positions w.r.t. RcII3Se orbit,
RMS 1.64 m.

Figure 6.45:SATORB residuals of code positions without weighting (left) and with weighting
(right), SAC-C doy 056/2002.

Figure 6.46 shows the number of interrupts and number of jumps in the kinematic trajectory for the
RC�e-, and RP�e-solutions (cut-off angle��, elevation-dependent weighting with� � 1) for SAC-C.
We cannot recognize significant differences to Figure 6.42. Many solutions A show more jumps in the
kinematic trajectory than solutions B. This does not agree with the observations made for the correspond-
ing solutions of the IGS CHAMP test campaign: There we have seen that the performance of solution A
is improving when elevation-dependent weighting of the observations is enabled. This behavior points to
problems with code observations at low elevations (multipath) for CHAMP. For SAC-C this difference
for solution A between the solutions without and with elevation-dependent weighting cannot be recog-
nized. In order to confirm that the quality of the code positions for SAC-C are not significantly better
when elevation-dependent weighting is applied we inspect the residuals (RSW-directions) of the kine-
matic code positions inSATORB for the reduced-dynamic orbit RcII3S without (Figure 6.45(a)) and the
orbit RcII3Se with (Figure 6.45(b)) elevation-dependent weighting. The residuals show no significant
difference and when we compare these figures with Figures 6.26(a) and 6.26(b) we see that, in contrary
to CHAMP, the elevation-dependent weighting has more or less no influence on the code positioning re-
sults inLEOKIN for SAC-C. Therefore no clear answer may be given at this point whether the weighting
model is appropriate for the code observations of SAC-C or not. The code observations in general seem
to be worse than in the case of CHAMP, however.

Table 6.17 lists the minimum, mean, and maximum numbers of interrupts and jumps for the RC�e-
and RP�e-solutions. The mean numbers are as homogeneous but slightly better than the mean numbers
of the RC�- and RP�-solutions (Table 6.16). The values for the minimum and maximum numbers are
comparable for the solutions with and without elevation-dependent weighting.

Figure 6.47 shows the percentage of deleted observations. Figures 6.47(a) and 6.47(b) show the per-
centage for APO set C and Figures 6.47(c) and 6.47(d) for APO set P. There are no significant differences
between the APO sets. The percentage of deleted observations shows no significant difference to the cor-
responding percentage of deleted observations for the solutions without elevation-dependent weighting
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(c) APO set P, doy 055 to 069/2002.
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Figure 6.46: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and B (right bar), CODE
Rapid products, elevation-dependent weighting, SAC-C, doy 055 to 089/2002.

Table 6.17: Minimum, mean, and maximum number of interrupts and jumps for solutions with elevation-
dependent weighting using CODE Rapid products (RC�e, RP�e), SAC-C.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

� � 3 6 17 38 5 20 78 5 19 57 6 17 38 5 20 74 5 18 54

� � 5 6 17 36 5 21 80 5 19 60 6 17 38 5 21 79 5 19 58

� �10 6 17 34 5 21 72 5 20 64 6 17 33 5 20 74 5 19 64
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(a) Code observations, APO set C.
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(b) Phase observations, APO set C.
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(c) Code observations, APO set P.
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Figure 6.47: Percentage of deleted observations for solutions using CODE Rapid products and applying
elevation-dependent weighting, SAC-C, doy 055-089/2002.
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Figure 6.48: RMS errors of Helmert transformation between kinematic trajectories RCB3 and
RCB3e, SAC-C, doy 055 to 089/2002.
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Figure 6.49: Differences between kinematic trajectories RCB3 and RCB3e, SAC-C, doy 079/2002.

(Figure 6.43).
In general we have seen that the solutions computed with the CODE Rapid products for SAC-C are

of a good quality except for a few days with serious data problems. Neither the solution without nor the
solution with elevation-dependent weighting is outstandingly good or bad.

Figure 6.48 shows the RMS errors of a Helmert transformation between the kinematic solutions
RCB3 and RCB3e for the 35 days. Most RMS errors are between 10 cm and 20 cm. Two days show,
however, larger RMS errors (up to 40 cm). Doy 079/2002 is a typical day which has no special problems
and we use it for illustrations. Figure 6.49 shows the differences between the kinematic trajectories
RCB3 and RCB3e for doy 079/2002. The offsets between sequences of phase-connected positions are in
most cases in excess of ten centimeters.

For APO set P we generate the best possible reduced-dynamic orbits withSATORB with code po-
sitions and phase position-differences of the kinematic solutions RPB3 (� reduced-dynamic solution
RP3S) and RPB3e (� RP3Se). These reduced-dynamic orbits may help to evaluate the kinematic solu-
tions.

Figure 6.50(a) shows the RMS errors of a Helmert transformation between the kinematic solutions
RPB3 and RPB3e and Figure 6.50(b) those for a transformation between the reduced-dynamic orbits
RP3S and RP3Se. Figure 6.52 shows the RMS errors of a Helmert transformation between the kinematic
trajectories (RPB3 and RPB3e) and the reduced-dynamic orbits (RP3S and RP3Se). The values are all
of the same size for all four comparisons. Figure 6.51(a) shows the differences between the kinematic
trajectories RPB3 and RPB3e for doy 079/2002 and Figure 6.51(b) those between the reduced-dynamic
orbits RP3S and RP3Se.
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Figure 6.50: RMS errors of Helmert transformation between RPB3 and RPB3e (left) and between RP3S
and RP3Se (right), SAC-C, doy 055 to 089/2002.
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(a) Kinematic trajectories RPB3 – RPB3e, RMS
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Figure 6.51: Differences between RPB3 and RPB3e (left) and between RPS3 and RPS3e (right), SAC-C,
doy 079/2002.

The offsets between the sequences of phase-connected positions in Figure 6.51(a) have the same
size as for the corresponding differences for APO set C (Figure 6.49). The frequent interrupts and the
resulting offsets in the kinematic trajectory are a problem of the kinematic point positioning procedure
in LEOKIN and they cannot be avoided. Figures 6.53(a) and 6.53(b) show the differences between the
kinematic trajectory RPB3 and the reduced-dynamic orbit RP3S (left) and between RPB3e and RP3Se
(right) for doy 079/2002, respectively. The large offsets of the kinematic trajectories w.r.t. the reduced-
dynamic orbit make it very difficult to evaluate the accuracy of the particular solutions.

From these comparisons it cannot be concluded which of the two solutions is the better one (without
or with elevation-dependent weighting). The answer is not as clear as in the case of CHAMP for the
2001 campaign. Further investigations on this issue are necessary in order to find an answer.
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Figure 6.52: RMS errors of Helmert transformation between kinematic (RPB3, RPB3e) and reduced-
dynamic orbits (RP3S, RP3Se), SAC-C, doy 055 to 089/2002.
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(a) Kinematic trajectory RPB3 – reduced-dynamic orbit
RP3S.
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Figure 6.53: Differences between RPB3 and RP3S (left) and between RPB3e and RP3Se (right), SAC-C,
doy 079/2002.
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CHAMP: No Elevation-dependent Weighting, Cut-off Angle ��

The kinematic solutions for the 35 days in 2002 of CHAMP GPS observations may be compared with
those from the eleven days of the IGS CHAMP test campaign and with results from SAC-C.

Satellites below the local horizon are no longer tracked for the 2002 time interval considered. In
addition the CHAMP receiver started to track up to ten satellites simultaneously on doy 064/2002 (Fig-
ure 6.40). We therefore expect to have a better data performance and therefore better results for these
35 days, especially after doy 064, than for the eleven days in 2001. The kinematic solutions without
elevation-dependent weighting of the observations are analyzed first.

Figure 6.54 shows the RMS errors per coordinate for the reduced-dynamic orbit determinations in
SATORB. Figure 6.54(a) shows the values for reduced-dynamic orbits RcIS (using code positions de-
rived without a priori orbit information inLEOKIN) which are the basis for all following solutions using
the CODE Rapid products as input data for CHAMP. The RMS errors are clearly smaller than those for
SAC-C (Figure 6.41(a)).

The RMS errors for the reduced-dynamic orbits of APO set C (RcII�S, Figure 6.54(b)) are about one
meter. This is a factor of two smaller than the corresponding values for SAC-C (Figure 6.41(b)). The
code observations of CHAMP thus seem to be of better quality than the code observations of SAC-C.
The values for doy 064 are missing because we split the day into two intervals. The first arc refers to the
observations before and the second to the observations after the data gap. Therefore, we have two short
reduced-dynamic orbits for doy 064, which are not included in these figures.

The reduced-dynamic orbits for APO set P (RpII�S, Figure 6.54(c)) have RMS errors below 15 cm
for all days considered (for� � 3 and 5). The RMS errors are slightly smaller than the corresponding
values for SAC-C (Figure 6.41(c)) and very homogeneous over the 35 days.

Figure 6.55 shows the number of interrupts and number of jumps for the kinematic solutions con-
sidered. The three bars for each day have the same meaning as in the corresponding figures for SAC-C
(Figure 6.42). The differences between the solutions with APO set C (Figures 6.55(a) and 6.55(b)) and
the solutions with APO set P (Figures 6.55(c) and 6.55(d)) are not significant. In many cases solutions
A show more jumps in the kinematic trajectory than solutions B. A sudden increase of the quality of the
kinematic solutions can be observed on doy 077. The numbers of interrupts and jumps are significantly
smaller than for the days before. No obvious change in the data performance starting on doy 077 may be
recognized however (see Figure 6.40), except that the number of epochs with fewer than six tracked satel-
lites is reduced starting with doy 077. This may be very important because kinematic point positioning
with LEOKIN requires at least four observations. With four observations we may determine a kinematic
position but there is no redundancy in the adjustment and therefore no quality control is possible for this
position.

Observe that the kinematic solution for doy 086 has no interrupts due to missing position-differences
and that no jumps in the kinematic trajectory could be found. Therefore, doy 086 is an ideal test day
without data gaps and data problems.

Compared to the results of the IGS CHAMP test campaign (Table 6.7) the mean number of inter-
rupts and jumps are significantly smaller (Table 6.18). Figure 6.56 shows the percentage of deleted
observations for the 35 days. The curves may be characterized as the corresponding curves for SAC-C
(Figure 6.43).

The solutions without elevation-dependent weighting for the 35 days in 2002 for CHAMP show
similar characteristics concerning the number of interrupts and jumps, and the percentage of deleted
observations. Partly, solutions A show more jumps than solutions B, but mainly for the days before doy
077. The values for the interrupts and jumps themselves are smaller than the corresponding values for
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Figure 6.54: RMS errors per coordinate for reduced-dynamic orbit determination in program
SATORB, CHAMP, no elevation-dependent weighting, CODE Rapid products, doy 055
to 089/2002.
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Figure 6.55: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and B (right bar), CODE
Rapid products, no elevation-dependent weighting, CHAMP, doy 055 to 089/2002.
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Figure 6.56: Percentage of deleted observations for solutions using CODE Rapid products and not ap-
plying elevation-dependent weighting, CHAMP, doy 055-089/2002.
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Table 6.18: Minimum, mean, and maximum number of interrupts and jumps for solutions without
elevation-dependent weighting using CODE Rapid products (RC�, RP�), CHAMP.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

� � 3 0 7 18 0 7 17 0 7 19 0 7 18 0 7 18 0 7 19

� � 5 0 7 17 0 7 16 0 7 18 0 7 17 0 8 17 0 7 18

� �10 0 7 17 0 8 18 0 8 17 0 7 17 0 8 18 0 8 18

the 2001 IGS CHAMP test campaign. This is the case for the RMS errors of the reduced-dynamic orbit
determinations inSATORB, as well. This indicates that the data performance and quality of the CHAMP
data has significantly improved in 2002.

