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VYVorwort

Von den Rechenzentren des Internationalen GPS-Dienstes fiir Geodynamik (IGS) werden tiglich die
Bahnen fiir alle Satelliten des amerikanischen Globalen Positionierungs-Systems (GPS) bestimmt.
Diese Bahnen werden aufgrund der GPS-Beobachtungen von heute etwa 80 Bodenstationen
berechnet. Jede Beobachtung enthilt naturgemiss auch Information tiber die beobachtende Station
sowie {iber die Atmosphire oberhalb der Station. Es scheint nicht sinnvoll, die Koordinaten aller
Stationen jeden Tag neu zu bestimmen — man darf diese fiir die Zwecke der Bahnbestimmung getrost
als bekannt annehmen. Sinnvoll ist es hingegen, die Beobachtungen zu grosseren Paketen zusammen-
zufassen (beispielsweise alle Beobachtungen eines oder mehrerer Kalenderjahre) und simtliche
Koordinaten sowie deren Anderungen zu bestimmen. Das Resultat einer solchen globalen Aus-
gleichung ist ein globales Modell fiir die Kontinentalverschiebungen. -

Bedenkt man, dass pro Station und Tag etwa 50'000 GPS-Einzelbeobachtungen zu verarbeiten sind, so
leuchtet ein, dass aus Griinden der Rechendkonomie eine Mehrjahreslosung nicht einfach durch eine
Neuverarbeitung der rohen Beobachtungen zu realisieren ist. Eine Neuverarbeitung wiirde einige
Wochen Rechenzeit auf den schnellsten heute verfligharen Rechnern bedeuten und woh! kaum zur
Beliebtheit der IGS-Rechenzentren beitragen.

Man setzt daher schon bei den tiglichen Routinelosungen die Koordinatenverbesserungen aller
Stationen formal als unbekannt an, sperrt aber deren Schitzung mittels Gewichten. Dieses Vorgehen
ermbglicht a posteriori eine korrekte Kombination von allen tiglichen Normalgleichungssystemen.
Entfernt man die Gewichte und parametrisiert neu (bloss ein Satz von Stationskoordinaten und -
geschwindigkeiten), wird es moglich, mathematisch korrekte Modelle fiir die Bewegung einer jeden
Station in einem globalen Bezugssystem zu gewinnen. Eine solche a-posteriori-Kombination von
Normalgleichungen erfordert nur einige Minuten Rechenzeit!

Die geschilderte Aufgabe kann fast nach Belieben verallgemeinert werden. Es ist beispielsweise
moglich, fast alle bei der GPS-Verarbeitung relevanten Parameter-Zeitreihen (wie Erdrotationspara-
meter, Nutation, Tagesldnge, Bahnparameter, etc.) auf analoge Weise wie die Koordinaten zu be-
handeln.

" Technisch gesehen ist die Aufgabe sehr anspruchsvoll und kann auf verschiedene Arten geldst
werden. In diesem Band wird die von Herrn Dr. Elmar Brockmann entwickelte Methode zur
Kombination von Losungen vorgestellt. Die mathematischen Grundlagen gehen zum Teil auf C.F.
Gauss direkt zuriick (sequentielle Ausgleichung ist ein Stichwort), zum andern standen Elemente der
digitalen Filterung Pate. Die Ansitze wurden in mancherlei Hinsicht— gerade im Umfeld Neupara-
metrisierung — betrichtlich erweitert. Die Grundlagen und die Neuentwicklungen sind im ersten
theoretischen Teil der Arbeit erschdpfend wiedergegeben. Diesen Teil der Arbeit konnte man auch mit
discours de la méthode tiberschreiben,

Der zweite Teil der vorliegenden Arbeit vermittelt einen tiefen Einblick in die mannigfaltigen
Anwendungsmoglichkeiten und in die praktische Bedeutung der Entwicklungen von Herm Dr.
Brockmann. Neben den schon erwithnten globalen Koordinaten- und Geschwindigkeitsschitzungen
wird das Konzept des distributed processing (Rechnen von Teillésungen an verschiedenen Rechen-
zentren und korrektes Zusammenfligen an einer iibergeordneten Stelle) besprochen. Abschliessend
findet man verschiedene Zeitreihen von geodynamisch relevanten Parametern, wie sie am Rechen-
zentrum CODE mit Herrn Brockmann's Entwicklungen gewonnen wurden.

Herr Brockmann hat mit diesem Band einen wesentlichen Beitrag zur Satellitengeodisie geleistet,
woflir die Schweizerische Geoditische Kommission (SGK) ihren besonderen Dank ausspricht. Nicht
zuletzt dankt die SGK der Schweizerischen Akademie fiir Naturwissenschaften (SANW) fiir die
Ubernahme der Druckkosten.

Prof. Dr. G. Beutler Direktor F, Jeanrichard Prof. Dr. H.-G. Kahle
Direktor des Astronomischen Bundesamt fiir Landestopographie ETH Zirich
Instituts der Universitit Bern Vizeprisident der SGK Prisident der SGK



PREFACE

Les orbites de tous les satellites du syst¢éme américain Global Positioning System (GPS) sont
déterminées journellement par les centres de calcul du Service international GPS de géodynamique
(IGS). Actuellement, ces orbites sont calculées a partir des observations d’environ 80 stations
terrestres. Chaque observation contient des informations concernant la station elle-méme ainsi que des
informations concemant 1’atmosphére au-dessus de la station. Il n’est pas nécessaire de calculer les
coordonnées des stations chaque jour car ces coordonnées sont suffisamment connues pour le calcul
des orbites. 11 est par contre intéressant de condenser les observations par paquets (par exemple toutes
les observations d’une ou de plusieurs années) et de calculer toutes les coordonnées et leurs variations.

Le résultat d’une telle compensation est un modele de déplacement des continents.

Si I’on songe que 50 000 observations GPS sont a traiter par station et par jour, il est évident, pour
des raisons de temps de calcul, qu’une solution englobant les observations de plusieurs années ne peut
pas se faire & partir des observations brutes. Une telle opération prendrait quelques semaines, méme a
I’aide des ordinateurs actuellement les plus puissants et ne contribuerait pas a la bonne renommeée des
centres de calcul.

Pour les solutions journaliéres courantes, on définit les corrections des coordonnées de toutes les
stations comme inconnues, mais on bloque leur estimation au moyen de poids a priori. Ce procédé
permet, ultérieurement, une combinaison correcte de tous les systémes journaliers des €quations
normales. Aprés la suppression des poids et une nouvelle paramétrisation (en introduisant par exemple
un seul set de coordonnées des stations et de leur vitesse de déplacement), il est possible d’obtenir un
modeéle mathématiquement correct pour le déplacement de chaque station dans un systéme de
référence global donné. Une telle combinaison a posteriori d’équations normales ne demande que
quelques minutes de calcul.

La méthode décrite ici peut étre généralisée a volonté. Il est possible de I’appliquer & pratiquement
tout paramétre variable dans le temps et déterminable par observations GPS. Par exemple, on peut
traiter les paramétres de la rotation de la terre, de la nutation, de la durée du jour, des orbites, etc. de la
méme fagon que les coordonnées.

Techniquement, cette tiche est trés ambitieuse et peut €tre résolue de différentes fagons. Cette
publication présente la méthode développée par Elmar Brockmann, dr ¢s sc. Les bases mathématiques
remontent en partie directement 3 C.F. Gauss (compensation séquentielle) mais incluent aussi des
¢léments de filtrage numérique. L’approche en a été fortement élargie sous divers aspects, en
particulier en ce qui concerne la reparamétrisation. Les bases et les développements nouveaux sont
décrits dans la premiére partie théorique du travail. Cette partie pourrait s’appeler aussi lediscours de
la méthode.

La deuxiéme partie de la publication donne un apergu approfondi des nombreuses possibilités
d’application et de ’'importance des développements de Monsieur Brockmann pour la pratique. En
plus de ’estimation des coordonnées et des vitesses de déplacement déja décrite, cette deuxiéme partie
traite du concept de distributed processing (calcul de solutions partielles en différents centres de
calcul et réunion de ces solutions par un autre centre unique). Dans sa derniére partie, la publication
contient des séries temporelles de paramétres déterminants dans le domaine de la géodynamique,
obtenues au centre de calcul CODE par la méthode développée par E. Brockmann.

La Commission Suisse de Géodésie (CGS) remercie particuliérement Monsieur E. Brockmann pour
cette substantielle contribution a la Géodésie par satellites. Finalement laCGS remercie vivement
1’Académie Suisse des Sciences Naturelles (ASSN) d’avoir pris & sa charge les colits d’impression du
présent fascicule.

Prof. Dr. G. Beutler, Directeur  F. Jeanrichard, Directeur Prof. Dr. H.-G. Kahle
de I’Institut d* astronomie de I’Office fédéral de topographie ETH Ziirich
de I'Université de Bemne Vice-président de la CGS Président de la CGS



FOREWORD

The Analysis Centers of the International GPS Service for Geodynamics (IGS) produce high accuracy
orbits for all the satellites of the Global Positioning System (GPS) on a daily basis. These orbits are
based on GPS observations stemming from today about 80 sites of the IGS tracking network. Each
GPS observation does not only contain information about orbits and global parameters like Earth
rotation parameters, but also information concerning the ground stations like, e.g., station coordinates
and the atmosphere above the stations. It does not make sense to estimate, e.g., station coordinates in
the daily routine solutions of the IGS Analysis Centers. It makes sense, however, to analyse longer
data spans (one or several years) and to solve not only for station coordinates, but for station
velocities, as well. The result of such global analyses consists of a global model of station coordinates
including a velocity field in a well-defined terrestrial reference frame.

