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Vorwort 
Mit der Zunahme der Mobilität im Laufe des vergangenen Jahrhunderts haben die Navi-
gationstechniken einen grossen Aufschwung erlebt. Fast alle Entwicklungen haben sich auf 
die Navigation von Fahrzeugen bezogen. Das Interesse für die Personennavigation ist aus 
einer Zusammenarbeit zwischen dem Schweizerischen Zentrum für Elektronik und Mikro-
technik (CSEM) in Neuchâtel und dem Labor für geodätische Messtechnik der Eidgenös-
sischen Technischen Hochschule in Lausanne (EPFL-TOPO) entstanden. Die Verfügbarkeit 
von Mikrosensoren, wie Beschleunigungsmessern, die für die Auslösung von Airbags einge-
setzt werden, hat die Suche nach weiteren Anwendungen motiviert. In dieser Hinsicht bietet 
das Gebiet der Humanmedizin aussichtsreiche Perspektiven an. 

• Autonomie: Ältere oder kranke Personen möchten über ein Alarmsystem im Fall 
eines Schocks verfügen. 

• Orthopädie: Die Bewegung des Körpers besser zu verstehen, ist aus therapeutischen 
wie aus sportlichen Gründen erwünscht. 

• Physiologie: Ärzte möchten die Bewegung des Körpers ausserhalb eines Labors 
quantifizieren, um die Elemente der Energiebilanz in einer realistischen Situation 
genauer bestimmen zu können. 

Im offenen Gelände bietet die Ortung mittels Satelliten eine bequeme Lösung an, jedoch ist 
die Einsatzmöglichkeit im Stadtgebiet begrenzt und in Gebäuden gar unmöglich. Um die Be-
wegungen unabhängig verfolgen zu können, hat Herr Gabaglio die Signale aus verschiedenen 
Sensoren analysiert, kombiniert und verarbeitet, um damit eine quasi-permanente Kalibration 
zu ermöglichen. Insbesondere hat Herr Gabaglio den Vorteil von kleinen Kreiseln, trotz ihrer 
bedeutenden Drift, für die Aufdeckung von Störungen des Erdmagnetfeldes aufgezeigt. Die 
Wirksamkeit der Kombination eines Kreisels mit einem Kompass wurde erwiesen, und eine 
vernünftige Orientierung konnte gewährleistet werden, selbst in der Nähe von Stahlstrukturen 
und sogar in Gebäuden. 

Die Signalmodellierung von Sensoren, die an bewegten Körpern befestigt sind, ist zwar 
wesentlich schwieriger als die einer klassischen inertialen Plattform, aber die heutigen Mikro-
prozessoren sind leistungsfähig genug, um den erhöhten Rechenaufwand zu bewältigen. Herr 
Gabaglio ist bei einer Patentanmeldung involviert, die die Algorithmen für die Fussgänger-
navigation schützt. Die Schweizerische Akademie der Naturwissenschaften (SANW) hat den 
Anfang dieser Kooperation mit der Industrie durch finanzielle Beiträge entscheidend 
gefördert, wofür wir unseren Dank aussprechen. Auch für die Übernahme der Druckkosten 
dieses Bandes sind wir der SANW zu Dank verpflichtet. Herrn Gabaglio danken wir für 
diesen wertvollen Beitrag zur geodätischen Anwendung der modernen Navigationstechnik im 
Bereich der Personennavigation. 
 
 
 
 
 
 
 
 

 
Prof. B. Merminod Prof. Dr. H.-G. Kahle 
Laboratoire de Topométrie  ETH Zürich 
EPF Lausanne  Präsident der SGK 



Préface 
Grâce à l’accroissement de la mobilité au cours du siècle dernier, les techniques de navigation 
ont connu un essor sans précédent. Toutefois, presque tous les développements sont liés à 
l’usage d’un véhicule. L’intérêt pour la navigation pédestre est issu d’une collaboration entre 
le Centre Suisse d’Electronique et de Microtechnique à Neuchâtel et le laboratoire de Topo-
métrie de l’Ecole Polytechnique Fédérale de Lausanne. La disponibilité de microcapteurs, tels 
que les accéléromètres utilisés pour le déclenchement des airbags, a motivé la recherche de 
nouvelles applications. A cet égard, le domaine de la santé offre de bonnes perspectives.  

• Autonomie: des personnes âgées ou malades souhaitent disposer d’un système 
d’alarme en cas de chute. 

• Orthopédie: mieux comprendre les mouvements du corps humain est nécessaire pour 
des raisons thérapeutiques ou sportives. 

• Physiologie: des médecins désirent quantifier le mouvement du corps en dehors d’un 
laboratoire, afin de préciser les éléments du bilan énergétique dans une situation plus 
réaliste. 

La localisation par satellites offre une solution aisée en terrain découvert, mais son usage est 
limité en milieu urbain, voire impossible à l’intérieur des bâtiments. Afin d’estimer le 
déplacement de façon autonome, M. Gabaglio a analysé les signaux de différents capteurs, les 
a combinés et a traité leurs mesures de manière à les recalibrer fréquemment. En particulier, 
M. Gabaglio a mis en évidence l’intérêt des petits gyroscopes pour déceler des perturbations 
du champ magnétique terrestre, malgré leur dérive importante. La combinaison d’un compas 
magnétique et d’un gyroscope s’est avérée efficace pour naviguer à proximité de structures 
métalliques et même à l’intérieur des bâtiments. 

La modélisation des signaux produits par des capteurs solidaires du corps en mouvement est 
beaucoup plus difficile que celle d’une plateforme inertielle classique, mais les 
microprocesseurs actuels peuvent absorber la charge de calcul. M. Gabaglio est associé au 
dépôt d'un brevet protégeant des algorithmes pour la navigation pédestre. Les contributions 
financières de l’Académie Suisse des Sciences Naturelles ont été déterminantes dans la phase 
initiale de cette recherche et nous tenons à lui exprimer notre reconnaissance, de même que 
pour la couverture des frais d’impression. Nous remercions M. Gabaglio pour sa précieuse 
contribution à l’application des techniques modernes de navigation pour le déplacement des 
personnes. 
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Foreword 
With the increase in mobility during the past century, the technical aspects of navigation have 
witnessed an unequalled expansion. However, nearly all of these new developments are 
linked exclusively to vehicle use. An interest in pedestrian navigation rose from a 
collaboration between the Swiss Centre of Electronics and Microelectronics in Neuchâtel and 
the Geodetic Engineering Laboratory at the Swiss Federal Institute of Technology in 
Lausanne (EPFL). The availability of microsensors, such as the accelerometers used in airbag 
triggering mechanisms, has stimulated research for new applications. In this respect, the 
health field presents several interesting possibilities. 

• Independence: the ill and elderly who wish to possess a warning system in the event 
of a fall. 

• Orthopaedics: a better understanding of the movement of the human body is 
necessary for therapeutic and physical activity (sports) reasons. 

• Physiology: physicians would like to quantify the movement of the body outside of 
laboratory conditions, in order to precisely determine energy requirements in a more 
realistic environment. 

Satellite positioning offers an easy solution in open areas, but its use is limited in urban 
environments and even becomes impossible to use indoors. In order to estimate bodily 
movement in an independent manner, Mr. Gabaglio analysed the signals from various 
sensors, combining them with frequent recalibration of the measurements. In particular, Mr. 
Gabaglio made use of small gyroscopes to detect disturbances in the terrestrial magnetic field, 
in spite of their significant drift. The combination of a magnetic compass and a gyroscope 
proved to be effective for navigating within close proximity to metallic structures. 
Furthermore, this method was successful indoors. 

The modelling of the signals produced by sensors that depend on body movement is 
significantly more difficult than that of a classic inertial platform, but the microprocessors 
employed in this project are able to absorb the burden of the calculations. Mr. Gabaglio is 
associated with a pending patent for algorithms of pedestrian navigation. The financial contri-
butions of the Swiss Academy of Sciences were crucial when embarking on this research. We 
are grateful for this early support, as well as for covering the printing costs of this monograph. 
We thank Mr. Gabaglio for his contribution to the application of modern navigation tech-
nology to the displacement of pedestrians. 
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Abstract

This research has been sponsored by the Centre Suisse d'Electronique et de
Microtechnique (CSEM) in Neuchâtel, Switzerland. It introduces a system
and the algorithms for Pedestrian Navigation using a combination of sensors.
The main objective is to localise a pedestrian anywhere and at any moment.
The equipments utilised to ful�l this requirement are a Global Navigation
Satellite System (GNSS) receiver and inertial sensors, which are attached to
the person and as such need to be portable.

An overview of Pedestrian Navigation constitutes the �rst part of the
document. This new domain is examined from four di�erent views: applica-
tions, tools (or sensors), architecture of the system and �nally environment
in which the pedestrian is travelling. As part of this process, the 'state of
the art' situation is presented.

The approach followed in order to aid pedestrian to navigate is based
on the Dead Reckoning technique coupled with GNSS. Consequently, the
resolution of the travelled 'distance' is separated from the resolution of the
orientation of the walk. For the computation of the distance, a new technique
based upon accelerometers and GNSS has been developed and demonstrated.
The accelerometers are not used as a classical pedometer (counter of the
number of steps) and the technique is not based on the double integration
to obtain successively speed and distance. Instead, signal processing allows,
considering individual parameters, the walking speed to be obtained directly
from the signal of the accelerometers. This process, as well as the manner to
determine the individual parameters, is presented in detail. The development
of the algorithms is based on research performed in both the navigation and
the medical domains (mainly in physiology).

The computation of the orientation is more classical. It is based on the
measurements made by a gyroscope and a GNSS receiver. The particularity
of this study is the use of a single gyroscope to determine the orientation
of the walk instead of three for the classical technique of inertial navigation.
The inuence of body movement on the gyroscope output has been deeply
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examined to determine the most appropriate way to process the signal of
the gyroscope. The feasibility of the use of a single gyro, in the context
of pedestrian navigation, is demonstrated. The potential added value for
introducing a magnetic compass in the system is also evaluated.

Finally a centralised Kalman �lter has been designed and tested to merge
all the sensors outputs, to combine the distance and the orientation, to inte-
grate the Dead Reckoning solution and the GNSS solutions and to estimate
all the parameters in a close to real-time process. The eÆciency of this �lter
is demonstrated through di�erent tests.
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Abbreviations and notation

Abbreviations are often used in this document. The following section allows
the readers to keep a good understanding of the text. The proposed notation
is a compromise between all the notations used in the referenced papers. It
is based on the one used in the Institute of Geomatics at the Swiss Federal
Institute of Technology in Lausanne. However, some concessions are made
to the American notation for the least square adjustment. The same letter
may be used twice for di�erent meanings. In all such instances, clari�cations
are made within the text to avoid any confusion.
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Abbreviation

BS Base Station
CSEM Centre Suisse d'Electronique et de Microtechnique
DGPS Di�erential GPS
DME Distance Measurement Equipment
DoD US Department of Defense
DOP Dilution Of Precision
DR Dead Reckoning
EGNOS European Geostationary Navigation Overlay Service
ENU East-North-Up (right-handed coordinate axes)
EPFL Ecole Polytechnique F�ed�erale de Lausanne
E-OTD Enhanced Observed Time Di�erence
FDSS Fall Detection Sensors System
FIR Finite Impulse Response
FOG Fibre Optic Gyro
GIS Geographic Information System
GNSS Global Navigation Satellite System
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile communications
Gyro Gyroscope
HDOP Horizontal Dilution of Precision
IGEO Institut de G�eomatique
INS Inertial Navigation System
IMU Inertial Measurement Unit
KF Kalman Filter
LBS Location Based Services
LORAN Long Range
MEMS Micro-Electromechanical Systems
MIMU Miniature Inertial Measurement Unit or MEMS IMU
MS Master Station
MSPC Multi-Variate Statistical Process Control
NAVSTAR Navigation Satellite Timing and Ranging
NED North-East-Down (right-handed coordinate axes)
PCA Principal Component Analysis
PDA Personal Digital Assistant
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Abbreviations and notation

RAIM Receiver Autonomous Integrity Monitoring
RF Radio Frequency
RLG Ring Laser Gyro
RMS Root Mean Square
RTK Real Time Kinematic
SA Selective Availability
SARSAT Search And Rescue Satellite
TDOA Time Di�erence of Arrival
TOA Time of Arrival
TOPO Unit�e de Topom�etrie
UMTS Universal Mobile Telecommunications System
UWB Ultra Wide Band
VHF Very High Frequency
VLF Very Low Frequency
VOR VHF Omnidirectional Range
WAAS Wide Area Augmentation System
WGS-84 World Geodetic System (1984)
ZUP Zero Velocity Update
2D 2 dimensions
3D 3 dimensions
2G Second communication generation (GSM-GPRS)
3G Third communication generation (UMTS)
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Notation

Vectors

` Vector of observation
g Earth's gravity �eld
v Observation residual
~v Predicted error
x State vector
dx Increment of the state vector
�xk Approach value of the state vector at time k
~xk Predicted state vector at time k
x̂k Estimated state vector at time k
^̂xk Smoothed state vector at time k
z Vector of observation error (z = `� F(x))

 Rotation vector

Matrices

C`` Covariance matrix of the observation `
Cxx Covariance matrix of the vector x
D Di�erential matrix
F Matrix of elements of a linear equation (y = F � x)
F Kinematic matrix (also called dynamic matrix)
G Input coupling matrix
H Design matrix
I Unit matrix
K Gain matrix
P Weight matrix
Qww Process noise covariance matrix
Qxx Cofactor matrix (Cxx = �2o �Qxx)
R Attitude matrix
� State transition matrix
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Abbreviations and notation

Scalars

a Acceleration
�a Averaged acceleration
A Amplitude
A;B;C Individual parameter for distance computation
az Azimuth of satellite
b Bias (gyro)
c speed of light
C mean acceleration
D Phase shift
dist Travelled distance
dt;�t Time increment
E;N; U East, North and Up coordinate (Navigation Frame)
el Elevation of satellite
F Frequency
g Value of the Earth's gravity
` Observation
odocount Count of wheel turn made by an odometer
r Radius of the wheel
u White noise
s,speed Speed
t Time
�t; dt Time increment
v Residual
ve Tension (voltage)
w Process noise and system noise
x; y; z Body frame axis
z Observation error (z = `� f(x))
� Correlation time of a Gauss-Markov process
� Scale factor
� Azimuth
� Correlation
�o Mean error on unit weight
!x Angular rate measured by the x-axis gyro

 Angle rate for a single-axis rotation
�, �,  Euler angle for attitude computation

V AR Averaged quadratic acceleration amplitude
RMS Square-root of V AR
ABS Average of the absolute acceleration amplitude
AMP Mean amplitude of the acceleration peak
FREQ Step frequency (pace of the walk)
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Chapter 1

Introduction

The word navigation, from a technical point of view, was until a hundred
years ago used exclusively to de�ne the way to guide a boat to the desired
location. Even if it had a meaning for people on the ground, all the researches
and investigations in the navigation domain were oriented towards maritime
applications. Then, after the invention of the �rst aircraft, the word was also
used for aeronautics, opening the door to the development of new systems.

During the last century, the type of available navigation sensors has kept
the scope of the navigation on costly high-end applications. Developments
and researches were dedicated to military applications before being partially
introduced in civil applications. The last 30 years have seen signi�cant ad-
vancement in both the sensors technology and the processor performances,
with for example the progress in the domain of semiconductors leading to
the advent of microprocessors. These advances, combined with a decrease
in sensor and processor costs, has opened the door to new applications, es-
pecially in the terrestrial �elds. The potential number of new users is huge
and researches are today also performed to develop systems for non-military
application.

Car navigation has been the �rst commercial target for low-cost navi-
gation systems. Today, existing sensors also allow consideration of o�ering
such navigation systems to an individual: to provide him with information
on position and to aid with guidance. These considerations inspire the work
reported in this document.

The scope of this study is to investigate a system and algorithms able to
provide continuous positioning information of a walking person at all times
and in all environments. The applications pointed to by this de�nition are
identi�ed under the generic term of Pedestrian Navigation.
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To better understand this concept, the de�nition of the word navigation
is given from a general point of view. Navigation is generally de�ned as the
act of guiding an object or a person from its present location to a desired
point. The object is generally a vehicle (boat, car, airplane . . . )

From a functional point of view, navigation includes two separate tasks:

� localisation

� guidance

Localisation is the way to obtain the position of the object in a de�ned
referential. This function can be performed by di�erent means. In chapter 2,
di�erent modern techniques of localisation and positioning will be presented.

Guidance is the part of navigation that interacts with the drivers of a
vehicle (boat, car, airplane. . . ) or with a pedestrian. It includes di�erent
aspects:

� computation of the way to go from the present point to the desired
one. Algorithms in this domain are now common and well known.
They allow the user to choose between di�erent options: shortest or
fastest way, point of interest. This task entails of course the availabil-
ity of geographic information such as road, building, point of interest,
addresses, gas station. . .

� communication to the driver: if the driver is a human then di�erent vec-
tors of communication can be used. In the current navigation system,
the followings are mainly utilised: voice, maps or symbolic representa-
tion. When the guidance of the object is made in an automated way
(processor and motors) then the guidance information is given imme-
diately to the motors.

The guidance task is not investigated more deeply in this study. The
focus is on the way (sensor and algorithm) to localise the person.

In complement to localisation and guidance, other notions can be added
to complete the de�nition of navigation:

� Real time. The real time aspects are derived immediately from the
guidance. To interact with the driver, it is obvious that information on
position must be computed in real-time to allow an eÆcient guidance.
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� GIS is also an important element strongly linked to the guidance. This
component is not used only to represent information on a map. The
georeferenced information of roads and of targets is needed for guid-
ance. GIS o�ers the possibility to include many other types of infor-
mation such as point of interest. GIS is also often used as a sensor.
This aspect will be developed in more details in the next chapter.

The principles of navigation can be applied to di�erent types of vehicles
or moving objects. The application of the modern navigation technique to a
person is more recent, even if personal's navigation is existing already with
magnetic compass and maps. However, the utilisation of these instruments
is not simple for everyone and electronic navigation has a lot of interest for
a large number of persons with di�erent pro�les.

To perform the mentioned function of navigation several types of instru-
ments can be used. The approach chosen in this study focused on pedestrian
navigation is an hybridisation of the following sensors:

� GNSS receiver

� accelerometers

� gyroscope

Of course other possibilities have been investigated and are reported in
the Chapter 2.

The structure of this document reects the logic of the study. In the
next chapter di�erent aspects of the pedestrian navigation are explained.
The requirements for the studied system are developed and the system is de-
signed. The reasons for the choice are also explained. In the three following
chapters (Chapter 3, Chapter 4 and Chapter 5), the system and algorithms
are described in detail. Chapter 3 shows the way to determine the distance
travelled by the person. Chapter 4 de�nes the techniques to determine the
orientation of his walk. Chapter 5 aims at describing the sensors fusion to
obtain an operational system. The algorithm and the chosen system architec-
ture are validated by trials and tests as illustrated in the last part of chapter
5. Concluding remarks and a discussion on the possible perspectives take
place in the Chapter 6.
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Chapter 2

Pedestrian navigation: concept

and state of the art

The objective of this chapter is to present the concept of Pedestrian Navi-

gation. Each person, depending on his background and his knowledge, will
present such a concept in a di�erent way. The methodology adopted here
considers not only the apparatus and the algorithm (which will be the main
topic of the next chapters) but considers also the pedestrian navigation under
the following four approaches:

� the spectrum of applications,

� the relevant sensors and technologies,

� the di�erent applicable concepts for the system architecture and �nally

� the di�erent types of environmental conditions in which the pedestrian
moves about.

These four elements are considered in the �rst part of this chapter. It
aims to provide a synthetic overview with a scope as large as possible. The
information comes from di�erent sources such as the internet, proceedings
of symposium and conferences, industrial advertisement and several research
and development projects. The list made below for each element is obviously
a non-exhaustive one and is subject to evolution. The navigation environ-
ment is today fertile and, to some extent, an unpredictable terrain for new
applications and tools.

The second part of this chapter focuses on two di�erent techniques that
are classically used within the navigation community: the Inertial Navigation
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System (INS) and the Dead Reckoning system (DR). These two techniques
use some of the tools presented in the �rst part.

The third part of the chapter presents the requirements and the system
design. First the user requirements are determined and the system design
(choice and placement of sensors, architecture...) is performed consequently,
with the aim of ful�lling the requirements.

The last part of the chapter compares the chosen system design and ar-
chitecture with other products available on the market or under development
in di�erent research laboratories all over the world.

2.1 Concepts for pedestrian navigation

In this section the concept of pedestrian navigation is approached through
four di�erent elements explained above.

2.1.1 Applications

As the capabilities of positioning a person has recently increased, the number
of applications or services is permanently growing [Legat00]. This section
presents a few of them. They are sorted starting from some applications
aimed to reach a large public (with mass-market perspectives), to others
that focus on speci�c applications, with associated smaller market potential.

Emergency call

The E-911 initiative in the United States and the European equivalent E-
112 aim at locating every emergency call, even those provided from mobile
phones. In the US, E-911 has already been upgraded several times and
requirements have been established depending on the used technologies: net-
work based (E-OTD, TDOA) or handset based (GNSS, A-GPS). In Europe
the studies LOCUS [Locus01] and C-GALIES [Cgali02] have provided guide-
lines to the European Commission for the settlement of a new E-112 directive.

The introduction of such a requirement to locate all emergency calls will
o�er positioning capabilities in every mobile phone. It will help to open
the market to other positioning services using mobile phones: the Location
Based Services (LBS).
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LBS: Location based services

LBS (Location Based Services) is a common terminology that encompasses
numerous activities of di�erent types. The driving concept is that better or
new services can be proposed to a consumer if the service provider knows
his position. Of course a communication link between the client (the pedes-
trian) and the provider must exist. The palette of services goes from medical
services - to provide eÆcient emergency interventions - to purely commercial
ones: to inform the client about the promotion in the shop in front of him or
to guide him to the next pizzeria. This last example became the paradigm of
the LBS. For further information about this type of applications the reader
can refer to [Lechn01].

GIS, data collection

Geographic information system is now a common tool for numerous appli-
cations. However the cost of data acquisition remains often one of the main
obstacles to increased availability and utilisation of such a tool. Pedestrian
navigation system can o�er a new possibility to acquire, in di�erent environ-
ments, geo-determined information at a lower cost. For example a botanist
will record the location of all the observed plants at the same time he is
performing his usual work and will integrate the information directly in his
database. The same logic can be applied to di�erent scienti�c �elds, such
as geology, but also to other professional domains such as maintenance and
construction of roads, electricity grids and water networks.

Integration in the �eld and in real-time of both tools (GIS and navigation)
can open interesting perspectives. For example, a GIS containing the plan
of underground pipes, combined with a pedestrian navigation system and
virtual reality, can o�er employees a virtual view (through special glasses) of
the underground pipe directly on the terrain [Rober01]. This can facilitate
and improve considerably the eÆciency of their work.

Tourism

Tourism is another application for pedestrian navigation. Several projects
have developed automated tour guide [Feine97, Yang99] to o�er services to
the tourist whilst travelling in a city or in a natural park. The purpose is
always to provide him with the necessary or required information when he is
passing near an interesting picture, sculpture, building or area. The system
could also combine di�erent applications to o�er a more complete service.
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For example, the same system can serve as a guide for mountain hiking and
help the tourist in case of emergency [Loehn01].

Rescue

Emergency and security services (police, �re brigade) need location informa-
tion to improve the eÆciency of their operation and facilitate the manage-
ment of the policemen, �remen and medical sta� involved. Their cars are
now usually equipped with navigation systems. However, during an opera-
tion they may need to leave their vehicle and to pursue their activities on
foot. Then, to obtain continuity in the management of the operation and
to improve the security of the persons, pedestrian navigation capabilities are
needed.