CHAMP: Elevation-dependent Weighting, Cut-off Angle ��

Figure 6.57 shows the RMS errors per coordinate for the orbit determination inSATORB for the reduced-
dynamic orbits RcII�Se and RpII�Se. The RMS errors for APO set C (Figure 6.57(a)) are slightly
smaller than those for the solutions without elevation-dependent weighting (Figure 6.54(b)) which was
expected due to the findings for the 2001 IGS test campaign that elevation-dependent weighting has to be
applied to the code observations of CHAMP. The RMS errors of the orbit determination of the reduced-
dynamic orbits RcII10Se are less homogeneous than those for the reduced-dynamic orbits RcII10S. The
RMS errors for APO set P (Figure 6.57(b)) are equal to those in Figure 6.54(c). Except for� � 10 this
is not the case and it can be stated that the choice of� � 10 is not good enough.

Figure 6.58 shows the number of interrupts and number of jumps for the RC�e- and RP�e-solutions
of CHAMP. Table 6.19 summarizes the minimum, mean and maximum numbers for the different RC�e-
and RP�e-solutions.

The number of interrupts and number of jumps in Figure 6.58 shows the pattern already noticed in
the examples for the IGS CHAMP test campaign: The solution A shows a similar number of jumps as
solution B. The kinematic solutions get better starting from doy 077 onwards. The best performance of
the solutions can be found in Figures 6.58(c) and 6.58(d) for solution B using APO set P with elevation-
dependent weighting of the observations. The curves with the percentage of deleted observations are not
shown for these solutions with elevation-dependent weighting because they are very similar to those of
the solutions without elevation-dependent weighting (Figure 6.56).

The RMS errors per coordinate of the Helmert transformation between the solution RPB3 and RPB3e
for the 35 days may be found in Figure 6.59. The values are smaller than the corresponding values for
SAC-C (Figure 6.50(a)). The reason may be that the solutions for SAC-C have in average more interrupts
than the solutions for CHAMP. If these interrupts have different size for the solution with and without
elevation-dependent weighting this leads to larger differences between the kinematic trajectories.

We generate, in addition, the best possible reduced-dynamic orbits RP3Se inSATORB with the code
positions and phase position-differences from RPB3e as input. Figure 6.60(a) shows the RMS errors
of the Helmert transformations between the kinematic trajectory RPB3 and the reduced-dynamic orbit
RP3Se (top) and between RPB3e and RP3Se (bottom). The RMS errors of the Helmert transformation
between RPB3e and RP3Se (mean RMS error 9.6 cm) are in average smaller than those for the compar-
ison between RPB3 and RP3Se (mean RMS error 11.5 cm). A reason for this is that the orbits RPB3e
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Figure 6.57: RMS errors per coordinate for reduced-dynamic orbit determination in program
SATORB, CHAMP, elevation-dependent weighting, CODE Rapid products, doy 055 to
089/2002.
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Figure 6.58: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and B (right bar), CODE
Rapid products, elevation-dependent weighting, CHAMP, doy 055 to 089/2002.
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Table 6.19: Minimum, mean, and maximum number of interrupts and jumps for solutions with elevation-
dependent weighting using CODE Rapid products (RC�e, RP�e), CHAMP.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

� � 3 0 7 17 1 7 17 1 6 14 0 7 17 1 7 17 0 7 14

� � 5 0 7 17 1 7 18 1 6 15 0 7 17 1 7 17 0 6 15

� �10 0 7 18 1 7 21 1 7 15 0 7 17 1 7 16 0 7 15
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Figure 6.59: RMS errors of Helmert transformation between kinematic solutions RPB3 and RPB3e,
CHAMP, doy 055 to 089/2002.

and RP3Se are related to each other: The reduced-dynamic orbit RP3Se is generated using positions
and position-differences from the RPB3e solution. If we perform Helmert transformations between the
kinematic trajectories RPB3 and RPB3e and the reduced-dynamic orbit RP3S (generated using positions
and position-differences of RPB3 solution without elevation-dependent weighting) (Figure 6.60(b)) we
find a mean RMS error of 11.1 cm for the comparisons between RPB3 and RP3S and 11.2 cm for the
comparisons between RPB3e and RP3S. The larger values for all other comparisons indicate that the
small RMS between the trajectories RPB3e and RP3Se is not only due to the relation between them.
The solutions with elevation-dependent weighting (RPB3e (kinematic) and RP3Se (reduced-dynamic))
show the best performance and this underlines that the elevation-dependent weighting is appropriate for
CHAMP.

Figure 6.61 shows the differences between the RPB3 and RPB3e solutions for doy 079 for CHAMP.
As expected from Figures 6.55(d), and 6.58(d) we cannot recognize many offsets caused by interrupts
(two for RPB3 and RPB3e) between the kinematic trajectories. The differences between the solutions
without and with elevation-dependent weighting do not show offsets disturbing and confusing the pic-
tures. Figure 6.62(a) shows the differences between the kinematic trajectory RPB3 and the reduced-
dynamic orbit RP3Se and Figure 6.62(b) those between RPB3e and RP3Se.

The better data quality reflected by Figure 6.40 of these 35 days of CHAMP results in an improved
quality of the kinematic point positioning withLEOKIN.

6.4.4 Solutions with CODE Final Products

For doy 055 to 069/2002 we generate kinematic solutions based on the CODE Final products as input
and compare these results with the kinematic solutions for doy 055 to 069 derived from the CODE Rapid
products. The difference between the CODE Rapid and CODE Final products are the GPS orbits and
clock corrections used. The differences between the GPS orbits of the two products are in the order of
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Figure 6.60: RMS errors of Helmert transformation between kinematic trajectories RPB3 (top),
RPB3e (bottom) and reduced-dynamic orbits RP3Se (left) and RP3S (right), CHAMP, doy
055 to 089/2002.
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Figure 6.61: Differences between kinematic solutions RPB3 and RPB3e, CHAMP, doy 079/2002, RMS
0.06 m.
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−0.3

−0.15

0

0.15

0.3

M
et

er

X

−0.3

−0.15

0

0.15

0.3

M
et

er

Y

0 4 8 12 16 20 24
−0.3

−0.15

0

0.15

0.3

M
et

er

Z

Hours

(b) Kinematic trajectory RPB3e – reduced-dynamic or-
bit RP3Se, RMS 0.07 m.

Figure 6.62: Differences between kinematic trajectory RPB3 and reduced-dynamic orbit RP3SE (left)
and between RPB3e and RP3Se (right), CHAMP, doy 079/2002.

three to six centimeters (RMS error of a Helmert transformation). This should not cause large differences
in the resulting trajectories of the LEO. The clock corrections, on the other hand, are generated with two
different procedures. The 30-second GPS clock corrections used together with the CODE Rapid orbits
are aligned to the GPS broadcast clock corrections and the reference clock is arbitrarily chosen (normally
it is a receiver clock of a station known to have a good quality). These so-called “free” 30-second clock
corrections are not as consistent with the CODE Rapid orbits as the 30-second clock corrections used
together with the CODE Final orbits. These 30-second clock corrections are constrained to the CODE
Final 5-minute clock corrections. Therefore we may expect differences in the kinematic trajectories of
the LEOs mainly due to these different clock generation procedures.

In addition we want to study the impact on kinematic positions when using the precise 5-minute
clock correction of the CODE Final processing as clock information in theLEOKIN procedure (instead
of the 30-second clock corrections used so far). The 5-minute clock corrections are linearly interpolated
to the epochs needed (as it was also done with the 30-second clock corrections). Finally, the SAC-
C data are processed without a cut-off angle for the observations in order to assess the quality of the
observations below the local horizon. All kinematic solutions using CODE Final products are generated
using exclusively� = 3. When we are using a solution generated with the CODE Rapid products for
comparison we always use the corresponding solution generated with� �3.

SAC-C: No Elevation-dependent Weighting, Cut-off Angle ��

Figure 6.63 shows the number of interrupts and number of jumps in the way previously explained. Ta-
ble 6.20 summarizes the minimum, mean, and maximum numbers for the thirteen days. The numbers
are not significantly different from those referring to the solutions using CODE Rapid products (Fig-
ures 6.42(a) and 6.42(c)).

Let us now analyze the differences in the kinematic trajectories due to the use of different a priori
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Figure 6.63: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and B (right bar), CODE Final
products, no elevation-dependent weighting, SAC-C, doy 055 to 069/2002.

Table 6.20: Minimum, mean, and maximum number of interrupts and jumps for solutions without
elevation-dependent weighting using CODE Final products (FC, FP), SAC-C.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

6 16 25 5 18 31 5 16 28 6 16 25 5 17 31 5 16 27
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Figure 6.64: RMS errors of Helmert transformation between corresponding kinematic solutions using
CODE Rapid (RC and RP) and using CODE Final products (FC and FP), no elevation-
dependent weighting, SAC-C, doy 055 to 069/2002. Left bar: solution A, right bar: solution
B.
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Figure 6.65: RMS errors of Helmert transformation between post-fit reduced-dynamic orbits RPS and
FPS, doy 055 to 069/2002, SAC-C.

information for the GPS orbits and clock corrections.
Figure 6.64 shows the RMS errors of the Helmert transformation between the kinematic solutions

using either CODE Rapid products (RC and RP) or the CODE Final products (FC and FP). The two
bars represent the RMS error for the comparison of solutions A (left bar) and of solutions B (right bar).
The RMS errors corresponding to solutions A are in most cases slightly larger than those of solution B.
Table 6.21 summarizes the mean RMS errors of the Helmert transformation. Figure 6.65 shows the RMS
errors of a Helmert transformation between the post-fit reduced-dynamic orbits RPS and FPS.

Figure 6.66(a) shows, as an example, the differences between the post-fit reduced-dynamic orbits
RPS and FPS for doy 055 (RMS 0.04 m). Figure 6.66(b) shows the differences between the kinematic
trajectories of solutions RPB and FPB for doy 055 (RMS 0.05 m). Since both, different a priori orbits
and different a priori information for the GPS orbits and clock corrections are used for the two solutions
the evaluation of the comparisons is difficult.

In order to independently evaluate the influence of different a priori information for GPS orbits and
clock corrections on the kinematic trajectory the solutions RCB and RPB were repeated with the a priori
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Table 6.21: Mean RMS errors (cm) of Helmert transformation between corresponding kinematic solu-
tions using CODE Rapid (RC and RP) and using CODE Final products (FC and FP) and
between corresponding reduced-dynamic solutions (RPS and FPS), SAC-C.

RC� FC. RP� FP. RPS� FPS
Sol. A Sol. B Sol. A Sol. B
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(a) Reduced-dynamic orbits RPS – FPS, RMS 0.04 m.
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Figure 6.66: Differences between reduced-dynamic orbit RPS and FPS (left) and kinematic trajectories
RPB and FPB (right) for doy 055, SAC-C.
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Figure 6.67: RMS errors of the Helmert transformation between solutions FCB and RFCB and between
FPB and RFPB, SAC-C, doy 055 to 069/2002.
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Figure 6.68: RMS errors of the Helmert transformation between solutions RCB and RFCB, and between
RPB and RFPB, SAC-C, doy 055 to 069/2002.

orbits FcIIS and FpIIS, respectively (solutions RFCB and RFPB).
The RMS errors of the Helmert transformation between the resulting kinematic trajectories of RFCB

and RPB with the corresponding solutions FCB and FPB may be found in Figure 6.67. Figure 6.68
shows the RMS errors of the Helmert transformation between the kinematic trajectories of RFCB and
RCB and between RFPB and RPB.