Taking into account that per GPS station and per day about 50'000 single observations have to
analysed, it becomes clear that an actual re-processing starting from the individual observations does
not make sense from the point of view of computational efficiency. Such a reprocessingfrom scratch
would require several weeks of CPU time even on the most powerful computers available today. Such
manoeuvres would not make the IGS Analysis Centers very popular in the broader scientific
community.

In order to cope with that problem the coordinates of all stations are set up as unknowns for all
stations already in the daily routine solutions. In the daily solutions these unknowns are constrained to
zero using a priori weights, however. This procedure allows a correct combination of the daily normal
equation systems a posteriori. After removing the weights and after re-parametrizing the problem
(e.g., by introducing only one set of coordinates and velocities per site for an annual solution) it is
possible to analyse long data spans in a mathematically correct way. This procedure costs only
minutes and not weeks of CPU time. ‘

The method outlined above may be considerably generalized. It is possible to apply it to time series of
virtually all parameters that are accessible to the GPS observables. Examples are Earth rotation
parameters, nutation, length of day, orbit parameters, geocenter coordinates, etc.

Technically, the task is very ambitious and may be tackled in several ways. In the present volume we
find the method developed by Dr. Elmar Brockmann. The mathematical foundations go back to C.F.
Gauss (sequential adjustment being one key word) but they also include elements of digital filtering.
His approach had to be generalized in several respects, in particular in the field of re-parametrization.
The foundations and the new developments are given in the first part of this volume which might be
called discours de la méthode.

The. second part of the volume gives deep insight into the various applications and lets us see the
relevance of the work for practice. Apart from establishing of the global coordinate and velocity field,
which was already mentioned above, the author presents the attractive concept of distributed
processing (analysis of parts of a network at different analysis centers and subsequent combination on
a higher level center using the individual normal equation systems). The volume concludes with the
discussion of time series for parameters relevant in geodynamics, as they were established at the
CODE processing center of the IGS using Dr. Elmar Brockmann's developments.

With this report E. Brockmann has written an extremely important publication covering significant
parts of satellite geodesy. The Swiss Geodetic Commission (SGC) is grateful for this highly valuable
research work. Funds for publishing this report were provoded by the Swiss Academy of Sciences.
The financial support is gratefully acknowledged.

Prof. Dr. G. Beutler F. Jeanrichard Prof. Dr. H.-G. Kahle
Director of the Astronomical Federal Office of Topography ETH Zurich
Institute, University of Berne Vice President of SGC President of SGC
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1. Introduction

1.1 Subject

The increasing number of permanent GPS stations all over the world was the motiv-
ation to develop a new program, called ADDNEQ, under the Bernese Software 3.5 to
be able to derive from sequentially processed session solutions a stastistically correct
combined parameter estimate. Originally coordinate- and velocity parameters were
considered, only.

The theory of combining sequential solutions is well known in geodesy since
HELMERT [1872]. Limited computational resources in the first half of this century
were the reason why these methods were applied to almost every network adjustment
derived from classical geodetic measurements.

Computing power is no problem nowadays, but the increased number of observations
collected e.g. from permanent GPS arrays (see e.g. Figure 5.1) asks for sequential
methods, again.

Sequential adjustment techniques are in general independent of the observation types
of the individual solutions. This implies that results of different techniques (classical
geodetic techniques or space techniques GPS, SLR, VLBI, DORIS) may be com-
bined. In this thesis we focus on the combination of results achieved by GPS, only.
A short introduction to GPS is given in the next section.

It can be said without exaggeration that the program ADDNEQ (a flowchart is shown
in Figure A.1) was developed and steadily improved over the last four years to
meet the growing requirements of the CODE (Center for Orbit Determination in
Europe) Analysis Center of the IGS (International GPS Service for Geodynamics).
An overview of the IGS may be found at the end of this chapter.

Normal equations may be stored for a sequence of solutions including all possible
types of unknown parameters (coordinates, troposphere, orbit parameters, earth
rotation parameters, nutation parameters, center of mass, satellite antenna offsets,
etc.).

ADDNEQ is today a central feature of the CODE processing, allowing it to produce not
only the official CODE products but also a big variety of different solutions series
for special studies. It is a rather rapid and efficient process to produce a ”new” series
covering several months or even several years based on the stored normal equations.




1. Introduction

The theoretical background for possible ”model changes” based on normal equations
is given in Chapter 2. '

The computation of long-arc orbits is also a powerful application of combining solu-
tions. At CODE 3-days-solutions (and arcs) are created based on the normal equa-
tions (and the apriori orbit information) of sequential daily solutions. Longer arcs
(e.g. 5- or 7-days-arcs) are extremely useful for near-real time applications of or-
bit determination. Important information concerning the orbit parameterization is
given in Chapter 3. The theory of the combining consecutive daily arcs, which is
published in [BEUTLER ET AL. 1996, is topic of Chapter 4.

A summary of processing strategies using normal equations concludes the theoretical
part of this thesis. The modularity of the combination is the main reason for the
diverse application possibilities.

In Chapter 6 we study the quality of site coordinates and velocities achievable by the
analysis of long time series of network solutions. These results are useful to assess the
quality of the coordinate and velocity estimates of the combined solutions derived
from more than 2 years of IGS processing at CODE.

The combination of GPS solutions of different Analysis Centers is the subject of
Chapter 7. For the maintenance and densification of terrestrial reference systems
such applications are extremely important, in particular in view of the growing num-
ber of regional permanent GPS sites all over the world. Due to the availability of the
Software Independent EXchange format (SINEX) it is possible to combine results
of different Analysis Centers using the full covariance information. A well-defined
reference frame is only guaranteed, if networks and subnetworks are processed in a
consistent way. A case study shows the impact of inconsistencies of different pro-
cessing strategies. As an example we show combinations of the SINEX submissions
of the IGS Analysis Centers.

As mentioned before, a big variety of solution types may be created using ADDNEQ.
In the final Chapter 8 we show results derived from more than 2 years of processing
IGS data at CODE. We focus on some parameter types like coordinates, velocities,
Earth rotation, center of mass, and satellite antenna offsets. We mentioned also that
ADDNEQ was originally designed to produce the annual CODE station coordinate-
and velocity solutions for the ITRF. As an example we discuss the preparation
of the CODE contribution for 1995. Coordinate residuals of individual sequential-
solutions with respect to the combined solution show periodical variations. In part,
such variations may be explained by imperfect tide models.

1.2 Introduction to the GPS System

Because all results shown in this thesis are derived from processing GPS data of the
IGS, a short introduction to the Global Positioning System GPS as well as to the
International GPS Service for Geodynamics IGS is included below.



1.2 Introduction to the GPS System

1.2.1 The Global Positioning System (GPS) -

The NAVSTAR GPS (NAvigation by Timing and Ranging Global Positioning Sys-
tem) is a satellite-based radio navigation system developed by the U.S. Department
of Defense (DoD) and the Defense Mapping Agency (DMA) since 1973 for real time
navigation. A first test configuration consisting of 7 satellites became available in
1983. The "final” configuration of 24 satellites (21 operational and 3 spares) was
reached in 1994. The satellites are distributed in 6 different orbital planes with in-
clinations of 55° with respect to the Earth’s equatorial plane. The orbits are almost
circular with a height of about 20200 km above the Earth’s surface and an orbital
period of exactly 12 siderial hours. This means that identical satellite constellations
occur in the earth-fixed system always after approximately 23% 56™ universal time
(UT).

The full constellation guarantees that for any time and for any location at the Earth’s
surface 4-8 satellites (above 15° elevation) are simultaneously visible.

So far three different types of GPS satellites have to be distinguished: Block I satel-
lites (development satellites), Block II satellites (production satellites), and Block
IIR satellites (replenishment satellites). At present (April 1996) 25 satellites are
available. Only one satellite (Space Vehicle Number (SVN) 12) of the Block I gener-
ation (of totally 11 launched) is still alive. The higher inclination of 63° can clearly
be seen in Figure 1.1. No Block IIR satellites are in orbit, yet.

Each satellite is equipped with high performance frequency standards. Two L-band
frequencies are derived from the fundamental frequency of 10.23 MHz: the frequen-
cies Ly = 154 -10.23 Mhz and Ly = 120 - 10.23 Mhz are equivalent to wavelengths
of 19.05 ¢m and 24.45 cm, respectively.

A pseudo random noise (PRN) code, also called C/A (clear acquisition) code, is
modulated on the L; frequency. The code, consisting of randomly distributed se-
quences of binary values, is emitted with a frequency of 1.023 MHz and is repeated
every millisecond. A more precise P-(precision or protected) code is modulated on
both fundamental carriers L; and Ly with a frequency of 10.23 MHz. The extremely
long P-code repeats itself after 266 days.

The wavelength corresponding to one chip is 300 m for the C/A-code, 30 m for the
P-code.

Information about the satellite (orbit information, clock information), the so-called
navigation message, is also available on both fundamental carriers.

The orbital information is regularly uploaded to the satellite. Updated data are
achieved by analyzing the data of several monitor stations located around the world.
The remarkable quality of the broadcast orbits is at present (1996) better than 3-5
m.
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Figure 1.1: 13 IGS core sites defining the reference frame of the satellite orbits. The
ground tracks of 6 Block II satellites (all of different orbital planes) and
one Block I satellite (SVN 12) is plotted for Nov. 12, 1995.

GPS is a one-way ranging system: a signal is transmitted by the satellite and is
observed by a receiver. The observable is in essence the signal travel time between
satellite and receiver.

Due to clock synchronization errors we cannot directly obtain ranges from the code
observations. These observations are therefore called pseudoranges.

Assuming that the receiver can determine the pseudoranges with about 1% relative
error (with respect to the chip length) we obtain a precision for the pseudoranges of
3 m and 30 cm, respectively.

