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Vorwort

Die vorliegende Publikation von Herrn Dr. Hugentobler kann als Weiterfihrung der Arbeiten von Herm
Dr. Schildknecht (Geoditisch-geophysikalische Arbeiten in der Schweiz, Bd. 49) betrachtet werden. Herr
Hugentobler fragt, wozu "heute” genaue Richtungsbeobachtungen tiberhaupt noch nutzen. Die Frage
entbehrt nicht einer gewissen Brisanz, entspricht doch ein Fehler von 0.1" einer Richtungsbeobachtung
bei einem 6'000 km entfernten Satelliten einem tangentialen Fehler von 3m. Vergleicht man diese Zahl
mit dem Fehler von etwa einem Zentimeter einer LASER-Distanzbeobachtung zu Satelliten, scheint die
Frage berechtigt. Dieses Argument filhrte Mitte der 70-er Jahre weltweit zum Verschwinden der
Richtungsbeobachtungen aus der Satellitengeodisie.

Die Untersuchungen von Herrn Hugentobler geben eine Reihe von Antworten auf diese zentrale Frage. In
der Einleitung wird uns bewusst, dass bei passiven, kleinen Objekten in grosser Entfernung (z.B. im
geostationdren Giirtel) Richtungsbeobachtungen, wenn nicht die einzige, so doch bei weitem die zuverlis-
sigste und genaueste Informationsquelle sind. Auch fiir Objekte des Planetensystems ist diese Aussage
richtig.

Nach einer Ubersicht iiber moderne CCD-Methoden wird eine weitere Antwort auf die zentrale Frage
dieser Arbeit gegeben: Distanz- und Distanzdifferenzbeobachtungen, wie sie mit LASER-Beobachtungen
von Satelliten oder bei der Beobachtung von Quasaren mit VLBI-Methoden gewonnen werden, sind erst
in der Kombination quasi-gleichzeitiger Beobachtungen von mehreren weit auseinanderliegenden Station-
en aussagekriftig. Bei der Bearbeitung von Richtungsbeobachtungen gelingt es hingegen, mit Beobach-
tungen von nur einer Station wichtige Resultate, z.B. genaue Bahnen, zu bestimmen.

Die erste Bahnbestimmung spielt in der Satellitengeodisie im allgemeinen eine untergeordnete Rolle,
besitzt man.doch meistens fiir die wissenschaftlich interessierenden Objekte schon gute Niherungs-
bahnen. Anders sieht es aus, wenn man auch die Verteilung von "space-debris" studieren will. Es geht
darum, ein Beobachtungs- und Auswertekonzept zu entwickeln, das der Entdeckung und Sicherung einer
grossen Zahl passiver Objekte dient. Die Analyse geht weit iiber eine "rein akademische Ubung" hinaus
und enthilt, neben wichtigen Algorithmen zur Bahnbestimmung, ein Beobachtungskonzept, das bei der
ESA zur Anwendung kommen soll. '

Von rein wissenschaftlichem Interesse ist die Analyse der Bahnstérungen von Satelliten, deren Umlauf-
zeiten "fast" kommensurabel mit der siderischen Rotationsperiode der Erde sind. Beispiele sind geo-
stationdre Satelliten (1:1 Kommensurabilitit) oder GPS-Satelliten (2:1 Kommensurabilitit). Es zeigt sich,
dass Richtungsbeobachtungen signifikant zur Bestimmung gewisser Terme des Gravitationspotentials der
Erde und dessen zeitlicher Anderung beitragen kénnen.

Schliesslich wird auch eindriicklich gezeigt, dass Richtungsbeobachtungen zur Kalibration anderer
Beobachtungstechniken (im konkreten Fall eines Radarteleskops in Deutschland) verwendet werden
konnen. Dieses abschliessende Kapitel weckt die Neugierde auf weitere dhnlich gelagerte Fragen: Was
liesse sich beispielsweise aus der Kombination von Laser- und Richtungsbeobachtungen herausholen?
Eine Frage, die in Zimmerwald mit dem neuen Teleskop bestimmt aktuell wird.

Herr Hugentobler hat mit dem vorliegenden Band einen weiteren wichtigen Meilenstein in der Weiter-
entwicklung von optischen Richtungsbeobachtungen gesetzt. Die Schweizerische Geoditische Kommis-
sion (SGK) dankt Herrn Hugentobler fiir seinen richtungsweisenden Beitrag. Die Schweiz. Akademie der
Naturwissenschaften hat die Druckkosten fiir diesen Band iibernommen, wofiir die SGK ihren Dank
ausspricht.

Prof. Dr. G. Beutler. . Direktor F. Jeanrichard “Prof. Dr. H.-G. Kahle:
Direktor des Astronomischen Bundesamt fiir Landestopographie =~ ETH Ziirich :
Instituts der Universitit Bern Vizeprisident der SGK Prisident der SGK.



Préface

La présente publication de Monsieur Hugentobler, dr &s sc., fait suite aux travaux de Monsieur
Schildknecht, dr &s sc., parus dans le volume no 49 de la série "Geoditisch-geophysikalische Arbeiten
in der Schweiz". La question de Monsieur Hugentobler "Les observations de directions ont-elles -
encore un sens aujourd’hui ?" est pertinente. En effet, une erreur de 0.1" d'une direction mesurée vers
un satellite & 6'000 km de distance correspond a une erreur tangentielle de 3 m, tandis que la précision
d'une distance mesurée par LASER est de l'ordre de grandeur du cm. On comprend dés lors pourquoi,
dans les années septante, la géodésie par satellites a abandonné les mesures de directions. -

Les recherches de Monsieur Hugentobler apportent une série de réponses 2 la question posée. Ainsi,
dans l'introduction, on apprend que les observations de directions sont de loin les seules sources
d'informations fiables, sinon les seules possibles, pour les petits-objets passifs situés a de grandes
distances (par exemple sur la ceinture géostationnaire). Cette affirmation est également valable pour
les objets du systéme planétaire. : '

Aprés une récapitulation des méthodes modernes CCD, une nouvelle réponse est donnée a la question
clef de cette étude: les distances ou les différences de distances obtenues par LASER pour les satellites
ou par les méthodes VLBI pour les quasars, ne sont fiables que si les observations sont faites quasi
simultanément & partir de stations trés éloignées les unes des autres. Par contre, le traitement
d'observations de directions & partir d'une seule station permet déja d'obtenir des résultats importants,
par exemple, les éléments exacts d'orbites. :

La premiére détermination d'orbites ne joue pas un grand role en géodésie par satellites puisque l'on
connait en général de bonnes approximations pour tous les objets intéressants au point de vue
scientifique. Par contre, il en va autrement si l'on veut déterminer la répartition de "débris spatiaux".
Dans ce cas, il s'agit de développer une méthode d'observations et d'analyses permettant la découverte
et la documentation d'un grand nombre d'objets passifs. Cette étude va bien au-deld d'un simple
exercice académique et présente, a coté d'algorithmes trés intéressants pour la déterminations des
orbites, un concept d'observations qui sera appliqué par 'ESA.

L'analyse des perturbations d'orbites de satellites dont les révolutions sont presque commensurables
avec la période de rotation sidérale de la terre, est trés intéressante au point de vue scientifique. Par
exemple, les satellites géostationnaires présentent une commensurabilité de 1:1 et les satellites GPS de
2:1. Il apparait aussi que les observations de directions peuvent contribuer de fagon significative a la.
détermination des termes du potentiel de gravité et de sa variation dans le temps. :

Enfin, il apparait que les observations de directions peuvent aussi servir 4 étalonner d'autres techniques
d'observation (dans le cas concret, un télescope-radar en Allemagne). Ce dernier chapitre éveille
également 'intérét pour d'autres questions. Par exemple, que peut-on attendre de la combinaison de
mesures de directions et de mesures de distances ? Question dont la réponse est d'actualité pour le
nouveau télescope de Zimmerwald.

Avec cette étude, Monsieur Hugentobler a posé un jalon important du développement des observations
optiques de directions. La Commission géodésique suisse remercie Monsieur Hugentobler d'avoir, par
sa contribution, ouvert de nouvelles voies. Elle exprime sa reconnaissance a I'Académie suisse des
sciences naturelles (ASSN) d'avoir pris les frais d'impression de ce volume 2 sa charge.

Prof. Dr. G. Beutler, Directeur - F, Jeanrichard, Directeur Prof. Dr. H.-G. Kahle
de I'Institut d‘ astronomie de I’Office fédéral de topographie = ETH Ziirich
de I’Université de Berne Vice-président de la CGS Président de la CGS



Foreword

The publication by Dr. Urs Hugentobler may be viewed as a continuation of Dr. Schildknecht's work
geoditisch-geophysikalische Arbeiten in der Schweiz, Vol. 49). "What is the scientific use of precise
optical observations today?" is the central question addressed in this Volume. Keeping in mind that an
error of 0.1 arcsec corresponds to a tangential error of about 3m for a satellite at a distance of about
6000km, the question is certainly justified -- in particular when compared to errors of about one
centimeter routinely achieved by SLR (Satellite Laser Ranging). This argument led, by the way, to the
"extinction" of optical observations in satellite geodesy in the mid-seventies.

Urs Hugentobler's analyses give a series of answers to this central question. The introduction makes us
aware of the fact that optical observations are the most reliable and accurate source of information for
small, passive, and remote objects like satellites or space debris in or near the geostationary belt. The
same is of course true for objects in the planetary system.

After an overview of CCD-methods we are given a next answer to the central question of this work:
Distance and distance difference observations, like those acquired by SLR or the observation of Quasars
using VLBI (Very Long Baseline Interferometry), require (almost) simultaneous observations from
several observatories. When processing optical observations, important results may already be extracted
using the observations from only one station (satellite or debris orbits are one example).

First orbit determination is in general not a very important topic in satellite geodesy because usually, for
objects of scientific interest, good a priori information is readily available. The situation changes when
the distribution of space debris is in the center of interests. In this publication an observation and
analysis concept for the detection of space debris is developed. This concept is not only of academic
interest: It shall be used by the uropean Space Agency (ESA). In addition one can find sophisticated
algorithms for first orbit determination.

The analysis of optical observations to satellites in deep resonance with Earth rotation (1:1 resonance for
geostationary satellites, 2:1 resonance for GPS satellits) is fascinating. The author demonstrates that
such observations may significantly contribute to the determination of certain terms (and their time
development) of the earth’s gravity potential.

Last but not least it emerges from Dr. Hugentobler's analysis that optical observations may be used to
calibrate other observation techniques (in the particular case observations of a radar telescope in
Germany). This analysis leads us to the question what might be achieved by combining accurate SLR
and CCD observations? This question will certainly be dealt with using the new combined Zimmerwald
SLR/CCD telescope in the future.

Dr. Hugentobler's work presents a milestone in the development of CCD-based optical observations.
The Swiss Geodetic Commission (SGC) thanks Urs Hugentobler for his important contribution. Funds
for printing this volume were provided by the Swiss Academy of Sciences, which is gratefully
acknowledged by the SGC.

Prof. Dr. G. Beutler F. Jeanrichard Prof. Dr. H.-G. Kahle
Director of the Astronomical Federal Office of Topography ETH Zurich
Institute, University of Berne Vice President of SGC President of SGC
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Introduction

Since the beginning of the space age with the launch of Sputnik I on Oct. 4, 1957, as-
trometric observations of satellites played an important role for orbit determination and,
initially, also geodetic research. In the earliest days even visual observations — carried out
by amateurs within the ‘moonwatch’ program — and measurements with theodolites were
useful for improving the models of the Earth’s upper atmosphere and the geopotential.
Optical astrometric observations, having a long tradition in fundamental astronomy, were
frequently used between 1964 and 1975 for the establishment of regional, continental, and
global geometrical networks. Already in 1958 the Smithsonian Astrophysical Observatory
(SAO) operated a global network of 12 observatories equipped with Baker-Nunn cameras
for satellite tracking (Veis, 1963).

In 1961 the first (passive) balloon satellite Echo I with a diameter of 30 m was launched
and in 1964 Echo II (diameter 40 m) followed. The two satellites, designed for telecom-
munication experiments, with a visual magnitude up to about —1 mag, were widely used
for geodetic purposes. In 1966 a dedicated geodetic balloon satellite, PAGEOS (Passive
Geodetic Satellite) with a diameter of 30 m was put into orbit for spacial triangulation in
the BC4 network consisting of 45 globally distributed stations of the National Geodetic
Survey (NGS) and operated between 1966 and 1970 (Schmid, 1974).

Starting in 1962, with the launch of ANNA-1B, GEOS-1 (1965) and GEOS-2 (1968),
active satellites were available for geodetic research. These satellites were able to generate
series of intensive light flashes with a duration of about 1 msec.

- Existing photographic camera systems were modified or specially designed for the meas-
urement of high precision satellite positions relative to the stars. Large fields of view are
common to all systems. Shutters or rotating blades ‘chopped’ the trails of the satellites
and/or the stars allowing the time tagging of the positions. Depending on the mount
of the camera, different observation concepts could be applied: With instruments moun-
ted azimuthally (such as the BC4-Camera from Wild, Heerbrugg, Switzerland, which was
used worldwide, in particular for the PAGEOS observations within the US NGS geometric
satellite world network), tracking of satellites or stars was not possible. On the exposures
both objects left trails which were chopped by shutters. Parallactically mounted instru-
ments (e.g. the BMK camera of Carl Zeiss, Oberkochen, Germany) allowed tracking of
the stars while the satellites generated trails on the photographic plates. Triaxially moun-
ted instruments (such as the Baker-Nunn camera, primarily operated by the Smithsonian
Astrophysical Observatory in its global network) allowed tracking a satellite by moving
the instrument around a single axis.

Because of the time consuming processing and measuring of the photographic plates, as-
trometric methods for geodetic applications were gradually replaced by other techniques.
Since the first artificial satellites were in orbit their telemetry data was used for orbit de-
termination and improvement of the Earth’s gravity model. Satellite-borne transponders
allow distance measurements from the receiver to the satellite. The' SECOR technique



(Sequential Collation of Ranges) was developed for geodetic applications and was first
used with the satellite ANNA-1B (1962).

ANNA-1B was also the first satellite to carry a transmitter emitting radiowaves with sta-
bilized frequencies for Doppler measurements. Initially Doppler measurements of geodetic
satellites were used for orbit determination and for the improvement of the geopotential.
The TRANSIT spacecraft of the Navy Navigation Satellite System (NNSS) were of par-
ticular importance. These satellites carried a stable radio beacon and were designed for
navigation based on Doppler measurements. The first of these satellites were launched
in 1960, and the system was operational until 1996. It was eventually replaced by the
Global Positioning System (GPS) which became fully operational in 1994. Since about
1967 the TRANSIT Doppler system was eventually used for geodetic applications. Today
the GPS navigation system is used worldwide for geodesy and the control of local and
global networks. Due to the high temporal resolution and the reliability of geodetic GPS
measurements these are of increasing importance also for geodynamic studies (see e.g.
Beutler et al. (1996a)).

Shortly after the invention of the Laser by Maiman in 1960, Lasers were used for the meas-
urement of distances to satellites. The first satellite equipped with Laser reflecting corner
cubes, Explorer 22, was launched in 1964 and in the same year the first reflected Laser
pulses were successfully detected at the NASA Goddard Space Flight Center (Plotkin et
al., 1965). Today, Satellite Laser Ranging (SLR) is, together with satellite altimetry, the
standard tool for the study of the geopotential as well as ocean and solid Earth tides. An
increasing number of satellites is equipped with Laser retro-reflectors.

Optical observations of artificial satellites played an important role in the historical de-
velopment of satellite geodesy, but due to the great effort necessary for acquiring and
processing the observations based on photographic plates and due to their rather low
accuracy, they were completely replaced by the new techniques for satellite tracking by
the mid-seventies. The progress made in the development of position sensitive electronical
sensors, in particular of the Charge Coupled Device (CCD), lead to a revival of optical
observations of satellites in the last decade. :

The observatory of the Astronomical Institute of the University in Berne (AIUB) in Zi-
mmerwald has a long tradition in astrometry as well as in satellite tracking. Since the
installation of the astronomical Schmidt camera (aperture 40 cm, focal length 104 cm)
in 1959 and to this day astrometric positions of minor planets, comets, and supernovae
have been measured on photographic plates. Since 1965 the Zimmerwald observatory has
participated in programs for optical tracking of passive and active satellites, in particu-
lar in the WEST (West European Satellite Triangulation) project. Echo 1 and Echo 2,
PAGEOS, Explorer 19, and Explorer 39 as well as GEOS 1 and GEOS 2 were observed
photographically using the Schmidt camera. For this purpose a tilting plane-parallel glass
plate in front of the plateholder was used for time tagging of the trails of passive satellites.
The last observations of PAGEOS were made in 1974 in Zimmerwald.

In 1970 the first experiments of distance measurements to satellites with a ruby Laser



were performed using the astronomical Cassegrain telescope (aperture 60 cm, focal length
12.6 m) of the Zimmerwald observatory. Because the mount of the instrument did not
allow tracking of the satellites the tests were not too successful. In 1975/76 a Satellite
Laser Ranging Station was built adjacent to the astronomical observatory and routine SLR
operations were made in Zimmerwald. In addition the Zimmerwald station participated
in several TRANSIT campaigns. Since 1992 Zimmerwald also hosts a GPS permanent
receiver. _

First tests of optical observations of artificial satellites using a first generation photoelec-
tric image intensifier and photographic film were performed in 1985 with the Cassegrain
telescope. After these first experiences a CCD camera was mounted at the prime focus of
the Zimmerwald SLR telescope in 1990 (Schildknecht, 1994). In 1995 the SLR telescope
was replaced by a 1-meter combined Laser Ranging and Astrometry Telescope (ZIMLAT)
(TELAS (1992), Gurtner et al. (1996)). The Coudé path of the instrument is used for
SLR operations while the four ports on the Nasmyth platform are designed for optical
satellite tracking and astrometry.

The driving idea for CCD astrometric observation of artificial satellites was proposed
by Ivo Bauersima (1984), the so-called Coupled Quasar, Satellite, and Star Positioning
(CQSSP). By observing artificial satellites together with reference stars a link can be
established between different celestial reference frames: The orbits of geodetic or GPS
satellites are known with high precision in the terrestrial reference frame, the orientation
of which is well defined in the extragalactic reference frame, based on distant radio quasars,
by Very Long Baseline Interferometry (VLBI). The CQSSP project proposes to observe
such satellites together with reference stars with well defined coordinates in the celestial
reference frame. Such observations allow an independent determination of the link between
the extragalactic reference frame (defined by radio telescopes) and the celestial reference
frame (defined by optical telescopes) by using the satellites as transfer objects (acting as
‘moving quasars’).

The CQSSP project is based on the fact that optical tracking of satellites is the only tech-
nique in satellite geodesy which directly accesses the inertial (or quasi-inertial) reference
frame. Any satellite may be tracked optically as long as it is sunlit, therefore allowing
a number of different applications of the technique. For instance resonant geopotential
terms can be derived:from observations of geostationary satellites; high precision orbit
determination is used to support scientific missions; telemetry antennas may be calib-
rated and space debris in high altitude orbits monitored. In the present work some of
these applications are addressed and studied in detail.

The instrumentation of the observatory in Zimmerwald and the observation technique
used for precise astrometry of moving objects are presented in Chapter 1. A detailed
review of the technique as well as a discussion of the error budgets of the new CCD
measurement technique may be found in Schildknecht (1994). After a short review of the
existing astrometric catalogues and of the reduction procedures to be used for artificial
satellites we put the emphasis on the differences of the procedures for the astrometry of




satellites, minor planets, and stellar objects.

One application of optical observations is the survey of, or search for orbiting objects.
Space debris represent a growing threat to space vehicles. This leads to an increasing
interest on the part of the space agencies and commercial telecommunication companies
in the space debris population. Low Earth orbits are accessible to survey Radars whereas
optical sensors are more appropriate for surveys of objects in high Earth orbits. Algorithms
for automatic detection of faint objects were developed at the AIUB for the 1-meter Zeiss
telescope installed by the European Space Agency (ESA) in Tenerife for space debris
observations (Schildknecht et al., 1995a). The algorithms are very well suited for the
detection of slow moving objects in high orbits. Astrometry of moving objects leads to very
precise results if the relative angular velocity of the objects with respect to the reference
stars is small. All applications presented subsequently therefore deal with slow moving
objects. In the last section of Chapter 1 orbital characteristics of slow moving satellites are
summarized. Special attention is payed to geostationary orbits and geostationary transfer
orbits.

After the detection of a moving object an initial orbit has to be determined in order to
compute ephemerides for acquiring additional observations and to eventually identify the
object. Three algorithms for initial orbit determination are presented in Chapter 2 and
the accuracy of the determined orbits is assessed. .

After acquiring observations in several nights for a given object an orbit improvement
procedure may be invoked. In Chapter 3 the programs developed for orbit improvement
and for the combination of observations from different satellites are presented. The ac-
curacy of the determined osculating elements and the radiation pressure coefficients is
discussed and the distribution of observations requlred for an optimum determination of
orbit parameters is studied.

The determination of resonant geopotential terms is a fascinating application of the high
precision orbit determination of geostationary satellites. The ellipticity of the Earth’s
equator causes a resonant librating motion of geostationary satellites which are in 1:1-
resonance with Earth’s rotation. The resonant geopotential terms C3; and S;; can
therefore be determined using astrometric observations of small geostationary satellites
(Catalano et al., 1983). In Chapter 4 the theory of resonance is developed for geostation-
ary satellites as well as for GPS satellites, which are in deep 2:1-resonance with Earth’s
rotation. The pseudo-secular variations of .the elements of GPS satellites are in good
agreement with the values computed from theory.

Astrometric observations of Meteosat 4 and Meteosat 5 acquired in winter 1994/95 in
Zimmerwald and covering a time interval of 111. days are presented in Chapter 5. All
observations were used to determine the resonant geopotential terms C; and Sj;. The
results indicate that astrometric observations of geostationary satellites are competitive
with other methods for the determination of these coefficients.

Astrometric observations of geostationary satellites acquired in Zimmerwald are combined
with Radar observations obtained at the 34 m-Radar dish antenna of the Forschungs-



gesellschaft fiir Angewandte Naturwissenschaften (FGAN) in Wachtberg-Werthhoven in
Chapter 6. The orbital parameters determined using the different observation types are
compared, and the magnitude of systematic biases in the Radar observations as well as
the methods for their determination using optical observations are assessed.

A number of additional applications, including the precision necessary for the CQSSP
project, remain to be studied. Combination of observations of different type or from
different observatories represent the next logical step for fully exploiting the astrometric
possibilities of the new 1-meter Zimmerwald Laser Ranging and Astrometry Telescope

(ZIMLAT).
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1 Astrometry of Artificial Satellites

1.1 Optical Observations and Reduction Methods

1.1.1 Instrumentation in Zimmerwald

Optical observations of artificial satellites are performed at the observatory of the Astro-
nomical Institute of the University of Bern (AIUB) in Zimmerwald, some 8 km south of
the city of Bern at an altitude of about 950 m above sea level. For this purpose the 0.5m
SLR (Satellite Laser Ranging) telescope was used until its dismantling in May 1995. Most
of the observations presented in this work were acquired with this ‘old’ telescope.

The telescope was in routine operation since 1975 contributing data to the NASA Crustal
Dynamics Project (CDP) and other geodynamic projects mainly through SLR observa-
tions. For astrometric observations a CCD camera was mounted in the telescope’s primary
focus. The telescope had a primary mirror of 0.52 m diameter, a focal length of 1.0 m and
was mounted on a computer-controlled alt-azimuthal mount.

The CCD camera (still in use today) is a product from Photometrics. The chip PM512 has
512 x 512 pixels with a quadratic size of 20 um giving the camera in the prime focus of the
old SLR telescope a field of view of 35 arcmin and a ‘poor’ mapping scale of 4.1"/pixel (for
astrometric purposes). The camera is cooled thermoelectrically to —45° with a secondary
liquid cooling.

Since summer 1996 a new telescope has been installed in the observatory in Zimmerwald,
the so-called Zimmerwald Combined Laser Ranging and Astrometric Telescope (ZIMLAT)
(TELAS (1992), Gurtner et al. (1996)). It is a Ritchey-Chrétien telescope with an aperture
of 1.0 m and a focal length of 10.3 m. The Coudé path of the alt-azimutally mounted
instrument is used for SLR operations while CCD cameras for astrometric purposes are
mounted on the derotated Nasmyth platform. Reductors are available for reducing the
focal length to 4 m and to 8 m, respectively. The Photometrics CCD camera used with
the old telescope is still in use together with an Astrocam camera with a EEV chip of
2048 x 2048 pixels with a size of 15 um and two readout nodes. In the 4 m focus this
camera has a field of view of 26 arcmin (37 arcmin diagonal) and a mapping scale of
0.77"/pixel. Both cameras are cooled thermoelectrically with a secondary liquid cooling.

1.1.2 Observation Technique for Fast Moving Objects with CCD

The technique developed and used at the AIUB for the measurement of astrometric po-
sitions of fast moving objects is described in detail in Schildknecht (1994) and in several
papers (Schildknecht et al. (1992), Schildknecht et al. (1993), Schildknecht et al. (1996a),
Hugentobler et al. (1995)). Therefore we confine ourselves to a brief overview of the tech-
nique in this section.
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In the classical procedure for the astrometric measurement of astronomical objects the
image of the object is measured on a photometric plate together with reference stars in its
neighbourhood. Usually, about six reference stars are used; with their plate coordinates (in
mm) the exact pointing direction of the telescope, the distortions of the photographic plate
and the celestial coordinates of the object(s) of interest are computed using a conventional
parameter estimation procedure (e.g., a least squares procedure).

At the observatory in Zimmerwald a CCD camera is used for the astrometric observation of
artificial satellites. As in classical relative astrometry the satellite of interest is observed
together with reference stars on the same exposure. The detector provides the frames
containing the images of the satellite and of the stars in electronical form. The CCD
coordinates of the satellite image and the reference star images are determined using
object image recognition and centroiding algorithms (see Schildknecht et al. (1995a)) and
the procedure of astrometric reduction gives the celestial coordinates of the satellite. In
Figure 1.1 a CCD frame from the Zimmerwald instrument is shown which was acquired
with fixed telescope and an exposure time of 3.2 seconds. It shows the four geostationary
satellites Astra A - D as well as an unidentified, drifting object.

Figure 1.1: Five geostationary objects on one CCD frame covering a field of view of 17" x 15°
(180 x 160 km in the geostationary ring): The four TV-satellites Astra A to D and an unidentified
drifting object. The frame was acquired on Feb. 28, 1995 at the Zimmerwald observatory with
fixed telescope and an exposure time of 3.2 seconds.
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Due to the small field of view of the CCD detector the classical approach of astrometric
measurement has to be adapted because in general only one reference star is in the field
of view at a given instant of time: Satellite positions are measured on series of frames
acquired whenever a reference star happens to have a close encounter with the satellite
on the celestial sphere.

For the measurement of geostationary satellites a series of about 10 short exposed frames
(exposure time of one second or less) is acquired with fixed telescope (drives off) during the
close encounter. Because of the slow motion of a geostationary object in the Earth-fixed
frame its image appears pointlike and at about the same place on all frames whereas the
reference star moves across the field of view due to the Earth’s rotation. A superposition of
nine single frames documenting a close encounter of a reference star with the geostationary
satellite Meteosat 5 is shown in Figure 1.2."

Figure 1.2: Close encounter of a reference star with the geostationary satellite Meteosat 5 (Ar-
row). The Figure was generated by superposition of nine single frames spaced by 8 seconds
and exposed by 0.5 seconds each. The frame covers 16 arcmin. The frames were acquired in
Zimmerwald on Aug. 16, 1994.

Knowing the angular velocity and the direction of the motion of the stars across the field
of view due to the Earth’s rotation it is possible to determine the mapping scale and the

corientation of the camera. In addition the exact pointing direction of the optical axis of

the telescope (realized through the coordinates of a selected pixel on the CCD chip) as
well as the precise celestial coordinates of the satellite(s) may be calculated.

Usually several observation series within a given time interval (several hours up to one
night) are reduced together if the mapping scale did not change (e.g. due to refocussing).
In an iterative parameter estimation procedure
- the common mapping scale for all series,
-~ one camera orientation angle and one telescope pointing direction for each series,
and :
- one set of celestial coordinates for the satellite(s) for each frame
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are determined together with rms errors and residuals for the measured object images.
The result consists of about 10 sets of satellite coordinates for each close encounter.

In Figure 1.3 astrometric positions and their formal 1-sigma errors obtained from the
astrometric reduction are given for the satellite Meteosat 5 observed in the night of Jan.
13/14, 1995 with the old SLR telescope in Zimmerwald. The rms errors are between
0.5" and 0.6” (1-sigma error in each coordinate). In the Figure showing hour angle vs.
declination each cluster of points represents one or several close encounters with up to
ten single measurements. In Figure 1.4 we magnify the first cluster of positions of 21:37
from Figure 1.3. The positions were measured during three close encounters with different
reference stars within 15 minutes. The dotted line in both figures shows the best fitting
orbit determined from astrometric measurements covering several nights. For details we
refer to Chapter 5.

The observation technique as described above proved to be appropriate for geostation-
ary objects as well as for high orbiting satellites such as GPS satellites or objects in a
geostationary transfer orbit (GTO) at apogee. For a faint and not strictly geostationary
satellite it might be necessary to track the object during the close encounter series in order
to increase its signal-to-noise ratio. In this case a calibration series with fixed telescope
has to be performed immediately before and/or after the astrometric measurement of the

Decl. ]
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Figure 1.3: Reduced astrometric positions and their formal 1-sigma errors for Meteosat 5 ob-
served in the night of Jan. 13/14, 1995 with the old SLR telescope in Zimmerwald (Hour angle
(HA) vs. declination). Each cluster of positions is the result from one or more close encounter
series. The dotted line represents the best fitting orbit (using observations from several nights,
for details we refer to Chapter 5).



1.1 Optical Observations and Reduction Methods 15

Decl.
7"_ x‘
+ \ P 187480
1R
1R
5F ! : P 187622
8T P 187772
! 1" --“'
1 —_—
1 3 5 7 9o HA

Figure 1.4: Enlarged view of the astrometric positions around 21:37 from Figure 1.3. Different

symbols are used to distinguish positions measured during three close encounters series within
15 minutes. Each close encounter is labeled with the corresponding PPM reference star desig-
nation.

(1)

(2)

3)

satellite (e.g. using the same reference star) for determining the mapping scale and the
camera orientation.

The accuracy of the astrometric measurements is limited by the following three factors:

The accuracy of the determination of the center of light for the object image on the
CCD frame for not too faint objects — even for a simple ‘center of mass’ algorithm
— is of the order of a tenth of a pixel (Verdun, 1993) because the object image is
spread over several pixels. For a mapping scale of 4"/pixel (for the old telescope) the
centroid accuracy is therefore about 0.4 to 0.5". For the new 1 m ZIMLAT telescope
a centroiding accuracy of about 0.1" is expected.

The uncertainty in the mapping scale and in the orientation of the camera affects in
particular observations with a large separation of satellite and reference star. The
two parameters are determined with an accuracy corresponding to the centroiding
accuracy reduced by a factor depending on the number of frames used for their
determination. For observations with the old telescope the relative rms error for the
scale is of the order of 10~4, for the camera orientation the rms error is between 0.3’

and 3"

The astrometric accuracy depends directly on the accuracy of the catalogue posi-
tions of the reference stars used. For PPM stars an uncertainty of about 0.3" has to
be expected (Roser et al., 1991). As soon as the Hipparcos catalogue with stellar
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positions with milliarcsecond accuracy (Kovalevsky et al., 1995) is available, the ac-

curacy of astrometric positions will almost entirely be determined by the observation
and measuring technique.

1.1.3 Astrometric Catalogues

FK5 The Fifth Fundamental Catalogue was compiled by the Astronomisches Rechen-
Institut Heidelberg following a resolution adopted by the International Astronomical Union
at its XV General Assembly in Sydney, 1973. The catalogue consists of two parts, the 1°535
fundamental stars of the FK5 Basic Catalogue (Fricke et al., 1988) and the 3°117 stars of
the FK5 Extension (Fricke et al., 1991). The FK5 Basic Catalogue covers a magnitude
range from —1.5 to +7.5 mag, the FK5 Extension covers the magnitude interval 4.5
to 9.5 mag. The mean rms errors in position and proper motion are about 0.02" and
0.06/century for the stars in the Basic Catalogue with declinations above —30° and 0.03"
and 0.11"/century for the stars with declinations below —30°. The mean rms errors for
the stars in the FK5 Extension are about 0.06" and 0.27"/century. The epochs of the
observations lie in the interval between 1941 and 1958. The density of FK5 stars is about
0.1 stars per square degree. '

PPM The astrometric catalogue ‘Positions and Proper Motions (PPM)’ (Réser et al.,
1991) contains 384’866 stars of 6-11 mag in both hemispheres. The astrometric accuracy is
of the order of 0.3" in position and 0.43"/century in proper motion, 0.12" and 0.24"/century
for the high precision subset, and 0.05" and 0.010"/century for the FK5 stars included into
the catalogue. Systematic errors are estimated to be of the order of 0.05" in position and
0.2"/century for proper motion. The catalogue is based on the FK5 system. The density
is about O stars per square degree. Therefore, on average about every 2.5 minutes a PPM
star passes closer than 5 arcmin to a geostationary satellite.

ACRS The catalogue of Astrometric Catalogue Reference Stars (ACRS) (Corbin et
al., 1991) was compiled as a base for a new reduction of the Astrographic Catalogue
(AC) plates. It is an all-sky catalogue based on the Second Cape Photographic Catalogue
(CPC2) and the AGKS3. It contains 3207211 stars (250’000 in Part 1, the stars with good
observation history, and 70°159 in Part 2, the stars with bad observation history). Mean
rms errors in proper motion are about 0.47"/century for the stars with good observation
history (Part 1). The catalogue was compiled in the FK4 system and then transformed
to the FK5 system. The average star density is 7.8 stars per square degree.

CMC The Carlsberg Meridian Catalogue (CMC) (CMC, 1984) contains at present
80°393 stars (volumes 1-8) in the declination range from —40° to +90°. It is compiled
from observations acquired with the Carlsberg Automatic Meridian Circle on La Palma.
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With the ongoing measuring program the density of available stars is still increasing. The
accuracy of stellar positions ranges between 0.08" and 0.34" depending on the declination.
Around the declination of —7° for geostationary objects the accuracy is of the order of
0.2". Proper motions are accurate to 0.2 — 0.4"/century. The catalogue is based on the FK5
system. The average star density is 2.4 stars/deg?.

Hipparcos The Hipparcos Catalogue is based on measurements collected by ESA’s
astrometric satellite HIPPARCOS (High Precision Parallax Collecting Satellite) between
1989 and 1993. The catalogue contains a total of 107°504 stars with mean standard errors
of 1.2 mas in position and 1.7 mas/year in proper motion (Kovalevsky et al., 1995).
The coordinates are linked to the extragalactic frame of Quasar sources. The bulk of the
Hipparcos stars are in the magnitude interval from 8 mag to 10 mag. The star density is
2-T7 stars per square degree. The catalogue will be published in April 1997.

Tycho The Tycho Catalogue is based on observations made with the star mapper slit
system of the HIPPARCOS satellite and is nearing completion. The catalogue will contain
1°067°560 stars in the magnitude interval from 4.5-11.7 mag (Hgg et al., 1995). The
expected rms accuracy of the stars is 0.03" at magnitude 10.5 mag. The star density
is 25 stars per square degree.

1.1.4 Reduction of Satellite Positions to Standard Coordinates

Because of the small field of view of a CCD camera at a telescope (35" for the old Zim-
merwald instrument) it is in general not possible to determine the mapping parameters
using a single frame. These parameters are therefore determined using series of frames.
This process requires assumptions concerning the time variations of these parameters. The .
mapping parameters are assigned to different ‘variability classes’ depending on the time
scale of variation: The camera orientation may be dependent on the pointing direction, if
the mount model is not absorbing such a dependence; the mapping scale depends on the
focus position which in turn is temperature dependent. These two parameters are ‘quickly
varying’ parameters. They are determined for each close encounter series or for a group
of encounter series.

Decentering, tilt terms and other higher order mapping terms may be constant over longer
periods of time. They are determined using dedicated calibration sessions only once per
night, once per week, or even less frequently, depending on the particular necessities. To
be able to assume stability for these ‘slowly varying’ mapping terms it is essential that
all distortions of the field stemming from known sources are modelled. It is, e.g., not
possible to include distortions from differential refraction or aberration into the mapping
model as in classical astrometry where a complete set of mapping parameters can be
determined for each plate. It is therefore mandatory that the coordinates of the reference
stars used for astrometric measurements are referred to the true topocentric system of
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epoch. The coordinates of the satellites obtained from the astrometric reduction of the
CCD coordinates are consequently in the same system.

For the purpose of orbit determination and improvement the satellite coordinates have to
be in an inertial system such as J2000. When transforming the satellite coordinates from
the system of date to the system J2000 care has to be taken to use the same algorithms
which have been used for the computation of the apparent coordinates of the reference
stars from standard coordinates. This is true in particular for refraction because refraction
can only be modelled with limited accuracy. Using the same formula for the ‘forward’ and
the ‘backward’ transformation eliminates the major part of the uncertainties.

The transformation of apparent coordinates of artificial satellites to standard coordinates
(e.g. in the system J2000) is in several respects somewhat different from the transforma-
tion of coordinates for stars and minor planets. In Table 1.1 the individual transformation
elements for the transformation between the apparent and the standard coordinate system
are listed together with the influence on the coordinates of an object (a stellar object, a
minor planet, an artificial Earth orbiting satellite) measured with respect to a reference
star, given that the corresponding transformation element is neglected in both transform-
ation directions, for the computation of the apparent position of the reference star and
the back-transformation of the object’s coordinates into the standard coordinate system.

Neglected Part Effect on Position of

of Transformation Star Minor planet | Satellite:
Precession rotation rotation rotation
Nutation - rotation rotation rotation
Annual aberration differential differential total
Daily aberration differential- | differential | differential
Proper motion total total total
Light travel time no . total* total®
Parallax (total) total* total*
Light deflection (differential) (total) (total)
Refraction differential differential | differential
Color refraction total total total
Parallactic refraction no (total) total*

Table 1.1: Effects of neglected parts of system transformations on the standard coordinates
for different objects for differential astrometry (see text). Transformations marked with ‘*’ are
contained in the object’s standard coordinates. They are-taken into account during the orbit
determination procedure. '
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Precession and Nutation

Because precession and nutation rotate the coordinate system, the relative position of the
reference star and the program object is rotated with respect to the direction of sidereal
motion. The coordinate components of a measured object are affected in a differential
way if precession or nutation are neglected (i.e., the magnitude of the introduced position
error depend on the distance to the reference object). Coordinates of all types of celestial
objects are affected in a similar way. In addition, indirect effects may be caused when
neglecting the precession: The coordinate argument for subsequent transformations may
not be correct.

Aberration

The effect of aberration is a time and position dependent deformation of the coordinate
system. In differential astrometry aberration therefore gives a differential contribution
which results in a distortion of the field, if not applied.

For Earth orbiting satellites the effect is somewhat different than for stellar objects or
for minor planets. The question is the following: If a satellite is observed exactly when
it ‘occults’ a reference star, what are its coordinates in the system J2000? In fact, the
coordinates are not the same as for the reference star (see Figure 1.5) because the satel-
lites are not subjected to annual aberration. As opposed to positions of stars and minor
planets, their positions are expressed in the geocentric and not in the barycentric system.
Aberration is the change of direction of a light ray when applying a Lorentz transform-
ation from a moving system to the system of the observer. It is therefore the origin of
the coordinate system within which the ephemerides are computed (more precisely: the
system in which the propagation of light reflected from the satellite is described) deciding
whether or not annual aberration must be applied. Because the coordinate system within
which the positions of the satellites are expressed moves around the Sun together with
the Earth, only the daily aberration has to be applied.

ERE

apparent J2000

Figure 1.5: A satellite with the same coordinates as a reference star in the apparent system has
not the same coordinates in the system J2000.
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The fact that the motion of the satellite is expressed in a non-inertial (but quasi-inertial)
coordinate system which orbits around the Sun is compensated by introducing tidal forces
exerted by Sun and Moon.

Proper Motion

The proper motion of reference stars directly affects the position of the measured object
if not taken into account. When transforming the coordinates of a measured stellar object
back into the system J2000 it is not possible to transform the epoch of the coordinates
to the same system if no positions measured at earlier epochs are available. Coordinates
of these objects are therefore expressed in the system J2000 while the coordinate epoch
is the epoch of observation.

Light Travel Time

For objects within the planetary system the light travel time enters directly into the
position of the objects. The observed direction to an object is the geometrical direction
from the observer at time ¢ to the object at time ¢t — 7, where 7 is the light travel
time (‘retarded direction’). Due to the simple linear motion of stellar objects, their light
travel time can be included into the catalogue positions (i.e., they must be included into
the catalogue position if the distance is unknown). For minor planets and satellites it
is, however, necessary to compute the effect of light travel time explicitly. Because, in
order to do this, the knowledge of the distance is required the astrometric position of a
minor planet or a satellite can in principle not contain the effect of light travel time. This
correction is applied during the orbit determination or improvement procedure.

Parallax

The parallax enters directly into the position for all objects. For stellar objects it is in
general not necessary to consider the annual parallax. For minor planets both, the annual
and the daily parallax, for artificial Earth satellites the daily parallax are significant.
Because the distance has to be known for applying this correction coordinates of moving

objects can only be given in the topocentric system J2000. The parallax is corrected
during the orbit determination procedure.

Light Deflection

Because light deflection due to the Sun’s gravitation affects the positions of measured
stellar objects in the same way as the reference objects, only differential effects affect
their astrometric positions. Positions of minor planets are only partially and those of
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artificial satellites are not at all affected by light deflection. Therefore the total effect
from the reference star is transferred to the measured object if the effect is neglected.
Light deflection plays, however, no role in astrometry with an accuracy in the range of
0.1". For all positions in the night hemisphere of the sky the light deflection is below 4 mas.
It can therefore be neglected without loss of accuracy.

Refraction

Neglecting refraction or using inappropriate models introduces significant differential
effects. Quantitative information for such deformations may be found in Schildknecht
(1994).

Color Refraction

If observations are performed without filters the difference in refraction due to different
colors of reference stars and the program object enters fully into the measured object’s
position. The spectral intensity distribution for a minor planet or an artificial satellite may
be assumed to be (more or less) the same as that of sunlight. The energy distribution of
the light from reference stars of early or late spectral types may, however, be significantly
different. The color refraction for a star with given spectral energy distribution s(\) may
be computed through

R — JR(A) 7(X) ¢(A) s(A) dA (1.1)

T () e(A) s(A) dA '

where R(1) is the refraction for monochromatic light with wavelength A, ¢()) the spectral
sensitivity of the detector system, and 7(\) the atmospheric transmission. The zenith
distance dependent atmospheric transmission may be computed through the following
_ mapping function

T(/\) — TO()\)I/cos(z)

where 79 is the atmospheric transmission for unit air mass. In Table 1.2 the refraction
differences to a solar type G2 spectrum are given for several spectral types and zenith dis-
tances (computed using eqn. (1.1)). The optical spectra were taken from Silva et al. (1992),
the spectral atmospheric transmission 7, from Allen (1973), and the spectral quantum ef-
ficiency of the Photometrics CCD chip PM512 from the manufacturer’s specifications.
The refraction R(A) was computed through numerical integration using the US Standard

Atmosphere (1976) for normal conditions (temperature 15°, pressure 1013 mbar, dry air,
sea level). :

Parallactic Refraction

Refraction does not only change the direction of an incident light ray. A ray with a
fixed direction outside the atmosphere is also displaced parallely up to several meters (see
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‘ Zenith Distance
Spectral Type 10° 20° 30° 40° 50° 60° 70° 80°
05 0.04" 0.08° 013" 0.19° 027 039" 0.58" 101"
B6 0.03" 0.07" 0.11" 0.15° 021" 030" 045" 0.78
A6 0.02° 0.04" 0.06" 0.09° 0.3 018 027" 045
Fé6 0.00" 0.01" 0.01" 0.02° 0.03" 0.04" 0.05° 0.09
K4 -0.01" -0.03" -0.04" -0.06" -0.08" -0.11" -0.17" -0.27"
M4 -0.05" -0.10" -0.15" -0.22" -0.31" -0.43" -0.65" -1.09"

Table 1.2: Color refra,ction‘for different spectral types relative to a solar type spectrum G2 based
on the spectral sensitivity of the CCD chip PM512, refraction for standard conditions and using
optical star spectra from Silva et al. (1992).

Table 1.3). For an observed object which is not at infinity this parallel displacement causes
a parallax. (A more appropriate designation for the effect would therefore be ‘refraction
parallax’.) For a geostationary satellite at a zenithal distance of z = 30° the change in
position due to the parallactic refraction is 0.05", for z = 70° it is 0.1". The standard
coordinates of moving objects are not corrected for parallactic refraction because know-
ledge of the distance is required. The correction may or must be applied during the orbit
determination or improvement procedure, depending on the required accuracy level.

Zenith distance 10° 20° 30° 40° 50° 60° 70° 80° 90°
Displacement of light ray (m) | 04 09 16 2.6 43 80 18 70 2000

Table 1.3: Parallel displacement of a light ray outside the atmosphere due to refraction. Results
from numerical integration of the US Standard Atmosphere (1976) for standard conditions at
47° latitude and sea level (15°C, 1013 mbar, 550 nm).