The differences between the original solution RCB and solution RFCB (exchanging the a priori orbit)
for doy 055 (Figure 6.69(a)) have an RMS error per coordinate of 0.02 m in the Helmert transformation.
The differences between the solution FCB and solution RFCB (using the a priori orbit FcIIS) for doy 055
(Figure 6.69(b)) have an RMS error of 0.06 m. These results indicate that the impact on the kinematic
results of different input data like CODE Rapid products or CODE Final products is larger than the
impact of a different a priori orbit.

As mentioned above the different procedures to generate the 30-second clock corrections used to-
gether with the CODE Rapid and the CODE Final products are the main difference between the two
types of input data. These differences explain the differences in Figure 6.69(b).

SAC-C: Elevation-dependent Weighting, Cut-off Angle ��

We computed also the solutions with elevation-dependent weighting using the CODE Final products.
Figure 6.70 shows the number of interrupts and number of jumps for these solutions using APO set C

and P. Table 6.22 lists the minimum, mean, and maximum number of interrupts and jumps. Figure 6.71
shows the RMS errors of the Helmert transformation between the corresponding kinematic solutions
using CODE Rapid and using CODE Final products as input data. Figure 6.72 shows the RMS errors of
the Helmert transformation between the post-fit reduced-dynamic orbits RPSe and FPSe. In Table 6.23
the mean RMS errors for these comparisons are listed.
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(a) Differences between RCB and RFCB, RMS 0.02 m.
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(b) Differences between FCB and RFCB, RMS 0.06 m.

Figure 6.69: Differences between kinematic trajectories for doy 055, SAC-C.

Table 6.22: Minimum, mean, and maximum number of interrupts and jumps for solutions with elevation-
dependent weighting using CODE Final products (FCe, FPe), SAC-C.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

6 16 25 5 17 30 5 17 30 6 16 25 5 17 31 5 16 29

These results do not indicate whether the solutions without or with elevation-dependent weighting
are better in the case of SAC-C. Even the differences between solution A and B are similar for both
solution types (without and with elevation-dependent weighting).

The RMS errors of the Helmert transformation between orbit solutions using CODE Rapid and us-
ing CODE Final products are larger for the solutions with elevation-dependent weighting (compare Ta-
ble 6.21 with Table 6.23).

Table 6.23: Mean RMS errors (cm) of the Helmert transformation between corresponding kinematic so-
lutions using CODE Rapid (RCe and RPe) and using CODE Final products (FCe and FPe)
and between corresponding reduced-dynamic solutions RPSe and FPSe, SAC-C.

RCe� FCe RPe� FPe RPSe� FPSe
Sol. A Sol. B Sol. A Sol. B

8.3 6.5 8.4 6.5 5.8
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Figure 6.70: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and B (right bar), CODE Final
products, elevation-dependent weighting, SAC-C, doy 055 to 069/2002.
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Figure 6.71: RMS errors of the Helmert transformation between kinematic solutions using CODE
Rapid and using CODE Final products, elevation-dependent weighting, SAC-C, doy 055
to 069/2002.
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Figure 6.72: RMS errors of the Helmert transformation between reduced-dynamic orbits RPSe and FPSe,
SAC-C, doy 055 to 069/2002.
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(b) RMS errors of Helmert transformation between solutions F5PBe
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Figure 6.73: CODE Final products and CODE Final 5-minute clock corrections as clock information,
SAC-C, doy 055 to 069/2002.

SAC-C: CODE Final 5-minute Clock Corrections Used as Clock Information

In Section 3.7 we used interpolated 5-minute clock corrections instead of interpolated 30-second clock
corrections inLEOKIN. The resulting differences on the kinematic positions using simulated error-free
observations had an RMS error of a Helmert transformation of 2.5 to 4 cm.

In order to evaluate the impact of using the interpolated 5-minute clock corrections those simulation
results were performed without a data screening. In the test with real data the data screening is enabled
and therefore problems stemming from bad satellite clocks are removed.

In the following we have replaced the 30-second clock corrections used inLEOKIN with the 5-minute
clock corrections from the CODE Final product. The 5-minute clock corrections are linearly interpolated
to 10-second observation epochs. Solutions FPAe and FPBe are repeated with the interpolated clock
information (F5PAe and F5PBe). The a priori orbits used are the same as for the original solutions FPe
(FpIISe). The only difference between the two solutions are the GPS clock corrections used.

The number of interrupts and jumps is given in Figure 6.73(a) in the usual way. There is no significant
difference to Figure 6.70(b) (except a few small differences, e.g., doy 057 and 066/2002). Figure 6.73(b)
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Figure 6.74: Differences between solutions F5PBe and FPBe for doy 055, SAC-C, RMS 0.11 m.

shows the RMS errors of the Helmert transformation between the new solutions F5PBe and the original
solutions FPBe. The RMS errors are around ten centimeters for all thirteen days considered. The values
are larger than the values from the simulations in Section 3.7. The simulations are performed with error-
free observations and therefore no interrupts due to data problems were in the data. This explains the
larger values for the real data.

Figure 6.74 shows the differences between the two corresponding solutions for doy 055. The differ-
ences are of the order of up to one meter at a few epochs.

The results of this section are of greatest importance for practice: It is obviously possible to generate
kinematic (or reduced-dynamic) LEO orbits with a quality of a few decimeters using readily available
IGS orbits and clock information (5-minute satellite clock corrections are available from individual IGS
analysis centers and as an official IGS product).

SAC-C: No Elevation-dependent Weighting, no Cut-off Angle

In Section 6.2 we have seen that the observations below the local horizon are of rather good quality in the
case of SAC-C. This is why we also generate kinematic orbits with all available observations for SAC-C.

The additional observations for these solutions have elevation angles between zero and minus ten de-
grees. The percentage of these observations compared to the total number is about one to two percent for
the thirteen days. This is a significantly smaller percentage than in the case of doy 051/2001 processed in
Section 6.2 (about ten percent). The test shall show whether this small amount of observations improves
the point positioning result.

Figure 6.75 shows that the number of interrupts and jumps is of the same order as in Figure 6.63
(representing the solutions with a cut-off angle of��).

Figure 6.76 shows the differences in the kinematic trajectory between the solutions FCB and SCB
for doy 055. The differences are very small (RMS 0.01 m). It is not clear whether the kinematic solution
improves due to the use of the one to two percent low elevation data.

Since the gain of using a small amount of low elevation data is marginal we do not further pursue the
issue and recommend a cut-off angle of�� in the case of SAC-C.
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Figure 6.75: Number of interrupts due to missing phase position-differences and number of jumps in the
kinematic trajectory, CODE Final products, no elevation-dependent weighting, no cut-off
angle, SAC-C, doy 055 to 069/2002.
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Figure 6.76: Differences between kinematic trajectories FCB (cut-off angle��) and SCB (no cut-off
angle) for doy 055, SAC-C, RMS 0.01 m.
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Figure 6.77: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and B (right bar), CODE Final
products, no elevation-dependent weighting, CHAMP, doy 055 to 069/2002.

Table 6.24: Minimum, mean, and maximum number of interrupts and jumps for solutions without
elevation-dependent weighting using CODE Final products (FC, FP), CHAMP.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

4 9 18 3 9 18 3 9 18 4 9 18 3 9 19 3 8 19

CHAMP: No Elevation-dependent Weighting, Cut-off Angle ��

The CHAMP data for doy 055 to 069/2202 are processed with the CODE Final products as input, as
well. The solutions without elevation-dependent weighting are analyzed first.

Figure 6.77 shows the number of interrupts and jumps in the known format. Table 6.24 summarizes
the corresponding minimum, mean, and maximum numbers of the solutions. Concerning data screening
there are no significant differences to the corresponding solutions using CODE Rapid products. We
compare the kinematic trajectories of the RC and RP with those of FC and FP. Figure 6.78 shows the RMS
errors of the Helmert transformation between the solutions. The values for the comparisons between the
solutions A are larger than those for solutions B. The mean RMS errors of the Helmert transformations
are listed in Table 6.25. The values are smaller than those for SAC-C (Table 6.21).

As in the case for SAC-C we repeat the computation of RCB and RPB using the corresponding
reduced-dynamic orbits FcIIS and FpIIS as a priori orbits. This is done in order to isolate the differences
caused by different a priori orbits and caused by different input data. Figure 6.79 shows the RMS
errors of the Helmert transformation between the resulting trajectories and the solutions FCB and FPB,
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Figure 6.78: RMS errors of the Helmert transformation between corresponding kinematic solutions us-
ing CODE Rapid (RC and RP) and using CODE Final products (FC and FP), no elevation-
dependent weighting, CHAMP, doy 055 to 069/2002. Left bar: solution A, right bar: solu-
tion B.

Table 6.25: Mean RMS errors (cm) of the Helmert transformation between corresponding kinematic
solutions using CODE Rapid (RC and RP) and using CODE Final products (FC and FP),
CHAMP.

RC� FC RP� FP
Sol. A Sol. B Sol. A Sol. B

6.1 4.9 6.2 5.1

respectively. Figure 6.80(a) shows the RMS errors of the Helmert transformation between the resulting
trajectories of the new solutions RFCB and the solution RCB and Figure 6.80(b) shows the RMS errors
of the Helmert transformation between solutions RFPB and RPB. The values have the same order of
magnitude as the corresponding values for SAC-C (Figures 6.67 and 6.68). Figure 6.81(a) shows the
differences between the kinematic solutions RCB and RFCB derived with the a priori orbit of FcIIS for
doy 056. Figure 6.81(b) shows the differences between FCB and the new solution RFCB. The differences
in Figure 6.81(a) reflect, therefore, the differences in the used a priori orbit. Those in Figure 6.81(b)
reflect the differences in the input data (satellite clock corrections in particular).

The effect on the kinematic solutions for CHAMP is as expected similar to the effect on the kinematic
solutions for SAC-C. The difference is only that the effect of using different input data (CODE Final
products instead of CODE Rapid products) is somewhat smaller for the CHAMP solutions.
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Figure 6.79: RMS errors of Helmert transformation between solutions FCB and RFCB, and between
FPB and RFPB, CHAMP, doy 055 to 069/2002.
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Figure 6.80: RMS errors of Helmert transformation between solutions RCB and RFCB, and between
RPB and RFPB, CHAMP, doy 055 to 069/2002.
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(a) Differences between RCB and RFCB, RMS 0.02 m.
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(b) Differences between FCB and RFCB, RMS 0.06 m.

Figure 6.81: Differences between kinematic trajectories of doy 056, CHAMP.
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Figure 6.82: Number of interrupts due to missing phase position-differences (left bar) and number of
jumps in the kinematic trajectory for solution A (middle bar) and B (right bar), CODE Final
products, elevation-dependent weighting, CHAMP, doy 055 to 069/2002.

Table 6.26: Minimum, mean, and maximum number of interrupts and jumps for solutions with elevation-
dependent weighting using CODE Final products (FCe, FPe), CHAMP.

APO set C APO set P
Interrupts Jumps Interrupts Jumps

Sol. A and B Sol. A Sol. B Sol. A and B Sol. A Sol. B

4 9 17 3 8 16 3 8 17 4 9 17 3 8 14 3 8 15

CHAMP: Elevation-dependent Weighting, Cut-off Angle ��

The solutions with elevation-dependent weighting for CHAMP are computed, as well. Figure 6.82 shows
the corresponding number of interrupts and jumps for the kinematic solutions. Table 6.26 summarizes
the minimum, mean, and maximum numbers for the 15 days considered.