Military

In the military sector, the knowledge of the location of each vehicle and sol-
dier is strategic and of paramount importance. This capability is already
achieved for vehicle and is foreseen to be a reality for soldiers soon. The
pedestrian navigation �nds here a direct application. Some research pro-
grams, such as the Exoskeletons in DARPA [Garci00], show clearly the ad-
vantages that pedestrian navigation could bring in this speci�c domain, which
has not been further investigated in the scope of this research.

Medical studies

Applications for pedestrian navigation exist also in the medical domain. For
example, the system can be used in the medical domain, or, more speci�cally,
in physiology and biomechanics [Ho�m01, Schut97]. The main principle is
to monitor during a certain period of time (generally at least one day) the
activity of a person measured in terms of travelled distance associated with
the walking speed and the incline of the travelled path. These parameters
are then utilised to compute the energy expenditure or other physiological
parameters important for fundamental research in this domain.

Navigation for the blind

Di�erent projects and technologies have been already developed to help
blind people to navigate in unknown environment [Petri96, Ram98, Dodso99,

8



Pedestrian navigation

Helal01, Garaj01]. Navigation tools can be used to o�er di�erent services
to visually impaired persons: from obstacle avoidance to basic information
about their position and orientation. In this domain, the acceptance by the
blind community of any new device requires that it does not interfere with
the sense of hearing or touching. Indeed these senses are fundamental for
their every day life.

Leisure

Leisure activities represent also an interesting and varied domain of appli-
cations for pedestrian navigation systems. In this domain, the cost of the
system becomes a key-issue to ensure a good market penetration. One exam-
ple of a leisure application is to add localisation information to the movies or
pictures taken during a trip [Campb99]. New games based on the possibili-
ties of knowing all the time the position of di�erent people can be developed:
treasure hunt, �nd a friend, etc.

This last example concludes this non-exhaustive list of applications for
pedestrian navigation systems. Each application has di�erent requirements
in terms of accuracy, availability, integrity or continuity. Di�erent technolo-
gies exist and can be applied. Each one has its own advantages and draw-
backs. The next section aims to present di�erent techniques able to ful�l,
even partially, the requirements of these applications.

2.1.2 Tools

Electronics tools for surveying and navigation are not new. Di�erent sensors,
based on di�erent techniques, using di�erent algorithms have been developed
in the past 50 years. The reason for choosing one or another technique for
pedestrian navigation will be guided by considerations given at the end of
this chapter. The present section lists di�erent systems or sensors.

GNSS

Global Navigation Satellite System is today a well-known system. The ref-
erence system is the Global Positioning System (GPS) [Parki95]. It is com-
posed of a nominal constellation of 24 satellites. This system o�ers to the
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civilian a positioning service with an accuracy of around 10 meters since
the turn-o� of the selective availability (SA) in May 2002. Augmentation
systems, Ground-Based Augmentation System (GBAS as some di�erential
GPS networks-DGPS) or Satellite Based Augmentation System (SBAS as
the WAAS or EGNOS), o�er also an integrity service and improve the accu-
racy of the civil service.

Russian engineers have developed, in parallel, a similar GNSS: GLONASS.
This system has currently a poor coverage. In 2002, only 9 satellites are in
orbit for a nominal number of 24.

The European Space Agency and the European Union are now developing
a system named Galileo which aims to o�er in 2008 a variety of services for
the civil community [Bened02].

The basic principle of this technique is to measure the propagation time
of the signal from the transmitter (the satellite) to the user's receiver. Sig-
nals of four satellites are needed to determine the four unknown parameters:
East and North coordinate, altitude and the error of the receiver clock (syn-
chronisation).

The evolution of GNSS is constant. This trend is visible at di�erent
levels. Firstly, at system level, available satellites have more precise clocks
on-board. GPS modernisation and the GALILEO program both plan strong
improvements of the system which will o�er better accuracy.

At receiver level, the improvements are made for di�erent purposes:

� Miniaturisation. This process facilitates the integration of small re-
ceivers in other devices such as mobile phones, watches or Personal
Digital Assistants(PDA).

� Power consumption. This aspect is linked to the previous one. The
autonomy of a mobile phone or PDA is a key-element in term of mar-
keting. If the autonomy is not suÆcient, the product does not succeed.
Hence the introduction of a GNSS receiver into such a device must not
decrease too much its power autonomy.

� Accuracy. The research and development activities in the domain of
the algorithms contribute to the improvement of accuracy. The im-
provement is not signi�cant for absolute positioning using code mea-
surement. However, for phase measurement in di�erential mode (also
named Real-Time Kinematic - RTK), the development of ambiguity
resolution techniques [Mermi88, Sauer94] today allows having an accu-
racy at centimetre level within only a few seconds [Han97, Tiber97].
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� Sensitivity. The sensitivity of a receiver is de�ned as its capability to
acquire and track weak signals. Evolution during the last years has
shown that GNSS positioning is possible inside a building or in a forest
[Haddr01]. The GNSS signal power on the earth surface is -160dBW.
The building attenuation is generally about 20 dB.

� Software receiver. This type of receiver replaces hardware components
by software for speci�c functions (mainly acquisition and tracking).
This will increase the exibility of the receiver to combine di�erent
signals. However, to obtain full software receiver implemented today
in handset, evolution of the microprocessor is needed to obtain receiver
with limited power consumption.

No further explanation is given about GNSS technology in this study.
Interested readers can refer to one of the numerous existing books on the
subject [Parki95, Stran97].

GSM or UMTS

GSM, or next generation UMTS, are conceived for communication purposes.
However, it is also possible to compute position using di�erent characteristics
of these systems. Already in the early 90's Wickman [Wickm90] proposes a
method for localisation with GSM. The di�erent applicable techniques are
now presented. This information is provided by various authors [Drane98,
Hein01, Vidal01].

� Cell-id. The mobile location is simply determined by the position of
the master station (MS for GSM) or base station (BS for UMTS). The
accuracy of these technique is directly linked with the density of the
MS/BS network. This means that the accuracy is good in urban area
and weaker in rural or mountain area.

� Signal strength. The strength of the received signal is inversely pro-
portional to the distance between the MS/BS and the mobile. The
intersection of several distances (three to have a unambiguous 2D po-
sition) allows the mobile position to be determined. The accuracy of
this technique depends greatly on the environment. The relationship
between the strength of the signal and distance is only valid in ideal
environments without obstacles, which is rarely the case.
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� Angle of arrival. The position is determined by the intersection of
straight lines which originate at the MS/BS and which are orientated
according to the antennas at Base Station. No precise synchronisation
of the di�erent BS is necessary. Angle of arrival technique is often
combined with signal strength. The �rst one gives the orientation, the
second one the distance.

� Timing measurement. The previous techniques are based on geometri-
cal aspects that do not require any time measurement or synchronisa-
tion between MS/BS and mobiles. However the obtained accuracy is
often weaker than 100 meters. The time measurement techniques need
synchronisation between elements of the network.

{ TOA : Time of Arrival. This technique is based on the measure-
ment of the propagation time of the signal between the MS/BS
and the mobile. The geometrical solution is given by an intersec-
tion of circles. A precise synchronisation of the BS/MS with the
mobile is mandatory (as for the GNSS satellites).

{ TDOA (for GSM) and E-OTD (for UMTS): Time di�erence of
arrival. The basic measurement is the di�erence of the time of
arrival of a same signal emitted by di�erent BS/MS. From a geo-
metrical point of view, the solution is given by the intersection of
hyperboles. The precise synchronisation of BS/MS is needed.

Tab.2.1 presents the error budget of GSM and UMTS, this table is pro-
posed by [Heinr01].

error source GSM UMTS

resolution 270 m 18 m
multipath 0-250 m 0-17 m
troposphere 0.3-3m 0.3-3 m
network/hanset synch. 3-6 m 3-6 m
oscillation error 7.5 m 7.5 m
total error (1�) 270-380 m 19-26 m

Table 2.1: Error budget for GSM and UMTS techniques
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MEMS

The Micro-Electro-Mechanical Sensors Systems are subject of intensive re-
search conducted by di�erent laboratories all around the world. The sensors
(accelerometers and gyroscopes) for navigation are part of this trend. Bar-
bour, in [Barbo01a], Kourepenis, in [Koure98], and Yazdi, in [Yazdi98], give
a clear view of the past, present and future evolution of the MEMS.

Concerning the accelerometers, the miniaturisation process has already
produced e�ects. The sensors have reached a small size whilst maintaining
suÆcient performances to be integrated in small navigation devices. Ac-
celerometers are also extensively used in other domains.

For the gyroscopes the challenge is more diÆcult. Indeed, for almost all
types of architecture and principles, a physical relation exists between the size
and the performance which is generally characterised through the stability of
the bias and scale factor [Yazdi98]. The limits of the actual sensors have been
described in [Ansel98]. However, new manufacturing techniques are currently
being investigated [Ayazi01, Geige98]. They o�er interesting perspectives.
The possibilities of utilisation of MEMS for pedestrian navigation will be
described in detail in the next chapter.

Magnetic compass

The properties of the Earth's magnetic �eld have been used for centuries by
the navigators. This �eld can be measured by ux gate or magneto-resistance
sensors [Denne79]. Most performing devices available today includes tilt
sensors to provide sub-degree accuracy [Gnepf99, Carus00]. To maintain
this accuracy, the anomaly of the Earth's magnetic �eld has to be taken
into account. The main drawback of magnetic sensors is their sensitivity to
magnetic sources others than the Earth's magnetic �eld. These sources are
frequent in urban environments as they are mainly produced by electricity
lines (for public transport) or the metallic structure of buildings. They are
strongly dependent on the time and location. It is therefore not possible to
adjust them for in a model.

Barometer

Barometers can also be considered as navigation sensors even if, basically,
they o�er only the vertical solution of the problem. Coupled with 3D digital
terrain models, knowledge of the altitude can o�er, for terrestrial application,
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useful information about localisation. The altitude de�nes a line on the map
and then limits the number of possible solutions. The accuracy of a barometer
depends on the stability of the atmospheric pressure in one location. Thus,
meteorological changes produce errors in the altitude determination if they
are not taken into account and compensated.

Di�erential barometers can o�er altitude with one meter accuracy. For
pedestrian navigation, the use of a barometer can improve the accuracy of
pedestrian navigation systems by measuring the walking slope. This can be
critical for slopes exceeding a percentage of 7-8% [Perri00].

Visual recognition

Visual recognition is a technique that can be used for di�erent applications.
Numerical photogrammetry is one classical example. This technique consists
in comparing a picture taken by a camera with elements in a database. These
elements can also be pictures but are more generally 3D models of reality
composed of structural lines like the edge of a building or the border of
a road. When the structural lines, extracted from the picture, match the
elements of the database, which are geo-referenced, the system knows where
the person is and also what is their angle of view. Di�erent systems have
been developed based on camera only [Aoki99] or combining di�erent sensors
with the camera [Chen99].

GIS, map matching

Maps and road databases are extensively used in car navigation systems.
Map matching is a technique based on comparison between the computed
trajectory (position) of the vehicle and the elements contained in the map
(or more generally in the GIS). For example, when a car turns 90 degrees, it
means that it has reached an intersection. The system can then allocate the
location of the intersection (furnished by the map) to the vehicle as well as
the orientation of the street to the orientation of the vehicle. This technique
is able to replace GNSS in poor coverage area such as tunnels, cities or forests.

A geographic information system can also be considered as a tool for
pedestrian navigation. The identi�cation and organisation in a database
of walking data such as pavements, pedestrian crossings, corridors inside a
building or paths in rural or mountains areas, can improve the pedestrian
navigation system by providing a position (map matching) or an orientation
(map aiding). The coupling of pedestrian systems with GIS has been the
subject of experimentation by Golledge [Golle91, Golle98].
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Indoor navigation

Indoor Navigation can be considered in the frame of this study as a sub-
domain of pedestrian navigation. Indoor navigation is sometimes named
In-Building navigation. It concerns all navigation techniques and algorithms
necessary to navigate (i.e. locate and guide) a person or an object when
indoors (in building, in tunnels, under ground...). Language extension tends
to classify almost all non-GNSS techniques as Indoor techniques. The follow-
ing sections lists di�erent localisation techniques that are applicable indoors.
They are mainly taken from [Heinr01] and [Viita99].

� Pseudolite. A pseudolite is a ground based transmitter that simulates
the signal of a GNSS satellite and that can be used by a GNSS re-
ceiver for ranging [Kee01]. A receiver-transparent use of pseudolites in
con�ned environments has still some problems due to multipath and
near-far problems, where the signal of the nearest pseudolite covers the
signal of the other ones (jamming).

� Ultra-sound sensors. These sensors are able to provide information such
as distance to the next wall. They are also used for obstacle avoidance
applications.

� Local RF. RF location based systems consist of transmitters that send
messages continuously using microwave frequency (v2.5 GHz). A trans-
mitter is attached to the asset to be tracked. When the asset comes
in the �eld of a transponder (reader), the message is sent to a central
computer, which deduces the position of the asset. Di�erent variants
of this technique exist [Want92], depending on the network architec-
ture. For example, the readers can be attached to the moving asset
and the transmitters �xed to the building. The accuracy obtain is be-
tween 1.5 to 15 m. Today, RF transmitters are generally integrated
into identi�cation badges used in numerous oÆces [Harte94, Ward97].

� Infrared or uorescent light detector. Generally, infrared transmitters
and receivers are used when RF technology is not applicable because of
the interference with instruments using a narrow frequency, e.g. hospi-
tals or electronic factories.

� Ultra Wide Band (UWB). This technique has the potential to obtain
precision under 30 cm [Opsha01, Fonta01]. However, problems of in-
terference with other systems are important and the power must stay
limited.
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Other techniques for pedestrian or indoor navigation

Loran-C is an existing structure put in place for maritime and aviation nav-
igation. The principle is based on the di�erence in the time of arrival of
radio frequency pulses broadcast by three or more transmitting stations. In-
tegration of Loran-C with GNNS has been, and is still, under evaluation
[Brown88, Glori01]. The accuracy of this system is about 460m and the
repeatability is 50m. Loran-C receivers are today too large and heavy for
pedestrian navigation. They are mainly developed for maritime and avionics
applications. However, some manufacturers have started to develop low size
Loran-C receivers [Nels01].

Other systems are, or were, used for navigation [Lauri76]. They are briey
presented in the following paragraph.

� Omega. This technique uses hyperbolic position �xing by phase com-
parison techniques on Very Low Frequency (VLF) continuous wave elec-
tromagnetic signals.

� Decca. This hyperbolic method also consists in transmitting signal at
VLF (similar to Omega).

� Transit. This is the direct ancestor of the American GPS. It is based
on Doppler measurements. This technique is still used for search and
rescue services (such as COSPAR-SARSAT).

� VOR-DME (VHF Omnidirectional Range and Distance Measurement
Equipment). These instruments are mainly used for aviation. They
provide a constant orientation (VOR) or a distance to a beacon (DME).

2.1.3 System architecture

The system architecture for pedestrian navigation is determined by the fol-
lowing questions:

� Where is the position computed?

� Where are the measurement tools placed?

� Where is the information displayed?
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There are two possible responses to the �rst question. The position can
be computed directly by the person or by a processing facility owned by a
service provider or by an institutional entity. For example, GSM positioning
techniques o�er a possibility to compute position in the device or in the mas-
ter control centre. Several legal issues state behind this conceptual aspect.
There is no intention in this report to cover the legal aspect of the pedestrian
navigation, as it would be a self-contained research subject and it depends
upon the applicable legislation, which changes from country to country. How-
ever, it can broadly be stated that the knowledge of the position of a person
is protected by a fundamental right: the private life protection. Generally,
this right can be reduced in certain cases when conditions are ful�lled (con-
victs...) or by the willingness of the person. A system architecture where the
position is computed in an external processing facility must have the person's
acknowledgement to 'track' him without its willingness. On the contrary, the
computation by the person directly allows to have an architecture where the
person controls his position information before sending it to other people.

The second question depends more on the selection of the tools used
to locate the person. For the system architecture, the important aspect is
the distinction between sensors that are placed on the person and sensors
that are part of an external infrastructure. There is also a category of tools
that need both: tools placed on the person and external infrastructure (such
as GNSS that requires receiver and satellites). The sensors placed on the
person o�er the advantage to be independent of the environment. Each time
an external sensor is used, external infrastructure is required, which can
become very expensive for a 'everywhere' positioning requirement. Satellite
infrastructure o�ers certainly the most Global coverage. Anyway this choice
is of course driven by the application and the user requirement.

The third question depends on the second one. It depends also on the
availability of a communication tool associated with the navigation system.
The display of the information can be made at the person itself or to a speci�c
person or institution (police or ambulance in case of emergency).

Beyond the �rst and third question, there is the question of communica-
tion link. If the position must be displayed in another place than where it
has been computed, there is a need for a communication link that must also
ful�l the user requirement (continuity, availability). This speci�c aspect of
the system (the combination of communication and navigation) has not been
evaluated in the present study.
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2.1.4 Environment

The possible environments are selected and sorted considering the direct
possible impact on the localisation techniques and system architecture. The
�rst distinction is between indoor and outdoor navigation.

The terminology indoor considers the situations in which the pedestrian
is walking in a building, in a subway or into a tunnel; i.e. without a di-
rect view of the sky. This �rst distinction is in fact guided by the GNSS
localisation technology, which is available only when the user has a direct
line of sight with the positioning satellites. But, regarding GNSS techniques,
this �rst distinction is not complete. As explained in the previous section,
GNSS positioning can also be problematic in outdoor environment because
of obstruction caused by trees, topography or buildings.

This consideration is at the source of the second distinction. It is based
on the potential availability of the GNSS signal. A classical categorisation
starts from the more favourable environment to the most constraining one.

� Rural environment. It is a clear sky environment without important
obstruction. The reception of the GNSS signal can be considered as
ideal.

� Mountain environment. The topography generates some obstructions
that can shadow a part of the sky. The pedestrian has to walk (or
climb) a long distance to change the obstruction.

� Urban environment. Obstructions are generated by buildings. They
can vary with the height and the density of buildings. The obstructions
are changing fast when the pedestrian moves in a city and reaches
intersection or changes street and orientation.

� Forest environment. The trees are attenuating the penetration of GNSS
signals. Today receivers have a better tracking capability in this envi-
ronment. However, the acquisition of the signal of the satellites is still
diÆcult.

For most of the applications, the pedestrian will change environment. The
system must function in di�erent environments. For some special application,
only one environment can be considered. For example, indoor environment
for the automated guide in a museum.
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This paragraph closes the presentation of the four approaches of the
pedestrian navigation. Any related system can be described by following
one of the four approaches or by combining several of them.

2.2 Classical navigation techniques

In this section the two main navigation techniques are presented:

� INS: Inertial Navigation System

� DR: Dead Reckoning

The algorithms, the errors sources and the error propagation are ex-
plained. The application of these techniques for pedestrian navigation is
also discussed.

2.2.1 Inertial Navigation System

As mentioned in the introductory chapter, integrated INS/GPS is the main
instrument in the classical navigation domain to compute the position and/or
the trajectory of a plane, boat, u-boat or terrestrial vehicle. The utilisation
of this technique for pedestrian navigation has to be considered because it
works with satisfaction in a lot of di�erent vehicles and is, a priori, suitable
to compute a person's position. Inertial systems are often categorized in two
groups [Lawre98]: gimbals and strapdown INS. The gimballed systems are
heavy and large. Hence, they will not be considered for pedestrian navigation.
Advances in sensors development [Barbo01b] in terms of size, precision and
cost, as well as advances in computation capabilities of processor let think
that a strapdown MIMU can be applied for pedestrian navigation.

The classical process of strapdown INS is now briey presented. An INS
is composed of three gyroscopes and three accelerometers. All the sensors
are mounted orthogonally. They are sensing respectively the angular rate
and the acceleration in one of the three directions (see Fig.2.1).

The strapdown INS mechanisation consists �rst in computing the attitude
of the system. The de�nition of the attitude is the orientation in space of the
INS axes (body frame x,y,z) with respect to the reference frame (see Fig.2.2)
which can be:

19



xretemoreleccA

Accelerometer y

A
cc

el
er

om
et

er
 z

Gyro z

Gyro y

Gyro x

Figure 2.1: A classical strapdown INS containing three gyroscopes and three
accelerometers

� the Inertial frame; this frame is not rotating with respect to the �xed
stars. Gyroscope and accelerometers are measuring physical rotation
or acceleration in this frame. For example, a gyroscope placed on the
Earth will sense its rotation. However this frame is not practical for
localisation and, consequently, navigation.

� the Earth frame; the axes of this frame are �xed with respect to the
Earth. The origin is the centre of the Earth. The �rst axis is the polar
axis; the second goes through the intersection of the equator plane and
the Greenwich meridian. This frame is usually parameterised with the
geographic coordinates: latitude, longitude and height. It is used for
global systems such as GPS.

� the Navigation frame (ENU or NED); it is a local geographic frame.
The origin is at a chosen point and the axes are de�ned along the
North, the East and the local vertical. This frame is very practical
for navigation. However, the use of this frame for large areas will
introduce errors. Then, the origin must be shifted regularly in function
of the travelled distance. It allows also keeping a coherent physical
interpretation of the parameter that are usually East, North, and Up.
(see Fig.2.2)
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Figure 2.2: Body frame (x,y,z) and navigation frame (E,N,U)

The attitude is numerically represented by a 3x3 attitude matrix R that
is an orthogonal endomorphism [Gabag97a, Shust93, Markl78]. Di�erent pa-
rameterisations of the attitude are possible. But all possible sets of parame-
ters can be extracted from the R matrix. The attitude is generally measured
by gyroscopes. However, an array of at least three GPS antennae, can also
provide these parameters [Cohen95, Gabag97b]. The next list presents the
most used parameters.

� Quaternions have advantages from a numerical and computational point
of view [Shust93].

� Euler angles (�; �;  ) are the most signi�cant parameters. They repre-
sent three successive rotations about the axes.

� Direction cosines represent the unit axis vector of the body frame pro-
jected along the navigation axes.

� One axis and one rotation (x, y, z, 
) where the attitude is considered
as a single rotation about an axis de�ned by the x,y,z vector.

The measurements of the gyroscopes (!x; !y; !z) are combined with the
previous attitude to provide the changes in the parameters of the attitude.

For example, in the case of a Euler's parameterisation1:

1the equation and the Euler parameterisation depend on the sequence of the chosen

axis about which the rotation are successively performed.
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_� = (!y sin�+ !z cos�) tan � + !x
_� = !y cos�� !z sin�
_ = (!y sin�+ !z cos�) sec(�)

(2.1)

The determination of the �rst attitude is called initial alignment. When
using precise gyro, it is possible to use the gyro to point the North (the
technique is called gyrocompassing). Sensing the earth gravity with the ac-
celerometers can align the pitch and roll angle. However, this procedure re-
quires sensitive instruments and is not possible with low cost sensors. Hence,
the initial alignment must be provided by an external source. Once the
attitude is known the mechanisation shown in Fig.2.3 is performed. The
measured acceleration (ax; ay; az) is projected from the body frame (x,y,z)
into the local frame (E, N, U) using the attitude matrix R [Wei90]. Then
they are integrated numerically twice to obtain the change in velocity and the
displacement. Finally both are added to the previous position to obtain the
present ones. The initial position should be provided by an external mean.