1.1.5 Search for Earth Orbiting Objects

When trying to observe a given satellite for the first time, the object usually has to be
searched for because initial orbital elements are not good enough to ‘trap’ the object in a
small field of view. It is in particular the alongtrack error of the satellite which increases
rapidly with the age of the predicted ephemeris. The object has therefore to be searched
along the projected orbital plane. After having found an object on two or more search
frames initial orbital elements are determined (see Chapter 2) in order to decide whether
or not the object is the correct one. \ ' '

The search for orbiting objects may, in fact, be interesting by itself: In the space around
the Earth a debris problem is aggravating (Interagency Report on Orbital Debris, 1995),
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(Orbital Debris, 1995). More than 4000 spacecraft have been launched into space since
1957; nearly 27000 still are in orbit. Of these, only about 450 are operational, the others
are no longer functioning or they have completed their mission. Nonfunctional spacecraft,
however, constitute only a small fraction of the debris orbiting the Earth. The U.S. Space
Command (USSPACECOM) catalogue currently contains more than 7000 objects. Only
6% are functioning spacecraft, 22% are nonfunctional satellites, 17% are spent rocket
upper stages, and 42% are fragments from more than 120 spacecraft and rocket body
breakups in orbit. The remaining 13% are mission related objects (lense caps, bolts, etc.).
Only objects larger than about 10 cm in LEO (Low Earth Orbits) and 1 m in GEO
(Geostationary Orbits) are contained in the catalogue. The catalogue is known to be
incomplete, the actual population of debris in space being unknown. It is estimated that
more than 100°000 debris in the range between 1-10 ¢cm and more than 35000°000 particles
in the range between 0.1-1 cm orbit the Earth.

Because national and commercial interests in the development and use of space becomes
more and more important, the space agencies have a growing interest to increase the
current knowledge of the debris population around the Earth, to monitor the orbital debris
environment, and to assess debris mitigation measures. The Space Surveillance Network
(SSN) of the USSPACECOM as well as the Russian Space Surveillance System use Radar
for routine survey of objects in LEO. Radar is the best suited ground-based technique for
surveying LEO, but because the Radar receiving power decreases with the fourth power
of the distance, optical sensors are more adequate for observing objects in high Earth
orbits (above about 67000 km). In particular, objects in GEO are only observable for large
Radars (see Chapter 6) while even small optical telescopes may observe objects in GEO
with a size of 1 m.

For optical observations of high orbiting objects CCDs are appropriate due to their sensi-
tivity. For survey purposes a large field of view is required, however. The telescopes of the
GEODSS (Ground Electro-Optical Deep Space System) of the Space Surveillance Network
are upgraded with CCD cameras. ESA is installing a 1 m Zeiss telescope equipped with a
4k x 4k-CCD array at Teide observatory in Tenerife (Massart et al., 1997). The instrument
will (among other applications) be used for surveying the geostationary ring and objects
in geostationary transfer orbits (GTO). NASA developed a 3 m liquid mirror telescope
which will be installed at a site close to the equator and operated in a ‘staring mode’ for
space debris observations (Potter et al., 1996).

A special method for the automatic detection of moving objects on CCD frames was de-
veloped by Schildknecht et al. (1995a) for the ESA space debris telescope in Tenerife as
well as for the telescope at the Zimmerwald observatory: On a reference frame all objects
are searched and a template (mask) is generated with all pixels marked that belong to
these objects (assumed to be stellar). This template is subsequently used to mask the stel-
lar objects on search frames after transforming the mask frame to the coordinate system
of the search frame. On the masked frame moving objects may be automatically detected.
The process is illustrated in the sequence of frames in Figure 1.6: On the masked frame
(right) the faint image of the Meteosat 4 apogee boost motor with a size of 1.3 m x 0.8 m
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Figure 1.6: Masking technique illustrated by two frames taken at the Zimmerwald SLR telescope
on June 30, 1994. A reference frame (left) is used to generate a mask (center) which is applied
to a search frame (right) on which the Meteosat 4 apogee boost motor 89 020E shows up. The
frames cover 14°x10” and were exposed for 1.5 seconds.

shows up. The estimated magnitude of the object is between 15 mag and 16 mag.

In order to get a good signal-to-noise ratio (SNR) faint objects should be tracked. If
the object’s light is integrated onto the same pixels and the readout noise of the chip is
negligible the SNR increases with the square root of the exposure time. If, on the other
hand, the object is moving with respect to the pixels, the maximum achievable SNR is
limited by the background noise. The optimum exposure time in this case is a few pixel
crossing times (Schildknecht et al., 1993b). In order to lower the detection limit spatial
filtering techniques may be used (Schildknecht et al., 1995c).

If regions of the sky are surveyed for special types of objects, the telescope may track with
the expected motion of the objects during exposure. E.g., objects in GEO may be searched
for with fixed telescope; GTO objects may be searched for at apogee where the angular
velocity is minimum and the direction and value of the motion may be calculated for a
given orbital inclination. In order to use the same reference frame (mask) for a long time
the sidereal motion may be compensated by repositioning the telescope during readout
of the chip (see Figure 1.7). Using this ‘track-and-go’-technique a declination stripe is
surveyed. In this way e.g., the geostationary ring or the locations of the apogee for GTO
objects may be scanned. ”

If approximate orbital elements shall be computed for the detected objects in order to
schedule follow-up observations at least two positions have to be measured for each object.
If the objects are moving slowly enough they may occur on two or more successive search
frames. Objects in LEO, on the other hand, will leave behind only a trail on a single
frame. The object’s position at a later time has then to be inferred from the (ambiguous)
direction and the length of the trail and the object has to be followed with a telescope
which is capable to track at high rates. '

For high orbiting objects the optical search scenarios are therefore much simpler than for
objects in LEO. In addition, to get high precision astrometric positions neither the trails
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Figure 1.7: Search scenario for slow moving objects: During the exposure the telescope is tracking
with the expected motion of the objects. The sidereal motion is compensated by repositioning
between exposures.

for the moving objects nor the trails for the reference stars should be too long because
the centroids are determined with lesser accuracy in the direction of the trails. We will
therefore restrict ourself to high orbiting objects such as geostationary satellites, GTO
objects, or GPS satellites.

1.2 Slow Moving Satellites

1.2.1 Geostationary Orbits

The geostationary ring with a geocentric radius of about 42164 km is a very important
region in space for telecommunication satellites and other Earth observing spacecraft such
as meteorological satellites. Currently more than 600 objects are catalogued in and near
this region. Only 110-130 of them are operational satellites (1996), the others are dead
satellites, rocket upper stages, apogee boost motors, fragments. Every year additional 18-
28 spacecraft are injected into the geostationary ring. Two explosions are known to have
occurred (Kessler, 1993): on Feb. 21, 1992, the breakup of a Titan upper stage which was
launched on Sept. 26, 1968, and the breakup of an EKRAN satellite in June 1978 caused
by a battery failure. Other breakups are likely to have occurred. The true population in
and near the geostationary ring is therefore not known. Efforts are undertaken by the
space agencies of the USA (NASA), Russia (RSA), Japan (NASDA), and Europe (ESA)

to get a better knowledge on the population in this region in space.

A search for uncontrolled objects in the geostationary region was performed with the
NASA CCD Debris Telescope (CDT) on Mt. Haleakala, Maui, Hawaii, between 1992 and
1994 (Potter (1995), Talent et al. (1997)). A 32 cm f/1.3 Schmidt telescope equipped
with a CCD camera with a limiting magnitude of 17™6 for a 30 seconds exposure was
used. About 30% of the detected objects in a total of 252 observing hours could not be
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correlated with entries in the catalogue. These objects might belong to a population of
orbital debris near the geostationary ring.

The most important source of information on geostationary orbit objects are the Two Line
Elements (TLE) for more than 600 objects (Feb. 96) prepared by the USSPACECOM
(U.S. Space Command). They are based on observations from the three optical tracking
sites GEODSS (Ground Electro-Optical Deep Space System) of the Space Surveillance
Network (SSN) (Chamberlain et al., 1993). Additional 40 objects are catalogued in the
RAE (Royal Aircraft Establishment) Tables of Earth Satellites. Catalogues based on these
catalogues are issued by ESA (Janin, 1996) and the Institute for Theoretical Astronomy
in St. Petersburg (Sochilina et al., 1996). The Russian Space Surveillance System compiles
a catalogue of space objects based on independent observations (Batyr et al., 1993).

The inclinations of the geostationary orbits range between 0° and 15°. The histogram
in Figure 1.8 (left) shows the distribution of the inclinations. The functioning satellites
have inclinations close to 0°. The Histogram 1.8 (right) shows the distribution of the
right ascensions (R.A.) of the ascending nodes for the catalogued geostationary objects.
The unexpected distribution of the nodes will be discussed below. In Figure 1.9 (left)
we see the distribution of the drift rates for catalogued objects in GEO. The objects
in ‘graveyard’ orbits with negative drift rates (semimajor axis larger than geostationary
radius) are clearly visible. The fraction of objects with eccentricities smaller than a given

value is shown in Figure 1.9 (right). 97% of all catalogued objects have an eccentricity e
below 0.01.

The geocentric space velocity of geostationary objects is about 3 km/s and the angular
velocity relative to the stars is about 15"/sec. The angular velocity in the Earth-fixed frame
depends on the inclination and the position of the satellite in its orbit: At the culmination
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Figure 1.8: Histograms of inclination (left, bin size 0.5°) and R.A. of ascending node (right, bm
size 10°) for catalogued geostationary objects.
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Figure 1.9: Histogram of drift rates (left, bin size 2°/day) and fraction of catalogued geostation-
ary orbits with eccentricity smaller than a given value (right).

points (highest or lowest elevation) the relative motion (in the Earth-fixed system) is
minimum. In Table 1.4 we give the corresponding values for different inclinations and
semimajor axes for an object at the equator crossing and at the culmination point for
an observer located in Zimmerwald. In Figure 1.10 we see the angular velocity field for
geostationary objects with an orbital inclination of 15°. Azimuth and elevation refer to an

observer in Zimmerwald. The dotted line represents the location of the geostationary ring

which, for Zimmerwald, is at a declination of —7.2° (in the meridian) due to parallax.
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Figure 1.10: Velocity field for geostationary satellites with orbital inclination of 15° in the Earth-
fixed system for an observer in Zimmerwald. The dotted line represents the geostationary ring.
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Semimajor Incl. | Satellite Angular velocity

Axis location star-fixed | Earth-fixed

GEO 0° | equator 14.9"/sec | 0.0"/sec

10° | equator 15.0"/sec | 2.9"/sec

culmination | 15.3"/sec | 0.3"/sec

15° | equator 15.0"/sec | 4.3"/sec

culmination | 15.4"/sec | 0.6"/sec

GEO+ 500 km 0° | equator 14.6"/sec | 0.3"/sec

10° | equator 14.7"/sec 2.9"/sec

culmination | 15.0%/sec | 0.0"/sec

15° | equator 14.7"/sec | 4.3"/sec

| culmination | 15.1"/sec 0.3"/sec

GEO+ 1000 km 0° | equator 14.4"/sec | 0.6"/sec

10° | equator 14.47/sec | 2.9"/sec

culmination | 14.7"/sec 0.3"/sec

15° | equator 14.4"/sec 4.3"/sec

culmination | 14.8"/sec 0.0"/sec

Table 1.4: Angular velocities for geostationary objects with different orbltal inclinations for an
observer in Zimmerwald.

From Zimmerwald (longitude 7.5°E, latitude 46.9°N) a sector of 93° of the geostationary
ring is observable above 20° elevation (from 54°E to 39°W). From the stabilized objects
only those inside this longitude range can be observed. Many of the abandoned objects
are drifting, however, with drift rates up to 35°/day (for the catalogued objects). The drift
rate may be computed from the difference Aa of the semimajor axis to the geostationary
radius ag =~ 42’164 km using Kepler’s third law, to first order

An|deg/day] ~ 0.0128 Aa[km] (1.2)

Depending on the drift rate an object is only visible for a certain time interval (‘visibility
time’) and returns back into visibility after a period of invisibility. In Table 1.5 we list
drift rates and the corresponding Earth-fixed revolution time (‘return time’) as well as
the duration of the visibility periods for an observer in Zimmerwald.

From Table 1.4 and Figure 1.10 we conclude that GEO objects with specified inclinations
should be ‘trapped’ at the upper or lower culmination point where the angular velocity in
the Earth-fixed frame is lowest and the probability for detection thus maximum. Indeed,
a satellite with an orbital inclination of 15° stays for about 22 hours within one degree in
declination or during 13 hours within 0.4° (see Table 1.6). I e., the alongtrack-search of
an object with unl\nown longitude and an inclination of 15% can be performed in direction
of right ascension using the same reference frame at upper or lower culmination during
more than one and a half hour with a telescope which has a field of view of 0.4°,
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Aa Drift Rate Return Time | Visibility for Zimmerwald
—1000 km 13.2 deg/day 27 days 7.0 days
—-800 . 10.5 34 8.8
—600 7.8 46 11.9
-400 5.2 69 18.
-200 2.6 139 36.
0 0 o0 o0
200 ~2.6 141 36.
400 -5.1 71 18.
600 -7.6 48 12.3
800 -10.0 36 9.3
1000 -12.5 29 7.5

Table 1.5: Return times (revolution period in the Earth-fixed system) and visibility times for an

observer in Zimmerwald for drifting geostationary objects (minimum elevation above horizon:
20°). '

Incl. | - Field of view
1.0° 0.7° 0.4° 0.1°
5149 41 3.1 15 h

10° 34 29 22 11 h
15128 23 1.7 09 h

Table 1.6: Time in hours during which geostationary objects with given orbital inclination re-
mains within a given declination interval of the culmination point.

Satellites in orbit are subject to a number of perturbations. For geostationary satellites
the most important perturbations are due to the oblateness of the Earth, the gravita-
tional attraction from Moon and Sun, the inhomogeneous longitudinal mass distribution
of the Earth, and, depending on the area-to-mass ratio, the direct solar radiation pres-
sure. In Table 1.7 we list the magnitudes of the perturbing accelerations and the resulting
alongtrack drifts for a time interval of 5 and 30 days (from Rudenko (1995)).

Active satellites have to be repositioned several times per year or even several times per
month because perturbing forces are driving them away from their nominal Earth-fixed
position. Perturbations due to the variation of the longitudinal mass distribution of the
Earth, described by the Ja;-term of the geopotential, give rise to longperiodic oscillations
in the longitude of a geostationary satellite. These resonance effects are studied in detail
in Chapter 4.

At a distance of a few Earth radii the effect of the perturbations by Sun and Moon are
of the same order as the effect of the Earth’s oblateness. The combined effect of these



30 1 Astrometry of Artificial Satellites

Force Satellite Maximum drift over

acceleration | 5 days 30 days

[m/s?] [arcsec] | [arcsec]
Earth’s monopole (Jgo) 2.2-107!
Earth’s oblateness (Jag) 1.7-107° 480. 2880.
Gravitational attraction by the Moon | 7.3-10-° 280. 1660.
Gravitational attraction by the Sun | 3.3-10° 100. 570.
Direct solar radiation pressure 2.3.10°7 20. 120.
Earth equatorial ellipticity (J22) 2.8.10°8 70. 2590.
Earth’s albedo radiation pressure 2.1-10°° 0.2 1.
Gravitational attraction by Venus 4.4-10°10 0.01 0.07
Solid Earth tides 2.7-1071° 0.008 0.04
Gravitational attraction by Jupiter 5.2-10-11 0.002 0.009
Ocean tides 2.7-10"1 0.0008 0.004
General relativistic correction 2.4-1071 0.0008 0.004

Table 1.7: Acceleration and longitudinal drift of a geosynchronous satellite due to the forces
acting on it. Orbital elements: a = 42'164 km, e = 0, 1 = 0°, w = 0°, Q = 0°, M = 0°. Satellite
area to mass ratio A/M = 0.05 m?/kg. From (Rudenko, 1995).

three perturbations cause the orbital planes of geostationary objects to precess around
a stable plane (Allan et al., 1964). This plane (the so-called proper or Laplacian plane)
has an inclination of about 7.5° with respect to the equatorial plane and its nodal line
coincides with the direction to the vernal equinox. The first astronomer who studied a
perturbation of this kind was Laplace (1805) in his discussion of the motion of Saturn’s
moon lapetus whose orbit shows a similar precession due to the perturbations of the Sun
and the oblateness of Saturn.

As a consequence the pole of a geostationary orbital plane (with the celestial coordinates
a = 0 —90° and § = 90° — ) describes a cone with a period of about 53 years with
opening angle of 15° which is tilted towards the ecliptical pole (see Figure 1.11). The
orbital inclination of uncontrolled objects left in the equatorial plane will therefore steadily
increase to reach 15° after about 25 years and then decrease again during the next quarter
of a century. The first objects launched into geostationary orbit thirty years ago have
now an orbital inclination of about 15°. This orbital precession around a common plane
explains the — at first sight strange — fact, that the ascending nodes of geostationary
objects (most of them uncontrolled) are clustered at a given right ascension (see Figure 1.8,
right). :

The fact that uncontrolled geostationary objects all have a right ascension of the ascending
node ) which is strongly correlated with the inclination ¢ means that the location of their
culmination are for a given inclination at the same right ascension. For a given epoch ¢
the geocentric longitude A of their upper culmination point may therefore be calculated
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Figure 1.11: Precession of the orbits of geostationary satellites. The symbols ‘+’give the location
of the orbital poles corresponding to inclination ¢ and R.A. of ascending node Q of the catalogued
objects (Feb. 1996). Coordinates are right ascension o = Q — 90° and declination & = i (same
representation as in Janin (1996)).

with the formula '

Aculm = 0(7) +90° — ©q (1.3)
where Oy is the Greenwich Mean Sidereal Time (GMST) at time ¢. The right ascension
of the ascending node may be approximately computed as a function of ¢ by

1—cos?

cos {2} = cot(7.5°) (1.4)

sin¢
(providing two solutions for ). When looking for uncontrolled objects one simply has to
scan the culmination longitude given by eqn. (1.3) (or the corresponding lower culmina-
tion) for a given inclination. The search may be performed using a single reference frame
(mask) and scanning at constant declination.

1.2.2 Density of Catalogued Objects in Geostationary Ring

The probability for finding an object in a circular orbit with arbitrary longitude of
node within the declination interval é to § + d§ can be computed by using the equa-
tion sinusini = sin § which connects the argument of latitude u (distance of the satellite
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from the ascending node) and the declination 4. The result is

dn(s) = L0590 for 18| <i, (1.5)
T \/sini — sin? é
where dn is the mean density of the satellites averaged over longitude in the declination
interval dé centered at 6. The function has its minimum value of 1/sins at the equator
where the satellite’s declination changes fastest. For § = =i the function (1.5) diverges
and the detection probability of a satellite is maximum at these culmination points. (It
can easily be checked that the integral of dn over declination is equal to 1.)

For a satellite population with orbital inclinations distributed according to a function f(3)
(f(?)di is the number of orbits with inclinations in the interval i to i + di) we may again
compute the average number of objects per declination interval dé:

dN(8) 1 (I, cos & X
— == di. .
- dé W/S f(z)\/sin%' “ein?e (16)

All orbits with inclinations between ¢ and the maximum inclination I contribute to the
integral. If we adopt (in order to integrate eqn. (1.6) analytically and to give an approx-
imate formula) a distribution of inclinations of f(¢) = Ncosi/sinI (for : < I; N is the
total number of objects) we get a density distribution

N cosé In (sm[+ sin® I — sin 5) &,

dN(8) = =

7w sin/

sind

This function is shown in Figure 1.12 as a dotted line for N = 480 (i.e. the number of non-
operational catalogued objects). The solid line in the figure gives the latitudinal object
density for the actual distribution of orbital inclinations of the catalogued GEO objects.
It was computed by adding up the functions (1.5) for the inclinations of all catalogued
objects. Although the inclination distribution adopted for the analytical computation was
selected only for convenience, the similarity of the two distributions is satisfactory.

If enough orbits with different inclinations are averaged the maxima at the culmination
points of the individual orbits are averaged out and the maximum density occurs at the
equator. This happens because every object, no matter what its orbital inclination is, has a
non-zero probability to be found at the equator. In addition, all controlled objects (about
120) have very small inclinations and contribute only to the peak of the distribution in
the equator.

In Figure 1.12 we see the density as number of objects per square degree (computed from
declination bins of 0.2°). The density reaches 1.8 objects/deg? at the equator, but already
at a declination of £0.2° the density drops to 0.2 objects/deg?. Therefore, if we search for
objects with no specific orbital inclinations, the probability for finding one is maximum at
the equator. Most of the detected objects will, however, have a small inclination because
the probability for finding high inclination objects at the equator is low; for objects with
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Figure 1.12: Density of catalogued GEO objects v.s. declination. The dotted line gives a theo-
retical distribution based on an orbital inclination density distribution dn ~ cos(z), the solid line
shows the distribution computed from the density distribution of the inclinations of catalogued
GEO objects. The density is given in objects/deg? (based on a bin width of 0.2°).

given inclination ¢ > 0 the probability for finding them is maximum at the declination
d ~ +i.

To get a more detailed picture the sky was divided into bins, one degree wide in right
ascension and half a degree wide in declination. The inclinations and ascending nodes
of the objects in Janin (1996) were taken and for each orbit the relative contribution to
the different bins was computed. The result is the map of the sky in Figure 1.13 which
gives the object density distribution as a function of right ascension and declination.
(The Figure was actually drawn for an observer at the geocenter, but parallax does not
substantially alter the result.) The gray scale gives the object density in a logarithmic
scale, black corresponds to the highest density.

The systematic distribution of the satellite orbits due to the orbit precession caused by
perturbations is easily seen. We see again — as we already saw before — that the ascending
node is drifting backwards in right ascension for increasing inclination. This systematic
distribution of orbits causes a kind of a caustic of higher density, at negative declination
close to the ascending nodes and at positive declination close to the descending nodes. At
the location of this caustic orbits with different inclinations intersect.

The location of this caustic may be computed in the following way: The relation between
inclination ¢ and right ascension of the ascending node © for uncontrolled objects is
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Figure 1.13: Object density as a function of right ascension (R.A.) and declination constructed
from all catalogued objects given in Janin (1996). The logarithmic gray scale is a measure for
density. Bin size: 1° in R. A. and 0.5° in declination.

given by eqn. (1.4). On the other hand, for given ¢ and { the right ascension a and the
declination § of points in the orbit are connected by

sin(? — a) = tand cot 2. . (1.7

Let us determine the intersection of two adjacent orbits, one with inclination ¢ and node
0, the other with inclination ¢ + A7 and node Q + AQ. Using eqn. (1.7) for both orbits
with the same « and § we get (to first order in Af and AQ)

cos(Q — a)sin®i AQ = —tané Ai (1.8)

where o and & are the coordinates of the intersection points. Taking the total derivative
of eqn. (1.4) we get a relation between A and AQ. We obtain

tan Qsini AQ = A, _ (1.9)
a result which is used to eliminate A7 and AQ from eqn. (1.7). The result is ’
cos(! — @) sini = tand tan (. (1.10)
Finally, using eqn. (1.7), we obtain the two equations
tan(Q —a) = cosicot(d (1.11)
tand = cos( —a)cotQsini (1.12)

which, together with eqn. (1.4) give @ and § describing the caustic parametrized by 2 (or
i). & is positive if « falls into the second and the third quadrants, negative if a falls into
the first and the last quadrants.
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According to Figure 1.13 the density is maximum at the equator where it is everywhere
above 0.41 objects/deg? and reaches 0.83 objects/deg? at R. A. 65° and 245° (4h and 16h).
In Figure 1.14 the average number of objects per 0.5°x0.5° along the equator is shown.

obj/(0.5deg)?

035

0.25

0.15

0.05 -

0 60 120 180 240 300 360" R.A.

Figure 1.14: Density of catalogued geostationary objects along the equator for a field of view of
0.5°x0.5°.

At the ‘caustic’ off the equator the density still reaches 0.54 objects/deg?. Objects with
non-zero inclination should be ‘tapped’ at the location of the ‘caustic’. Because the den-
sity distribution is quite inhomogeneous and a scaling for different fields of view is not

straightforward, numbers for the density at some locations in the sky are given for several
fields of view in Table 1.8.

Several special features in Figure 1.13 may be attributed to individual groups of objects:
The orbits with an ascending node around 270° and an inclination of 15° belong to four
catalogued objects with the COSPAR designation 76 032. A fourth object with the same
designation, the fragment 76 023K has a different orbit, however. The group of orbits with

Field of view: 1° x 1° 0.7°x0.7° 0.5°x0.5° 0.4° x 0.4°

Max. at equator (& :65°,245°) | 0.83 deg™?  0.52deg™> 0.33 deg=2  0.24 deg~2
Min. at equator (a :155°335°) | 0.41 deg™?  0.27deg™® 0.18 deg™2  0.14 deg~2
Max. at ‘caustic’ 0.54 deg™®  0.31deg™2 0.18deg™?  0.13 deg~2
a=90° §=13° 0.075 deg™? 0.051 deg™ 0.000 deg™2 0.006 deg~?

Table 1.8: Object density at different positions in the sky for several fields of view.
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an ascending node of about 350° and an inclination of 12° consist of the 27 objects with
COSPAR designation 66 053, 67 003, and 68 050. Finally, the orbit with an ascending
node at about 70° and an inclination of 10° are attributed to the object 81 073A.

All these objects and groups of objects are easily seen in Figure 1.15. We conclude that
object searches should not only be performed at the locations of highest object density
(equator, caustic), because in this way entire groups of objects (e.g. fragments from break-
ups) might be missed. Indeed, investigations with the NASA CDT (Talent et al., 1997)
revealed groups of objects with orbital nodes and inclinations outside the ‘mainstream’
of the catalogued objects. In addition care should be taken to search for objects close to
the Earth’s shadow where the illumination of the orbiting objects by the Sun is optimal.

180° 0
+ 76 023 :’-..‘ + 81073A
?..-
20 +

210° i

R PR
i roxiat to- ~

Foage 65028
240 early bird

Figure 1.15: Orbital pole for geostationary satellites with groups of satellites indicated which
have different inclination and/or ascending node than the ‘mainstream’ of the objects.

1.2.3 Geostationary Transfer Orbits

Geostationary transfer orbits (GTO) are necessary to transport payloads from a low Earth
orbit into the geostationary ring. Usually the rocket upper stage remains in this highly
eccentric orbit after deployment of the satellite which is injected into the GEO with an
apogee boost motor (ABM) (an exception are the Russian Proton launchers which directly
inject the satellites with the fourth stage of the rocket which remains unfortunately in a
near geostationary orbit). :
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498 objects were catalogued in GTO in 1995 (Interagency Report on Orbital Debris,
1995), namely 75 spacecraft, 276 rocket bodies, and 147 fragments and debris. Until 1995
about 10 breakups in GTO were recorded (Nauer, 1995).

Initially, the height of the apogee of a GTO is at about 35800 km while the perigee is
at an altitude of a few hundred kilometers. The corresponding semimajor axis is about
24’500 km and the eccentricity is about 0.73. The orbital period of an object in GTO is
close to 10.5 hours. Air drag acting at the perigee decreases the apogee height at a rate
which depends on the perigee height and the solar activity (see Janin (1994)).

The launch of a geostationary satellite takes place in the following way (somewhat ideal-
ized): The rocket is launched in eastward direction to take maximum advantage of the
Earth’s angular momentum. The rocket upper stages therefore reaches a low Earth orbit
(LEO) with an inclination corresponding to the geographical latitude of the launch site.
The injection of the rocket into the GTO has to take place at the ascending or descending
node in order to bring the apogee close to the equatorial plane. The argument of perigee
for a GTO is therefore initially close to 0° or 180°. The inclination of the orbit remains
close to the latitude of the launch site. The change of inclination for the payload to 0°
is effectuated during injection into the GEO at apogee for energetic reasons. After de-
ployment the payload is shifted along the GEO to its target position. The launch sites
frequently used are given in Table 1.9. In Table 1.10 we present the standard Ariane 4
GTO elements (Ariane 4 User’s Manual, 1983).

Due to the Earth’s oblateness perturbations the argument of perigee changes at a rate of
+0.8°/day causing the perigee to rise above the equatorial plane (for argument of perigee

Kourou (French. Guayana) | 5°N
Cape Canaveral (USA) 28°N
Tanegashima (Japan) 30°N
Xichang (China) 41°N
Tyuratam (Kasachstan) 46°N

Table 1.9: Latitude of launch sites for geostationary satellites.

Apogee height 35975 km
Perigee height 200 km
Eccentricity 0.73
Inclination 7°
Geogr. longitude of ascending node | 169°
Argument of perigee 178°

Table 1.10: Standard Ariane 4 GTO elements, from Ariane 4 User’s Manual (1983).
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Table 1.11: Angular velocities for GTO objects with different orbital inclinations at apogee for

1 Astrometry of Artificial Satellites

Incl. Angular velocity
star-fixed | Earth-fixed
7| 6.97/sec 8.1"/sec
28° | 7.2"/sec 9.9"/sec
46° | 7.5"/sec 12.3"/sec

an observer in Zimmerwald.

Incl. | Maximum | Hours before or Angular velocity
elevation after apogee | star-fixed | Earth-fixed
7° 37.5° 24 h 10.0"/sec 5.0"/sec
28° 55.7° 4.5h 56"/sec 71"/sec
46° 88.0° 48 h 3.6"/sec 3.7"/sec

Table 1.12: Maximum elevation of GTO objects with different orbital inclinations for an observer
in Zimmerwald.

close to 180°). Together with the drift of the node of about —0.4°/day the GTO ellipse -
rotates eastward at a rate of about 0.4°/day.

At their apogee GTO objects have a velocity of 1.6 km/sec. Their angular velocity relative
to the stars and in the Earth-fixed system are given in Table 1.11. The elevation of the
apogee for a GTO object in the meridian of Zimmerwald is 36°. The maximum elevation
is reached before or after the apogee passage, however, depending on the argument of
perigee. Values are given in Table 1.12.

In Zimmerwald a GTO with an inclination of 7° may stay for up to 7.2 hours above an
elevation of 20°. In Figure 1.16 the velocity field of a GTO object with an inclination of
7° is shown as seen by an observer in Zimmerwald.

1.2.4 Molniya Orbits

Molniya (‘lightning’) satellites are Russian communication satellites in highly eccentric
12-hour orbits. Their orbits are at the critical inclination of ¢ = 63.4° in order to avoid
a drift of the apsidal line, thus keeping the apogee above the northern hemisphere. The
typical eccentricity is e = 0.722, the corresponding apogee is at an altitude of 39356 km
or at a geocentric distance of 7.2 Earth radii. A satellite in such an orbit remains for
10 hours at a geocentric distance of more than 3 Earth radii. This makes them useful for
communication links at high geographic latitudes. Currently more than 100 objects are
catalogued in Molniya type orbits. 15 breakups in Molniya orbits were recorded until 1995
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Figure 1.16: Velocity field for GTO objects with orbital inclination of 7° in the Earth-fixed
system for an observer in Zimmerwald. Left: receding object, right: approaching object. The
dotted line represents the geostationary ring.

(Nauer, 1995). Table 1.13 summarizes the parameters of a typical Molniya orbit (Flury,
1994). :

Orbital period 11:58 h
Semimajor axis 26560 km
Eccentricity 0.722
Height of perigee 1000 km
Height of apogee 39357 km
Inclination 63.4°
Argument of perigee | 270°

Table 1.13: Typical characteristics for Molniya type orbits.

The velocity of a Molniya satellite at its apogee is 1.6 km/sec which corresponds to an
angular velocity of 6.4"/sec relative to the stars or 0.3"/sec in the Earth-fixed system for
an observer in Zimmerwald. The maximum elevation of the apogee is about 70° above the
northern horizon.

1.2.5 GPS and Glonass Orbits

An important class of satellites is found in Medium Earth Orbits (MEQ) in 12-hour orbits:
The NAVSTAR-GPS and the GLONASS navigation satellites.

At present 25 NAVSTAR-GPS (Global Positioning System) satellites are operational,
several others — in particular all Block I satellites — are in orbit but disactivated. The
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GPS satellites are distributed in six orbital planes with equally distributed nodes. The
orbital inclination is 63° for Block I and 55° for Block II satellites. The radius of the
nearly circular orbits of about 26°560 km results in a revolution period of 11h 58min, i.e.
half a sidereal day. The satellites are therefore in a deep 2:1-commensurability with the
Earth rotation causing resonance effects in the orbital elements (see Chapter 4).

The Russian counterpart of the American GPS system is the GLONASS (Global Naviga-
tion Satellite System). The full configuration of 24 satellites distributed over three orbital
planes was complete on Dec. 14, 1996, the launching date for the last three vehicles. Cur-
rently (December 1996) 25 satellites are operational (one spare), a number of disactivated
or non-functioning satellites are in orbit as well. The semimajor axis of the near-circular
orbits is around 25500 km (about 1100 km below the GPS satellites) giving an orbital
period of 11h 15min. The orbital inclination is about 65°. Two geodetic (‘cannonball’)
satellites, the Etalon satellites equipped with retro-reflectors, are in GLONASS-type or-
bits. : :

Medium Earth Transfer Orbits (MTO) exist for the MEOs. Rocket bodies may be found
in MTOs which brought MEO objects into orbits. o

1.2.6 Other High Altitude Orbits

There are a number of other high satellite orbits of interest for telecommunication and
research. Let us give a few examples: '

The Tundra orbits have a 24 hour period and an eccentricity of 0.2668 (Flury, 1994). They
were studied for Russian telecommunication satellites. The inclination is at the critical
value of 63.4°. Perigee and apogee altitudes are 24537 km and 47°036 km respectively. An
object in such an orbit would move with 8.8"/sec relative to the stars and with 2.6"/sec
in the Earth-fixed frame at apogee where the space velocity is 2.3 km/s. There are no
known objects in such orbits, however.

Other orbits for telecommunication satellites are studied, e.g., 16-hour orbits with critical
inclination (I(han, 1993). Six satellites in three orbital planes would be sufficient to provide
a continuous service to Europe, Western Europe, Middle East, Japan, Korea, China, North
America. The eccentricity of the proposed orbits is 0.53, the apogee height would be at
42’851 km, the perigee height at 87745 km.

Many scientific missions are launched into high Earth orbits in order to increase the
observation window or to avoid the radiation belts. One of the most successful scientific
spacecraft, the IUE (International Ultraviolet Explorer) satellite was launched on Jan. 26,
1978, into a 24-hour orbit with an eccentricity of 0.13 and a perigee height of 30196 km,
an apogee height of 41’397 km and an inclination of 35.15° (Macchetto et al., 1978). After
more than 18 years of operation the satellite was switched off on Sept. 30, 1996.

The ESA satellite ISO (Infrared Space Observatory) was launched on Nov. 17, 1995 into
a highly eccentric 24-hour orbit with a perigee height of 1038 km, an apogee height of
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70°569 km and an inclination of 5.17° (Kessler et al., 1991).

The Russian probe Interball-1 was successfully put into an orbit with a period of 3 days
and 20 hours on Aug. 2, 1995. The perigee height is 7'879 km, the apogee height 197°609 km
(31 Earth radii, half way to the Moon!), the inclination is 62.9°, the eccentricity is 0.869. At
its apogee the satellite moves with only 0.5 km/s which gives an angular velocity of 0.2"/sec
relative to the stars and 6.5"/sec in the Earth fixed system. The satellite investigates the
Earth’s magnetotail (COSPAR Bulletin, 134, Dec. 95, p. 25.).

The high energy observatory INTEGRAL (International Gamma-Ray Astrophysics
Laboratory), a mission in ESA’s ‘Horizon 2000’ scientific long-term plan is scheduled
for launch at the beginning of the next century. Because the high energy gamma ray
~ detectors cannot operate within the radiation belts, the satellite will be lifted into a high
Earth orbit. ESA plans to launch the satellite with a Russian Proton launcher into a
72-hour orbit with an apogee height of 115000 km. If the Proton launcher would not be
available the satellite would be launched with an Ariane rocket into a 24-hour orbit. (The
Russian Space Agency offered the launch of INTEGRAL free of charge in the context
of scientific collaboration; Space Science Newsletter, July 94.) The characteristics for the
two orbits are given in Table 1.14 (Clausen et al., 1994).

Launcher: Proton Ariane
Orbital period 72 h 24 h

Semimajor axis 887000 km 427200 km
Eccentricity 0.38 0.76
Height of perigee 48000 km 4000 km
Height of apogee 115000 km 68000 km
Inclination 51.6° 65°
Argument of perigee 270° 270°

Table 1.14: Orbital parameters for the high energy observatory INTEGRAL for the options of
a Proton or an Ariane launcher.
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2 Initial Orbit Determination

The purpose of initial orbit determination for objects orbiting the Earth is to obtain a
first estimate for the orbital elements of an object for which only a few observations were
acquired within a few minutes, e.g. two astrometric positions of an object on the detection
frame and on the confirmation frame exposed immediately after the first one. Initial orbital
elements may be used to identify an object, e.g., if one is searching for a ‘lost’ object.
They are necessary for extrapolating the object’s position for a later recovery in the same
night. Additional astrometric positions may then be used to refine the orbit. Initial orbital
elements are also required as starting values for an orbit improvement process. Last but
not least, the initial elements determined for objects observed during a survey campaign
may be used for a statistical analysis of the distribution of the elements and for population
studies of objects in given regions of space.

In the first section below three algorithms for the determination of an initial orbit are
presented, one for the determination of a circular orbit and two for the determination of
elliptic orbits. All three algorithms are intended to be used for short observed arcs only.
In the second section emphasis is put on the performance of the algorithms. We will see
that even for elliptic orbits the circular elements are a valuable tool for identification and
ephemeris calculation for high orbiting objects. ‘

2.1 The Algorithms

2.1.1 Circular Orbit

The determination of a circular orbit using two observations is well known and straight-
forward: For both observation times ¢, and ¢, the geocentric positions R; and R; of the
observer are assumed known in addition to the observation unit vectors e; and e, point-
ing from the observer to the object. Both pairs of vectors are related to the unknown
geocentric position vectors 7; and 7, of the satellites by

™= Rl + Alel and To = R2 + Ageg , (2.1)

where the topocentric distances A; and A, at the two observation epochs are unknown.
Assuming that the observations must lie on a circular orbit with radius a we may write

r?=a? r? = d?, r1-T2=a’cosp (2.2)

where ¢ is the angle between the two geocentric position vectors. Using Kepler’s third
law we get
= 'n(t2 — tl) with n2a3 = GM. (23)

While the eqns. (2.1) and (2.2) represent pure geometrical information, egn. (2.3) intro-
duces the dynamics into the solution. The eleven scalar conditions in egns. (2.1) to (2.3)
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represent a non-linear system for the eleven unknowns that were introduced. The system
may be solved for the unknown radius a by determining the zeros of the function

B(a) = ry(a) - ro(a) — a2 cosn(ty —t1) = . - (2.4)

The r;(a) are computed by solving the first two eqns. in (2 2) for A; as a function of a
and introducing these values into eqn: (2.1). :

Having found a root of eqn. (2.4) the inclination ¢ and the right ascension of the ascending
node Q) may be calculated from vectors r; and r, (using the vector product) as well as
the argument of latitude u for one of the observation times (angle measured in the orbital
plane from the ascending node to the position at times ¢, resp. t3). The algorithm is

implemented in the FORTRAN subroutine OCCORD.

2.1.2 Elliptic Orbit

With three observations available it is possible to determine all six elements of a Keplerian
orbit. Similar to the procedure discussed in the previous section the problem may be
reduced to the determination of the roots of a function with one argument. The algorithm
was developed by Beutler et al. (1987) for minor planets and comets in heliocentric orbits.

Let us assume that for three epochs ¢;, t2, t3 the geocentric position vectors R;, Ry, R3
of the observer and the observed unit vectors e, e;, e3 are known in some (quasi-)inertial
coordinate system. The three geocentric position vectors 7y, 72, 73 are written in the form

r1 = Ri+ Asey,

To = Rz + Agez, ' (25)

r3 = R3+ Aszes '
intfoducing three unknown topocentric distances A;, Ay, Az. As the Keplerian motion

takes place in a plane we may write the position vector at any time as a linear combination
of the position vector and velocity vector at time £,

r(t) = F(O)m + g(t)on. (26)

One easily verifies that functions f(¢) and g(¢) are solutions of the initial value problem
e = —GMLS g? = -GMZ
) r - r (2 7)
ft) = 1 g(tn) = 0 '
) = o V) = 1

The solutions may be written in the form of a Taylor series

o0

O YRR ORS o LR ONCR UL

k=0
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with the coefficients

@ = Jq9 =0
fO = 9 g = 1
o = —y @ = 9

@ = 3’u0- 9(3) = —-u (29)
O = —150%u+ep+p? g™ = 6op
f® = 1050%u — o(45ep +15u?)  ¢® = —450%u + 9ep + p?

where the so-called fundamental invariants
p=GM/r, o=r-v/rs, e=vi/ri—p, - (2.10)

are only functions of {, r, - vy, and vZ. Up to orders 2 resp. 3 the series (2.8) for f resp.
g are in fact only functions of r.

Inserting eqn. (2.6) into eqn. (2.5) we obtain the equations

T —e Ay = R,
f(t2)r1 + g(t2)vn —e2/\; = R, (2.11)
fta)rs + g(ts)vy —e3As = R;.

If the coefficients f and g in eqn. (2.11) were known this system of equations would be
linear, i.e., one could solve for the nine unknowns, the components of r; and v; and the
topocentric distances A;, A,, As. In fact, if we assume that ? is given, we can compute f
and g to second and third order respectively and solve the system of equations (2.11). We
obtain r; and v; and may then compute p and €. Iteratively, we then compute improved
values for f and g and so we obtain the solution of eqn. (2.11) to any desired order. In
other words, 71, vy, and Ay, Az, A are only functions of the one parameter r?!

If r] is a solution of eqn. (2.11), then the square of the vector 7, that we get by iteratively
solving eqn. (2.11) must be equal to (r})?. We therefore define the function

B((r)) = (1)) =717 (2.12)

where 7, is computed by iteratively solving eqns. (2.11) with (r})? as input parameter.
The roots of the function (2.12) are the solutions of the problem. Looking for roots in a
given range of geocentric distances provides all solutions in this range.

As a result the algorithm gives the geocentric position #; and velocity v; of the ob-
ject (at epoch ¢,) using the observations from three epochs. These vectors may then be
transformed to osculating Keplerian elements by a standard procedure. The algorithm is

implemented in the FORTRAN subroutine OCFORD.
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2.1.3 Elliptic Orbit with Given Semimajor Axis and
Eccentricity

The determination of the eccentricity of an orbit using observations covering only a short
time interval is rather delicate, as will be seen later (Section 2.2.3). Therefore an algorithm
was developed which determines an eccentric orbit with fixed, pre-defined values for ec-
centricity e and semimajor axis a. The algorithm is based on the procedure presented in
Section 2.1.2 and requires only two observations. The algorithm may, e.g., be used for the
determination of the orbit of a detected GTO object for which approximate values for
semimajor axis and eccentricity may be assumed known.

Let us write the three fundamental invariants (2.10) as a function of the geocentric distance
r1 at the first observation epoch t;. The first invariant y has already the required form.
From the energy equation we get the relation between r; and v; which gives us the third

invariant R GM /2 1

7‘1 T']_ a

After some transformations we get the relation

2,2 _ 2
ot=SE (2.14)
p—e
With a(l —¢) < r; £ a(l + €) we know from eqn. (2.13) that ¢ is within the limits
—ep < € < epr. Thus we are sure that eqn. (2.14) is neither singular nor negative for any
e < 1. Taking the square root of eqn. (2.14) we have a sign ambiguity, indicating that the
sign of the scalar product 7, - v; is undefined. As a matter of fact we will always find two
solutions for two observations for one and the same semimajor axis and eccentricity, one
for a receding object (sign +), the other for an approaching object (sign —).

As in the previous section we start with an adopted value for r? and compute the fun-

damental invariants g, o, and € from eqns. (2.13) and (2.14) with pre-defined values for
semimajor axis a and eccentricity e. For o we have to select a sign. Using eqn. (2.6) we
write down the two equations

T = Ri+Ae
2.15
fori+gv1 = R+ Ages. (2.15)
~ Multiplying both equations with r; we get

(fg + ogg)rf = R1 . R2 + AIRQ € -+ Ale * €9 + A1A261 €2

from which the two topocentric distances A; and A; are computed. By back-substitution
into eqns. (2.15) we obtain the vectors r; and v, which allow us finally to compute the
osculating elements at time ¢;. If the adopted value for r? introduced initially into the
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algorithm was correct, the semimajor axis agy; and the eccentricity eout that we get from
eqns. (2.16) are the same as the input values a and e. To find the solution we can therefore
define the two functions :

Bi(r}) =agyt —a  and  By(r}) =gyt — e . (2.17)

and determine their roots in a range of ry. Each root of the two functions corresponds
to two solutions (one for an approaching, the other for an receding object) of orbits with
given semimajor axis and eccentricity which represents the two observations used for their
determination. The algorithm is implemented in the FORTRAN subroutine OCEORD.

2.2 How Accurate is an Initial Orbit?

In order to.come up with the observation schedule for newly discovered objects it is
necessary to know how far into the future an initial orbit can be used without loosing
the object. The performance of the three algorithms is studied in the following sections
and, based on the results, an optimal observation scenario is proposed which is optimal
in the sense that an orbit with maximum accuracy is generated with a minimum number
of observations.