As expected the differences to the solutions without elevation-dependent weighting (Figure 6.77) are
not significant except the notice that, as in previous examples for CHAMP, the solutions A have for some
days a better performance than the solutions A without elevation-dependent weighting.

Figure 6.83 shows the RMS errors of the Helmert transformation between the solutions using CODE
Rapid products (RCe and RPe) and the solutions using CODE Final products (FCe and FPe). Table 6.27
summarizes the mean RMS errors for these comparisons. These mean RMS errors are about one cen-
timeter larger than the corresponding mean RMS errors for the solutions without elevation-dependent
weighting (Table 6.25). This was also the case for the solutions for SAC-C (Tables 6.21 and 6.23). The
reason for this fact could not be found yet.
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Figure 6.83: RMS errors of the Helmert transformation between corresponding kinematic solutions us-
ing CODE Rapid (RCe and RPe) and using CODE Final products (FCe and FPe), with
elevation-dependent weighting, CHAMP, doy 055 to 069/2002. Left: solution A, right:
solution B.

Table 6.27: Mean RMS errors (cm) of the Helmert transformation between corresponding kinematic so-
lutions using CODE Rapid (RCe and RPe) and using CODE Final products (FCe and FPe),
CHAMP.

RC� FC RP� FP
Sol. A Sol. B Sol. A Sol. B

7.2 5.6 7.1 5.6
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Figure 6.84: CODE Final products and CODE Final 5-minute clock corrections as clock information,
CHAMP, doy 055 to 069/2002.

CHAMP: CODE Final 5-minute Clock Corrections Used as Clock Information

Interpolated CODE Final 5-minute clock corrections are used for doy 055 to 069/2002 of CHAMP, as
well. As in the case of SAC-C we repeated solutions FPA3e and FPB3e with the interpolated 5-minute
clock corrections (to 10-second intervals).

Figure 6.84(a) shows the number of interrupts and jumps for these new solutions. The number of
jumps is in a few cases (e.g., doy 056 and 057) slightly higher than in Figure 6.82 (top). On the other
hand, the number of interrupts and jumps is smaller for doy 058. Figure 6.84(b) shows the RMS errors
of the Helmert transformation between solutions F5PBe and FPBe. Doy 064 is left out because of the
long data gap on that day (see Figure 6.40). The RMS errors are of the same order of magnitude as the
corresponding values for SAC-C (Figure 6.73(b)). Figure 6.85 shows the differences between the two
corresponding solutions for doy 055 (F5PBe and FPBe). The differences show similar characteristics as
the corresponding differences for SAC-C (Figure 6.74).

6.4.5 Summary

The studies made based on the data series of 35 days for CHAMP and SAC-C in 2002 confirm in essence
the conclusions already drawn from the previous examples (CHAMP 152/2001, SAC-C 051/2001, and
IGS CHAMP test campaign (doy 140 to 150/2001)).

The solution B with a cut-off angle of��, � � 3, and a priori orbits from APO set P leads to
reliable, robust, and accurate kinematic point positioning results withLEOKIN. For CHAMP we have
seen already for the 2001 campaign that the elevation-dependent weighting model is appropriate for the
code observations. For SAC-C this cannot be concluded as clearly as in the case of CHAMP because
no significant differences between the two models (without and with elevation-dependent weighting)
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Figure 6.85: Differences between solutions F5PBe and FPBe for doy 055, CHAMP, RMS 0.11 m.

could be identified. We have recognized, on the other hand, that the quality of the kinematic solutions for
CHAMP and SAC-C does not depend as much on the value of� as in the previous examples for CHAMP
152/2001, SAC-C 051/2001, and the IGS CHAMP test campaign. The data quality is better in 2002 than
in 2001 for both satellites. The remaining outliers can be detected reliably. After data screening there
are still enough satellites available to generate kinematic point positions of good quality.

Additional studies were performed concerning the use of different GPS orbits and clock corrections.
We used, on the one hand, CODE Rapid products as a priori information and, on the other hand, CODE
Final products. The differences between corresponding solutions are below ten centimeters. They are
smaller for the solutions without elevation-dependent weighting for both satellites and the reason for this
is still unclear.

The differences between the kinematic solutions using CODE Rapid products and the solutions using
CODE Final products are mainly due to the GPS clock correction sets used. The differences in the GPS
orbits are too small to have a big impact on the results. The Rapid and Final GPS clock correction
sets are derived by two slightly different procedures. The 30-second clock corrections used with the
CODE Rapid products are so-called “free” clock corrections which are only aligned to the broadcast
clock corrections. The 30-second clock corrections used with the CODE Final products, on the other
hand, are constrained to the precise CODE Final 5-minute clock corrections.

The differences between the solutions using CODE Rapid products and using CODE Final products
are smaller for the CHAMP solutions than the differences for the SAC-C solutions.

The use of interpolated 5-minute clock corrections instead of interpolated 30-second clock correc-
tions inLEOKIN for processing 10-second data leads to highly accurate solutions, as well. The maximal
differences in the kinematic trajectories may reach one meter in one component but the RMS errors of
a Helmert transformation between the orbit sets are only about ten centimeters. The use of interpolated
5-minute clock corrections is possible and may be recommended if the accuracy requirements are of
the order of a few decimeters. This conclusion is of great importance because we do not need to have
30-second clock correction available but may directly use official clock products from the IGS.

The observations tracked below the horizon by SAC-C do not improve the kinematic solution sig-
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Table 6.28: RMS (m) errors of Helmert transformation between solutions for doy 144/2001, CHAMP,
italic: LEOKIN solutions, non-italic:SATORB solutions, bold: best solutions.

cIS cII3 cII3S cII3e cII3Se pII3e pII3Se PB3e P3Se TUM

cI 2.58 2.86 2.55 2.30 2.52 2.50 2.56 2.60 2.71 2.56
cIS - 2.13 0.42 1.42 0.51 0.51 0.50 0.48 0.47 0.48
cII3 - 2.10 1.71 2.10 1.89 2.12 1.98 2.11 2.12
cII3S - 1.37 0.35 0.32 0.32 0.30 0.29 0.30
cII3e - 1.33 1.35 1.36 1.36 1.38 1.36
cII3Se - 0.32 0.31 0.33 0.29 0.33
pII3e - 0.08 0.13 0.15 0.13
pII3Se - 0.13 0.15 0.13
PB3e - 0.11 0.09
P3Se - 0.11

nificantly. The amount of additional observations is, however, very small (one to two percent). We
recommend to disregard them for the kinematic point positioning with SAC-C GPS data.

For the CHAMP receiver the maximum number of tracked satellites was increased from eight to ten
on doy 064/2002. Interestingly enough, this change did not directly improve the kinematic point posi-
tioning results. From doy 077/2002 onwards the results are, however, much better. From doy 077/2002
onwards the number of epochs with only four tracked satellites decreased significantly. With four tracked
satellites we can determine a position for the satellite but we have no redundant observation to control the
result. The improved redundancy is a possible explanation for the improved kinematic positions starting
with doy 077/2002.

In Section 6.3.4 we performed comparisons (Helmert transformation) of many orbits for doy 144/2001
with an external solution from TUM and the best reduced-dynamic orbit (P3Se) we could produce with
our procedures inLEOKIN andSATORB. For the data of 2002 we have no external solution available.
We can perform, therefore, only internal comparisons.

We review the comparisons for doy 144/2001 for CHAMP and perform, in addition, all cross com-
parisons between the orbits considered. The description of the orbit solutions may be found in Table 6.13.
Table 6.28 shows the RMS errors per coordinate of the Helmert transformations. Table 6.29 shows the
corresponding information for doy 086/2002 which is the day with the best data quality for CHAMP
for the campaign in 2002. For SAC-C the RMS errors of the Helmert transformations are shown in
Table 6.30 for doy 055/2002. The solutions generated withLEOKIN are written in italics in order to
distinguish them from the reduced-dynamicSATORB solutions.

The last two columns in Table 6.28 are identical with the last two columns of Table 6.14. Some
comparisons indicate that the corresponding solutions are related with each other such as, e.g., pII3e
and pII3Se with an RMS error of 0.08 m for the Helmert transformation: The combined positions of
pII3e are used as observations for the generation of the reduced-dynamic pII3Se-orbit. The convergence
of the orbit solutions to the best solutions in the list (TUM) is nevertheless obvious. In addition, the
difference in quality between the kinematic trajectories cII3e and cII3 can clearly be noticed. The code
positions of cII3e are generated with elevation-dependent weighting and those of cII3 without weighting.
The RMS errors of the Helmert transformations show clearly that the code positions with weighting are
significantly better (� 30%) than those without weighting. This fact can be recognized in Table 6.29,
as well. This underlines our finding that the elevation-dependent weighting model is appropriate for the
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Table 6.29: RMS (m) errors of Helmert transformation between solutions for doy 086/2002 using CODE
Rapid products, CHAMP, italic:LEOKIN solutions, non-italic:SATORB solutions, bold:
best solutions.

cIS cII3 cII3S cII3e cII3Se pII3e pII3Se PB3e P3Se

cI 1.91 1.94 1.95 1.81 1.96 1.96 1.96 1.95 1.95
cIS - 1.09 0.44 0.78 0.47 0.51 0.48 0.42 0.44
cII3 - 1.07 0.73 1.08 1.05 1.06 1.04 1.04
cII3S - 0.74 0.13 0.37 0.32 0.33 0.32
cII3e - 0.73 0.67 0.68 0.67 0.67
cII3Se - 0.32 0.26 0.28 0.27
pII3e - 0.13 0.15 0.12
pII3Se - 0.15 0.13
PB3e - 0.08

Table 6.30: RMS (m) errors of Helmert transformation between solutions for doy 055/2002 using CODE
Rapid products, SAC-C, italic:LEOKIN solutions, non-italic:SATORB solutions, bold:
best solutions.

cIS cII3 cII3S cII3e cII3Se pII3e pII3Se PB3e PB3 P3Se P3S

cI 2.57 2.31 2.58 2.02 2.58 2.58 2.60 2.60 2.60 2.58 2.59
cIS - 1.66 0.24 1.70 0.26 0.41 0.37 0.37 0.38 0.35 0.35
cII3 - 1.65 1.10 1.64 1.62 1.67 1.65 1.65 1.65 1.65
cII3S - 1.69 0.12 0.32 0.27 0.28 0.29 0.23 0.23
cII3e - 1.69 1.67 1.71 1.70 1.71 1.68 1.69
cII3Se - 0.33 0.29 0.32 0.33 0.24 0.27
pII3e - 0.16 0.16 0.18 0.21 0.19
pII3Se - 0.12 0.13 0.18 0.15
PB3e - 0.07 0.20 0.17
PB3 - 0.21 0.17
P3Se - 0.10

code observations of CHAMP. The code positions in general are of better quality in the 2002 campaign.
The comparisons for SAC-C (Table 6.30) show that the code positions are of lower quality than for

CHAMP (in 2002). This could be an explanation for the larger differences between the solutions using
CODE Rapid products and the solutions using CODE Final products for SAC-C than for CHAMP. Differ-
ences in the quality of the code positions with (cII3e) and without (cII3) elevation-dependent weighting
cannot be identified for SAC-C. For this example, the solution without elevation-dependent weighting
even seems to compare better with the other orbits than the solution with elevation-dependent weighting.