The carrier beat phase is the important observable for high precision applications. It
is derived from the comparison between the received (Doppler-shifted) signal and the
reference signal generated in the receiver. Assuming that the differences are meas-
ured with a relative accuracy of 1% we obtain a precision for the phase observations
of about 2 mm.
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Pseudorange observations are unambiguous. This is not true for the phase observ-
ables. An initially unknown ambiguity parameter (integer number of cycles) has to
be included in the corresponding observation equations. For a variety of reasons it
may happen that the receiver looses the phase-lock to a particular satellite. An ad-
ditional pre-processing step is therefore necessary to repair so-called cycle slips or
to introduce new ambiguity parameters when a cycle slip was detected.

More details about the GPS system can be found in [HOFMANN-WELLENHOF ET AL.
1994; LEICK 1995; SEEBER 1993; WELLS ET AL. 1987].

The highest precision is achieved in the relative static observation mode when two
(or more) GPS receivers are observing continuously. Differencing the observations of
two receivers eliminates the unknown satellite clock and reduces (dependent on the
distance) common error sources (ionospheric and tropospheric errors, multipath,
and satellite orbit errors). We should emphasize that GPS is an interferometric
technique.

1.2.2  The International GPS Service for Geodynamics (IGS)

At the 20th General Assembly of the International Union of Geodesy and Geophysics
(IUGG) in Vienna in August 1991 Resolution No 5 recommended that the concept
of the IGS be explored over the next four years. Meanwhile an IAG (International
Association of Geodesy) Service is established (since 1994). An overview of the his-
tory and the structure of IGS is given e.g. by BEUTLER ET AL. [1994].

The primary objectives of the IGS is to provide a service to support, through GPS
data products, geodetic and geophysical research activities. According to the Terms
of References of IGS [NEILAN 1995]

IGS collects, archives, and distributes GPS observation data sets of sufficient
accuracy to satisfy the objectives of a wide range of applications and exper-
imentations. These data sets are used by the IGS to generate the following
data products:

high accuracy GPS ephemerides,

earth rotation parameters,

coordinates and velocities of the IGS tracking stations,

GPS satellite and tracking station clock information,

e ionospheric information.

IGS is a collaboration of more than 60 international agencies [NEILAN 1995]. Most
of them are contributing observations to the IGS. The structure of IGS is given by
the components Network of tracking stations (more than 80 permanent operational
receivers are available through the IGS), Data Centers (3 global Data Centers and 7
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Regional Data Centers), Analysis and Associate Analysis Centers, Analysis Center
Coordinator, Ceniral Bureau and Governing Board. Table 1.1 lists the 7 Analysis
Centers, which perform every day the estimates of the GPS satellite orbits, Earth
rotation parameters, etc.

Table 1.1: The seven Analysis Centers of the IGS.

CODE  Center for Orbit Determination in Europe Switzerland
ESA - European Space Agency Germany
GFZ GeoForschungsZentrum : Germany
JPL Jet Propulsion Laboratory USA
NOOA® National Oceanic and Atmospheric Administration USA
NRCan Natural Resources Canada (formerly EMR) Canada
SI10 Scripps Institution of Oceanography USA

Since the IGS service was established, combined IGS orbits/clocks are produced by
the IGS Analysis Center Coordinator (J. Kouba, NRC) [BEUTLER ET AL. 1995].
This precise and highly reliable product is available with a delay of approximately
2 weeks. For 1994 the typical quality of the IGS orbits was about 10-20 cm [KouBa
19958). The Earth rotation estimates are showing an RMS of less than 0.6 mas with
respect to the IERS pole combination. The satellite clocks are consistent on a 1 ns
level even for periods with SA (Selective Availability).

The mentioned products refer to the ITRS (International Terrestrial Reference Sys-
tem). This system is realized by constraining the coordinates of 13 IGS core sites
(see Figure 1.1) to the ITRF (International Terrestrial Reference Frame) values (at
present ITRF93).

The steadily increasing number of tracking sites, much better distribution of these
sites (see Table 1.2), and improved processing techniques of the IGS Analysis Centers
led to a steady improvement of IGS products. Recent orbit comparisons show an
improvement factor of about 2 with respect to the 1994 values.

Table 1.2: Workload of the daily 3-days CODE solutions.
Datum  # Sat. # Stat. # Obs. # Par.

June 92 19 25 50,000 2,000
Jan. 93 21 28 60,000 2,300
Jan. 94 26 38 180,000 6,200
Jan. 95 25 49 250,000 9,000
Jan. 96 25 63 280,000 12,000

@3-character abbreviation used for this center also: NGS (National Geodetic Survey)



1.2 Introduction to the GPS System

So-called super-rapid IGS orbits, available since January 1996 with a delay of about
36 hours, are another example for the rapid development within the IGS. Also avail-
able are weekly combined coordinate solutions in the SINEX format (see Section
7.2) and a combined GPS pole.

Comparisons of ionospheric and tropospheric results are planned.




1. Introduction




Part |

Theory






2. Least-Squares Adjustment

In this chapter a synopsis of least-squares adjustment is given. We introduce the
notation and the basic models used in later sections. We start with the frequently
used Gauss-Markoff Model of full rank. Important aspects such as pre-elimination,
introduction of apriori constraints, and sequential least-squares estimation are ex-
plained. Sequential least-squares adjustment allows a post processing without going
back to the original observations. The chapter concludes with applications to demon-
strate the flexibility and the power of these methods.

2.1 Linear Statistical Models

2.1.1 Gauss-Markoff Model
2.1.1.1 Observation Equations
The Gauss-Markoff Model (GMM) of full rank is given by e.g. KocH [1988]:

E(y)=XB ; D(y)=o"P! (2.1-1)

X  n x u matrix of given coefficients with full rank r¢ X = u; X is also called
design matriz.

B u X 1 vector of unknowns
Y n X 1 vector of observations
P n X n positive definite weight matrix
n,u number of observations, number of unknowns
E(-) operator of expectation
D(:) operator of dispersion

o variance of unit weight (variance factor).

1



2. Least-Squares Adjustment

For n > u the equation system X3 = y is not consistent. The rank space of X is
R* but the rank space of the observations y is R™. With the addition of the residual
vector e to the observation vector y one obtain a consistent but ambiguous system
of equations, also called system of observation equations:

y+e= Xﬁ with E(e)=0 and D(e)= D(y) =o¢?P7! (2.1-2)

(2.1-1) and (2.1-2) are formally identical. E(e) = 0 is valid because E(y) = X3
and D(e) = D(y) follows from the law of error propagation.

2.1.1.2 Method of Least-Squares

The method of least-squares asks for restrictions for the observation equations (2.1-
1) or (2.1-2). The parameter estimation of 8 minimizes the quadratic form

(8) = —(y ~ XB)'P(y ~ XB). (213)

The introduction of the condition Q(3) — min. is necessary to lead us from the am-
biguous observations (2.1-1) or (2.1-2) to an unambiguous normal equation system
(NEQ system) for the determination of 3.

The estimation of the minimum values for Q(3) requires to solve the u equations
dQ(B)/dB = 0, also called normal equations.

The following formulae summarize the Least-Squares Estimation (LSE) results in
the Gauss-Markoff Model:

Normal equations:

X'PX3=X'Py (2.1-4)
Estimates: R
of 3: B=(X'PX)1X'Py (2.1-5)
of the (variance-)covariance matrix: D(8) = 6*(X'PX)™! (2.1-6)
of the observations: § = X3 = Ry (2.1-7)
of the residuals: é=¢ -y =—Rly (2.1-8)
1. 2. ~
of the quadratic form: Q = & Pé = y'Py -y PXp (2.1-9)
of the variance of unit weight (variance factor): &% = Q/(n — u) (2.1-10)
Degree of freedom / Redundancy:
f=n—u=Sp(F) (2.1-11)
F=PQg;=1I-PXQgX' (2.1-12)

12



2.1 Linear Statistical Models

Normal equation matrices:

X'PX, X'Py, (y'Py) (2.1-13)
Cofactor Matrices:
QEE = EEE =(X'PX)! (2.1-14)
Qj7 =XQzX'=RPT'R'=RP™'=P7'R (2.1-15)
Q=P ' -XQzX'=R*PT'RY =R'P7' = PT'RY (2.1-16)
Orthogonal Projectors:
R=X(X'PX)'x'pP! (2.1-17)
R*=(I-R) (2.1-18)
Properties:
X'Pe=0 (2.1-19)
RX =X (2.1-20)
R'X =0 (2.1-21)
Q@ — min (2.1-22)

The estimation (2.1-5) is also a best linear unbiased estimation in approximation
theory.

The same estimate is achieved according to the method of least-squares and in case
of normally distributed observations with the Mazimum-Likelihood Method.

In spite of these agreements the adjustment of the variance of unit weight 52 is
unbiased (E(0?) = 02) only for the LSE method.

A geometrical interpretation of the LSE procedure is given in Figure 2.1. With
rank X = u the column vectors of X R
defines a u - dimensional sub-space Y

R* of R™ in which X3 can be es-
timated. This is given by the plane in
Figure 2.1. ,5 is determined so that
XJ is the orthogonal projection of XA

the observation vector y € R™ in the

sub-space R* R*

)
®

Ry = X3. (2.1-23)

Figure 2.1: Geometrical Interpretation of the least-
squares estimation (LSE).

(2.1-17) easily verifies this relationship.

13



2. Least-Squares Adjustment

The projection divides y in two parts: R
y = Ry + (I — R)y or with eqns. (2.1-23), (2.1-8), and (2.1-18) y = X3 — €. A con-
sequence of this fact is the property (2.1-19) X'Pée = 0.