In our context we are interested mainly in high orbiting satellites, in particular in satellites
in the geostationary ring (GEO) and in satellites in geostationary transfer orbits (GTO).

2.2.1 Methods of Analysis

Because for all algorithms the number of parameters equals the number of observations it
is not possible to compute formal errors for the elements. The three algorithms generate
orbits which exactly represent the observations used and observational errors can therefore
not be estimated. ' ’

If the observation error (i.e. the rms error of the two components of the astrometric posi-
tions) is assumed known, it is possible to define formal errors for the estimated parameters
by a covariance analysis. The problem of determining the elements for an initial orbit may
be formulated as a general parameter estimation problem solved by means of the method
of least squares. Because the numbers of parameters and observations are equal the ob-
servation rms cannot be computed, but a realistic value for the observational rms errors
may be adopted. The first design matrix for the three problems may be set up, the nor-
mal equation matrix computed and inverted. This procedure gives the variance-covariance
matrix after multiplication with the a priori variance.

In practice, due to numerical problems, the inversion of the normal equation matrix is
difficult because — due to the fact that the observations are usually separated by a very
short time interval of the order of one minute — the matrix is almost singular. It is,




48 2 Initial Orbit Determination

however, possible to compute analytically the inverse of the normal equation matrix!
Since the numbers of parameters p and observations o are equal, the first design matrix
is quadratic, though nearly singular. The components of the inverse first design matrix,
i.e., the derivatives dp;/do; of orbit parameter 7 with respect to observation k may be
calculate analytically using the formulas given in Section 2.1. Multiplying the matrix with
its transposed and with the a priori variance eventually provides the variance-covariance
matrix for the parameters. " '

Because the analytical computation of the derivatives dp;/doy is quite tedious the deriv-
atives were calculated numerically. The resulting formal errors are in excellent agreement
with the values obtained by Monte Carlo simulations and are given in Schildknecht et al.
(1995a). Results will be presented in the subsequent sections below.

Using the full covariance information the formal errors are transformed into the alongtrack
and crosstrack components projected onto the celestial sphere, and studied as a function of
time. The formal error in position is, however, not very interesting because the difference
between the true orbit and the initial orbit is after a short time dominated by systematic
errors, e.g., by the adoption of a circular orbit. (The term ‘short time’ will be specified
for the different algorithms in the following sections.) A more interesting quantity is the
evolution of the difference between the true and the initial orbit with time as a function of
the orbital parameters of the ‘true’ orbit. Of particular interest is the answer to questions
such as how long an object with given (non-zero) eccentricity will remain within a given
field of view centered at an ephemeris generated from initial elements.

Simulations: In order to study random and systematic errors as a function of the
elements of the true orbit Monte Carlo simulations were used to generate geostationary
(GEO) and geostationary transfer orbits (GTO). All or some of the elements were varied
assuming a uniform random distribution within a given range. The ranges within which
the elements were varied are given in Table 2.1. The mean longitude was fixed for all

orbits in order to simulate observations around a given position at the sky (ele ~ 35°,
azi ~ 200°).

Geostationary Orbits (GEO) Geostationary Transfer Orbits (GTO)

Semimajor axis a = 42000 to 42’300 km | Apogee distance ¢ = 40000 to 43000 km
Eccentricity e = 0.0 to 0.1 Perigee height A = 300 to 600 km

Inclination 7 = 0 to 15° ‘| Inclination 7 = 5 to 25°

R.A. of ascending node 2 = 0 to 360° Argument of latitude u = —40 to 40°, 140 to 220°
Argument of perigee w = 0 to 360° Mean anomaly M = 150 to 210°

Table 2.1: Range of elements used for Monte Carlo generation of GEO and GTO orbits. The
mean longitude of the first observation was in all cases fixed at £ = 307°.
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For the simulation of near geostationary orbits the Keplerian elements were varied within
reasonable ranges to get typical orbits. For geostationary transfer orbits the perigee height
h and the apogee distance Q = a(l + e) were varied within reasonable ranges. The
ranges in semimajor axis a and eccentricity e are set to a = 23340 — 24990 km and
e = 0.70 — 0.73, typical values for this type of orbit. The inclination was varied between
¢ = 5° and 25° which corresponds roughly to the geographical latitudes of the sites from
which geostationary satellites are launched. The mean anomaly M for the first observation
time was varied within 30° or 60° around apogee, the argument of latitude u within 40°
around 0° and 180° in order to generate the observations close to the ascending and
descending node respectively.

Two or three observations separated by different time intervals were generated. The ob-

“servations always were at least 20° above horizon. These observations were then used to
perform a covariance analysis in order to obtain formal errors. Alternatively the simulated
observations were used or for an initial orbit determination in order to study systematic
errors.

2.2.2 Circular Orbit

Given a circular orbit determined from two observations with given rms error ¢ of the
observations and separated by a small time interval At. How well does this orbit represent
the true orbit of the object? How fast does the determined orbit deviate from the true
orbit for different eccentricities of the true orbit? Let us first consider the formal errors of
the circular elements and their differences with respect to the true elements in order to
answer these questions.

Formal Errors in the Elements: The formal error of the semimajor axis a (left) and
of the inclination ¢ (right) for GEO type orbits are given as a function of the eccentricity e
in Figure 2.1. The corresponding figures for the other two elements would look very much
like the figure for the inclination (Figure 2.1, right). Each of the 180 points represents
the result of one Monte Carlo simulation with different sets of elements for the ‘true’
orbit. The time interval between the two observations used for the orbit determination
was At = 1 minute, the adopted value for the rms error of the observations was ¢ = 0.5".

The formal errors in the elements do not show a strong dependence on the eccentricity of
the true orbit. This is not surprising because the formulae for computing the formal errors
do not contain the eccentricity. Any dependence can only be introduced by slight changes
in the observing geometry (object observed at different locations relative to perigee).

For At = 1 min the formal error in the semimajor axis @ is around 20 km, the maximum
formal errors for inclination ¢ and for 2sin ¢ are about 0.045°; for the mean longitude £ it
is 0.005° for inclinations below 15° (see Table 2.2). The values are proportional to At~1,
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Figure 2.1: Formal errors of the semimajor axis (left) and the inclination (right) as a function
of eccentricity of the true orbit. The simulated observations were separated by 1 minute, a rms
value of 0.5" was assumed for the observations. Each point represents the result of one (of 180)
Monte Carlo simulations.

These results are easily understood: The observational uncertainty of the two observations
introduces an error in the mean motion of v/20 /At which in turn transforms via Kepler’s
third law into an error in the semimajor axis. l.e., we have for a circular orbit

Aa = 29—\—/_2—0 ~22km . (2.18)

Because the observation distance is not 42000 km but only about 38°000 km, this value
is reduced to 20 km which is the mean value obtained from the simulations.

The formal errors of inclination and node depend on the argument of latitude. The max-
imum formal error in the inclination is obtained when the object is observed close to the
nodes. The formal error in the ascending node on the other hand is minimum in these
cases. Maximum values result when the object is observed at maximum elongation from

Mazimum formal errors for o, = 0.5, 1 < 15°

Element: a ) Qsinz £
At =1 min: 22 km 0.045° 0.045° 0.005°
At =2 min; 11 km 0.022° 0.022° 0.003°

Table 2.2: Maximum formal errors for the four circular elements obtained from simulations
adopting an observational error of 0.5" and a separation of 1 minute and 2 minutes for the two
observation epochs.
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the equatorial plane. A simple geometrical consideration gives the formula

. 180° 20 . o) '

for the maximum formal error of the inclination z.

The formal error in the mean longitude £ depends on the argument of latitude and the
inclination. It is comparable to the rms error of the observations if the object is observed
close to the nodes. If the object is observed at maximum elongation from the equatorial
plane (i.e. at about 90° from the nodes), the formal error in the mean longitude grows
linearly with increasing inclination. For ¢+ = 15° a maximum value of 0.005° is reached.
This increase of the formal error is due to the error in the position of the node.

The formal errors of the parameters computed by covariance studies are by definition
linear functions of the observation rms errors. From eqns. (2.18) and (2.19) one easily
concludes that there must be a linear dependence of the formal errors of semimajor axis
and inclination on At~1. Simulations confirm this dependence for all four elements.

Difference Between Circular and True Elements: While the formal errors of the
elements are based on statistics (errors introduced by the observation errors) the differ-
ence of the circular elements (based on exact observations) and the true elements are of
systematic nature. As opposed to the formal errors the difference of the elements does not
depend on the observation errors but on the eccentricity of the true orbit. For an eccent-
ricity of 0.001 and 0.01 the maximum differences of the true and the circular elements is
given in Table 2.3.

Mazimum differences of the elements

Element: a ) Qsint £
e=0.001 56km 0.007° 0.007° 0.115°
e=0.01 560km 0.07° 0.07° 1.15°"

Table 2.3: Maximum difference between the four circular elements obtained from simulations
and the true elements of orbits with an eccentricity of 0.001 and 0.01.

The differences for all elements are linear functions of the true eccentricity. For the se-
mimajor axis this may be understood in the following way: If an object in an eccentric
~ orbit is observed in its perigee (or apogee) and a circular orbit is assumed, a maximum
systematic error in the mean motion arises with a value of

= (=51

an=v 507

(2.20)

perigee -
apogee
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where v is the true anomaly, n the mean motion. With this expression we get for the
maximum difference in the semimajor axis to the first order in e

Aa = %ae (221)
which gives 56 km for a = 42165 km and e = 0.001. The difference between circular and

true longitude may be written as
Al=v—M =2esinM+0(e?) (2.22)

where M is the mean anomaly. The maximum value for this difference is therefore Al = 2e
which gives 0.115° for e=0.001. The systematic differences in ¢ and  result because
the object is not observed from the geocenter. They depend on the actual observation
geometry. ' ‘

As stated above, the differences of the elements, i.e. the systematic errors do not depend
on the observation rms error ¢ nor on the time interval At between the two observation
epochs.

Difference of Circular and True Elements for GTO objects: If the observed
satellite is not a GEO but a GTO object the algorithm would not fail to generate ele-
ments of a circular orbit representing the two observations. The elements determined
would, however, be heavily biased. For an object observed in the apogee of an orbit with
eccentricity e the algorithm interprets the rate of change in the true anomaly as the mean
motion n of a circular orbit. Solving for the radius of this circular orbit we obtain

1 2/3
ac=a<1i2) . - (2.23)

For a GTO object with @ ~ 24’500 km and e ~ 0.7 a radius of the circular orbit of about
a. ~ 78’000 km would result. A somewhat more precise estimate taking into account the
rotation of the Earth during the observations (and thus modifying the angular velocity of

the object) gives a value of a. ~ 63600 km. The difference to the ‘true’ semimajor axis
would be around 39000 km!

Circular elements for observations of GTO objects were computed with 200 Monte Carlo
simulations. The objects were assumed to be observed within 30° in mean anomaly from
the apogee. The range of the semimajor axis determined is 60°000 km to 67°000 km. For
the inclination the range of values covers £2° around the ‘true’ value. The results are
independent on the time interval between the two observations and the observation rms
errors even for GTO objects.

There can be little doubt, however, that an object for which a semimajor axis of about
65000 km is computed assuming a circular orbit, moves around the Earth in a highly
eccentric orbit just because there are currently no objects on circular orbits with such
radii (i.e., on circular 44-hour orbits). GTO objects are therefore easily distinguished
from GEO objects and the operator may invoke an elliptic orbit determination algorithm
(see below) to get a more realistic result.
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Formal Errors in Position: Using the full covariance information of the estimated
orbit parameters the formal errors of the object positions at the celestial sphere may
be computed in alongtrack and crosstrack direction as a function of time. The evolution
of the formal error is shown Figure 2.2 for a number of circular orbits (in alongtrack
(left) and crosstrack directions (right)). The observations were generated from orbits with
eccentricity e = 0.001: the other elements were generated at random. Obviously the
variation of the elements leaves the character of the curves essentially unchanged. The
formal alongtrack error grows linearly with about 0.28°/day corresponding to an error in
the semimajor axis of about 22 km while the crosstrack error shows a periodic behaviour
with a maximum value of about 0.045°corresponding to the error in inclination. The slope
of the two curves at ¢ = 0 is the same (observe the different scales in the figures).
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Figure 2.2: Formal errors in position as a function of time in alongtrack (left) and crosstrack
directions (right). Different curves correspond to orbits with different elements and a fixed
eccentricity e = 0.001. Observation rms error was assumed to 0.5"

Because the formal errors do not depend on the eccentricity, the errors in position do
not depend on the eccentricity either. For relatively high eccentricities (see Figure 2.3 for
e = 0.1) we observe a large variation of the drift rates for the circular orbits, because some
of the original orbits are observed close to perigee, others close to apogee. The revolution
period for the determined circular orbits therefore varies in a big range and with it the
periods and amplitudes of the crosstrack error.

The formal errors of the satellite position are proportional to the observation rms error
and proportional to At~!, where At is the time interval between the two observations.
The dependence of the alongtrack (left) and crosstrack errors (right) on At is given in
Figure 2.4.

Systematic Errors in Position: Two objects, one in an eccentric ‘true’ orbit, the
other in a circular orbit exactly representing two observations of the eccentric orbit, will
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Figure 2.3: Formal errors in position as a function of time in alongtrack (left) and crosstrack
directions (right). Different curves correspond to orbits with different elements and a fixed
eccentricity of e = 0.1. Observation rms error was assumed to 0.5"
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Figure 2.4: Formal errors in alongtrack (left) and crosstrack directions (right) as a function of
the time interval At between the observations. Different curves correspond to an extrapolation
of the orbit for 1, 2, 3, and 4 hours.

drift away from each other at a rate that depends on the eccentricity of the true orbit. In
Figures 2.5 and 2.6 the difference between the two orbits is shown as a function of time in
alongtrack and crosstrack direction for orbits with an eccentricity of e = 0.001 and e = 0.1
respectively. The different curves correspond to ‘true’ orbits with fixed eccentricity but
otherwise random elements.

The difference (systematic error) in crosstrack direction is always one to two orders of
magnitude smaller that the corresponding difference in alongtrack direction. The former



2.2 How Accurate is an Initial Orbit? 55

08t
0.01°}
06 |
0.00 |
04}
001 |
02} 0
0.0 + -0.02 |
0 240 480 720 960 1200 1440 min 0 240 480 720 960 1200 1440 min

Figure 2.5: Difference in degrees between orbits with eccentricity e = 0.001 and a circular
orbit determined from two observations on this orbit as a function of time in alongtrack (left)
and crosstrack direction (right). Different curves correspond to reference orbits with different
(random) elements but the same eccentricity.
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Figure 2.6: Difference in degrees between orbits with with eccentricity e = 0.1 and a circular
orbit determined from two observations on this orbit as a function of time in alongtrack (left)
and crosstrack direction (right). Different curves correspond to reference orbits with different
(random) elements but the same eccentricity.

shows a periodic behaviour (the drift observed for ¢ = 0.1 stems from a slightly systematic
behaviour of the circular orbit determination algorithm) while the latter increases with
time. The maximum rate occurs (as expected) if observations near perigee or apogee are
used for the orbit determination. The drift may reach 0.8°/day for e = 0.001 and 90° /day
for e = 0.1 corresponding roughly to the maximum systematic error in the semimajor axis
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given in eqn. (2.21).

In Figure 2.7 (left) we see the maximum formal error in alongtrack direction as a function
of time for eccentricities between e = 0 and e = 0.01 (i.e. the envelopes of curves such
as those in Figure 2.5 and Figure 2.6, right). The curves have a similar shape but are
scaled in the ordinate direction. In Figure 2.7 (right) we see the alongtrack error for an
extrapolation of 1, 2, 3, and 4 hours as a function of eccentricity. The dependence of the
systematic error in position on the eccentricity is obviously linear. The same is true for
the crosstrack error but the slope is much smaller.
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Figure 2.7: Maximum alongtrack difference in degrees between circular orbits and reference
orbits with different eccentricities as a function of time (left) and eccentricity (right). The four
curves in the right diagram show the difference after extrapolation for 1, 2, 3, and 4 hours.

The maximum systematic errors are given in Table 2.4 in alongtrack and crosstrack posi-
tion after 1, 2, 3, and 4 hours for reference orbits with eccentricity e = 0.001 and e = 0.01.
For comparison the corresponding formal errors are given assuming an observation rms
error of 0.5". For short extrapolation times the formal errors are dominant, for longer ones
the systematic errors.

Systematic Errors in Position for GTO Objects: A circular orbit determined from
observations of a GTO object represents the ‘true’ orbit only over a short time around
the observation epochs. In Figure 2.8 we see the difference between ‘true’ and circular
orbit as a function of time. The left part of the figure covers an extrapolation interval of
5.5 hours, the right part magnifies the first 90 minutes. Each curve represents one of 40
Monte Carlo simulations of a GTO object observed within 30° in mean anomaly from its
apogee. As expected the difference of the two orbits starts to increase rapidly after about
2 to 3 hours. Interestingly enough, the object remains within one degree of its circular
ephemeris position for-about one hour for most simulated orbits! '
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systematic error formal error
after 1h 2h 3h 4h 1h 2h 3h 4h
alongtrack B .
e=0.001 .004° .017° .039° .067° [ .012° .024° .036° .049°
e=0.01 043° 17° .39°  .68° [.012° .024° .036° .049°
crosstrack
e=0.001 | .0003° .001° .003° .004° |.012° .023° .032° .040°
e=0.01 .003° .013° .027° .046° | .012° .023° .032° .040°

Table 2.4: Maximum systematic and formal errors in alongtrack and crosstrack directions after
1, 2, 3, and 4 hours for circular orbits determined from observations based on orbits with
eccentricity e = 0.001 and e = 0.01. Observation rms error was assumed to 0.5".

The maximum total angular difference as well as the crosstrack offset (with respect to
the determined circular orbit) of GTO and circular orbit are given in Table 2.5 for extra-
polation time intervals ranging between 10 minutes and 2 hours. For extrapolation times
longer than about one hour the time interval on which the circular orbit determination is
based is not essential, the systematic error dominates anyhow. For extrapolations below
one hour the representation of the orbit is improved, however, by a longer observation time
interval. An observation time interval of 1 minute gives a residuum of 1" after 10 minutes.
If after 10 minutes the object is observed again and a new circular orbit is determined
the formal error after 20 minutes is 2" instead of 4.
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Figure 2.8: Difference between ‘true’ GTO orbits and circular orbit representing two observations
spaced by 1 minute and located within 30° in mean anomaly from apogee. Left: Extrapolation
for 5.5 hours, right: extrapolation for 1.5 hours. Each curve represents the result from one of 40
Monte Carlo simulations.
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If the object of interest is observed before apogee the circular orbit representation holds
for a longer time interval than for objects observed after the apogee. An object observed
at mean anomaly between 150° and 180° is well within half a degree from its circular
ephemeris position after one hour (because the object remains for a longer time at a large
distance with a velocity which does not change dramatically).

Mean Anomaly Systematic Error in Position for GTO after:
At at Obs. Time 10 20 30 40 50 60 90 120 min

Total difference:
1 min | 150,...,210° 0.018° 0.067° 0.15° 0.28° 0.46° 0.71° 1.9° 4.3°
1 min | 150,...,180° 0.019° 0.066° 0.14° 0.22° 0.33° 0.44° 1.0° 1.9°
1min | 130,...,150° 0.027° 0.11° 0.24° 0.41° 0.62° 0.86° 1.7° 2.6°
1 min | 210,...,240° 0.029°  0.13° 0.32° 0.60° 1.0° 1.6°  43°  10°

10 min | 150,...,210° — 0.032° 0.10° 0.21° 0.38° 0.60° 1.7° 3.9°

Crosstrack difference:
1 min | 150,...,210° |-0.007° -0.032° -0.07° -0.13° -0.22° -0.32° -0.8° -1.7°
1 min | 150,...,180° |-0.007° -0.089° -0.07° -0.12° -0.19° -0.27° -0.7° -1.8°
1min | 130,...,150° |-0.010° -0.039° -0.09° -0.15° -0.23° -0.33° -0.7° -1.2°
1min | 210,...,240° |-0.010° -0.045° -0.11° -0.20° -0.34° -0.52° -1.5° -3.5°

10 min | 150,...,210° — -0.017° -0.05° -0.11° -0.19° -0.29° -0.8° -1.7°

Table 2.5: Maximum angular distance of a GTO and its ‘best fitting’ circular orbit for extra-
polation time intervals between 10 minutes and 2 hours. The circular orbit is based on two
observations separated by 1 and 10 minutes, respectively, and located around the apogee within
different ranges in mean anomaly. The crosstrack component refers to the circular motion. The
numbers on each line are based on 400 Monte Carlo simulations.

30° in mean anomaly corresponds to only 7.5° in true anomaly at apogee for an orbit
with eccentricity e = 0.7. If the object is observed farther away from the apogee, the
range of validity for a circular orbit representation is reduced. If the object is observed
between 120° and 150° in mean anomaly (7.5° — 16° in true anomaly preceeding apogee)
the difference of the circular orbit with respect to the true orbit is > 0.5° already after
45 minutes (see Table 2.5). If the object is observed at the same distance after the apogee
passage (i.e. at 210° — 240° in mean anomaly) the situation is much worse: The circular
orbit representation is good within 0.5° only for 35 minutes. (At this angle objects with
the apogee close to the descending node (w ~ 180°) are close to or even below 20° elevation
for a mean latitude station like Zimmerwald.)

The crosstrack offset of a GTO object (relative to the circular motion) is always negative
(for an observer at northern latitudes). The object starts to leave the ‘best fitting’ circular
orbit in southward direction. The evolution of the object’s position relative to its circular
ephemeris position is given for 100 simulated GTO orbits in Figure 2.9.

Maximum Alongtrack Error for a GEO Object: To get the maximum expected
error in the position of an object we have to combine the formal and the systematic errors.
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Figure 2.9: Paths of GTO objects relative to the circular orbit computed from two observations
separated by 1 minute and located within 30° in mean anomaly from the apogee. The orbits
‘were extrapolated for two hours. In negative z-direction the alongtrack offset and in y-direction
the crosstrack offset (relative to the circular motion) is plotted. Each curve represents one of
100 Monte Carlo simulations.

We use the following ‘rule’ to compute the expected maximum error:
total error = systematic error + 3 - formal error. (2.24)

In Figure 2.10 we see the dependence of the maximum alongtrack error on the separation
of the two observations used for the circular orbit determination for a GEO object (left,
observation rms error fixed at 0.5") and the observation rms error (right, separation of
observations is 1 minute). The reference orbit has an eccentricity of e = 0.001. In Table 2.6
we find numerical values.

Total Alongtrack Error for e = 0.001, ¢ = 0.5"
Extrapolation: | 1h 2h 3h 4h 6h 12h 24h
At = 1min: |.040° .089° .15° .21° .37° .89° 1.64°
At = 10 min: | .007° .023° .048° .080° .16° .50° .80°

Table 2.6: Maximum total alongtrack error for a circular orbit determined from observations
spaced by 1 min and 10 min based on an orbit with eccentricity e = 0.001 and with observation
rms errors of 0.5

How long does an object on an eccentric GEO orbit remain within a given field of view
if the center of the field is set using an ephemeris which is based on a circular orbit
determined from two closely spaced astrometric positions? The answer depends, as we
have seen above, on the eccentricity of the true orbit, on the time interval between the
two observations, and on the observation rms errors. In Figure 2.11 we see the minimum
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time T for which objects on orbits with different eccentricities e will stay within a field of
view with given diameter. The curves are based on extrapolated positions using circular
orbits (determined with observations with rms errors of 0.5" and a separation of 1 minute
(solid lines) and 10 minutes (dashed lines)). The different shape of the solid and the dashed
curves is due to a larger formal error for At = 1 min which influences the value of T for
small eccentricities. Table 2.7 contains numerical values of T' for different eccentricities.

Even for instruments with a small field of view with a diameter of 0.2° an object with
true eccentricity of e = 0.1 will remain in the FOV for 25 minutes (for At = 1 minute).
An object with eccentricity smaller than e = 0.01 will remain in a FOV with diameter of
1° for more than three hours. According to Figure 1.9 (right) on page 27 this corresponds
to 97% of the catalogued objects in Janin (1996). The 60% objects with eccentricities
smaller than 0.001 remain within 0.1° of the center of the FOV for two hours (all numbers
for At =1 min). '

Obviously, even for objects in orbits with relatively big eccentricities, a circular orbit based
on two closely spaced observations is a valuable tool for recovering the object within the
same night. Even for GTO objects the circular orbit determined from the two detection
frames is good enough to recover the object within about half an hour for a FOV of 1°.
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Figure 2.10: Maximum total alongtrack error for an object on an orbit with eccentricity
e = 0.001. Left: Dependence on the separation of the two observations used for circular or-
bit determination with an observation rms error of 0.5". Right: Dependence on the observation
rms error o and a separation of the two observations of 1 minute. The different curves correspond
to extrapolation by 1, 2, 3, and 4 hours.
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Figure 2.11: Time for which an object on an orbit with given eccentricity remains within a
specific field of view (FOV), if the position is extrapolated using a circular orbit determined
with two observations spaced by 1 minute (solid lined) and 10 minutes (dashed lines) with an
assumed rms error of the observations of 0.5".

c=0.5"
Time interval: At =1 min ' At =10 min
Eccentricity: | 0.0001 0.001 0.01 0.1 0.7 | 0.0001 0.001 0.01 0.1 0.7
FOV 0.2° 160 135 70 25 15| 770 270 95 35 30
0.5° 380 270 120 40 25| > 1440 455 145 50 40
1.0° 720 460 180 60 35| > 1440 695 205 65 55
1.5° 1110 625 225 75 45| > 1440 985 255 80 70
2.0° | >1440 775 265 85 50| > 1440 > 1440 295 90 80

Table 2.7: Time in minutes that an object in an orbit with given eccentricity remains within
a specified field of view if its position is extrapolated with a circular orbit generated from two
observations spaced by 1 minute or 10 minutes. GTO ob jects are assumed to be observed within
16° in true anomaly of the apogee. Observation rms errors are 0.5".

2.2.3 Elliptic Orbit |

The algorithm for elliptic orbit determination described in Section 2.1.2 determines all six
Keplerian elements using the observations of the object of interest at three different (and
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closely spaced) times. Because all orbital elements are determined, systematic effects in the
sense of Section 2.2.1 do not exist. Monte Carlo simulations of the observations themselves
(and not only of the orbital parameters) are therefore used to look for possible systematics
in the determined elements. Formal errors in the elements and in the propagated positions
are studied, as well. '

The algorithm may produce more than one orbit representing the observations, no orbit
at all, or an orbit with elements very different from the true ones. We will see that the
algorithm is reliable provided the time interval containing all observations is relatively
long, or, if the orbit has a high eccentricity.

Number of Solutions: As opposed to the circular orbit determination the elliptic
orbit determination algorithm may fail to generate an orbit for observation epochs that
are too close together or too far apart. It is clear that the algorithm must break down
for observations that are too far apart because the orbit is represented by a polynomial
(the functions f(t) and g(t) in eqn. (2.6), expanded into Taylor series). For observations
which are too close together the observation errors may cause the algorithm to generate
unreasonable elements or even to fail.

Figure 2.12 (left) shows — as a function of the total observation time interval — the
percentage of nearly circular orbits (with e = 0.01) in a GEO, generated by a Monte
Carlo procedure, that were successfully reconstructed by the elliptic orbit determination
algorithm. ‘Error-free’ observations were used for the simulations. The abscissa gives the
length of the time interval between the first and the last observation. The second observa-
tion is assumed to be in the center of this time interval (observe that 6 hours corresponds
to 1/4 revolution).

The algorithm starts to fail for observation intervals of about 3 hours (1/8 revolution).
Strangely enough the algorithm ‘recovers’ for time intervals longer than 4 hours to break
down finally for time intervals longer than about 6 hours. This strange behaviour has
its origin in the finite convergence radius of the Taylor expansion (2.6): For observation
time intervals longer than 3 hours the algorithm starts to have problems with convergence
and the function B(r) oscillates with very large amplitude for values of r which are only
slightly smaller than the true value. Nevertheless the algorithm finds solutions which,
however, for longer and longer observation time interval deviate more and more from the
true solution. Usually two or more ‘solutions’ are found. The features in Figure 2.12 (left)
depend for time intervals longer than about 3 hours on the expansion order of the Taylor
series (order ¢ = 12 was used) and the termination criterion for the regula falsi used to
identify the roots of the function B(r). In fact, using a Taylor expansion with a reduced
order q = 7, solutions may be found up to an observation time interval of 12 hours! It is
obvious, however, that most of these solution are far from representing the true orbit of
the object. '

Figure 2.12 (right) gives the result of a similar analysis for GTO objects observed around
apogee. The solid line corresponds to ‘error-free’ observations while the dotted line was
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produced with observations with a rms error of 0.5". For observation time intervals longer
than 1.5 hours the algorithm starts producing failures. The increase of the number of
solutions for time intervals between 3 and 4 hours is due to multiple solutions at the
limit of convergence of the Taylor series. In this range of observation time intervals even
hyperbolic solutions may be generated.

For short observation time intervals the ability of the algorithm to generate a reason-
able solution is limited by the observation errors. For an observation rms error of 0.5"
all simulated orbits were reconstructed for observation time intervals longer than about
6 minutes corresponding roughly to 0.4% of the orbital period. This number confirms the
experiences gained with elliptic orbit determination algorithms in the planetary system:
For a ‘normal’ minor planet with a revolution period of about 4.7 years (semimajor axis of
2.8 au) an orbit is determined without problems if the observations cover a time interval
of at least one week (0.4% of the revolution period) and up to about 6 months (10% of
the revolution period).

In conclusion’ we may state that the observation time interval for an elliptic orbit deter-
mination should be longer than about 6 to 10 minutes but not exceed 3 hours for GEQ
objects and 1.5 hours for GTO objects. If the observations of an object are separated by

such long time intervals it is a problem to assign the observations to one and the same
object, anyhow.
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Figure 2.12: Percentage of simulated orbits reconstructed by the elliptic orbit determination
algorithm as a function of the time interval between the first and last observation. Left: Orbits
with eccentricity e = 0.01. Right: Orbits with eccentricity e = 0.7. Solid line: ‘error-free’ obser-
vations, dotted line: observation rms error ¢ = 0.5". The strange features for ¢ > 3 hours for
GEO and t > 1.5 hours for GTO are caused by convergence problems of the algorithm. The
solutions in these ranges are not reliable.
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Systematic Differences of Elements for GEO Objects: In order to study the ac-
curacy of elements determined by elliptic orbit determination under realistic conditions,
not only the elements of the simulated orbits were varied but also the observations. The
observed right ascension and declination were assumed to be normally distributed with
standard deviations of 0.5". The difference of the determined elements and the simulated
elements (‘determined’ — ‘true’) was analyzed as a function of the observation time in-
terval. '

The Histogram 2.13 shows the distribution of the differences in the semimajor axis (top
left), eccentricity (top right), and inclination (bottom left). The histogram (bottom right)
shows the distribution of the computed mean anomaly of the first observation. All histo-
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Figure 2.13: Histograms indicating the difference of determined elements to simulated elements
(‘determined’—‘true’) for different observation time intervals: Semimajor axis (top left), eccent-
ricity (top right), inclination (bottom left) for geostationary orbits with eccentricity e = 0.01.
The histogram (bottom right) shows the distribution of the détermined mean anomaly for the
first observation epoch. The histograms for each observation time interval are based on 450
Monte Carlo simulations. Observation rms 0.5"
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grams are based on simulated geostationary orbits with e = 0.01. The observation epochs
were equally spaced.

For small observation time intervals the determined semimajor axes and the eccentricit-
ies obviously show significant systematic differences with respect to the true values. The
semimajor axis is systematically underestimated (Aa < 0) while the eccentricity is over-
estimated (Ae > 0). For an observation time interval of A¢ = 1 minute the peak value
for the semimajor axes is more than 25000 km below the actual value for geostationary
orbits, i.e., at only about 17°000 km which would correspond to an orbital period of only
about six hours! The corresponding eccentricities are distributed around 0.8. Some of the
eccentricities are even larger than unity as already stated in the previous paragraph. Only
for time intervals longer than 8 minutes the peak of the histogram is at e = 0.1 or below.

The Histogram 2.13 (bottom right) showing the distribution of the computed mean an-
omaly for observation time intervals between 1 and 20 minutes helps to understand the
reason for the systematics. All histograms show peaks at 0° and 180° while the ‘true’
mean anomaly is randomly distributed! Obviously the algorithm has the tendency to put
the object at a place in the orbit with large curvature, i.e., either into the perigee or the
apogee. The argument of perigee on the other hand is randomly distributed even for long
observation time intervals due to the small eccentricity of the ‘true’ orbit.

The inclination 7 (Figure 2.13, bottom left) and the right ascension of the ascending node
Q, on the other hand, are well determined for long observation time intervals. For an
8 minutes interval the inclination is within 0.5°, for 4 minutes within 1° of the true value.
Even for small time intervals the distribution of the determined value around the true
value is symmetrical.

Systematic Differences of Elements for GTO Objects: The same analysis (as that
presented in the previous paragraph for GEO and near GEO objects) was also performed
for geostationary transfer orbits with eccentricities around e = 0.7. The observations were
simulated randomly within 40° of the apogee of the orbits with a rms of 0.5". The His-
tograms 2.14 show the distribution of the differences in the semimajor axis (top left),
eccentricity (top right), inclination (bottom left), and mean anomaly at the first observa-
tion epoch (bottom right). :

As for geostationary orbits the semimajor axis is systematically underestimated, the
eccentricity overestimated for small observation time intervals. For a time interval of
1 minute the determined semimajor axes are distributed around a value which is only
about half of the ‘true’ value, the eccentricities are distributed around 0.9. (For these
orbits the perigee distance would be around 1200 km from the geocenter.) The apogee
distance, too, is underestimated by more than 15000 km.

The determined mean anomaly on the other hand (Figure 2.14, bottom right) is fairly
well distributed around the ‘true’ value. This is due to the large eccentricity and the fact
that the object is assumed to be observed near its apogee (i.e. a place in the orbit with a
big curvature).
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Figure 2.14: Difference of determined elements with respect to simulated elements
(‘determined’—‘true’) for different observation time intervals: Semimajor axis (top left), eccent-
ricity (top right), inclination (bottom left), and mean anomaly (bottom right) for geostationary
transfer orbits with eccentricities e = 0.7. The histograms for each observation time interval are
based on 450 Monte Carlo simulations. Observation rms error is 0.5".

The inclination (Figure 2.14, bottom left) and the right ascension of the ascending node
are fairly well determined for geostationary transfer orbits, too. For small observation time
intervals the distribution is somewhat broader than for GEO objects. The corresponding
histograms for GEO in Figure 2.13 and for GTO in Figure 2.14 are given in the same
scale; they look fairly similar.

Formal Errors of Elements for Near Geostationary Orbits: The formal errors of
the elements — determined with the method described in Section 2.1.2 — depend strongly
on the orbital elements and the observation geometry. The formal errors therefore vary for
different simulations in a range that may cover more than an order of magnitude for some
elements. Figure 2.15 shows the formal errors for some elements. Each point represents
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one simulation of a geostationary orbit. The rms error of the observation was assumed to
be 0.5", the observation time interval was 10 minutes.

In Figure 2.15 (top left) the formal error of the semimajor axis is given as a function of
eccentricity. The mean formal error is around 4’000 km, the distribution getting broader for
larger eccentricity. This formal error is in agreement with the histogram of the distribution
of the element differences in the previous paragraphs. In Figure 2.15 (top right) the
formal error of the eccentricity is shown as a function of eccentricity. Obviously the formal
error depends only slightly on the value of the eccentricity. This is also true for the
other elements (except for the mean longitude) for which the corresponding figure would
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Figure 2.15: Formal errors of the elements determined with the elliptic orbit determination
algorithm using three simulated observations with an rms of 0.5"in a time interval of 10 minutes
of a GEO object. Top left: Formal error of the semimajor axis a as a function of the eccentricity
e. Top right: Formal error of the eccentricity as a function of the eccentricity e. Bottom left:
Formal error of the mean longitude £ at the first observation epoch as a function of e. Bottom
right: Formal error of £ as a function of the mean anomaly M of the first observation epoch.
Each point represents one of 200 Monte Carlo simulations.
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look similar. The formal errors in inclination and R.A. of ascending node show a similar
dependence on the argument of latitude as for the circular orbit (see previous section).

The formal errors reflect the variation of element differences obtained from Monte Carlo
simulations in the previous paragraphs as soon as the distribution of the element differ-
ences is centered around the ‘true’ value, i.e., for not too short observation time intervals.
Therefore, we will only consider observation time intervals of 5 minutes or longer.

As the formal error in the semimajor axis increases for increasing eccentricity, the formal
error in the mean longitude increases too (see Figure 2.13, bottom left) because of the
growing formal error in the mean motion. The big value of the formal error of about 0.7°
(for an observation rms error of 0.5”) is mostly due to the badly determined size and shape
of the orbit, i.e., the big formal error in the semimajor axis and the eccentricity. Figure 2.15
(bottom right) shows the dependence of the formal error in the mean longitude on the
mean anomaly at the first observation epoch: Observations performed at apogee provide
larger formal errors in the mean longitude than observations performed at perigee.

In Table 2.8 statistical information concerning the distribution of the formal errors of the
elements calculated with our elliptic orbit determination algorithm are given for different
eccentricities and time intervals between the observations. It shows the decrease of the
formal errors for increasing observation time intervals.

Because the formal errors are strictly proportional to the observation rms errors (see
Section 2.2.1) it is not necessary to give results for rms observation errors other than 0.5".

Range of Formal Errors in the Elements for ooy, = 0.5"

o(a) o(e) o(i) o(Q)sini o(w)-e a(f)

(km] [deg] [deg) [deg] [deg)
e~0.0:
At = 5min | 15000 —-28000 | .02 - .37 .12 —-.70|.11 — 6814 —18. | 24-28
At = 10min | 3400- 4700 | .006 —-.075| .03 —.18 | .03 ~.17|0.26— 4.0 | 06-0.7
At = 20min 880 — 17120 | .003 - .020 | .007 - .05 | .007—.04 | 0.07~ 1.1 | 0.1—-0.2
e~ 0.1:
At = 5min | 11°500 — 45000 | .02 — .42 | .12 —81|.11 —.80}14 —18 |1.7-38
At = 10min | 27800— 5200 | .006—.09 {.03 —.21 .03 —.20 | 0.26— 4.510.4-0.9
At = 20min 720 — 1°300 | .001 —.022 | .007—.06 | .007— .06 | 0.07— 1.1 ]0.1-0.3
e~0.T:
At = bmin 9550 — 4750 | .06 —.10 | .26 ~ 66| .41 —.72 109 — 50| 5. —8.7
At = 10min 380 — 1050 | .013—.032 | .07 —.20|.10 —.21{0.17— 15|12-19
At = 20min 150 — 280 | .004 - .006 | .018— .05 { .027—.05 | 0.05— 0.3 [ 0.3—-0.5

Table 2.8: Range of formal errors obtained from elliptic orbit determination. The values were
determined by Monte Carlo simulations. The orbits with eccentricities between 0.0 and 0.1
correspond to near geostationary orbits, those with eccentricity around 0.7 to geostationary
transfer orbits. The time interval between the first and the last of the three measurements is 5,
10, and 20 minutes. Observation rms errors are 0.5".
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Formal Errors for Geostationary Transfer Orbits: In Figure 2.16 we give the
formal errors of the semimajor axis (left) and the eccentricity (right) as a function of
the eccentricity for simulated GTOs. Similar pictures would result for the other elements.
The formal error in the semimajor axis is around 750 km, i.e., much smaller than for a
GEO object under similar observation conditions (where the formal error reaches values
of 3’800 km, see Figure 2.15, top left). The difference is due to the smaller semimajor
axis (resulting in a different mean motion) and the fact that the GTOs are observed only
around the apogee. The latter circumstance renders the distribution of the formal errors
for all elements narrower.

Minimum and maximum formal errors obtained from the simulations are given in Table 2.8
for all elements for eccentricities around 0, 0.1, and 0.7 and for total observation time
intervals (with equally spaced observations) of 5, 10, and 20 minutes.

Dependence on the Observation Time Interval: Increasing the time interval
between the observation epochs reduces the size of the formal errors of all elements.
This is shown in Figure 2.17 for the formal error in the semimajor axis (left) and the
eccentricity (right) in a logarithmic scale. For the eccentricity (as well as for the elements
that are not shown) the formal errors are inversely proportional to the square of the time
interval between the observations (¢ o« At~2). This dependence is similar for GEO and

GTO.

It is not obvious that the formal error has this dependence on the observation time interval.
For the circular orbit we had a proportionality of formal errors and time interval with an
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Figure 2.16: Formal error of the semimajor axis (left) and the eccentricity (right) as a function
of eccentricity for geostationary transfer orbits observed near apogee. The rms error of the
observations is 0.5 and the observation time interval 10 minutes. Each point represents one of
100 Monte Carlo simulations.



70 2 Initial Orbit Determination

km 1
1000000} . { 05t 1
500000+ t
] | at?
0.1}
100000 | 1 Pt i ‘
]
50000 , . ] oost 1 b I
. ] 1 l N
| SR ’
-2 ! \

10000 I av ] i v I
l 001t ! I :
5000 f | ; I . ' i ]
| 0.005 Voo (I ]

| . I I

| l 1] ‘ 1 .

1000} | 1 I I

. ) !

4 8 8 10 12 16 20min T4 6 8 10 12 16 20min

Figure 2.17: Dependence of the formal errors in the elements using our elliptic orbit determina-
tion algorithm on the observation time interval in double logarithmic scale. Left: formal error in
the semimajor axis as a function of log At. Right: formal error in the eccentricity as a function of
log At. The rms error of the observations is 0.5". Each point represents one of 200 Monte Carlo
simulations.

exponent of —1 whereas for the elliptic orbit we have an exponent of —2. The stronger
dependence on the time interval seemingly is due to the fact that the shape of the orbit is
not fixed. An error in the shape of the orbit influences (through the observation geometry)
also the accuracy of the orientation of the orbital plane.

The semimajor axis (Figure 2.17 left) shows exceedingly large formal errors for small time
intervals between the observations. For an observation time interval of 4 minutes and
observation rms error of 0.5" one obtains formal errors that may reach 10007000 km! As
already stated above the formal error is meaningless for too short time intervals because
the difference between computed and ‘true’ elements show strong systematic effects.

Dependence on the Distribution of the Observations: In the previous paragraphs
it was assumed that the three observation epoch were equally spaced within the total
observation interval. If this assumption is not true the formal errors of the elements grow.
In Table 2.9 we see the range of the formal errors for simulated GTO for a total observation
interval of 10 minutes, where the second observation was made 1, 2, and 5 minutes after
the first observation. The values of the formal errors for the observation times separated
by 1 and 9 minutes correspond roughly to those of a total time interval of only 5 minutes
with equally spaced observations, those for the observations separated by 2 and 8 minutes
are roughly equal to those of a time interval of 8 minutes with equally spaced observations.

Formal Errors in Position: The formal errors in the elements are of interest for
identifying an object whereas the formal errors in position as a function of time indicate,
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Range of Formal Errors in the Elements for oy, = 0.5"
Intervals between the o(a) o(e) o(3) o(Q)sini | o(w)-e c(f)
three observations [km] [deg] [deg] [deg] [deg]
e~0.7:
At=1+49 min 2°000—-4%00 | .04 —.10 [ .20—.70 | .35—~.65|0.5—-5.0 | 3.8—6.0
At =2+ 8 min 1000 - 1750 | .022—-.04 |.10—-.35| .19—.38 | 0.3—2.1 | 2.0-3.2
At =5+ 5 min 580—17050 | .013-.023 | .07—.20 | .10—-.21 | 0.2—1.5|12~1.9

Table 2.9: Range of formal errors obtained from first orbit determination for different spacings
of the observation epochs within an interval of 10 minutes. The values were determined from
orbits varied by Monte Carlo simulations. Observation rms errors are 0.5",

how long a set of elements is useful for recovering the object. In Figure 2.18 we show the
(formal) alongtrack error for a time span of 24 hours after the first observation epoch
for GEO type orbits (top left) and for GTO type orbits (top right) observed close to the
apogee. Each curve corresponds to one of 40 Monte Carlo simulations of orbital elements.
The results are based on an observation time interval of 10 minutes (from first to last
observation) and an observation rms error of 0.5".

After a few hours the formal error in the position starts to grow very rapidly for both

types of orbits. For objects in GTO approaching the apogee the error grows to exceedingly
large values because, due to the small distance to the observer and the large velocity, small

errors in the elements lead to big alongtrack errors. This explains the spikes in Figure 2.18

(top right). ’

Figure 2.18 (bottom) allows a closer look at the two types of orbits, both covering a time
interval of three hours. Obviously objects of both types will remain only for a few hours
(at most) within a small field of view. Three main differences between the development of
the formal errors for the two types of orbits may be observed: a) The formal error at ¢ = 0
is lower for the GTO type orbit as in the case of the elements, and b) remains at this low
level for about one hour while the formal error for the GEO type orbits increases linearly
with time; c) after about two hours the formal error for the GTO type orbits starts to
increase much faster than for the GEO type orbits because the object approaches the
perigee.