The orbit results of the programsLEOKIN and SATORB are for CHAMP and SAC-C of good
quality. Even reduced-dynamic orbits generated with code positions only (cIS, cIIS, and cIISe) have an
accuracy of half a meter or better. Comparisons with an external solution (TUM) have shown that the
final kinematic (PB3, PB3e) and reduced-dynamic orbit solutions (P3S, P3Se) of our procedures have an
accuracy of the order of a decimeter.
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6.5 Use of Different Gravity Field Models for the
Reduced-dynamic Orbit Modeling

The LEO satellites are orbiting in an altitude where the modeling of the forces due to high degree and
order terms of the gravity field is important (Table 5.2). There are many different Earth gravity field
models available. They differ (among other) in the maximum order and degree of the coefficients and
the data used for generating the model.

Until recently the accuracy of the higher order terms of the available models were not sufficient
to model the gravitational forces acting on a satellite at CHAMP’s altitude with high precision. Since
gravity models are available using also CHAMP data for the computation of the coefficients (TEG-4,
and EIGEN-1S) the situation has improved and the new models represent the gravity field experienced
by CHAMP much better than the older gravity models.

Subsequently we study the impact of gravity models by determining dynamic and reduced-dynamic
orbits with programSATORB.

A first pure dynamic solution is generated using the following parametrization in programSATORB:

� six initial conditions (osculating elements),

� nine empirical (three constant and six once-per-revolution) parameters in RSW-directions, and

� scaling factors for atmospheric drag and direct Solar radiation pressure.

In order to solve for the latter scale factors, the a priori models for atmospheric drag and direct radiation
pressure have to be turned on.

A second reduced-dynamic solution is performed using the following options:

� six initial conditions (osculating elements),

� three constant parameters in RSW-directions,

� pseudo-stochastic pulses (velocity changes) every 20 minutes in three orthogonal directions (RSW)
constrained to zero with a standard deviation of 10 mm/s.

The a priori force model is the same in both cases. Eight iterations were performed to determine the
orbits in order to make sure that full convergence was reached. The two types of orbits are determined
using either of the five following Earth gravity field models:

� JGM3 (70x70) [Tapley et al., 1996],

� EGM96 (120x120) [Lemoine et al., 1998],

� GRIM5-S1 (120x120) [Biancale et al., 2000],

� TEG-4 (120x120) [Tapley et al., 2000], and

� EIGEN-1S (120x120) [Reigber et al., 2002].

The last two models include CHAMP data. We use two different types of pseudo-observations for the
orbit generation inSATORB (see Section 5.1). First we use the combined positions of FPB3e from
doy 065 to 068/2002 as input for programSATORB. The second type are the code positions and phase
position-differences from the same kinematic solution inLEOKIN. In the latter case we have, therefore,
two independent pseudo-observation types inSATORB.
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Table 6.31: RMS error (m) per satellite coordinate of orbit determination inSATORB.

SAC-C CHAMP
Model DOY Dynamic Pulses Dynamic Pulses
JGM3 065 1.29 0.11 1.94 0.06

066 0.38 0.07 1.76 0.06
067 0.31 0.06 2.80 0.06
068 1.61 0.06 1.86 0.06

EGM96 065 1.32 0.11 1.62 0.05
066 0.38 0.07 1.62 0.05
067 0.32 0.06 2.27 0.05
068 1.63 0.06 1.62 0.05

GRIM5-S1 065 1.31 0.11 3.08 0.08
066 0.34 0.07 2.74 0.08
067 0.29 0.06 3.67 0.08
068 1.56 0.06 2.31 0.07

TEG-4 065 1.32 0.11 0.74 0.04
066 0.34 0.07 1.25 0.03
067 0.28 0.06 1.39 0.03
068 1.58 0.06 0.68 0.03

EIGEN-1S 065 1.28 0.11 0.78 0.04
066 0.33 0.07 1.31 0.03
067 0.30 0.06 1.54 0.03
068 1.56 0.06 0.72 0.03

6.5.1 Combined Positions as Pseudo-observations

Table 6.31 summarizes the RMS errors per coordinate of the orbit determination using the combined
positions inSATORB. Figure 6.86 shows the values of the estimated stochastic pulses for the different
solutions for SAC-C on doy 065/2002. Figure 6.87 shows the same information for CHAMP on the same
day.

The RMS errors in Table 6.31 tell that different gravity fields have no significant effect on the orbit
representation for SAC-C, which is orbiting at a height of about 700 km. For days 065 and 068 the RMS
errors of the pure dynamic solution is four to five times larger than the values on the two middle days
066 and 067, which may be due to data problems. For the solutions containing stochastic pulses every 20
minutes the RMS errors are the same for each gravity field model. The stochastic pulses in Figure 6.86
are very similar for the five gravity models considered.

The situation is different for CHAMP. The RMS errors for the dynamic solutions are different for
the five gravity models used. With the models TEG-4 and EIGEN-1S the best fit is achieved for the four
days. This is an expected result because the models include CHAMP data. The GRIM-S1 model shows
the worst performance. Even the JGM3 model which provides coefficients only up to degree and order
70, gives better orbit results. The orbit quality achieved with stochastic pulses show differences related to
the gravity models, as well. The models TEG-4 and EIGEN-1S show the best and the GRIM5-S1 model
shows the worst RMS errors. The values for the stochastic pulses are different for the five gravity models
(Figure 6.87). It can be seen very clearly that for the two models TEG-4 and EIGEN-1S the pulses
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(e) EIGEN-1S.

Figure 6.86: Stochastic pulses estimated based on combined positions and different a priori gravity fields,
SAC-C, doy 065/2002.
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(e) EIGEN-1S.

Figure 6.87: Stochastic pulses estimated based on combined positions and different a priori gravity fields,
CHAMP, doy 065/2002.
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(e) EIGEN-1S.

Figure 6.88: Residuals of purely deterministic orbit determination, CHAMP, doy 065/2002.
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Figure 6.89: Residuals of orbit determination including stochastic pulses, CHAMP, doy 065/2002.
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are smallest. The largest pulses may be found for the models GRIM5-S1 and JGM3. Interestingly, the
biggest differences may be recognized in the values for the crosstrack pulses. The crosstrack pulses are
close to zero for TEG-4 and EIGEN-1S. For each of the three other models the crosstrack pulses show a
different pattern.

Figure 6.88 shows the residuals of the five deterministic orbit determinations for doy 065 for CHAMP,
Figure 6.89 those of the reduced-dynamic orbit determinations including stochastic pulses. In Figure 6.88
the residuals lie within -5 m to 5 m for the radial and crosstrack directions, for the alongtrack directions
a range of -15 m to 15 m is covered. In Figure 6.89 all residuals lie within -0.5 m to 0.5 m. The residuals
underline our findings from Table 6.31 and Figure 6.87. The models TEG-4 and EIGEN-1S are best
suited to model the orbit of CHAMP.

In the case of SAC-C, orbiting about 300 km above CHAMP, the differences between the gravity
models are hardly noticeable implying that all gravity models considered are sufficient for orbit modeling
(for our purpose).

Signals in the residuals of the deterministic orbit determination for SAC-C stem mainly from data
problems (jumps in the combined positions) and the insufficient modeling of the non-gravitational forces.
In the case of CHAMP it is a mixture of all, data problems, insufficient modeling of the non-gravitational
forces, and insufficient modeling of the gravity field of the Earth.

6.5.2 Code Positions and Phase Position-differences as Pseudo-observations

Orbits for the four days (065 to 068/2002) were also derived using the code positions and phase position-
differences as independent observation types inSATORB. The options and parameters are the same as
in the solution using stochastic pulses described above.

The RMS errors per coordinate of the orbit determination process cannot directly be compared to
the RMS errors when using combined positions because we have two different observation types with
two different RMS errors for these analyses. One refers to the code positions and the other to the phase-
derived position-differences. Residuals may not be compared due to the same reason. Therefore, we
focus on the estimated values of the stochastic pulses. Figure 6.90 shows them for SAC-C, doy 065/2002,
and Figure 6.91 for CHAMP, doy 065/2002.

For SAC-C we confine ourselves to showing only the values of the stochastic pulses for the solution
using the GRIM5-S1 model. The values are very similar for the other four gravity models considered.
The characteristics of the pulses are different from those related to the combined positions (compare
Figures 6.90 and 6.86). Their values are on average larger in the case of using combined positions.
The differences are mainly due to the jumps in the kinematic trajectories when using combined po-
sitions. In the case of using positions and position-differences such problems do not show up in the
pseudo-observations and therefore the stochastic pulses do not have to account for them. In this case
the stochastic pulses mainly have to compensate for the insufficient modeling of the non-gravitational
forces.

For CHAMP the absolute values of the stochastic pulses are slightly smaller when using code po-
sitions and phase position-differences independently as pseudo-observations. The characteristics of the
pulses are similar to that of the orbit fits using combined positions. These facts confirm the above conclu-
sion that in the case of CHAMP the stochastic pulses compensate data problems, insufficient modeling
of the non-gravitational forces, and insufficient modeling of the gravity field of the Earth. Data problems
do not influence significantly the estimated pulses.

Figure 6.92 shows the resulting orbit differences (residuals of Helmert transformation with three
translation parameters) using the two types of pseudo-observations. The orbit differences refer to orbits
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Figure 6.90: Stochastic pulses from orbit determination with gravity model GRIM5-S1 using code posi-
tions and phase position-differences, SAC-C, doy 065/2002.

determined using the gravity field model GRIM5-S1.
The orbit differences are of the same order of magnitude for both satellites, indicating that the com-

bined positions show data problems (jumps) due to the interrupts (25 in the case of SAC-C and 6 in the
case of CHAMP) and the resulting short sequences of connected positions. If we use the code posi-
tions and phase position-differences independently from each other as pseudo-observations inSATORB
problems due to unconnected phase position-differences do not show up.

Figure 6.93 shows the differences between orbits from the orbit fit using the GRIM5-S1 model on
one side and using the TEG-4 model on the other side. These are reduced-dynamic orbits derived from
code positions and phase position-differences. The differences for SAC-C (Figure 6.93(a)) are small (�
10 cm). The force model used inSATORB seems to be adequate for the SAC-C satellite. The differences
for CHAMP (Figure 6.93(b)) are larger but they show similar characteristics as the differences between
the two different orbits derived with the GRIM5-S1 model (Figure 6.92(b)). Figure 6.94 shows the
orbit differences between the orbit generated with combined positions using the GRIM5-S1 model and
the orbit generated with positions and position-differences using the TEG-4 model. Interestingly, these
differences are significantly smaller than those in Figures 6.92(b) and 6.93(b). This indicates that the
orbit generated with combined positions represents the true trajectory of the satellite better than an orbit
based on positions and position-differences, if a bad gravity field model is used (GRIM5-S1 instead
of TEG-4). The reason is that the combined positions are computed inLEOKIN without using any
model information. They therefore represent the satellite trajectory according to the “true” gravity field.
Positions and position-differences are, on the other hand, combined inSATORB based on the physical
orbit model (which is in this case not perfect due to the bad gravity field model GRIM5-S1).

Table 6.32 summarizes the RMS errors for these comparisons for the four days considered. The
RMS errors are similar for the different comparisons for each of the four days. The column denoted A
represents the differences shown in Figure 6.92, column B those from Figure 6.93, and column C those
from Figure 6.94. For SAC-C the differences between the reduced-dynamic orbits generated with posi-
tions and position-differences and either the GRIM5-S1 or the TEG-4 model are the smallest (column
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(c) GRIM5-S1.