Linearization
In satellite geodesy the observation equations usually are nonlinear. Instead of the
linear GMM (2.1-1) or (2.1-2) we define the following model:

y+e=f(8) with E(e)=0 and D(e) =D(y)=o*P! (2.1-24)

where f(-) denotes a real differentiable function with of the unknown parameters 8.
If apriori (i.e. approximate) values B¢ for the unknown parameters 3 are known a
Taylor series expansion for the observation equation is performed to transform the
nonlinear problem to a linear one:

F(B) = £(B)lp=p}, + 95 (B)|z=p,, A8 (2.1-25)

with AB = 8 — Blo and 93 f(B)|s=g|, as the Jacobian matrix evaluated at Bo.
Introduction of eqn. (2.1-25) in eqn. (2.1-24) gives

(v — £(B)lg=g|,) + € = 0af(B)|p=p|, A8 (2.1-26)
which still has the form Ay + e = XAB but with

Ay = y-f(B)lp=p, 2and
X = 0f(P)lg=p, and
AB = B-Plo.

The meaning of the residual vector e remains unchanged.
The corresponding normal equations have the the same form as eqn. (2.1-4):

X'PXAB =X'PAy. (2.1-27)
The estimates of y and 3 results in:

§=A9+ f(B)lp=p), and B=AB+pl. (2.1-28)

It is necessary that the apriori values 8o are good enough to approximate the
nonlinear function with a first order Taylor series expansion. If this is not true, ad-
ditional iterations are necessary using the latest estimated parameter as the new
approximate value. If this procedure does not converge the partial derivatives in the
design matrix X have to be recomputed using the improved parameter estimation.
Criteria for stopping the iterations are mostly based on the values of the parameter
increments Aﬁ and the corresponding rms error.

14



2.1 Linear Statistical Models

The linearization quality and the validity of the Taylor series expansion (and the
associated partial derivatives) may be proved by the test

?

AG + X(B)lp=p,, A8 + & = X(B). (2.1-29)

2.1.2 Gauss-Markoff Model with Constraints on Parameters
The Gauss-Markoff model with constraints on parameters (other authors also use the
expression "with restrictions” or ”"with conditions”) can be used to include apriori
information in addition to the observation equations. In the following we include a
very short summary of the necessary formulae.
2.1.2.1 Observation Equations
The Gauss-Markoff Model (GMM) of full rank and with constraints on parameters
is given by KocH [1988] or RAo [1973]:

E(y) =X with HB=w and D(y) =o¢*P! (2.1-30)
H r x u constraint matrix of given coefficients with rg H = r

w 1 X 1 vector of known constants

r number of constraints with r < u.

2.1.2.2 Summary of Least-Squares Estimation Formulae

The method of least-squares in the GMM with constraints minimizes the quadratic
form Q of eqn. (2.1-9) and meets the equation HB = w.

Lets us summarize the Least-Squares Estimation (LSE) of the GMM with con-
straints:

Normal equations:

|

W

] = [ X'Py ] | (2.1-31)

w
Estimates:

B = (X'PX)"(X'Py-H'k) = (X'PX)"\(X'Py

+H'(HX'PX)'H) Y (w- H(X'PX)'X'Py)) (2.1-32)
= B-(X'PX)"'H'(H(X'PX) 'H")"Y(HB - w) (2.1-33)

15



2. Least-Squares Adjustment

D(B) = oX(X'PX)™ |
—(X'PX)'H'H(X'PX)'H) 'H(X'PX)™) (2.1-34)

Q - Q-+ (HB - w)(H(X'PX)"'H')" (HB - w)
= Q+(B-BX'PX)(B-p) (2.1-35)
- y'Py —y'PXp - wk | (2.1-36)
3 = Qn-u+r) | (2.1-37)
Properties: i
>0 (2.1-38)
X'Pe+H'k=0 (2.1-39)

The difference 2 — Q is an important quantity indicating whether an additional
constraint is useful or not. This value is therefore frequently used for hypothesis
tests [KocH 1988].

2.1.3 Other Statistical Models

The method of least-squares adjustment is a special case in the theory of the linear
statistical models. In this section we give an overview of the relations of the GMM
to more general models.

The formulae of the GMM discussed above may also be derived from the more
general Bayesian inference [KOocH 1990] and as a special case from the mired ad-
justment model in standard statistical techniques.

The Bayesian inference are based on the Bayes’ theorem only. The theorem allows
to derive the aposteriori distribution for the unknown parameters as a function of
the density distribution of the observation and the apriori density function of the
unknown parameters. Based on the aposteriori distribution the estimates of the
unknown parameters and their confidence regions are computed. Introducing no ad-
ditional apriori information for the unknown parameters leads us directly to the
formulae of the standard statistical techniques.

In the mized adjustment model of the standard statistical techniques the vector e

of the observation equation of the GMM (2.1-2) is replaced by a linear combination
—Z~y of the unknown parameters ~: -

16



2.2 Parameter Pre-elimination

y=XB+2Zy with E(y)=0 and D(y)=0¢*P7l. (2.1-40)

This model is the general case of classical statistical techniques [HELMERT 1872]
and is also called Gauss-Helmert Model [WOLF 1978]. X3 may be interpreted as
a systematic trend whereas Z+ is the random part of the model. The latter part is
also called signal. These formulae allow for a prediction of the parameter 8.

Let us replace the vector y by Zy + ¢ in eqn. (2.1-40) where ¥ is as a r X 1 vector of
observations and ¢ an n X 1 vector of constants. The resulting observation equation
proves the statement that ~ is the error vector of 7.

The well known model for prediction and filtering may be derived by replacing y in
eqn. (2.1-40) by y +e. This allows to take into account observation noise in addition
to the signal Z~.

The model based on r Condition Equations only results from the mixed model with
X =0.

The formulae of the linear Bucy-Kalman filter [GELB 1974] which are often used
in modern geodesy are under special conditions also a member of this family. In

Section 2.4.2 we derive the filter equations which are identical to the formulae of the
sequential LSE in Section 2.3.

2.2 Parameter Pre-elimination

The method of pre-elimination of parameters is a basic tool to reduce the dimension
of the NEQ system without loosing information (apart from the parameters pre-
eliminated).

With a separation of the parameter vector ﬁ into the vectors 31 and ﬁz we may
write the NEQ system (2.1-4) in the form:

Nu N || B b
~ = . 2.2-1
[NZI szl [ﬁz bo (22-1)
The quadratic form y' Py is also given and remains for the time being unchanged.

In order to eliminate the parameter vector ﬁ2 from the NEQ system the second line
of eqn. (2.2-1) is multiplied by — N2 N5,

Nu N |[8:]_ o (2.2-2)
—N12Nyp Noy —Njo B —~N12N3by |-

17



2. Least-Squares Adjustment

Evaluating the matrix multiplication and adding the resulting two equations leaves
us with

(Nn —N12N;21N12) B, =b —N;3N5 b, (2.2-3)
\—-T—_.J T/

or in abbreviated form

NuB, =bi. (2.2-4)

This new NEQ is reduced by the parameter vector ,52. Due to the correction terms
a and b in eqn. (2.2-3) the resulting NEQ still contains the full information coming
from this pre-eliminated parameter 3,.

The quadratic form € in (2.1-9) can be derived with (2.2-2) and (2.2-3) in the
following way:

G = y'Py—yPXj3
= y' Py~ [b}b})] [ % ]
Bs
= y'Py—bB, - byNy;} (bz - NZIﬁl)
= y'Py—b|B; — byNz by — byN3 N 3

= y'Py—B, (b1 — NipxNzlby) —b)N7lby. (2.2-5)

~ "

~ c
b,
N P

~

Q

The quadratic form Q (respectively y’ Py) corresponding to the reduced NEQ sys-
tem (2.2-4) has to be corrected by the term ¢ = —by N5, bo.

If required the parameter ,B2 may be recomputed using the result for ﬁlz

B2 =Nz (br— Naj3,) (2.2-6)
and with the law of error propagation we find for QE—.» X
-1
Q3,3 =N + Nz Nay (N1 - N1;N7' Nip) NNz (2.2-7)

The matrix of cofactors QEI B results from eqn. (2.2-3) and eqn. (2.1-14) in
Q5.5 = (N1 — NNz Ny,) (2.2-8)
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and may be written using the matrix identity [KocH 1988]
(A"'-BD'C)'=A+ AB(D-CAB) 'CcA (2.2-9)

in a similar way as eqn. (2.2-7):
-1 -1 -1 -1 -1
Q5.5 = N + Ni'Nay (N - NpNT'Ny) NN (2.2-10)

The similarity of the formulae for QE] B and Q»ﬁ~2b~2 are clearly due to the fact that
the selection of the indices is arbitrary.

The determination of partial covariance matrices (i.e. elimination of parameters
from the covariance matrix) from the (inverse) normal equation matrix is trivial.
The inverse normal equation matrix on the left hand side of eqn. (2.2-1) according
to [KocH 1988] is given by

[ Nu N ]—1___

N1 Na
N+ NTIN2 (Nog = NNiEN1) 7 NN = (Na2 = NoNGENR) T Np N
-N'Ni2 (N22 - 1\’121\71-111‘112)_1 (sz - N12N1_11N12)_1
(2.2-11)

Comparison with eqn. (2.2-10) shows that we may skip the corresponding rows and
columns to eliminate parameters from the resulting cofactor matrix resp. from the
covariance matrix. From the parameter estimation vector we have to cut the rows.
The quadratic form remains unchanged because the influence of all parameters was
already taken into account. - : a

2.3 Sequential Adjustment Methods

In this section we review the concept of sequential least-squares estimation tech-
niques. The results for the LSE using all observations in one step are the same as
splitting up the LSE in different parts and combining the results in a latter step.
The two estimation procedures are general knowledge in the geodetic world since
HELMERT [1872]. Many geodetic applications based on this concept are known as so-
called Helmert blocking. In "old” times the methods of sequential LSE were import-
ant because of the missing computer power. In "modern” times the same methods
are applied (in particular for GPS) in order to handle the big number of observa-
tions. Figure 5.1 gives an impression of the number of observations and solve-for
parameters when analysing the global GPS network of the IGS.