Maximum formal errors obtained in 200 Monte Carlo simulations are given in Table 2.10
for 1, 2, 3, and ‘4 hours after the first observation epoch. Both, the alongtrack and
crosstrack formal errors are given. The observation rms error adopted is 0.5, observation
time intervals are 5, 10, and 20 minutes. For an observation time interval of 5 minutes (or
smaller) no acceptable orbits are obtained for a GEO in most cases (formal errors are of
the order of 300°) whereas the results are reasonable for GTO.

As usual, the crosstrack error is much smaller than the alongtrack error. It may therefore
be neglected in all cases where the alongtrack error is within acceptable limits.
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Figure 2.18: Alongtrack rms errors as a function of time for GEO (left) and GTO type orbits
(right). The top row covers a time interval of 24 hours (same scale), the bottom row the first
3 hours (same scale). Different lines correspond to one of 40 Monte Carlo simulation runs. An
observation time interval of 10 minutes and an observation rms error of 0.5% and observation of
the GTO object near apogee were assumed.

From Table 2.11 we may extract the time during which an object remains within a given
field of view, if its ephemeris was computed using the elements of an elliptic orbit deter-
mination. A GTO object observed near apogee and within a time interval of 10 minutes
will remain within a small field of view of 0.2° for one hour. Obviously the increase in
the observation time interval is not so important for GTO objects because errors will
dramatically increase anyhow when the object approaches the perigee.

In conclusion we may state that for near circular orbits the determination of an elliptic
orbit is not very helpful because the circular orbit determined from two observations is
equally accurate (see previous section). For geostationary orbits with moderate eccentri-
city (e ~ 0.1) the determination of an elliptic orbit may be adequate if a long observation
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alongtrack crosstrack
At 1 2 3 4 h 1 2 3 4h
5min GTO | 0.55° 1.3° 9°  350° | 0.15° 0.50° 0.9° 3.9°
10 GEO | 0.16° 0.37° 0.80° 1.7° | 0.012° 0.05° 0.09° "0.12°
GTO | 0.035° 0.30° 1.8° 63° | 0.020° 0.07° 0.02° 1.0°
20 GEO | 0.016° 0.05° 0.19° 0.5° | 0.003° 0.012° 0.02° 0.03°
GTO | 0.006° 0.06° 0.36° 7.0° | 0.003° 0.015° 0.04° 0.15°

Table 2.10: Maximum formal alongtrack and crosstrack errors for GEO and GTO obtained in
200 Monte Carlo simulations. The observation time interval was 5, 10, or 20 minutes (for GTO
near apogee), observation rms error 0.5"

FOV
At 0.2° 0.5° 1.0° 1.5° 2.0°
5min GTO | — — <75 <85 <9 min
10 GEO| — 15 45 70 90 min
GTO| 60 80 100 115 125 min
20 GEO | 115 160 200 230 255 min
GTO | 100 130 155 165 175 min

Table 2.11: Minimum time during which an object remains within a given field of view centered
at the ephemeris position based on an elliptic orbit. The numbers are based on 3-¢ formal errors
and are the maximum values observed during 200 Monte Carlo simulations. Observation rms
errors are 0.5"

interval (10 — 30 minutes) is available. For GTO type orbits the elliptic solution is more
stable. It may therefore be useful to determine an elliptic orbit if the circular orbit fails
to represent the observations.

In any case the elliptic orbit determination algorithm may be used to generate initial ele-
ments for an orbit improvement algorithm. For nearly circular orbits the circular elements
are good enough to force orbit improvement to converge, too, however.

2.2.4 Elliptic Orbit with Given Eccentricity and
Semimajor Axis

The algorithm for the determination of ‘restricted’ elliptic orbits (with pre-defined se-
mimajor axis and eccentricity) is only promising for highly eccentric orbits. For almost
circular orbits the probability for finding a solution is low because roots of the functions
By(r) and Bay(r) (see Section 2.1.3) have to be found in the interval a(1—e) > r > a(l+e).



74 2 Initial Orbit Determination

Therefore we will study the performance of our algorithm only for GTO orbits.

The algorithm requires a priori values for semimajor axis and eccentricity. Below, we use
the mean values for GTO orbits as specified in Table 2.1:

ao = 24165km and eo = 0.715

For given values ao, €o, and with two observations the algorithm in general provides two
possible orbits, one with a receding object (referred for as the ‘+ solution’), the other with
an approaching object (referred for as the ‘— solution’). We will study the behaviour of
the ‘true’ solution (i.e. the ‘+ solution’ for true ‘+’ or ‘— solution’ for true ‘~’) as well as
of the ‘false’ solution (i.e. the ‘+ solution’ for true ‘—’ and the ‘— solution’ for true ‘+’)
for different distances of the object from the apogee, i.e., for different ranges of the mean
anomaly. We will find that the algorithm is robust like the circular orbit determination
algorithm. Obviously, systematic errors dominate formal errors because a and e are kept
fixed at pre-defined values.

Systematic Errors in the Elements: In Figure 2.19 we see the differences of the
determined elements with respect to the ‘true’ elements as a function of @ — ag, the
true semimajor axis a minus the pre-defined axis ao. In Figure 2.19 (left) we give the
difference in the inclination, in Figure 2.19 (right) the difference in the argument of perigee.
Qualitatively, similar figures result for the other elements.
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Figure 2.19: Difference between ‘true’ GTO elements and determined restricted elliptic orbit
(‘+ solution’) as a function of @ — ao. Left: Systematic difference in inclination i, right: sys-
tematic difference in-argument of perigee w. Different symbols indicate different ranges in the
mean anomalies of the ‘true’ orbits at the observation epochs.”The time interval between the
observations is 1 minute, the observation error is 0.5". Each point represents the result from one
of 400 Monte Carlo simulations.
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The Figures 2.19 characterize the situation for the ‘+ solution’. Different symbols cor-
respond to different ranges in the mean anomaly of the simulated orbit. The boxes (O)
and the diamonds (o) indicate orbits determined from receding objects (the ‘+ solution’
is 0.k.) while the two other symbols indicate determined orbits for approaching objects
for which the ‘+ solution’ is false.

We observe a clearly systematic behaviour: Not surprisingly, the selection of the approach-
ing solution for an object which is receding leads to orbital elements which differ very much
from the ‘true’ ones (symbols * and + in Figure 2.19). But it is not possible to select the
correct solution if only two observations are available. If a third observation is available,
the ‘false’ solution would immediately show up due to large residuals (see below).

Even if the correct solution type is selected systematic differences between the ‘true’ and
the determined elements occur if the a priori semimajor axis ao and eccentricity ey are
different from the ‘true’ values (symbols O and o in Figure 2.19). The difference of the
elements show a linear dependence on the offset of the ‘true’ semimajor axis from the a
priori value ao. Table 2.12 gives maximum values of the systematic differences in the four
determined elements if the correct solution is selected.

All results are nearly independent on the observation time interval and the observation
errors.

The restricted elliptic orbit determination algorithm fails to reconstruct orbits for objects
close to the apogee when the semimajor axis a is larger than aq. This is why in Figure 2.19
there are no results for positive values of a — ag for observations close to the apogee
(symbols ¢ and * for mean anomaly between 150° and 210°).

At AQ-sint  Aw AL
+4° +3° +20° +50°

Table 2.12: Maximum difference of determined elliptic elements with respect to the ‘true’ ele-
- ments if the correct solution is selected (£ is the mean longitude at the osculation epoch).
Observation time interval: 1 minute, observation rms errors: 0.5". The numbers are based on 800
Monte Carlo simulations.

Formal Errors in the Elements: The formal errors of the determined elements
are much smaller than the systematic errors discussed in the previous paragraph (see
Table 2.13). They do not at all represent the precision of the determined orbit. We ob-
serve an almost linear dependence on the length of the observation time interval. The
errors are independent on the location relative to the apogee at which the object is ob-
served.

Systematic Errors in the Position: The evolution of the systematic errors in position
of a GTO object for which a restricted elliptic orbit was determined is given in Figure 2.20
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o(t) o(Q)sint ow) o(f)
1 min | 0.12° 0.10° 2,00 1.5°
10 min | 0.012°  0.010°  0.18° 0.12°

Table 2.13: Formal errors in the four elements determined by the restricted elliptic orbit de-

termination algorithm for two different observation time intervals. The observation rms error is
0.5"

and Table 2.14. Figure 2.20 (top) shows that for most simulations the offset between the
‘true’ and the extrapolated position starts to increase dramatically after a few hours. If
the wrong orbit was used for extrapolation the increase starts at earlier times and is more
pronounced (top right). (The short dashed lines correspond to extrapolation of orbits
based on the wrong solution but of objects observed close to the apogee while the long
dashed lines correspond to objects observed at angular distances larger than 30° in mean
anomaly from apogee.)

Figure 2.20 (bottom) shows the systematic alongtrack (left) and crosstrack error (right)
for a time interval covering about one hour. The dashed lines correspond to the ‘false’
solution, the dotted and the solid lines to the correct solution (the dotted line to objects
observed close to the apogee, the solid lines to objects observed farther away from the
apogee). After half an hour the alongtrack error for the wrong solution may amount up
to more than 0.4° whereas for the correct solution it may reach about 0.15°. As usual the
crosstrack error is negligible compared to the alongtrack error.

In Table 2.14 we give numerical values for the maximum angular distance between the
computed and the ‘true’ satellite position for different extrapolation time intervals. The
observation time interval was assumed to be 1 minute, the observation rms error 0.5". Dif-
ferent assumptions do not significantly change the results. All four combinations between
receding and approaching objects for the ‘true’ orbit and the selected solution of the al-

‘true’ | solution Systematic Error in Position after:
orbit | selected 10 20 30 40 50 60 90 120 min
+ + - ]0.015° 0.06° 0.14° 0.26° 0.40° 0.58° 1.1° 2.5°
- - 0.017° 0.07° 0.17° 0.31° 0.50° 0.74° 1.7° 4.1°
+ - 0.06° 0.24° 0.57° 0.57° 1.7° 2.,5° 6.5° 14°
- + 0.05° 0.21° 0.49° 0.49° 14° 21° 5.2° 11°

Table 2.14: Maximum angular distance of a GTO from its ‘best fitting’ orbit obtained from the
restricted orbit determination algorithm. The orbit determination is based on two observations
separated by 1 minute. The range in the mean anomaly covers 120° — 180° (‘+-orbit’) and
180° — 240° (‘—-orbit’). The numbers in each line are based on 400 Monte Carlo simulations.



2.2 How Accurate is an Initial Orbit? i

30 Gb 90 120 150 min

T T T T T T T T T T T

04°F 04"+
o - e
0.2+ 02} :
00} 00+
0.2 0.2}
r L
0.4 | 0.4 t :
0 10 20 30 40 50 60 min 0 10 20 - 30 40 50 60 min

Figure 2.20: Angular separation of ephemerides based on the determined (restricted elliptic case)
and the ‘true’ orbit as a function of time. Top left: Angular separation for the correct solution,
top right: angular separation for the wrong solution. Bottom left: Alongtrack offsets for the
correct solution (solid and dotted lines) and the wrong solution (dashed lines) in a zoomed time
interval. Bottom right: Same for the crosstrack difference. Each curve represents one of 80 Monte
Carlo simulations.

gorithm are given. Selecting the correct solution leads to ephemerides which are within
one degree of the ‘true’ position for more than one hour. If the object is receding, the
situation is slightly better because the angular velocity of the object remains low for a
longer time.

If the ‘false’ solution is selected the mistake may show up already after a few minutes.
The object remains behind its ephemeris position if the ‘— solution’ was selected for a
receding object and it is ahead if the ‘4 solution’ was selected for an approaching object.
The residuals may be up to three times larger than the value expected for the correct
solution. After 30 minutes the object might be at the edge of a field of view with a
diameter of 1°. If the object was observed close to the apogee, however, it may remain
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close to the computed position even if the wrong solution was selected.

In Table 2.15 we find the minimum time a GTO object would remain within a given field
of view for the different orbits and selected solutions. For a field of view of 1° diameter
the object remains in the field for more than 45 minutes resp. one hour for approaching
and receding object, if the correct solution is selected. The numbers are based on an
observation time interval of 1 minute.

‘true’ solution Time in Field of View of

orbit selected | 0.2° 0.5° 1.0° 1.5° -2.0°
+ + 29 47 67 81 93 min
- - 21 34 47 57 65 min
+ - 13 20 28 34 39 min
- + 14 22 31 38 44 min

Table 2.15: Minimum time during which an object remains within a given field of view centered
at the ephemeris position based on a restricted elliptic orbit. The numbers are based on 3-o
formal errors and are the maximum values observed during 400 Monte Carlo simulations. The
observation interval is 1 minute, the observation rms errors are 0.5"

2.3 Conclusions and Examples

In the previous section we discussed the performance of three initial orbit determination
algorithms. Let us now compare the algorithms in order to propose an optimum obser-
vation scenario which allows to keep track of a newly detected object with a minimum
number of observations, to improve its orbit in such a way that it cannot be lost again,
and eventually to identify it.

Circular Orbit Determination In Section 2.2.2 we found that the circular orbit de-
termination algorithm is very robust and provides useful orbital information even for
highly eccentric orbits — at least for short extrapolation times. For two observations that
are separated by only 1 minute and an rms of observations of 0.5"an object with an eccent-
ricity e < 0.01 (97% of the catalogued objects) will remain for at least two hours within a
field of view of 0.5° (similar to the ZIMLAT telescope, 4 m focus). Geostationary objects
with eccentricities below 0.1 remain in the FOV for about 40 minutes and GTO objects
(observed within 16° in true anomaly resp. 60° in mean anomaly from the apogee) will
remain in the FOV for at least 15 minutes (see Table 2.7). It is therefore advisable that
an initial orbit determination procedure should start with a circular orbit determination.
An elliptic orbit determination algorithm may be used if, after additional observations of
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the object were acquired (based on the circular orbit ephemerides), it is obvious that the
object moves in a highly eccentric orbit.

Because the circular orbit determination algorithm provides the attitude of the orbital
plane (i.e. inclination ¢ and R.A. of ascending node ) with good accuracy, the algorithm
is well suited for identifying detected objects. For an observation time interval of 1 minute
and an observation rms error of 0.5” the formal and the systematic errors in the inclination ¢
and in Q sin 7 are well below one degree (see Tables 2.2 and 2.3) for orbits with eccentricities
e < 0.01. For GTO orbits these two elements are determined with an accuracy of about 2°.

The semimajor axis (and hence the alongtrack drift) of a geostationary satellite is not well
determined. For an orbit with an eccentricity of e = 0.01 the uncertainty in the semimajor
axis reaches 570 km (see Table 2.3) corresponding to an uncertainty in the drift of 7° per
day. For a GTO object the determined circular semimajor axis is ‘unreasonable’ (607000
to 67°000 km) which makes it easy to distinguish it from a GEO object.

Because inclination and node are determined with good accuracy these two elements are
best suited for the identification of a newly detected object but also to look for known
objects with unknown alongtrack offsets and to distinguishing them from other objects
that may occasionally cross the field of view.

Examples for Circular Orbit Determination The performance of the algorithm as
described in the previous section could be confirmed using real observations made at the
Zimmerwald observatory. The circular orbit determination algorithm was routinely used
for the identification of objects and for the generation of ephemerides required for the
measurement of close encounters of the satellite and the reference stars. Let us illustrate
this with a few examples.

The telecommunication satellite Olympus 1 was observed in the night of February 20/21,
1995, within a joint experiment of our observatory with the FGAN tracking Radar at
Wachtberg-Werthhoven (see Section 6). The satellite was moving in an uncontrolled way.
After finding an object close to the predicted position three frames were exposed within
five minutes. Coarse position measurements were performed (using the cursor on the
screen) with a precision of only 4”. Comparing the elements from the circular orbit de-
termination with the two line elements (TLE) immediately confirmed the identity of the
object. The circular orbit was used to track the satellite for about 4.5 hours. In Table 2.16
the circular elements together with the precise elements, determined using all observations
from the entire night, are given. The differences of the elements are in the expected range
given in Section 2.2.2 for this orbit with eccentricity e = 0.002.

An unidentified geostationary object was observed in the night of January 3/4, 1995
(Figure 2.21). Approximate elements were obtained from ESOC (Massart, 1995). Two
cursor measurements of the position were acquired within seven minutes. The resulting
circular elements are given in Table 2.17 together with the precise elements. The difference
of the elements for a satellite with a relatively high eccentricity of e ~ 0.023 are in good
agreements with those given in the previous section.
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Olympus 1, February 20/21 1995
Elements a ) Q

circular | 41784 km 2.39° 73.80°
precise 41863 km 2.35° T3.77°

Table 2.16: Elements from the circular orbit determination algorithm compared to the precise
elements (determined with more observations) of the geostationary satellite Olympus 1. The
observations were separated by 5 minutes, the observation rms was 4",

Unidentified Object, January 3/4, 1995
Elements a ) Q

circular 42167 km  3.21°  99.26°
precise 42166 km 3.12°  96.60°

Table 2.17: Elements from the circular orbit determination algorithm compared to the precise
elements of a geostationary satellite with eccentricity e = 0.023. The observations were separated
by 7 minutes, the observation rms was 4",

Figure 2.21: Unidentified geostationary satellite observed on January 5, 1995, at memerwald
Integration time was 1 second with fixed telescope. The frame covers 14’x15".

Of course, the algorithm may also be used for satellites moving on nearly circular non-
geostationary orbits: A GPS satellite was observed by chance in the night of January
15/16, 1994. Four observations within 15 seconds (!) were available with an accuracy of

0.5". The determination of a circular orbit provided the elements given in Table 2.18. The
object could be easily identified as GPS 29 (e = 0.005).
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GPS 29, January 15/16, 1994
Elements a i Q

circular 26567 km 54.50° 187.13°
precise 26563 km 54.61° 188.76°

Table 2.18: Elements from the circular orbit determination algorithm compared to the precise
elements of a GPS satellite. The observations were separated by 15 seconds, the observation rms
0.5"

Elliptic Orbit Determination As opposed to the circular orbit determination the
elliptic orbit determination algorithm is relatively fragile. Not only the mean motion and
the attitude of the orbital plane have to be determined but also the shape of the orbit
which is strongly correlated with all other elements. The observation time interval should
neither be too short nor too long, otherwise the algorithm breaks down. For nearly circular
orbits it is therefore not recommended to determine an elliptic orbit; the circular elements
for GEO objects are good enough as input elements for an orbit improvement algorithm.

For GTO objects for which relatively good observations (rms 0.5" or better) are avail-
able within a reasonably long time interval (around 10 minutes) reliable elements are
determined: The object remains within a field of view of 0.5° for more than one hour (see
Table 2.11). The results under such optimal observation conditions are better than those
stemming from the restricted elliptic orbit determination algorithm (with fixed semimajor
axis and eccentricity). The algorithm therefore represents — given a suitable set of obser-
vations — a valuable tool for determining orbital elements, which may then e.g. be used
as input elements for an orbit improvement. We expect that the algorithm is much more
powerful for lower (than GEO and GTO) orbits due to the rapidly changing observation
geometry.

Restricted Elliptic Orbit Determination Like the circular orbit determination al-
gorithm the elliptic orbit determination algorithm with pre-defined a priori semimajor
axis and eccentricity is robust. It provides elements useful for extrapolation over very
short observation time intervals. At least two solutions are generated in each case. The
correct solution may be selected using the residuals of a third observation.

The elements determined may be biased by up to several degrees in inclination (see
Table 2.12) making orbit identification difficult. Nevertheless, the algorithm may be used
to test the ‘GTO hypothesis’ in the case e.g., if implausible elements were generated in
the circular orbit determination step. '

Starting with an observation time interval of 1 minute the GTO object remains within
a field of view of 0.5° for 30 minutes or more. The algorithm may therefore be used to
recover a GTO object within half a hour after discovery for determining all elements of
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an elliptic orbit using the additionally acquired observations and to invoke eventually an
orbit improvement algorithm. '

Optimum Observation Scenario Based on the properties of the three algorithms we
may now propose an observation scenario which allows it to refine the orbit of a newly
detected high orbiting object in order to follow its track for the next few nights. The
scenario is slightly different for GEO and GTO objects. For objects thought to be almost
geostationary we suggest to proceed as follows:

(1) Take a second exposure immediately after detecting the object (if the object is not
already detected on two frames, e.g., for safe elimination of cosmic events).

(2) Determine a circular orbit and compute corresponding ephemerides.

(3) If the circular elements are ‘reasonable’ for a GEO object, candidate objects with
similar inclination and node may be extracted from the data base for identification.

(4) A pair of additional observations should be acquired within the next half an hour to
one hour depending on the size of the field of view. The pair of frames may be used
as search frame and reference frame for unambiguous identification of the object.

(5) A new circular orbit may be generated together with new ephemerides for the next
hours and the object is observed regularly (one pair of frames per hour).

(6) Using the circular elements an orbit improvement algorithm may be invoked allowing
it to identify the object or to find the object again the next night.

(7) Eventually a ‘high end’ orbit improvement algorithm is used to determine elements
and radiation pressure coefficient using the observations made during several nights.

For an object for which the first orbit determination (point (2)) indicates a highly eccentric
orbit we suggest to proceed as follows:

(3) If the circular elements determined from the two initial observations indicate that
the object may move in a GTO a next set of frames should be acquired within about
10 to 20 minutes based on the ephemeris generated from the circular elements.

(4) Using additional observations a restricted elliptic orbit determination algorithm may
be used to determine new elements and an ephemeris that should be valid for the
following 20 to 40 minutes (depending on the field of view). If it is not possible to
decide which of the two solutions of the algorithm is correct two sets of ephemerides
have to be computed. '
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(5)

Within 20 to 40 minutes a next set of observations should be acquired. If necessary
the two possible fields (depending on the solution of the restricted elliptic orbit
determination algorithm) have to be observed.

The elliptic orbit determination algorithm may then be used to determine elements
valid for the next hour after which a next observation set is acquired.

Finally, an orbit improvement algorithm is used for refining the orbit using all
observations and taking the elliptic elements as a priori elements. If necessary a priori
weights have to be put on the eccentricity and the argument of perigee parameters.

Eventually a ‘high end’ orbit improvement algorithm is used to determine elements
and radiation pressure coefficient using the observations stemming from several
nights.
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3 Orbit Determination

If a considerable number of observations of a satellite is available in a reasonably long time
interval an orbit improvement procedure may be invoked. The orbital elements resulting
from an initial orbit determination algorithm may be improved, the elements determined
with older observations or obtained from an external source may be refined with more
recent observations. In addition to the osculating elements a number of parameters may
be determined, e.g., radiation pressure coeflicients, gravity potential coefficients, or ob-
servational offsets.

In the first part of this chapter we introduce the programs used throughout this work
together with the methods used for simulation studies. In the second part we put the
emphasis on the influence of the distribution of the observations on the formal errors of
the elements and of the satellites’ extrapolated position.

3.1 Methods and Routines

3.1.1 The Orbit Determination Program

The orbit improvement algorithm implemented into the FORTRAN program ORBDET
follows a standard parameter estimation procedure based on the method of least squares.
The program consists of three individual programs (see Figure 3.1) which are connected
by a command file and which communicate via files:

Preparation of orbit <
determination <—l
AV
SATIN3

> Orbit integration

AV

ORBDT2
Parameter estimation

i i

Residuals

Figure 3.1: Flow diagram of program system ORBDET.
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o The program ORBDT1 prepares the orbit determination process. It reads the pro-
gram input options, the a priori values and weights for the parameters, as well as the
observations which are transformed into the apparent system of epoch, if necessary.
For each observation epoch the station coordinates and the matrices required for
transforming the vectors into the system J2000 are computed

e The program SATIN3 generates the a priori satellite orbit of the current iteration
based on the differential equation system and the initial position and velocity using
a numerical integration algorithm. The program is executed in each iteration step.
It is separated from the orbit determination program which would allow it to replace
the program by other numerical procedures in future.

The program is based on a program written and documented by Beutler (1990)
for the integration of satellite orbits. It uses a Taylor expansion series collocation
method with variable step size which is automatically adapted to control the integ-
ration error. For more information we refer to Beutler (1990).

The integration is performed in rectangular coordinates in the inertial system
J2000. Position and velocity are transformed to osculating elements and stored at
equidistant time intervals or at each observation epoch. Osculating elements are
used in order to allow for easy interpolation between epochs. Care is taken to save
the elements with a sufficiently high precision in order not to introduce numerical
problems degrading the convergence of the orbit improvement for long arcs.

The program also integrates the variational equations (partials of position and ve-
locity with respect to the orbit parameters) for all parameters. The integration of
the variational equations may be disabled for the osculating elements. In this case
a Keplerian orbit is used as approximation to compute the partial derivatives. The
variational equation output is stored for the same epochs as the osculating elements.

The program SATIN3 may also be used as a stand-alone program for the integration
of satellite orbits.

e The actual orbit improvement step is performed by the program ORBDT?2. It reads
the observations, the station coordinates, the transformation matrices, the program
options prepared by the program ORBDT1, the output from the integration program
for orbit and variational equations, as well as the values of the parameters from the
previous iteration step (current a priori values). Light travel time corrections are
applied. The normal equation matrix is set up, inverted, and improved parameter
values are computed. The program prepares the input for the integration program
or stops the execution if the termination criterium is satisfied.

The programs SATIN3 and ORBDT?2 are executed alternatingly by the command file until
the termination criterion is satisfied. The current criterion requests that the improvement
for each parameter computed in the iteration step is smaller than 1/30 of the rms error
of the parameter.
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3.1.2 Observation Types and Parameters

Several types of observations may be processed by the program ORBDET:

— astrometric positions (right ascension and declination) of two different categories of
accuracy (‘high precision’ and ‘low precision’), see below,

- observations in azimuth and elevation,

— range and range rate observations.

Range and range rate observations from the German FGAN Radar (Mehrholz ét al.,
1997) were successfully processed with the program (see Chapter 6). For low precision
astrometric positions constant observation offsets for all observations may be estimated.
The type of the observations as well as the system and equinox of the coordinates are
specified in the input observation file. Different kinds of observations may be processed
in the same program run.

The program allows the estimation of several types of parameters:

o Keplerian or so-called nonsingular osculating elements (for small eccentricity and
low inclination orbits) may be set up for determination. The Keplerian elements are
the semimajor axis a, the eccentricity e, the inclination 7, the R.A. of the ascending
node (2, the argument of perigee w, and the mean anomaly ¢ at the osculation epoch
tosc. The implemented nonsingular elements are defined by

{ =Q4w+o w=0+4w
hy =e-sin/f ki =e-cost
hy =sini-sinw ky = sini-cosw

where £ is the mean longitude at the same epoch, @ is the longitude of the perigee.
The elements Ay, k; and kg, k; may be used for orbits with small eccentricity e and
with small inclination i. The user is allowed to select every combination of Keplerian
and nonsingular elements. The program tests whether or not a specified combination
makes sense. The transformations of derivatives with respect to the different sets
of nonsingular elements and Jacobian matrices of the transformations from and to
Keplerian elements are given in Appendix A.

o One direct radiation pressure coefficient or three components of a radiation pressure
force vector may be determined (see Section 3.1.3 for details).

¢ Several observation offsets may be estimated in order to calibrate different mea-
surement systems when processing observations from different stations or of different
types. The determination of observation offsets is only possible if quasi-simultaneous
high precision astrometric observations of the same object are available.
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Offsets in azimuth and elevation may be determined when processing ‘low precision’
observations. In order to calibrate Radar observations to satellites, offsets or scale
factors in range and range rate may be set up. In addition, a time bias and system
orientation parameters may be determined.

o Geopotential coefficients may be solved for (see Chapter 5).

The actual parameters solved for in the orbit determination process are selected in the
input file of the program. If necessary the program user may specify weights for each
parameter in the same file. In Figures 3.2 and 3.3 we see an input file for program ORB-
DET. It is a so-called keyword file in which the user may modify the values in the fields
between the angular brackets ‘> ... <’. The program reads the keyword values and skips
comments within the line and entire comment lines (Schildknecht et al., 1995a).

" ORBDET : DETERMINATION OF SATELLITE ORBIT 14-0CT-95 HU
INTEGRATION:
Integration of orbit....c.vvvviiiiiiiiiniinenn,s (y/n) > y <
Integration of variational equations........... (y/n) > y <
Integration type: 1: DQNMST..........cviiiinannn, > 1<
Save osculating elements at observation epochs.(y/n) > y <
Save osculating elements at intervals dt...... (mins) > 60 <
INTERPOLATION:
Type: 1: polynomial......ccoutiiinnrinrnnninennonnnnss > 1<
Degree for orbital elements............... it > 10 <
Degree for variation equations................. 0000 > 4 <

ORBIT IMPROVEMENT:

Output to SYSOUbL..cvirriiitneinernrncnonnennns (y/n) > y <
User terminates by keyboard..........ocvvvunnnn (y/n) > n <
Maximum number of iterations................iviinann > 7 <
System of elements: 0: apparent, 1; J2000........... > 1<
Take elements from panel........cceeevnsenssnns (y/n) > Y <
Write output elements to panel.........ccevuennn (y/n) > n <
Scaling factor for Q-matriX.......ceeviierennnnerann > 1.D+2 <
Output of Q-matrix.......civviiiineniinnnennnnn (y/n) > n <
ORBIT SIMULATION :
Covariance StUdy....veeereieenanernsenseenennens (y/n) > n <
Observation IMS €ITOT..trvreerarnanrannnnsne (arcsec) > 0.5 <

Figure 3.2: Input file for the program ORBDET (Part I).
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PARAMETERS TO BE SET UP:

Locq Parameter solve a priori sigma
> 1.1 < Semimajor axis........ciciniiiinenn >X < > <(km)
> 1.2 < Eccentricity.....iviviveiinnnennans > < > <
>1.3 < Inclinmation.....ivviiiiiinnnnnnnns > < > <(arcs)
>1.4 < Ascending node..........ciivainann > < > <(arcs)
> 1.5 < Argument of perigee............... > < > <(arcs)
> 1.6 < Mean anomaly at tOSC......uevvuess > < > <(arcs)
> 2.1 < Mean longitude at tosC.......envnn >X < > <(arcs)
> 2.2 < Longitude of perigee.............. > < > <(arcs)
> 2.3 < Small eccentricity: hi, ki........ >X < > <
> 2.4 < Small inclination: h2, k2........ >X < > <
> 3.1 < Direct radiation pressure......... >X < > <
> 3.2 < Orthogonal components............. > < > <
>4.1.1 < Offset in AZi...vviieiininnnerennn > < > <(arcs)
>4.1.2 < 0ffset in Ele......vovnuvnnennnnns > < > <(arcs)
> 4.2,1 < Offset in range........cceveeeeens > < > <(m)
>4,2,2< Scaleinrange......c.iiiiiinnennn > < > <
> 4.3.1 < Offset in range rate.............. > < > <(m/s)
> 4.3.2 < Scale in range rate............... > < > <
>4.4 < Time bias......iiciiniiniinniinnnn > < > <(s)
> 4,5.1 < XY-system bias.......cvueveennnnnnn > < > <(arcs)
> 4.5.3 < Z-system bias.......ciiiiiiininnnn > < > -<(arcs)
> 5.1 < Potential terms.......... > 2,2< >X«< > <
> 5.1 < Potential terms.......... > 3,2< > < > <

Figure 3.3: Input file for program ORBDET (Part II).

Apart from the selection of the parameters a number of options may be specified in this
input file:

o The integration of the orbit and/or of the variational equations may be disabled. In
this case a Keplerian orbit will be used to represent the observations. The output
mode and the time interval for the integration can be specified. Most of the orbit
integration options as well as the force model are specified in the input file of the
integration program (next Section).

o If the user decides to write the output of the integration program at equidistant
epochs he can specify the degree of the polynomial to be used for interpolation of
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the output.

The user may limit the number of iterations, select the system of the output ele-
ments, select the input and output channel for the a priori and the resulting elements,
define a scaling factor for the normal equation matrix in order to avoid numerical
problems during inversion, and decide whether or not he wants to save the nor-

mal equation matrix on file for later use in an orbit combination procedure (see
Section 3.1.4). '

It is possible to use the program ORBDET for covariance studies. Using the specified
observation rms error together with a file containing a list of observation epochs the
formal errors for the parameters are computed (see Section 3.1.5).

The section of the output file of program ORBDET containing the parameter values and
the associated rms errors and a priori values is shown in Figure 3.4.

ORBIT IMPROVEMENT

OBJECT:

METEOSAT 4 1994

ITERATION: 5

LENGTH OF ARC (DAYS): 49.35999

INTEGRATION OF ORBIT: 1

INTEGRATION OF VAR.EQ.: 1

NUMBER OF OBSERVATIONS: 918

NUMBER OF PARAMETERS: 7

RADIATION PRESSURE: -0.6900E-07

RMS: 1.371 ( 0.584" 0.000" 0.00004d 0.0m 0.0000m/s)
SYSTEM OF ELEMENTS: J2000

EPOCH OF ELEMENTS: 49645.000000

SEMIMAJOR AXIS 42167815.03 +- 0.48 ( 42167810.66)
ECCENTRICITY 0.00015002858 +-0.00000034813 (0.00014827110)
INCLINATION 0.6653114 +-  0.0000127 ( 0.6653150 )
NODE 69.3579553 +-  0.0007027 ( 69.3579830 )
PERIGEE -229.8140443 +- 0.2808109 (-227.2814980 )
LONGITUDE AT TO 20.22773088 +-  0.00008822 ( 20.22718490)
RADIATION PRESSURE COEF. -7.1168D-08 +-  5.6054D-10 ( -7.1168D-08)

Figure 3.4: Section of the output file of program ORBDET containing the estimated parameters.
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3.1.3 The Force Model

The force model used for orbit improvement and the initial conditions are specified in the
option file of the integration program SATIN3 (see Figures 3.5 and 3.6).

o Degree and order of the Earth gravity model are specified. It is possible to set a lower
limit for the indices in order to study the effect of individual terms on a satellite

SATINS3 : INTEGRATION OF SATELLITE ORBIT 12-0CT-95 HU

Satellite > METEOSAT 4 1994 <

SAVE OPTIONS:

Output t0 S¥SOUb....vveiiiirrnrennrneranennnans (y/n) > Y <
Saving times from file......viviiuinennnninnnn, (y/n) > N <
Save osculating elements at intervals dt...... (mins) > 1440.0 <

INTEGRATION SPECIFICATIONS:

Initial step...criiiiiiiiiiiiiiiiinrnennennnnns (secs) > 10 <
Integration order..... Cheeraaeaas Ceereereraeeeas el > 12 <
Number of iterations (initialization)............... > 20 <
Number of iterations (normal step)............c.cc.... > 2<
Threshold for change.......cvviiviinininnnennnnns %) > 10 <
Length of integration interval................ (days) > 20.000 <
Maximum error allowed per SteP.......cvvvevvnravnen. > 0001 <

FORCE FIELD:
Earth potential degree n, order m, lower limit......

v
(=]
-
o
A

Earth potential degree n, order m, upper limit...... > 10,10 <
Include SUR...ceivivennrrnnesnnnssanssnnnneenns (y/n) > y <
Include Moom. ...viiiiiiivaiiiiiininnontoannacans (y/n) > y <
Include Jupiter (only for JPLEPH).............. (y/n) > y <
Include Venus (only for JPLEPH) ................ (y/n) > y <
Use JPL ephemerids.....civeiveiiiriiennnnnnana, (y/n) > y <
Include tidal potential due to sun and moon....(y/n) > y <
Include atmospheric drag......ooevveeenenennnn. (y/n) > N <
Include radiation pressure...........covveennn. (y/n) > Y <
Model sunlight/shadow transits...........cco.... (y/n) > N <
Include relativistic correctioms............... (y/n) > y <
Precession: 0: P=E, 1: P=P(t0), 2: P=P(t)........ > 2 <
Nutation: 0: P=E, 1: P=P(t0), 2: P=P(t)........ > 2 <
Polar wobble: O0: P=E, 1: P=P(t0), 2: P=P(t)........ > 1<

Figure 3.5: Input file for the program SATIN3 (Part I).
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RADIATION PRESSURE MODEL:
Model: 1: direct
2: three components
3: Meteosat

4: direct & Y-bias (GPS-Sat.)......ccevvnnnn > 1<
Coefficients: direct......vvviiiiiiiiiinieiiniennnans > =7.11677696E-08 <
2-component. ... ..ttt > 3.52388541E-09 <
3=COmMPONENT. .t ierierrterassearenann > -1.59660485E-08 <
Meteosat....oviiiiiiiiiiieiiinnnnans > -5.58000000E-08 <
Y-bias (GPS-satellites).............. > 1.4-9 <
CONSTANTS:
GMS: Gravity constant*solar mass......... (m**3/s**2) > 1,3271250D20 <
GMM: Gravity constant*lunar mass......... (m**3/s*%2) >  4,9027890D12 <
GMJ: GMsun/GMJupiter......ciiiiiiiiiiinnrnnnecnnns > 1047.3486D0 <
GMV: GMsun/GMVenUS....vvieieriennrnnnrnenenonnnanenns > 408523.71D0 <
Love NUMber. .. ittt iitiiiiienetennsansnannsonnnnnns > 0.3 <
Reference height hO for drag......cvevvuvueennnn (km) > 100.0 <
Density at hO...vuiiiiiiiiiiiiiiiennannnnns (kg/m**3) > 5.d4-7 <
Scale height h for drag......cveviviienannrannans (km) > 10.0 <
C/2*%Q/M of Satellite...vveeiereerrnonnnecnnasnnnsnns > 0.10 <
OSCULATING ELEMENTS OF SATELLITE:
Osculation epoch Tosc (starting epoch)......... (MJD) > 49645.000000000 <
System...c.vovivenennnnnn O:apparent, 1:J2000......... > 1<
Revolution period....... P (used if A=0).......... (h) > 0DO <
Semimajor axis.......... A i i et i i e (m) > 42167815.026138 <
Eccentricity............ Bttt ittt > 0.0001500285832 <
Inclination............. B (deg) > 0.6653113815 <
Ascending node.......... NODE.....vevvreriennnns (deg) > 69.3579553306 <
Perigee................. PER.....iiitiiiiinevann (deg) > -229.8140442599 <
Mean anomaly at Tosc....SIGMA............... ... (deg) > 180.6838198131 <
INTEGRATION OF VARIATION EQUATIONS:
Elements (a,e,i,node,per,sigma).......c.cvcuvnnnn (o/1) > 0,0,0,0,0,0 <
Radiation PreSSUre ......evivevnvrersncnsannces (o/1) > 0 <
Number of potential terms..............c.cciiuiiinnns > 1<
degree N, OXder M.....ccoeerenneossorononasanneas > 2, 2K
degree n, Order M........cetienesessoennncnnansas > 3, 2K
degree n, OYder M......c.ccoreunvsrnnnsassnvancsas > 2,0<

Figure 3.6: Input file for the program SATIN3 (Part II).

orbit. The file containing gravity model coefficients may be specified in an input file
list. Usually the models JGM3 or GEM-T3 are used.
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o The gravitational perturbations from Sun, Moon, Jupiter, and Venus may be
switched on or off. For all four bodies the JPL ephemerides can be used (the file can
be specified in the input file list). The masses of the perturbing bodies are defined
in the option file.

o The tidal potential induced by Sun and Moon is modelled without frequency de-
pendence of the Earth’s elasticity. The Love number % is defined in the input file
(usually we use k = 0.3 (IERS Standards, 1992)).

o Density and scale height of the atmosphere and the drag resistance coefficient of the
satellite may be specified to model atmospheric drag.

o Several models are implemented for the direct solar radiation pressure. A direct solar
radiation acceleration may be used (which is modulated by the Sun’s distance). For
the Meteosat satellites a radiation pressure model that takes into account shape and
surface properties of the satellite is implemented. The acceleration due to direct solar
radiation is varying with the angle of incidence of the radiation onto the cylindrical
satellite (see Appendix C). For each type of direct radiation pressure models the
coefficient may be determined.

An additional radiation pressure model involves three components of an acceleration
vector. The first component points in the direction Sun-satellite, the second towards
the ecliptic pole, and the third is orthogonal to the first two:

P=pi-€ +pr-ex+ps-e3 (3.1)
with
cos o cos § 0
e; = | sinacoséd |, e;=| —sine |, €3 =e; X e (3.2)
sin ¢ cose

where o and ¢ are right ascension and declination of the Sun (as seen from the
satellite) and ¢ is the obliquity of the ecliptic. Because the three components are
fixed, the model describes an acceleration vector which points in a fixed direction
with respect to the line Sun-satellite. All three components may be determined by
the orbit determination program.

The model (3.1) may be useful for taking into account the effect of solar radiation
pressure on a tumbling satellite with extended solar panels. The effect of solar
radiation pressure, averaged over one rotation (resp. precession) period, points in a
fixed direction which is not necessarily parallel to the direction Sun-satellite. If the
object is rotating at a rate which is much higher than the orbital period the model
(3.1) may be appropriate to describe the solar radiation pressure effect.

For GPS satellites the so-called y-bias (see Section 4.3.6) may be included into the
force model.
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e Shadow transits of the satellites are modelled using a flattened Earth. For test-
ing whether the satellite is inside the shadow all z-coordinates are scaled by the
flattening factor (141/297) which renders the shape of the Earth spherical with a
cylindrical shadow. Penumbra effects are neglected.

Radiation pressure is switched off, if the satellite is in the Earth’s shadow. This may
cause problems for long arcs because the variation of the orbital parameters changes
also the shadow entry and exit epochs, an effect which is not properly included in
the variational equations.

o Relativistic corrections may be included.

o Precession and nutation are modelled according to the IAU 1976 and 1980 resolu-
tions.

e UT1-UTC corrections and polar motion are taken from the IERS Bﬁlletin A.

In the input file of the program SATIN3 the osculating Keplerian elements are specified
as initial conditions for the integration. Alternatively to the semimajor axis the revolution
period may be given. Some of the input parameters are modified or adapted by programs
ORBDT1 and/or ORBDT?2 during the iterative orbit determination procedure.

3.1.4 Orbit Combination

Program ORBDET allows the estimation of only one parameter set per observation file.
Le., the elements of only one orbital arc may be determined. In order to have the possi-
bility for combining observations from several arcs or even several satellites, the program
ARCOMB was developed. The program combines the normal equation systems stemming
from different runs of program ORBDET. The program ORBDET writes the normal
equation matrix to a file after removing applied a priori weights, if the corresponding
switch is activated in the input file. Program ARCOMB then reads the individual normal
equation files and combines them to a combined system of normal equations. In addition
to estimating all parameters that may be set up in the program ORBDET the program
ARCOMB allows the determination of manceuver parameters (velocity changes) between
subsequent arcs.

The approach used for the construction of the combined solution is based on the stacking
of the normal equations for the individual arcs. The procedure is discussed in Brockmann
(1996) and Beutler et al. (1996b) and shortly outlined in Appendix B. It essentially
consists of three steps:

(1) The parameters that shall be determined in the combined solution are set up for each
arc (except for the manceuver parameters that will be set up during the combination
of the solutions). If necessary, weights are put on the parameters. For each arc an
individual solution is computed using program ORBDET.
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(2) The normal equations for the individual arcs are added after having removed a priori
weights, having set up manceuver parameters, and having transformed all orbital
elements of the orbits that shall be connected to one and the same epoch using
the continuity conditions. From the combined normal equation corrections to the a
priori values of the parameters are determined.

(3) If the termination criterion is not fulfilled, the normal equations for each arc are
determined independently by running the orbit determination program with the
improved parameters for each arc separately but without iterating. With the new
normal equations a next combined solution is computed by repeating step (2).

Steps (2) and (3) are repeated iteratively until the termination criterion is fulfilled. The
termination criterion is the same as in program ORBDET. In addition the continuity of
the connected orbits may be tested independently.

The big advantage of the described procedure is the possibility to combine independent
solutions a posteriori. Le., the existing orbit determination program (which is not capable
of processing several orbits at a time or to determine manceuver parameters) can be used
to produce more complex solutions than it is designed for. The additional complexity is
contained in the independent orbit combination program ARCOMB.

Program ARCOMB was successfully used to combine up to six arcs of Meteosat 4, 5 and
6 with the goal to determine resonance terms of the geopotential (see Chapter 5).

3.1.5 Covariance Studies

‘The orbit determination problem is a non-linear parameter estimation problem. If there
are ‘good’ approximation for the orbit parameters p available (osculating elements re-
ferring to an osculation epoch tos plus (possibly) dynamical parameters like radiation
pressure parameters) the orbit improvement problem must be linearized and solved by
conventional least squares algorithms. Let us assume that the orbit improvement problem
is governed by the following system of normal equations

ATPA-Ap=ATP ¢

where A is the first design matrix (Jacobian of observed functions with respect to the
orbit parameters p); P is the weight matrix of the observations (assumed diagonal in
our applications, diagonal terms are proportional to ;2 with the mean error o; of the
observation 2); Ap = p — po is the difference between the unknown orbit parameters p
and the known a priori values pp for the parameters, i.e. the vector of the parameter
improvements; [ is the array of terms ‘observed — computed’.

The variance covariance matrix of the parameter array p is computed as

cov(p) = m3 - Q = md - (ATP )
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where mg is the a posteriori rms of unit weight. If we use a plausible value for mo we may
study the mean error of and the correlations between individual parameters using the
matrix Q = (ATPA)’"l, only. This matrix @ may be computed without actually simu-
lating observations; we only need to define the observation scenario (observation epochs,
number of observations, matrix P). Such a procedure is called a covariance study. Be-
cause the setting up of the normal equation system (i.e., the computation of the observed
functions with respect to the parameters) is identical as in the case in which parameters
are estimated using observations, it is straightforward to implement an option ‘covariance
studies’ into a parameter estimation program.