−3

−1.5

0

1.5

3

m
m

/s

Radial

−3

−1.5

0

1.5

3

m
m

/s

Alongtrack

 4  8  12  16  20  24
−3

−1.5

0

1.5

3

m
m

/s

Crosstrack

Hours

(d) TEG-4.
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(e) EIGEN-1S.

Figure 6.91: Values for the stochastic pulses for different orbit fits using code positions and phase
position-differences inSATORB, CHAMP, doy 065/2002.
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(a) SAC-C, doy 065/2002, RMS 0.19 m.
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(b) CHAMP, doy 065/2002, RMS 0.21 m.

Figure 6.92: Orbit differences when using either combined positions or positions and position-differ-
ences, GRIM5-S1 model, reduced-dynamic orbits, CHAMP, doy 065/2002.
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Figure 6.93: Orbit differences when using either the GRIM5-S1 model or the TEG-4 model, positions
and position-differences, reduced-dynamic orbits, CHAMP, doy 065/2002.
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Figure 6.94: Orbit differences when using either combined positions with GRIM5-S1 model
or positions and position-differences with TEG-4 model, CHAMP, doy 065/2002,
RMS 0.12 m.

Table 6.32: RMS errors (m) of Helmert transformation between reduced-dynamic orbits from differ-
ent orbit determinations; A: GRIM5-S1, combined positions vs. positions and position-
differences, B: positions and position differences, GRIM5-S1 vs. TEG-4, C: combined posi-
tions, GRIM5-S1 vs. positions and position-differences, TEG-4.

Satellite Doy A B C
SAC-C 065 0.19 0.02 0.19

066 0.14 0.02 0.15
067 0.13 0.02 0.13
068 0.15 0.02 0.15

CHAMP 065 0.21 0.21 0.12
066 0.18 0.20 0.10
067 0.20 0.19 0.11
068 0.23 0.23 0.10

B) which was expected due to the finding that the gravity field model is not important for the reduced-
dynamic orbit modeling for SAC-C. In the case of CHAMP the differences between the reduced-dynamic
orbits generated with combined positions and the GRIM5-S1 model and the orbits generated with posi-
tions and position-differences and the TEG-4 model (column C) are the smallest. The reason for this is
explained above.

These tests show that the use of different gravity field models may have a considerable impact on
the resulting orbit fromSATORB depending on the satellite considered. For SAC-C, a LEO orbiting
at a height of 702 km, the impact is hardly noticeable. For CHAMP, which is orbiting at a height
of about 400 km, the influence of the gravity field is considerable and we should not use the gravity
models generated without CHAMP data for the dynamic orbit modeling. Even when setting up a modest
number of stochastic pulses at pre-defined epochs, the insufficiencies of “older” gravity models cannot
be completely absorbed.
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6.6 Stochastic Pulses and Accelerometer Measurements

In Section 5.4 we introduced the measurements stemming from the CHAMP accelerometer. The specific
instrument type is used for the first time on-board CHAMP. It is also used by the GRACE satellites, now.
The measurements may be used in the dynamical orbit determination process to replace the models for
the non-gravitational forces, but the accelerometer measurements have to be calibrated. The calibration
parameters (biases and scale factors, see eqn. (5.7)) are made available to the user community of the
CHAMP data [Perosanz et al., 2003]. The calibration parameters are frequently improved due to better
calibration strategies. In our tests (in the dynamical orbit determination process) we tried to estimate
these calibration parameters with the programSATORB and compared the estimates with those officially
available.

Maneuver information is also available for CHAMP. The attitude maneuvers are not performed at
pre-defined epochs and therefore the epochs and durations are made available to the users of the CHAMP
data. We generate different solutions withSATORB in order to study two different issues, namely

� the impact of using the accelerometer measurements and of estimating their biases and scale factors
and

� the impact of setting up stochastic pulses at pre-defined equidistant epochs or at the maneuver
epochs.

For all tests we use the same kinematic solutions for doy 065 to 068/2002 as in Section 6.5 (FPB3e, APO
set P, solution B,� � 3, elevation-dependent weighting) as input for programSATORB.

First we generate a solutionref for all four days which does not use the accelerometer measurements
in order to have a reference for the following solutions. The options for this solution are:

� gravity field model EIGEN-1S 120x120,

� Estimation of

– six osculating elements,

– nine empirical parameters (three constant, six periodic) in RSW-directions,

– scaling factor for atmospheric drag, and

– scaling factor for direct radiation pressure.

Two arcs of twelve hours were formed and the parameters were estimated per arc. The orbit was es-
tablished in eight iteration steps. The general options for the orbit solutions using the accelerometer
measurements are:

� gravity field model EIGEN-1S 120x120,

� Estimation of

– six osculating elements,

– three biasesb�i�	 i � �	 �	 � (eqn. (5.7)) for the accelerometer measurements,

As opposed to the first run no a priori models for atmospheric drag and direct radiation pressure were
used; the accelerometer data were introduced instead. Again, two arcs of twelve hours were established
in eight iteration steps with the parameters estimated per arc. Based on these general options we generate
different reduced-dynamic orbits with the following additional options:
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� Solution 1:

– Estimation of six periodic parameters in RSW-directions.

� Solution 2:

– Estimation of six periodic parameters in RSW-directions and set up of stochastic pulses in
RSW-directions every 90 minutes.

� Solution 3:

– Set up of stochastic pulses in RSW-directions every 20 minutes.

� Solution 4:

– Estimation of six periodic parameters in RSW-directions and set up of stochastic pulses in
RSW-directions at epochs where attitude maneuvers took place with a duration longer than
0.5 seconds.

The scale factors for the accelerometer measurements are set to one (a�i� � �	 i � �	 �	 �) for these
solutions.

For the following two solutions we introduced the values for the accelerometer biases published
together with the accelerometer data as known into the orbit generation process.

� Solution 5:

– Estimation of

� six periodic parameters in RSW-directions and

� the three scale factorsa�i�	 i � �	 �	 � (eqn. (5.7)) for the accelerometer measurements
per arc.

� Solution 6:

– Estimation of

� six periodic parameters in RSW-directions and

� the three scale factorsa�i�	 i � �	 �	 � for the accelerometer measurements per arc,

– set up of stochastic pulses in RSW-directions every 90 minutes.

We estimate only the six periodic parameters in RSW-directions because the constant parameters in the
RSW-directions are fully correlated with the biases of the accelerometer measurements. The 24 hours
are split up into two twelve-hours arcs in order to have more independent estimations available for the
biases and scale factors. Table 6.33 gives a summary of the different options for the reduced-dynamic
orbit solutions.

Figure 6.95 shows the RMS errors per coordinate for the solutionref and solution 1 for the four days
considered. Each day is represented by two bars. The left bar corresponds to the first twelve-hours-arc
and the right bar to the second one. It can be seen that the reference solutionsref using the models for the
non-gravitational forces have an RMS at least two times higher than solutions 1 using the accelerometer
measurements. This shows that the models presently used inSATORB are not good enough to represent
the non-gravitational forces acting on the CHAMP satellite. The use of the accelerometer measurements
considerably improves the dynamic orbit modeling for CHAMP.
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Table 6.33: Summary of options for different reduced-dynamic orbit solutions.

Six osculat. Empirical param. Scale factor Accelerometer data Stoch. pulses
elements const. period. atm. drag rad. press. scal.fact. biases

ref yes yes yes yes yes no no no

1 yes no yes no no no yes no
2 yes no yes no no no yes 90 min
3 yes no no no no no yes 20 min
4 yes no yes no no no yes maneuver
5 yes no yes no no yes yes no
6 yes no yes no no yes yes 90 min
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Figure 6.95: RMS errors (cm) per coordinate of the orbit determination inSATORB for the solutionsref
and 1.
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Figure 6.96: RMS errors (cm) per coordinate of the orbit determination inSATORB for solutions 1 to 4.
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Figure 6.97: RMS errors (cm) per coordinate of the orbit determination inSATORB for solutions 5 and 6.

Figure 6.96 shows the RMS errors per coordinate of the orbit determinations inSATORB for solu-
tions 1 to 4. Solution 1 is the only solution containing no stochastic pulses. For solution 2 stochastic
pulses are estimated at 90 minutes intervals. As expected, solutions 1 are of lower quality than solutions
2, 3, and 4, which promise to be of an accuracy clearly below the five centimeter level.

Biases and Scale Factors for the Accelerometer Measurements

Figure 6.98 shows the estimated biasesb�i� of the accelerometer measurements in the three directions R,
S, W (radial, alongtrack, and crosstrack) for solutions 1 to 4. The estimates are given together with their
one sigma error bars. The horizontal lines in the figures represent the official values distributed together
with the accelerometer data. The estimates have small errors. The estimated biases are of the same order
of magnitude as the official values but they do not directly confirm these values.

For solutions 5 and 6 we introduced the official values for the biases into the orbit generation process
and estimated the scale factors for the accelerometer measurements. We do not estimate the biases and
scale factors together because these parameters are highly correlated.

Figure 6.97 shows the RMS errors per coordinate of the orbit determination. As expected, solutions 5
are of lower quality than solutions 6. The RMS errors for solutions 5 are comparable with those of solu-
tions 1 and the values for solution 6 with those of solution 2. One would expect a slightly better solution
by introducing the accelerometer biases as known and estimating the scale factors. The estimated values
for the scale factors (Figure 6.99) show in the case of the alongtrack and the crosstrack component a bad
agreement with the official values (horizontal lines in the plots). The scale factor of the radial component
shows the best agreement.

The calibration of the biases and the scale factors is not a trivial task. The methods used to do it are
described in [Perosanz et al., 2003]. Longer data series have to be considered and correlations with other
parameters such as, e.g., pseudo-stochastic pulses or empirical parameters, need to be minimized.

It seems problematic to determine the calibration parameters for the accelerometer measurements
in SATORB (despite the fact that this is technically possible). A significant effort would be needed to
develop strategies to reliably estimate these parameters. We should be able to use the officially available
calibration values without further improvement in the dynamical orbit determination procedure. We have
seen that the introduction of accelerometer measurements into the dynamical orbit procedure improves
the dynamical orbit. If we perform a reduced-dynamic modeling using stochastic pulses it does not matter
whether we use the models or the accelerometer measurements because the pulses compensate problems
stemming from data problems, insufficient modeling of the forces acting on the satellite, or possible
insufficiencies in the accelerometer data. One should mention, however, that only few pseudo-stochastic
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Figure 6.98: Estimated biasesb�i� with error bars for solutions 1, 2, 3, and 4 (the horizontal line repre-
sents the published value).
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Figure 6.99: Estimated scale factorsa�i� with error bars for solutions 5 and 6 (the horizontal line repre-
sents the published value).
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Figure 6.100: Maneuvers performed by CHAMP for days 065 to 068/2002.

Table 6.34: Number of epochs, where stochastic pulses in RSW-directions are set up.

Day of Year
065 066 067 068

Sol. 2 7 7 7 7 7 7 7 7
Sol. 3 35 35 35 35 35 35 35 35
Sol. 4 21 34 25 29 22 33 20 30

pulses have to be set up when using the accelerometer data.

Stochastic Pulses at pre-defined Intervals or at Maneuver Epochs

What is the effect of different set-up strategies for pseudo-stochastic pulses? Obviously we have to focus
on the solution types 2, 3, and 4 to answer this question. Table 6.34 lists the number of epochs per
arc with stochastic pulses in the RSW-directions. Note that the number of epochs with maneuvers in
solutions 4 is smaller than the number of epochs with pulses in solution 3.