Position
(E,N,U)
Velocity

Attitude
R(ψ, θ, φ)

Body acceleration 
abody=(ax , ay , az)

Body rotation  
(ωx , ωy , ωz)

Attitude angle rate
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dψ, dθ, dφ∫

ENU velocity
(sE , sN , sU)
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(dE , dN , dU)
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aENU= R abody=(aE , aN , aU)
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+

∫ ∫
+

x

x
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Coriolis force

gravity field

Earth 
rotation

Time k Time k+1

Figure 2.3: The INS mechanisation

In complement to the Fig.2.3, it must be mentioned that other physi-
cal e�ects have to be taken in account (illustrated with the slashed line on
Fig.2.3).

� the Corriolis force: this force is generated by the conjunction of the
earth rotation and the velocity of the vehicle.
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� the gravity �eld: this �eld is not constant on the surface of the earth
and inuences the measurement of the accelerometers.

� earth rotation: it is considered as constant (for the proposed applica-
tion) but is measured by the gyroscopes. The implementation of this
phenomenon in the algorithm is strictly and meticulously explained in
Britting [Britt71].

2.2.2 INS errors in pedestrian navigation

During the INS mechanisation process, errors �nd their sources mainly in
the lack of determination of the parameters of the sensors. By de�nition,
and explained in a schematic way, each sensor transforms a physical input
to an electrical signal (Fig.2.4). The voltage ve of the signal is measured and
transformed into a numerical value corresponding to a known unit, say o=s
for gyroscope or m=s2 for an accelerometer. The mathematical formulation
of the transformation is:

unit = �1 � ve + b1 or unit = �2 � (ve + b2) (2.2)

where

�1 or �2 is the scale factor
b1 or b2 is the bias

Physical
 input

SENSOR
Electrical 

signal
scale factor

bias
numerical 
value [unit]

Figure 2.4: Sensor: from physical input to numerical output

Any error on �, b or ve conducts to an error in !x;y;z or ax;y;z and then
to an error in the position. As the INS mechanisation works as a closed loop
process, errors accumulate themselves quickly and create a drift (see Fig.2.5).
Di�erent procedures allow to determine and partially eliminate errors on b
and=or �. Two of them are now presented.

� ZUP : Zero velocity UPdate. The principle is to stop the vehicle to have
a known output. Accelerometers and gyroscopes have to output zeros
(after eliminating the earth rotation and the gravity). The di�erence
between what the sensor should output and what they actually output
is the bias.
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� Integration of GPS. INS/GPS integration is as old as GPS. Early, the
advantages of the integration between both systems have been inves-
tigated [Schwa83]. From a schematic point of view, the position given
by the GPS is compared with the INS position. The di�erence is due
to:

{ GPS residuals, due to errors in the orbits and in the clocks of
the satellites, to multipath, to atmospheric e�ects and to receiver
internal errors.

{ INS residuals, due to errors of bias, scale factor, initial alignment
and initial position.
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Figure 2.5: Position error induced by the sensors errors

The distribution of the di�erence in position among the parameters
is generally done by using a Kalman Filter [Skalo99, Grewa00]. The
correction of the parameters dx is computed as:

dx = K � ~v (2.3)
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where K is the gain matrix (see Appendix A) and ~v is the di�erence
between the GPS measurement (pseudolite, phase, phase rate or po-
sition) and a function of the considered parameters (position, veloc-
ity, attitude, bias, scale factors, misalignment, non-orthogonality, . . . ).
Some models include more than �fty parameters.

To use these techniques in pedestrian navigation is not suitable for dif-
ferent reasons exposed in the following.

� All the sensors (3 gyroscopes and 3 accelerometers) must be carried
by the person. It means that the size must be small enough to be
wearable. As mentioned in the previous chapter, the consequence is
that the random processes that drive the errors on the parameters of the
sensors (bias, scale factor) are more noisy and their stability becomes
worse. The error propagation in the INS mechanisation involves a quick
loss of precision when no GPS signals are available. As illustrated in
Fig.2.5 the error induced by a non-corrected drift of the accelerometer
or of the gyroscope can rise quickly.

Tests with precise INS (less than 0.01 o=h for the gyro and 50 �g
for the accelerometer) carried in a backpack have been conducted and
give interesting results [Soehr00, Gille00]. The second author obtains
in real time an accuracy better than 1 meter per travelled kilometre
without GPS but with ZUP performed every 2 minutes. During the
ZUP procedure, it is asked to the walker to put the backpack down to
avoid any movement. This solution matches only for special projects
and not for a generalised use. Indeed the weight (5-10 kg) and the size
(a full backpack) are not small enough to be carried all the day even
by a healthy person. Integration of GPS with MEMS is now further
investigated [Wolf97, Marse98b, Mao00, Ander01] and yield interesting
results.

� The full computation of the INS mechanisation requires non negligible
resources from the processor. The sampling rate of classical INS is
generally greater than 50Hz. Because of power consumption, more
power-sparing algorithms must be proposed.

� Initial self-alignment is not possible with the low cost sensors. The
procedure of alignment is only possible when the person does not carry
the sensors.
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� INS/GPS integration asks that the GPS and the INS are mounted on a
sti� platform which the human body is not. However, small variation
in the distance between INS and GPS are acceptable considering the
required precision.
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Figure 2.6: Measurement band and sampling frequency limitation

� The movement of a person is not as smooth as the movement of a
vehicle, boat or aircraft. The jerk is high. A shock occurs at each
step and provokes errors (as sudden changes of bias) in the low cost
sensors. These shocks create another two requirements. The sampling
frequency must be high enough to detect the peak and the measurement
band of the sensor must be large enough to measure it. Increasing
the measurement band will diminish the resolution and the precision.
Increasing the sampling rate increases the computation process and
then the energy consumption. (See Fig.2.6)

Those considerations combined with the requirements of precision, er-
gonomics and cost exposed in the section 2.3.1. force to �nd another ap-
proach for pedestrian navigation than the classical INS mechanisation with
GPS integration.

At this point, it must be mentioned that research at the Charles Stark
Draper Laboratory in Cambridge, Massachusetts, specialised in MEMS, uses
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the classical INS mechanisation for pedestrian navigation using low size sen-
sors. They use the fact that during the gait cycle there is a moment when
no force is involved and then the acceleration must be nil. They develop a
concept of personal inertial navigation systems aided by zero velocity up-
date of the accelerometers at each footfall. They show that the technique is
suÆcient to determine the location of a pedestrian within a large building
complex after hours of operation. In addition to the accelerometer, updates
of the gyro via zero attitude rate techniques enhance position accuracy, and
provide an attitude reference [Elwel99]

2.2.3 Dead Reckoning

Car navigation is a demonstrative example to illustrate the dead-reckoning
techniques for terrestrial navigation [Harri90, Frenc96, Zhao97]. Even if
car navigation can also be performed with an inertial system [Abous93,
Marse98a]. First of all the 3D positioning is split in a 2D - horizontal -
and a 1D -vertical- computation of position. These 2 aspects are computed
separately. For the 2D, two elements must be measured: the distance and
the orientation. In car navigation, an odometer (or wheel sensor) furnishes
the �rst element and a gyroscope the second. It is sometimes replaced with
(or completed by) a magnetic compass. In addition some make use of a dif-
ferential odometer for the computation of the orientation. The DR algorithm
is:

Nk = Nk�1 + distance � cos(�k) (2.4)

Ek = Ek�1 + distance � sin(�k) (2.5)

�k = �k�1 + (� � ! + b) � dt (2.6)

distance = odocount � 2� � r � cos(slope) (2.7)

where

Ek; Nk are the East and North position at time k
�k is the azimuth at time k
odocount is the number of turns of wheel counted by the odometer

between time k � 1 and time k
! is the angular rate measured by the gyroscope
dt is the time di�erence between time k and k � 1
�, b are the scale factor and the bias of the gyroscope
r is the radius of the wheel
slope is the slope of the road (interaction between vertical

positioning and horizontal one).
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The height can be measured in di�erent ways: barometer or inclinometer.
If the height, and then the slope, is not measured, then the cos(slope) is
considered as a scale factor on the distance in the same manner as the radius
of the wheel.

Gyroscope

DR
processing

GPS

Kalman
Filter

External
 information

Odometer

Map matching

Figure 2.7: Methodology adopted in most car navigation systems

The errors due to the odometer count or provided by the parameters of
the gyroscopes have a similar e�ect than in the classical INS mechanisation.
The DR algorithm needs external information to correct the errors. In car
navigation, GPS and map matching provide the external sources of infor-
mation. Kalman �lter is also used to combine all the measurements and to
�lter the trajectory. A schematic presentation of car navigation algorithm is
presented in Fig.2.7. Some systems do not consider the map matching for the
Kalman Filter. This process is performed only with the odometer, gyroscope
and GPS data. Then the output of the �lter is compared with the map, and
the map matching algorithm is performed.

2.3 Adopted system for pedestrian navigation

The �rst part of this chapter has been dedicated to the presentation of several
concepts, tools and techniques. Depending on the application, all of them
can be applied to or used by a pedestrian navigation system. The selection
of the system will then be driven by the speci�c requirement of the targeted
application. This section aims at presenting the foreseen application, at
giving the requirements and at presenting the selected system (tools and
techniques).

28



Pedestrian navigation

2.3.1 Requirements

The requirement depends on the targeted application. For the purpose of
this work the main requirements are listed below. The targeted application
is the localisation of weak person (disable, elderly, subject to hart attack) to
o�er them eÆcient emergency services in case of need.

Accuracy and availability

The precision required for the system is 15 meters (1�). It allows �nding
quite easily the person in case of emergency. The availability of the position
information must be as high as possible.

Type of system

The chosen option is to have a personal device with the computation to deter-
mine the position made on the person and not in a service center. This gives
more exibility to the system to match requirements of other applications.

Communication

To have the alarm transmitted to the emergency centre, a communication
link must exist. However, this aspect has not been developed in the frame of
this work.

2.3.2 System architecture

To answer to these requirements, the choice to use a GNSS sensors has been
made because of its global coverage. Other advantages of this technique are
the possible augmentation of the satellite constellation (Galileo) and the tech-
nological development in the receivers to enhance the performances of GNSS
positioning in diÆcult environment (urban canyon, trees canopy, indoor).
Because of the availability requirement it was necessary to complement the
GNSS device with another system that allows furnishing location informa-
tion where less than three satellites are visible. Next section explains the
choice of these complementary sensors.

As communication is also needed for such a system, the technique of
localisation via mobile telephony network has been also investigated. This

29



technique is not yet available with the required precision, so this solution has
not been considered further.

Choice of complement sensors

To complement the GNSS receiver, the Dead Reckoning approach has been
selected because of its availability that complements perfectly the disadvan-
tages of GNSS techniques. For the distance measurement, an accelerometer
has been chosen because of its capability to count the number of steps and to
o�er the possibility to determine speed. This will be explained in details in
the next Chapter. For the orientation determination, the gyroscope solution
has been investigated in details. However, the magnetic compass has also
been taken into account, as shown in the Chapter 4.

Placement of the sensor

While the selection of the used sensors is important in the pedestrian nav-
igation, the critical part is their placement on the person [Boute97b]. As
the body is not a rigid structure that moves smoothly, the acceleration and
orientation response depends on the sensor placement with respect to the
body. This response can be completely di�erent if they are placed on the
limbs (arm, legs), on the trunk (back or thorax) or on the head. The medical
studies on the walk (biomechanics), on the energy expenditure (linked to the
activity monitoring) gives very useful information about the response of the
accelerometers. It helps to choose the placement of the sensors.

� In [Farri87] and [Smidt71], it is demonstrated that the movement mea-
sured at the centre of mass of the body is representative of the total
body movement. Sensors have to be placed as close as possible to the
center of mass if the interest focus on the body movement, which is
di�erent than the person position.

� [Lapor79] and [Webst82] have investigated di�erent placement to see
on which members the accelerometers record the greatest activity dur-
ing walk. They show that a sensor placed on the legs gives the best
acceleration response.

� For the computation of the energy expenditure by the means of ac-
celerometry, the best placement of the sensor is the one that gives
the best correlation between the acceleration measured and the energy
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spent as well as the best repeatability of the results for a same sub-
ject. In [Washb88], it is shown that the best choice was to place the
accelerometer at the waist or on the chest. [Balog88] states that the
placement on the waist gives the best correlation.

� The inuence of the placement on the error in the measurement of the
accelerometer have been described in [Redmo85] and [Kitaz95].

� The spectral response of the accelerometer measuring the movement
during walk depends also on the placement on the sensors [Anton85].
In this study, it is indicated that the walk generates information, in
the frequency domain, until 15 Hz. This means that, considering the
Niquist theory, a sampling frequency of 30 Hz is suÆcient to measure
the activity.

� Investigations have also been made on the placement of other sensors
such as inclinometer in [Tanak94] or on the placement of 6 accelerom-
eters [Ladin91].

Selected system

The studied system utilises sensors fastened to the thorax. This choice allows
the system to use the same sensors also for an other system developed by
the CSEM (Centre Suisse d'Electronique et de Microtechnique, Neuchâtel):
the Fall Detection Sensor System (FDSS). The GPS receiver and the power
supply are carried in a backpack while the GPS antenna is placed on the
shoulder. The �rst accelerometer is placed vertically (along the thorax), the
second one is mounted perpendicular to the �rst and oriented along the walk
direction (anterio-posterior). The gyro measures the angular rate about the
axis of the �rst accelerometer.

Another solution, adopted by Ladetto [Ladet99], consists in placing the
sensor near the gravitational centre of the body, which means at the bottom of
the person's back. Comparison of results depending on the placement of the
sensors are presented in Fig.2.8. The di�erences of the sensors outputs will
drive the implementation of slightly di�erent algorithms. Some aspects of the
e�ect of the sensors placement have been described by Bouten [Boute97b].

The person wears also a portable pen-computer to log all the raw data
for post-processing investigation purpose. Sometimes, a second person carries
the pen-computer to avoid any external disturbance of the walk of the �rst
person.
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Figure 2.8: Accelerometers response (vertical and anterio-posterior) for two
di�erent placements: the person's back (upper part), the thorax (bottom
part).
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All the developments presented in this publication are based on this sys-
tem architecture.

2.3.3 Activity monitoring

A GNSS receiver and INS sensors are the instruments to perform the di�erent
functions of the pedestrian navigation. However, another branch of medical
studies is needed to improve the system. Indeed, it is necessary to know the
activity of the person to run the correct algorithm at the right moment. A
typical example is when a person is climbing stairs, the received signal from
the accelerometer and the gyroscope are di�erent. If this di�erence is not
detected then the algorithm for walking instead of climbing stairs will be
applied.

So the activity monitoring is the �rst step of the process. In the system
architecture, an algorithm is providing to the system the information whether
the person is walking or not. For demo purpose simple activity monitoring
algorithms have been implemented (see Chapter 5). However, more improved
techniques can be considered. For example, accelerometers can be used to
analyse the activity of the person [Makik95, Velti96, Najaf99] or the context
awareness [Rande00]. Inclinometers [Tanak94] or gyroscopes are also used
for this purpose. The algorithms are generally based on pattern recognition
[Fisch97]. More recently some techniques based on neural network have been
implemented [Amini99].

2.4 Other research activities

Other research groups are investigating the pedestrian navigation domain.
The following list indicates some of them:

� The company Point Research has proposed a commercial product based
on GPS, accelerometer and magnetic compass [Judd97].

� The University of Tampere in Finland is integrating GPS and MEMS
in small devices for pedestrian navigation [Kappi01, Leppa01, Colli01].

� The Draper Laboratory has developed algorithms based on the classical
inertial navigation techniques [Elwel99].

� The company Telematica has developed a device based on GPS, ac-
celerometer and compass [Legat00].
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� The University of Brunel is developing a GPS-magnetic compass device
for blind navigation [Jiraw00, Garaj01].

� The University of Nottingham uses a GPS-INS system for pedestrian.
This system is complemented with an augmented reality visualisation
system [Rober01]. They are also developing a system for blind persons
[Dodso99].

� Golding has also developed a system based on wearable sensors [Goldi99].

� The company Applanix has performed some test with an INS/GPS
platform generally used for vehicle navigation [Gille00].

After this Chapter describing the scope of pedestrian navigation and the
choice made for this study, the next chapter will present the way in which
the distance is computed considering data coming from accelerometers and
from the GNSS receiver.
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Chapter 3

Distance determination

This Chapter focuses on the determination of the distance travelled by a
pedestrian. The adopted method is based on a dead-reckoning approach
that has similarities with the method used for car navigation. Two di�erent
methods are presented. The �rst one is based on the use of a pedometer and a
GPS receiver. Only the number of steps and their occurrences are considered
and combined with the GPS measurements. The second method is more
sophisticated approach based on medical studies related to the mechanism
of walking, to the person's energy expenditure and to the human's activity
monitoring. It combines accelerations measured along two axis and the GPS
measurements. This second approach needs the establishment of new models.
These models use individual parameters that must be determined for each
person. The way to determine the models and to calibrate these parameters
are also described and discussed.

3.1 1
st Method: Pedometer and GPS

The �rst solution to determine the distance travelled by a pedestrian comes
from the analogy that exists between car and pedestrian navigation: the
number of steps replaces the turn of wheel counter; the step length substi-
tutes the radius of the wheel. The solution proposed and explained below is
based on the use of a pedometer and the determination of the step length by
GPS. A pedometer is an accelerometer combined with a step determination
algorithm. The second part of the section proposes di�erent strategies for
the step detection. The third part develops algorithms for the determination
of the length of the steps.
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3.1.1 Methodology

Fig.3.1 illustrates the methodology to compute the travelled distance. The
two boxes at the left represent the two sensors (the GPS receiver and the
accelerometer). The �rst stage is an activity analysis based on the accelerom-
eter output to deduce whether the person is walking or not [Najaf99]. If he
is walking, an algorithm �nds out the step occurrence or frequency from the
accelerometer signal. The GPS sensor gives a position computed through a
carrier smoothed code algorithm. When the GPS position is available (at
least three satellites are observed for a two dimensional positioning) the dif-
ference between two successive positions gives the GPS-distance that is used
for the determination of the step length. Finally, the step length is included
into the people navigation process in a similar way that of the radius of
wheels in a car navigation algorithm.

Accelerometer Activity

GPS

Step 
occurence and/or

 frequency

Step length

Travelled distance

GPS distance

Figure 3.1: Methodology for the step length determination by GPS

The main goal of computing the step length is obviously to use it in
Dead-Reckoning mode, i.e. when no GPS data are available.

3.1.2 Step: occurrence, frequency

A pedometer is actually an intelligent accelerometer, i.e. an accelerometer
with a step detection algorithm. The signal is processed to extract the step
occurrence or the step frequency. The following paragraphs focus on this
process. Four di�erent techniques are now presented.

Fig.3.2 illustrates the horizontal x-axis (a) and the vertical z-axis (b)
response of the accelerometers. The acceleration is measured along two axes.
In the presented methodology, a vertical sensor is suÆcient. The strongest
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horizontal acceleration occurs just after the vertical peaks. The step pattern
changes according to the ground surface, the type of shoes or the person's
style of walk. Asymmetry between the right and left foot can also appear.
The placement of the sensors on the body has an immediate inuence on the
signature too. To obtain a maximal value for the peaks, the accelerometer
must be placed on the foot of the walker. While optimal for step detection,
it is not ideal for other purposes as presented in the second methodology and
in the next chapter.

Figure 3.2: Accelerometer signal in time and frequency domain

Technique 1: Frequency extraction with Fourier Transform

A Fourier analysis of x-axis (3.2c) or z-axis (3.2d) accelerometer raw data
provides the step frequency. Obviously, the results are identical for both
axes. Once the frequency is obtained, the step count during an elapsed time
dt is easily computed as:

#step = dt � frequency (3.1)

The on-line computation of frequency with a Fourier transform can be
performed but is a computationally heavy technique. The solutions presented
hereafter are more straightforward.
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Technique 2: peak detection

The time analysis of the z-axis response allows the determination of the step
occurrence. Each group of two peaks corresponds to a step. Their amplitude
is not a constant due to the low sampling rate (20 Hz). The peak detection
algorithm is based on the following conditions.

1. A certain time must elapse between two steps.

2. The amplitude of the peak must be higher than a de�ned level.

3. The value of the acceleration at time k � 1 and k + 1 must be smaller
than the value at time k.

The �rst condition overcomes the problem of detecting the double peak
that occurs often in the acceleration pattern of the step. The double peak
of the vertical acceleration has no clear explanation. The heel and the sole
touching the ground in a short sequence can create this pattern. However a
rebound of the accelerometer just after the step or the resonance of the sensor
after the �rst shock could also explain this double-peak pattern. Once the
step is detected, the detection process is stopped during the de�ned time
(point 1). The determination of the elapsed time is driven by the frequency
of the steps:

time = 0:4=frequency (3.2)

The second condition is related to the activity determination process. The
peak must reach a certain value to consider it as a step and not as a movement
of the body of the person while he is performing another activity (sitting or
lying). This condition can become tricky in certain circumstances as with
elderly persons. This detection of the activity walk can also be based on the
step detection algorithm. Indeed, if two steps occur within 1 to 2 seconds then
the person walks. However this type of activity monitoring reaches its limits
when a person is going up- or downstairs. In this case more sophisticated
algorithms have to be used. The third condition is obvious. The maximal
acceleration value must be greater than the previous and the next one.

Fig.3.3 illustrates a z-axis accelerometer response with the step occur-
rences. The time di�erences between step occurrences gives the step fre-
quency.

In the presented step detection algorithm, the minimal level of the peak
value (2nd condition) is the most diÆcult parameter to �x. The reasons are:
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Figure 3.3: Step occurrence determined with a vertical accelerometer

� the bias: the change of the bias of the accelerometer outputs can reach
0.3 g (especially for a low cost accelerometer). It inuences directly the
value of the peak and then the minimal level.

� the verticality: the change of the orientation of the vertical sensors
provokes a variation of the acceleration value. It is due to the change
of the angle between the axis and the Earth's gravity �eld. Its e�ect is
similar to a change of the bias.

To avoid these two problems, the use of a two-axis accelerometer (as proposed
in the beginning of the paragraph) constitutes a solution. The modulus of
the acceleration is then considered:

atot =
p
a2x + a2z � 1 in [g] (3.3)

The Earth's gravity �eld is immediately subtracted to maintain the nu-
merical value close to zero and without this bias of 1g. This subtraction will
play a role in the next section where other values will be computed from the
atot. It is assumed that no signi�cant roll (lateral incline) of the accelerome-
ters occurs. To avoid the problem of the bias, the computation of the mean
acceleration value over 2 to 3 seconds is done regularly and compared to the
previous mean. The level value is computed as a function of this averaged
value. The scheme for passing from one to two axes can be continued for the
passage from two to three axes. With a three-axis sensor the orientation of
the sensors does not have any inuence if the total acceleration is considered.
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Then it becomes possible to detect peaks independently of the orientation of
the sensor.

The choice of a 1, 2 or 3-axis accelerometer depends on the application
and on the design of the device. Is the product worn on the chest? If yes,
then a 2-axis is suÆcient. Is the device put in the pocket? If yes, then a
3-axis is more appropriate because the orientation of the device is completely
free.

Technique 3: Zero-crossing

The research group of the University of Tampere proposed another solution
for step detection [Kappi01]. It is called the zero-crossing. It consists in
counting a step each time the total acceleration crosses the zero value in an
ascending way. The total acceleration is obtained by a 3-axis accelerometer.
This technique works well and is very simple to implement. However it
assumes that the activity "walk" is detected previously, as it is explained in
section 2.3.3.

Technique 4: Kalman �ltering

The fourth technique consists of an algorithm incorporating an on-line recur-
sive �lter (Kalman �lter). The measurement model contains four parameters:
mean acceleration (C), amplitude (A), frequency (F ) and phase shift (D).
The vertical axis acceleration (az) is modelled as:

az � v = C + A � sin(2� � F � t +D) (3.4)

where t is the time and v is the error.