The program ORBDET allows to perform covariance studies. In this case no observations
are required; output are formal errors of the parameters based on the input rms error
of the observations. Program EPOSIM is used for the generation of lists of epochs as
input for the covariance studies. It allows to create randomly distributed close encounter
series in a given number of nights within a defined time interval. The total number of
close encounter series and the minimum number per night may be specified as well as
the parameters for the series themselves (number of observations, time gap between the
observations). First and last observation times for each night may be specified.

In the following we will use the correlation matrix R which may be computed through

: ‘ . Qu .
corr(p) = R, where Rik:m; i=1,...,m;k=1,...,n
If, for indices 1 # k the component Rj; = %1 the parameters ¢ and k are completely

correlated, if R;; ~ 0, the estimates are almost independent. The correlation matrix R is
part of the output of program ORBDET.

Using the covariance matrix of the orbital elements the rms errors of the satellite’s position
and velocity at a given time ¢ may be computed. This task is performed by the program
ORBDXV. It computes the rms errors of position and velocity in the so-called RSW-
system (see Figure 3.7): This system is defined by the ‘radial’ direction ‘R’ (first axis),
the ‘crosstrack’ direction ‘W’ which is perpendicular to the orbital plane (third axis), and

Figure 3.7: Definition of the RSW-system: radial direction ‘R’, alongtrack direction ‘S’, and
crosstrack direction ‘W’,
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the ‘alongtrack’ component ‘S’ (second axis) pointing in the direction of the motion of the
satellite and forming with the other two directions a right handed tripod. For eccentric
orbits the ‘S’ direction is in general not parallel to the satellite’s motion.

3.2 Distribution of the Observations

The accuracy of the determined orbital elements depends heavily on the distribution of
observations. If the observed arc is too short (shorter than a few hours) it may not be
possible to determine the shape of the orbit because in this case the semimajor axis
and the eccentricity are strongly correlated. If the observed arc is long (several nights)
it is possible to determine the direct radiation pressure coefficient(s) in addition to all
osculating elements.

In the following sections we study the optimum distribution of observations for the de-
termination of the orbital elements and radiation pressure coefficients. For simulations
the orbit of Meteosat 4 is used as reference orbit. The elements are given in Table 3.1.
Throughout the covariance analysis an observation rms error of 0.5" was assumed.

Elements of Meteosat 4
Osculation epoch togc Oct. 20,1994, 0:00 UT
Semimajor axis a 42167815 m
Eccentricity e 0.0001500
Inclination 0.6653°
R.A. of Ascending node Q 69.3580°
Argument of perigee w 130.1860°
Mean anomaly ¢ at tyec 180.6838°

Table 3.1: Elements of Meteosat 4 used for simulations.

3.2.1 Observations within one Night

If all six orbital elements are determined using observations acquired during a single night,
strong correlations between the elements — and correspondingly large formal errors —
have to be expected. In particular, the semimajor axis a and the eccentricity e will be
highly correlated because only one sector of the orbit (in the night hemisphere) may
be observed. This correlation between a and e can only be resolved if the length of the
observed arc is sufficiently long to allow the determination of the mean motion (and
therefore a) with high accuracy. An alternative is to add high accuracy range observations
(Laser, transponders).
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If the observed orbital arc is short, the eccentricity and (for small e) the argument of peri-
gee must be constrained or even fixed to the a priori value. If only four orbital parameters
(a, i, Q, o) are determined, the correlation between the elements is of course reduced
significantly. In Figure 3.8 the correlation coefficient between a and i is given for a four
element solution (4) and a six element solution (x) as a function of the length of the
observed arc. The Figure is a result from covariance analyses based on the assumption of
5 close encounter series distributed within the observation interval. Each close encounter
series contains 10 individual observations with an observation rms error of 0.5"

The correlation between the semimajor axis and the inclination (as well as between the
other elements) obtained from these analyses (based on realistic observation scenarios)
is below 0.5 even for an observed arc length of only 1 hour, if only four elements are
estimated (eccentricity and argument of perigee fixed). For an arc length of 6 hours the
correlation between semimajor axis and eccentricity is below 0.2. If all six elements are
determined without imposing a priori weights the correlation is close to 1 for arc lengths
up to 3 hours. With increasing arc length the average correlation decreases, but its value
strongly depends on the actual distribution of the observations. Therefore the scatter in
Figure 3.8 increases with the length of the arc. For well distributed observation epochs
the correlation may become insigniﬁcant for arc lengths of about 10 hours (i.e. an entire
night). The correlation between semimajor axis and eccentrlclty, however, remains above
0.99 even for arc lengths as long as 10 hours.

Due to the strong correlation between the elements in the case of determining all six
elements from observations acquired within one night, the formal errors of the elements
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Figure 3.8: Correlation between the semimajor axis and the inclination as a function of the arc
length when estimating four osculating elements (+) and six osculating orbital elements (x).
Result from covariance analysis assuming five close encounter series with an observation rms
error of 0.5".
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are much bigger than the formal errors obtained when estimating only four elements. The
covariance analysis gives formal errors of more than 4 km in the semimajor axis for an
arc length of 3 hours and about 2 km for an arc length of 10 hours. If eccentricity and
argument of perigee are not determined the formal rms errors of the semimajor axis are
below 100 m for an arclength of 1 hour. If only four elements are determined, systematic
errors have to be expected, however, that may degrade the small formal errors.

The formal errors of the semimajor axis are shown as a function of the length of the
observed arc in Figure 3.9. Figure 3.9 (left) corresponds to the case where eccentricity
and argument of perigee are fixed, Figure 3.9 (right) to the case when all six elements are
determined. The results from the covariance analysis follow more or less a straight line in
the double logarithmic plot with a slope of —1 and —2.5, respectively. The formal error in
the semimajor axis decreases proportional to At~! if the eccentricity and the argument of
perigee (i.e. the shape of the orbit) are fixed due to the improvement of the mean motion
(where At is the length of the observed arc; the number of observations is fixed).

If all six elements are determined the improvement of the formal error of the semimajor
axis decreases proportional to about At~?® (but starting at a much higher value) because
with increasing length of the arc not only the accuracy of the mean motion improves
but also the shape of the orbit is established in a much better way. The formal errors of
the other elements show a similar behaviour with increasing arc length as those for the
semimajor axis.
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Figure 3.9: Formal errors in semimajor axis as a function of length of arc for four elements (left)
and six elements determined (right). The symbols (+) give results from the covariance analysis,
the dotted line indicates lines of slope —1 and —2.5, respectively, in the double logarithmic plot.
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3.2.2 Observations Distributed over Several Nights

Combining the observations from more than one night for an orbit determination sub-
stantially improves the accuracy of the semimajor axis and greatly reduces the correlation
between semimajor axis and eccentricity. In Figure 3.10 the formal errors of the semimajor
axis (left) and of the orbital inclination are given as a function of the number of successive
nights of observation. In the covariance analyses it was assumed that five close encounter
series with 10 individual observations for each observation night (lasting from 20 UT to
4 UT) could be observed. The number of observations therefore increases (as opposed
to the analyses in the previous section) linearly with time. The adopted observation rms
error was again 0.5".

As expected the formal errors of the elements decrease for each additional night of obser-
vation. For the inclination (and the other elements except the semimajor axis) the formal
error decreases with the square root of the arc length (i.e. the number of observations)
as expected from statistics (line with slope —1/2 in the double logarithmic scale of Fig-
ure 3.10 (right)). The formal error of the semimajor axis on the other hand decreases with
the power —3/2 of the number of observation nights. In fact, a factor t=1/2 results from
the increased number of observations while an additional factor ¢~ stems from the longer
time interval covered by the observations.

The behaviour of the formal errors in Figure 3.10 is expected if the correlation between
elements is small. Each element improves in this case as predicted by statistics for the
number of observations and geometrical constraints (length of arc). In fact, covariance

ami T T T T — ] o [
L 1 +
30 :
5.0 R
-
\\\;
S a0t e
. - “'\\ +
of N P an™ .
L ) ] - ‘ ~~~~~ N $
06} L 1 se} M :
. ¥ *
L ., % - + M ., \0 3
. ., N .
i - ; Tk .
oaf Y IS
. £y -
Y 1 20" ¢ PN N
- © g
,z . "~.‘
~. A
01 F *
15"
1 2 3 4 5 6 7 8910 1 2 3 4 5 6 7 8910
Number of Nights Number of Nights

Figure 3.10: Formal errors of semimajor axis (left) and inclination (right) as a function of the arc
length. The symbols (+) result from covariance studies, the dotted line indicates the theoretical
slope in the double logarithmic plot. ‘
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studies give correlations between a and e of about 0.3 for two observation nights and of
about 0.2 for ten observation nights.

3.2.3 Errors in the Extrapolated Position of the Satellites

In order to visualize the effect of different observation scenarios, different sets of measure-
ments for Meteosat 4 acquired at the Zimmerwald observatory for the satellite Meteosat 4
in the time period between 3 to 6 of January 1995 were processed. In this time interval the
satellite was observed every night (see Table 5.2 in Chapter 5) with an observation rms
error of about 0.5 to 0.7" in each coordinate. In this section we deal with real astrometric
observations and not with covariance studies.

Different subsets from the entire set of observations were selected for several orbit determ-
inations. Observation epochs, number of close encounter series, and their time distribution
within the day are given in Table 3.2 for each of the four experiments carried out. In each
experiment all six osculating elements were estimated. From the associated rms errors
the time evolution of the formal errors in the satellite position was computed for a time
interval of 3 days. The rms errors in the radial (R), the alongtrack (S), and the crosstrack
(W) components of the position are given in Figure 3.11 as a function of time for the four
experiments carried out. The rms errors for the osculating elements are summarized in
Table 3.3 (the osculation epoch is close to the observation epoch).

Night | Obs. Series | Observ. | Epochs (UT)

Experiment 1 | 3/4 Jan. 2 18 22:50, 23:01

4/5 Jan. 1 9 | 2248
Experiment 2 | 3/4 Jan. 2 18 22:50, 23:01

4/5 Jan. 1 9 22:48

5/6 Jan. 2 14 20:36, 21:04
Experiment 3 | 4/5 Jan. 7 59 18:52 — 05:38
Experiment 4 | 3/4 Jan. 3 28 22:50 — 05:39

4/5 Jan. 7 59 18:52 — 05:38

5/6 Jan. 4 20 20:36 — 02:58

Table 3.2: Number, distribution, and coverage of the nights of the observations used for the four
orbit determination experiments described in the text.

Two Nights, Few Observations In a first experiment only three close encounter

series were selected in two successive nights. They were acquired at nearly the same time
of the day (at 22:50 UT and 23:01 UT in the first night, at 22:48 UT in the second night,
see Table 3.2). It is obvious that with such a distribution of observations the semimajor
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Figure 3.11: RMS errors in the position (R: radial, S: alongtrack, W: crosstrack direction) of
Meteosat 4 for different distributions of the observations. Top left: Two observation nights
with one close encounter series in each night at nearly the same time of day. Top right: Three
observation nights with one close encounter series in each night. Bottom left: Good coverage by
observations in only one night. Bottom right: All observations from three nights. The crosses
indicate the observation epochs.

axis a is well determined due to the arc length of 24 hours. But the eccentricity is not
well determined because the same part of the orbit was observed in both nights. This
fact can be seen clearly in Figure 3.11 (top left): The radial (R) and the alongtrack
(S) components show large variations which are entirely due to the poorly determined
eccentricity (rms error of about 0.01, Table 3.3). (The ‘true’ value for the eccentricity is
0.00025; the relatively small error in the argument of perigee is only due to the eccentricity
for which a value of 0.026 was determined.) Both, the curves for R and S, reach their
minima around midnight (the observation epochs) for each night, even when there were
no observations acquired. This fact indicates the comparatively good determination of the
semimajor axis.
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The rms error in the alongtrack component reaches the maximum value of more than
2000 km around noon of each day; the error in alongtrack position at noon may reach
+3.5° (rms) due to the poorly known eccentricity. In radial direction the rms error reaches
values up to 500 km, but this value is reduced to a similarly low value at noon as at
midnight. The reason is clear: If we fix the semimajor axis and an arbitrary point P on
the ellipse with given distance r to the focal point (center of gravity), the distance 7' of
the point P’ in the opposite direction of point P is also known (up to terms of second
order in the eccentricity). The two distances may be computed through

_ P r_ p
= ——— r = —m— — ——
1+ ecosv 1 —ecosv

with p = a- (1 — €?), eccentricity e, and true anomaly v (e and v unknown). The product

of the two radii is

201 _ 2\2
popt o G =€)
1 —e2cos2v

= a® + O(e?).

Three Nights, Few Observations In a second experiment observations from five close
encounter series distributed over three nights were used. The coverage of the orbit within
the day by the series is somewhat better than in the previous experiment, the observations
span the time interval between 20:36 UT to 23:01 UT. As expected (Figure 3.11 (top
right) and Table 3.3) the rms errors in the elements and in the satellite positions are
drastically reduced, the general shape of the curves describing the temporal evolution of
the formal errors in position looks, however, very similar as in the previous experiment:
The uncertainty of the orbit is still dominated by the uncertainty in the eccentricity. The
maximum rms error in the alongtrack direction is reduced to below 4.5 km, the error in
radial direction to about 1 km. Due to the observation time interval the semimajor axis
is determined with a rms error of about 5 m instead of 140 m (previous experiment).

Element RMS Errors of Elements

2 nights | 3 nights 1 night 3 nights

few. obs. | few obs. all obs. all obs.
Semimajor axis [m] 139.2 5.1 147.1 1.8
Eccentricity 0.0111567 | 0.0000021 | 0.0000037 | 0.0000003
Inclination 0.07581° | 0.00021° | 0.00003° | 0.00002°
R.A. of ascending node | 1.33657° | 0.00244° | 0.00206° | 0.00130°
Argument of perigee 0.94372° | 14.66427° | 0.53899° | 0.19700°
Mean longitude at toc | 1.27936° | 0.00277° | 0.00308° | 0.00005°

Table 3.3: RMS errors of elements for four different distributions of the observations (see text).

Geostationary orbit, observation rms 0.5 to 0.7".
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One Night, Good Coverage For comparison we include an experiment containing
observations from one night only, but composed of 7 close encounter series covering a
time interval of almost 11 hours, i.e., almost half of the entire ellipse. The formal errors
in position are shown in Figure 3.11 (bottom left). Maximum rms errors in alongtrack
direction are below 3 km within the studied time interval, i.e., below the values obtained in
the second experiment which used observations from three nights. In fact, the eccentricity
is determined with the same rms error as in that experiment (Table 3.3). The semimajor
axis on the other hand is determined with a precision which is more than 25 times worse.
This error in the semimajor axis causes the quickly growing rms error in the alongtrack
position of the satellite with the time difference to the observation night. That error
remains, restricted by the observations, nearly constant at a small value for the entire
observation night but starts to grow immediately after (and before) the time span covered
by the observations with a rate of about 1.5 km/day. '

Three Nights, All Observations As a reference we study in the last experiment the
orbit estimation using all observations (a total of 14 close encounter series) within three
successive observation nights. The observations cover nearly 11 hours in the second night.
The semimajor axis is determined with a rms error of about 2 m, the eccentricity with
one of 3-10~7, and the inclination with one of 0.09". The last value corresponds roughly to
the observation error divided by the square root of the number of observations. The rms
errors (see Figure 3.11, bottom right) reach about 60 m in the alongtrack component at
noon in the three days interval with a slow increase towards the left and right boundaries,
rms errors for the radial and crosstrack components both remain below 20 m (although
the radial direction is not directly restricted by the observations but transferred through
the dynamical equations). '

From our few experiments we conclude that, in order to obtain the best possible orbits,
the distribution of the observations must be in accordance with the following rules:

Rule 1: For a good determination of the semimajor axis the observations should be
distributed over at least two nights. The longer the time base for the orbit de-
termination, the better the mean motion is established (and with it the semimajor
axis).

Rule 2: In order to obtain a good estimate for the eccentricity it is necessary to have a
good coverage of the orbital curve by the observations. The longer the observation
time span within the individual nights, the better the shape of the orbit is established
(and with it the eccentricity together with the argument of perigee).

A good coverage of the orbit may also be obtained by, e.g., observations acquired during

the second half of the first night and during the first half of the second night.

The two rules optimize the three orbital elements defining size and shape of the orbit and
which are most difficult to be determined. The estimation of the other elements describing
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~ the orientation of the orbital plane and the position of the object within the orbit is much
less critical. If the two rules stated above are followed, these elements are determined with
high precision, as well.

3.2.4 Determination of Radiation Pressure. Coefficients

Because radiation pressure coefficients are correlated with the osculating elements, in
particular with the semimajor axis, the eccentricity, and the argument of perigee, the
observations used when trying to determine radiation pressure parameters must be well
distributed. The elements which show the strongest correlation with radiation pressure
coefficients depend on the relative position of the Sun (i.e., the direction of the perturbing
force) and the apsidal line of the orbit. If, e.g., the perturbing force is parallel to the
apsidal line, the correlation between radiation pressure and the semimajor axis is close to
one. It is, at first sight, not obvious that radiation pressure correlates strongly with the
semimajor axis because the solar radiation (apart from the Pointing-Robertson Effect)
does only introduce periodic terms into the variation of the semimajor axis. The reason
for the correlation will become clear later in this section.

As is easily seen from the perturbation equations the most prominent perturbation in
the semimajor axis due to solar radiation pressure has a period of one revolution: The
perturbation equation for the semimajor axis a reads (see e.g. Beutler (1992), p. 33)

da 2 1 A
-(-1?_;ﬁ{631nv-R+(l+GCOSV)'S} (3.3)

where n is the mean motion, e the eccentricity, v the true anomaly, and R and S the
perturbing accelerations in the radial direction R, the direction S (perpendicular to R in
direction of motion, alongtrack direction for circular motion). These accelerations may be
computed with

R

S = R3(w + l/) . Rl (Z) . R3(Q) . f (3.4)

w

where f is the perturbing acceleration in the equatorial coordinate system. Neglecting
the motion of the Sun during the time interval considered as well as its parallax due to
the finite distance between Sun and satellite, resp. the geocenter, we may write

: cosacosd.
Ff=p| sinacosé (3.5)
sind

where a and § are the right ascension and declination of the Sun and p is the direct solar
radiation pressure coefficient (with a negative value). With eqn. (3.5) the explicit form of
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eqn. (3.4) reads

R = plcos(v + w)cos(Q — ) cos §
—sin(v + w) sin(Q — @) cos § cost + sin(v + w) sin § sin 7] (3.6)
S = p[-sin(v+w)cos(2 — a)cosd

— cos(v + w) sin(Q — a) cos § cos ¢ + cos(v + w) sin dsinz).

In the following we will assume that the inclination is ¢ = 0°. Eqns. (3.6) are then reduced
to

R = 4pcos(v+Q+w—a)cosé
S = —psin(r+Q+w—a)cosé. (3.7)

Inserting these equations into eqn. (3.3) and neglecting terms of the order O(e) we obtain

the equation

d

d_(tl I cos(v+ Q+w —a)cosd + O(e) . (3.8)
n

which proves that the first order perturbation effect due to direct solar radiation pressure

of the semimajor axis a is periodic with a period of one orbital revolution.

Let us now study the effect of radiation pressure on the eccentricity and the argument of
perigee:

ﬁ= {sinu-R—i—

dt (39)

Using expressions (3.7) for the perturbing accelerations neglecting terms of order O(e) we
obtain

14 ecosv

2cosv + e(1 + cos? v) S}

de 1, .
= = E;{smz/‘R+QCosu-S}+O(e)
- %{3sin(ﬂ+w—a)+sin(2u+Q+w—a)}cosJ+O(e). (3.10)

We can see that the eccentricity contains a ‘secular’ term, namely

de _3p .
(a) o 2an sin(Q + w — a) cos § + O(e). (3.11)

This perturbation changes the eccentricity e at a constant rate. It is maximum if the
geocentric angle between Sun and apsidal line is 90° which is why a high correlation
between the two parameters (direct radiation pressure and eccentricity) must be expected.
If, on the other hand, the Sun lies in the apsidal line, no such drift in the eccentricity is
induced by radiation pressure.

For the argument of perigee the perturbation equation reads as

dw _ l\/l —e?

dt e an

sinv - S} - cosi%. (3.12)

24+ ecosv
1+ ecosv

{—cosu-R-i—
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If we again use eqn. (3.7) and retain only terms of the order O(1/e) we obtain

K
di

fl

%{—cosv-R+2SinV'S}+O(e)
- _;Z_n{:f cos(@+w—a) —cos(2v + Q+w —a)}cosd + O(e)  (3.13)

and again we find a ‘secular’ term

d 13
e = ———pcos(ﬂ+w— a)cosd + O(1) (3.14)
dt ) ec e2an

which is maximum if the geocentric direction to the Sun coincides with the apsidal line.
For the elements of Meteosat 4 used for the simulations together with a solar radiation
pressure coefficient of —7.1-107®m/s? a maximum drift of 0.6°/day is expected from the
above equation.

If the perturbation by solar radiation on the argument of perigee is maximum a maximum
correlation between the two parameters has to be expected. In addition, because the
rotation of the orbital ellipse interferes with the motion of the satellite on the orbit, a
strong correlation with the semimajor axis a will result, as well!

In Figure 3.12 the correlation coefficients of the semimajor axis with the radiation pressure
(left) and of the argument of perigee with the radiation pressure (right) are shown as
computed by covariance studies with an adopted observation rms error of 0.5". The plus
signs (+4) correspond to the case where the geocentric direction to the Sun is parallel to
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Figure 3.12: Correlation coefficients between direct solar radiation pressure and semimajor axis
(left) and argument of perigee (right). Symbols +: direction of Sun parallel to apsidal line.
Symbols x: direction of Sun orthogonal to apsidal line. Results from covariance studies with an
adopted observation rms error of 0.5
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the apsidal line, the crosses (x) to the case where the geocentric direction to the Sun
is orthogonal to the apsidal line. In fact, the correlation of the semimajor axis with the
radiation pressure is almost perfect (correlation coefficient of —0.99 to —1.00) in the first
case but only around 0.25 in the second case. The correlation between the argument of
perigee and the radiation pressure is in the first case close to 1, too (0.85 to 0.95), and
small in the second case. For the eccentricity, on the other hand, a strong correlation with
the radiation pressure (—0.85 to —0.95) occurs in the case in which the perturbing force
is normal to the apsidal line. The correlation of the mean longitude of the satellite at s
with the radiation pressure shows (of course) a similar behaviour as that for the semimajor
axis, while the inclination ¢ and the R.A. of the ascending node Q ‘are nearly uncorrelated
with the solar radiation pressure. (The elements ¢ and € may only be changed by an out
of plane acceleration.) ' ‘

The variation of the correlations of the radiation pressure with the osculating elements
which describe size and shape of the orbit are also seen in the formal errors of these
elements. In Table 3.4 the formal errors are given for orbits estimated with and without
including radiation pressure coefficients and with different numbers of observations. In
all covariance studies 5 close encounter series for each of the 2 resp. 10 successive nights
were used with an observation rms error of 0.5". If the.geocentric direction to the Sun
coincides with the apsidal line the formal error of the semimajor axis a is about one
order of magnitude larger if the radiation pressure coefficient is estimated. If, on the other
hand, the geocentric direction to the Sun is orthogonal to the apsidal line the formal
errors are only slightly larger. In this case, however, the formal errors of the eccentricity
are magnified by more than a factor of two. ' '

In Figure 3.13 we see the improvement of the formal errors in the semimajor axis a (left)
and the radiation pressure coefficient p (right) with the number of nights and observations
used for the orbit determination. The two ‘populations’ pertaining to the simulations

Formal Errors for the Semimajor Azis a
Parameters Number of | Direction to Sun | Formal
Nights rel. to apsidal line error
6 Elements 2 — 2.3 m
10 — 0.15m
6 Elements plus 2 parallel 17 m
rad. press. coef. orthogonal 2.5 m
10 parallel 1.2 m
orthogonal 0.18 m

Table 3.4: Formal errors for the semimajor axis a, when radiation pressure coefficients are not
estimated (6 parameters) resp. estimated. Result from covariance studies using an observation
rms error of 0.5"
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Figure 3.13: Formal errors of the semimajor axis a (left) and the radiation pressure coefficient
p (right) as a function of number of successive nights used for the orbit determination process
(double logarithmic representation). The two lines correspond to the case where the geocentric
direction to the Sun is parallel (upper line) resp. normal (lower line) to the apsidal line. The slopes
of the lines are —1.6 (left) and —1.5 (right). (Results from covariance studies with observation
rms error of 0.5")

with the geocentric direction to the Sun parallel (upper lines) and normal (lower lines)
to the apsidal line are clearly visible. The improvement for both parameters is roughly
proportional to At~3/? where At is the arc length. For the other elements the formal error
improves roughly proportional to A¢~!/2. This behaviour is expected due to the growing
number of observations and due to the increasing length of the observed arc.

We conclude that for a reliable determination of the radiation pressure coeflicient(s) the
two rules set up in the previous section for planning an observation campaign must be
observed, too. In order to get reasonably small rms errors in the elements, in particular
for the semimajor axis a which causes the linear growth of the alongtrack uncertainty in
position as a function of time, the arc length should be longer than for the determination
of the six osculating elements alone. In addition, the distribution of observation nights
within the observed arc should be as homogeneous as possible. If the orbit is covered
by observations only at the beginning and the end of the arc, the correlations between
the elements and the radiation pressure may allow systematic effects (actually caused by
radiation pressure) to ‘hide’ in the osculating elements. We may therefore state a third
rule in addition to the two rules already stated above:

Rule 3: In order to get a reliable estimate for all orbital orbital parameters (osculating
elements and radiation pressure parameters) the observed arc should have a length
of one week or more. The observations should not only be well distributed within the
individual nights but the observation nights should also be well distributed within
the observation interval.
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Rules 1 to 3 should be observed when scheduling observation sequences for an optimum
determination of the orbit parameters for (high orbiting) objects selected for precise orbit
determination.



4 Resonance of Satellite Motion with the Geopotential 111

4 Resonance of Satellite Motion
with the Geopotential

4.1 Introduction

It is well known since the beginning of the space age that the ellipticity of the Earth’s
equator causes a resonant longitude drift of satellites in geosynchronous orbits (see e.g.,
Sehnal (1960), Kovalevsky (1961), Blitzer (1962), Morando (1962), Allan (1963)). The
dominant terms in the geopotential responsible for this drift are the coefficients Caq and
S22 of the Earth’s gravitational potential. Figure 4.1 (left) shows the variations in the
semimajor axis of the geostationary satellite Intelsat 4a f-6 over a time interval of 6 years
(starting in April 1993). The figure is the result from a numerical integration of the
orbit of this abandoned telecommunication satellite based on elements determined from
astrometric observations at the Zimmerwald observatory in April 1993. In Figure 4.1
(right) the corresponding eastern longitude of the subsatellite point is given as a function
of time. The oscillation with a period of about 1250 days or 3.4 years, amplitudes of about
35 km in the semimajor axis, and about 67° in longitude, is practically entirely due to
the C32 and Sj2 terms of the Earth’s potential.
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Figure 4.1: Resonant drift in the semimajor axis of the geosynchronous satellite Intelsat 4a {6
(left) and the corresponding oscillation in the geocentric eastern longitude of the satellite (right).

The accelerations due to different perturbations and the resulting longitude drifts are given
in Table 1.7 for a geosynchronous satellite. It is obvious from that table that the perturb-
ation caused by the ellipticity of the Earth’s equator has different consequences than the
other perturbations. Whereas the other perturbations cause a constant alongtrack drift,
the perturbation from the ellipticity of the equator results in a constant alongtrack ac-
celeration. After about one month the resulting displacement in longitude is equal to the
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displacement caused by the oblateness of the Earth although the perturbing acbeleration
is three orders of magnitude smaller. The reason for this behaviour is a resonance effect
of satellite motion with Earth rotation.

Because geostationary satellites are particularly sensitive to these geopotential terms,
observations of their librating motion may be used to determine these coefficients. The
first determination of the two geopotential coefficients using observations of geostationary
satellites was performed by Wagner (1965) who processed radio-tracking data from the
satellite SYNCOM 2. Catalano et al. (1983) proposed the determination of the resonant
coefficients and their temporal variation using optical observations of geostationary satel-
lites. Nobili (1987) established the research project COGEOS (Internatlonal Campalgn
for Optical Observations of Geosynchronous Satellites).

The COGEOS project was sponsored by the European Community. Research groups from
Belgium, Peoples Republic of China, Czech Republic, France, Germany, Hungary, Italy,
Poland, Russia, Spain, Switzerland, United Kingdom, Ukraine, and USA participated in
COGEOS. Optical observations were made at the Gonnsdorf Observatory of the Tech-
nical University of Dresden (Bohme et al., 1995), the Main Astronomical Observatory of
the Ukrainian Academy of Science (Duma, et al., 1986) (Ivashchenko, 1989), the Royal
Greenwich Observatory at Herstmonceux (Appleby et al., 1995), and the Zimmerwald
observatory of the Astronomical Institute of the University of Bern (Hugentobler et al.,
1995). The first two observatories used sophisticated photographic techniques whereas the
latter two applied CCD techniques. In addition, time synchronization methods were used
for the position determination of commercial geosynchronous telecommunication satellites

(Kardos et al., 1995) in the framework of COGEOS.

Using astrometric observations acquired at the Zimmerwald observatory it was possible
to determine the resonant geopotential coefficients (Hugentobler et al., 1996) with an
accuracy corresponding to the expectations based on simulations (Rossi, 1988). The ob-
servations and results will be discussed in detail in Chapter 5.

In this chapter we will study the 1:1-resonance and the 2:1-resonance. Through covariance
studies we assess the accuracy of the determination of the resonant geopotential coeffi-
cients from astrometric observations of geostationary satellites. For the satellites of the
GPS system we compute the effects of resonance from theory and compare them with
measurements.

4.1.1 ‘Commensurabi‘lity and Resonance

A resonance of satellite motion with terms of the geopotential only occurs if the or-
bital period is commensurable with the rotation period of the Earth. A satellite in m:n-
commensurability orbits the Earth m times while the Earth rotates n times, i.e., in n
sidereal days, where m and n are small integers. A satellite'in such an orbit may be sub-
ject to resonance with some sectorial and/or tesseral terms of the Earth’s potential. Such
a resonance manifests itself as a longperiodic variation of the orbital elements. Fig. 4.10
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shows such a resonance phenomenon in the semimajor axis for a GPS satellite in deep
2:1-resonance. As we will see in Section 4.2, a commensurability must not always cause
resonance, however.

Below we will discuss the 1:1-commensurability and the 2:1-commensurability. In the 1:1-
commensurability we find the geostationary satellites, in the 2:1-commensurability the
GPS satellites. We will study in detail the resonance phenomena in the semimajor axis
where they are visible most easily because the Earth’s potential produces, as we will see,
no longperiodic first order perturbations in this element. :

4.1.2 The Earth’s Potential

Following usual conventions we expand the Earth’s gravxtatlonal potential into spherical
harmonics:

V(r) = £+ f; z’: Vin(r),  p=GM (4.1)

where Vi, is the term of degree [ and order m:

1
Vim(r) = =& (i’r-) Pim (sin 8) (Cim cos mA + Spm sinmA) . (4.2)

r

r,A, B are the spherical coordinates of the vector » in the Earth-fixed system, namely
geocentric distance, longitude and latitude respectively. P, are the associated Legendre
functions of degree [ and order m, Ci,, and S, are the expansion coefficients of the poten-
tial, and a. is the equatorial radius of the Earth. The term Vo represents the flattening
of the Earth, the term V2, is due to the deviation of the principal axis of inertia from the
z-axis of the coordinate system in which the.potential is expanded, the term V5, represents
the flattened azimuthal mass distribution, i.e. the elhptmty of the Earth’s equator. The
latter term will be of particular interest to us.

The expansion usually starts with degree ! = 2, which assumes that the origin of the
coordinate system coincides with the center of mass of the Earth. If this condition is not
fulfilled, terms with degree { = 1 would occur, as well.

Eqn. (4.2) may be written in the following way

r

!
Vim = _E (%) Pim(sin 8)Jim cos m(A — M), (4.3)
where

Cim = Jimcosmim
Stm = Jmsinmi,
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Usually, normalized coefficients are used:

o B Ty S R

which are then associated with the fully normalized Legendre functions.

The first few terms of the JGM3 geopotential model (Tapley et al., 1996) are given in
Table 4.1 together with their formal errors. The complete JGM3 model contains all terms
up to degree and order 70, i.e. more than 5000 terms.

Cim + Sim +

—4841.69548 - 107  4.7-107M —
—-0.00187-10~7 0.01195- 1077

24.39263-10-7  3.7-107!' | —14.00266-10"7 3.7-10"

9.57176-10~7 3.6.-10°1! —

20.30137-10~7 11.5.-10"%! 2.48131-10-7 11.5.-10~1

9.04706-10~7 9.4.10"''| —6.18923-10"7 9.4.10"1

7.21145-10"7 5.8.10° ! 14.14204-10~7 5.7-10°1!
.10-7 .10-11 —_

5.39777- 10 13.4-10

-5.36244-10"7 8.7-10"11 | —4.73772-10"7 8.7.10°1

3.50670-10"7 15.6-10"1! 6.62571-10~7 15.6-10"1

9.90869-10-7 7.9-10-'' | -—2.00987-10-7 7.9-10°U

—1.88481-10"7 7.2.10°1 3.08848.10"7 7.2.10°1
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Table 4.1: Normalized geopotential coefficients from the JGM3 model (Tapley et al., 1996).

4.1.3 The Oscillation Equation for a Geosynchronous Satellite

To get the intersection of the equipotential surface of the Earth with the equatorial plane
we consider only the monopole term and the Jz-term in eqn. (4.1) and equate it to a
‘mean’ potential —u/a.. Solving for r gives the equipotential shape of the Earth’s equator
(to first order in r/a. — 1)

r 22 ae[l + 3Ja2 cos 2(A — Az2)].

Obviously the equator is elongated towards A ~ 14.9° W (Westafrica) and 165.1° E
(Pacific Ocean). The difference between semimajor and the semiminor axes is 6 - a.Jz; =~

69 km.

Let us briefly derive the differential equation for the longitudinal acceleration of a geosta-
tionary satellite due to this ellipticity of the equator. For simplicity we assume a circular
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orbit with zero inclination (a = 42164 km, e = 0, 1 = 0°). We insert the potential term
Ja2 into the perturbation equation for the semimajor axis (see e.g. Beutler (1992))

2 9V .
= ———— . 4.5
¢ an O\ (4:9)
The acceleration A of the longitude of the satellite is equal to the change of the mean
motion n which in turn is related to the change of the semimajor axis by Kepler’s third
law

. 2a,
We therefore may write down the differential equation for A
. Y
3 = 18n2 (Z) Ty -sin2(A = Ag) . (4.7)

Subsﬁtuting z = 2(A — (A2 — 7/2)) we get the differential equation
’sinz =0
Qe

2
w2 = 367&2 <;> J22 (48)

r—w

which is the equation of the mathematical pendulum. The satellite oscillates around the
small axes of the equipotential surface which are at 75.1° E (over the Indian Ocean)
and at 104.9° W (near Galapagos). Le., the stable points of the motion are at the orbit
location corresponding to the highest potential whereas the points lowest in the potential
are unstable! The reason for this, at first sight, strange behaviour is found in the negative
sign in eqn. (4.6) which causes the sign of the longitude acceleration to be opposite to the
perturbing alongtrack force.

With the numerical values for a geostationary satellite

n 6.300[rad/day|
a.fa = 0.15
Jyz = 1.8155.107°

Il

we get from eqn. (4.8) the frequency w = 7.632-1073 rad/day and for small amplitudes an
oscillation period of T' ~ 823 days. The solution of the mathematical pendulum involves
the complete elliptic integral of the first kind K(a) (Abramowitz et al., 1965)

2 2 1\2 1.3\, 1-3-5\% ,
T-:““)—:[”(i) “+(5.—4) a +(m) 4. (49)

with
a = sin? Adnax
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Figure 4.2: Libration period as a function of time for a satellite in 1:1-resonance (a = 42164 km,
e =0, ¢ = 0°) due to the geopotential term Js,.

where Almax is the amplitude of the oscillation in longitude. In Figure 4.2 we see the
period of the libration as a function of the amplitude.

From energy conservation follows the maximum change of the semimajor axis during the
librational motion

Aa < 4ac\/Jy = 35km , (410)

as well as the maximum possible drift in longitude which is equal to w = 0.44°/day. The
numerical values from numerical integration given for Intelsat 4a f-6 agree fairly well with
the numbers deduced from theory.

4.2 The Resonance Terms

4.2.1 The perturbation Equation for the Semimajor Axis

Following Kaula (1966) we expand the Earth’s potential into a trigonometric series with
the arguments mean anomaly M, longitude of the ascending node {2, argument of perigee
w, and sidereal time ©. In a first step we use the potential in the form of eqn. (4.3) and
express 3 and A by the orbital elements and the true anomaly of a satellite (parametrized
by the elements 7,{,w and the true anomaly v) and we obtain

11
Vlm —g (ES> Z Flmp(i)‘]lm [ o8 \plmp

r\r/ = sin Ui,y
Uimp = (I =2p)(w+v)+m(Q =0 — Ain).

] l-m even

(4.11)
I-m odd
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Fimp(i) is the so-called inclination function, the explicit form of which may be found in
Kaula (1966). In a second step we replace r and v by series in a, e, and M to obtain the
potential terms in the form

Vlm - ( ) Z Z Flmp Glmq )Jlm [ COS\Dlmpq

o e sin Wympg

Uimpg = (I=2p)w+ (I —2p+ Q)M +m(Q — 0 — An)

l-m even
] (4.12)

I-m odd

An elegant derivation of the second equation may be found in Tisserand (1888). Gipn,(€)
is the so-called eccentricity function, given e.g. in Kaula (1966). It is proportional to the
eccentricity to the power |g|. Therefore only terms with small |q| contribute for small
eccentricities.

For studying the effect of the perturbations from geopotential terms on the semimajor
axis we introduce the expression of the potential from eqn. (4.13) into the Lagrangian
perturbation equation (see e.g. Beutler (1992)).

da 2 0V
dt = nadM
and we get
sin l-m even
———2na ( )Fm )Glmg(€)Jim(l — 2p+ [" ’"""1] . (4.13
i I:L;q l p l q( ) 1 ( 14 ) €05 Ulpnpg e odd ( )

In first order perturbation theory the angular argument ¥,,,,, is a linear function of time
with the variables M and O increasing fastest. The rate of change of ¥y,

Wimpg = (1 = 29)i0 + (I — 2p + q) M + m(C — ©) (4.14)

depends on the values of the indices [, m, p, ¢ and determines what frequencies are con-
tained in the temporal evolution of the semimajor axis and which terms in the geopotential
are responsible for the perturbations. For each set of indices the amplitude, period, and
phase of the perturbation in the semimajor axis may be computed from eqn. (4.13) for a
specific orbit. (For the other elements similar equations as eqn. (4.13) hold, the following
discussion might therefore be applied to all elements). In first order perturbation theory
perturbations are classified into short-periodic, long-periodic, secular, m-daily, and reson-
ant perturbations (see Klokocnik (1991)). If the coefficient of M in eqn. (4.13) does not
vanish, i.e., if | — 2p+ ¢ # 0, short periodic perturbations with periods of multiples of the
orbital revolution do occur. Potential terms with { —2p + ¢ = 0 and m = 0, on the other
hand, generate only longperiodic perturbations since the only time dependent argument
left in eqn. (4.13) is w. For m # 0 so-called m-daily perturbations occur with periods of
the m-th fraction of a day, generated by tesseral potential terms because ¥,,,, contains a
term mO. If all coefficients in eqn. (4.14) are zero the right hand side of the perturbation
equation is constant and a secular perturbation may occur.
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From eqn. (4.13) it is obvious that the geopotential cannot induce secular or longperiodic
perturbations in the semimajor axis because for all terms with [—2p+q = 0 the right hand
side of the equation is zero leaving the semimajor axis unperturbed. All other elements
may contain longperiodic terms. The elements w, 2 and M can show secular perturbations,
i.e., those elements whose Lagrangian perturbation equations contain derivatives with
respect to a, e, or 7 which are the only partials of eqn. (4.12) that do not vanish in the
secular case Ujnpe = 0.

4.2.2 Resonance

Resonance occurs if eqn. (4.14) is close to zero for m # 0, (for m = 0 the Earth’s rotation
would not be involved in the perturbations and one would not speak of resonance but of
long-periodic or secular perturbations) S

(-2 +(I—2p+ )M +m(Q-0)20 m#0 . (4.15)

The potential terms for which the resonance condition (4.15) holds induce only a small
variation of da/dt (and the other orbital elements), and a consequently may show a quasi-
secular, resonant behaviour. Because M and © are the variables that vary fastest with
time the resonance condition may be stated in the following form

(I-2p+q)n ~ mO, (4.16)

where n is the satellite’s mean motion. For a given resonance n/0 = §/a the indices I,
m, p and q of the terms responsible for the resonance may be extracted from eqn. (4.16):

(I-2p+q)=oay | m = By . ' (4.1%)

v = 1,2,3,... is the so-called resonance level. The lowest resonance indices are given
in Tables 4.2 and 4.3 for the 1:1- and the 2:1-resonance respectively. The influence of
the resonance terms is reduced by the factor (a./a)’ in the perturbation equation. For
nearly circular orbits the influence of the terms with ¢ # 0 is small because the terms are
proportional to the eccentricity el?l. The most important terms for resonance are therefore
those with low ! and with ¢ = 0, i.e., the Jy2 term for the 1:1-resonance and the Js; term
for the 2:1-resonance.

Tables 4.4 and 4.5 contain perturbing terms and the corresponding periods and amplitudes
or drift rates of the perturbations in the semimajor axis for an orbit in 1:1-resonance (with
elements a = 42164 km, e = 0.001, = 10°, Table 4.4) and an orbit in 2:1-resonance (with
elements a = 26562 km, e = 0.006, i = 57°, Table 4.5) respectively. Terms inducing short
periodic perturbations with amplitudes larger than 0.5 m and resonant perturbations with
drift rates larger than 5 cm/day are listed. For the the semimajor axis the values for exact
resonance are gwen The secular changes in Q and w due to the oblateness of the Earth
were computed using the equations (see e.g. Kaula (1966))

df) 371020&3 . dw _ 37102002

— = G _ _3nCwle ) 5oy,
dt  2(1 — e?)%a? oSt dt  4(1 - 62)2(12( cos” )
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l 222 2 333 333833 44 4 44 44 4 4
m|1l 122 111 2233 11 2 2 2 3 3 4 4
p}j0101 012 0102 12 0172 0101
¢g|-1102 -2902-1101-11-=2202-11°0 2

Table 4.2: Selectors for the 1:1-resonance. All indices with |g| < 3 and I < 4. Terms proportional
to the eccentricity €® = 1 are printed in bold numbers.
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Table 4.3: Selectors for the 2:1-resonance. All indices with |g| < 3 and I < 5. Terms proportional
to the eccentricity €® = 1 are printed in bold numbers.

The contribution of different potential terms to the drift rate da/dt are given in Figure 4.3
for the geostationary satellite Intelsat 4a f-6. The dotted lines indicate the maximum

Impgq | 2an(a./a) Jim F}mp(i) Gipqe(€) | Ampl. Period Drift a 0%
[m/s] [m] [d] [m/d]  [km]

2000 | 1.41-10%% [ 4.84-10"* | —0.025 1.000 23.6 4986

1-1 -1.067 0.002 1.5 9972

1 —-1.067 0.002 1.5 L9972

20 —-0.025 1.000 23.6 .4986
200 2.81-10°° 1.907 1.000 130.18 42166.15 2
3110 2.13-10%! | 2.04.10-% | —1.487 1.000 5.59 42166.15 1
300 ‘ 1.58-10-¢ 2.044 1.000 17.78 42166.15 3
421 0] 3.22-10%° | 7.52-.10-7 | —1.479 1.000 62 42166.15 2
400 3.57-10°° 2.152 1.000 85 42166.15 4
5310 4.87-10" | 5.09-10-7 | —1.468 1.000 .09 42166.15 3
500 6.78-10°7 2.240 1.000 32 42166.15 5

Table 4.4: Perturbations in the semimajor axis for the 1:1-resonance (a = 42164 km, e = 0.001,
¢ = 10°) due to different potential terms. All terms causing amplitudes > 0.5 m or drifts
> 5 cm/day are listed together with the numerical values of the expressions in eqn. (4.13).
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I mpq | 2an(a./a) Jim Fimp (i) | Gipg(e) | Ampl.  Period | Drift a ¥

[m/s] - : [m] [d] | [m/d]  [km]
200-1| 4.47-10%2 |-4.84-10~* | —0.590 | —0.003 2.6  .4986 ' ’
0 ’ —0.590 | 1.000 | 874.6  .2493
1 —-0.590 | 0.021| 18.4 .1662
11 0.062 | 0.009 8 .4986
1 0.062| 0.009] .8 .4986
2-1 -0.590 | 0.021| 184  .1662
0 —~0.590 | 1.000 | 874.6  .2493
1 —0.590 | —0.003 2.6  .4986
2 0-1 2.81-10° | 1.155 | —0.003 | ‘ 38 26560.67 1
0 1.155 | 1.000 | 19.9 .4986
11 | 1 0.681| 0.009 66  26559.87 1
20 : 0.100 | 1.000 6 .1662
3100 |.1.07-10+2 | 2.04-10-% | —1.100 | = 1.000 2.0 .1995
10 0.625| .1.000| 1.9 .9973
20 —0.820 | 1.000 8 .3324
200 1.09-10-% | 1.282 | 1.000 1.5 .2493
10 ' ~ | -0.526 | 1.000] a 5.31 26560.27 1
300 : 1.58-10-% | 0.964 | 1.000| - 22 .3324
10 0.852 | 1.000 2.0 .9970
4410 2.58-10%! | 3.57-10"7 | 0.931| 1.000 o 1.48 26560.27 2
5220 6.19-10%° | 7.29.10-7 | —0.606 | 1.000 | . 24 26560.27 1

Table 4.5: Perturbations in the semimajor axis for the 2:1-resonance (@ = 26562 km, e = 0.006,
i = 57°) due to different potential terms. All terms causing amplitudes > 0.5 m or drifts
> 5 cm/day are listed together with the numerical values of the expressions in eqn. (4.13).

possible value (i.e., the the amplitude in eqn.( 4.13)) while the solid lines give the val-
ues corresponding to the orbital elements of the satellite. The potential term Jy; with
120 m/day is responsible for more than 80% of the total resonant drift in the semima-
jor axis of 147 m/day. The elements, determined from astrometric observations at the
Zimmerwald observatory from April 19 and 21, 1993, are given in Table 4.6.