Figure 6.100 shows the duration of the attitude maneuvers performed for CHAMP in the four days
considered. There are many maneuvers for which no stochastic pulses were set up because the duration
of these maneuvers was shorter than 0.5 seconds. These are mainly small correction maneuvers for
iteratively reaching the nominal attitude following a main maneuver. We only set up pulses for the
maneuvers with a duration longer than 0.5 seconds.

Figure 6.96 shows that the RMS errors for solutions 4 are larger than those for solutions 3. This is
not surprising because for solutions 4 less stochastic pulses are set up.

Figures 6.101 and 6.102 show the values for the stochastic pulses estimated for solutions 2 to 4 for
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Figure 6.101: Estimated stochastic pulses in solutions 2, 3, and 4 for doy 065 and 066/2002.
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Figure 6.102: Estimated stochastic pulses in solutions 2, 3, and 4 for doy 067 and 068/2002.
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(b) Solution 2, stochastic pulses each 90 minutes.
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Figure 6.103: Residuals for solutions 1, 2, 3, and 4 for doy 065.
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the four days considered. The pulses for solutions 4 are often following each other within a short time
interval due to a rapid sequence of maneuvers (Figure 6.100). The pulses are then in most cases of
the same size but of opposite direction, which means that they are compensating each other. Due to
the high correlation between a pair of adjacent pulses, the absolute values of such a pair may become
unreasonably large. The pulses for the two other solution types are smaller than one millimeter per
second. Figure 6.101 and 6.102 indicate that it does not improve the orbits if we set up stochastic pulses
at maneuver epochs. Better solutions are obtained by setting up pulses at regular time intervals.

Figure 6.103 shows the residuals of the kinematic positions used as pseudo-observations for the orbit
generation inSATORB for solutions 1 to 4 for doy 065. The residuals for solution 1 show large variations
in alongtrack direction which disappear in all other solutions due to the stochastic pulses.

The conclusion from these studies is that it is useful for the dynamic orbit determination process to
use the measurements of the accelerometer instrument. It is possible to estimate the accelerometer biases
and scale factors in the orbit generation procedure inSATORB. It is nevertheless not recommended to do
this because it is a complex issue and not as simple (see [Perosanz et al., 2003]). The official calibration
parameters for the accelerometer measurements are made available together with the data themselves.
These values are reliable and we should adopt them and introduce them in the orbit generation process,
if we want to use the accelerometer measurements for the dynamic orbit modeling.

The pseudo-stochastic pulses should be set up at pre-defined time intervals. If we set them up at
the maneuver epochs the time intervals between subsequent pulses are often too short. This causes
mathematical correlation of these pulses leading to problematic results. The stochastic pulses do not
only account for the small velocity changes provoked by the attitude maneuvers but also for problems
in the combined positions. In order to compensate only for the small velocity changes from the attitude
maneuvers, the stochastic pulses should be set up only in the directions defined by the maneuver (these
directions are made available for the users, as well) and with a stronger constrain to zero (e.g., with a
standard deviation of 0.01 mm/s). Data problems would, however, not be compensated by such pulses.

6.7 Data Screening Procedure for a Permanent Ground Network

6.7.1 Comparison with MAUPRP

In Section 4.4 we proposed a data screening procedure based onLEOKIN for a permanent ground net-
work. This procedure is applied to a data set of the IGS station network and the results are compared
with the data screening procedure performed on the same data set with the programMAUPRP used in
the Bernese GPS Software.

Data set and Processing Options

GPS observation data from 175 IGS stations (30-second sampling) from doy 055 to 069/2002 serve as
test data. Our analysis is based on

� the CODE Final GPS orbits,

� the ERPs of the CODE Final processing,

� 30-second clock corrections for the GPS satellites constrained to the CODE Final 5-minute clock
corrections,

� troposphere zenith delays from the CODE Final processing, and
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� station coordinates from the CODE Final processing.

The options for the pre-processing inLEOKIN are the following

� �cscr � 1.0 m,�pscr � 0.014 m.

� �c � 3, �p � 20 (see eqn. (4.6)).

� Minimum number of observations connected by one initial phase ambiguity parameter is set to 25.

� Maximum number of ambiguities is set to 300.

The options for pre-processing in theMAUPRP program correspond to those ofLEOKIN as close as
possible in order to ensure that both programs have the same basic conditions.

The observations of the terrestrial stations are independently pre-processed with both programs. The
procedure related toLEOKIN is performed with the following programs of the Bernese GPS Software

� RXOBV3 - import RINEX [Gurtner, 1994] observation data to the Bernese GPS Software,

� LEOKIN - data screening of the observations, write a file with actions to do,

� SATMRK - mark the observations listed in the file generated byLEOKIN,

� CODSPP - synchronize the receiver clock to GPS time, and

� GPSEST - kinematic point positioning using the phase observations of the station processed.

The procedure related toMAUPRP is performed with the following programs of the Bernese GPS Soft-
ware

� RXOBV3 - import RINEX observation data to the Bernese GPS Software,

� CODSPP - synchronize the receiver clock to GPS time,

� MAUPRP - data screening of the phase observations, and

� GPSEST - kinematic point positioning using the phase observations of the station processed.

Figures 6.104 and 6.105 show statistical results fromLEOKIN andMAUPRP for eight stations arbi-
trarily selected as examples. The RMS errors (per coordinate) of the kinematic point positioning in
GPSEST are given in the top row of the two figures. The left bars for each day represent the RMS
errors corresponding to the data screened withLEOKIN, the right bars to those for the data screened
with MAUPRP.

The two different screening procedures are based on rather different principles and exclude possibly
different observations. Therefore, the kinematic point positioning inGPSEST is based on different
observations. The total number of observations for one day of 30-second data is about 23,000. The
difference between the number of observations used in the procedure withLEOKIN and in the procedure
with MAUPRP is provided in the bottom line of Figures 6.104 and 6.105. A positive number means that
more observations passed the screening withLEOKIN than the screening withMAUPRP, a negative
number means thatLEOKIN removed more observations thanMAUPRP.

The performance is different for the eight stations. The stations ALBH (Figure 6.104(a)), ALGO
(Figure 6.104(b)), ZWEN (Figure 6.104(d)), and ZIMM (Figure 6.105(b)) show a stable RMS for all
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days and the RMS errors for both procedures are nearly the same for all days. For the station ZIMM
MAUPRP removed more observations, for all other stationsLEOKIN removed more observations.

There are three days for BRAZ (Figure 6.104(c)) with big RMS errors (43.5 cm, 53.7 cm, 169.6 cm)
for the point positioning procedure inGPSEST, but only for data screened withMAUPRP. The RMS
errors of the point positioning for BRAZ (for both procedures) are larger for the other seven days than
for the other stations considered, but they have all the same size (two to three centimeters). The point
positioning for station MAW1 (Figure 6.105(a)) has unusually big RMS errors for both procedures for
doy 056. For doy 066 the data screened byLEOKIN gives rise to a three times larger RMS error for the
point positioning than for the screening withMAUPRP.

The stations FAIR (Figure 6.105(c)) and MALI (Figure 6.105(d)) are exceptions (observe the differ-
ences in scale). For FAIR three days (056, 066, and 069) have a big RMS when using data screened by
MAUPRP. For days 059, 066, and 067 no solution was possible using the data screened byLEOKIN
due to too many ambiguities set up during the day. The differences in the number of observations used
for the point positioning is quite large for the days 055 to 062. On these days the screening procedure in
MAUPRP deleted about 50% of the observations and therefore the differences to the data screened by
LEOKIN are as large as can be seen in Figure 6.105(c) (bottom). MALI has three to four times larger
RMS errors for the point positioning with data screened byLEOKIN. This means that the screening algo-
rithm in LEOKIN did not find the observations responsible for the deterioration of the point positioning.

Figure 6.106(a) shows the mean RMS errors for all stations for one particular day. The large values
for some days for theMAUPRP procedure are due to individual bad stations deteriorating this mean
value. Figure 6.106(b) shows the mean differences between the observations used for the different point
positioning runs inGPSEST. The RMS errors show that on average the data screened byLEOKIN
have a better quality. The number of observations left after the screening is about the same for both
procedures.

Currently theLEOKIN procedure has the problem, that for few stations too many ambiguities are set
up, because a new ambiguity is set up after each “bad” phase-difference identified between successive
observations to a particular satellite (Section 4.4.2). AsLEOKIN analyzes only pairs of successive phase
observations it cannot decide whether the problem encountered is caused by an outlier or a cycle slip.
MAUPRP can bridge gaps of a few epochs and is therefore in a position to better identify the nature of
a bad phase-difference.

TheLEOKIN procedure has the advantage that the code and phase observations are screened in one
and the same procedure. Applications requiring screened code and phase observations may benefit from
this feature.

Extended studies on longer time series of data may show, which of the two programs,LEOKIN and
MAUPRP, better fits the requirements of zero-difference data cleaning. A combination of the advantages
of both programs may lead to a very efficient and robust zero-difference data cleaning tool.

The results presented above are encouraging and most promising. One should consider thatMAUPRP
is an “old established” program (it was created in 1990/91 in preparation of the CODE participation in
the IGS, but the zero-difference part was only realized in 2001). The application ofLEOKIN to data
screening was only a by-product of this general investigation. We believe that with an investment of
about 0.5 person yearsLEOKIN could be used as the general purpose zero-difference screening program
with a better performance than both, the currently availableMAUPRP andLEOKIN realizations.
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Figure 6.104: Top: RMS errors for kinematic positioning inGPSEST after screening withLEOKIN
(left bar) andMAUPRP (right bar); Bottom: Difference in number of observations used
for positioning,LEOKIN minusMAUPRP.
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Figure 6.105: Top: RMS errors for kinematic positioning inGPSEST after screening withLEOKIN
(left bar) andMAUPRP (right bar); Bottom: Difference in number of observations used
for positioning,LEOKIN minusMAUPRP.
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Figure 6.106: Doy 055 to 069/2002, data screening differences.
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7. Summary and Outlook

The main part of this work dealt with the development and evaluation of efficient methods for precise
orbit determination of LEOs. A kinematic approach using GPS zero-difference observations was devel-
oped (programLEOKIN) and a procedure for generation of dynamic and reduced-dynamic orbits was
presented (programSATORB). The procedures have been tested using long GPS data series gathered by
two LEO satellites, namely CHAMP and SAC-C.

An external comparison was available for the time interval of the eleven days of the IGS CHAMP
test campaign (May 20 to 30, 2001). The orbit solution generated at the Technical University of Munich
(TUM), Germany, using the Bernese GPS Software was used for this purpose. The TUM-solution is
believed to be one of the best solutions contributing to the IGS test campaign. Comparisons with this
solution showed that both our best kinematic trajectory and a post-fit reduced-dynamic orbit based on
this kinematic solution compare within an RMS error per coordinate (of a Helmert transformation) of
about 10 cm with the TUM-solutions. This indicates that LEO orbits with a quality of about 10 cm result
from our analyses. The goal of developing efficient methods for precise orbit determination of LEOs is
therefore achieved with the zero-difference kinematic point positioning procedure inLEOKIN and the
programSATORB to generate reduced-dynamic orbits. It is worth mentioning that the procedure, when
using only code observations as input, results in reduced-dynamic orbits with a quality of already 30 cm
RMS.

The kinematic approach inLEOKIN is an epoch-by-epoch procedure using code observations and
differences between phase observations from subsequent epochs. We are using phase-differences be-
tween epochs in order to eliminate the initial phase ambiguities from the processing. This step signif-
icantly reduces the required computer resources. The epoch-by-epoch positions determined from code
observations and position-differences determined from phase-difference observations are combined to
define a kinematic trajectory of the LEO.