An identi�cation stage allows the determination of the type of random
processes associated with these parameters [Brown97]. Gauss-Markov pro-
cesses of di�erent orders have been adopted in the kinematic model. The
e�ect of this �lter is illustrated in Fig.3.4. It is essentially the same as
applying a low-pass �lter. However, the advantage of this technique is the
immediate availability of three interesting parameters, namely, the frequency
F , the amplitude A and the mean C, carried by the state vector. It allows to
have an estimation of the accuracy of the determination of these parameters.

The basic concept of the four techniques is clearly di�erent. Tab.3.1
illustrates the di�erences and the advantages of each technique. Elements
taken in consideration are:
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Figure 3.4: Recursive �ltering applied to Z-axis accelerometer raw data

� the parameter that the method outputs

� the computation requirement

� the robustness, i.e. the capacity to avoid errors (miss a step)

Technique parameter
computation
requirement

robustness

1 frequency high good
2 occurrence (mean) low low

3
occurence
(delayed)

very low low

4
mean, frequency,
(amplitude)

medium good

Table 3.1: Di�erences and advantages of the four step detection methods

The �rst technique is not adapted. The FFT-transform must be applied
only when the person is walking, then an activity algorithm has to be used
in parallel. The FFT requests an analysis on a prede�ned time interval that
contains at least two steps (around one second). It induces a time delay in the
step detection. Moreover, in this technique, the FFT requires a great number
of numerical operations which is not the case of the following techniques.
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The second and third techniques are simple and give good results. The
risk to miss a step is present. Even if the consequences of a missed step are
not important in term of accuracy of the position, it has an impact in the
step length calibration process (see next paragraph).

The fourth technique is computationally heavy for step detection. But it
gives interesting results, such as mean and amplitude, which will be used in
the next section.

The second technique is �nally retained for this �rst method. In compar-
ison to the third technique, the second o�ers a better robustness. Indeed, the
acceleration curves can also cross zero when the person make other activities
than walking. The threshold value of the second technique plays also a role
for activity monitoring and o�er a better robustness, although the risk to
miss a step or to account another movement for a step remains.

3.1.3 Step length measurement by GPS

Once a step is detected, it is necessary to measure its length. This section
presents theoretical developments to compute the step length and its accu-
racy as well as results of di�erent tests.

Step length computation

The step length computation is obvious. Having a distance dist measured by
GPS and a count n of the number of steps. The averaged step length step
can be obviously determined as:

step =
dist

n
(3.5)

Now the real question is to determine the accuracy of the step length
determination. This is done �rst with a theoretical development and then
by test.

Theoretical computation of the accuracy of the step length

The aim of this paragraph is to compute the accuracy of the step length
measured by GPS by a classical error propagation method. The scenario
consists of a pedestrian walking north over a distance dist, says 30m, at a
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speed of 1.5 m=s. The distance is then computed as the di�erence between
the coordinates of the �rst P1 and last points P2.

The distance between the two points P1 and P2 is computed as a func-
tion of dE and dN that are, respectively, the East and North di�erence of
coordinate between the two points:

distGPS = f(dE; dN) (3.6)

Extending the function f , we have:

distGPS =
p
(EP2 � EP1)

2 + (NP2 �NP1)
2 =

p
dE2 + dN2 (3.7)

The next paragraphs will now explain how to compute the accuracy of
the determination of the point P1, by GPS.

The GPS accuracy (SA o�) of the �rst point depends upon the satellite
constellation (number and position). Indeed, without entering into details,
the GPS position is computed as a function of the pseudo-range between
satellite n and receiver. This pseudo-range �n is the result of a peak mea-
surement of the cross-correlation function between a code modulated on the
carrier wave and the same code generated in the receiver. The index n denotes
that the measurement is made with satellite n.

�n � v�n = rangesatn�receiverP + c � dt (3.8)

The parameters are:

xP =
�
EP NP UP dtP

�T
(3.9)

where index P means that the person is at position P .

After linearising the equation (3.8), we obtain the following design matrix:

H =

2
6664
cos(el1) � sin(az1) cos(el1) � cos(az1) sin(el1) 1
cos(el2) � sin(az2) cos(el2) � cos(az2) sin(el2) 1

...
...

...
...

cos(eln) � sin(azn) cos(eln) � cos(azn) sin(eln) 1

3
7775 (3.10)

where
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n is the number of the satellites
azn and eln are the azimuth and elevation angles of satellite n

The cofactor matrix of vector xP , that contains position EP , NP , and UP

and receiver clock error dtP , is computed as:

QxP xP
= (HTPH)�1 (3.11)

where P = In�n at �rst approximation. Sometimes, satellites pseudo-
ranges are weighted as a function of the elevation angle of the satellites
because pseudo-ranges of satellites with low elevation are noisier than pseudo-
ranges of ones with high elevations. The non-diagonal elements of the matrix
QxPxP

are generally non-zero, which mean that a correlation �EN exists
between the East and North coordinate.

The following covariance matrix encompasses the variance of the element
of vector xP in its diagonal:

CxPxP
= QxP xP

� �2o (3.12)

where �o is the standard deviation of a pseudo-range. With SA o� we
consider [Stran97]

�o = 5m (3.13)

The horizontal dilution of precision (HDOP) is an indicator of the quality
of the GPS constellation. It is computed as:

HDOP = sqrt
�2E + �2N

�2o
(3.14)

The accuracy of two successive computations of the GNSS position is
identical only if a short time elapses between both measurements. This
assumption can be made because the satellite constellation is considered to
be the same over a short period of time. It means that, in the present
situation:

QxP1
xP1

= QxP2
xP2

(3.15)

Coming back to equation (3.7), we consider the following di�erential ma-
trix D to pass from EP2 � EP1 to dE and from NP2 �NP1 to dN :
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D =

� �1 0 0 0 1 0 0 0
0 �1 0 0 0 1 0 0

�
(3.16)

that multiplies the vector:

x =
�
xP1 xP2

�T
(3.17)

to obtain:

d =
�
dE dN

�T
= D � x (3.18)

To compute Qdd, the cofactor matrix of vector d, the cofactor matrix
Qxx of the vector x, must be �rst considered.

The cofactor matrix of the vector x takes into account the accuracy of
the points xP1 and xP2, contained in the cofactor matrix QxPxP

and the
correlation � between the points P1 and P2:

Qxx =

�
QxPxP

� �QxP xP

� �QxPxP
QxP xP

�
(3.19)

The determination of the correlation � is now explained. In terms of
error, a correlation exists between the errors of two successive points even if
the person is moving. If the travelled distance is not big, then the correlation
is assumed to be the same as the GPS time-correlation computed on a same
point. The correlation can be high if the carrier smooth code technique
[Hatch82] is used in the algorithm of the receiver. Usually, the manufacturer
does not make this information available. To determine the time correlation
for the Canadian Marconi receiver (Allstar), the positions were collected on
a static point over 100 minutes and the East and North error have then been
computed. The autocorrelation is determined for projections of the errors in
four di�erent directions (East, North, both diagonals � = 450 and � = 135o)
to have an indication for di�erent walk orientations. Indeed, for a walker
marching in the East direction, the correlation between the North errors do
not play an important role.

Then an inverted exponential curve (see equation 3.20) is adjusted to
determine the correlation length �. Fig.3.5 shows the four autocorrelation
functions and three adjusted exponential curves. One curve is adjusted with
the East autocorrelation value, one with the North and the bold one is ad-
justed with both East and North. It appears clearly that the �lter used by
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CMC correlates more the East than the North component. The reasons for
this e�ect are not clear and cannot be explained without going further into
the receiver algorithms and architecture. The same applies for the oscillating
behaviour of the North correlation.

Then an "averaged" correlation function has been computed. This last
curve (bold) is used to predict the correlation between two positions given a
known elapsed time (noted time). The function is:

correlation : � = e
�time
� (3.20)

where � is called the correlation length. It corresponds to the time when
the correlation value is equal to e�1 = 0:37.

From the test with the Canadian Marconi receiver, the correlation length
� is �xed to 220s.
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Figure 3.5: Autocorrelation curves computed with 100 minutes of data at 2
Hz for an Allstar Canadian Marconi receiver
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At this point the cofactor matrix of the distances dE and dN , included
in vector d, can be �nally computed as:

Qdd = D �Qxx �DT (3.21)

To pass from the parameter dE and dN to the desired distance distGPS,
the equation (3.6) must be used. This equation must be linearised to compute
the accuracy �dist of the distance distGPS. The linearisation occurs with a
�rst order Taylor's series around the dE and dN value to obtain:

ddistGPS =
@f

@dE
� ddE +

@f

@dN
� ddN = FT �

�
ddE
ddN

�
(3.22)

with

FT =
h

dEp
dE2+dN2

dNp
dE2+dN2

i
(3.23)

Finally the variance of the distance is computed as:

�2dist = FT �Qdd � F � �2o (3.24)

The accuracy of the averaged step length is then computed as:

�step = �dist=n (3.25)

where n is the number of steps, which is a non-stochastic (deterministic)
value.

Finally, the accuracy of the average speed is also computed for informa-
tion:

�speed = �dist=time (3.26)

where time is the time elapsed while the walker goes from the �rst point
P1 to the last point P2 considered for the dist computation.

Tab.3.2 gives the standard deviation of distance and speed for three dif-
ferent distances which will be used in the next paragraph dedicated to the
results of tests (HDOP=2).

To evaluate the inuence of the satellite geometry on the accuracy, the
Fig.3.6 shows the standard deviation of the distance for di�erent HDOP (see
equation 3.14).
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Figure 3.6: Standard deviation of the distance measured by GPS in function
of the elapsed time.

Test to validate the theoretical accuracy

The test takes place on a 30 meter straight path without any obstruction
for the reception of the satellite signals. A person walks several times along
the path carrying the GPS sensor (Allstar, Canadian Marconi), the antenna,
the accelerometers (an integrated tri-axial accelerometer sensor system with
a measurement range of �2g, based on the Spac2g product, CSEM, CH)
and the data logger. The inertial microsensor system is a component of the
FDSS device (Fall Detection Sensory System, CSEM, CH), capable of mon-
itoring the human's activity. One of the main problems of data acquisition
is the time synchronisation. Accelerometer and GPS are connected through
two serial communication ports to a common data logger. Working with a
single data logger provides an immediate and simple realisation of the time
synchronization.
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number of steps distance time correlation �dist �step �speed
10 8m 5s 0.976 0.8m 8cm 14cm/s
37 30m 20s 0.91 1.4m 4cm 7cm/s
125 100m 67s 0.74 2.5m 2cm 4cm/s

Table 3.2: Theoretical accuracy of distance, averaged step length and aver-
aged speed measured as computed by GPS

The placement of the sensors is the same as de�ned in section 2.3.2. The
antenna was placed on the shoulder of the person. The signal obstruction by
the person's head proved not to be an issue and the availability of the GPS
satellites was suÆcient. The other sensors are place on the thorax.

For each 30 meter path the person tries to maintain a constant walk.
The GPS data provides the walk trajectory including its length. The stan-
dard deviation of all the distances computed with GPS is 7 meters (�dist).
The number of steps (n) varies from 34 to 37 and is considered as a deter-
ministic value. Under the assumption that the steps during the calibration
run are completely correlated, the standard deviation of the step length de-
termined in this way may be estimated as �dist=n = 0:2m. The maximum
error obtained during the test is 0.4 meter. These results show that the step
length determination cannot be performed over a short time. As long as
GPS positions are available, the calibration of the length of the steps must
be a continuous process and not a preliminary or periodic operation in the
navigation algorithm.

These tests took place in January 2000, before Selective Availability was
turned o� (beginning of May 2000). With SA o�, the standard deviation of
the computed distance can be considerably reduced. Other tests performed
on a 100m track give an indication for the accuracy of a distance measured
by GPS. The estimated accuracy for a 100m distance is �dist =1.5m. Thus,
for 100m, the accuracy of the averaged step length measured by GPS is 1cm
which corresponds to the theoretical result of 2cm (Tab.3.2).

3.1.4 Real-time step length calibration

As the length of steps is not a constant and can change with speed [Marga76],
the step length parameter must be determined continuously during the walk
to increase its precision. A Kalman �lter (see Appendix A) is an appropriate
tool for the on-line determination of the step length.
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Kinematic model

Assuming that the step length does not vary much during the walk, we
can apply a prediction algorithm from one step to the following one. This
prediction has an uncertainty when the step length changes with the slope
of the path [Terri99] and with the person's speed. Basically, the variations
in the step length have systematic character in the short term, and random
character in the long term. The change of the step length is assumed to be a
�rst order Gauss-Markov process with a correlation time of 20 seconds. The
standard deviation of the driving noise is �xed to 0:2m=

p
Hz .

Observation model

A new observation is computed every ten steps. The step length is considered
as constant within the 10 steps. The observation is the length of the GPS
trajectory during the ten last steps divided by ten. It has a standard devi-
ation of 0.2 meter (SA on) according to the previous test results. With SA
o� the standard deviation is 0.08 m. Therefore the update phase of the step
length is achieved every ten steps, i.e. about 5 seconds for standard walking
speed. Between the updates, the error propagation due to the uncertainty in
the prediction increases the standard deviation. This permits the model to
accept the change of the step length due to a change of the speed or in the
slope.

Fig.3.7 illustrates two walk sequences separated by a short stop phase.
The step length is initialised with an arbitrary value of 0.85m and a standard
deviation of 0.2m. During the stop phase, the step length and its standard
deviation are not updated. They become the initial information for the next
walking sequence. The middle graph shows the observations (dotted line)
and the �ltered step length (solid line). During the �rst ten steps, just
after the vertical dotted line, the step length has a value of 0.85m. After
ten steps, a �rst step length measurement is performed and gives a value
of 0.73m (dotted line). At the same time, this value is introduced in the
Kalman Filter. It ouputs a value of 0.79m that will be considered as the step
length for the next ten steps, waiting for a new input (external measurement
of the step length). The standard deviation (lower graph) of the step length
is decreasing to reach a value of 10 cm. On a longer path, the precision could
reach a value smaller than 10 cm.
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Figure 3.7: Kalman �ltering to obtain step length
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3.1.5 Discussion

This �rst solution, based on a simple pedometer combined with GNSS, is light
from an implementation point of view. It does not yield robust results as the
sudden change of step length can be detected only when GPS measurements
are available, which is not often the case in urban environment (around 60%
availability). However, this method remains interesting today because both
simple pedometer and GPS are available on the market. The presented
technique shows a simple way to integrate both devices, combining their
outputs (step count and position) without any modi�cation to the available
devices.

3.2 2
nd Method: Accelerometers and GPS

The �rst approach presented in the previous section has a main drawback:
when no GPS signals are measurable then the step length is considered as
a constant and sudden changes of the length cannot be detected until GPS
measurements are available again. Then, to obtain an eÆcient Dead Reck-
oning algorithm, a relation between accelerometric signal and velocity must
be found to allow the system to be sensitive to changes of the step length
when information from GPS satellites is not available. To establish the good
relation it is necessary to go into medical literature, in physiology and biome-
chanics. Medicals have been studying human's walk on more than one cen-
tury [Carle1872], for di�erent purposes (external work measurement, energy
expenditure, activity monitoring, rehabilitation, virtual reality, . . . ) and
with di�erent tools (photography, video, accelerometry, treadmill, . . . ). The
next paragraph focuses on di�erent studies that are valuable for pedestrian
navigation.

3.2.1 Accelerometry studies of the walk

The �rst medical domain that provides information for pedestrian naviga-
tion is physiology, more precisely the research concerning energy expendi-
ture. In di�erent publications ([Morri73, Monto83, Boute97a]) authors were
interested in quantifying the energy expenditure of a person as a function
of his activity. The activity of the human body is related to the exter-
nal work of the body. The work is the force multiplied by the travelled
distance [Cavag76]. Therefore the activity can be measured with force plate-
form [Brouh60] or with the help of accelerometers. Reswick establishes a
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linear relation between the energy expenditure and the summation of the
time-integrated absolute value of a vertical accelerometer output [Reswi78].
He uses a head-mounted accelerometer. Wong has developed an apparatus
called Caltrac (www.caltrac.net) that logs acceleration parallel to the ver-
tical axis of the body [Wong81]. The absolute value of the accelerometer
output was integrated over the total test duration. The value was called
acceleration count. The reproducibility was good (coeÆcient of correlation
r=0.94) and the correlation between energy expenditure and acceleration
count was interesting for medical studies (r=0.72). Then Ayen and Montoye
have demonstrated that better results can be obtained by using three Caltrac
mounted orthogonally (r=0.75 instead of r=0.65 for a single axis) [Ayen88].
The numerous publications in that domain bring other interesting results for
pedestrian navigation purposes. Antonsson demonstrated in 1985 that 99%
of the power spectral density of the acceleration deployed during walking take
place below 15 Hz [Anton85]. This means that the information of the walk
takes place between 0 and 15 Hz and that the frequencies higher than 15 Hz
contains only noise. Three years before, Cappozzo showed that the spectral
density of the acceleration of the upper body was comprised between 0.8 and
5 Hz [Cappo82].

In the same medical domain, a clear relation is drawn between the energy
expenditure and the speed and incline which the person has travelled during
the period [Marga76, Hagan80, Herre99]. The walking eÆciency and the
weight of the person are two other parameters. Some authors described tests
using other sensors in addition to accelerometers to determine the energy
expenditure. For example, Meijer uses a heart rate sensors [Meije89]. In the
biomechanic domain, the works of Margaria and Cavagna are signi�cant to
�nd a relation between the step length and biomechanical parameters (length
of legs, age, sex, etc) [Marga76, Cavag64].

Considering all the medical research mentioned above, it is clear that a
model can be created to predict the speed as a function of the acceleration
measured in one point of the body and in function of individual parameters.

The proposed relation is thus:

speed = f(body acceleration; individual parameters) (3.27)

The main idea remains that the speed, and therefore the distance, can be
predicted with accelerometers outputs without a formal double integration.
This means that the relation will not be deterministic because not based on
an explicit physical law.
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From a more mechanical point of view, one should consider that the hu-
man body cannot be reduced to a single kinematic point and, therefore,
placing a sensor on a part of the body will force to account for the body as
a moving complex and inhomogeneous structure with a lot of interactions.
However, from a navigation point of view, the pedestrian is a single point,
characterised with a position and a speed. All the medical studies consider
the body in all its complexity and a large step must be made from medical
literature to get the useful information for pedestrian navigation. The main
problem, starting form a medical point of view of the pedestrian navigation,
is to make the step from a (bio-)mechanical conception of the body to a navi-
gation one, i.e. to reduce a complex structure to a single point. Reciprocally,
starting form a navigation point of view, one cannot consider the human in
the same manner as a boat or a car. In the navigation domain we consider
the human body as a point which position and trajectory are of interest.

The model is then empirical. The next section focuses on the establish-
ment of this model.

3.2.2 Determination of the characteristics of the body ac-
celeration

To establish the model, tests have been made with di�erent people. A three-
axis accelerometer (Crossbow) with a 2g measurement band and a 10Hz
bandwidth has been placed on the thorax of the person. The performance
of these accelerometers are very similar to the performance of the CSEM
accelerometers. The Crossbow has been chosen here because it contains in the
same box also gyroscopes that will be useful for the orientation determination
(Chapter 4). The person walks at various speeds over a determined distance
(30m or 100m). The speed is considered as constant during the walk. The
signals of the anterior-posterior accelerometer (close to horizontal) and of
the close-to-vertical one have been stored and analysed. It is assumed that
the signal from the lateral accelerometer is not signi�cant for normal walk.
The use of this third accelerometer is interesting for special movement (side-
stepping) and for activity monitoring. It must be considered compulsory if
the device may be worn in an unknown orientation. Then the three-axis are
necessary to obtain the total vector of the acceleration. This is not the case
in the frame of this study, where the sensors placement (thorax) allows to
consider that the lateral inclination is close to zero.

The main diÆculty in the establishment of a model is the lack of a clear
relation between the acceleration measured on a part of the body to the
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walking speed.

To de�ne a model for speed prediction, it is necessary to �nd a character-
istic of the measured accelerations that is well correlated with the velocity.
A characteristicmeans a signi�cant numerical value (sort of signature) that
can be extracted directly from the signal.

To be eÆcient the characteristic must �t the following requirement.

Ergodic: The values of the characteristic computed from di�erent samples
of the signal generated by the same person going at the same speed in
the same external conditions (shoes, soil, . . . ) is constant.

Stationary : The size of the computational time interval (2, 5, 10, 20 sec-
onds) does not inuence the value and, when the speed is constant,
the moment when the computation is performed does not have any
inuence.

Fig.3.8 shows the vertical acceleration during a sudden change of speed.
Analysing the data and taking the result of the medical studies into account,
the following characteristics of the signal have been computed.

� V AR is the averaged quadratic acceleration amplitude (ai��a) which is
computed relatively to a mean acceleration (�a). This value is di�erent
from the jerk which is the instantaneous change (ai� ai�1) over a time
period. The square of the ai � �a avoids the problem of sign when ai is
smaller than �a.

V AR =

kP
i=k�n

(ai � �a)2

�t
(3.28)

where

�a =

kP
i=k�n

ai

n+ 1

�t is the elapsed time between the samples k � n and k
k is the epoch of the acceleration measurement ak at the end of the
time interval
n is the number of samples ai during the interval �t, which depends
on the sampling rate.
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Figure 3.8: Sudden change of speed compared with the signal of a vertical
accelerometer

� RMS is de�ned as the square root of V AR. The rationale of computing
this value is to come back to a smaller degree of the acceleration (g
instead of g2).

RMS =
p
V AR (3.29)

� ABS is the average of the absolute value of the acceleration ampli-
tude. In comparison with the characteristic V AR, the ABS represents
another possibility to avoid the problem of sign.

ABS =

kP
i=k�n

jai � �aj
�t

(3.30)

� AMP is the mean amplitude of the peak (di�erence between the small-
est min(acc) and the highest max(acc) acceleration value of 1 stride).
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AMP =

nP
step=1

(max(acc)step �min(acc)step)

�t
(3.31)

� FREQ is the step frequency. This value can be computed in di�erent
ways as presented in section 3.1.2.

The determination of those values have been computed on both accelerom-
eters ax and az and on the total acceleration atot as computed in equation
(3.3). Instead of standardising the value by the time �t it is also possible
to do it by the number of steps. The results are very close considering at
least 4 steps or 2 seconds. Further investigations about the time-interval are
presented in section 3.3.5. A speci�c analysis of the choice of the �t will be
performed in section 3.3.5. Only one value of V AR will be computed over
the �t interval. This value will be used to compute a speed that will be
the averaged speed of the walker over the period covered by the �t. If the
objective is to detect the change of speed as soon as possible, then the �t
must stay short. If the objective is to calibrate the model (3.27) then �t can
be longer.

Speed Person FREQ RMSx ABSx AMPx RMSz ABSz AMPz RMStot ABStot

0.6 1 0.981 0.983 0.976 0.851 0.980 0.981 0.782 0.985 0.990

to 2 0.954 0.990 0.980 0.765 0.990 0.990 0.760 0.994 0.994

2.2m=s 1+2 0.959 0.985 0.923 0.696 0.969 0.946 0.749 0.974 0.973

1.0 1 0.989 0.978 0.964 0.632 0.974 0.984 0.876 0.978 0.987

to 2 0.886 0.963 0.954 0.548 0.975 0.788 0.843 0.980 0.989

2.0m=s 1+2 0.925 0.971 0.956 0.582 0.971 0.870 0.838 0.976 0.984

Table 3.3: Correlation value between speed and characteristics of the signal

The correlation value between those parameters and the velocity have
been computed. Table 3.3 furnishes results for two di�erent persons and for
two speed ranges. The two persons are between 25 and 30 years old with
close biomechanical characteristics (size, weight, . . . ). The correlation has
also been computed mixing the data of both persons (line 1+2). This com-
bination gives an indication of the variability of the characteristics between
di�erent persons. If the Persons(1+2) correlation is near to the Person(1)
and/or Person(2) correlations then the di�erence of the individual parameter
of the two persons is little. This is of interest for �xing the variability of the
individual parameters.