4.2.3 The Lumped Coefficients

For perturbations with m and g fixed the indices [ and p may be varied in such a way
that the combination ! — 2p remains constant. According to eqn. (4.13) all these perturb-
~ ations are caused by different geopotential terms but have exactly the same period. This
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Figure 4.3: Contribution of different geopotential terms to the resonant drift in the semimajor
axis of Intelsat 4a f-6 in April 93 (solid lines) and amplitudes of the perturbations (dotted lines).

Satellite Intelsat 4a f-6
COSPAR designation 78 035A
Size 2.82 m long, 2.39 m diameter
Epoch and system of osculating elements 1993-04-19 00:01 UT, J2000
Semimajor axis 42143.76 km
Eccentricity 0.000846
Inclination 6.67°
Longitude of ascending node : 60.9°
Argument of perigee 337°
Mean anomaly at osculation epoch 198.3°
Drift rate in longitude 0.29°/day

Table 4.6: Characteristics of the geostationary satellite Intelsat 4a f-6. The elements are determ-
ined from astrometric observations of the object acquired at the Zimmerwald observatory in
April 93.

means (because the sum of two harmonic functions with equal period is again a harmonic
function with the same period) that a particular satellite ‘feels’ only a linear combination
of these potential terms (with coefficients depending on a, €, and 4), the so-called lumped
coeflicients

Ci*(a, e, i) = ZQ - (a,e,7)Cim and S (a,e,1) = ZQ;’:,L(a,e,i)Slm, (4.18)
l
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where

k=1-2p

(e.g. Gooding et al. (1989)). The sum in eqn. (4. 18) contains only terms with odd or with
even degree [. The so-called influence functions Q¥ are computed from

-1
n=(7) P _(_yyen gph, =1
= - ’ =1,
™ a Flompo Glopoq om

where [y is the lowest degree occurring in the series and k = lp — 2p, (sign convention

from Kaula (1966)).

All potential terms in a lumped series have the same order m and a degree which is either
even or odd. The lumped coefficient with ¢ = 0 which contains Cy, reads

. N\2E F
C? =Cy — <2‘> ?42—1'042 + (—) o2 —Ce2 +

a/ Fa a/ Fap

In Tables 4.7 and 4.8 the first few influence coefficients Q¥ for the most important
- geopotential terms for the 1:1-resonance and the 2:1-resonance are listed together with
the corresponding lumped coefficients C%* and S,

Using the lumped coefficients the potential in eqn. (4.1) may be written in the form

=2 m=0
{ oo
U = L2 5 (%) Fli) Girale) S8 (a0
@ 5 hgm—co \ @
(4.19)
. l-m e€even

Gak = low cos Yimg n Gak SIN Wipmg

m ™ | sin Wgmg ™ —cos WUimg lem  odd

Uimg = kw+(k+qM+m(Q-0)

Im q k Ql+2 m Qf+4 m QH—S m Q?is,m ég‘lk 5’#‘

2002 | ~7.405-10"% 3.367-102-1.221-10"* 3.854-107° | —4.8421-10"*
200-2 | —7.405-10"% 3.367-1073 -1.221-10"* 3.854.107° | —4.8421.10~*
2202 | —1.774-10"2 3.275-10"* —5.536-10"% 7.891-10% | 2.4331-10"° -1.4121.10"°
3101 |-1954-10"% 3.510-10~* —5.516-10~° 6.610-10"% | 2.0315-10"°%  2.5000-10~7
3303 | -1.643-10"% 2.866-10"* —4.522-10° 5.667-1078 | 7.2861-10~7 -1.4177.107°
4404 | -1544-10"% 2.545.10-* -3.711-10-% 3.877.10"% | —1.8721-10-7  3.1614-10"7

Table 4.7: Influence coefficients and lumped coefficients for selected indices for a satellite in
1:1-resonance (a = 42164 km, e = 0.001, ¢« = 10°). Compare with potential coefficients given in
Table 4.1. ‘



4.2 The Resonance Terms ' 123

Imgk | Qf>n Qi am Qffom Qs m Cak Sgk
20-12| 3.470-10"2 6.315-1073 —2.225.10~% —3.817-105 | —4.8415.10~*

2002 | —-3.470-10"2 -2.105-10"3 4.452-10~® 5.455.10"% | —4.8419.10~*

2012 | —4.461-10"2-3.308-10"3 8.265-10~¢ 1.168.-10-5 | —4.8419.10~*

20-1-2 | —4.461-10"2 -3.308-10"3 8.265.10~¢ 1.168-10-5 | —4.8419.10~*

200-2 | =3.470-10"2 —2.105-10"3 4.452-10~® 5.455.10~ | —4.8419.10~*

201-2 | 3.470-10% 6.315-1073 —-2.225-10"% —3.817-10~5 | —4.8415.10~*

22-12| -3.676-10"2 -2.863-.10"2 1.782.-10~%* 2.933.10"3 | 2.4262.10-® —1.4235.10"°
2202 | 3.676-10"2 9.544.10"* ~3.564-10"% —4.191-10-% | 2.4522.10~¢ -—1.3763.10"¢
2210 | —6.719-10-2 —=5.870-10"% 1.612-10~% 2.426-10"% | 2.4154.10-¢ —1.4426.10"6
3101 | —7.734-10"% —2.594. 1073 -9.444-10~% 2.801-10-%| 2.0299.-10~¢  2.4861.10~7
4402 | 1.734-1072 -9.762-10"* —9.247-10"° —1.887-10~¢ | —1.8973-10~7  3.0061-10~7

Table 4.8: Influence coefficients and lumped coefficients for selected indices for a satellite in
2:1-resonance (a = 26562 km, e = 0.006, « = 57°). Compare with potential coefficients given in
Table 4.1.

Because a particular satellite is susceptible only to the lumped coefficients it is not possible
to determine individual potential terms from the observations of only one satellite. For the
determination of potential coefficients observations of satellites with different inclinations,
semimajor axes and/or eccentricities are necessary. For satellites with different elements a,
e, i the coefficients Q¥ are different and individual coefficients may therefore be extracted
from the lumped values (see e.g. Kostelecky et al. (1982)).

Using the observations of one satellite only it is possible to estimate directly the lumped
coefficients within an orbit determination procedure. For the computation of the variation
equations the potential (4.19) has to be differentiated with respect to the lumped coef-
ficients. More cumbersome is the computation of the gradient of the potential which is
not expressed in terms of cartesian coordinates but in terms of osculating elements of the
satellite orbit.

It is easier to determine the lumped coefficients in the following way: Consider e.g., the
lumped coefficient containing the potential term Cs; (leaving out some of the indices)

C, = Q2022 + Q4Ca2 + Q6Co2 + . ...

Because the potential terms in this series are perfectly correlated when using observations
from only one satellite the orbit determination procedure cannot decide to which term
an improvement of the lumped coefficient has to be attributed. It is therefore possible to
estimate one potential term in the series (which may be selected arbitrarily) and to attrib-
ute the product of the improvement of this term with the corresponding influence function
to the improvement of the lumped coefficient as indicated by the following equations (for
the term Cs; estimated):

Co+AC, = Q2(C22 + AC32) + Q4Caz + Q6Co2 + . ..
= Q2(Ca2 + ACy,) + Qu(Ca2 + ACY,) + Q6(Ce2 + ACq,) + ...
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from which follows _ _
AC, = QaACa; = QuACS, + QuACH, + QeACE, + ...

It is therefore not necessary to modify the orbit determination program, which is only
capable to estimate potential coefficients but not lumped coefficients. The transforma-
tion of the rms error of the estimated potential coefficient to the corresponding lumped
coefficient can be done a posteriori. ’ '

4.2.4 Covariance Studies for the .Determin‘ation of Resonant
Geopotential Coefficients

In this section we study, through covariance analyses, the dependence of the formal errors
of the resonant geopotential terms C,2 and Sy, on the value of the semimajor axis a.
It is expected that the formal errors are minimum if the semimajor axis is equal to the
radius of the geostationary ring (deep resonance). For our purpose we use an orbit with
characteristics similar to that of Meteosat 4; eccentricity and inclination are given in
Table 4.9, the semimajor axis is varied systematically.

Eccentricity 0.00026
Inclination 0.82°

Table 4.9: Characteristics of the orbit used for covariance studies.

For each covariance analysis observation epochs distributed over an interval of 42 days are
simulated. The observation scenario closely resembles the distribution of the Zimmerwald
observations of Meteosat 4 in winter 1995 (Chapter 5): A total of 54 close encounter series
containing 8 observations each were distributed over 13 nights. An observation rms of 0.5”
was assumed for all simulations. ‘ - ‘"

The formal error in the semimajor axis shows a prominent peak close to the 1:1-resonance
(see Figure 4.4): The formal error in the parameter grows by more than one order of
magnitude in an interval of only a few hundred meters of the semimajor axis. Obviously,
close to the resonance correlations between orbit parameters affect the semimajor axis.

For the resonant geopotential terms, on the other hand, we would expect a dip-in the
formal errors close to resonance. However, Figure 4.5 reveals that the formal error of
both terms, Cz; and Sy, show a peak when the semimajor axis corresponds to resonance.
This behaviour is surprising at first sight, but may be understood in the following way:
According to eqn. (4.7) the acceleration in longitude of a geostationary satellite on a
circular orbit with vanishing inclination is proportional to

5\ ~ 022 sin 2\ — 522 cos 2. (420)
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Figure 4.4: Formal error of the semimajor axis as a function of the semimajor axis at the
osculation epoch. Arclength is 42 days, observation rms error is 0.5".

Therefore, would a satellite in resonance be observed only at longitude A = 0°, only the
potential term S;; could be determined, while Cy; would remain undetermined because
its coefficient is zero in eqn. 4.20. For an arbitrary longitude A of the satellite only the
combination

A = Corsin2) — Syg cos2A (4.21)

of the geopotential terms may be determined while the orthogonal combination
B = C3;¢c052X 4 S33sin2) (4.22)

remains undetermined using the observations of this satellite only.

In our covariance study the satellite was assumed to be stationary at about 8° west at
the initial epoch. At resonance the satellite remains close to this longitude during the
entire observation interval of 42 days. The potential term C,; is thus determined with
significantly lower accuracy than the term S,;, and both terms have a higher formal error
than outside resonance. ‘

If instead of the potential coeflicients Cy2 and S,; the linear combinations defined in
eqns. (4.21) and (4.22) are determined, the picture looks differently: The peak in the
formal error of B is even higher than for Cy; while it vanishes in the formal error of A.
In Figure 4.6 formal errors in A and B are shown for a larger range of values for the
semimajor axis. (Actually we do not give the formal errors of A and B but the formal
errors of that linear combination of C3; and S3; which diagonalizes the corresponding
2x2-submatrix in the parameter correlation matrix. In the case of resonance the result is
identical. Outside resonance the result is the same, too, if the longitude A in eqns. (4.21)
and (4.22) is replaced by the longitude corresponding to the satellite position at the middle
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Figure 4.5: Formal error of the geopotential terms C5, (left) and S,, (right) as a function of the
semimajor axis at the osculation epoch. Arclength is 42 days, observation rms error is 0.5"

of the observed arc.) The large formal error in B also causes — due to the correlation
between the parameters — the large formal error of the semimajor axis near resonance.

If the coefficients Cy; and 532 should be determined both with the same precision two
satellites which are 90° apart in longitude have to be observed.

Figure 4.6 shows the formal error of the two terms A (left) and B (right) for a range in
the semimajor axis covering 3"700 km. The two errors show a similar behaviour — except
for the peak in B. The formal errors increase with the difference of the semimajor axis

15E-8 | 15E-8

1.0E-8 1.0E-8

0.5E-8 : W\M | 0.5E-8 -

0 oF
4oéoo * I3l 500 42500 23500 . km 20500 ' 41 éoo * 42&00 * 43&00 .km

Figure 4.6: Formal error of the linear combinations A (left) and B (right) of the geopotential
terms Cs» and Spo as a function of the semimajor axis at the osculation epoch. Arclength is
42 days, observation rms error is 0.5".
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from the resonant value. The parameters remain, however, well determined for a range of
semimajor axes several hundred kilometers wide. This means that even graveyard orbits
are useful for the determination of resonant terms of the geopotential!

Covariance studies with different arclengths and different numbers of observations show,
that outside resonance the formal errors of the resonant geopotential terms improve with
the number of observations (inversely proportional to the square root of the number of
observations) while an extension of the arclength with constant number of observations
does not significantly improve the results. Close to resonance, on the other hand, the
formal errors of the resonant geopotential coefficients behave in a different way: They are
more sensitive to an extension of the arclength than to the number of observatlons The
formal errors improve proportional to the arclength in this case.

- The two regimes of behaviour of the formal errors of the geopotential coefficients are show
in Figure 4.7. Figure 4.7 (left) shows the formal error of A as a function of the semimajor
axis of the orbit for semimajor axes between 40°300 km to 44’000 km. The four curves
correspond to different numbers of observations and different arclength. The 432 resp. 864
single observations were assumed to be contained in 54 resp. 108 close encounter series
distributed over 13 resp. 26 nights within a time interval (arclength) of 42 resp. 84 days.
In all cases an observation rms error of 0.5” was assumed. The difference of the two curves
determined with different numbers of observations is obvious while the curves for equal
number of observations but different arclength are more or less identical.

Figure 4.7 (right) shows the central (resonant) region of Figure 4.7 (left) with the semima-
jor axis covering the interval between 41700 km and 42°700 km. Obviously the increase
of the number of observations also reduces the formal errors, more pronounced, however,
is the reduction of the errors when increasing the arclength. When determining precise

—— 42days. 432 obs 1 —— 42 days, 432 obs
w84 days, 432 obs 7E10 1 wwmees 84 days, 432 obs
L[| e 42 days, 864 obs D I 42 days, 864 obs
Y ==== 84 days, 864 obs ===~ 84 days, 864 obs

8E-9

SEQF

a9}

2E9}

40500 41500 42500 43500 km 41800 42000 42200 42400 42600 km

Figure 4.7: Formal error of A determined from different arc lengths (42 and 84 days) and different
number of observations (432 and 864) as a function of the initial semimajor axis. Right: Central
region of the left Figure. Observation rms error is 0.5".
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resonant geopotential coefficients from astrometric measurements of geostationary satel-
lites one should therefore use observations of at least two objects at significantly different
longitudes covering a long orbital arc. The observations of the two satellites Meteosat 4
and Meteosat 5 presented in Chapter 5 covering a time interval of 111 days seem to be
well suited for that purpose.

4.3 Resonance for GPS Satellites

4.3.1 Heuristic Identification of Resonant Potential Terms

For geostationary satellites it is intuitively clear that resonance with the Earth’s rotation
may occur and that the ellipticity of the equator (i.e. the geopotential term Jy;) is the
dominant contributor: The satellite is at a fixed position in an Earth-fixed frame and
therefore ‘senses’ always the same perturbing acceleration from the geopotential. For a
satellite in 2:1-resonance it is also possible to find the most important geopotential terms
responsible for resonance in a heuristic way. In the previous section we found from theory
that for the 2:1-resonance the term Js; plays the most important role for circular orbits
with non-zero inclination.

In order to get an intuitive picture we shade on a map of the world the regions for which
a given geopotential term has a positive value; in the other (blank) regions the same term
has a negative value (see Figure 4.8). Into the same map we draw the ground track of a
satellite in a 12-hour orbit. We now may find the sign of the perturbing acceleration in
alongtrack direction caused by the particular potential term (arrows in Figure 4.8).

For the term Vi, (Figure 4.8, top right) we recognize that (for the selected longitude of
the node) the acceleration at the same locations along the orbit have the same sign in
the northern and the southern hemisphere. A net effect of the accumulated acceleration
along a revolution may therefore cause resonance.

The case is different for the term Vo, (Figure 4.8, top left): At the same locations along
the orbit in the northern and in the southern hemisphere the sign of the perturbing ac-
celeration has different signs. The effect of the potential term from the two hemispheres
therefore cancels out as long as the orbit is circular. Resonance may occur if the eccentri-
city of the orbit is non-zero: If due to the eccentricity the orbit is e.g. closer to the Earth
in the northern than in the southern hemisphere the accelerations at the same locations
thus may have different values and a net effect of the perturbations may occur. In fact, as
we found in the last section, the resonance effect caused by the term V5; is proportional
to the eccentricity. We find the same behaviour for the term Vi, (Figure 4.8, bottom left),
whereas the term Vi4 may cause resonance effects for circular orbits (Figure 4.8, bottom
right) as does the term V.. ’ oo
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Figure 4.8: Heuristic identification of resonant geopotential terms for satellites in 2:1-
commensurability (GPS-type orbits). Top left: Term J,; top right: Ja,; bottom left: J42, bottom
right: Jus. Shaded areas: Positive values of corresponding potential term.

4.3.2 Dependence on the Inclination

The dependence of the resonance effect on the inclination is described by the inclination
function Fiy(2) (see eqn. (4.13)). Normalized inclination functions are given in Figure 4.9
as a function of the inclination ¢ for the indices [, m, p corresponding to the most important
resonant perturbations of a satellite in 2:1-resonance. The dotted lines correspond to
perturbations which are proportional to the eccentricity, the solid line to terms whlch are
to first order independent on the eccentricity.

The function F3z; which is contained in the expression for the dominant resonant per-
turbation has its maximum absolute value at s ~ 35° and changes its sign for ¢ o~ 70°.
Therefore for satellites with an orbital inclination around 35° the resonance effect is largest
whereas the resonance effect from the potential term J3; may vanish for nearly circular
orbits for satellites with an inclination around 70°. :

For GPS Block II satellites with inclinations of about 55° the resonant perturbation
caused by the 32-term is about 60% of its maximum value. For the Block I satellites with
inclinations of about 63° the resonance effect is about two times smaller than for Block II
satellites.

For all resonant perturbations which do not contain the eccentricity to first order, the
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Figure 4.9: Normalized inclination functions for 2:1-resonance as a function of inclination. Solid
lines: functions appearing in dominant perturbations, dotted lines: functions appearing in per-
turbations which are proportional to the eccentricity.

inclination functions have a root for ¢ = 0°. This means that a circular orbit in the
equatorial plane which is in the 2:1-commensurability does not show a resonant behaviour.
It is therefore important to distinguish between the two terms ‘commensurability’ and
‘resonance’.

4.3.3 Derivation of the Oscillation Equation for a
GPS Satellite

The time evolution of the semimajor axis of a GPS satellite in resonance is given in
Figure 4.10. On top of the short periodic perturbation due to the flattening (term Jao, see
Table 4.5) with an amplitude of about 2 km we see the longperiodic resonant perturbation
with a period of about 12 years and an amplitude of about 4.5 km.

To get an equation for the resonant satellite motion we use eqn. (4.13) for eccentricity
e = 0 and consider only the potential term Js2. Eqn. (4.13) then reads for the resonant
index combination Impq = 3210 as '

da ac\% - = .
e = +2na (—) J32 F321(2) COs \D3210 (423)
dt /3510 a

with
\D3210 = w + M + 2 (Q—(")—/\32). ' (424)
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1!

Figure 4.10: Perturbations in the semimajor axis for a GPS satellite (from Rothacher (1992)).

We obtain a differential equation for ¥ (omitting the indices) by replacing a in eqn. (4.23)
by n which is in turn replaced by V¥ obtained by taking the second derivative of eqn. (4.24):

. 3 - -
b = —3n? (-‘;—) oz o (i) cos U C(4.25)

This is the equation of a mathematical pendulum around the stable point ¥ = +90°.
This means that the resonant oscillation of a satellite in 2:1-resonance is at its stable
equilibrium point if the nodes of its orbit are arranged in such a way that the satellite in
its orbit always is above those parts of the world where V4, is negative (see Figure 4.11,
left). In the opposite case (Figure 4.11, right), it is at the unstable equilibrium point of
the oscillation.

The frequency of the oscillation for small amplitudes is
a.\° - =
w2 = —3n2 (-E') J32 F321(i)
and the period is
2r . . 9
T=—K(a) with o =sin® AUmax/2
w -

where AW mnax is the amplitude of the oscillation in ¥ and A'(«) is the complete elliptic
integral of the first kind. For an inclination : = 55° we get

w = 2.07-107° rad/day

T = 8.3-K(«) years.
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unstable

Figure 4.11: Stable (left) and unstable (right) orbit configuration for a satellite in 2:1-resonance
due to the geopotential term Vj,.

From energy conservation an upper limit for the amplitude in the semimajor axis of

4/
Aa < —da ~ 5.8km
3n

results. Similar results are obtained by Vilhena de Moraes et al. (1995).

4.3.4 Mean Elements

The International GPS Service for Geodynamics (IGS, see e.g. Beutler et al. (1996a))
generates high precision orbits for the GPS satellites for every day since June 21, 1992.
Daily ‘mean’ elements may be computed from the IGS results since that time. Figures 4.12

show the drift in the mean semimajor axis induced by resonance for satellites 14 (left)
and 24 (right) for a time interval of about 200 days (Beutler, 1996).

In order to avoid satellite manceuvers and in order to remove lunar perturbations the drift
in the daily mean elements were averaged over 27 days within December 13, 1992 to Janu-
ary 13, 1993, a time interval in which no manceuver occurred. In Figure 4.13 the averaged
drift rates in the semimajor axis computed numerically from the IGS observations by this

procedure are given for each observed GPS satellite. The largest drift exceeds 7 m/day
(satellite PRN 16).

4.3.5 Resonant Drift Rates Computed from Theory

In order to compare the observed drift rates in the semimajor axis with the values ex-
pected from theory the influence of the resonant geopotential coefficients on the different
GPS satellite orbits was computed using eqn. (4.13) and the IGS orbital elements of the
satellites on Dec. 31, 1992. The drift rates in the semimajor axis (shaded columns) and
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Figure 4.12: Resonant drift in the mean semimajor axis of the GPS satellites 14 (left) and 24
(right). The offset in the semimajor axis is 26560 km, the left time interval boundary corresponds
to July 25, 1992 (from Beutler (1996)).

the amplitudes of the perturbations (dotted columns) are shown in Figure 4.14 for all
GPS satellites for the most important resonant geopotential terms. In Figure 4.14 (top
left) we see the resonant effect of the potential term Js2, in Figure 4.14 (top right) the
effect of Jy2 and in Figure 4.14 (bottom left) the effect of the term Jy4. All figures are to
the same scale.
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Figure 4.13: Mean resonant drift rates in the mean semimajor axis for all observed GPS satellites.
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As expected the term J3; gives the largest contribution. In Figure 4.14 (top left) two
classes of amplitudes are distinguished: amplitudes of about 6 m/s and amplitudes of
about 3 m/s. The difference is due to the different orbital inclinations for the Block I
(63°) and the Block II satellites (55°). For Block I satellites the value of the inclination
function Fsy;(i) is about 2 times smaller than for the Block II satellites (see section 4.3.2).

The perturbation amplitudes induced by the term J5; (Figure 4.14, top right) is 2.5 m/s or
smaller. The highest values are observed for the satellites with largest orbital eccentricity
(e = 0.0136 for satellite 11, but e = 0.0010 for satellite 16) because the eccentricity func-
tions G211(e) and Gao-1(€) are proportional to the eccentricity e. The term Jy4 (Figure 4.14,
bottom left) for most satellites is more important than the term J;;. The amplitude for
all satellites is about 1.5 m/s because the perturbation is not proportional to the eccent-

m/day

; 3 5 7 911 1315171921232527293133 1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31 33
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Figure 4.14: Resonant drifts in a (m/day) (solid lines) and perturbation amplitudes (dotted
lines) in the mean semimajor axis for GPS satellites due to the geopotential terms J32 (top left),
Jaa (top right), Jas (bottom left). Bottom right: Combined effect due to all resonant terms up
to degree | = 6 compared to the observations (crosses). All Flgures are to the same scale. Epoch
of the satellite elements: Dec. 31, 1992.
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ricity and the inclination function Fy(7) has similar values for Block I (i ~ 63°) and for
Block II satellites (i ~ 55°).

The sum of all resonant perturbing potential terms with degree ! < 6 is given in Figure 4.14
(bottom right) for all satellites for which orbital elements were available (shaded columns).
The crosses indicate the values of the drifts actually observed in the semimajor axis (see
Figure 4.13). The correspondence between observed and computed values is obvious but
not perfect. Differences up to almost 1 m/s are observed. The differences are mainly due
to radiation pressure effects which will be discussed below.

4.3.6 Contribution of the Y-Bias to the Drift in the Semimajor
Axis

GPS satellites are large structures with extended solar panels. The cross section area
for the Block II satellites, as seen from the Sun, is larger than 13 m? (Fliegel et al.,
1992). While direct radiation pressure does not induce longperiodic or secular variations
of the semimajor axis (apart from the negligible Pointing-Robertson effect), induced forces
acting perpendicular to the direction to the Sun may produce longperiodic drifts in the
semimajor axis.

The so-called y-bias is a force acting along the axis of the solar panels (y-axis of the
satellites, Fliegel et al. (1992)). It may be due to a misalignment of the solar panels or to
thermal emissions of the satellites. The acceleration p, is of the order of 107°m/s? and it
is different for each satellite.

The goal of the satellite’s attitude control is to point the antenna array (z-axis in the
satellite coordinate system) at any time towards the Earth’s center and the solar panel
axis (y-axis) perpendicular to the direction Sun-satellite, in order to optimally cover
the Earth with the microwave beacon and to maximize the solar irradiance onto the
solar panel arrays (which may rotate around the y-axis). Adopting this optimal attitude
control scenario the direction of the satellite’s y-axis may be computed from the geocentric
position vector r of the satellite and the unit vector satellite-Sun s:

_sxr
s xrl

(4.26)

€y

The perturbing y-bias acceleration may thus be written as p, = pye,. In Figure 4.15
(left) the alongtrack component of the perturbation is shown for three angles 1 of the
Sun above the orbital plane. Obviously a net effect over one revolution must be expected
affecting the semimajor axis. The effect increases with the angle 3 of the Sun above the
orbital plane. Using the Lagrangian perturbation equation

da 2 .
E = % T py (4.27)
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the effect on the semimajor axis a may be computed. For simplicity we assume a circular
orbit » = a(cos,sinp,0) and s = (cos®,0,sine), where ¢ is the angle between the
satellite and the Sun projected onto the orbital plane, 9 is the elevation angle of the Sun
above the orbital plane

siny = cosisind + siné cos sin(Q — a),

and a, ¢ are the right ascension and declination of the Sun, 7 and © are the inclination
and longitude of the ascending node of the satellite orbit in the equatorial system. ¢ = u
may be interpreted as the argument of latitude. Eqns. (4.26) and (4.27) then give

da _ 2p, sin ¢

g _ Pk : (4.28)
dt n \/ sin? 9 + cos? ¢ sin’

Averaging the variation in a over one orbital revolution gives the net effect of the y-bias
inducing longperiodic variations of the semimajor axis

da\  _ 2p 1 ¥ singdp _ 2p2 /m sin yhdp
A\t ) e T n2rJo VI—cos?ypcoste n who \/1—C0521/)$in299
dpy .. 2 .
= — : 4.
p— {'(cos® ) sin ¢ (4.29)

where K(z) is the complete elliptic integral of the first kind (Abramowitz et al., 1965).
The drift rate in the semimajor axis induced by the y-bias, computed from eqn. (4.29), is
shown in Figure 4.15 (right) for a satellite with © = 180° and p, = 10~°m/s? in a time
interval of two years. The drift in the semimajor axis reaches values up to 1.2 m/day.
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Figure 4.15: Left: Alongtrack acceleration of a GPS satellite due to a y-bias of p, = 10~°m/s?
over two revolutions with the Sun 10°, 40° and 78° above the orbital plane. Right: Drift rate in
the semimajor axis due to the y-bias for a GPS satellite with Q@ = 180° and p, = 10~°m/s? for
a time interval of 2 years.
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The theoretical drift rate for the individual GPS satellites are given in Figure 4.16 (left),
and in Figure 4.16 (right) we see the sum of the drift rates in the semimajor axes from the
resonant geopotential terms (with ! < 6) and the y-bias. A comparison with Figure 4.14
shows that the difference to the observed drift rates is greatly reduced. The maximum
value which is 1 m/s if only geopotential terms are considered is reduced to 0.25 m/s if
the effect of the y-bias is included.

We have seen that the y-bias induces a drift rate in the semimajor axis with an amp-
litude up to nearly 20% of the effect stemming from the resonant geopotential terms. The
determination of resonant geopotential coefficients is therefore strongly correlated with
the y-bias. On the other hand such determinations would not rely on one single satellite
but on an entire satellite system well observed without interruption since June 92. The
fact that the drift rate from the y-bias has an annual period and shows a characteristic
signature within the individual revolutions may help to decorrelate different effects, in
particular the y-bias and resonance effects due to the geopotential.

m/day

Figure 4.16: Left: Theoretical drift rates due to satellite specific y-biases for all GPS satellites
with elements available. Right: Sum of drift rates in the semimajor axis from the resonant
geopotential terms with [ < 6 and from the y-bias (shaded columns) and observed drifts (crosses).
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5 Meteosat: Observations
and Results

5.1 Observation Campaign of Meteosat 4 and 5

5.1.1 Background

In winter 1994/95 astrometric observations of the two geostationary satellites Meteosat 4
and Meteosat 5 were acquired in the context of the COGEOS (International Campaign for
Optical Observations of Geosynchronous Satellites) research project (see Nobili (1987)).
The aim of COGEOS is the determination of the resonant coefficients Cy; and S,; of
the geopotential. The Meteosat satellites were selected as observation targets: Due to
their relatively small size, their cylindrical shape, and the fact, that they have no outside
despun antenna but an antenna system that is embedded in the satellite body, the effects
due to solar radiation pressure are relatively easy to model. Moreover the two satellites
are manceuvered only every few months. The essential characterlstlcs of the satellites
Meteosat 4 and 5 are summarized in Table 5.1.

Meteosat 4 Meteosat 5
COSPAR designation 89 020B 91 015B
Size 3.10 m long, 2.10 m diameter
Epoch of osc. elements 1994-11-29 1994-11-29
Semimajor axis 42165.90 km 42162.08 km
Eccentricity 0.00023 0.00025
Inclination 0.80° 0.13°
Ascending node 69° 259°
Argument of perigee 140° 312°
Geographic longitude 8.22°west 0.88°%east
Drift -0.01°/day 0.04°/day

Table 5.1: Characteristics of the geostationary satellites Meteosat 4 and 5 according to the ESA
log of objects near the geostationary ring, Dec. 94 (Janin, 1996).

An observation campaign for Meteosat 4 and 5 was initiated at the Sixth COGEOQOS
Workshop in Walferdange, Luxembourg, 1994. The campaign was timed such that neither
of the two satellites crossed the Earth’s or Moon’s shadow during the observation period.
The campaign was coordinated by G. Appleby from the Royal Greenwich Observatory
who distributed state vectors for Meteosat 4 and (for the second half of the campaign)
for Meteosat 5. The Royal Greenwich Observatory (RGO) in Herstmonceux (G. Appleby,
P. Gibbs), the Observatoire de la Céte d’Azur (OCA, C. Veillet), the Main Astronomical
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Observatory in Kiev (Y. Ivashchenko), and the Zimmerwald observatory of the AIUB
(T. Schildknecht and U. Hugentobler) were participating in the campaign. In this chapter
the Zimmerwald observations of the two satellites are analyzed.

5.1.2 The Zimmerwald Observations

The amount and distribution of the astrometric observations acquired in Zimmerwald are
listed in Table 5.2 . For each observation night the date, the number of close encounter
series, the number of single observations, and the time of the first and last observation
are given. Meteosat 4 was observed in 20 nights spanning a time interval of 111 days from
October 26, 1994 to February 14, 1995. A total of 108 close encounter series were measured
containing 903 single observations. Meteosat 5 was observed during 11 nights spanning
42 days. The observations contain 49 close encounter series and 405 single observations.
The measurement technique is discussed in Chapter 1.

Figure 5.1 shows the distribution of the observation epochs. The shaded area indicates
the eclipsing periods around the equinoxes. The arrow gives the epoch of the manceuver
of Meteosat 4 within the observation period. Meteosat 5 was not manceuvered during the
time interval of interest. The epochs of the manceuvers for Meteosat 4 from October 1994
to February 1995 are given in Table 5.3.
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Figure 5.1: Epochs of the Zimmerwald observations of Meteosat 4 and 5 in winter 1994/95. The
shaded areas indicate the eclipsing periods. The arrow indicates the epoch of the manceuver of
Meteosat 4.

The two European weather satellites were observed during 20 nights. For each observation
night the satellite ephemerides were computed and reference stars were selected along the
orbit within a stripe with a width of 10 arcmin centered around the orbit. The PPM
catalogue was used for 197 stars, 15 stars were selected from the CMC catalogue (see
Section 1.1.3).

In Figure 5.2 we see Meteosat 4 on a frame taken with fixed telescope and an exposure time
of 4 seconds. The frames used for measuring the positions-of satellite and reference star
were exposed for only one second, however. For each close encounter series the frames were
processed immediately after their acquisition. It was therefore not necessary to store them
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on disk. After terminating the observations at the end of the night the CCD coordinates for
the satellites and reference stars were already available. They were astrometrically reduced
the following morning. Usually, all frames from one night could be reduced within the same
run (together with observations of other satellites) if the camera was not removed from

Meteosat 4 Meteosat 5
Date Series  Observations (UT) | Series Observations (UT)
26. Oct. 94 7 61 00:20 - 04:58
30. Oct. 6 53 23:26- 03:00
31. Oct. 6 54 21:24-23:13
21. Nov. 3 26 18:43-22:04
2. Dec. 6 45 00:59 - 04:53
6. Dec. 10 88 21:33-23:10
11. Dec. 16 132 23:16 - 02:29
3. Jan. 95 3 28 22:50-05:39 4 35 23:04- 05:40
4. Jan. 7 60 18:52-05:39 8 56 18:09- 05:51
5. Jan. 3 20 20:37-00:28 3 27 20:42-03:10
13. Jan. 6 56 19:48- 03:02 6 55 21:31-04:39
14. Jan. 7 48 18:13- 03:07 6 39 18:10-03:15
15. Jan. 4 32 21:40- 04:51 4 32 21:53 - 05:04
16. Jan. 7 63 22:18-05:36 7 59 22:26- 05:30
17. Jan. 1 6 20:47 - 20:48 1 6 22:22-22:23
19. Jan. 1 10 19:54 - 19:55
31. Jan. 5 45 20:59 - 04:08 5 47 00:07- 04:16
1. Feb. 4 30 21:38-23:02 4 33 21:32-23:12
7. Feb. 4 32 21:12-00:48
14. Feb. 2 12 21:49- 21:57 1 10 01:00- 01:01
Total 108 901 49 399

Table 5.2: Astrometric observations (number of series, number of single observations, times of
first and last observation) of Meteosat 4 and 5 performed at Zimmerwald in the context of the
COGEOS project.

Manceuvers of Meteosat 4

6. Oct. 1994 22:51 UT
16. Dec. 1994 08:58
22. Feb. 1995 02:24

Table 5.3: Date and time for the manceuvers of Meteosat 4 in the time period from October
1994 to February 1995, from Appleby (1995).
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the telescope, the focus was not changed, and the environmental temperature did not
change much during the night. The astrometric reduction gave values for the rms of single
observations between 0.3" and 0.7". The histogram for the rms errors of all determined
satellite positions in right ascension are shown in Figure 5.3. (The corresponding diagram
for the rms errors in declination looks similar.) The mean positioning error is 0.5, it may
however be as small as 0.3” or as large as 0.8".

Figure 5.2: Meteosat 4 on a frame exposed for 4 seconds with fixed telescope on Dec. 11, 1994,
in Zimmerwald. Frame size is 17’ x 11",

250 . ' ' l _ ' ]
200: - | .
150 - ' 1
100 : by

50| :

03" 0.4* 0.5* 0.6" 0.7" 0.8*

Figure 5.3: Histogram of rms errors in right ascension for all observations from Meteosat 4 and
Meteosat 5 as provided by the astrometric reduction.

Finally the measurements were screened for outliers by fitting an orbit through the obser-
vations. From a total of 1494 single observations (1004 for Meteosat 4, 490 for Meteosat 5)
186 showed exceedingly large residuals after fitting an orbit. Most of them could be at-
tributed to a superposition of the satellite image with the image of a background star. In
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most cases this was already indicated by an anomalous shape (given by the moments of
inertia of the image) and intensity determined by the object recognition algorithm.

In Figure 5.4 Meteosat 5 is shown on a series of frames during a close encounter with a
reference star. In the same field of view covering only 14’ x 10’ there are two other geo-
stationary objects that are much brighter than Meteosat 5, which could not be identified.
One of them might be Intelsat 7 F2 or TV Sat-2. The inclination of its orbit is 0.06°, but
identification is difficult due to the fact that these large telecommunication satellites are
often manceuvered. The other object is drifting on an orbit with an inclination of about
1°(result from a circular orbit determination).

Figure 5.4: Meteosat 5 (bottom right) together with two other geostationary satellites in front of
the moving stellar background. Series of Zimmerwald frames taken on January 31, 1995, spaced
by 8 seconds. Integration time was 1 second. The field covers 14’ x 10".

5.2 Orbit Determination for Four Days and
the Precision of the Observations

5.2.1 Orbit Determination with and without Radiation Pressure

To get a first impression for the quality of the acquired data the measurements of Meteo-
sat 4 from four successive nights from January 13 to January 16, 1995, were used for an
orbit determination. They contain 24 close encounter series with a total of 199 observa-
tions.

The force model used for the orbit determination consists of
- the Earth potential model JGM3 up to terms of degree and order 10,
the gravity from Sun and Moon, using the JPL DE200 ephemerides,
the direct radiation pressure,
the tidal potential due to Sun and Moon,
precession and nutation according to the IAU 1976 and 1980 resolutions,

UT1-UTC correction and polar wobble from the IERS.
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Because the coefficient for direct solar radiation pressure is not known a priori, three
orbits were determined:

(a) No radiation pressure included in the force model.

(b) An a priori direct solar radiation pressure coefficient of

ASe _ -8, /.2

e = 5.58 10" m/s (5.1)
was adopted assuming an area-to-mass ratio A/M = 0.123 m?/kg, based on an area
of 4 m? and a mass of about 325 kg (Veillet et al., 1990). Sg = 1.36 - 103W/m? is
the solar constant, ¢ the velocity of light.

(c) The direct solar radiation pressure coefficient was determined together with the
orbital elements.

The results for the three cases are given in Table 5.4. The differences between cases (a) and
(b) are obvious: The representation of the observations is significantly improved by using
a reasonable radiation pressure coefficient. The rms of unit weight is reduced from 1.52 to
1.43 (corresponding to mean observation errors of 0.79” and 0.74" respectively). Whereas
the elements characterizing the orbital plane (¢ and ) remain unchanged as expected,
the elements describing the shape and orientation of the orbit within the orbital plane
are changed significantly.

Compared to the solution with fixed radiation pressure coefficient (case (b)) the determ-
ination of the direct radiation pressure coefficient (case (c)) does, for the short arc con-
sidered, not significantly improve the representation of the observations: The rms of unit
weight remains nearly unchanged. The determined elements are not significantly differ-
ent, i.e., the differences are in all cases lower than about 1.3 o. The radiation pressure
coefficient determined is about 25% larger than the a priori value specified in eq. (5.1).
Its relative rms error is with 14% relatively large, however, the difference relative to the
a priori value is only about 1.4 o.

Whereas the determination of the radiation pressure coefficient does not improve the
representation of the orbit, it increases the rms errors of the orbital parameters describing
the shape of the orbit, i.e., of a,e,w and (as a consequence) of the mean longitude £
by as much as a factor of 6.7 e.g., for the semimajor axis. This is caused by the strong
correlation of the radiation pressure coefficient with the elements a and e for short arcs
(see Chapter 3). This result is also observed in the rms errors in the satellite position. In
Figure 5.5 the rms errors in position are given as a function of time for the three solutions,
separately for the radial (R), the alongtrack (S), and the crosstrack (W) direction.

The figures corresponding to cases (a) and (b) are very similar, reflecting the fact that
the rms errors of the orbital elements are nearly the same for both cases, i.e., when no
radiation pressure coefficient is determined. The largest rms errors (up to 70 m in the time
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interval considered) occur, as expected, in the alongtrack direction. The daily oscillations
are a consequence of the uncertainty in the eccentricity and in the location of the perigee
whereas the increase of the rms error towards both time interval boundaries is caused by
the uncertainty in the semimajor axis.

For solution (c}, in which the radiation pressure coefficient was estimated, the rms errors in
position are larger by a factor of about four in both, the radial and the transverse directions
as a consequence of the increased errors in a,e, and w. The rms error in the alongtrack
direction may reach values up to 350 m (corresponding to 2" in the geostationary distance).
At the observation epochs, however, the rms errors are below 135 m (corresponding to

(a) No Radiation Pressure

Observation rms of unit weight 1.521 (0.787")
Semimajor axis 42165155.09+ 0.94 m
Eccentricity .00012830 £ .00000022
Inclination 0.888344 + 0.000019°
R.A. of ascending node 69.372641 £ 0.001264°
Argument of perigee 198.687423 + 0.187342°
Mean longitude at T,,, 101.978601 + 0.000063°
(b) Radiation Pressure Fized, 5.58 - 10~3m/s*
Observation rms of unit weight 1.427 (0.741")
Semimajor axis 4216519047+ 0.88m
Eccentricity .00013141 £ .00000022
Inclination 0.888343 £ 0.000018°
R.A. of ascending node 69.372766 £ 0.001186°
Argument of perigee 194.655674 £ 0.168568°
Mean longitude at T, 101.979430 + 0.000059°
(c) Radiation Pressure Determined
Observation rms of unit weight 1.426 (0.741")
Semimajor axis 42165198.46 + 5.92m
Eccentricity .00013220 £ .00000063
Inclination 0.888343 £ 0.000018°
R.A. of ascending node 69.372794 £ 0.001185°
Argument of perigee 193.772729 £ 0.663043°
Mean longitude at T, 101.979617 & 0.000149°
Radiation pressure coefficient 6.84 &= 0.92-107%m/s?

Table 5.4: Orbital elements of Meteosat 4 based on observations from four nights, (a) without
radiation pressure in the force model, (b) with a ‘reasonable’ direct radiation pressure coefficient,
(c) with the direct radiation pressure coefficient determined from the observations. Osculation
epoch of the elements: January 11., 1995, system J2000.
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Figure 5.5: RMS errors in radial (R), alongtrack (S), and crosstrack (W) direction as a function
of time for the orbit determination of Meteosat 4 without radiation pressure (top), with fixed a
priori radiation pressure coefficient (center), and with radiation pressure coefficient determined.

0.8"), because the alongtrack position is restricted by the observations.

In the crosstrack direction the rms error is about the same in all three considered cases,
because it is only determined by the rms errors in the elements determining the orientation
of the orbit (i.e. ¢ and ) which are not affected by the radiation pressure on short arcs.

5.2.2 Precision of the Observations

One question remains to be answered: Why is the rms of unit weight for all three cases
significantly larger than one? This fact implies that either the a priori weights of the
observations introduced into the orbit determination procedure are too optimistic, or
that significant systematic errors are present. An inspection of the residuals seems to
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indicate that the first cause is dominant. Figure 5.6 shows the residuals in right ascension
(top) and declination (bottom). For each close encounter the average together with the
standard deviation of the corresponding residuals is plotted. In fact, no systematics are
observed.

The rms errors of the satellite’s astrometric positions used for weighting the observa-
tions for the orbit determination contain only those errors that are introduced by the
astrometric reduction process, i.e., those caused by the errors in the mapping scale, the
camera orientation, and the pointing direction. They contain neither the errors from the
centroiding of the satellite images on the CCD frame nor those from the reference star
coordinates. For the former error source about one tenth of a pixel has to be expected,
l.e., about 0.4". For the PPM stars errors of 0.3" are claimed (Roser et al., 1991). The sum
of the two contributions indicates that a rms of unit weight of the order of 1.4 is realistic.