It is, however, a disadvantage of the procedure that the mathematical correlations between subsequent
phase-difference observations are not taken into account. The solution is therefore not completely correct
from the statistical point of view. It is, however, a good approximation and we have shown that our results
are within a decimeter (RMS per coordinate) to statistical correct solutions.

The method for kinematic point positioning leads to interrupts when a data gap occurs or when “bad”
phase observations corrupt a solution of a particular epoch-difference. At the epochs with interrupts a
jump in the kinematic trajectory may occur because the sequences before and after the interrupt (inter-
nally connected by the phase measurement) may have a different absolute definition given by the code
positions. The code positions have an accuracy corresponding to the GPS code observation (0.3 to 1
meter) and therefore the magnitude of these jumps between the sequences may reach in the worst cases
up to half a meter (for very short data spans). These jumps cannot be avoided when using our kinematic
approach for the orbit determination of a LEO. The number can, however, be minimized by an elaborate
screening procedure developed for the kinematic approach.

This screening procedure makes use of a priori information about the orbit of the LEO. This a priori
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orbit is a reduced-dynamic orbit generated with theSATORB program using positions fromLEOKIN
as observations. The data screening inLEOKIN heavily depends on the quality of the reduced-dynamic
orbit. The better the orbit the more reliable the pre-screening of the data.

Two procedures for producing a reliable and good enough reduced-dynamic orbit serving as a priori
orbit were studied. The first procedure uses only code observations and positions for the generation of the
reduced-dynamic orbits (APO set C). The second procedure uses combined positions derived from code
and phase observations to generate the reduced-dynamic orbits (APO set P). Both procedures are reliable
and useful for the kinematic point positioning inLEOKIN. The computation of the orbits for APO set
C is slightly less time consuming than the alternative procedure due to the use of only one observation
type. Nevertheless, the procedure for APO set P is better and more reliable. It is not as sensitive to data
problems which may remain in the code-derived positions: The code positions are deweighted relative
to the phase position-differences by a factor 100 (on top ofwc � wp � � � ����) for the combination and
therefore these problems are smoothed for the generation of the reduced-dynamic orbit. The accuracy
of the reduced-dynamic orbits of APO set P is about 15 cm RMS error (Helmert transformation to best
possible orbits) and that of the reduced-dynamic orbits of APO set C is about 30 cm RMS.

The pre-screening algorithm depends not only on the quality of the a priori orbit. Different options
may be selected and have to be adapted to the quality of the GPS data processed from different satellites.
An option which is central is the threshold value� for the outlier rejection. Due to the dependency of
the pre-screening algorithm on the quality of the a priori orbit we have provided the possibility to use
a large variety of threshold values�. We believed that this would help in the case of a bad a priori
orbit to avoid rejecting observations erroneously flagged as outliers. There was hope that “moderately
bad” observations could be recognized and removed in the least squares adjustment step. The studies
have shown, however, that the�-value has to be lower than six. If we use a larger value for� the pre-
processing of the data (consisting of the pre-screening and the following iterative least squares adjustment
step) does not work properly. The pre-screening algorithm is much more robust than the least squares
adjustment step to find outliers because only the receiver clock correction has to be estimated whereas
the position is fixed to its a priori value. In the least squares adjustment step the degree of freedom is
very small due to the epoch-wise processing and the often quite low number of tracked satellites.

The question whether an elevation-dependent weighting should be used for the processing of GPS
LEO data can be answered for CHAMP. These results have shown that there are problems with code ob-
servations at low elevation angles disturbing the kinematic solution (multipath effects). The comparison
of the code positioning with and without elevation-dependent weighting clearly shows that the elevation-
dependent weighting model is appropriate and has to be used for the code observations. No clear answer
can be given concerning the weighting of code observations for SAC-C. The code positions are of the
same quality for the solutions with and without weighting.

The BlackJack GPS receiver on-board CHAMP tracks up to ten satellites simultaneously since March
5, 2002. The data performance has become better shortly after this change of the receiver software.
The number of data gaps is reduced and the number of epochs with fewer than five tracked satellites
has decreased significantly. The resulting kinematic trajectories show therefore fewer interrupts due to
missing phase position-differences and the outlier rejection is very reliable and robust.

The BlackJack GPS receiver on-board SAC-C performs slightly worse than the CHAMP receiver.
During some time intervals the receiver has, however, tracked up to twelve satellites simultaneously. To-
day, the SAC-C receiver tracks only up to eight satellites (status April 10, 2003). The code observations
are not as much affected by multipath as in the case of CHAMP, but in general the observation quality
is worse. Comparing the kinematic code-only positions with reduced-dynamic orbits it can be seen that
the code positions of SAC-C have a lower quality than the corresponding kinematic code-only positions
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from CHAMP.
The GPS antennas on-board the LEOs track partially below the local horizon of the satellite. The

question arose whether it makes sense to use this observation information. For CHAMP this question
does not matter because the receiver does no longer track satellites below the local horizon. For SAC-C
the situation is different even though the amount of observations tracked below the local horizon today is
only of the order of one to two percent (of all observations). The low-elevation observations do not seem
to improve the kinematic point positioning result. Therefore we recommend to reject them.

We used different input data for our kinematic point positioning procedure inLEOKIN in order to
study the impact of different information about GPS orbits and clock corrections on the kinematic result.
We used either products (GPS orbits and clock corrections) from the Rapid processing at CODE or
products from the Final processing at CODE. Differences of a few centimeters result when exchanging
the input data, because the 30-second clock corrections were generated by two different procedures and
the clock corrections associated with the CODE Rapid orbits are of slightly lower quality. The differences
between the results using either CODE Rapid or CODE Final products for the kinematic point positioning
in LEOKIN are mainly caused by the clock correction quality.

The official IGS/GPS clock products are 5-minute clock corrections available from each of the eight
analysis centers and as a combined IGS product. Here we used normal 30-second clock corrections
generated by our own procedures (interpolated to 10-second sampling) for the kinematic positioning of
the LEOs. We also answered the question whether the officially available IGS clock corrections would be
sufficiently accurate for use in ourLEOKIN procedure. For these tests the 5-minute clock corrections are
linearly interpolated to the 10-second observation epochs. The results are promising. We conclude that
the 5-minute clock corrections can be used for our kinematic point positioning procedure inLEOKIN
when the accuracy requirements are of the order of a few decimeters. If only code observations are
processed inLEOKIN, the quality difference in the results is hardly noticeable when using the 5-minute
clock corrections instead of the 30-second clock corrections. When using phase observations differences
result in comparison (Helmert transformation) to our best possible solution with an RMS error of the
order of a decimeter.

The programSATORB was used for the generation of dynamic and reduced-dynamic LEO orbits.
The reduced-dynamic orbits serving as a priori orbits for the pre-screening of the observations for the
kinematic point positioning are one output used fromSATORB. In addition we have produced reduced-
dynamic orbits using the code positions and phase position-differences of the best possible kinematic
solution as independent observation types inSATORB. These reduced-dynamic orbits are the best orbits
we can generate with ourLEOKIN andSATORB procedures.

Additional studies focussed on the impact of different Earth gravity field models for the dynamic and
reduced-dynamic orbit modeling. We performed these tests with different observation types as input in
SATORB. On one hand, we used combined kinematic positions and, on the other hand, the two obser-
vation types of code positions and phase position-differences. We have seen that for SAC-C it makes
no difference which of the Earth gravity models is used. The height of SAC-C is about 300 km higher
(702 km) than that of CHAMP (350 to 400 km). The gravity models considered seem to be accurate
enough at the altitude of SAC-C. For CHAMP this is different. We recognized significant differences
when using different gravity field models. The main advantage of using “better” gravity models resides
in a significant reduction of the number of pseudo-stochastic pulses which are required to absorb (among
other) the deficiencies of the a priori gravity model. With a good gravity field model the use of code-
derived positions and phase-derived position-differences as pseudo-observations inSATORB is superior
to the use of the positions combined inLEOKIN (from the code and phase results). In the case, when the
physical model is not as good, (e.g., when we use an older gravity field model which does not include
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CHAMP data) it is better to use the combined positions fromLEOKIN as input for the reduced-dynamic
orbit generation. The results are better than in the case of using, separately, code positions and phase
position-differences as input. The reason is that the combined positions are computed inLEOKIN with-
out using any model information. The combined positions therefore follow the real force field. Positions
and position-differences are, on the other hand, combined inSATORB based on the physical orbit model
(which may be different from the “truth”).

For CHAMP the choice of the gravity model is important for the dynamic and the reduced-dynamic
orbit modeling. This is not surprising because the CHAMP mission is designed to contribute to the
generation of a high-resolution gravity field model for the Earth.

For CHAMP there is an additional measurement type available, namely the readings of the ac-
celerometer instrument on-board the satellite. This accelerometer measures the non-gravitational forces
acting on the satellite. These measurements may be introduced into the orbit generation process in-
stead of modeling the non-gravitational forces. The tests have shown that it is possible to use these
accelerometer measurements inSATORB and that the dynamic orbit modeling results improve signifi-
cantly compared to a dynamic orbit fit using the models for the non-gravitational forces. In addition, it
would be technically possible to estimate the calibration parameter for the accelerometer measurements
in SATORB (biases and scale factors). The calibration of an accelerometer is, however, a complex task.
We therefore recommend to use the officially available values distributed together with the data.

CHAMP performs maneuvers to keep the satellite as close as possible to its nominal flight attitude.
The attitude is changed by a sequence of velocity changes within a short time interval. In theory attitude
changes should not affect the satellite’s orbital velocity. In practice this may, however, happen. Stochastic
pulses may be set up at the “main” maneuver epochs in order to compensate for possible small velocity
changes. The success of such a procedure was, however, marginal. It has been proved to be preferable to
set up stochastic pulses at pre-defined equidistant epochs.

Finally, we proposed a data screening procedure for zero-difference observations of a permanent
GPS network. The pre-screening algorithm primarily developed for the screening of the zero-difference
LEO GPS data inLEOKIN was slightly modified and then used for the cleaning of GPS observations
of terrestrial stations in a permanent network. The results of the new procedure based onLEOKIN
were compared to results gained with the zero-difference data cleaning toolMAUPRP of the Bernese
GPS Software. The comparison suggests that a combination of the advantages of both procedures might
lead to a reliable and efficient data cleaning tool for zero-difference observations. Additional tests and
developments are required for this purpose.

The goal of this work was achieved with the development of the zero-difference kinematic procedure
in LEOKIN and the reduced-dynamic procedure inSATORB. We will apply these efficient methods
to other LEO satellite missions using GPS for POD, e.g., JASON-1, GRACE, and ICESat. This will
increase the data basis and allow for an extended use of the developed procedures for other satellites
with the goal of an extended evaluation of the achievable accuracy and reliability of the algorithms. It is
planned to use the procedures on a routinely basis for the upcoming GOCE mission for the generation of
rapidly available orbit information.

The kinematic trajectories for this work were computed using GPS orbits and clock corrections from
the CODE Rapid or Final products. Due to their processing delay these products are not available for
a near real-time processing of the LEO data. In order to evaluate the efficiency of the approach in a
near real-time processing environment, the performance, quality, and accuracy of the procedure must be
studied when using IGS products (Ultra-rapid products), which are available at the time of downloading
LEO GPS data. This aspect may be of particular interest for atmospheric sounding missions such as
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COSMIC.
Orbit results from other procedures and from independent observation types, e.g., SLR measure-

ments, will be taken into account for comparisons in order to further improve our procedures.
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