To prove the identity of both methods we first solve for the parameters according

the common adjustment in one step. Thereafter we verify that the same results
are obtained using sequential adjustment. We first consider the estimation of the
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unknown parameters and then the estimation of the variance of unit weight later
on.

Let us start with the observation equations (see egn. (2.1-1)):

yi+er = X1Bc+0171 with D(y) =0iP7!
Yyp+er = XoBc+0272  with  D(yy) =o2P;l.  (2.3-1)

In this case we divided the observation array y into two independent observation
series y; and y,. We would like to estimate the parameters 8. common to both
parts with the help of both observation parts y; and y,. The parameter types 71
and -~ are only relevant for the individual observation series.

The proof of the equivalence of both methods is based on the important assumption
that both observation series are independent.

The division into two parts is general enough. If both methods are leading to the
same results we can derive formulae for additional sub-divisions by assuming one
observation series to be already the result of an accumulation of different observation
series.

In the case of nonlinear problems it is assumed that the Taylor series expansion (2.1-
25) is evaluated at the same apriori value B|g. This is not a general requirement, as
we will see in Section 2.5.2, but it makes the derivation easier.

2.3.1 Common Adjustment

In matrix notation we may write the observation equation (2.3-1) in the form:

v | [a]_[X1 00 0 Be
Ys e2| | X2 0 O 1

4
Y2
-1
. U 2 | Py y
th D = 2.3-
aa o(n)-a[ 5 L] e
which has the form

y.+e.=XB:. with D(y,)=02P;L (2.3-3)

The independence of both observation series is expressed by the zero values of the
off diagonal elements in the dispersion matrix.

Substituting the corresponding values for y., X, and 8. in eqn. (2.1-4) leads to the
normal equation system of the LSE:

(X{P1 X, + X,PX,) X{P10, XL,P,0, ][ 8,
O\P X, O,P,0, 0 T
03P, X5 0 03P20:2 | | 7,
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(X1P1y; + X5Pay,)
= inlyl . (23-4)
03Py,

In order to derive the parameter estimates ﬁc we pre-eliminate the parameters 4,
and ")\’2.
Pre-elimination of 4, gives according to eqns. (2.2-1) and (2.2-3):

(X P X, + X,PyX,) — X\ P,0,(0,P,0,) 0\ P X, X,P,0, || B,
O'2P2X2 0'2P202 "7\'2
_ | (XiPyy, + X4 Py,) — X| P10,(0}P10,) 'O\ Py, .
03Py,
(2.3-5)

And pre-eliminating additionally 4, results in:

(X} P1X, + X,PyX35) — X\ P,0,(0,P,0,)" 'O\ P, X - - 3
s — XL P05(0,P20,) " 0, Py X, c
_ | (XiP1y1 + X5Payy) — X1 P104(01P101) 7 01 Pry; -+
o= X5P202(03P202)” 03Py,
(2.3-6)
Concerning the common parameter 8. the NEQ system is equivalent to the original

NEQ system (2.3-4). The impact of 4; and 4, on the parameters 3. is taken into
account.

2.3.2 Sequential Least-Squares Adjustment

The sequential LSE treats in the first step each observation series independently. An
estimation is performed for the unknown parameters using only the observations of
a particular observation series. In a second step the contribution of each sequential
parameter estimation to the common estimation is computed.

Starting with the same observation equations as in the previous section, eqns. (2.3-1),
we may write

y1+e1 = X1 61+01m with D(yl) = U%Pl_l
yp+e = XofB2+0272 with  D(y,) =o03P;! (2.3-7)

or, in more general notation:

y;+e = XiBi+0ivi with D(y;)=0fP;, i=12 (238)
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2. Least-Squares Adjustment

where the vector 3; denotes the values of the common parameter vector 3, satisfying
observation series y; only.

First step: Solving each individual NEQ

The normal equations for the observation equation systems i = 1,2 may be written
according to eqn. (2.1-4) as

X'P;X; X.P;o; || B, X! Py, o
i = th i=1,2. 2.3-9
[OQP,-Xi O;P,O, Yi O;Piyi wi t ( )
Pre-eliminating 4; gives
~ - -1
B; = (X\PiX;- X|P;0;(0}P;0;)" O{P;X;)
. (XgPiyi - X§P,~Oi(O;P,-O,-)_IO§P,~y,-) (2.3-10)
~ _ -1
D) = &(XiP:X;- XiP:i0:(0}P,0:) ' O}P;X;)
= &%, (2.3-11)

Step 2: Aposteriori LSE

In this aposteriori LSE step the estimation for ﬁc is derived using the results of the
individual solutions (2.3-10) and (2.3-11) obtained in the first step.
The pseudo-observation equations set up in this second step have the following form

yi+en=XpuB, with D(yy)=o2P7} (2.3-12)

or more explicitly:

B ey, s . B 2| 21 0
~ 1+ = with D(| 5 =0 .
[ B2 €2y I B ( B ) L
This means that the results of the individual estimations ﬁi and X; are used to form
the combined LSE. The interpretation of this pseudo-observation equation system
is easy: Each estimation is introduced as a new observation using the associated

covariance matrix as the corresponding weight matrix.
The normal equation system may be written as:

Xy PuXnuB. = X1uPryn (2.3-13)
or more explicitly
1oyt 21—1 0 I~
[ I 7I ] [ 0 25—1 I ﬁc
=5t o0 ]
=[I'I 1 — L 2.3-14
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With eqn. (2.3-10) and eqn. (2.3-11) we obtain

(X|P1X1+ X,PyX,) — X, P,0,(0,P,0,)”' 0\ P, X, - 3
o= XL Py0,(04P205) 1 04, P2 X, c

= (X1 Pry, + X} Pays,) - X'1P101(0'1f’101)_10'11’1y1 e
o= X5P3205(03P20;7)" 03Py,
(2.3-15)

which is identical with (2.3-6).

Due to the special notation in the observation equation system the parameters in
the vectors 8, and B, are ordered in the same way. Generally this will not be the
case. To guarantee the combination of the same parameter type the selection matrix
S; can be used to transform X; — S;X; and 3; - S;6;, 1 =1,2.

2.3.3 Summary of Sequential LSE Formulae

With the results of the previous two subsections we can generalize the LSE procedure
to m independent observation series.

Let us illustrate this procedure with an example stemming from processing GPS
observations.

Each individual solution may be based on observations pertaining to single days.
Common parameters B, are e.g. coordinates, parameters «; which are only of in-
terest for individual days are ambiguities, troposphere parameters, possibly orbit
parameters or earth rotation parameters.

As a result of the least-squares adjustment including all m sequential solutions for
the common parameters 3, we obtain

(Z (XQPiXi - XQPiOi(OQPiOi)—IOQPiXi)) B.
1=1

m
=) (Xipiyi - X;P;0; (OSPiOi)_IOQPiyi) (2.3-16)

=1

or, if no parameters -; are present in eqn. (2.3-8) or the parameters «; are already
pre-eliminated:

m m
(ZXSPiXi) B, =Y XiPy; (2.3-17)
=1 i=1

This simple superposition of normal eduations is always possible if the individual
observation series are independent and if the dispersion matrix has the diagonal
form (2.3-2).
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2.3.4 Computation of the RMS in the Sequential LSE

To complete the proof that the same results are obtained for both LSE methods,
the formulae for the computation of the variance factor (variance of unit weight)
is derived below. For simplicity we will make the assumption that there are no
parameters ~y; involved in the sequential solutions (e.g. already pre-eliminated). The
simplification means that we may substitute

B = Be (2.3-18)

in eqn. (2.3-3).
Starting point is the estimation of 62 resulting from the common LSE. From eqn.
(2.1-10) we obtain using eqns. (2.3-18), (2.3-2), and (2.3-3):

m
67 = Qc/fe = EPcec/fe = (Z ?z’,-cPcé‘ic) /fe (2.3-19)
i=1
where
& = (€, ---r€m.),
e =X ch — y,: residuals with respect to the combined solution,

X, complete first design matrix referring to all observations y.,

-~

B, combined parameter estimation vector,

fe = n¢— uc redundancy of the combined GMM of full rank,

m
ne total number of observations: Z T4,
i=1

u, total number of unknowns: sum over the different parameter types,
.« the index ¢ denotes the estimation with respect to the combined solution, and

m number of the observation series.

In the first step of the sequential LSE we compute the variance of the unit weight
in model (2.3-8) as:

m .
6 =Qi/fi = (Z a',-Pia) /fi (2.3-20)
i=1
where
e =X iﬁi — y;: residuals with respect to the individual solutions ¢,
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2.8 Sequential Adjustment Methods

X; first design matrix referring to the observation series y;,
ﬁi parameter estimation vector of the sequential LSE 1,
fi = ni — u;: redundancy of the GMM ¢ of full rank,

n; number of observations in series %, and

u; number of unknowns in series z.