The mean residuals averaged for each close encounter series in Figure 5.6 contain all errors
that are common for each close encounter, i.e. the errors in the pointing directions and
those in the catalogue star positions. The pointing errors are given by the astrometric
reduction and are in the range between 0.2" and 0.3". The observed scatter of the mean
residuals is 0.33", i.e. it is somewhat smaller than the quadratic sum of the two sources
(pointing errors and reference star errors) implying that the positions of the reference
stars used are in fact better than the quoted accuracy.

The standard deviation of the residuals within the close encounter series is due to the
centroiding errors (that are of the order of a tenth of a pixel, i.e. about 0.4"), due to
errors introduced by the astrometry, and possibly due to refraction effects (affecting the
mapping scale). The observed value is about 0.7".
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Figure 5.6: Residuals in right ascension and declination for Meteosat 4 for the orbit solution (c).
Mean values together with the standard deviation for each close encounter series.
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5.3 Orbit Determination for the Three Arcs and the
Radiation Pressure

5.3.1 The Solutions for the Three Arcs

Meteosat 4 was observed during a time interval of 111 days in the center of which a
manceuver occurred (see Table 5.3). The satellite orbit was therefore divided into two
arcs with a length of 46 days and 42 days. Meteosat 5 was observed during the second
half of the campaign over a time interval of 42 days during which the satellite was not
manceuvered. Its observations were thus analyzed using a single arc. Table 5.5 lists the
three arcs that were processed. :

Satellite Time span - Length  QObs.
Arc 1: Meteosat 4 26. Oct. — 11, Dec 1994 46 days 459
Arc 2: Meteosat 4 = 3. Jan. — 14. Feb 1995 42 days 442
Arc 3: Meteosat 5 3. Jan. - 14, Feb 1995 42 days 399

Table 5.5: List of arcs into which the observations of the two satellites were split.

The three arcs were processed independently using the force model given in Section 5.2.
The resulting orbital elements and the direct radiation pressure coefficient are given in
Table 5.6. Residuals may be found in Figures 5.7 to 5.9.

The rms of unit weight is of the order of 1.4 for all three arcs as it is for the short arc
discussed in Section 5.2. This fact, as well as the inspection of the residuals give confidence
that no large systematics are present even for these relatively long arcs. The residuals for
arc 2 and arc 3 seem, however, to indicate some systematic deviation for the last data
points. This might be due to a modelling problem or bad catalogue stars. In fact, only
two (arc 2) and one (arc 3) close encounter series was measured during the last night
of observation, thus reducing the statistical significance of these residuals. It has to be
pointed out again, that the residuals from one close encounter series always contain the
bias introduced by the reference star used.

Averaging the residuals for the last close encounter series shows, that for arc 3 the mean
value for the residuals from the last night is close to zero in both coordinates, however with
a large standard deviation (—0.15"+ 1.03" and 0.06" % 0.67" respectively). A deviation of
the residuals from zero is thus not significant. For arc 2 the averaging of the residuals for
the last two close encounter series reveals that only the second of the two series shows in
right ascension a large average. The average residual are for the first series —0.24"+ 0.55"
and —0.37" % 0.70" in right ascension and declination respectively, and for the second
series —0.80" £ 0.54" resp. 0.08" £ 0.32". It is therefore plausible that the reference star
used for the second close encounter series has either bad coordinates, or is a double star
unresolved with the mapping scale of 4”/pixel.
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The rms errors for the orbital elements given in Table 5.6 may be compared with those
from the 4-days-solution for Meteosat 4 discussed in Section 5.2 (see Table 5.4, case
(c)). As expected the improvement is most significant for the semimajor axis (due to
the much longer arc). In fact, the improvement of more than a factor of ten in the rms
error for this elements corresponds about to the ratio of the arc lengths. The rms errors
for all other elements are reduced more or less by the square root of the ratio of the

Arc 1: Meteosat 4, 1994

RMS of unit weight

Arc length, number of obs.
Semimajor axis

Eccentricity

Inclination

R.A. of ascending node
Argument of perigee

Mean longitude at T,
Radiation pressure coefficient

42165763.30 &

1.371 (0.584)
46 days, 459 Obs.
0.13m
.00025505 = .00000013
0.816024 + 0.000013°
68.173583 % 0.000571°
177.579207 £ 0.144387°
211.101080 £ 0.000073°
7.117 + 0.056-10"3m/s?

Arc 2: Meteosat {, 1995

RMS of unit weight

Arc length, number of obs.
Semimajor axis

Eccentricity

Inclination

R.A. of ascending node
Argument of perigee

Mean longitude at T,
Radiation pressure coefficient

42165758.75 &

1.413 (0.703)
42 days, 442 Obs.
0.16 m
.00025615 £ .00000050
0.819155 £ 0.000012°
68.008243 £ 0.000784°
177.368759 £+ 0.160552°
211.101306 £ 0.000086°
7.281+ 0.079-10"3m/s?

Arc 3: Meteosat 5, 1995

RMS of unit weight

Arc length, number of obs.
Semimajor axis

Eccentricity

Inclination ‘

R.A. of ascending nod
Argument of perigee

Mean longitude at T,
Radiation pressure coefficient

42168881.77 &+

1.464 (0.725"
42 days, 399 Obs.
0.44 m
.00009860 £ .00000016
0.064628 X+ 0.000012°
259.283729 £ 0.012089°
197.679585 £ 0.199748°
101.714724 £+ 0.000029°
7.028 + 0.070-10"3%m/s?

Table 5.6: Orbital elements of Meteosat 4 and 5 determined for the three arcs defined in Table 5.5.
The osculation epochs for the elements are for arc 1 and arc 2: Dec. 16, 1994, 08:58 UT, and for
arc 3: Jan. 3, 1995, 00:00 UT. The system is J2000 for all elements.
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Figure 5.7: Residuals in right ascension (top) and declination (bottom) for arc 1 (Meteosat 4,
1994). ’

number of observations. The large rms error of the ascending node in arc 3 is due to the
orbital inclination of Meteosat 5 which is about ten times smaller than the inclination of
Meteosat 4.

5.3.2 The Radiation Pressure

The direct radiation pressure coefficient is determined to a precision of about 1%. In fact,
due to the long arcs the radiation pressure coeflicient and the semimajor axis and eccent-
ricity are decorrelated. The determined values for direct radiation pressure coefficients for
all three arcs are significantly larger than the value of 5.58 - 10~8m/s? given in eqn. (5.1).
Eqn. (5.1) was derived assuming a perfectly absorbing satellite surface. If the surface re-
flects and diffuses a certain portion of the light, the radiation pressure is increased by a
factor depending on the specular and diffuse reflection coefficient of the surface. For a
cylinder the acceleration due to radiation pressure may increase by as much as 50% (see
equations in Appendix C). Values larger by 25% to 30% than the one given by eq. (5.1)
are therefore realistic. The coefficients determined for the three arcs are consistent within
the rms errors.

Apart from the simplest model for the direct solar radiation pressure with the accelera-
ting force parallel to the incident radiation (i.e. assuming a spherical satellite) a more
sophisticated radiation pressure model for the Meteosat satellites was used. The model,
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Figure 5.8: Residuals in right ascension (top) and declination (bottom) for arc 2 (Meteosat 4,
1995).

proposed by Veillet et al. (1990), describes the satellites as three concentric cylinders with
specified optical properties of the surfaces. It is described in more detail in Appendix C.

According to this model, the magnitude of the acceleration induced by direct radiation
pressure is dependent on the angle of the incident light to the axis of symmetry. In addi-
tion, the acceleration is no longer exactly parallel to the direction Sun-satellite. Because
the spin axis of the controlled Meteosat satellites, which coincides with the cylinder axis, is
perpendicular to the orbital plane, the value and direction of the direct radiation pressure
may be computed for any position of the Sun. In order to allow for insufficiencies of the
model, only the direction and functional dependency of the acceleration on the declination
of the Sun was taken from the model whereas the factor corresponding to ASg/Mc was
determined from observations. (This factor is called below ‘Meteosat radiation pressure
coeflicient’.)

The direct radiation pressure coefficients and the Meteosat coefficients are given for all
three arcs in Table 5.7. The relative rms errors of the Meteosat coefficients are of the order
of 1% as for the direct radiation pressure coefficients. They are closer to the theoretical
value of 5.58 - 10~®m/s? but still significantly larger. This difference may be due to the
imperfections of the model, in particular due to the not accurately enough known optical
properties of the surfaces.

In addition to the Meteosat radiation pressure coefficient three components of a radiation
pressure acceleration vector were determined in a separate orbit determination run (see
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Figure 5.9: Residuals in right ascension (top) and declination (bottom) for arc 3 (Meteosat 5,
1995).

Radiation Pressure Coefficients

arc 1 arc 2 arc 3
Direct rpr. coef. 7.12+.06 7.28%+.08 7.03+.07 -10~3m/s?
Meteosat rpr. coef. 6.79+.06 6.95+.08 6.71+.07 -10~%m/s?

Three rpr. coef. 1 6.57+.19 7.71+£.22 7.04+.21 -10~%m/s?
2 0.354+.12 0.244+.14 0.09£.10 -1078m/s?
3 -1.60+.48 1.26+.62 0.18+.49 -1078m/s?

Table 5.7: Different radiation pressure coefficients determined for the three arcs.

Table 5.7). The coordinate system decomposing the vector has its 1-axis in the direction
Sun-satellite, the 3-axis towards the ecliptic pole, and the 2-axis perpendicular to the
other two in the direction of the orbital motion. It rotates in a Sun-fixed frame. Only the
1-component is determined with sufficient significance whereas the other two have large
rms errors and are only marginally significant or even consistent with a value of zero.

The determination of the coefficients of the different radiation pressure models have no
significant influence on the osculating orbital elements: The orbital elements of the solu-
tions are all consistent. Table 5.8 shows the rms of unit weight and the rms for the single
observations for the different solutions. As long as a radiation pressure coefficient is de-
termined the values are nearly the same. If the Meteosat radiation pressure coefficient is



5.4 Combination of Arcs and Determination of Resonance Terms 153

fixed to 5.58-107%m/s? the rms of unit weight are slightly larger, and significantly larger,
if the direct radiation pressure is fixed at the same value. In the latter case systematic
variations of up to 2" occur in the residuals . If the radiation pressure is not modelled at
all, the rms is 2.5” or more, and systematic variations of the residuals in right ascension

up to 10" are observed.

RMS of unit weight
arc 1 arc 2 arc 3
No radiation pressure 5.96 (2.827) 5.04 (2.48) 5.66 (2.72)
Direct rpr. coef. fixed at 5.58 - 10~8m/s? 1.86 (0.83") 1.80 (0.90) 1.85 (0.91"
Meteosat rpr. coef. fixed at 5.58-10%m/s? 1.41 (0.60") 1.48 (0.747) 1.50 (0.74")
Direct rpr. coef. determined 1.37 (0.58") 1.41 (0.70") 1.46 (0.73")
Meteosat rpr. coef. determined - 1.37 (0.58") 1.41 (0.71") 1.46 (0.73)
Three rpr. coef. determined 1.72 (0.76") 1.70 (0.84" 1.73 (0.85"

Table 5.8: RMS of unit weight given by the orbit determination for the three arcs with six
different radiation pressure options.

5.4 Combination of Arcs and Determination of
Resonance Terms of the Earth’s Potential

5.4.1 Combination of Two Arcs of Meteosat 4

After having processed the observations pertaining to the three arcs of Meteosat 4 and
Meteosat 5 separately (see previous section) all observations were processed together using
the program ARCOMB discussed in Chapter 3. Parameters that are common for several
arcs may then be determined rigorously, e.g., a single radiation pressure parameter for
the two arcs of Meteosat 4, or geopotential term parameters using all arcs in Table 5.5.
In addition, parameters describing manceuvers between subsequent arcs may be set up
and determined. The iterative procedure used for the combination of satellite orbits is
described in Section 3.1.4. The equations for setting up manceuvre parameters are given
in Appendix B and a more detailed discussion may be found in Beutler et al. (1996b).

To combine arcs 1 and 2 of Meteosat 4 the manceuver occurring on Dec. 16., 1994 at
08:58 UT had to be modelled. The osculating elements for the two arcs are given in
Table 5.9 for the manceuver epoch. The semimajor axis is changed by only 4.5 m corres-
ponding to a change of 0.21 arcsec/day in the mean motion or 43 m/day in the alongtrack
direction.. In the mean longitude a jump of 0.7" is observed which is roughly within the
observation rms error. Part of this jump may be due to the change in the eccentricity. The
changes in right ascension of the node of 1’ and in inclination of 11” are clearly visible.
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before after difference

Semimajor axis 42165763.3m 42165758.8m —4.5m
Eccentricity .00025505 .00025615 1.1-10-¢
Inclination 0.816024° 0.819155° .0031°
R.A. of ascending node 68.173583° 68.008243°  -.1653°
Argument of perigee 177.579207° 177.368759°  —.2104°
Mean longitude at Tranceuver  211.101080°  211.101306° .00023°

Table 5.9: Orbital elements of Meteosat 4 before and after the manceuver on Dec. 16, 1995, taken
from separate processing of arc 1 and 2 (see Table 5.6).

The resulting differences in position and velocity and the associated rms errors at the
epoch of the manceuver , when processing arcs 1 and 2 of Meteosat 4 separately, are given
in Table 5.10 in radial (R), alongtrack (S), and out of plane (W) directions. A jump of
238 m in alongtrack direction (corresponding to 1.4” in geostationary distance) and of 82 m
in radial direction is observed. The position differences are barely significant, however.

The crosstrack component of the velocity change on the other hand shows a value that
significantly differs from zero: The manceuver performed was obviously an inclination
manceuver, required to prevent the orbital plane to precess due to lunisolar and Earth
oblateness perturbations. The boost was directed towards the southern celestial pole. The
observed velocity change of —.21m/s is unusually small for an inclination manceuver. For
Meteosat such a manceuver usually results in a velocity change that is about hundred
times larger leading to an inclination change of the order of a few tenths of a degree
(Soop, 1994). The reason for this particular manceuver is unclear.

R S W

Difference in position —82.21m 237.82'm 0.29 m
Difference in velocity —0.0151 m/s 0.0058 m/s —~0.2104 m/s
RMS errors in position- arc 1 49.05 m 122.05 m 6.29 m
' arc 2 33.29 m 92.82 m 7.90 m
RMS errors in velocity  arc 1~ 0.0063 m/s 0.0036 m/s = 0.0006 m/s
: arc2 0.0057 m/s 0.0024 m/s 0.0008 m/s

Table 5.10: Differences of in position and velocity in radial (R), alongtrack (S) and crosstrack
(W) direction at the epoch of the manceuver and the corresponding rms errors as computed
from separate analyses of arcs 1 and 2.

In a first step the two arcs for Meteosat 4 are combined. A common radiation pressure
coefficient is determined. At the manceuver epoch £, continuity in position of the two arcs
is enforced (72 = 7;) and the components of a velocity change Av, the so-called manceuver
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parameters, are estimated (v, = v, + Av). In this way the 901 observations of Meteosat 4
covering a time interval of 111 days are represented by one arc which is described by 10
parameters (6 initial conditions, 3 manceuver parameters, 1 radiation pressure coefficient)
instead of 14 parameters, when processing arcs 1 and 2 separately.

The manceuver epoch ¢. is used as osculation epoch in both arcs. The first arc is integrated
backwards and the second arc forwards. Nonsingular elements are used in the estimation
process because for Keplerian elements the convergence is bad due to numerical problems.
The results were then transformed to the standard Keplerian elements (Table 5.11)

The observations used for the combined solution cover a time interval of 111 days which
is more than twice as long as the time intervals of the two original arcs. The rms of
unit weight for the combined adjustment is'1.39, i.e., about the same as for arcs 1 and
2 (see Table 5.6). For the two arcs rms values for the single observations of 0.59” and
0.71", respectively, are given after combination, i.e., the same values as obtained from
independent orbit determination for the two arcs.

The new orbital elements are within the rms errors of the elements of arc 1 in Table 5.6.
The rms errors of the combined arc are significantly reduced thanks to the increased
number of observations and thanks to the longer arc. For the semimajor axis the rms
error is only 5 cm which corresponds to an alongtrack error of 3 mas/day or 0.5 m/day.

The direct radiation pressure coefficient for the combined solution is determined with a
relative precision of 2.5-1072. The value is within the 1-sigma boundary of the parameter
for arc 1 and within the 2-sigma boundary of the value for arc 2. Using the enhanced
Meteosat radiation pressure model does not significantly alter the osculating elements.

Combined solution for Meteosat 4
RMS of unit weight 1.393
Semimajor axis 42165763.28 + 0.05 m
Eccentricity .00025503 £ .00000010
Inclination 0.816025 &+  0.000012 deg
R.A. of ascending node 68.173579 & 0.000548 deg
Argument of perigee ' 177.512263 + 0.039611 deg
Mean longitude at T, 211.101111 + 0.000021 deg
Radiation pressure coefficient (7.104 £ 0.018) - 10"® m/s?
Manceuver parameter radial (-6.6+ 4.3)-10* m/s
alongtrack (-1.78 £ 0.05)-10~* m/s
crosstrack -0.2103 + 0.0009 m/s

Table 5.11: Elements, direct radiation pressure coefficient, and manceuver parameters determined
by combining the two arcs of Meteosat 4. The osculation epoch corresponds to the manceuver
epoch: Dec. 16., 1994, 08:58 UT. The elements are those prior to the manceuvre. The system for
the elements is J2000.
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The value for the Meteosat radiation pressure coefficient is (6.784 % .018) - 1073m/s?,
again close to the value determined for arc 1. ‘

The alongtrack and the crosstrack manceuver parameters are highly significant. It is evid-
ent that the manceuver consisted of a velocity change pointing out of the orbital plane.
The corresponding parameter is determined with a relative precision of about 0.4%. The
velocity change in radial direction is almost zero. The change in the transverse direction
(almost alongtrack), although smaller than the corresponding value in radial direction, is
significant.

5.4.2 Determination of the Resonant Geopotential Terms

Before actually combining all observations for determining the resonant terms of the
Earth’s potential these terms were determined separately for each arc. For each arc the
elements, the direct radiation pressure coefficient, and the resonant coefficients C,, and
S,2 were computed. The latter are given in Table 5.12. A comparison of the estimations
and of the ‘true’ values taken from the JGM3 potential model shows, that the determined
values are not of good quality. Obviously these terms are biased.

Arc 1 Arc 2 Arc 3 JGM3

Ca» (2505 % .276)-10-°  (1.804 £ .095)-10-°  (2.728 £ .082) - 10-°  2.439-10-°
Sy (—~1.421 & .082)-10-% (—1.218 + .027)-10-® (—1.409 + .024)-10-% —1.400-10-°

Table 5.12: Independent determination of resonant geopotential terms Cq; and Sy, for all three
arcs. Comparison with the ‘true’ value from the potential model JGM3 shows that the values
are not reliable.

Table 5.13 documents that the results are much better for the combined analysis. It is
clear that the use of two satellites, the significantly increased number of observations,
the increased arclength as well as the reduced number of parameters are responsible
for this ‘quantum jump’ in quality. In the combined estimation procedure a total of 19
parameters were determined. The rms of unit weight of the combined analysis is 1.4, i.e.,
the observations are still well represented. This is underlined by Figure 5.10 where no
systematics are observed. The rms values for the observations in the three arcs are 0.58",
0.71", and 0.73", respectively.

The orbital elements and radiation pressure coefficients are consistent with the values
in Table 5.11 for Meteosat 4 and in Table 5.6 for Meteosat 5. Determining the Meteosat
radiation pressure coefficients does not significantly change any of the parameters, and the
rms errors remain roughly the same. The representation of the orbit is thus not improved
by using the Meteosat radiation pressure model.
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Combined Solution

JGM3

C'22
522

(2.43825 £ 0.00069) - 10-°
(~1.40056 =+ 0.00016) - 10~

(2.439263 £ 0.000037) - 10-°
(—1.400266 + 0.000037) - 10-°

Table 5.13: Resonant geopotential terms C5; and Ss; when using all observations from Meteosat 4
and Meteosat 5 in a common adjustment. The relative rms errors for the two terms are 2.8-10~*
and 1.1-107%, respectively.

The resonance coeflicients
(Hugentobler et al., 1996)

Figure 5.10: Residuals in right ascension (top) and declination (bottom) for

C2; and Sj; are determined with relative rms errors of

o(Cse - o (S22 -
( )=2.8-104 and ( )=11-104 (5.2)
sz S22
RA T T L T 1 T T T T T T T
* 3 s I
| 1oy - o sies o _
! L - § o
- ! i . » i H -
< ! i P #i1 lx e 1
- Met 4 ) 1
I £ H : ]
| 2 e
i
- 4: ‘fi‘ -
- Met 5 . 1
4.Nov.94 4.Dec.94 3.Jan.95 2.Feb.95
’-DE 1 T 1 T .l T T ‘ T |
L T + . 3 "’2 § ‘?: 4 4
ST N NN
| LN ; s { :‘,’ ‘:'g.' =: f . 4
- Met 4 . - .
i “ [ s, T
i 4 'gi @ i ]
_ £ L]
t
o ’-t} N E .
v s . .
- Met 5 h
4.Nov.94 4.Dec.94 3.Jan.95 2.Feb.95

Meteosat 4 and

Meteosat 5 from combined orbit determination with estimation of manceuver parameters and
potential terms Cy; and Ss,.



158 . . 5 Meteosat: Observations and Results

which is about one order of magnitude larger than the relative rms errors of 1.5 - 10~°
~and 2.6 - 107° for Cqz and Sq; respectively in the JGM3 model. It has to be pointed out,
however, that the results presented here were obtained with a relatively small effort, the
observations being acquired during a short campaign with a telescope of modest optical
quality. The accuracy corresponds to simulations performed by Rossi (1988).

Covariance studies based on a similar configuration of observations as in the COGEOS
campaign show, that an improvement of the astrometric accuracy to 0.1° — which is what
we expect when using the new Zimmerwald 1 m ZIMLAT telescope and the Hipparcos
catalogue — leads to an improvement of the rms errors for C5; and Sz, by a factor
of 10. In other words, astrometric methods are competitive with other methods for the
determination of the geopotential terms Cy; and Ssz, provided one has access to a high
quality telescope and high precision astrometric catalogues. In addition many different
satellites should be analyzed.

5.4.3 Combination of Astrometric Observations from
Zimmerwald and Graz

Dr. M. Ploner from the Technical University of Vienna acquired astrometric observations
to Meteosat 5 and Meteosat 6 using the BMK camera of the geodetic observatory in
Graz-Lustbiihel, which was recently equipped with a CCD camera (Ploner, 1996). The
BMK camera from Carl Zeiss, Oberkochen, has a focal length of 750 mm and a maximum
aperture of 300 mm. A CCD camera of type SITe 1024B from Photometrics was mounted
in the focal plane. The 1024 x 1024 pixels with a size of 24.6 x24.6 um give a field of
view of 1°53° x 1°53" (instead of the 13.6° x13.6° of the original camera) with a mapping
scale of 6.6"/pixel. Due to a fine tuned image processing procedure and due to the fact
that for the astrometric reduction always several PPM stars were available in the field of
view, the rms of the measured satellite positions was about 0.5" despite a rather modest
mapping scale.

The observations were acquired in 14 nights between April 17,1996, and June 17, 1996 (arc
length of 61 days for both satellites). The information concerning the Graz observation
campaign is summarized in Table 5.14.

All observations of Meteosat 4, 5, and 6 from Zimmerwald and Graz were combined (using
the program ORBDET for orbit improvement and the program ARCOMB for combining
the three arcs from Zimmerwald and the two arcs from Graz) in order to compute the
resonant geopotential terms (see Chapter 3). A total of 32 parameters was estimated
(24 orbital parameters, 3 manceuvre parameters, 3 radiation pressure coefficients, and
2 geopotential terms), a total of 1’783 observations was available.

The resulting values for the resonant geopotential terms are given in Table 5.15 (see Ploner
(1996)). Relative rms errors of the coefficients are

0(022) _4 0‘(522)
—_— 1.0 d
Cor 1.6-10 an s

=0.7-1074, (53)
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Meteosat 5 Meteosat 6
Observation period April 17 — June 17, 1996 | April 17 — June 17, 1996
Arc length (days) 61 61
Number of nights 14 14
Number of observations 234 249

Table 5.14: Observations of Meteosat 5 and Meteosat 6 acquired from Graz-Lustbiihel (Ploner,
1996).

an improvement of about a factor of 1.7 with respect to the precision of the coefficients
determined with the Zimmerwald observations alone. The error for the term Sy; is only a
factor of 2.7 above that of the JGM3 model. The excellent agreement of the coefficients
with the JGM3 model is remarkable.

Combined Solution JGM3
Cas (2.43923 £ 0.00039) - 10-¢ (2.439263 + 0.000037) - 10-¢
S»y  (~1.40031 % 0.00010)-10~¢  (—1.400266 = 0.000037) - 10~

Table 5.15: Resonant terms C3; and Sj; of the geopotential determined using all observations
from Zimmerwald and Graz for the satellites Meteosat 4, Meteosat 5, and Meteosat 6. The
relative rms errors for the two terms are 1.6 - 10~* and 0.7 - 10~*, respectively.

We conclude that optical astrometric observations of geostationary satellites are useful for
the determination of the resonant geopotential terms Cs; and Ss;. An astrometric accuracy
of 0.1" as expected for the Zimmerwald 1 m telescope and the combination with astro-
metric observations from other observatories to satellites at different longitudes makes the
precision of the coefficients competitive with the best geopotential models available today.
With short campaigns and with a limited effort for both, observing and processing, the
resonant low order coeflicients can be monitored in order to detect temporal variations or
in order to establish upper limits for these variations.
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6 Combination of Radar and
Astrometric Measurements

High precision astrometric observations may be used as an independent calibration tool
for other observation techniques. In this chapter the combination of Radar measurements
and optical observations of geostationary satellites is studied. Astrometric observations
were successfully used for the assessment of the accuracy and the determination of pos-
sible offsets in the Radar observables ‘range’ and ‘range rate’ as well as ‘azimuth’ and
‘elevation’ of the 34-m-Radar of the Research Establishment for Applied Science (FGAN)
at Wachtberg-Werthhoven, Germany.

In a joint experiment (see Mehrholz et al. (1997)) of FGAN and the Astronomical Insti-
tute of the University of Berne (AIUB) quasi-simultaneous observations of geostationary
satellites were acquired in Wachtberg-Werthhoven and in Zimmerwald. The experiment
was carried out in the context of a study for DASA Jena-Optronik GmbH (Deutsche
Aerospace AG) for the development of an experimental servicing satellite operating in
GEOQ. It is planned that the approach of this satellite to a target satellite would be con-
trolled with the help of an Earth-based Radar until the target is in the range of the
on-board optical sensors. The goal of the experiment was the assessment of the accuracy
of the Radar based positions and of the corresponding relative distances of geostationary
objects.

6.1 Observation of Geostationary Objects by the
FGAN Radar

6.1.1 The FGAN Radar

At Wachtberg-Werthhoven, about 20 km south of Bonn, the Research Institute for
High Frequency Physics (FHP) of the German Defense Research Organization FGAN
(Forschungsgesellschaft fiir Angewandte Naturwissenschaften) operates a High Power
Radar System which is capable of tracking and imaging’satellites, aircraft, and space
debris. The Radar system TIRA (Tracking and Imaging Radar) consists of 2 34 m dia-
meter parabolic dish antenna inside a radome with 49 m diameter (see Figure 6.1), a
L-band tracking Radar (1.333 GHz, 22.5 cm wavelength, typical peak power of 1 MW at
1 msec pulse length) and a Ku imaging Radar (16.7 GHz, 17.96 mm wavelength, 13 kW
peak power). The field of view of the Radar is 0.5° (3-dB beamwidth in the terminology
of the Radar community, i.e., FWHM of the beam power).
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Figure 6.1: The 34-m dish antenna of the TIRA system at FGAN, Wachtberg-Werthhoven,
Germany.

6 1.2 The FGAN Observatlons

The imaging Radar usually is operated simultaneously with the trackmg Radar. For the
observation of satellites in GEO only the L-band tracking Radar was used because of its
much higher power than the imaging Radar. In order to detect an object in GEO with
a signal-to-noise ratio of 2 (i.e. 3 dB) using single pulse signal processing technique the
object must have a Radar cross-section (RCS) of more than 28 dBm? correspondmg to
630 m2. The transformation from Radar cross-section to geometrical cross-section is not
trivial. It depends essentially on the conductivity of the reflecting material and on the
complexity of the mechanical structure as well as on the wavelength of the Radar signal.
Stabilized satellites with extended solar panels reach the required Radar cross-section.

The multi-pulse signal processing applied in the context of the presented study to the ob-
servations of the geostationary satellites allows it to increase the detectability by coherent
integration of N single pulses. Usually N = 128 single pulses were integrated.

The main observable of Radar measurements is the range rate of the observed target,
measured by the Doppler shift of the reflected Radar signal. In multi-pulse signal pro-
cessing technique the received signal of N pulses is Fourier-transformed in order to get
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the Doppler signal averaged over the N pulses. The expected precision is of the order
of 5 - 15 cm/s depending somewhat on the signal-to-noise ratio of the signal. Precise
ranges may be measured by modulating the Radar signal. This technique, requiring soph-
isticated processing of the registered signal, was not applied in the study. Therefore, the
range resolution of about 150 km for single pulses is given by the pulse length of 1 msec.
For multipulse processing the expected precision lies in the range between 20 and 70 km,
depending on the signal-to-noise ratio.

In addition to range rate and range information the direction to the observed object can
be measured: The Radar signal is detected using the 4-horn monopulse feed (which is
used for emission of the Radar pulse, too). The four horns are arranged in the focal plane
of the Cassegrain-type Radar system in the corners of a square which is aligned with the
azimuth and elevation directions. By registering not only the sum of the signal detected
in the four receiver horns but also the difference of the signals, information about the
position of the reflecting object within the Radar beam may be extracted (the principle
of this direction observation is similar to that of a four-quadrant diode). The precision of
the angle measurement relative to the axis of the antenna is of the order of 0.05° to 0.2°
depending on the signal-to-noise ratio of the signal. The resolution of the angular encoders
of the Radar axes was 5" at the time of the observation campaign presented below and
1.2" after the upgrade of the gear units of the antenna in 1995. The repeatability of the
pointing, as tested by an external target, is 2.5".

The variations of the detected signal with time and in some cases also the width of the
Doppler signal in conjunction with the known linear dimension of the observed satellite
allow a characterization of the rotational motion (attitude) of the object.

Satellite COSPAR | First Last Total Stored

, Observation Observation - | Obs. Time | Data Amount
TV Sat 1 87095A | 1994 Apr. 12 13:40 | Jun. 18 21:10 | 4.09 hours | 31.27 MBytes
Olympus 1 89053A | 1995 Feb. 15 14:07 | Feb. 20 21:00 | 4.90 38.49
Gorizont 15 | 88028A | 1995 Jan. 17 12:32 | Jan. 25 12:58 | 4.24 | 33.66
Astra 1A 88109A | 1994 Apr. 12 09:42 | Mar. 1 10:52 | 2.94 hours | 22.20 Mbytes
Gorizont 4 80049A ([ 1995 Feb. 15 12:13 | Feb. 16 12:53 | 0.97 7.32
Gorizont 5 82020A - | 1995 Feb. 15 12:45 | Feb. 16 12:09 | 1.36 10.51
Gorizont 7 83066A [ 1995 Jan. 9 14:40 | Feb. 15 13:32 | 0.85 6.80
Gorizont 8 83118A | 1995 Feb. 16 10:10 | Feb. 16 11:12 | 1.01 8.26
Gorizont 13 | 86090A | 1995 Jan. 912:25 | Jan. 913:28 | 1.03 7.59
Gorizont 14 | 87040A | 1995 Jan. 09 13:31 | Feb. 16 10:05 | 3.03 23.30
Gorizont 23 | 91046A | 1995 Feb. 15.13:34 | Feb. 16 09:06 | 1.45 11.26

Table 6.1: Overview of the FGAN Radar observations of geostationary satellites (from Mehrholz
et al. (1997)). :
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All in all 11 geostationary satellites were observed with the FGAN Radar once or several
times in the context of the study. The total observation time was 25.88 hours and the
total amount of data collected was more than 200 Mbytes. For preparing the observation
parameters of the Radar (tracking ephemeris, range rate and range gates) the Two Line
Elements (TLE) of the satellites were used. Table 6.1 summarizes the observations, the
total observation time for each satellite, and the amount of raw data (Mehrholz et al.,

1997).

The observations of the three satellites TV Sat 1, Olympus 1, and Gorizont 15 were
combined with optical observations (see below). The observations of these satellites were
made available to the AIUB by Dr. D. Mehrholz from FGAN. In addition to azimuth,
elevation, range and range rate measurements the data files contained for each observation
epoch the rms errors of each observable estimated from the signal-to-noise ratio, the
signal-to-noise ratio for each observed signal, and the number of pulses used for coherent
integration.

6.2 Quasi-Simultaneous Radar and Optical
Observations

6.2.1 The Observations

In Zimmerwald the satellites TV Sat 1, Olympus 1, and the Gorizont satellites 7, 13, 14,
and 15 were observed optically in the context of the joint experiment. The observations
of TV Sat 1, Olympus 1, and Gorizont 15 were finally used for the combined experiment.
These satellites are no longer operational. They drift in longitude and they are tumbling
in an uncontrolled way. Table 6.2 lists the amount of observations and their distribution in
time for three satellites as acquired at Wachtberg-Werthhoven and Zimmerwald. The ob-
servations of Olympus 1 from Feb. 20, 1995, are truly simultaneous, the other observations
are quasi simultaneous, i.e., acquired within overlapping time intervals. The rms error for

the astrometric positions, as determined by the astrometric reduction, lies between 0.5
and 0.7".

6.2.2 Combination of Different Observation Types

The range rate may be computed from the scalar product e-v, where e is the observation
unit vector (observer — satellite) and v is the velocity vector of the satellite relative
to the observer. Even for a geostationary satellite the range rate is only partly due to
the radial displacement of the satellite. Other contributions stem from the satellite’s
velocity perpendicular to the equatorial plane due to the orbital inclination and from the
alongtrack velocity (relative to an exact geostationary position) together with the parallax
(observations not in the geocenter). For elements as those of the satellite Olympus 1 given
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Satellite Date Radar Optical
Observations (UT) | Series Observations (UT)

TV Sat 1 94 Jul. 5| 43 07:57 - 08:06
94 Jul. 7 3 26 00:53-01:02
94 Jul. 12 | 103  09:11 - 09:45 ‘
94 Jul. 15 | 290 11:03 - 12:13 3 30 23:13-23:30
94 Jul. 18 | 280 19:34 - 21:09

Olympus 1 | 95 Feb. 15 | 266 14:10 — 15:29
95 Feb. 16 | 448 13:21 - 15:23

95 Feb. 20 | 96 20:53 — 21:40 13 106 18:19 - 22:29
95 Feb. 27 4 35 21:17 -01:23
95 Feb. 28 4 37 23:25-01:36
Gorizont 15 | 95 Jan. 14 2 19 01:45-02:27
95 Jan. 15 4 32 21:55 - 03:50
95 Jan. 16 5 47 23:54 - 04:04
95 Jan. 17 | 93 12:32 - 13:35 3 29  22:32 - 23:00
95 Jan. 19 | 203 22:56 — 23:35 5 44 18:18 - 20:12

95 Jan. 25| 60 09:03 - 10:03

Table 6.2: Distribution of the observations of the geostationary satellites TV Sat 1, Olympus 1,
and Gorizont 15 acquired with the FGAN Radar at Wachtberg-Werthhoven and the SLR tele-
scope in Zimmerwald.

in Table 6.6 (¢ = 0.023, i = 2.26°) the radial velocity may reach (to the first order in
eccentricity) a value of
T =ane~Tm/s

where a is the semimajor axis, n the mean motion, and e the eccentricity. The velocity
of the satellite perpendicular to the equatorial plane gives rise to a range rate which may
reach

vsinisinps ~ 122m/s - sin ps ~ 16m/s

where v = 3.1 km/s is the mean orbital velocity of the satellite, 7 is the orbital inclination,
and ps is the parallax of the satellite in declination which amounts for the FGAN Radar
to about 7.5°. The alongtrack velocity variations have an amplitude of (to the first order
in the eccentricity) ve. This causes a variation in the range rate with an amplitude of up
to

vesinp, = Tm/s - sinp, ~ 0.7m/s

where p, is the parallax of the satellite in right ascension reaching 5.5° for the FGAN
Radar for a satellite just above the horizon. A maximum range rate of the geostationary
satellite Olympus 1 of about 23 m/s may therefore be expected. Because Radar ‘observes’
the eccentricity of an orbit in a relatively direct way through the range rate measurement,
Radar observations are particularly well suited for determining the shape of an orbit.



166 6 Combination of Radar and Astrometric Measurements

The orientation of the orbital plane, on the other hand, is not so well accessible to range
rate measurements. The orientation angles are essentially determined by the azimuth and
elevation measurements. The range rate measurements with an accuracy of the order of
5 to 10 cm/s for measuring velocities of the order of 20 to 30 m/s have a similar relative
precision as the measurements of azimuth and elevation. .

The observations for the three satellites listed in Table 6.2 were used for estimating orbital
parameters with the program ORBDET (see Chapter 3). In order to compare the two
observation techniques and to assess the improvement of the parameters by combining
the observations, three types of solutions were generated for each satellite: The first using
only the optical observations from Zimmerwald, the second one using only the FGAN
Radar measurements, and the third one using both observation types together. The rms
errors given by the astrometric reduction and by the Radar data processing were used to
define the weighting of observation types in the combined solution.

The resulting orbital elements and rms observation errors are listed in Table 6.3. Radiation
pressure coefficients were estimated for the combined solution and for the solution from
the optical observations except for TV Sat 1, which was observed in Zimmerwald only
in two nights. In the cases where the radiation pressure coefficient was not determined a
‘reasonable’ a priori value of 1-10~7m/s? was adopted.

The rms errors of the orbital parameters based on astrometric observations are in most
cases smaller than the rms errors when using only Radar observations. Eccentricity and
argument of perigee for TV Sat 1, which was observed optically only in two nights, are
the exceptions. In this case the Radar technique due to its potential for determining the
shape of the orbit is superior to the astrometric measurements.

Except for the eccentricity and the argument of perigee the rms errors of the osculating
elements are one to several orders of magnitude smaller if optical observations are included
because astrometric observations are two to three orders of magnitude more precise than
Radar angle measurements. Adding Radar observations therefore ‘only’ significantly im-
proves the precision of eccentricity and argument of perigee. In the case of a bad coverage
of the orbit by astrometric observations (TV Sat 1 in Table 6.3) the rms errors for all
osculating elements are significantly better than those stemming from astrometry only
and from Radar only.

The a posteriori observation rms error for the Radar observables are 30 — 40 km in range,
2.5 — 10 cm/s in range rate, and 0.03 — 0.1° in the angular measurements. These values-
are even somewhat better than expected.

In Figure 6.2 we see the rms errors in position as a function of time for the satellite
TV Sat 1 with parameters determined from astrometric observations alone (top), from
Radar observations alone (center), and from combined observations (bottom). The figures
correspond to orbit determinations not including offsets in the Radar observables. The
osculating elements are listed in Table 6.3.

In all three cases — astrometry, Radar, combined observations — the errors in alongtrack
direction are largest. Due to the fact that TV Sat 1 was observed in Zimmerwald only
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in two nights and because consequently the error of the estimated eccentricity is large,
the alongtrack error of the orbit determined using astrometric measurements only shows
large variations with a daily period and maximum values around noon. The Radar obser-
vations, on the other hand, were fairly well distributed, and the eccentricity is determined

Astrometry l Radar Combined j
TV Sat 1
RMS in R.A., decl. 0.56" —_ 0.59"
in range —_ 34.5 km 36.2 km
in range rate — 2.6 cm/s 2.8 cm/s
in azi,, ele. _ — 0.099° 0.084°
Semimajor axis (m) | 42485547.2 £+ 9.8 | 42486491.6 + 85.9 | 42485646.0 + 1.8
Eccentricity .0011095 + .0000242 .0010661 + .0000082 .0010716 £ .0000009
Inclination 4.84771 + 0.00016 4.78322 & 0.00325 4.84812+  0.00002
R.A. of asc. node 61.99902 + 0.00129 63.09676 . 0.03463 62.00288 =+  0.00029
Argument of perigee | —60.72676 ==  0.41090 | —48.31735 + 0.25684 | —60.40999 +  0.01939
Mean long. at tosc 309.81553 +  0.00199 | 309.91366 &+ 0.01183 | 309.81375+  0.00011
Rad. press. (m/s?) — — (223.8+2.7)-10-°
Olympus 1
RMS in R.A., decl. 0.56" — 0.70"
in range — 39.0 km 41.1 km
in range rate — 7.2 cm/s 9.9 cm/s
in azi., ele. — 0.030° 0.026°
Semimajor axis (m) | 41862871.5 + 4.5 | 41863330.3 &  127.7 | 41862808.1 + 2.1
Eccentricity .0019027 &+ .0000008 0018849 + .0000159 .0019151 £+ .0000004
Inclination 2.35036 £  0.00001 2.34563 + 0.00295 2.35036 &  0.00001
R.A. of asc. node 73.79617 &+  0.00038 72.68431 £ 0.20461 73.79632 =  0.00027
Argument of perigee 33.99692 &+  0.05558 37.69618 + 0.58495 33.17120 £  0.02499
Mean long. at tosc 124.10326 £  0.00029 | 124.20337 & 0.00489 | 124.09920 %+ 0.00014
Rad. press. (m/s?) (146.4 + 5.4) .10~° — (64.8 + 2.5) - 10~°
Gorizont 15
RMS in R.A., decl. 0.65" — 0.97"
in range —_ 32.5 km 35.4 km
in range rate — 4.9 cm/s 9.8 cm/s
in azi.,, ele. — 0.081° 0.039°
Semimajor axis (m) | 42864708.2 & 4.7 | 42866320.8 +  155.8 | 42864635.8 & 4.2
Eccentricity .0032717 & .0000005 .0029974 + .0000086 0032794 &+ .0000005
Inclination 4.62637 £  0.00002 4.47629 = 0.00427 4.62637 £  0.00002
R.A. of asc. node 66.75466 =  0.00025 65.80408 £ 0.05724 66.75503 £  0.00026
Argument of perigee 259.14985+  0.02264 | 255.18644 & 0.13358 | 259.47805 &  0.02074
Mean long. at tosc 157.50732 &  0.00014 | 157.65565+ 0.01228 | 157.50587 =  0.00013
Rad. press. (m/s?) (81.2 & 8.0) - 10~° — (—56.4 + 6.9)-10-°

Table 6.3: Results from orbit determinations using optical (AIUB)

servations.

and/or Radar (FGAN) ob-
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with high precision. No large oscillations of the rms errors in position are therefore ob-
served. However, due to the relatively low precision of the determined semimajor axis the
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Figure 6.2: RMS errors in position in radial (R}, alongtrack (S), and crosstrack (W) direction
for the satellite TV Sat 1 from astrometric observations (top), Radar observations (center), and
combined observations (bottom) within a time interval of 22 days centered at the observation
epochs. Observe the differences in scales!
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alongtrack error grows rapidly with the length of the orbital arc.

Not surprisingly, the rms errors in radial direction for orbit determined using only Radar
observations are much smaller than the errors in crosstrack direction. In the case when
the orbit is determined using only astrometric observations the situation is reversed: The
errors in the crosstrack direction are always smaller than those in the radial direction.

Combining the two sets of observations leads to a significant improvement of the rms er-
rors in position. The rms error in alongtrack direction is below 200 m in a time interval of
20 days centered around the observation epochs, whereas the corresponding error reaches
4 km for an orbit determined from astrometric observations and even 12 km for an orbit
determined from Radar observations only. Similar improvements in the rms errors are
observed in the radial and the crosstrack direction. If, however, the astrometric obser-
vations are well distributed the rms errors in position may already be below 100 m (see
Figure 3.11, bottom right) and the improvement by using in addition Radar observations
is less pronounced.

The osculating elements determined from the Radar observations significantly differ from
the elements determined from astrometric observations. This fact indicates the presence
of systematic errors. It is not clear a priori whether these systematics are due to the as-
trometric or the Radar observations. To further study this problem offsets in the Radar
observables were estimated. The offsets, to be understood in the sense ‘observed — com-
puted’, are given in Tables 6.4 and 6.5.

When processing combined observations, offsets in range and range rate as well as offsets in
azimuth and elevation (for the Radar measurements) were estimated. For solutions based
only on Radar observations only offsets in range and range rate were determined because
offsets in the angles are not well determined (these can be absorbed. by the osculating
elements). An offset in the azimuth is almost perfectly correlated with the longitude of
the satellite.

In all cases, the offsets in range and range rate are significant. An offset in range had to
be expected because the range was only measured with low precision and without highly
sophisticated signal processing techniques. In range rate ambiguities introduced by the
signal processing may cause an offset. The actual reason for the measured offset could not
yet be identified, however.

We are, however, quite sure that the reasons for the (relatively small) differences between
the results using the two measurement techniques are due to the Radar observations.
In Tables 6.4 and 6.5 we see, e.g., that the osculating elements determined from Radar
observations are getting closer to those determined with astrometric observations, if offsets
in range and range rate are determined, and that the observation rms errors in the Radar
observables are reduced. Not estimating offsets may even, as in the example of Gorizont 15
(Table 6.3), result in a negative (i.e. attractive) solar radiation pressure coefficient (.