The RMStot and ABStot values give the best correlation value. To choose
between a single axis accelerometer and the total acceleration provided by two
accelerometers, other considerations need to be taken into account. Perrin et
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al. show that the slope is a real limitation for a relation between speed and
RMS [Perri00]. The pedestrian changes his walking bio-mechanical strategy
to a�ord downhill or uphill. In particular, the person changes the incline of
the body, which change the inuence of the gravity �eld on the sensors.

Moreover the �xation of the sensors on the body can produce a change
of the orientation. Choosing a RMS computed with only 1 axis exposes the
system to systematic errors that can be partially compensated by taking the
RMS computed with the total acceleration into account. For these reasons, it
appears that the total acceleration is more adapted to compute the travelled
distance of the pedestrian. At this point the use of a third accelerometer is
clearly an advantage. However we choose to consider only two accelerometers
assuming that no lateral incline occurs. The algorithms can be easily adapted
for a 3-axis accelerometer system computing:

atot =
q
a2x + a2y + a2z � 1 in [g] (3.32)

As for the equation (3.3), the Earth's gravity is immediately subtracted.

Fig.3.9 illustrates the speed in function of frequency (a), amplitude of
the z acceleration (b), RMS of the antero-posterior acceleration x-axis (c),
RMS of the total acceleration vector (d). The values have been computed
using the full set of data for each walk, i.e. �t for computation of RMS and
AMP is maximal.

The correlation numbers described in Tab.3.3 can be visualised in these
four graphs through the capacity for a line to pass through all the dots or
crosses. If the gaps between the dots or crosses and the 'best' �tting line are
too big then the correlation value will be smaller (i.e. closer to zero) and it
will be more diÆcult to build a linear model.

3.2.3 Establishment of the models

The relation (3.27) is now transformed in:

speedDR = f(V AR; individual parameters) (3.33)

or

speedDR = f(RMS; individual parameters) (3.34)

The de�nition and determination of the individual parameters is now the
most important key for determining the distance travelled by the pedestrian
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Figure 3.9: Speed in function of frequency (a), amplitude of vertical peak
(b), RMSx (c), RMStot (d) for two di�erent persons (the �rst represented
with the circles, the second with the crosses).
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in dead-reckoning mode. The �rst relation proposed is directly inspired by
the medical studies.

1st model:

The �rst model is:

speedDR = A �
p
V AR +B = A �RMS +B (3.35)

where
p
V AR is called the RMS.

To evaluate this model, tests have been done on an athletic track. The
parameters A and B of the 1st model have been determined following the
procedure described in section 3.3.1. The length of the track is 100m. Then
the relation is applied to 100, 200 and 400 meter tests that have taken place
on the same athletic track. The mean speed of each test is variable. The
maximum error between the computed distance (by integrating the speed)
and the ground truth is less than 4% of the travelled distance when the mean
speed is over 1m/s. Tests with slower walking speed are inaccurate (relative
error more than 36%). The conclusion is that the relation (3.35) is not
adapted for low speed. Thus, an augmentation of the number of parameters
or a change of the model is required to improve the relation.

2nd model:

The second model proposed is:

speedDR = A � V ARC +B (3.36)

Applying this formula shows better results in determining the speed. The
maximum relative error on all the tests, including low speed, is about 5% of
the travelled distance (instead of 36% in the model 1).

The main drawback is the number of parameters that have to be de-
termined. As it will be shown in section 3.4, the so-called unconstrained
calibration of the parameter can drive to problematic results with the 2nd
model. The type of people and their average speed must be the driver to
determine the model. Elders walk at lower speed than sportsmen!
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3rd model

A third model is proposed. It is based on a physical deduction. When a
person is not moving, his speed is 0 m/s and the variation of acceleration
V AR must be also 0. That means in fact constraining the parameter B to
be 0.

The third model is:

speedDR = A � V ARC (3.37)

As the model is not deterministic, other models could be looked at. Mod-
els using a logarithmic function instead of a power function have been tested.
The results are close to those obtained by the three presented models. Other
models including several characteristics have also been developed and anal-
ysed. For example, Ladetto developed a model with a characteristics similar
to V AR and the step frequency [Ladet00a] to determine directly the step
length (and not the velocity). As the correlation between both character-
istics (V AR and FREQ) is strong, the improvement of the model is not
obvious. Other analysis techniques can be used to de�ne the best combi-
nation of characteristics that will describe the velocity (or the step length).
They will be discussed in the Chapter 6.

Actually, the most important criteria for the choice of the model are on
one hand the number of parameters, and on the other hand the numerical
diÆculty to calibrate and to use the chosen model.

3.2.4 Accelerometer error sources and consequences

The accuracy of the determination of the di�erent characteristics of the ac-
celeration is directly linked with the external error sources a�ecting the ac-
celeration measurements. When �xing an accelerometer on the body, the
signal contains the followings [Balog88, Boute97b]:

1. body movement

2. gravitational acceleration

3. mechanical resonance of the sensor [Redmo85]

4. acceleration due to the tissue under the accelerometer

5. external vibration, not produced by the body itself
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6. jolting of the sensors on the body due to the looseness of the attachment

The �rst element (body movement) is the most relevant component of the
signal. The second element is considered as a constant distributed among
both accelerometers: mainly the vertical one, but also the anterio-posterior
when the body is inclined. The element 3. to 6. are errors. They produce
uncertainty in the computation of the characteristics and then in the velocity
and in the travelled distance. The errors 3. and 4. are always the same
during the walk. They are present during the calibration and operational
phase, then the calibration process (presented in the next section) allows to
eliminate them. The error of type 5. and 6. are gross errors that produce
faults if they are not detected.

3.3 Calibration of the models of the 2nd method

In order to analyse and evaluate the di�erent models in more detail, it is
necessary to �nd an appropriate way to determine the A, B and/or C pa-
rameters. This phase is called the calibration phase. However, the analysis
and evaluation of the model is not the only objective of the calibration pre-
sented in this section. It aims also at implementing a process that will furnish
the distance component to the Dead Reckoning process.

Two di�erent scenarios are proposed:

� a constrained calibration : it takes place before the sensor is used in
normal conditions. It is an initialisation procedure during which the
pedestrian must follow instructions. This calibration makes use of the
accelerometers only.

� an unconstrained calibration: the pedestrian walks freely. This cali-
bration can be applied during the normal use of the system under the
condition that external measurements, provided by GPS, are available.
It integrates also the DR approach for the distance determination with
GPS.

The two scenarios are compatible and can be combined: �rst a constrained
calibration will determine the parameters before small corrections, computed
with the unconstrained calibration, will be applied to these parameters.

In this section, the constrained calibration will be discussed �rst. Then
considerations are made on di�erent aspects of the calibration such as: the
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numerical computation and the number of measurements needed. The dif-
�culty of the calibration of each model will drive the choice of the most
appropriate model. Results of tests are then presented to demonstrate the
accuracy of the calibration. The last paragraph of this section s dedicated to
the computational interval of V AR (or RMS). The rationale of the analysis
of this speci�c aspect is given in the corresponding section. In the next sec-
tion, the integration of the model chosen in this section with GPS (i.e. the
unconstrained calibration) is presented as well as simulation results and the
limitation of the applicability of the models.

3.3.1 Constrained calibration

The constrained calibration consists in forcing the pedestrian to walk a
predetermined distance, say 30m, at a constant speed and to repeat it at
di�erent speeds. Each travelling time must be measured to compute the
speedi. Then the parameters are computed by a least square adjustment
[Gelb74, Maybe94].

1st model:

The observation model of the adjustment process is:

0
BBB@

speed1
speed2

...
speedn

1
CCCA�

0
BBB@

v1
v2
...
vn

1
CCCA = f(A;B; V ARi) (3.38)

The computations of speedi and V ARi are based on the full data set of
each walk, i.e. Deltat is maximal. The equation is linear. In matrix notation
we have: 0

BBB@
speed1
speed2

...
speedn

1
CCCA�

0
BBB@

v1
v2
...
vn

1
CCCA =

2
6664

p
V AR1 1p
V AR2 1
...

...p
V ARn 1

3
7775 �
�
A
B

�
(3.39)

which we write:

s� v = H � x (3.40)
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The estimated parameters Â and B̂ are included in the vector x̂ and are
computed as:

x̂ = (HT
PH)�1 �HTPs (3.41)

where P is the weight matrix and is assumed to be an identity matrix:

P = In�n (3.42)

Thus, we consider that all the speed measurements have the same preci-
sion.

To avoid correlation between A and B, the intersection of the vertical axis
(speed) with the horizontal one (

p
V AR) is changed. The

p
V AR is shifted

by

kP

i=k�n

p
V ARi

n�1 . This manipulation yields A and B uncorrelated, which is
convenient for the unconstrained calibration presented below.

The model 1 can also be parameterised as follows:

p
V ARi � vi =

speedi � B

A
(3.43)

Assuming x1 = 1=A and x2 = �B=A or �B � x1 we have:p
V ARi � vi = x1 � speedi + x2 (3.44)

In this case, we consider the error on the computation of VAR, rather
than on the measurement of the speed. The possible error sources that can
a�ect V AR are presented in section 3.2.4. Both types of parameterisation
generate very close results.

2nd model:

For the 2nd model the methodology is similar. Except that the relation
is not linear. The linearisation is performed by developing equation (3.36)
in a Taylor's series of the �rst order. The series is developed around the
approached parameters �A, �B and �C to obtain the following observation model:

0
BBB@

speed1 � �A � V AR�C
1 ��B

speed2 � �A � V AR�C
2 ��B

...

speedn � �A � V AR�C
n ��B

1
CCCA�

0
BBB@

v1
v2
...
vn

1
CCCA =
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2
6664
V AR

�C
1 1 �A � V AR�C

1 � ln(V AR1)

V AR
�C
2 1 �A � V AR�C

2 � ln(V AR2)
...

...
...

V AR
�C
n 1 �A � V AR�C

n � ln(V ARn)

3
7775 �
2
4 dA
dB
dC

3
5 (3.45)

which we write:

�v� v = H � dx (3.46)

The estimated increments of the parameters are computed as such:

dx̂ = (HT
PH)�1 �HTP�v (3.47)

Finally we obtain the estimated parameters:

x̂ =�x+ dx̂ (3.48)

where�x =
h
�A �B �C

iT
,�x can be computed with three speedi values, taking

the slower, the higher and the median speed.

The cofactor matrix Qxx = (HTPH) lets appear strong correlations be-
tween the parameters. This is not ideal in the perspective of the uncon-
strained calibration. The strong correlation means that a change of the
value of a parameter can be compensated by a change of another parameter
without changing the outputs. It means that the parameters are not inde-
pendent. If a change has to be applied to the parameters to improve the
distance determination, it is diÆcult to determine to which parameter the
increment must be applied. The Qxx is close to singular and the inversion
of the matrix during the computation of the estimated parameter (3.47) can
create numerical problems.

3rd model

The third model is very close to the second one. The observation model after
linearisation is:

0
BBB@

speed1 � �A � V AR1

speed2 � �A � V AR2
...

speedn � �A � V ARn

1
CCCA�

0
BBB@

v1
v2
...
vn

1
CCCA =
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2
6664
V AR

�C
1

�A � V AR�C
1 � ln(V AR1)

V AR
�C
2

�A � V AR�C
2 � ln(V AR2)

...
...

V AR
�C
n

�A � V AR�C
n � ln(V ARn)

3
7775 �
�
dA
dB

�
(3.49)

Strong correlation appears also between the two parameters, as for the
second model.

To achieve a good calibration, for all the models, the travelled speeds
speedi must cover a spectrum as large as possible, i.e. from very slow to fast
walk. Using the �rst model, very slow speed must not be taken into account
because of the non-linearity of the model for low velocity.

3.3.2 Numerical calibration of the three models

Fig.3.10 illustrates the adjustment of the three models on the data sets ob-
tained form tests performed by two di�erent persons.

The a posteriori standard deviation of each adjustment is computed as:

�o =

r
vTPv

n� u
(3.50)

where n is the number of epochs and u is the number of parameters.

Tab.3.4 shows the a posteriori standard deviation value in m=s for each
data set and model.

Speed range Person Model 1 Model 2 Model 3
0.6 to 1 0.122 0.040 0.047
2.3 m/s 2 0.079 0.045 0.048

1.0 to 1 0.058 0.034 0.036
2.0 m/s 2 0.032 0.027 0.042

Table 3.4: A posteriori value of the root mean square

This a posteriori value is an approximation of the precision of the observa-
tion, i.e. the velocity. Considering a pedestrian walking at a normal velocity,
we can consider that the DR velocity can be determined with a precision of
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Figure 3.10: Adjustment of the three models for speed determination based
on measurements of accelerations
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3 to 4 cm/s. The condition is that there is no major change of the external
conditions (see section 3.4).

3.3.3 Optimal number of tests for calibration

The accuracy of the estimated parameters is a function of the number of
observations and of their repartition inside the velocity spectrum. Fig.3.11
and Fig.3.12 illustrate the evolution of the accuracy of the determined pa-
rameters in function of the number of walks achieved during the constrained
calibration phase. The �rst �gure accounts for a calibration with speed vary-
ing from 0.8 to 2 m/s. In the second �gure, the speed range is larger and
goes from 0.5 m/s to 2.2 m/s.

The dilution of precision (DOP ) is computed as the root of the trace of
the cofactor matrix. The smaller is the DOP , the better is the performance.

DOP = sqrttrace(Qxx) = sqrttrace((HTPH)�1) (3.51)

To compute H, and then Qxx, the chosen velocity is distributed at equal
intervals within the velocity range.

A comparison between Fig.3.11 and Fig.3.12 shows clearly that the accu-
racy of the calibration is better if the speed range increases.

If the speed range goes lower than 0.6m/s (this number can change from
a person to another one) then the DOP of the model 2 decreases fast, as well
as the correlation between the three parameters A, B and C. The extension
of the speed range has not a great inuence on the DOP of model 3, but it
reduces also the correlation between the two parameters (from 0.95 to 0.8).

The �gures show that the parameters are better determined if the number
of tests increases. The "ideal" number of test can be determined between 6
and 8. A separate analysis is also performed for each element of the diagonal
of the cofactor matrix. It is not represented here because it yields the same
type of curves and then drives to the same conclusion.

The comparison of the performance between the three models is not ap-
propriate with the value DOP because the parameters do not have the same
nature (exponent or constant) and their number is changing: two parameters
for the �rst and third models and three parameters for the second model.

In conclusion, for constrained calibration, the chosen speed must form a
spectrum as large as possible. Concerning the choice of the model, even if the
�rst one does not react correctly for the slower speed, the second and third
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Figure 3.11: Trace of the cofactor matrix Qxx for each model in function of
the number of tests. Velocity varying from 0.8 to 2 m=s.

ones can become numerically unstable and then can yield a wrong solution.
Therefore, the �rst model will be used in the following sections and chapters.

3.3.4 Test on a 100 meter track

A test has been accomplished following these instructions.

1. The estimation of the parameters of the �rst model is done with 7 walks
of 100m (speed varying from 1.1 to 1.9 m/s).

2. Additional walks on 100m (speed varying from 1.2 to 1.9 m/s) are
performed in the same conditions as for the estimation (same days, on
the same ground surface).

The true speed is computed by measuring the time spent by the walker
to achieve the 100m. Tab.3.5 shows the results.
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True speed m=s
p
V AR Predicted speed m=s Error cm=s

1.479 0.457 1.408 -7.1
1.537 0.498 1.495 -4.2
1.588 0.555 1.616 2.8
1.116 0.337 1.154 3.8
1.095 0.316 1.109 1.4
1.695 0.603 1.717 2.3
1.877 0.683 1.887 1.0
1.465 0.485 1.468 0.3
1.653 0.585 1.680 2.7
1.157 0.355 1.192 3.5
1.509 0.514 1.528 1.9
1.775 0.663 1.844 6.9
1.908 0.691 1.903 -0.4
1.242 0.385 1.256 1.4
1.503 0.503 1.505 0.2
1.832 0.657 1.831 -0.1
1.462 0.473 1.442 -1.9

Table 3.5: Results of the calibration (7 �rst lines) and of the walks. The
travelled distance is 100m
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Figure 3.12: Trace of the cofactor matrix Qxx for each model in function of
the number of tests. Velocity varying from 0.5 to 2.2 m=s.

The maximal error on speed is 7 cm/s. There is no correlation (r =
0.08) between error and speed. The mean error is equal to 1 cm/s and
indicates that there is no bias in the model. Thus there is no bias and no
systematic e�ect on speed. The errors can be considered as white noise. It
means that the model 1 can be adopted for the speed computation. For
this test the standard deviation of the predicted speed applying model 1 ispP

error2=n� 1 = 3:3cm=s.

Fig.3.13 illustrates the velocity determined once per second with a �t
interval of 2 seconds (interval in which the data are considered to compute
RMS). The data have been collected during a walk on a 400m �eld track.
The speed changes were sudden an numerous. The �t interval is here not
anymore the full walk (which would have given only the average speed) but
is limited to 2 seconds to obtain all the changes of speed. The rationale of
the 2 seconds is explained in the next section.
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The determination of the distance, based on the velocity computed by
the �rst model that has been calibrated with the 100m tests, is 406m. It
represents a relative error in the distance of 1.5%.
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Figure 3.13: Speed computation during a 400m path with frequent speed
changes

3.3.5 Computational interval of V AR

The characteristic V AR of the total acceleration must be computed over a
certain interval �t. This interval can be determined in term of seconds or
in term of quantity of steps. This section focuses on the determination of
the ideal time- or step-interval for the real-time computation of V AR. This
interval is de�ned as the best compromise between the �ltering capacity of
the speed (by choosing a large interval) and the reaction within a short delay
to sudden changes of speed (by choosing a short interval). For example a
short time-interval (2 steps or 1 second) can allow the model to react rapidly
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to a true speed change. Moreover it will give a noisy speed because the V AR
is computed with only few data.
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Figure 3.14: Speed computation in function of the time-interval

In this section, the velocity is computed at the same rate as the data
sampling, using the �rst model which is calibrated as presented in section
3.3.1. With a sampling frequency of 30Hz, there are 30 di�erent speeds
computed per second. As it will be explained in Chapter 5, the �nal DR
algorithm computes the distance only once per interval and then jumps to
the next interval.

The �rst point is to examine the inuence of the time-interval on the
speed computation for a distance walked at a quasi-constant speed. The
distance is computed through model 1, equation (3.35).

Fig.3.14 illustrates the speed computation. A speed is computed at each
collected sample (30 Hz) taking into consideration the last 30 collected ai
samples (1 second). The e�ect of the steps on the characteristic V AR is
clearly visible with a short time interval. Indeed, as illustrated in the inside
box of Fig.3.14, the inuence of the steps is always present.
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Figure 3.15: Speed computation with a 2 second time-interval and an interval
of 4 steps

If the interval is not counted in time but in steps, then it can be expected
that the determined speed will be more constant. A comparison between
step-interval (4 steps) and time-interval (2 seconds) is made in Fig.3.15,
where the velocity computed with a step based interval is always in the
upper part of the one computed with a time based interval. For the step-
based interval, the velocity is computed at each step taking all the ai samples
collected during the last 4 steps. For the time based interval, the velocity is
computed at each sample ai, considering all the ai samples collected during
the last 2 seconds. Actually, when using a step based interval, i.e. an interval
going from a maximal peak to the next one we have the maximal V AR value.
Changing a little bit the interval will conduct to a diminution of the V AR
value and then of the determined speed.

Fig.3.16 shows the velocity computed at each step occurrence, with a
computational interval of 2 steps. The result is very noisy and is subject to
errors if the steps are not well detected. The lower peak at the beginning of
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Figure 3.16: Speed computation with a 2 steps interval
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the samples (around 8 seconds) is typical of the type of errors.

Fig.3.17 compares di�erent velocities computed with di�erent time in-
tervals (1 second, 2 seconds and 10 seconds). The velocity is computed at
each sample ai (30 times per second). The �ltering capacity of the long
time-interval is obvious.

180 183 186 189 192 195 198 201 204 207 210 213
0.95

1

1.05

1.1

1.15

1.2
1s 
2s 
10s

time [s]

sp
ee

d 
[m

/s
]

Figure 3.17: Speed computation with a 1, 2 and 10 seconds time interval

Finally the chosen interval for the distance algorithm is a compromise
between �ltering and reaction. It is �xed to 2 seconds.

3.4 Integration of 2nd method with GPS

Until this point in the second method, the computation of the distance is
based only on the accelerometers signal: a purely DR approach. In this
section, the integration of this distance determination method with GPS is
presented.
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3.4.1 Unconstrained calibration

This second type of calibration is called unconstrained because no special
action is asked to the pedestrian. The calibration occurs when the person is
performing usual activities. The constrained calibration yields good results.
However the parameters must be controlled and adapted when external con-
ditions change. By external conditions we consider:

� slope

� lateral orientation of the sensor

� ground surface

� shoes

Some of these elements can be measured and taken into account in the
models. For example, a barometer can provide information about the slope.
Aminian develops a technique based on neural network to estimate speed
and slope out of an signal coming from an accelerometer worn by a runner
[Herre99]. The results show an accuracy of 12 cm/s for the speed and 1 degree
for the slope. However the implementation of the algorithm in a real-time
system is heavy. The establishment of the neural network for a single person
requires lots of tests made under di�erent conditions of speed and slope.

The lateral orientation of the sensor is the incline of the sensor about
the antero-posterior axis. Ideally this incline is 0Æ and the gravity �eld is
fully sensed by the two accelerometers. Any change of the lateral inclination
will reduce the gravity �eld and a change will occur in the computation of
V AR for an identical speed. A gyroscope could measure this lateral incline.
However its determination cannot be precise with low cost sensors. A third
accelerometer can bring another solution: the orientation of the sensors has
then no inuence for the computation of V AR.

The two last external conditions are not measurable in real time. Then
an unpredictable change of the model can occur.

Kalman �lter design for the calibration

The main idea of the unconstrained calibration is to re�ne the parameters of
the chosen model during the walk with the help of GPS measurements. This
is done by a Kalman �lter. Let us begin with a simple statement considering
a pedestrian walking on a straight line and applying the �rst model for speed
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determination (3.35). The GPS speed speedGPS is compared with the DR
speed speedDR. Ideally we have:

�speedGPS = �speedDR = �A
p
V AR + �B (3.52)

Introducing the increments dA and dB of the parameters and a residual
on the GPS speed vspeedGPS , equation (3.52) becomes:

speedGPS � vspeedGPS = (A+ dA)
p
V AR + (B + dB) =

speedDR + dA
p
V AR + dB (3.53)

then we have the observation z = speedGPS � speedDR

z � vspeedGPS = speedGPS � speedDR � vspeedGPS = dA
p
V AR + dB =

hp
V AR 1

i
�
�
dA
dB

�
(3.54)

The equation (3.54) is the observation model of the KF. The stochastic
part of this model is the accuracy of the instantaneous GPS speed speedGPS
that can be �xed to 20 cm=s [NATO91] for a GPS receiver using the carrier
smooth code algorithm [Hatch82] to measure velocity. Most of the receivers
obtain an approximation of the carrier by considering the doppler shift.

The kinematic model for the parameter dA and dB is simple. The func-
tional part says that

�
_dA = 0 + u
_dB = 0 + u

(3.55)

where

u is a white noise with a spectral density of quu that has a numerical
value of 0:01.

dA and dB are then considered as random walks, i.e. integration of a
white noise. Another possibility is to consider both parameters as a Gauss-
Markov process [Brown97].