The computation of 5, in eqn. (2.3-19) using the m values &; from relation (2.3-20)
is possible in the following way:

Let us assume that the residuals &;, are composed of €; and a correction vector Ag;,
due to the different estimations ﬁc resp. ﬁi:

€, = & + Ag;, (2.3-21)
or considering €; = X ,-E,— —y;and &;, = X iﬁc - Yl

A&, = Xi(B, - B;). (2.3-22)

The term &;_P.€;, may be expressed with eqns. (2.3-21) and (2.3-22) and the relation
X ;Pe; = 0 follows from eqn. (2.1-19):

& P&, = ePiei+(B.—B)X\P:X:B,-B) (2.3-23)
or, in abbreviated from
Q. = U+ (ﬁc - :@i)'X;PiXi(ﬁc - Bi)- (2.3-24)

Introducing eqn. (2.3-24) in eqn. (2.3-19) results in:

m m m
Qe = > Q= %+>(B.-B)X\P:X:(B. - B;)
i=1 =1 1=1

and using (2.3-20)
52 = (z i fi+Y.(B.— B X'\P:X:(B. - @-)) [feo (2.3-25)
i=1 =1

The first term stems from each individual solution whereas the second term serves
as a correction term taking care of the fact that the individual rms computations
are not yet referring to the combined parameter estimation.
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2. Least-Squares Adjustment

m
It is interesting that the correction term » (8, — ;) XjP; X (8. —B;) is equivalent

—
to the quadratic form Qj; following fr(;m the analysis of the pseudo-observation
equations (2.3-12), (2.3-13). Indeed

m
Qu =&y Puén =) (B, —B) XiPiXiB. - B;) (2.3-26)
i=1
where R
€1y Py, 0
érr = : s Prr= (2.3-27)
€myy 0 Py,
and
&, = (B.—B); Piy, =57 = (XiP;X));i=1,...,m. (2.3-28)

Therefore relation (2.3-24) may be written as
Qic =Q; + Qi”. (2.3-29)

With eqn. (2.1-9) we find the equivalent form for €y

Qr = v Puyy—viuPuXnh.
m
-~ ~ ~
= > BiXiP:iXi(B; - B.). (2.3-30)
i=1

If the combination is done on the basis of normal equations with known matrices
X!P;X;, X;P;y; and y,P;y; the following formulae may be used instead of eqn.
(2.3-25):

m m

Q = > yiPiy;— > yiP;Xif, (2.3-31)
m m N

5 = (ZyéPiyi—ZyiPiXiﬁc) /fe- (2.3-32)
i=1 i=1

2.4 Applications Related to Sequential LSE
2.4.1 Special Cases of Sequential LSE

Starting from the observation equation (2.3-7) and the pseudo-observation equations
(2.3-12) we derived the LSE results (2.3-15), which were identical with the results
of the common adjustment (2.3-6). We will derive some special applications which
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2.4 Applications Related to Sequential LSE

are frequently used in the practice.

Case 1: O; =0, O3 =0 (zero matrices O)
If there are no additional parameters 4; in the individual observation series the
normal equation system (2.3-6) reads as

(X{P1 X1+ X4PyX3) B, = (X Py, + X4Pay,) . (2.4-1)

There are no "correction terms” to be taken care in this example. The ”classical”
combination of coordinates based on this principle.

Case 2:0,=0, O;=0and X; =1, y, =0

This special case corresponds to the introduction of apriori weights P; on the pa-
rameters G

From the general form (2.3-6) or (2.3-15) of the NEQs we immediately obtain:

(P1+X4PX5) B, = X4Pay, . (2.4-2)
This application will be discussed in more detail in Section 2.6.1.
Case 3: 01=0, O;=0and X;=0, y, =0
Under these simple assumptions we obtain the original formulae for the GMM:
B = (X4P2X2) ' X4Pay,
with D(B,) = (X,P,X5)7". (2.4-3)

2.4.2 Recursive Parameter Estimation

In this section we will analyse the impact of additional observation series y,,, on the
results of the combined solution.

Let us assume that we already produced a combined solution using all observation
series up to y,,,_;. For all matrices referring to these observations we use the index
m — 1. Using in addition the observation series y,, leads in analogy to eqn. (2.3-17)
to the normal equation system of the form:

(X;n_le_le_l + X;anXm) ,@m
= (X;n—lpm—lym—l + X;anym) . ' (2.4-4)
There are two different observation equations leading to the above normal equation

system.

The first possibility corresponds to the observation equations (2.3-1):

y+e = X B, with D(y)=o?P! (2.4-5)
. | X | Ym=1 _ 2| Pyl 0
with X = [ X, ] , Y= l - and D(y)=o o P |
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2. Least-Squares Adjustment

There is a second interpretation when using the previously estimated parameters
and the associated covariance information instead of the observations:

y+e = X B, with D(y)=o?P}
Im y= 3771—1
Xm ’ Ym
2 (X 1Pm1Xm-1)"t 0
0 Pl

with X

and D(y) =

The results for ﬁm_l, D(ﬁm_l) and Q,—1 up to observation series m — 1 are given
according to eqns. (2.1-5) and (2.1-6) as

Em—l = (X;‘n—lpm—lxm—l)—IX;n—IPm—lym—l) (24'6)
D(Bm—.l) = a’rzrz—l(X;-n—le—-IXm—l)_l = 81271—12m—-1 (2.4-7)
and with eqn. (2.1-9)
Q-1 = (ym—l - Xm—le-—l)’Pm—l(ym—-l - Xm—lﬁm—l)
= Ym-1Pm-1Ym-1 =~ Ym-1Pm-1Xm-18m_1. (2.4-8)
Solving eqn. (2.4-4) for the unknown parameters ,Bm we obtain

B = (X' Pm1Xmer + X PrXmn) HX Py
+ X Prnym)- (2.4-9)

For the dispersion matrix we obtain according to eqns. (2.1-5), (2.1-6), and (2.4-7)
D(ﬁm) = am(‘X,m-—IIJm—IX-m—l +X;anXm)_l

= a?n(z;nl—l + )anm*Xm)—1
— agzzm (2.4-10)

using the definition
= (B + XL P X))} (2.4-11)
In analogy to eqn. (2.3-31) we get
U = (Y1 Pm-1Ym—1 + YmPr¥m) — U1 Pmo1Xm1 + Y P Xm) B

(2.4-12)
Using the substitution (2.4-6), (2.4-7), (2.4-11) we conclude from eqn. (2.4-9)

o~

-1 ~
Br=(Z7li + XnPnXn)  (ZrliBmoy+ XnPryn)  (2413)

28



2.4 Applications Related to Sequential LSE

or

—~

ﬁm =X (E:nl—lﬁm—l + X(,anym) . (2'4'14)

Applying the matrix identity (2.2-9) on the right hand side of eqn. (2.4-11) we get

Tm=Ym1— FuXmEm_1 (2.4-15)
where
Foo=%n,X'P (2.4-16)
with
P=(P;' + XpZp X)L (2.4-17)

Introducing eqn. (2.4-15) into eqn. (2.4-14) leads to the result

Bn = Bm-1—Fmn1XmBmr + (Em1 X' P
~FinXmZm-1 X P Y- (2.4-18)

Multiplying eqn. (2.4-16) from the right with P 'P,, and using eqn. (2.4-17) leads
to:
Fo(XnEmaXn, + POYP, =%, ,X! Pn (2.4-19)

or
Em1 X Pm — FuXmEBm-1X, P = Fp,. (2.4-20)

Substituting the right hand side of this expression into (2.4-18) gives
B =Bt + FmEm with €n =y, — XmB,_,. (2.4-21)

This relation reflects directly the impact of additional observations y,, on the es-
timated parameters 3,,_; and it may be written formally as

B =Bu1 + DBy (2.4-22)

Let us now derive the impact of additional observations on the value of Q.
According to eqn. (2.4-12) we get for Q,, using (2.4-22):

O = (y:'n—-lpm—lym—l - 'y;n—1Pm—1Xm—1ﬁm—1) + (y;anym
—y;‘n—le—l'Xm—lAﬁm - y’umXmﬂm—l - y;an-XmA:Bm)
= Quno1+AQ,,. (2.4-23)

The first term is given by (2.4-8), and for the second term we find:

A = Yo Pl — Y1 Pme1X m-188m — Yo P X mBrm-1 — Yo P X B,
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2. Least-Squares Adjustment

Using eqns. (2.4-21) and (2.4-22), i.e. Aﬁm = Fp€,, we may write
AUn = YnPm¥Ym = Ym-1Pm-1Xm1 Fm&m — y’umxmﬁm—-l
—yl P X mFp€n , or using eqn. (2.4-21)

Ay = y;an.ém - y:n—lpm—lxm—lFmEm - yIumXmFm-ém-
Substitution of Fy, in the second and third terms according to eqn. (2.4-16) results
with eqn. (2.4-6) to

AQm = yianEm - ﬁ:n—lxin.p—ém - y:ranXmEm-—IX;n-I_)_ém- (2-4‘24)
This last term of this expression may also be written in a different form using simple
matrix identities:

Y PoXpBmo1XnPen = yYn(Pm—Pn+ PnXnEn1X,P)en
= 4y (Pp—PpP 'P+PpXmSn1X, Plen.
Substitution for P~ using eqn. (2.4-17) gives
—Pu(Pl+ XmEma1 X )| PYem
= Yy (Pm— P)en.

Introducing this into (2.4-24) and using eqn. (2.4-21) leaves us with the following
equation for A,:

~t — -
AQy = Y Pmem—PB, X! Pén -yl (Pm— Pen
~F —
= (Ym — Bm1 X)) Pen
= & Pepn. (2.4-25)

Let us summarize the formulae of the recursive LSE:

ﬁm = ﬁm—l + Frém (2-4'263')
Bm = Bme1 = FrnXmEm-1 (2.4-26b)
Qn = Qpn1+ ?mﬁEm (2.4-26¢)
where (2.4-26d)
€n = Ym— XmBm- (2.4-26¢)
Fn, = Z,.X,,P (= Kalman gain matrix) (2.4-26f)
Zmo1 = (X1 Pro1Xm-1)™ (2.4-26g)
P = (Pl+XnSnaX,)™? ~ (2.4-26h)
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2.4 Applications Related to Sequential LSE

The above set of formulae is equivalent to the update step in the Kalman Filter
procedure.