Residuals of the range rate measurements for two of the measurement sessions of satellite
Gorizont 15 are given in Figure 6.3. In the second session the threshold in the signal-to-
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noise ratio used for accepting the observations was higher than in the first session. The
scatter of the data is therefore reduced. An offset of about —10 cm/s is clearly visible.

The offsets in azimuth and elevation do not show a clear time dependence, although an
indication for a time variation of the offset in elevation may be seen in Figure 6.4, where
the offsets and the corresponding rms errors in azimuth and elevation for all observa-
tion sessions are shown. It would indeed be almost unbelievable if a large and complex
structure like the 34 m dish antenna would not show systematic variations in the ele-

r | Astrometry | Radar | Combined |
TV Sat 1
RMS in R.A., decl. 0.56" — 0.62"
- in range —_ 19.3 km 19.5 km
in range rate — 2.6 cm/s 2.1cm/s
in azi., ele. — 0.099° 0.080°
Semimajor axis (m) | 42485547.2 + 9.8 | 42486279.7 + 82.2 | 42485712.7 £ 2.0
Eccentricity .0011095 £ .0000242 .0010712 £ .0000076 0011274 &+ .0000014
Inclination 484771+  0.00016 4.78627 &+ 0.00311 4.84802 £  0.00002
R.A. of asc. node 61.99902 + 0.00129 63.12198 + 0.03337 61.99785 &  0.00023
Argument of perigee | —60.72676 =  0.41090 | —48.55416 + 0.24141 | —57.80098 =  0.05524
Mean long. at tosc 309.81553 + 0.00199 | 309.89134+ 0.01118 | 309.82352+  0.00023
Rad. press. (m/s?) — — (279.3 £ 2.2) - 107°
Offset in range — 27.1+ 1.1km 294+  09km
in range rate — 04 £0.2cm/s -82% 0.2cm/s
in azimuth e — 0.007 & 0.003 deg
in elevation — — —0.031 = 0.003 deg
Olympus 1
RMS in R.A., decl. 0.56" — 0.56"
in range — 19.3 km 19.2 km
in range rate — 6.6 cm/s 6.7 cm/s
in azi., ele. — 0.025° 0.025°
Semimajor axis (m) 41862871.5 £ 4.5 | 41862882.2 £ 89.2 | 41862871.1 + 1.9
Eccentricity .0019027 &+ .0000008 .0018768 = .0000114 .0019027 & .0000003
Inclination 2.35036 &  0.00001 2.34360 & 0.00204 2.35036 &=  0.00001
R.A. of asc. node 73.79617 &+  0.00038 73.60990 &+ 0.14975 73.79614 +  0.00018
Argument of perigee 33.99692 +  0.05558 34.32422 + 0.42568 33.98954 £  0.02320
Mean long,. at tosc 124.10326 £ 0.00029 | 124.10174 + 0.00341 | 124.10323+  0.00012
Rad. press. (m/s?) (146.4 + 5.4) - 10~° — (145.5 & 2.3) - 10~°
Offset in range — 365+ 0.7km 357+ 08km
in range rate — —14.5 £ 0.6 cm/s =112+ 0.2cm/s
in azimuth — — 0.002 = 0.003 deg
in elevation — — 0.007 £ 0.003 deg

Table 6.4: Results from orbit determinations including estimation of Radar observation offsets
using optical (AIUB) and Radar (FGAN) observations (Part I).
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| I Astrometry Radar Combined |

Gorizont 15 '

RMS in R.A., decl. 0.65" — 0.66"
in range — 16.3 km 16.4 km
in range rate — 4.5 cm/s 6.0 cm/s
in azi., ele. — 0.036° 0.039°

Semimajor axis (m) 42864708.2 + 4.7 | 42864830.7 + 106.9 | 42864714.1 &+ 2.9

Eccentricity .0032717 &= .0000005 0.003268 £ .0000107 .0032718 = .0000003

Inclination 4.62637 =+ 0.00002 4.61555 £ 0.00534 4.62636 £  0.00001

R.A. of asc. node 66.75466 £  0.00025 66.83221 £ 0.04868 66.75476 &  0.00016

Argument of perigee 259.14985 +  0.02264 | 258.87601 &+ 0.13346 | 259.12526 +  0.01408

Mean long. at tosc 157.50732 & 0.00014 | 157.51294 4+ 0.00870 | 157.50755 %+  0.00008

Rad. press. (m/s?) (81.2 £ 8.0)-10°° — (86.6 + 4.9)-10°°

Offset in range — 299+ 0.9km 310+ 14km

in range rate
in azimuth
in elevation

—11.7 £ 0.4 cm/s

-10.6 £ 0.2 cm/s
0.000 £ 0.005 deg

—0.008 £ 0.005 deg

Table 6.5: Results from orbit determinations including estimation of Radar observation offsets
using optical (AIUB) and Radar (FGAN) observations (Part II).

vation. Nevertheless the estimated offsets in the two angles are consistent with the zero
hypothesis.

Despite the few problems encountered in the comparison of the Radar observations with
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Figure 6.3: Residuals in range rate for Gorizont 15 for two observation sessions as a function of
time (fractions of observation day). For the second session the signal-to-noise threshold was set to
a higher value. The residuals stem from an orbit determination combining different observation
techniques. Six osculating elements and offsets in range, azimuth, and elevation were estimated.
Abscissa: time in fractions of observation day.
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astrometric measurements it has to be underlined, that the FGAN Radar observations of
geostationary satellites are of high quality. Using appropriate signal processing techniques,
such as those applied by the FGAN staff, observations allowing the determination of
precise orbits for distant objects like geostationary satellites is possible independent on
bad weather periods.

0.04'F 17 Jan. 95
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:
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’f:’ 18Jul.94,
P 25 Jan. 95
2 12 Jul. 93
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o v | 15 Jul. 94
S Jul.94
008 } v
—
-0.08 -0.04 0.00 0.04 0.08°

Offset in Azimuth

Figure 6.4: Offsets and associated rms errors in azimuth and elevation for Radar observation
sessions.

6.3 Covariance Studies

6.3.1 Orbit Determination from Radar Observations

Observing geostationary satellites using Radar is much more expensive than using optical
telescopes: A powerful antenna as well as complicated signal processing procedures are
required. On the other hand Radar has the obvious advantage of time and weather inde-
pendence: measurements may be carried out at any time, day and night. The technique
is therefore being well suited for time critical events such as the approaching phase of a
servicing satellite to an uncontrolled object. In this section we are interested in the accur-
acy of orbital parameters for geostationary satellites determined from Radar observations.
The question of formal precision of the parameters is studied through covariance analyses.



6.3 Covariance Studies - 173

Semimajor axis 41857565 m
Eccentricity 0.00230477
Inclination 2.260°
R.A. of ascending node 66.366°
Argument of perigee - 55.923°
Mean longitude a togc 17.092°
Radiation pressure coefficient 1.43-107®m/s?

Table 6.6: Orbital parameters used for the covariance analysis. They correspond to those of the
geostationary satellite Olympus 1. Osculation epoch is May 2, 1995, 23:37 UT.

The simulated observations are based on an orbit similar to that of the satellite Olympus 1.
The parameters of the orbit are given in Table 6.6. The Radar observables range rate,
azimuth and elevation were used for orbit determination.

Distribution of the Observations. In a first step the accuracy of the osculating
elements was studied as a function of the distribution of the observations. The observations
were assumed to be concentrated in three session containing 205 measurements each and
lasting for one hour. The three observation sessions were assumed to lie in a time interval of
12 to 48 hours. The last session was assumed to take place in all cases at the culmination-
point of the satellite. The epochs of the sessions for the six studied configurations are
given in Table 6.7. Each configuration contains 615 observation epochs. The adopted rms
observation errors are given in Table 6.8.

Observation epochs: |Oh 6h 12h 18h 24h 32h 36h 42h 48h
Configuration 1: ' X X X
Configuration 2: X X X
Configuration 3: X X X
Configuration 4: X X X
Configuration 5: X X X
Configuration 6: X X X

Table 6.7: Distribution of the observation sessions for the covariance studies. Each symbol cor-
responds to 205 observations carried out within one hour.

Formal errors of the osculating elements for the six artificial observation campaigns are
given in Table 6.9. It is obvious that the error of the semimajor axis a decreases with
increasing arc length. For an observed arc length of 12 hours the formal error in a is about
1 km, for an arc length of 48 hours it is 0.28 km. The formal errors of the inclination 7 and
of the R.A. of the ascending node {2 are of the same order of magnitude (as expected) as
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Measurement rms error in range rate
Measurement rms error in azimuth and elevation:

10 cm/s
0.1°

Table 6.8: Adopted rms observation errors for the Radar observations.

the formal errors of the angle observations (azimuth and elevation) divided by the square
root of the number of observations. Only for configuration 4 the formal error of (1 is
larger because the orbit is observed at positions separated by 180° in longitude. Only the
R.A. of the ascending node (and not the inclination) is affected by this fact because the
observations are assumed to be acquired close to the upper and lower culmination points
of the orbit. If the observation epochs are close to the node passing times the formal error
of the inclination would be larger. - '

If the observation sessions are separated by an integer multiple of 12 hours, the determ-
ination of the eccentricity and of the argument of perigee is less accurate than in the
case when two of the sessions are separated by 6 hours. This is due to the fact that the
radial velocity — which is for high orbiting objects close to the geocentric radius changes
— measured at two positions in the orbit separated by 90°, the eccentricity e and the
argument of perigee w may be determined using the relations
ro= -—————laﬁe:;zs 7 = ane sin E + 0(62)‘
. anesin(E + m/2)
Fp = = —anecos E + O(e?).
2 1 —ecos(E + 7/2) +0(<)

Therefore, we may conclude that

/72 + 72 = ane + O(e?),

r1/T2 = —tan E + O(e)

Formal Errors in Osculating Elements

Configuration: 1 2 3 4 S 6
Semimajor axis (m) 1016 743 579 581 461 280
Eccentricity .0000116 | .0000131 | .0000111 | .0000178 | .0000137 | .0000108
Inclination 0.0046° | 0.0058° | 0.0047° | 0.0046° | 0.0060° { = 0.0048°
R.A. of asc. node 0.153° 0.110° 0.146° 0.233° 0.115° 0.145°.
Argument of perigee 0.545° 0.397° 0.551° 0.888° 0.411° 0.556°
Mean long at tosc 0.0695° | 0.0502° | 0.0388° | 0.0379° | 0.0305° [ 0.0305°

Table 6.9: Formal errors of osculating elements determined from six different observation con-
figurations (see Table 6.7) with 615 Radar measurements each. Results from covariance studies
with rms errors of the observables as given in Table 6.8. ’
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where n is the mean motion and E is the eccentric anomaly. If the semimajor axis a, the
longitude at tosc, and the R.A. of the ascending node are known (i.e. determined using
additional observations), the eccentricity e and argument of perigee w can be computed
using the above formulae. If, on the other hand, the two observations are separated by
180° the radial velocities have (to first order in €) the same absolute values and the above
equations are linearly dependent.

The formal errors in the position in radial, alongtrack, and crosstrack direction are given in
Table 6.10 for different time intervals after the last observation. Due to the less accurately
determined R.A. of the ascending node for the observation configuration 4 the formal error
in the crosstrack direction shows large variations.

Formal Errors in Position (km)
for configuration

Error after 1 2 3 4 5 6
O hours | R | 1.14 | 1.02]0.73 | 1.00 | 0.67 | 0.54
S| 340 | 355342 (3.81(3.32]3.18
W | 326 4.30|3.33 | 2.97 | 4.48 | 3.40
6 hours | R | 1.43 | 0.88(0.81 ] 1.21 | 0.70 | 0.63
S| 593 | 527|467 | 546 | 4.30 | 3.90
W | 461 3.30|4.42|7.17 | 3.34 | 4.38
12 hours | R | 1.05| 0.83}0.74 | 0.86 | 0.81 | 0.54
S | 865| 6.67|5.91]6.99|3.25 | 4.43
Wi 328 4.2713.36 ) 3.12 | 4.44 | 3.44
18 hours | R | 0.88 | 0.86 | 0.84 | 1.00 | 0.59 | 0.65
S |10.28 | 8.11|6.96 | 7.48 | 6.20 | 4.65
W | 460 3.34|4.401| 7.12 ] 3.39 | 4.36
24 hours | R | 1.18 | 1.0210.74 { 1.02 | 0.66 | 0.55
S }12.21]10.00 | 8.30 | 8.65 | 6.97 | 5.31
W | 332 4.26(3.40] 3.12 | 4.43 | 3.49

Table 6.10: Formal errors of the satellite position in R, S, and W direction 0, 6, 12, 18, and
24 hours after the last observation epoch.

Uninterrupted Radar Observation. Here we assume that observations are acquired
every minute without interruption over time intervals of 1 to 7 days. A opposed to the
minimum observation scenario discussed above this is the maximum observation scenario.
The same observation rms errors were used as above (see Table 6.8).

The formal errors for the osculating elements as determined by covariance analyses are
given in Table 6.11. As expected for observations perfectly covering the orbit, the formal
error of the semimajor axis a is reduced as At=%/2, the formal errors of the other elements
are reduced as At~!/2 (At is the observation time interval).
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Formal Errors in Osculating Elements

for Arc Length (days)

Element A 1 2 : 4 v
Semimajor axis (m) 245 146 69 32
Eccentricity .0000072 | .0000051 | .0000036 | .0000027
Inclination 0.0034° | 0.0024° | 0.0017° | 0.0012°
R.A. of asc. node 0.084° | -0.059° 0.042° 0.031°
Argument of perigee 0.255° 0.180° 0.126° 0.094°
Mean long at tosc 0.0201° | 0.0130° | 0.0071° | 0.0040°

Table 6.11: Formal errors of osculating elements determined from Radar observations acquired
every minute in intervals between 1 and 7 days. (Covariance studies using rms errors of the
observables as given in Table 6.8.)

The formal errors in position are shown as a function of time in Figure 6.5 for the seven
observation campaigns. The time interval of 13 days starts with the first observation. The
symbols (O) mark the last epoch for each campaign. The formal errors decrease with
the square root of the number of observations. The smallest errors are found in radial
direction (R). Even for observations covering only one day this error is below 0.5 km for
the 13 days interval considered. In alongtrack direction (S) the formal error grows linearly
with time due to the uncertainty in the mean motion. Shortly after the last measurement
it exceeds 2 km. In crosstrack direction (W) the formal errors are below 2.5 km. They are
nearly entirely determined by the angular measurements.

Dependence on the Observation RMS Errors. In order to study the dependence
of the formal errors of the parameters on the precision of the observations the adopted rms
error of the Radar observables was varied. The values used are listed in Table 6.12. The
observation epochs assumed for the covariance studies were equal to the configuration 6

used in the first experiment, i.e., three observation sessions of 1 hour, each at epochs
t—24h,t—6h,andt. ' '

RMS error in range rate 10cm/s 5cm/s lcm/s 10cm/s 10 cm/s
RMS error in azimuth and elevation 0.1° 0.1° 0.1° 0.05° - 0.02°

Table 6.12: Varied rms observation errors for the Radar observations.

The formal errors of the osculating elements for the five campaigns are given in Table 6.13.
It is interesting that the errors are reduced most efficiently when reducing the observation
rms error in the angular measurements. The effect when reducing the rms error of the
range rate is smaller because the relative precision of the range rate measurement is lower
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Figure 6.5: Formal errors in radial (top), alongtrack (center), and crosstrack (bottom) position
as a function of time for observation campaigns lasting from 1 day (top curve in each diagram)
to 7 days (bottom curve). The symbols O indicate the epoch of the last observation.

than the precision of the angle measurements (although of the same order of magnitude):
For the studied orbit the maximum range rate is 22 m/s, the relative precision in the
range rate measurement is therefore 4.5 - 1072 for an observation rms error of 10 cm/s
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Formal Errors in Osculating Elements
RMS Error in Range Rate: | 10cm/s | 5cm/s| lem/s | 10 cm/s | 10 cm/s
RMS Error in Azi, Ele: 0.1° 0.1° 0.1° 0.05° 0.02°
Semimajor axis (m) 280 265 132 142 57
Eccentricity .0000108 | .0000105 | .0000099 | .0000056 | .0000029
Inclination 0.0048° | 0.0048° | 0.0047° | 0.0024° | 0.0010°
R.A. of asc. node 0.145° 0.144° 0.138° 0.072° 0.029°
Argument of perigee 0.556° 0.557° 0.542° 0.284° 0.123°
Mean long at tosc 0.0305° | 0.0170° | 0.0086° [ 0.0091° | 0.0037°

Table 6.13: Formal errors of osculating elements determined from five artificial observation cam-
paigns with different observation rms errors. Results from covariance studies.

while the relative precision of the angle measurements is 1.7 - 10~ for an observation rms
error of 0.1°.

6.3.2 Effects of Offsets in the Radar Observables

Systematic Offsets in the Observations. To study the propagation of systematic
offsets in the observations into the estimated orbital elements, error-free observations
were generated based on a reference orbit. Subsequently constant offsets were adopted
and applied in the range rate, the azimuth, or the elevation measurements. The adopted
offsets of —2.5 cm/s in range rate, of 0.01° in azimuth, and of 0.02° in elevation correspond
roughly to the values determined for the FGAN Radar. The observations cover 1 to 7 days
with a spacing of one minute between epochs For the sets of observations containing no
random errors but affected by constant offsets, osculating elements were determined. The
difference of these elements with respect to the true elements of the reference orbit reflect
the influence of the systematic observation errors on the results given in Table 6.14. In
Figures 6.6 to 6.8 we give the differences in position of the generated orbits to the reference
orbit in radial (top), alongtrack (center), and crosstrack (bottom) direction. Each curve
corresponds to one of the seven simulations. The solid part of the curves correspond to
that part of the orbit which is covered by observations, the dotted parts of correspond to
the extrapolations.

Offset in the Range Rate. The semimajor axis determined with observations con-
taminated by an offset in the range rate show a significant bias relative to the reference
orbit (see Table 6.14). The eccentricity is not so much affected by the range rate offset
due to a good coverage of the orbit with observations.

The bias in the semimajor axis produces a drift of the satellite relative to its nominal
position as can be seen in Figure 6.6 (center). Correspondingly, large systematic residuals
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Reference Offset in
Orbit Range Rate | Azimuth | Elevation
-2.5cm/s 0.01° 0.02°
Semimajor axis (m) | 41857565 41856934 | 41857576 | 41857597
Eccentricity .00230477 | .00230907 | .00230438 | .00230403
Inclination 2.2603° 2.2576° 2.2605° 2.2605°
R.A. of asc. node 66.3661° 66.3319° | 66.3574° | 66.3662°
Argument of perigee | 55.9227° 56.0817° | 55.9196° | 55.9481°
Mean long at tosc 139.3803° 139.3153° | 139.3735° | 139.3932°

Table 6.14: Osculating elements computed from observations with a systematic bias in:range
rate, azimuth, or elevation for a nonstop 4 day measurement campaign.

in the angular measurements have to be expected. The shorter the observation time inter-
val, the better the systematic error in the observations can be absorbed by the semimajor
axis. For a 4-day observation campaign the drift in alongtrack direction reaches values up
to 6 km per day. At the end of the observation interval the satellite is off by 12 km from
its nominal position (corresponding to about 0.02°). Also, in the range rate systematics
up to —2 cm/s are observed in the residuals for a 4-day observation campaign.

In radial direction (Figure 6.6, top) the systematic offset decreases with increasing ob-
servation time; for a 4-day interval the error remains below 1 km. In crosstrack direction

(Figure 6.6, bottom) the systematic error shows oscillations with an initial amplitude of
about 2.5 km.

Offset in the Azimuth. If the Radar observations are biased by an offset in the azimuth
essentially only the longitude of the satellite is changed. Table 6.14 shows that nearly the
total offset of 0.01° in the azimuth is absorbed by the satellites’s longitude. In fact, would
the satellite be observed in the meridian (where its motion in longitude is parallel to
the horizon), an offset in the azimuth can be entirely absorbed by the longitude and
the residuals do not show any systematic behaviour. Obviously a systematic bias in the
azimuth observation cannot be determined from Radar observations alone. Calibrations
by astrometric measurements of the same satellite are required (see next section).

The systematic errors relative to the reference orbit in both, the radial and the crosstrack
directions (see Figure 6.7, top and bottom respectively), are small. In radial direction
the difference is a few ten meters. In crosstrack direction the difference oscillates between
—150 m and 4150 m because the topocentric satellite positions were not assumed to be in
the south and therefore a part of the azimuth offset was absorbed in the orbit orientation
angles.

In alongtrack direction (Figure 6.7, center), however, an offset of 6 km is observed for
all arcs. These 6 km correspond in the geocentric distance of 36000 km to the adopted
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observation offset of 0.01° in the azimuth. In addition we see a drift of the satellite
depending on the precision of the semimajor axis and thus on the arclength.

Offset in the Elevation. The adopted offset in the elevation of 0.02° is partially ab-
sorbed in the longitude of the satellite: The longitude is changed with respect to that of
the reference orbit by about 0.01°. The rest of the offset is absorbed by the other osculat-
ing elements. None of them was, however, changed by more than the associated rms error
(Table 6.11). Accordingly, the systematic differences in the position of the satellite are
small (see Figure 6.8). In radial direction the offset is below 100 m, in crosstrack direction
it is in the range of 4400 m. In alongtrack direction the offset in the mean longitude at
the osculation epoch of 0.01° shows up as an offset of about 7.5 km.

Half of the offset in elevation could be absorbed in the longitude because the satellite
was assumed to be observed at a place in the sky where its motion is not parallel to the
horizon.

It is worth mentioning that the systematic errors in position get larger with increasing
observed arc length. In the crosstrack component the curve with the largest amplitude
in Figure 6.8 (bottom) corresponds to the 7-day observation interval, in radial direction
(Figure 6.8, top) it is the curve with the largest offset, and in alongtrack direction (Fig-
ure 6.8, center) the curve with the largest drift. Obviously, with increasing arc length
the possibility of the algorithm for ‘hiding’ an offset in the elevation in the osculating
elements is reduced. Consequently we find a systematic behaviour of the residuals in the
angular measurements. For a 4-day observation interval a constant offset of about 0.009°
is observed in the residuals of the azimuth and an offset of 0.015° in the residuals of
the elevation. The signal for an offset in the elevation measurement may therefore be
seen in the Radar observations themselves. Nevertheless, a calibration with astrometric
measurements is much more accurate and reliable.

6.3.3 Determination of Radar Oﬁ'sets using Astrometric .
 Observations o a

In the previous section we found that calibration of the Radar observations is essential for
the determination of precise orbits from Radar observations alone. A precise calibration of
the instrumental zero-point in the azimuth is required in particular. Astrometric measure-
ments are an ideal (and probably the only) tool for such a calibration. In this section we
study the formal errors of the offsets of the Radar observables determined from combined
Radar and astrometric observations of the same satellite.

We used the observation rms errors given in Table 6.15 for the covariance study. Four
‘non-stop’ Radar observation campaigns (one measurement per minute) were simulated
with a duration of 1, 2, 4, and 7 days respectively. Three different astrometric campaigns
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RMS error in range rate observable 10 cm/s
RMS error in azimuth and elevation Radar observable 0.1°
RMS error in the astrometric observables . 0.5

Table 6.15: Adopted observation rms errors for the Radar and the astrometric measurements.

were simulated: The first with observations from only one night, the second with obser-
vations from two successive nights, and the third with observations from three nights.
In the latter case it was assumed that the observations were made in the first two and
in the fourth observation night (W1th a gap of one night, e.g., due to bad weather). In
each night 5 close encounter series were simulated between 20 UT and 4 UT, each con-
taining 10 individual observations. I.e., from each observation night 50 single direction
measurements were acquired. The first day of Radar observations and the first night of as-
trometric measurements were assumed to coincide. This is realistic because a coordinated
campaign would start only if the weather as well as the weather forecast at the astro-
nomical observatory are good, in which case both observatories would start to observe
immediately.

From the results given in Chapter 3 for the rms errors of osculating elements determined
with astrometric measurements (Table 3.3) and for the rms errors in position (Figure 3.11)
and from the corresponding results from Radar observations (Table 6.11 and Figure 6.5)
" we conclude that the precision of the determination of the offsets in the Radar observ-
ables is limited almost entirely by the precision and duration of the Radar observations.
The accuracy of the offset in the azimuth essentially is governed by the accuracy of the
determination of the alongtrack position of the satellite by the two observation methods.
For 3 days of astrometric observations this error is below 100 m (corresponding to 0.6" in
GEO) within a time interval of 7 days whereas for Radar observation the rms error is of
the order of 1 km. : : '

In Table 6.16 we see that, in fact, the formal errors of the elements, in particular of the
semimajor-axis and of the elements i and Q are determined by the optical observations
while the precision of the Radar offsets is limited by the accuracy of the Radar measure-
ments: Changing the length of the arc observed by Radar does not change the formal error
of the semimajor axis and the inclination, if the optical observations cover more than a
single night. The formal error of the eccentricity slightly improves with increased length
of the Radar observation session due to the contribution of the range rate observations
for orbit determination.

The formal errors of the offsets in the Radar observables, on the other hand, are inde-
pendent on the number of nights with astrometric observations but they are reduced with
the square root of the number of Radar observations. Only the offset in the azimuth is
slightly worse if astrometric observations from only one night are available, because the
semimajor axis and thus the alongtrack position of the satellite is determined with lesser
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accuracy from astrometric observations from one night only.

With the assumptions made for the covariance study the offsets in the Radar angle meas-
urements are determined with a precision between 7° and 4" and the offset in range rate
.with a precision of 0.3 cm/s to 0.1 cm/s. If the rms errors of the Radar observations are
better than the values given in Table 6.15, the formal errors in the offsets are improved
accordingly. The quality of the astrometric measurements starts only playing a role for the
precision of the offset determination if the rms errors of the Radar observations are more
than ten times smaller than the values in Table 6.15. In fact, the astrometic observations

Formal Errors in Elements and Offsets
with Radar Arc Length (days)
1 2 | 4| 7
1 astrometric observation night
Semimajor axis (m) 55.4 38.4 24.8 16.0
Eccentricity .00000071 | .00000060 | .00000048 | .00000039
Inclination 0.000024° | 0.000024° | 0.000023° | 0.000023°
Offset in azimuth 0.0027° 0.0019° 0.0015° 0.0013°
elevation 0.0026° 0.0019° 0.0013° 0.0010°
range rate (cm/s) 0.26 0.19 0.13 0.10
2 astrometric observation nights
Semimajor axis (m) 2.1 2.0 2.0 2.0
Eccentricity .00000043 | .00000040 | .00000036 | .00000032
Inclination 0.000018° | 0.000018° | 0.000018° | 0.000018°
Offset in azimuth 0.0026° 0.0019° 0.0013° 0.0010°
elevation 0.0026° 0.0019° 0.0013° 0.0010°
range rate (cm/s) 0.26 0.19 0.13 0.10
3 astrometric observation nights
Semimajor axis (m) 0.7 0.7 0.7 0.7
Eccentricity .00000034 | .00000032 | .00000030 | .00000027
Inclination 0.000015° | 0.000015° | 0.000015° | 0.000015°
Offset in azimuth 0.0026° 0.0019° 0.0013° 0.0010°
elevation 0.0026° 0.0019° 0.0013° 0.0010°
range rate (cm/s) 0.26 0.19 - 0.13 0.10

Table 6.16: Formal errors in the semimajor axis, the eccentricity, the inclination and the offsets in
the Radar observables using astrometric and Radar observations. The Radar observations cover
intervals of 1, 2, 4 or 7 days, one Radar observation was made per minute. The astrometric
observations are acquired within 1, 2 or 3 nights in 5 close encounters per night, each containing
10 observations. Adopted rms observation errors: 0.1° in azimuth and elevation, 0.1 m/s in range
rate, 0.5" for astrometry.
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nearly entirely determine the satellite orbit and the Radar observations are only ‘used’ to
determine the Radar offsets. Osculating elements and Radar offsets are nearly uncorrel-
ated and the determination of the orbit and the determination of the Radar offsets may
even be carried out independently without significant loss of accuracy.
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Figure 6.6: Systematic difference of orbits determined from observations with a range rate offset
of —2.5 cm/s, in radial (top), alongtrack (center), and crosstrack (bottom) direction as a function
of time. The curves correspond to observation time intervals of 1 to 7 days; the solid part of the
lines corresponds to the observation interval, the dotted part to the extrapolation in the 13-day
interval.
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Figure 6.7: Systematic difference of orbits determined from observations with an azimuth offset
of 0.01°, in radial (top), alongtrack (center), and crosstrack (bottom) direction as a function of
time. The curves correspond to observation time intervals of 1 to 7 days; the solid part of the
lines corresponds to the observation interval, the dotted part to the extrapolation in the 13-day
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Figure 6.8: Systematic difference of orbits determined from observations with an elevation offset
of 0.02°, in radial (top), alongtrack (center), and crosstrack (bottom) direction as a function of
time. The curves correspond to observation time intervals of 1 to 7 days; the solid part of the
lines corresponds to the observation interval, the dotted part to the extrapolation in the 13-day
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A Transformation Formulae

A.1 Different Sets of Orbital Elements and
Transformation of Derivatives

The orbit determination program allows it to use Keplerian orbital elements as well as so-
called nonsingular elements as orbit parameters for orbits with small eccentricites and/or
small inclinations. Several types of nonsingular elements are defined in the literature. The
nonsingular element set used in our programs are

L =Q4+w+oe w=04w
hy =e-sinw ki, =e-cosw
hy = sint-sin ks = sinz-cos

where i is the orbital inclination, Q2 is the R.A. of the ascending node, w the argument of
perigee, and ¢ the mean anomaly at the osculation epoch. £ is the mean longitude at the
same epoch and w is the longitude of the perigee. Keplerian and nonsingular elements
may be ‘mixed’, the combinations which may be used in the programs are

Element set 1: a, e 1, £ w, o,
Element set 2: a, e 3 £, w, ¢
Element set 3: a, e 1 N, w, I
Element set 4: a, hy, ki, i, Q, ¢,
Element set 5: a, e w@, hy kg U,

L.

Element set 6: a, hi, ki, ha, ke,

When setting up the first design matrix in the orbit determination process the partial
derivatives of the observations with respect to the parameters have to be computed. Le.,
the partial derivatives of satellite position and velocity with respect to the elements of
the selected element set are required. Below, the transformation of the partial derivatives
of a vector with respect to the Keplerian elements to the partials with respect to the five
other element (and vice versa) sets are given. '
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e Transformation of partials from (a,e€,1,Q,w,o) — (a’,€,7,Q',u', )
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e Transformation of partials from (a,e,i,Q,w,0) — (a’,€,?, ¥, w, )
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e Transformation of partials from (a,e,i,Q,w,0) — (d', hy, ¢, ¥, k1, £)
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e Transformation of partials from (a,e,7,Q,w,0) — (d, e hg kg, @, £)
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Q2 - 8 _ 23
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5 _ o

8¢ T 8o

o Transformation of partials from (a,e,1,Q,w,0) — (@', hy, ho, ks, k1, £)
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A.2 Jacobian Métrices for Transformations of the

Covariance Matrix

The Jacobian matrices J, which may be used e.g., for the transformation of covariance
matrices from one parameter set to another, are given below for the transformations from

A Transformation Formulae

the Keplerian elements to the five other element sets and vice versa.

e The Jacobian matrix of the transformation (a,e,i,Q,w,0) — (d',€,?, ¥, ', )

reads

dd, e, 0)
d(a,e,i,Qw,0)

o OO O -
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- —_ 0000
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and the Jacobian matrix of the inverse transformation o — ¢

d(a,e,1,Q,w,0)
o(a', e, ¢, ', w', {) -

OO OO O

e The Jacobian matrix of the transformation (a,e,i,Q,w,o

reads

o(a',€,7,,w,{)
0(a,e,i,Qw,0)

O OO OO -

and for the inverse transformation o — ¢
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o The Jacobian matrix for the transformation (a,e,1,Q,w,0) — (a’, hy,d", V', k1, £)

reads
( 1 0 0 0 0 0
0 sinw 0 ecosw ecosw 0
a(a’,ahlvi'7 Q’v klye) _ 0 O 1 0 0 . 0
da,e,1,Quw,e) [0 0 0 1 0 0
0 cosw 0 —esinw —esinw 0
\0 0 0 1 1 1
and for the inverse transformation e,w — hy, k;
1 0 0 0 - 0 0
0 sinw 0 0 cosw 0
d(a,e,5,Qw,a) 10 0 10 0 0
6(a', hl,i’, Q', kl,E) - 0 0 0 1 1] 0
0 +icosw 0 —1 —lsinw 0
0 —gcosw 0 0 +isinw 1

e The Jacobian matrix for the transformation (a,¢,:,Q,w,0) — (o', €', hs, ks, @, £)
reads

10 0 0 00
0 1 0 0 00
d(a',€ hgy ko, w,€) | 0 0 cosisinQ sinicosQ 0 0
(e, e,,Q,w,0) 0 0 costcos? —sinzsinQ? 0 0
00 0 1 10
0 0 0 1 11

and for the inverse transformation i, — hy, k;

10 0 0 0 0)
01 0 0 0 0
da, 6,4, Qw,0) | 0 0 sinQfcosi cosffcosi 0 0
d(a', e ha kg, f) | 0 0 cosQfsini —sinQ/sini 0 0
0 0 —cos{)/sinz sinQfsint 1 0
00 0 0 -1 1/

e The Jacobian matrix for the transformation (a, €,1,Q,w,0) — (@', hy, hy, k2, k1, £)

reads
1 0 0 0 0 0
0 sinw 0 €Ccos ecosww 0
d(a'shiyhay ko ki, €) | 0 0 cosisinQ  sinicosQ 0 0
0(a,e,1,Q,w,0) 0 0 cosicosf)! —sinzsin{) 0 0
0 cosw 0 . —esinww —esinw 0
0 0 0 1 1 1
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and for the inverse transformation e,:,Q,w — hy, ky, ho, k2

0 0 0 0

1 0\
0 sinw 0 0 cosw 0

0(a,e,1,Qw,0) | 0 0 sinQ/cost  cos Y/ cost 0 0
d(a',hy,ha, ko, Ky, 8) | O 0 cos/sini —sinQ/sin¢ 0 0
0 +lcosw —cosQ/sini sinQ/sini —ilsinw 0

0 —lcosw 0 0 +isinw 1)

The transformations between the six element sets used in the context of this work are
performed by the subroutine ODETRF, the transformations of the derivatives of vectors
with respect to the different elements by the subroutine ODDTRF, and the transformation
of the covariance matrix to different sets of elements by the subroutine ODQTRF.
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B Combining Arcs Separated by a
Manceuver

The formulae for combining consecutive arcs of a satellite orbit at the normal equation
level are derived in Beutler et al. (1996b). Because — in contrast to the cited paper — not
the special perturbation equations are used for the transformation of the partial derivatives
at the manceuver epoch, the procedure used is shortly outlined in this appendix. The
iterative procedure applied for combining two arcs of the satellite Meteosat 4 is discussed
in section 3.1.4 and 5.4.

Given the two arcs described by the orbital element vectors Ey| and E,| with osculation
epochs t; and ¢, respectively and the dynamical para.meters qll and g¢;| (e.g. the radiation
pressure coefficients): RS

arc 1: Pl| = {EII,QII}, arc 2: le = {E2|)q2|}' (Bl)

We assume that for both arcs an independent parameter determination is performed
using the method of least squares. Starting with the a priori parameters pio| and pyo| the
corrections Ap;| and Ap,| are computed by solving the normal equation systems (NEQS)

N;-Ap;|=b]  for arc i=1,2 (B.2)
where -
N; = AT . P;- A, is the NEQS matrix of arc i,
bi| = AT + Pi- A®y| is the right hand side of the NEQS of arc i,
A; is the fist design matrix, | | | o
P; is the weight matrix matrix, and

A®;| is the (column-)matrix containing the values observed — computed.

We assume that the satellite performed a manceuver at epoch {.. The manceuver shall
be described by an instantaneous velocity change Av. Therefore the condition equations
applied for connecting the two arcs are

ra(tc) = T1(t)
’vg(tc) = ’Ul(tc) + Av . (B3)
@l = al

We write the first two equations (B.3) in the form of 6-component vectors (the first three
elements containing the position vectors, the last three elements the velocity vectors)

ral(te) = r1|(t) + Ar| = r1|(t) + Rs| (B.4)



194 B Combining Arcs Separated by a Manceuver

where s| represents the velocity change at ¢ in the RSW-system which is transformed by
the 6x3-matrix R into the zyz-system (computed from ry|). anearlzmg eq. (B 3) then
gives . R

ral(t) + gttt ail+ (3200 el =

0 0
= r1o|(tc) + (62 (¢ )) AE,| + ( o (tc)) Aq1| + Rso + RAs|

gl + Age| = qro] + Aqi
Eliminating ¢;| from the first equation and solving for AEj| gives finally

AE| = H7'H\AE|+H;'(Q, - Q,)Aq| + H7'RAs| +
+H 3 [(r10] = r20]) — Qa(q10| — g20|) + Rso] | (B.5)
Ag| = Aq|+ (10| — g20l)

with the Jacobian matrices
ar; » or;
H, = ( ) Q- ( Ori,, )) . (B5)

Eq. (B.6) may be written in the compact form
Apz| = BaApy| + Apa| - (B.7)

with the parameter set p}| = {Ei|,a1],sl}, i.e. extended by the manceuver parameters.
We have therefore expressed the corrections Ap;| of the parameters p;| of arc 2 by the
corrections Apj| of the parameter set p}|. The NEQS for the new parameter set reads

N - Apy| = by | | (B.8)
with

N; = B£1N2B21
by = Bji(ba] — N2Apa|)

and after this transformation we may add the NEQS (B.8) and the NEQS (B.2) for arc 1.
The result is a NEQS for the corrections AE|, Aq|, and As| for the combined arc.
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C Radiation Pressure Model for the
- Meteosat Satellites

A simple radiation pressure model for the Meteosat satellites was proposed by Veillet et
al. (1990). The satellite body is represented by three coaxial cylinders with dimensions as
sketched in Figure C.1.

For each surface of the cylinders the coeflicients are defined for diffuse scattering of light
(d) and for specular reflection (s). Together with the absorption coefficient @ the following
identity holds - ‘

at+d+s=1.

The radiation pressuré acting on a plane surface tilted by an angle © to the incident light
may be decomposed in a component parallel to the direction of the incident light p and
.a component orthogonal to it p;

p| = STGCOSG[a+d+28COS2@+§dC°S®] (C.1)
pL = -S%cos@[ 2scos@sin®+§dsin@] (C.2)

where Sg is the solar constant and ¢ the velocity of light. The first term a + d in the first
equation describes the effect of light that is absorbed (either permanently or diffusely

Figure C.1: Simple model for the Meteosat satellites proposed by Veillet et al. (1990). The
satellite body is represented by three coaxial cylinders. For each surface the diffuse (d) and
specular (s) reflection coefficient is given. Dimensions from Ferrand (1996).
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re-emitted). The second term describes the acceleration due to specularly reflected light
and the last term that of the diffused light. ‘

For a cylinder with its symmetry axis inclined by the angle  — @ relative to the incident
light the radiation pressure may be decomposed as follows

Pl = §c9 cos© [a +d+ -g-s cos? @ + %dcos G] ‘ (C.3)
pL = éc@-cos@[ %scos@sin@-}- %dsin@] . (C.4)

For a spherical object only a radiation pressure in the direction of the incident light exists

S 4
m=2(1+5

which depends only on the coefficient of diffusion of light fof the surface.

Using the simple model presented at the beginning of the section and eqns. (C.1) to (C.4)
the components of the radiation pressure parallel and orthogonal to the incident light
may be computed. Because the symmetry axis of the satellite is very close to both, the
rotation axis and the normal to the orbital plane, the incident angle of the light on all
surfaces of the satellite can be obtained for any time. In addition, shadowing effects due
to other parts of the satellite are taken into account. o

As a result an ‘effective’ cross section of the satellite can be given as a function of the
position of the Sun which corresponds to the cross section an ideally absorbing body would
have to sense the same radiation pressure force. In Fig. C.2 this effective surface is given as
a function of time for the direction parallel and orthogonal to the incident light together
with the geometrical cross section of the satellite as viewed from the direction of the sun.
The important differences to a simple model based on perfect absorption and fixed cross
section consists of the increased value, the variation with time, and the existence of an
orthogonal component. :

For the orthogonal component the sign is defined to be positive if the force is acting north-
wards and negative when acting southwards. In Fig. C.2 we can see that the orthogonal
component is negative or zero for all times (with the antenna of the satellite pointing
northwards). This may be understood in the following way (see Fig. C.3, bottom left):

While the Sun is illuminating the satellite from ‘below’ the force acting on the lower sur-
face due to specular reflection and diffusion pushes the satellite in northward direction
while the forces acting on the cylindrical surfaces are perpendicular to the satellite’s sym-
metry axis and has therefore a component pointing southwards relative to the direction
of the incident light. According to the model the two effects nearly cancel if the Sun
is below the orbital plane while the effect due to the flat upper surfaces outweighs the
counteracting effect from the cylindrical surfaces. This asymmetry is due to the different
optical properties of the upper and the lower surfaces of the satellite.
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5m2_

Jan Mar May Jul Sep Nov

Figure C.2: Effective cross section for the direction parallel (||) and orthogonal (L) to the incident
light and geometrical cross section (dotted line) according to the Meteosat radiation pressure
model as a function of time.

In Fig. C.3 (right) the acceleration contributions due to permanent absorption, specular
reflection, and diffusion of light are given. The absorption is the dominant effect for the
direct radiation pressure (up to 80% of the total effect). Diffusion of light plays only a
minor role for the parallel component. For the orthogonal component, on the other hand,
the dominant effect is due to the diffusion of light whereas absorption has no effect.
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Figure C.3: Radiation pressure force sensed by the Meteosat satellites relative to the force sensed
by a perfectly absorbing satellite as a function of time for the parallel component (top) and the
orthogonal component (bottom). Left: Decomposition of the force into the parts due to the
cylindrical surfaces (dotted lines) and to the upper and lower flat surfaces (dashed lines). Right:
Decomposition of the force due to absorption (a), specular reflection (s), and diffused light (d).
The total effect is given in all figures by the solid line.
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Abbreviations

ABM Apogee Boost Motor.

ACRS Astrographic Catalogue Reference Stars.

AIUB Astronomical Institute of the University of Berne.

BMK Ballistische Messkamera.

CCD Charge Coupled Device.

CDhpP Crusté,l Dynamics Project.

CMC Carlsberg Meridian ‘Catalogue, astrometric catalogue (CMC,
1984).

COGEOS International Campaign for Optical Observations for Geostation-
ary Satellites, research project for geodynamic purposes.

COSPAR Committee on S'pace Research.

CQSSP Coupled Quasar, Satellite, and Star Positi‘oning.

DASA Deutsche Aerospace AG.

ESA European Space Agency.

ESOC European Space Operations Centre.

ESTEC European Space Research and Technological Centre.

FGAN-FHP Forschungsgesellschaft fir Angewandte Naturwissenschaften e. V.
- Forschungsinstitut fiir Hochfequenzphysik; Research Establish-
ment for Applied Science - Research Institute for High Frequency
Physics.

FK5 Fifth Fundamental Catalogue, fundamental astrometric catalogue
defining the stellar reference frame.

FOV Field of View.

GEM Goddard Earth Model.

GEO Geostationary Orbit.

GEODSS Ground Electro-Optical Deep Space System.

GLONASS Global Navigation Satellite System.
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GMST Greenwich Mean Sidereal Time.
GPS Global Positioning Sytem.
GSFC Goddard Space Flight Center.
GTO Geostationary Transfer Orbit.
HA  Hour Angle.

HEO Highly Elliptical Orbit.

HIPPARCOS High Precision Parallax Collecting Satellite.

IAU International Astronomical Union.

IERS | International Earth Rotation Service.

1GS International GPS Service for Geodynamics.
INTEGRAL International Gamma-Ray Astrophysics Laboratory.
ISO Infra-red Space Observatory.

IUE * International Ultraviolet Explorer.

JGM Joint Gravity Model.

JPL Jet Propulsion Laboratory, Pasadena.

MEO Medium Earth Orbit.

MTO Medium Earth Transfer Orbit.

NASA National Aeronautical and Space Administration.
NASDA National Space Development Agency of Japan.
NGS National Geodetic Survey. |

NEQS Normal Equatidn Systém. .

NNSS Navy Navigation Satellite System.

PAGEOS Passive Geodetic Satellite.

PPM Positions and Proper Motion astrometric catalogue (CMC; 1984).
RA Right Ascension.

RAE Royal Aerospace Establishment.
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RCS
RSA
SAO
SLR
SNR
SSN
‘TIRA
TLE
USSPACECOM
VLBI
WEST
ZIMLAT

Radar Cross-Section.

Russian Space Agency.

Smithsonian Astrophysical Observatory.
Satellite Laser Ranging.

Signal-to-Noise Ratio.

Space Surveillance Network.

- Tracking and Imaging Radar.

Two Line Elements.

U.S. Space Command.

Very Long Baseline Interferometry.
West European Satellite Triangulation.

Zimmerwald Laser Ranging and Astrometry Telescope (1 m).
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