The outputs of this �lter are the new estimated parameters Â and B̂ that
will be used to compute with equation (3.35) the DR speeds ~speedDR until
the next update.
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RMS �ltering

Another parallel process can also be performed to �lter the RMS value to
make it less noisy for the speed computation. A standard low pass �lter
can be applied, however a Kalman �lter is the alternative proposed here. To
�lter a signal with a Kalman �lter, the signal is considered as an external
measurement and the signal error must be modelled with a random process.
For RMS a Gauss-Markov process has been chosen with a correlation time
of � = 1=2s. We have then:

_dRMS = exp��t �dRMS +G � u (3.56)

where the numerical value of quu is set to 0:01.

The observation model has a simple functional part:

H = [1] (3.57)

The stochastic part of the observation model is the covariance matrix of
the RMS:

Q`` = 0:032[m2=s3] (3.58)

this corresponds to a standard deviation of the velocity of 5cm=s.

No reset of the dRMS is performed, that means that the predicted dRMS
is not 0.

Fig.3.18 illustrates the �ltering of the RMS signal itself by a Kalman
Filter.

Merged Kalman Filter

Finally the next Kalman Filter merges the individual parameter KF and
the RMS KF. It is a combination of the two �lters (3.55) and (3.56). The
kinematic model is:

_x = F � x+G � u =
2
4 0 0 0
0 0 0
0 0 ��

3
5 � x +

2
4 0
0
1

3
5 � u (3.59)
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Figure 3.18: Simulation of a pedestrian walk with a change of external con-
ditions and a real speed change. The RMS is �ltered through a Kalman
Filter
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The observation model is then:

z� v =

�
RMS 1 A
0 0 1

�
�
2
4 dA

dB
dRMS

3
5 (3.60)

The outputs of this �lter are the new estimated parameters Â, B̂ and
^RMS that will be used to compute with equation (3.35) the DR speed.

3.4.2 Simulation

These �lters are now illustrated through simulation. Fig.3.19 and Fig.3.20
illustrate the result of a simulation of a walk applying �rst the A and B �lter
presented in (3.55) and then the merged �lter (A, B and RMS) proposed
in equation (3.59). The GPS speed measurements are available during the
entire path. The updates are performed each time a GPS velocity is observed,
i.e. once per second. Two special events are simulated.

The �rst one (after 90 second) is a change of the external conditions
(ground surface or slope) without modi�cation of the true speed. It creates an
error in the DR speed computation speedDR. This error is due to the fact that
the RMS value changes because of the modi�cation of external condition,
while the estimated A and B parameter are staying constant. Thus, the
speedDR computation process continues to use the wrong, not corrected,
individual parameter. To avoid an error when the external conditions change,
the individual parameters A and B have to change also to allow the equation
(3.35) to issue the same velocity. The GPS measurements speedGPS will
allow to calibrate again, in real time, the individual parameter, thanks to
the proposed Kalman Filter.

The second event is a real change of speed (from 1:5m=s to 1:7m=s). It
occurs at time 180s. Here, the individual parameter can remain constant
because there is no change of the external condition. The speedDR computa-
tion process reacts then perfectly because A and B remains correct and the
RMS changes due to the change of the true speed produce the needed e�ect
in equation (3.35).

As shown in both �gures, the GPS speed measurements allow to correct
the A and B parameters after the �rst event. During the second event, the
GPS+DR speed follows immediately the true speed because of the change of
the RMS induced by the true change of velocity. As the GPS speed speedGPS
changes also there is no e�ect of the �lter in the �rst �gure. However, due to
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Figure 3.19: Simulation of a pedestrian walk with a change of external con-
ditions and a real speed change. The individual parameters A and B are
�ltered through a Kalman Filter
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the RMS �ltering, the second �gures shows that the RMS �lter produced
some unwanted e�ects in this case.
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Figure 3.20: Simulation of a pedestrian walk with a change of external con-
ditions and a real speed change. The individual parameters A and B as well
as the RMS are �ltered through a Kalman Filter

This simulation shows a way to calibrate the individual parameters when
GPS is available. The choice to �lter or not the RMS has not a critical
inuence on the �nal result (the walker's speed). The �ltering of the RMS
is decreasing the capacity of the �lter to correct the parameters. However,
in case the parameters are not changing and the speed remains constant, the
�ltering of the RMS allows to create a smoother estimation of the speed.
Finally, the �ltering of the RMS has not been retained because it brings
more computational e�ort and the advantages are not obvious.

It is also possible to �lter the GPS velocity speedGPS in a separate �l-
ter before using it as external measurement for the distance Kalman Filter
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(3.54). The redundancy of �lter at each stage of the process is useless as
the KF proposed here have the same function. So this solution has not been
investigated further.

A centralised Kalman �lter will be presented Chapter 5, using the �lter
developed in this chapter. At the same time, real data will be used to validate
the simulation result presented in this chapter.

3.4.3 Limitations of the distance determination models

The present chapter shows tests and algorithms that have been developed for
a walking person. The limitations of those algorithms are various and must
be mentioned.

1. Limitation with the slope:

Ladetto and Perrin demonstrated clearly the limitation of such a speed
(or step length) determination model when the slope is greater than
7% [Ladet00a, Perri00].

2. Limitation with the speed (run)

As mentioned briey during the present chapter all the tests have been
conducted with a walking person. The maximal velocity can go up
to 3 m/s , depending on the person. Athletes specialised in walking
competition, can travel a distance of 20 km in less than 80 minutes i.e.
with an average speed of more than 4m/s!) Similar algorithms can be
applied for the run but the biomechanical changes between the walk
and the run induce the necessity to adapt the parameters. Moreover
a �ne activity monitoring can detect when the person is walking or
running and then switch to the appropriated model. No model for
running have been developed during this work, but information can
be found in [Herre99]. They show that the considerations taken into
account to develop the model for the walk are also valid for the run.

3. Limitation with special movement.

A pedestrian does not just walk with a quasi-constant speed. He can
accomplish a lot of special movements as side-stepping, jumping, going
backward etc. The algorithms presented above do not account for those
sorts of movements. Special algorithms based on pattern recognition
must be applied to detect those unpredictable movements.
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3.5 Conclusion

This chapter demonstrates that a good velocity and distance determination
can be obtained by the signal of two accelerometers placed on the trunk of
the body of a walking person. Ladetto shows also that other algorithms
can be implemented to �nd similar results [Ladet00b] when accelerometers
are placed on the back of the pedestrian. The model used is empirical and
contains individual parameters i.e. parameters that change from a person to
another one and with the di�erent ground structure or other aspects. The
calibration of these individual parameters is the crucial phase. It can be
done o�-line or on-line. The o�-line calibration, named constraint calibra-
tion, shows that the determination of the parameter allows to compute the
distance with a relative accuracy of less than 2% of the travelled distance.
For comparison, the �rst method using classical pedometer allows to reach
a precision of about 4cm for the step length determination in a continuous
mode, which means a relative error of about 5%. For the on-line parameter
determination, GPS velocity measurements are introduced in a Kalman Fil-
ter. It allows to adjust the distance determination model to any change of
the external conditions. This technique has been demonstrated by simula-
tion in this Chapter. It will be used with real data in the Chapter 5, when
the process will be included in a centralised Kalman Filter.
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Chapter 4

Orientation determination

This chapter presents the way to obtain the orientation of the walk which
is, after the distance, the second component of the DR strategy adopted for
pedestrian navigation. The �rst part focuses on the gyroscope technology
and associated error sources. Considerations are made on the e�ects created
by placing an angular rate sensor on the body. The e�ects of the inclination
of the sensor and of the body movement are discussed in details. Filtering
of the raw data and azimuth computation are �nally discussed. Then the
combination of gyroscope and GPS is presented. Finally, the use of the
magnetic compass for pedestrian navigation is discussed and an algorithm
that integrates GPS, gyroscope and compass is proposed.

4.1 Gyroscopes technologies

Gyroscopes are used in many applications to sense the angular rate of rotation
or the angle turned by a vehicle or a platform. Before speaking about the
usage of the gyro, it is useful to make a brief and general classi�cation of the
gyro types. Titterton and Lawrence give more details for interested readers
[Titte97, Lawre98].

The �rst category are the mechanical - also called conventional - gyro-
scopes. They are composed with a spinning mass. They have the propriety to
de�ne a direction in space, which remains �xed in the inertial reference frame
(star-�xed). This type of gyroscopes is generally used in gimbals systems to
maintain the orientation of a platform. The most precise conventional gyros
can reach a precision of less than 0:001o=h. The performance varies with size
and design. Small conventional gyros that can be carried by a person, are
not appropriate for pedestrian navigation.

87



The vibratory gyroscopes form the second category. The principles of
this technology are based on the Coriolis acceleration.

X

Y

speed v

angular rate ω

Coriolis acceleration
Fc = 2 v ω

Fc

Fc

v

Figure 4.1: A vibrating fork gyroscope based on Coriolis acceleration.

The design of this type of gyroscope is various (single bar, fork, cylinder,
hemispherical, . . . ) but the principles are the same. To illustrate it the
tuning fork is now explained (Fig.4.1). An anti-phase vibration is applied
intentionally to both piezoelectric bar in one plane. The vibration engenders
a sinusoidal varying velocity v. If a rotation ! is applied along an axis that
is orthogonal to the velocity plane, then a Coriolis acceleration is induced.
The acceleration is orthogonal to both vibration and rotation and modi�es
the motion of the vibrating element. Electrical circuits are able to sense this
modi�cation that is proportional to the rotation. The most common design
incorporates a quartz resonator with piezoelectric circuits. The smallest bias
that can be obtained with such sensors are about 0:1o=h. However, typical
performances are near 5 to 10 o=h. The smallest sensors have bias of 0.1 to 1
o=s. The vibrating gyroscopes are less accurate than conventional ones but
the miniaturisation capabilities are better. Error modelling of this type of
sensors has been investigated in [Marse96, Marse97]

Optical gyroscopes form the third category presented here. There are two
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di�erent technologies: �ber optic gyroscopes (FOG) and laser gyroscopes
(RLG). The fundamental principle is the same for both technologies: the
Sagnac e�ect [Sagna13a, Sagna13b]. When two light beams travel in a close
circuit (circular ring for �ber optic gyro) in opposite direction, the length
of the two paths is similar when no rotation occurs. However the lengths
are di�erent if the ring is rotated about an axis perpendicular to the plane
containing the ring. The Fig.4.2 illustrates this di�erence that is measured
with interferometer, i.e. a phase shift of one bean relatively to the second
one. In this �gure, both 
 and ! represent the angular rate. L is the in-
crement in the path length. This path di�erence can then be measured with
an interferometer. The di�erence between laser and �ber optic is the fol-
lowing: in FOG the light beam transits in the �ber and in RLG the light
propagates in the air and is reected by mirrors. The spectrum of perfor-
mance of optical gyroscopes is wide. The performance of optical gyroscopes
is inversely proportional with the size [Barbo01a]. With biases going from
less than 0.001 o=h [Dunn01, FGS98] to tens of degrees, the performance of
optical gyroscopes is similar to the conventional gyroscope. However, they
o�er advantages such as: digital output, high rate capabilities, instant start
up. . . . The size and the price of the sensor conditions the utilisation of this
technology in pedestrian navigation domain.

Finally the choice of the technology depends also on market consider-
ations. The vibrating gyroscopes o�er the best solution in terms of size
and price. As it will be demonstrated below, their accuracy is suÆcient for
pedestrian navigation. However, the optical technology has a fast evolution
[King98] and can o�er in the future a good alternative for pedestrian navi-
gation.

4.2 Gyroscope error sources

Lawrence cites di�erent error sources for the gyro [Lawre98]:

� Bias: output of the sensor when input is 0.

� Asymmetry of the scale factor: the scale factor is di�erent for positive
and negative inputs

� Non-linearity: the relation between input and output is not linear but
has second or third order terms.

� Composite error: small errors in the relation input-output mainly due
to hysteresis and resolution.
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Figure 4.2: The principle of an optical gyroscope (FOG).

� Hysteresis: di�erence between the output generated by an increasing
input and by a decreasing input.

� Day-to-day uncertainty: variation of bias and scale factor between two
turns on of the sensor.

� Acceleration sensitivity: a gyroscope is sensitive to acceleration (just
like an accelerometer is sensitive to the angular rate!)

� Anisoelasticity: sensitivity of the gyroscope to g2 (especially for a me-
chanical gyro)

For the purpose of pedestrian navigation, low cost gyroscopes are used.
The main error sources that have to be determined and eliminated are the
changes in the bias due to shocks or other sources (anisoelasticity) and the
changes in the scale factor mainly due to temperature. Fig.4.3 shows a
representation of both bias and scale factor. In this �gure, the horizontal
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axis represents the physical input that is transformed by the sensor to a
numerical output (vertical axis). On this �gure other small errors can be
seen (component error).
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Figure 4.3: Bias and scale factor: the two main error sources.

The Fig.4.4 shows the position error induced by the bias of the gyro for
a 2 dimensional approach. The error is computed as follow:

�k = �k�1 + bias � dtkk�1
Ek = Ek�1 + speed � cos(�k)
Nk = Nk�1 + speed � sin(�k)
errork =

p
(Ek � speed � dtk0)2 + (Nk)2

(4.1)

considering �0 = 0o, E0 = 0, N0 = 0 and k = 1...n.

This �gure is di�erent from Fig.2.5 because only the horizontal orientation
is considered and not the full attitude.

For pedestrian navigation application, considering the chosen system (with
only one gyroscope), other error sources or e�ects have to be considered. This
is the purpose of the next section.
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Figure 4.4: Drift in position due to an error in the bias of the gyroscope
considering a speed of 1.5 m=s

4.3 Placing a gyro on a body

Assuming the system architecture presented in the Chapter 2, the gyroscope
is fastened to the chest. In this section, considerations are presented in
relation with the e�ect of the incline of the sensors and of the movement of the
body during the walk. Then an error analysis is made for an unpredictable
change of incline of the sensor.

4.3.1 Inclination of the sensor

The ideal situation is that the gyroscope stays vertical. Then it senses only
the full change of azimuth. However even with a non-walking person this
condition is diÆcult to ful�ll. The question is then: what is the induced error
of the non-vertical orientation of the sensor and how can it be eliminated or
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reduced? In this section only the incline of the sensor is considered. E�ects
of the movement of the body is discussed in the next section (4.3.2).
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Figure 4.5: Possible inclination angle of the gyroscope

If the sensor is perfectly vertical and without error then the gyro senses
the change of azimuth as:

�!z = _� (4.2)

where, as illustrated in Fig.4.5, _� is the change of azimuth and !z is the
output of the gyro (bias and scale factor are here intentionally omitted).

In general, when three gyroscopes are used, the relation between the
angles and the output of the gyroscope is:


 = C � _C (4.3)

where 
 is the vector containing the angles measured by the gyroscope:


 =

0
@ !x

!y
!z

1
A (4.4)
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C is the attitude matrix and _C contains the rate of change of the attitude
angles. In the case of Euler's angles, we have:

_C =

0
@

_ 
_�
_�

1
A (4.5)

When the sensor is inclined about the y-axis with an angle �, the the
change of azimuth _� will be sensed by the gyro as the following:

0
@ !x

!y
!z

1
A = C2 �

0
@ 0

0
_�

1
A (4.6)

where

C2 =

0
@ cos(�) 0 � sin(�)

0 1 0
sin(�) 0 cos(�)

1
A (4.7)

and !x, !y are the response that would have been received from a gy-
roscope placed along the x- and y-axis; they are virtual gyroscopes in this
speci�c case where only one gyroscope is used.

The equation (4.6) can also be written as:

8<
:

!x = � sin(�) � _�
!y = 0

!z = cos(�) � _�
(4.8)

The C2 matrix represents the rotation � about the y-axis, called pitch.
Euler's angles are chosen as parameters because of their clear mechanical and
physical representation.

As cos(�) � 1 the gyro does not sense the full azimuth change and a
virtual gyro placed along the x-axis would also perceive it. An approximation
for small angles allows to set down: cos(�) = 1 and sin(�) = �. A more
detailed discussion is made below.

Now another inclination is considered. The gyroscope rotates about the
x-axis with an angular rate of  , called roll. An azimuth change will then be
sensed by the gyroscope as follows:0

@ !x
!y
!z

1
A = C1 �

0
@ 0

0
_�

1
A (4.9)
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where

C1 =

0
@ 1 0 0

0 cos( ) sin( )
0 � sin( ) cos( )

1
A (4.10)

then

8<
:

!x = 0

!y = sin( ) � _�
!z = cos( ) � _�

(4.11)

The combination of both rotation will give:

0
@ !x

!y
!z

1
A = C1 �C2 �

0
@ 0

0
_�

1
A = Ctot �

0
@ 0

0
_�

1
A (4.12)

or

0
@ !x

!y
!z

1
A = C2 �C1 �

0
@ 0

0
_�

1
A = Ctot �

0
@ 0

0
_�

1
A (4.13)

For example, for equation (4.12) we have:

C1 �C2 =

0
@ cos(�) 0 � sin(�)

sin( ) sin(�) cos( ) sin( ) cos(�)
cos( ) sin(�) � sin( ) cos( ) cos(�)

1
A (4.14)

Then

8<
:

!x = � sin(�) � _�
!y = sin( ) cos(�) � _�
!z = cos( ) cos(�) � _�

(4.15)

The di�erence between equation (4.12) and (4.13) is the sequences of the
rotations. If the rotation about the x-axis is �rst considered then formula
(4.13) is applicable. Any incline of the sensor can be represented by equation
(4.12) or (4.13). Numerically the Ctot is the same but the angles � and  are
slightly di�erent.
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Considering known pitch and roll angles of 5o we get

!z = cos2(5o) � _� = 0:992 � _� = � � _� (4.16)

The e�ect of pitch and roll angles on the sensor is then a scale factor. It
is similar to the internal scale factor of the sensor. On-line adjustment, as
it will be presented below, will also correct this e�ect induced by the lack of
verticality of the gyroscope.
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Figure 4.6: Scale factor generated by inclination about x- and y-axis

Fig.4.6 illustrates the scale factor � for di�erent inclination angles varying
from 0 to 20 o for both x- and y-axis.

4.3.2 Movement of the body

The incline of the sensors is a phenomena that is mixed during the walk with
the oscillation of the upper part of the body, especially the chest. To quan-
tify the amplitude of the oscillation three orthogonal gyroscopes (included in
the Crossbow DMU-VG product) have been placed on the chest of a person
walking on a straight path. The z-axis was placed approximately along the
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vertical and the x-axis along the walking direction. Fig.4.7 and Fig.4.8 show
respectively the raw signal and the integrated angle issued from each gyro-
scope . The bias of the gyro has been computed as the mean of all the data
and the internal scale factor �xed to 1. The full attitude has not been com-
puted here because of the small amplitude of the angles. The initial angles
are considered to be zero.
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Figure 4.7: Raw signal of the three orthogonal gyroscopes

The amplitude of the oscillation about the x- and y-axis is smaller than
3o. The walking speed of the person during the collection of those data was
1.6 m=s. For higher speed (1.9 m=s) the amplitude increases, especially on
the y-axis and can reach 4o. The maximal inuence of the oscillation on the
measurement is then cos2(3o)=0.997 that is 3 o=oo.

This oscillation periodicity is one step about the y-axis and two steps
about the x- and z-axis. The signal is closely symmetric, i.e. the shape of
the signal is similar for left and right steps. Asymmetry between left and right
steps depends on the person and can be more important for elderly people
walking with a stick or for injured persons. However the time integration of
!x or !y over two steps returns an angle change of about 0o � u where u is
a white noise. Thus, an average inclination of the sensor can be considered
and taken into account as a single parameter. Then, the oscillation itself,
due to the steps, can be neglected.
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Figure 4.8: Oscillation angle computed from the signal of the three gyro-
scopes

4.3.3 Unpredictable errors in the inclination

From the last two sections, it appears that the oscillation due to body move-
ment has no major inuence for the orientation and that the average incli-
nation of the sensor can be handled by the adjustment of the scale factor.
The diÆculty comes from an undetected change of the average inclination,
when no adjustment is possible. This type of changes can occur by an abrupt
movement of the person or by a modi�cation of the �xation system. To anal-
yse the e�ects of this change of inclination on the output of the gyroscope,
it is necessary to make an error propagation analysis. Then, the equation
(4.15) has been linearised to obtain:

d!z =
@(cos(�) � cos( ) � _�)

@(�)
� d� + @(cos � � cos( ) � _�)

@( )
� d (4.17)

d!z = � sin(�) � cos( ) � _� � d� � cos(�) � sin( ) � _� � d (4.18)

Equation (4.3) o�ers another way to obtain the error on the vertical
gyroscope induced by the inclination change. The e�ect of inclination can be
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considered as similar to the e�ect of an attitude error, i.e. an error in Ctot.
The di�erence between the true attitude Ctottrue and the Ctot is:

Ctottrue = B �Ctot (4.19)

where B must be close to the identity matrix I. Then, we have:

B = I�	 (4.20)

where 	 contains the small inclination angle:

	 =

2
4 0 0 d�
0 0 �d 
d� �d 0

3
5 (4.21)

In an ideal situation we will get:


true = Ctottrue � _C (4.22)

where _C contains only the rotation _�.

Introducing equation (4.19) in equation (4.22), we have:


true = B �Ctot � _C (4.23)

Replacing B by equation (4.20), we obtain:


true = 
� 	 �Ctot � _C (4.24)

Finally the error in the angular rate measured by the gyroscopes, d
 is
de�ned as:

d
 = 
true � 
 (4.25)

which means that:

d
 = 	 �Ctot � _C (4.26)

By computing this equation we have:

d!z = (sin(�) � d� + sin( ) cos(�)d ) � _� (4.27)
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Let us consider that an uncalibrated change of 5o occurs. The error d�
and d have values of 5o (� and  values are arbitrarily set to 5o). The error
on !z is: d!z = 0:015 � _�. The propagation of this error in the position is
computed considering an average speed of 1.5 m/s with constant turns of 10
o=s. d!z = 0:015 � 10 = 0:15o=s = 540o=h. The e�ect of such an error on
position can be visualised using the Fig.4.4: an error of 50m after 3 minutes.

If the pedestrian does not turn ( _� = 0), then an error in the inclination
of the sensor (d!z) does not produce any error in orientation and, then, in
position.

4.4 Signal extraction

The gyroscope outputs are a mix of:

� real turn

� oscillation due to the body and

� sensors errors.

The next three paragraphs of this section investigate the way to obtain
the real turn from the output.

Investigations have been done to determine if the gyroscope can provide
a suitable orientation to the DR algorithm. Critical situations are de�ned as
fast and very slow turns. Fast turns are critical because of the measurement
band of the sensor. Usually, gyroscopes used for car navigation have a band
of 100 to 200 o=s. In pedestrian navigation, a quick turn can produce a
rotation greater than the measurement band. Nevertheless, for a same type
of gyro, increasing the band will decrease the resolution of the sensor and
then the accuracy. A trade-o� has been made between the resolution and
the measurement band. The slow turns are also critical because the signal is
completely hidden by the oscillations.

4.4.1 Wavelet analysis

The analysis of the signal and the separation between the turn and the oscilla-
tion has been done by applying the wavelet transformation [Chui92, Olivi91].
This technique allows to represent general functions in term of simple and
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�xed blocks, at di�erent time and at di�erent scale. These blocks are called
wavelets. They are generated from a mother wavelet by scaling and trans-
lation operations. The type of wavelet transformation process is generally
characterised with the name of the mother function (Meyer, Haar . . . ).