In general the Kalman filter is subdivided into three parts: A prediction, a time
update and an update step. The prediction step enables additional possibilities of
the general filter equations. The prediction of the state vector ﬁm and the associated
covariance information may be based on a dynamical time model and the associated
information concerning the system noise. Only if the state vector is time-independent
and the system noise is negligible the Kalman filter equations are identical with the
parameter-estimation formulae presented above. In this case the filter problem is
reduced to a NEQ representation of the sequential LSE procedure. For more inform-
ation we refer to GELB [1974], HERRING [1990], LANDAU [1988], and SALZMANN
[1993].

The formulae (2.4-26) are very useful if the number of additional observations is
small. The formulae are almost trivial if the update is performed using only one
observation at the time because in this case the update step of the estimated values
simplified from an inversion step to a division step. For large dimensions per itera-
tion step the formulae of the sequential LSE are easier.

Assuming that the observation series y,, and y,,_, are already a result of least-

squares adjustments, in fact pseudo-observations of the parameters ﬁ , we may derive
the sequential LSE formulae based on covariances.

Using the notation of the corresponding formulae based on normal equations in
Section 2.3.2 we make the substitutions Bm = Be, Bm-1 = B1, Ym = B2y Xm = I'm,

o~

PT‘n1 =39, Xp = B¢, Bpn—1 = By, Uy = Q¢y, U1 = Q) and e, = B, — B;. Eqns.
(2.4-26) may then be written as

B. = By+31(B1+20)7N (B, - By),
¥ - 21(21 + 22)_121, and (2.4-27)
Qe = QU+ (By—B1)(S1+2)" (B, - BY).

M
I

The iterative estimation is based on the simple principle: The addition of a correction
term to the actual solution takes care of the impact of a new observation series or a
new sequential least-squares estimate on the combined solution.

An example for the impact of a series of sequential adjustments on the coordinate
estimates may be found in Figure 5.3.

These formulae are also well suited to study the effect of apriori constraints for the
final solution (see also Section 2.6.1). To constrain a parameter to the apriori value
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2. Least-Squares Adjustment

ﬂapr we substitute 3 = 2apn B = ﬁaprv 0 = Qapra Y2 = Dfree, ﬂ2 = Bhree, and
Q2 = Qree.

On the other hand, it is possible to reconstruct the original solution without apri-
ori weights if the matrices Bapr, Lapr, and 2, are known. To remove the apriori
constraints we have to proceed as follows (using the results from (2.4-27)):

:Bfree = ﬂapr + 2:aupr(zapr - Ec)_l(ﬁc h ﬁapr)
Bc + (Ec + 2C(Eapr - EC)—lzc)E;;plr(Ec - .Bapr) ’
Btree = Tapr(Zapr — 2c)_lzapr — Zapr (2.4-28)
= B¢+ Be(Bapr — o) ' B, , and

Qree = Qe — (Bc - ﬁapr)l(zapr - EC)_I(Bc - 3apr)'

The operator for the update of covariances is compared to the simple addition in the
case of the normal equations much more complicated. In the second case we obtain

Ef:ée = Ec_1 - 2a—plr (2.4—29)
which, in view of the matrix identity (2.2-9), is not amazing.

An application of such procedures is the combination. of GPS solutions using
the SINEX format [KOUBA 1996]. The SINEX files contain results mainly for
coordinate- and velocity estimates including the covariance information. Additional
information concerning the sites (station names, antenna types, receiver types, an-
tenna heights, eccentricities, etc.) is helpful for site identification.

For any institution combining results of different processing centers it is essential to
have in addition the information of the applied apriori constraints available. This
is in particular true for solutions in which a certain number of sites is tightly con-
strained to a given value (it is a standard IGS procedure to constrain 13 sites to
the ITRF values). Free network solutions are achievable after the removal of the
constraints using relations (2.4-28) or (2.4-29) respectively.

2.5 Parameter Transformations

The sequential LSE methods of Section 2.3 are only valid if all normal equations are
based on the same apriori values for the unknown parameters. If this is not true the
normal equations have to be transformed to the same set of apriori values.

Other applications are shown in the following subsections and also in section 4
dealing with orbit combination where it is necessary to transform orbit parameters
referring to different apriori arcs.
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2.5.1 Principles

Let us depart again from the observation equations of the GMM in the nonlinear
case (2.1-26):

Ay+e=XAB ; D(Ay)=o’P! (2.5-1)
The corresponding normal equations follows from eqn. (2.1-27):
X'PXAB=X'PAy (2.5-2)
or, in the abbreviated form, R
NAB=b (2.5-3)
where
N =X'PX and b= X'PAy. (2.5-4)

Below we derive the normal equation system corresponding to the new parameter
AB which is related to the parameter Aﬂ through the linear transformation:

AB = BAB +dB (2.5-5)
where
B s the transformation matrix with u rows and u columns (u X u)
dfB is the vector of constants u rows (u x 1).
Introducing eqn. (2.5-5) into the observation equation (2.5-1) gives
Ay — XdB +e=XBAB, (2.5-6)
which leads to the normal equations
B'X'PXBAB = B'’X'PAy with Ay = (Ay— XdB) (2.5-7)

or comparing with eqn. (2.5-2) and using eqn. (2.5-4)

NAB = b where (2.5-8)
N = B'NB and (2.5-9)
b B'(b — Ndg). (2.5-10)

The original form of the normal equation system (2.5-2), referrmg to the parameter
A,@, is now transformed in a normal equation system with respect to the parameter

AB.

For completeness the transformation for the quadratic form Ay’ PAy is also given.
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With eqns. (2.5-1) and (2.5-7) we get

AYPAY = (Ay— XdB)' P(Ay— XdB)
= Ay'PAy—2Ay'PXdB +dB' X' PXdp
— Ay'PAy—26dB +dB' NdB. (2.5-11)

2.5.2 Applications
2.5.2.1 Superposition of NEQs Derived from Parameter Transformations

Let us assume that we processed m sequential least-squares adjustments for the
determination of a common parameter 8,.. Each solution ¢ = 1,2,...,m may result
in the normal equation system

X\P;X:B; = X{Py, (2.5-12)

from which we may estimate the parameter vector ,@,-. So far the situation is identical
to the first step in Section 2.3.2. In matrix notation we may also write

X\ P X, 0 B, X Py,
X3Py X . ﬂ.z _ Xé{’zyz (2.5-13)
0 X! PnXm | | B, X! Py,
or shorter R |
NB=b. (2.5-14)

If we interpret the pseudo-observation equation of the second step in Section 2.3.2 as
a parameter transformation of the form 8 = BS, (according to eqn. (2.5-5) 8 = AB,
B.=A4pB,d3=0)

Bl !

I | .
ﬁ: =1 |5 (2.5-15)
Bl L1

we can directly verify with using eqns. (2.5-9) and (2.5-10) that the resulting com-
pressed normal equation system (2.5-8) N3, = b is equivalent with the superposi-
tion formulae for the corresponding NEQ (2.3-17).

2.5.2.2 Apriori Parameter Transformation

We may apply a parameter transformation to refer a NEQ system to a different set
of apriori parameters.
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Let us assume that the normal equations, which are based on the apriori parameters
Blo, should be transformed to a new set of apriori values 8lo, = B|o + dB where
Blo. is used e.g. in the combination. The transformation equation for the unknown
parameters reads as

AB = AB +dB. (2.5-16)

With B = I (see eqn. (2.5-5)) we obtain from eqns. (2.5-8)-(2.5-10) the transformed
normal equations IV A,B =b-NdBor AB =N"1b-dB = A,@ dB3, which is
identical with eqn. (2.5-16).
The final estimation ,5 must be independent of the apriori values. This may be
verified using eqn. (2.5-16):

B = Blo. + AB = (Blo +dB) + AB = Blo + (AB +dB) = Blo + AB = B (2.5-17)

or summarized

B =B =Pl +A8 = Blo+AB. (2.5-18)

2.5.2.3 Combination of Parameter Types in the Same NEQ

It may be useful to combine also parameters in the same normal equation and not
only parameters of different sequential solutions. Applications are:

e Combining troposphere parameters which are valid for subsequent short time
intervals to one common parameter valid for a longer time interval (sum of the
subsequent intervals).

e Coordinates are set up and determined frequently to study possible site mo-
tions: Combining the coordinates in all those intervals without significant
movement into the same parameter to strengthen the solution.

The advantage of this procedure has to be seen in the fact that originally as many
parameters may be set up in each solution as necessary for all possible kinds of
investigations. This may be done for all time dependent parameters. It is always
possible aposteriori to reduce the number of parameters if a high resolution is not
required.

Figure 2.2 gives an example for a reduction of the number of troposphere parame-
ters on the normal equation level. The 4-parameter solution was produced from the
original normal equations containing 12 parameters per day.
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2. Least-Squares Adjustment

Assuming that we want to change the vector of unknowns from 8 to ﬁ in the
following way:

'
ﬂuxl = I:""’LBi”BH'l’ﬂH'?""”BH'"‘_I,"'}
J
- ~ 7
ﬁ(u—m-}-l)xl = [a Bi 1] .