The wavelet transform is an appropriate tool to analyse signals for which
the frequencies change with time. A gyroscope placed on a walking person
produces such a signal. The frequency of the oscillation depends on the ve-
locity and then changes with time. Furthermore turns produce special events
from time to time that modify the frequency characteristics of the signal. The
raw signal has been logged during a walk containing short and long turns. It
is decomposed with a symlets wavelet (sym8) that is suitable for this type
of signals. The use of a Meyer wavelet is also adapted [Matla98, Olivi91].
The decomposition is done up to level 5. Fig.4.9 illustrates the raw signal
at its approximation level. The detail levels are not shown. The wavelet
analysis shows that this type of gyroscope can provide the information on
turns, despite the oscillations.

The raw signal shows clearly the e�ect of the oscillation of the trunk dur-
ing the walk. The approximate signal has no pattern of steps and reproduces
the e�ective turn.

The wavelet analysis allows to pass from a bio-mechanical consideration
of the walker (with all the oscillations) to a navigation consideration of the
pedestrian (single point) having a non-oscillating orientation.

4.4.2 Low pass �lter

The raw data can also be �ltered through a low pass �lter to eliminate the
high frequency noise and to diminish the e�ect of trunk oscillation. It is
desirable to keep the �lter length short; otherwise it causes a delay for the
real-time computation.

Design of the �lter

The �lter must have a �nite impulse response (FIR �lter) to avoid scaling
the data. The used algorithm, proposed by the Matlabrtoolbox, uses the
Parks-MacLellan optimal equiripples �lter. Fig.4.10 gives, in frequency (�rst
column) and time domain (second column), the raw signal (�rst row), the
�lter (seond row) and the �ltered signal (third row).
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Figure 4.9: Gyro output signal (grey) and approximation (bold) at level 5
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Figure 4.10: Filtering the raw signal. The left column shows the raw signal
(up), the �lter impulse response (middle) and the �ltered signal in the fre-
quency domain. The right column shows the same elements but in the time
domain
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The transition band of the �lter must be large to keep a small time delay
to the �lter. In the chosen �lter the delay is 1 second. The transition band
of the �lter is included between 0.1 Hz and 0.45 Hz.

Result

Several trials show that the azimuth computed with the �ltered data is not
signi�cantly better that the one computed directly with the raw data. The
�ltered signal provides similar results than the un�ltered one (see Fig.4.11).

However, the �ltering process provides a better instantaneous azimuth
of the walk that can be easily compared with another azimuth provided by
another sensor.
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Figure 4.11: Comparison of a 1800 turn computed with raw (light) and low-
pass �ltered (bold) angular rate data

104



Orientation determination

4.4.3 Kalman �lter

Instead of �ltering the raw signal, it is also possible to �lter the azimuth
computed with the raw angular rate data. This can be done by a Kalman
�lter that plays the role of a low pass �lter with some advantages as explained
in the Appendix A. The Kalman �lter can be applied to the raw data or
to the azimuth, adding a degree in the process noise (second-order Gauss-
Markov instead of a �rst order). This solution is adopted when the azimuth
computed with the gyro �gyro is compared with the azimuth from another
device as it will be the case in section 4.7.

Fig.4.12 illustrates the result of such a �lter which is very similar in terms
of frequency and delay to the results of the low-pass �lter.
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Figure 4.12: Comparison of a 1800 turn computed with raw (light) and
Kalman �ltered (bold) angular rate data

The kinematic model of the �lter has the following form:
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�
_�
��

�
=

�
0 0
0 ��

�
�
�
�
_�

�
+G � u (4.28)

where � is the correlation length of the random process (second order
Gauss-Markov) driving the error in the azimuth angle.

For reasons explained in the section 4.7, the Kalman �lter approach has
been �nally chosen to �lter the gyroscope outputs. Briey, this technique
allows to smooth the data to improve further the results. The wavelet trans-
formation has been used as an analysis tool. A speci�c investigation has not
been performed to implement this technique for the operational system in a
real-time mode.

4.5 Orientation computation

Finally to get the azimuth from the gyroscope the following equation is ap-
plied.

�k = �k�1 + (�! + b)dt (4.29)

where

�k orientation at time k
! angular rate provided by the sensor (�ltered or not)
� = �1 � �2 scale factor

�1 internal scale factor
�2 inclination scale factor

b bias
dt time interval between k-1 and k

Thus an initial orientation must be provided to the system by an exter-
nal source. The initial orientation will be considered as a parameter of the
Kalman Filter presented in the following chapter.

As explained previously, the azimuth computed from the gyro, that is the
DR azimuth, is very sensitive to errors in the bias and in the scale factor.
Therefore the DR azimuth must be compared and adjusted from time to time
with an azimuth coming from another source to keep an acceptable accuracy
of the whole system. The two next sections expose the integration of the DR
azimuth with GPS (section 4.7) and with a magnetic compass (section 4.8).
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4.6 Azimuth measured by GPS

As mentioned in the introduction, GPS is able to provide an unbiased az-
imuth when the pedestrian, and hence the receiver, is moving. This section
will focus on the way to obtain a GPS azimuth and to determine its accu-
racy. A �ltering and smoothing process of the GPS azimuth is also presented.
These processes aim at combining the GPS azimuth with the gyro azimuth.

4.6.1 Precision of a GPS azimuth

A GPS azimuth can be obtained in two di�erent ways:

1. using the GPS speed vector, itself computed through the GPS Doppler
(or phase rate) measurement

2. computing the di�erence of two successive positions.

If positions are computed through a carrier smoothed code, which is the
case in most GPS receivers, the precision of both methods is equal. Indeed
the carrier phase used in the smoothing algorithm is built with the Doppler
(or phase rate) measurement.

Using the second method, the precision of the GPS azimuth can be com-
puted theoretically using the same assumptions about time-correlation made
in section 3.1.3 where the accuracy of the GPS distance is presented.

The GPS azimuth �GPS is computed as:

�GPS = arctan(
dE

dN
) = f(dE; dN) (4.30)

For variance propagation we have the following error equations:

d�GPS =
@f

@dE
� ddE +

@f

@dN
� ddN = FT �

�
ddistE
ddistN

�
(4.31)

with

FT =
�

dE
dE2+dN2

dN
dE2+dN2

�
(4.32)

Hence, the variance is obtained as:
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�2�GPS = FT �Qdd � F (4.33)

where

Qdd is computed as presented in equation (3.21).

The correlation � needed to compute Qdd is also based on a correlation
length � of 220s. As shown in Fig.4.14 this correlation length � can have a
great inuence on the precision of the GPS azimuth.

Fig.4.13 illustrates the accuracy of the �GPS in function of the time be-
tween the two GPS positions for di�erent values of the time-correlation fac-
tor �, eventually �xed to 220s for the used receiver. Fig.4.14 illustrates the
accuracy of the �GPS in function of the time between the two GPS posi-
tions for di�erent correlations �EN between E and N . This correlation de-
pends on the constellation and appears within the matrix QxP xP

computed
in equation(3.11).
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Figure 4.13: Theoretical accuracy of the GPS azimuth in function of time
and for di�erent values of the correlation time � (East and North correlation
=0)

For a walking person, it is necessary to compute the azimuth over a short
time, i.e. for a short travelled distance. If the pedestrian is turning, the
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Figure 4.14: Theoretical accuracy of the GPS azimuth in function of time
and correlation between the East and North coordinate (� = 220)

computed azimuth is not equal to the walking azimuth but to the azimuth of
the rope of the curve. If the elapsed time is short then the computed azimuth
is assumed to be equal to the walking azimuth.

The theoretical accuracy of the GPS azimuth can be compared with real
data. Fig.4.15 shows real azimuth data (light line) computed every 0.5 sec-
ond. Two important assumptions are made:

1. the theoretical accuracy is pessimistic. The standard deviation of the
GPS azimuth, when measured on a straight walking line at 1Hz, is 8o.

2. the azimuth error is a white noise, uncorrelated in time.

The raw GPS azimuth is not precise enough to calibrate the parameters
of the gyroscope eÆciently. At this point, a Kalman Filter that accounts for
the motion of the pedestrian and for the white noise aspect of the azimuth
error is built to improve the GPS azimuth and its accuracy. The result of
such a �lter is also shown in Fig.4.15.

The theoretical accuracy of the GPS azimuth is improved from 8 to 2o by
the Kalman �lter. The �lter is designed to eliminate the noise. Even better
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results can be achieved by incrementing the weight of the kinematic model
of the KF versus the observation model. However a strong kinematic model
will produce a large reaction delay when the pedestrian is turning. The �lter
will be presented in details in the Chapter 5 as an integrated part of the
centralised Kalman Filter.

4.7 Coupling GPS and Gyro azimuth

The idea to integrate gyroscope and GPS for navigation application is not
new [Eissf89]. However their integration for pedestrian navigation has not
been investigated yet. In this domain, the fact that the sensors are placed
on a non-rigid platform forces to �nd new solutions. However, even after
�ltering, both data still have an inaccuracy that may lead to large errors
when they are combined. A short smoothing algorithm is then proposed to
improve the accuracy of the azimuth.

4.7.1 Comparing GPS and gyro azimuths

At this point, a �rst and simple method to integrate GPS and gyro azimuth
is presented. The aim of this integration is to �x or correct the gyroscope
bias and then the azimuth. The bias correction can be computed as:

dbk =
�GPSk � �gyrok

timekk�1
(4.34)

And then the corrected bias is:

bk = bk�1 + dbk (4.35)

Once the bias is corrected, it can be applied to the next gyroscope mea-
surement. It is also possible to correct the azimuth itself. The correction is
computed as:

d�gyrok = dbk � timekk�1 (4.36)

and then the azimuth �gyro at time k is corrected as:

�gyrok = �gyrok�1 + d�gyrok (4.37)

The previous four formulae (4.34) to (4.37) form a very simple integration
of GPS and gyro data. The full integration process will be presented in a
more sophisticated form in the next chapter where the covariance of each
information source, as well as a kinematic model for the bias, will be taken
into account.
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Figure 4.15: GPS azimuth �ltered and smoothed with a KF

4.7.2 Smoothing

When both �ltered azimuths (�GPS and �gyro) are compared, they still con-
tain some errors. However, the residuals are completely uncorrelated and
can yield big di�erences when they are opposed. For �GPS, the residuals are
white noise. For �gyro, the residuals still contains the pattern of the steps,
that is not completely eliminated by the �lter. To attenuate these di�erences
a smoothing process is proposed. Fig.4.15 illustrates the methodology with
a concrete example where the smoothing is performed on the GPS azimuth.

When, at time k, an update is decided (i.e. a comparison between �GPS
and �gyro through a KF to calibrate the bias) the �lter and DR process
continue for some seconds (say 5 seconds) instead of performing it with the
current �ltered value of the azimuth. During these 5 seconds, some additional
values must be stored as required by all the smoothing algorithms. Generally
these values are:

� the predicted and �ltered state vector at each epoch
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� the covariance matrix of the predicted and �ltered state vector

� the transition matrix

Merminod proposed another smoothing algorithmwhere observations and
their weight matrix as well as the design matrix must be stored instead of
the predicted parameter and associated covariance matrix [Mermi89].

GPS azimuth

DR azimuth
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2. Update
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3. Filtering/recording
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of the update  
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parameters (φ, bias, drift)

4. Smoothing

k k+n

Figure 4.16: Short-smoothing process applied to GPS and gyro azimuth to
improve their integration

After the 5 seconds, at time k + 5s, the smoothing process is performed
to obtain a smoothed values of the GPS and gyro azimuths at time k. Then,
the comparison is done with these two values. The increments of parameters
(for example db) are computed with these values. Fig.4.16 illustrates this
short-smoothing process.

At this point the correction parameter (for example db) can be combined
with the bias b to provide the new bias value in two di�erent manners. The
�rst one consists in computing the new bias at time k and then to re-process
the DR-algorithm from time k to time k+n. Another way is to assume that
the importance of the error in the bias (db) is not too big and that the new
bias can be applied directly at time k + n without computing again the DR
process from time k to time k + n.
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Fig.4.17 shows a concrete example of the back smoothing process per-
formed in order to compute a new estimation of the parameters of the gyro-
scope and of the azimuth.

There are important advantages when smoothing:

� The variance of the smoothed azimuths is smaller than the variance of
the �ltered azimuths.

� The pattern of the gait disappears.

� The GPS errors are reduced.

The drawback is of course the computation time and the storing space
required by the smoothing algorithm. Indeed, during the computation of the
smoothed value, the DR process must continue.
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Figure 4.17: Smoothing of GPS and gyro azimuth with bias and azimuth
update.
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From a stochastic point of view, the short-smoothing process allows to
improve the standard deviation of the GPS azimuth from 8 to 3 and then
to 1:5o. For �gyro the Kalman �lter and smoothing process have another
goal: to eliminate the pattern of the body oscillation, while keeping a good
reaction of the �lter to real changes of the walking azimuth.

4.8 Azimuth from compass

A magnetic compass is another way to provide external azimuth informa-
tion to the proposed DR system. This device indicates the magnetic North
sensing the earth magnetic �eld. Most of the pedestrian navigation systems,
already developed or under development, use a magnetic compass for orien-
tation. This device is often combined with GPS because it gives directly an
azimuth, which GPS can accomplish correctly only when the receiver is mov-
ing. However the compass have some important drawbacks. Indeed magnetic
disturbances are numerous, particularly in urban environment. The sources
of these disturbances are numerous and vary with time [Denne79, Carus00].

4.8.1 Combination gyro and compass

The combination of gyroscope and magnetic compass has already been ap-
plied in di�erent areas such as car navigation [Mclel92, Harve98]. For pedes-
trian navigation, this concept has been presented in [Gabag01a, Ladet01a,
Ladet01b]. It is also adopted by the research group at the University of
Tampere, Finland [Kappi01, Leppa01, Colli01].

The di�erent tests conducted in parallel with the two sensor systems show
clearly that the weaknesses of one system are the advantages of the other one
(see Tab.4.1).

Advantages Disadvantages

Magnetic absolute azimuth unpredictable external
compass long term stable accuracy disturbances
Gyroscope no external disturbances relative azimuth

short term accuracy drift

Table 4.1: Comparison between compass and gyroscope
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According to this remark, an optimal and more reliable system can be
obtained by coupling the gyroscopes with the magnetic compass. The gy-
roscope will provide a useful indication to identify magnetic disturbances,
while the compass will be useful to determine the bias of the gyros and the
initial orientation, even when no GPS is available.

From an algorithmic point of view, di�erent integration strategies are
possible. The �rst one, proposed by McLellan [Mclel92], is to implement a
heading �lter with the following state vector:

x =
�
� _�

�
(4.38)

The observations that update the �lter come from the di�erent sensors,
and undergo previously through a local �ltering. A design matrix is formed
for each type of update:

compass update:
H =

�
1 0

�
(4.39)

gyroscope update:
H =

�
0 1

�
(4.40)

GPS update:
H =

�
1 0

�
(4.41)

In this research, the proposed implementation is similar to the GPS-gyro
integration �lter. The GPS azimuth �GPS is replaced by the compass azimuth
�compass. However, before processing such an update the azimuth provided
by the magnetic compass must be free of disturbances.

When the pedestrian is walking, the inuence of perturbation sources
varies continuously, creating a varying error in the compass azimuth. A
constant inuence can occur only with big magnetic sources or by sources
attached to the pedestrian (other sensors, batteries, iron structures...). This
second type of sources produces errors that can be eliminated by a calibration
procedure [Gnepf99, Carus00]. The variation can be observed via the azimuth
angular rate:

!compassk =
�compassk � �compassk�1

timekk�1
(4.42)

These disturbances can be detected with the gyroscope comparing the
!compassk with the gyroscope angular rate !z. This comparison requires that
both data sources are perfectly synchronised.
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Fig.4.18 shows the gyro and compass azimuth and Fig.4.19 illustrates,
for the same sample, the di�erence between the angular rate measured by
the gyroscope and the one computed from the compass outputs. When the
amplitude of this di�erence reaches a certain threshold value the magnetic
�eld is considered as disturbed and the outputs of the magnetic compass are
not considered.

0 50 100 150 200 250 300
200

150

100

50

0

50

100

#steps

an
gl

e 
[d

eg
re

e]

angle gyro
angle compass

Figure 4.18: Angle obtained by the gyroscope and by the magnetic compass

Finally the integration of the gyroscope and the magnetic compass data
can be represented in the scheme presented in Fig.4.20.

The main di�erence between the GPS-gyro and the compass-gyro inte-
gration consists in the capacity of each one to detect the body oscillations.
In the second case, both sensors detect the body oscillation. Furthermore,
if both sensors are mounted together and if they are perfectly synchronised,
they will have the same oscillation signal. Thus no smoothing process is
needed to eliminate it because the oscillation signal will disappear when sub-
tracting one sensor azimuth from the other. Then the key issue is to calibrate
the magnetic disturbances induced by the electronic circuit included in the
gyroscope and to synchronise both sensors. It is interesting to note that the
body oscillation itself is a good synchronisation tool because of its sinusoidal
pattern which is easy to detect and match with the pattern of the second
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Figure 4.19: Di�erence between the angular rate of the gyroscope (raw data)
and of the compass (computed) with detected perturbation.
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Figure 4.20: Scheme for an integration of gyroscope and magnetic compass

sensor. A simple cross-correlation algorithm can give the lag between the
two sources.

4.9 Conclusion

In this chapter, the way to obtain an azimuth from di�erent sensors has been
presented. Di�erent solutions have been proposed to obtain an accurate and
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reliable orientation. Considering the evolution of the sensors it appears that
the best solution is to combine gyroscope, magnetic compass and satellite
positioning system. When GPS signals are not available due to sky obstruc-
tions for a long period of time, the compass only or gyro only solution may
quickly accumulate important errors due to magnetic disturbances, respec-
tively non-stability of the bias that lead to a drift in the angle. Moreover a
combined gyro and compass o�ers a powerful DR orientation and can provide
a more accurate and reliable azimuth. Furthermore, thanks to the continuous
availability of the compass and to the short duration of most of perturba-
tions, a gyroscope with an lesser accuracy (and then an inferior price) may
be used. In other words, the compass is used to determine the azimuth in the
long term and the gyroscope in the short term. GPS at this point becomes
unnecessary for the adjustment of the bias and scale factor of the gyroscope.
However it is still needed to determine the o�set of the azimuth compass.
This o�set is the angle formed by the pedestrian's line of walk and the axis
of the compass.
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Chapter 5

DR algorithm and integration

with GNSS

In this chapter the fusion process of distance and orientation will be pre-
sented. Firstly, a special attention is brought to the synchronisation between
all the data sources. Then, the Dead Reckoning algorithm is presented as well
as the error propagation that occurs through this process. The link between
the error propagation and the kinematic model of the Kalman Filter is then
made. A centralised Kalman �lter is presented that allows to consider all the
sensors data source and the DR parameters. The external measurement of
the Kalman Filter are the GPS measurements: position, velocity, azimuth.
Considerations are made about the implementation of the �lter and a speci�c
section is dedicated to the integrity that can be of interest for some speci�c
applications of pedestrian navigation. Results of tests are then presented.

5.1 DR algorithm

The two elements of a DR approach have been presented. The folding process
of those elements is done in the following mechanisation, that furnishes the
navigation parameters:

Ek = Ek�1 + distk � sin(�k)
Nk = Nk�1 + distk � cos(�k) (5.1)

where
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E is the East coordinate
N is the North coordinate
distk = speedk � dt is the travelled distance
speedk is the velocity
�k is the azimuth
dt is the processing rate of the distance and azimuth (0.5 s)

The next two sections will present two elements linked to this algorithm.
The �rst one is the problem of the time synchronisation between the di�erent
data sources. The second one is a study of the error propagation in this
model. This will introduce the next section about the centralised Kalman
�lter.

5.2 Synchronisation and real-time

The system and the algorithm have been designed to work close to real-
time. The notion of real-time is itself ambiguous while pure real-time is
not possible due to computation time. Furthermore, if numeric �lters are
used, they induce delays. Other data processing, such as data transmission,
communication or display create a lag. As we will see, the way to treat
and combine the di�erent sensors and algorithms produces a delay of 1 to
2 seconds, which is acceptable for most of the applications in pedestrian
navigation.

Indeed as presented in the previous chapters both elements, distance and
orientation, produce a computational delay. For distance the computational
time is driven by the time or step interval needed to compute the distance.
In chapter 3 the ideal interval has been de�ned as four steps or 2 seconds.
Actually the computed speed at time k is representative of the velocity at
the middle of the interval, i.e. at time k � 1 second or k � 2 steps.

For the orientation, the delay is due to the �ltering of the azimuth. As
presented in chapter 4, the �lter delay is 1 second. If a Kalman �lter is used
the �lter delay is more diÆcult to estimate. However, a comparison between
the azimuth computed with low-pass and Kalman �lters allows to estimate
the delay produced by the KF at 1 second. When the gyroscope azimuth
is integrated with GPS the smoothing algorithm is initiated and consumes
additional time that provokes a delay of a few seconds.

Fig.5.1 illustrates the computational time of distance and orientation. At
time k, the velocity is computed with accelerometer data from time k � 2
to time k. The same applies for the orientation, with the gyroscope data.
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Figure 5.1: Synchronisation between gyroscope and accelerometers

Both values are representative of the velocity, respectively the orientation,
at time k � 1. Thus the delay of the DR algorithm is 1 second. To this
computational delay, it is necessary to add the process delay that depends
on the characteristics of the processor and on the eÆciency of the �ltering
algorithms.

5.3 Error propagation

The error propagation in the Dead Reckoning model is computed as presented
below.

For orientation, the derivation in Taylor's series of equation (4.29) gives:

d�k =
@�k
@�k�1

� d�k�1 + @�k
@b

� db+ @�k
@�

� d� (5.2)

d�k = 1 � d�k�1 + dt � db+ dt � ! � d� (5.3)

For distance, when the �rst model is used (3.28), the derivative gives:

ddistk =
@s

@A
� dA � dt+ @s

@B
� dB � dt (5.4)
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ddistk =
p
V AR � dA � dt+ 1 � dB � dt (5.5)

The propagation of errors on distance and orientation in the North coor-
dinate is:

dNk =
@Nk

@Nk�1
� dNk�1 +

@Nk

@�k
� d�k + @Nk

@distk
� ddistk (5.6)

where d�k is replaced by equation (5.3) and ddistk by equation (5.5).

For East and North we have then:

�
dNk = 1 � dNk�1 � dist � sin(�k) � d�k + cos(�k) � ddistk
dEk = 1 � dEk�1 + dist � cos(�k) � d�k + sin(�k) � ddistk (5.7)

In matrix notation we obtain:�
dNk

dEk

�
= FT

DR

�
dNk�1 dEk�1 d�k ddistk

�T
(5.8)

To illustrate, in a simple way, the error propagation, the experiences on an
athletic ring are considered again. The computed distance can be considered
without error (ddist = 0), the A and B parameter are perfectly calibrated
(the same day, on the same surface), the surface is ideal and the walker
maintains a constant speed during the walk. For the orientation we consider
only an error in the bias but not in the scale factor (d� = 0). The initial
orientation (d�0) is also considered without error.

The bias increment db is computed every timekk�1 seconds comparing the
azimuth mechanised with the gyroscope raw data (�gyro) and the external
azimuth (�ext) provided here by GPS, both at time k.

db̂k =
�gyrok � �extk

dt
(5.9)

Using equations (5.3) and (5.7), the correction d�̂, dN̂ and dÊ are com-
puted:

d�̂k = dt � db̂k (5.10)

dN̂k = �dist � sin(�̂k) � d�̂k = �dist � sin(�̂k) � dt � db̂k (5.11)

dÊk = dist � cos(�̂k) � d�̂k = dist � cos(�̂k) � dt � db̂k (5.12)
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and added to the navigation parameter: �, N and E respectively:

�̂k = �DRk + d�̂k (5.13)

N̂k = NDR + dN̂k (5.14)

Êk = EDR + dÊk (5.15)

These corrections are illustrated in Fig.5.2. The external azimuth can be
provided by a magnetic compass or by a GPS receiver. At each update, the
equation (5.9) to (5.15) are performed and and the two last equation create
the jump that is visible in the Fig.5.2. The equation (5.13) provides the new
azimuth to continue with the DR process.
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Figure 5.2: Bias, azimuth and position correction computed by comparing
the gyro and an external azimuth

The following equation provides the covariance matrix of the corrected
parameter CDR:
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CDR = FT
DR �Cxx � FDR (5.16)

where Cxx is the covariance matrix of the position, azimuth and distance
increments (d�, dN , dE and ddist).

The equation (5.9) is an integration between GPS and INS but at a very
simple level. The next paragraph proposes a more eÆcient algorithm for a
better integration of all the sensors.

5.4 Centralized Kalman Filter

The Kalman �lter (KF) is the optimal combination, in term of minimisation
of variance, between the prediction of parameters from a previous time in-
stant and external observations at the present instant [Brown97]. KF is built
around two independent models: the kinematic model and the observation
model. Each one has a functional part and a stochastic part.

5.4.1 Kinematic model

The functional part of the kinematic model represents the prediction of the
parameters. The considered parameters in the GPS-gyro-accelerometer sys-
tem form the following vector:

x = [ E N � b � A B]T (5.17)

Unlike other navigation applications, the trajectory of a pedestrian is diÆcult
to predict. Changes in speed and orientation are sudden and can be of great
amplitude. Therefore it is preferable for the prediction of the parameter to
consider only the DR mechanisation. No other navigation parameters, such
as speed or acceleration, are introduced in the state vector. The functional
part of the kinematic model is then the DR mechanisation.

Concerning the stochastic part of the model, the equations presented for
the error propagation can be reused. This time, however, only the changes of
the parameters (called increments) are considered rather then their absolute
value. The state vector is:

dx = [dE dN d� db d� dA dB]T (5.18)

To build a rigorous stochastic model, the continuous kinematic equation
is �rst considered. This step is just theoretical since we have only discrete
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measurements, but it allows the correlation between the predicted parameters
to be considered.

d _x = F � dx+G � u (5.19)

where u is a white noise.

The three �rst lines of the F matrix (concerning the �rst derivative of
dE, dN and d�) are the time derivatives of the equations (5.3) and (5.7)
developed for the DR mechanisation and error propagation. Concerning the
lines 4 and 5 of the F matrix, the parameters of the sensors db, d� are
modelled as Gauss-Markov processes. The driving noise wb of db is greater
than the w� of the scale factor �.

d_b = ��b � db + wb � u
d _� = ��� � d�+ w� � u (5.20)

Regarding the lines 7 and 8 of the F matrix, dA and dB are modelled as
random walk processes.

d _A = 0 + wA � u
d _B = 0 + wB � u (5.21)

The choice of wA and wB is critical. Over the at areas the pre-calibrated
parameters can be taken into account and the two driving noises are low.
When there is a slope larger than about 7% then it is better to re-estimate
these parameters and to adapt the driving noise. This situation can be
resolved through an adaptive Kalman �lter, where the driving noise on dA
and dB can be controlled by the slope angle determined for example with
a barometer or by GPS. The slope can also be detected in analysing the
signal itself, as proposed in Perrin et al. [Perri00]. However implementing
such detection in real-time is still to be resolved. The G matrix contains the
driving noise of the system i.e. the w in equations (5.20) and (5.21).

To build the Kalman Filter it is necessary to pass from the continuous
equation to the discrete time equation [Mermi89]. This is done through the
following equation:

�k = I+ Fk � dt+ F2
k

2!
dt2 +

F3
k

3!
dt3 (5.22)

Cww =

Z tk

tk�1

�k �G � quu �GT ��T
k dt (5.23)
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where quu is the spectral density of the noise.

The three �rst lines of matrix F represents the same relation as in the
equations (5.3) and (5.7). During the mechanisation phase, the parameters
are computed through the DR equations. In parallel the following variance
propagation is performed:

C~x~xk
= �k �C~x~xk�1

��T
k +Cww (5.24)

The C~x~xk matrix contains the variance of the parameters at time k.

5.4.2 Observation model

The considered external observations are the GPS position (`E and `N) and
the GPS azimuth (�GPS). They form the observation vector `k . In fact
they are indirect observations computed from the GPS code and phase rate
measurement. This is taken in account through the variance and correlation
included in the covariance matrix of the observations C``. Each observation
is function of the parameters:

`k � v = f(x) (5.25)

Working with the increase of the parameters, equation (5.25) becomes by
decomposition in Taylor's series around the mechanised values:

~vk � v = H � dx (5.26)

where H is the design matrix:

H =

2
4 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

3
5 (5.27)

and

~vk = `k � f(~x) (5.28)

v is the vector of residuals of the observations and is the vector of the
mechanised parameters at the observation time tk.
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In the equation (5.28) represents the di�erence between the GPS position
and azimuth and the DR output after mechanisation. This vector can be used
as a �rst reliability indicator. Large discrepancies could indicate a fault in
the measurement or in a DR sensor.

It is also possible to consider the GPS velocity as an observation and
to introduce the Kalman �lter presented in Chapter 3. However, the GPS
velocity and the GPS azimuth are also strongly correlated because they are
both issued from the same measurement (doppler or phase rate). Further-
more, the introduction of the GPS position has also an e�ect on the distance
and then on the dA and dB parameters. In this centralised Kalman �lter
the measurements of the GPS velocity are not considered. However, one can
consider from time to time performing a local Kalman Filter, considering
only the GPS velocity and the distance parameter, as developed in Chapter
3. Instead of a local Kalman, an enlargement of the centralised Kalman Fil-
ter can also be made. For that, the design matrix H must be modi�ed as
follows:

H =

2
664
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 RMS � dt dt

3
775 (5.29)

The observation vector is then:

`k =
�
`E `N �GPS speedGPS

�T
(5.30)

If the speedGPS is measured instantaneously then a few updates must oc-
cur because of the low precision of the instantaneous GPS velocity (20cm/s).
Otherwise, as indicated in Chapter 3, the GPS velocity can be previously �l-
tered and smoothed, following the same concept as for the GPS orientation
presented in Chapter 4. Then the correlation between the GPS velocity and
orientation must be considered in the covariance matrix of the observation
C``.

5.5 Implementation of the Kalman Filter

The question that remains is to know when to perform an update. It is
possible to make it each time when an observation is available. However, if
two observations occur in a brief delay, then the update is not useful because
the data are strongly correlated.
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The GPS speed measurements speedGPS can be implemented in a local
KF only for distances that allow the A and B parameter to be improved.
Then, when it is needed, a full update is performed with the modi�ed H

matrix. In either case the control of the A and B parameter with the GPS
velocity is also part of the integrity monitoring that is discussed in the next
section.

The update phase is a combination of the two models presented above. It
is an estimation that minimizes the variance of the errors in the observations
and of the mechanised parameters. The update phase is performed when the
following conditions are ful�lled:

� GPS is available

� The GPS position and azimuth have no gross error (fault)

� The accuracy (computed through the covariance matrix) of the three
navigation parameters (position and azimuth) reach a prede�ned level
(10m or 5 degree)

The GPS error is controlled during the computation by considering the
comparison between the changes in the GPS azimuth and the gyro raw data.
It avoids an update being performed when the person walks too slowly (the
GPS azimuth is then too inaccurate).

At each update, a new state vector dx̂ is computed. This vector o�ers all
the parameters needed to continue the DR process until the next update.

5.6 Integrity monitoring

As seen above, the integration of two di�erent systems brings a lot of advan-
tages. Firstly it helps to provide continuous information about the position
of the pedestrian. Secondly, from a stochastic point of view, it helps to im-
prove the accuracy of the whole system. A third point that is discussed in
the present section is the integrity.

The integrity of a system is its capacity to detect faults. The GPS system
is not o�ering this service. However, by the integration of two independent
systems, i.e. GNSS and INS, it is possible to determine the failure of one of
the systems by comparing the two independent solutions.
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The concept of integrity is also linked to the concept of reliability [Baard68].
The reliability is the 'measurement' of the trust that can be given to a solu-
tion. When two independent systems are giving solutions that are stochas-
tically close, then one can consider the combined solution as reliable. The
reliability is the capacity of the system to detect large errors. This is done
by the overdetermination of the parameters.

Another concept is also often given together with the integrity concept:
the continuity. A continuous system must ful�l the following condition: the
system must furnish information continuously, without interruption. In a
conceptual view, the conceived system, coupling DR and GPS, allows this
condition to be ful�lled. However, the challenge is then more on the hardware
side, ensuring a continuous power supply and choosing robust components.

One of the main problems with GPS is that this system does not give any
information about its integrity. If a fault occurs, the users are only informed
a few hours after the failure. This lack of integrity can be covered by three
di�erent techniques.

� The Augmentation System. This technique needs the implementation
on the ground of one or more receivers measuring continuously the
signals emitted by the GPS satellites. When a fault is detected, it
warns the users by broadcasting the integrity information. Generally,
the source of errors can be the satellite itself (problem with the clock)
or the inuence of the atmosphere on the signal. The signal can be
perturbed mainly in the ionosphere where electrical phenomena can
occur.

� The Receiver Autonomous Integrity Monitoring (RAIM) is an applica-
ble technique when the receiver tracks more than 4 satellites [Mcbur88].
After the computation of the coordinate (usually done through a least
squares adjustment), each estimated residual (one per satellite) is ex-
amined. If one of them is greater than a certain number, then the
satellite is considered as non-integer.

� Integration of GPS with another navigation system, INS being the most
common example [Palmq96]. This technique is based on the compari-
son of two di�erent solutions (positions) provided by two independent
systems. If there is a discrepancy between both solutions, an integrity
alarm is switched on.

In the studied case, the integrity of GPS can be given by comparing
the GPS solution with the DR solution. However, the DR solution depends
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on the GPS solution because of all the interactions between both systems
made through the Kalman Filters. To keep the two systems independent,
the comparison has to be made with the raw data, before the Kalman �lter.
The comparison between the gyroscope raw data and the change of GPS
azimuth is a good way to check possible faults of the GPS solution. These
faults, or systematic errors, can be produced either by the GPS system itself
(satellite clock) or by external conditions (ionosphere, multipath...).

Special techniques to detect and ignore faults in measurement can be
introduced directly into the Kalman Filter [Wang97, Wang98]. This capacity
to eliminate faults is called the robustness [Koch98]. However, this procedure
is heavy and requires a lot of storage space and computation time. The
approach adopted is simpler and consumes less processing time.

5.7 Algorithm structure

Fig.5.3 describes the algorithm structure for an integrated GNSS-INS system
used for pedestrian navigation. The initial point is the activity monitoring
determination based on raw measurements from the accelerometer and the
gyroscope. The implemented algorithm considers only three states of activ-
ity: walk, run or stop. The basic concept of the algorithm consists on �xing
a threshold value on the V AR charcteristics. If the V AR is smaller than the
threshold, the pedestrian is considered as stopped. A second value makes
the di�erence between walk and run. The activity is also cross-checked with
another threshold value on the gyroscope outputs. Other activities, such as
climbing stairs, can be detected through di�erent algorithms that have not
been implemented in the algorithm developed in the frame of this study.
If the activity is considered as walk, then the rest of the algorithm is im-
plemented, otherwise during the stop activity, the GPS data are considered
only.

First the raw data of the accelerometers are �ltered. Then, using the
individual parameters, the velocity and the distance are computed.

On the gyroscope side, the raw data, corrected for the bias and the drift,
are integrated over time to obtain the azimuth change. Then, the azimuths
are �ltered to eliminate partially the body movement. The �ltered azimuths
are combined with the distance and the previous position to have the pedes-
trian's position.

On the GNSS receiver side, the following parameters are deduced: posi-
tion, velocity and azimuth. They are combined with the previous parameters
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through a single Kalman �lter that combines two of the three KF illustrated
in the �gure.
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Figure 5.3: Algorithm structure

5.8 Results of tests

Several tests have been performed in di�erent environments. The test pre-
sented below consists in following a track around a building on the EPFL
campus (Fig.5.4). Other tests have been made on the athletic ring (400m)
and in a residential area (2500m) to validate the algorithms.

The pedestrian walks about 400m at the average speed of 1.6 m/s on a at
area. He follows a track situated between the dashed lines of the Fig.5.4 and
passes under the building. GPS signals from at least 4 satellites are available
for the �rst part of the track. They provide an initial orientation to the
system and allow the �rst update to be performed (this is essential for the bias
calibration). The interruption of the GPS signal is due to obstruction caused
by the building. When the GPS signals reappear multipath e�ects perturb
them. The next and last update is done when the conditions presented
above are ful�lled. The reliability of the GPS is observed comparing the
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change of GPS azimuth with the gyro raw data. The comparison between
DR position and GPS position is also taken into account. The control of the
GPS solution by the DR system is the precursor of a more mathematical and
powerful integrity monitoring.

The di�erent analysis made with this type of test show that the degra-
dation of the accuracy of the system with time when no GPS is present is
mainly due to the bias of the gyroscope. During the update procedure, the
di�erence between the DR solution and the GPS solution are distributed
mainly to the bias.
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Chapter 6

Perspectives and conclusion

6.1 Perspectives

The pedestrian navigation domain was not a common domain and was not
well documented at the beginning of this research. During this presented
work a lot of new di�erent aspects have been introduced and analysed. Only
a part of them have been more deeply investigated. Therefore, the door is
let open for investigations in several �elds. This section is mentioning a few
of them.

Activity monitoring

A basic algorithm for activity monitoring has been implemented. However,
this task plays an important role for many applications. It can improve also
the system itself. Algorithms already exist. Some of them are presented
in the Chapter 2. They could be implemented in the presented method to
improve the system so that it can react correctly in some special situations as
climbing stairs, jumping . . . The challenge is to base the activity monitoring
algorithms on the same sensors as those used for navigation.

Magnetic compass and gyroscope integration

The aspect of integration of magnetic compass and gyroscope has been pre-
sented in the Chapter 4 of this study report. However, the algorithm have
not been completely developed and validated. Further tests are needed to
improve this integration. This activity has been undertaken in the Unit�e
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de Topom�etrie and are presented in the research report of Quentin Ladetto
[Ladet03]. The �rst results reveal that this integration can provide very good
performances.

The third dimension

All the concepts presented until now focus on a two dimensional positioning.
This paragraph gives some indication about the third dimension: how it can
be measured and which role it plays for pedestrian navigation.

The distance computation models are valid only if the slope is not too
great. In the same way as for car navigation, the model is adjusted through
the individual parameters.

However, the lack of direct information about the third dimension can
be tricky in some situations. When the pedestrian is in a building, it is
important for some applications to know at which level he is. This vertical
information can be obtained through di�erent techniques.

� Barometer. This instrument is very convenient for altitude determi-
nation. It must be calibrated from time to time and is sensitive to
pressure modi�cation due to weather changes.

� Activity monitoring. Using the accelerometer signal, it is possible to
detect 'climbing' or 'going down' stairs and then to 'count' the number
of stairs.

� Neural network. An algorithm based on this theory has been developed
in [Herre99]. It allows the pedestrian's speed and the slope of the path
to be computed from the accelerometer signal.

The choice of the technique depends on the situation. If the barometer
suits a lot of situations, the second solution (activity monitoring) is more
appropriate and accurate in buildings when the pedestrian used the stairs
and not the lift! The third one (neural network) is convenient for walking on
slopes.

DR distance model establishment

Concerning the establishment of the model for the determination of the dis-
tance presented in section 3.2.3, the choice has been made to include only the
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V AR characteristics of the acceleration. This choice is based on the good cor-
relation between this characteristic and the pedestrian's velocity. However,
the other characteristics present also strong correlation and a combination
of di�erent characteristics inside a single model must not be excluded. To
choose the best combination, a Principal Component Analysis (PCA) could
be considered. PCA is a Multi-Variate Statistical Process Control (MSPC)
method that allows to monitor the correlated output of di�erent sources
[Ogaja01]. In the actual study, the sources are the di�erent characteristics
and the speed. This analysis will allow to determine which characteristics
are signi�cantly di�erent to be introduce simultaneously in a single model.

Integration with communication tool

Finally, the majority of applications in the pedestrian navigation �eld needs
a communication tool. Often the position is of interest for external persons
or systems. Therefore, it is worth to investigate the combination of the
developed system with a communication tool as global as possible to ful�ll
also the initial requirements.

6.2 Conclusion

The work performed during the research and presented in this report demon-
strates the feasibility of a pedestrian navigation system combining Global
Navigation Satellite System (GNSS) and Inertial Navigation System (INS).
The solution to mix the signal from three di�erent types of sensors (ac-
celerometers, gyroscope and a GPS receiver) has been chosen regarding the
major constraint of the continuous availability of location information. If the
requirements change (more precise, cheaper, ...), then the proposed technical
solution will certainly be di�erent and the proposed system must be adapted.
We have seen that the proposed solution o�ers the best compromise for pro-
viding continuous location capability. It has been selected after an analysis
of all existing systems able to provide a navigation service.

The way to combine the INS measurement and the GPS measurement
di�ers drastically from the classical mechanisation. There is no double inte-
gration and the number of sensors used is di�erent. The number of sensors
(one gyroscope and two accelerometers) is an important aspect of the sys-
tem. The utilisation of only one accelerometer is also a possible solution.
However, the determination of the distance would be less precise, as shown
in the �rst method for distance determination. The accuracy of the system
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could also be improved by adding more sensors, for example the magnetic
compass or a third accelerometer, but the cost and the energy consumption
of the system would be a�ected.

The determination of the distance is one of the main added value of
this research. To compute the distance, the utilisation of the accelerometers
changes a lot in comparison with the classical double integration. It varies
also from the classical pedometer utilisation that has limited capability. This
new way to use accelerometers to compute a distance (through the determi-
nation of the velocity) is inspired by the medical research into walking and
into energy expenditure.

In fact the proposed methodology is the result of a mix of medical and
navigation investigation, as illustrated in Fig.6.1.

Figure 6.1: Pedestrian navigation is a mix of existing results and methodol-
ogy issued form the Medical domain and the navigation domain.

Finally, the developed algorithm for the distance computation provide a
relative accuracy of about 2% of the travelled distance.

Concerning the orientation, the gyroscope is utilised in a classical way
to compute the azimuth. The main di�erence is that the system is based
only on one gyroscope instead of three. This simpli�cation has been made
possible because the attitude (i.e. 3D orientation in space) of a pedestrian
is quite constant and varies in a symmetrical way. The algorithm for the
integration of GPS and gyroscope proposes a small smoothing of both signal
before the adjustment through a Kalman Filter. This original proposition is
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possible due to the small kinematics of the pedestrian. A lag of �ve seconds
between the request of an update and the actual update is acceptable.

The result obtained in the frame of this study shows that the chosen
methodology can ful�ll the initial requirements. The integration of a GNSS
receiver and INS sensors is an adapted solution for many applications in the
domain of Pedestrian Navigation.
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Appendix A

Appendix: Kalman �lter

This appendix presents the algorithmic part of the Kalman Filter [Kalma60,
Kalma61]. All the historical background of the �lter (Wiener �lter) are not
exposed and can be found in [Brown97]. A special attention is focused on
the extended Kalman �lter with non-linear observation model [Grewa93].

A.1 Theoretical development

A Kalman �lter is composed by two model:

1. an observation model

2. a kinematic model

Each model have a stochastic part and a functional part.

The common part of the two model are the parameters, expressed in the
state vector x.

Observation model

The functional part of the observation model build the n relations f =
(f1; f2; : : : ; fn) between the n observations ` = (`1; `2; : : : ; `n) and the u pa-
rameters.

`� v = f(x) (A.1)
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where v is an error on the observation.

If the equation is not linear, it is linearised using a Taylor series. The
value around which the function will be linearised is the approached value
�x. The best approached value is generally the estimated value ~x = �x. This
implies d~x = 0 .The linearised equation is then:

~v � v = H � dx (A.2)

where

H =

2
64

@f1(x)
@x1

: : : @f1(x)
@xu

...
...

@fn(x)
@x1

: : : @fn(x)
@xu

3
75 (A.3)

and the vector ~v is computed as:

~v = `� f(~x) (A.4)

The stochastic model is the covariance matrix of the observation Q``.

Kinematic model

The kinematic model expresses the evolution of the parameter in function of
their actual state. It build a relation between parameters at time k and the
same parameters at time k + 1. The model include also random process to
characterise its stochastic part.

The kinematic model can be described in two di�erent forms:

1. continuous form

2. discrete form

In the continuous form, both the functional and the stochastic models
are expressed in the following stochastic di�erential equation:

_x = F � x+G � u (A.5)

The passage from the continuous (F and G) to the discrete form (� and
Qww) is done by resolving the homogeneous equation (stochastic di�erential
equation) from Equation A.5:
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_x = F � x (A.6)

We have:

�(tk; tk�1) = eF�t � I + F ��t + 1

2!
F2�t2 + : : :+

1

n!
Fn�tn (A.7)

For the stochastic part we have:

Qww =

Z tk

tk�1

�GquuG
T�Tdt (A.8)

where quu is the spectral density of u.

The resolution of those two last equations can also be done using expo-
nential matrix [Brown97, Vanlo78].

The discrete form is:

�
~xk = � � x̂k�1
Qww

(A.9)

Filter

From the two models described above, we have at time k on one hand ob-
servations that allow to compute the parameters x and on the other hand
predicted increments of the parameters at time k based on the increment of
the parameters at time k� 1. These predicted parameters can be considered
as pseudo-observations.

The �lter is actually the combination of both model with the task to
minimize the errors v on observations and the increments dx = (x � ~x) on
the parameters.

State and covariance update:

The gain matrix K is computed as

K = Q~x~xH
T (HQ~x~xH

T +Q``)
�1 (A.10)

The updated increments dx̂ are:

dx̂ = d~x+K(~v�H � d~x) (A.11)
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With the assumption ~x =�x, we have:

dx̂ = K � ~v (A.12)

The updated parameters are then computed as:

x̂ = ~x + dx̂ (A.13)

For the stochastic model, the covariance matrix is computed as:

Qx̂x̂ = (I�KH)Q~x~x (A.14)

State and covariance propagation:

After the update of the parameters, the kinematic model makes the prop-
agation until the next update. For the parameters, we have:

~xk+1 = � � x̂k (A.15)

and for the stochastic part, the covariance matrix is computed as:

Q~x~x = �Qx̂x̂�
T +Qww (A.16)

A.2 Example of using a Kalman �lter

After exposing the Kalman �lter theory, this section gives a few example of
the use of a Kalman �lter.

A.2.1 KF as a low pass �lter to eliminate noise

KF �lter can be used as a low past �lter to eliminate noise issued by a
sensor. In the study we have many example where this type of KF is used:
step detection (3.1.2), �ltering RMS (3.4), �ltering (and smoothing) the GPS
azimuth (4.6) and INS azimuth (4.4).

In these cases the observation is the sampled signal itself and the kine-
matics model is generally composed by a random process. Relation between
parameters appears when di�erent order of the random process are involved.
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A.2.2 KF as an integration tool to combine DR and/or
INS with GPS

This sort of Kalman �lter have been used in the study in some applica-
tion: pedometer and GPS integration to determine the averaged step length
(3.1.3).

Here the state propagation is in completely replaced by the DR algorithm
or the INS mechanisation that will give better result than any model of
movement.

The considered observation are the di�erence between GPS position and
INS position and the parameter are the increment dx. At each update the
predicted parameter is reset to nil and only the stochastic part is propagated.
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