The corresponding transformation equation which combines the m parameters
Bis Bit1, - - - » Bi+m—1 into the new parameter j; is given by:

B = BB+dB8 with

1
0
1
1 1 ... 1 +i and
B' = 1
0
1 — (u—m+1)
t 1 t t
1 i+l t+m-—1 u
B = 0. (2.5-19)

The transformed NEQ system follows from eqns. (2.5-8)-(2.5-10). The quadratic
form y' Py in eqn. (2.5-11) remains unchanged because we have d3 = 0. The new
NEQ has the dimension u — m + 1 instead of u. In this simple case we can give the
explicit formula for the transformed NEQ system

_ Nun Np 1:{13 N;; N2 Ny
N = | Ny Ny Nas =B'| N3 Ny N | B ;(2.5-20)
| Ni; Ny N Nj; Ny Nag
R by
b = | b, |=B]| by with (2.5-21)
ng bs
— m
(Ni2)pn = (N 12)k;
Jj=1
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(Nas)ie = f:(N‘ZB)zk (2.5-22)
=1
(No)u = f: i(N22)ij
i=1j=1
b, = f:(bZ)z (2.5-23)

-,
It
-

which actually corresponds to a pure addition of the involved rows and columns.

25
T 24
k)
[53
a 23
2
]
N
o 22
o
)
£
S 21
——— 4 Trop. Param./Day
....... 12 Trop. Param./Day
2.0
T T T T
25.0ec 1.Jan 8.Jan 15.Jan
1994 1995 1995 1995

Date

Figure 2.2: Tropospheric zenit delay for some European stations: Time resolution of
2 resp. 6 hours (12 / 4 parameters per day).

2.5.2.4 Normalization

Normalization is an important procedure to avoid numerical instabilities in the solu-
tion of the normal equations. Singular normal equations are not the only reason for
numerical problems. In principle, the NEQ system N3 = b is regular if det(IV) # 0.
The smaller the value of det(IN') the more unreliable the solution for B. A badly
conditioned system causes large relative changes in ﬁ coming from only small rela-
tive changes in b. A rule of thumb for well conditioned systems is: big and well
distributed main diagonal values and small off diagonal element. More information
concerning badly conditioned equations may be found in ZURMUHL [1964] or in
SCHWARZ ET AL. {1972].
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Even an inconvenient unit of a parameter may cause numerical problems. The prin-
ciple of normalization is the following:

To obtain a value of ”1” on all dlafronals of N we have to apply a transformation of
type (2.5-5) to AB:
AB = diag(N, )Aﬂ (2.5-24)

The transformed normal equation parts result from eqns. (2.5-8)-(2.5-10): N =
B'NB = diag(N;/?*)Ndiag(N;**) = (Ni;/\/NulNj;) and b = B'b
diag(N;; ~1/ 2) b = (b;/v/Ni;) and for the quadratic form according to (2.5-11) we
find: Ay'PAy = Ay’ P Ay which is not amazing because the dimensions of Ay and
P are not changed.

In the case of normalization the transformation is reduced to a scaling.

2.5.2.5 Introduction of Additional Unknown Parameters

It is possible to introduce aposteriori new parameters, which are not set up in the
sequential NEQs. The only restriction is that the influence of the additional pa-
rameters in the sequential solution is negligible. Applications are for example the
estimation of station velocities.

Let us assume that there is a relationship between the parameters 8; of the m
sequential solutions and the new parameters 4; and d2 given as

Bi = f(61) +g(d2) with i=1,m.
In linearized form we obtain
Bi = Fid1 + Gid2 + ci. (2.5-25)
With relation (2.5-5) we find the substitutions
B =[F;,G;] and dB8 =c¢; (2.5-26)

and the transformed normal equation system

NB = b with (2.5-27)
B = [61,8]

~ _ | FiN;F; F;N;G;

N [G;N,-F,- aNG; | 2

b =

Fl(b; — Nic;)
Gi(b;j— N;c)) |’
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Accumulation of two sequential solutions according to (2.3-17) results e.g. in

F'IX'}P1X1F1+F'2X'2P2X2F2 F'IXQP1X1G1+F'2X’2P2X2G2 §1
G X P X\ \F1 + G, X, P2X F, G X P, X1G1 + G, X, P3 XG> b2

- [ F’}X:1P1y1 + F:lelgp2y2 - F,'1X1’1P1X1C1 - F#X}Pzchz ] (25‘28)
GXlPlyl + G X2P2y2—G1X1P1X1c1—G2X2P2X2cz *
The estimation of drift rates of coordinates is a good example for the above formulae.

Example: Aposteriori estimation of coordinate drift rates

Assuming a linear model in time for the coordinates we may write the relationship
between the parameter B; (coordinates at epoch t;) and the new parameters G,
(reference coordinate concerning an arbitrary reference epoch ¢) and v,, (drift rate)
as

ﬁi = ,Bto + Atz Vto» (25-29)

where At; is the time difference for each individual solution between the epoch ¢; of
solution no. ¢ and the reference epoch ;.
Comparison of eqn. (2.5-29) with (2.5-25) gives

;=0 , F;=1I; and G; = A¢; I;.

We have to assume of course that for the time span covered by any of the individual
solutions 3; the effect due to the velocity is negligible.

The estimation of station velocities needs a minimum of two sequential solutions at
different epochs to ensure that the normal equation below is not singular. Instead
of eqn. (2.5-28) we obtain

X\P1 X+ X,Py X, At (X P1X)1) + Aty (X5P2X0) | | By,
AHX|P1X ) + Aty (X4 P2 Xs) A3(X|P1X) + At3(X4P2X3) By,
_ X1P1y; + X3Py, _
At (X1 P1y;) + Aty(X5 Pay,)
(2.5 — 30)

Comparison of eqn. (2.5-30) with eqn. (2.4-1) shows that we "blew up” the NEQ
system to include the additional parameter ¥p. On the other hand we combine,
when processing m NEQ systems, m independent parameter vector estimates into
the mentioned two parameters vectors (thus reducing the number of unknowns from
m to 2 parameter vectors. o

An apriori introduction of the velocity parameters in each particular least-squares
adjustment is not necessary as long as the effect of the velocities is negligible in the
individual solutions.
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2.5.2.6 Helmert Parameter Estimation

Introduction of seven Helmert parameters for each individual NEQ system (trans-
lation, rotation and a scale with respect to the combined solution) is possible, too.
Applied to two sequential solutions this is similar to a Helmert transformation using
the full variance-covariance information of both solutions. The difference resides in
the fact that we estimate one combined coordinate set together with the Helmert
parameters.

Applications of introducing transformation parameters are:

e Combination of global GPS network solutions with different definitions of the
center of mass (estimation versus non-estimation versus the use of different
first order terms in the gravity field).

Three translation parameters are necessary to absorb the effect of the different
definitions of the origin of the terrestrial reference frames.

e combination of solutions based on different techniques: e.g. combining classical
geodetic networks with GPS networks.
Assuming that a free GPS solution would not contribute to the ”translational
definition” of the network indicates that this degree of freedom can be elim-
inated by constraining the coordinates of one site to predefined values or by
applying the no-net-translation conditions (2.6-29) to the free GPS solution.
The orientation of both networks is usually well determined. An estimation of
rotation parameters between the two systems is therefore better suited than
forcing the orientation of the GPS network with the rotation and scale con-
straints of type (2.6-33) to that of the classical terrestrial network.

We should point out that for the majority of combinations of different GPS solu-
tions it is not necessary to specify additional Helmert parameters. Setting up such
parameters weakens the combined solution.

Let us start using eqn. (2.3-13)

B1 ey | _ | I 5 . Bi|y_|Z1 0
2]l = [ Aeend B D=5 2
representing two pseudo-observation equations of the parameter estimates ﬁl and
,52 and their corresponding covariance information resulting from independent solu-

tions.

Let us assume furthermore that the parameter vector B, consists only of the n co-
ordinate triples Z;: 8, = [Z1,Z2," - 2]

If both solutions are referring to different systems we have to allow for a maximum
of seven Helmert parameters t;, iy, ¢;, @, 8, 7, and the scale parameter f.
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2.5 Parameter Transformations

If introduce Helmert parameters for the system i, 1 € {1, 2} with respect to the
combined solution ,Bc, we may write:

Bi+ey, = (Bc + Ti) -fi U (2.5-31)

with the (3 -n X 1) matrix T describing the translational part

L
t; 23
T,=1 . and ¢; = | &, |, (2.5-32)
. tz,-
t;

the scale factor f;, and the (3 - n x 3) matrix U; describing the rotation in the
following way:

U; = . and u; = Rg(oy) - Ry(Bi) - R (7). (2.5j33)

The rotation matrices may be written as

1 0 0 cosf; 0 —sinf;
R (o) = 0 cosoy sina; | ; Ry(B:) = 0 1 0 ;
| 0 —sina; cosoy sin; 0 cosf;
[ cos v; sinvy; 0
R,(v) = —siny; cosy; O |. (2.5-34)
0 0 1

Equation (2.5-31) is not linear in the unknown parameters. Linearization results in:

AB; = E1,AB, + By, At; + E3 As; + E¢iAfi + (Belo — Bilo) (2.5-35)
with
ﬁiIO = (/@clo + Ti|0) - filo - Uilo (2.5-36)
,@clo = apriori value of the combination for ﬁc (2.5-37)
flowile 0 .- 0
0 f oUile --- 0
E, = o , , (2.5-38)
0 0 <+ filouilo
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[ flouilo
flotilo
B, = I.zl , (2.5-39)
| flowilo
s,
So. Ao
E; = - , Asi=| AF; | and (2.5-40)
. A7
| Sn; z
~ Au,- Aui Au,;
= (&lo+tlo)- filo- =1,...,n (25
S (‘BJIO“‘ ilo) - filo Aailo Aﬂilo A'Yilo ; 1,...,n(2.5-41)
(Z1]o + tilo)uilo
Zolo + tilo)u;
B, = (Z2]o .le) ilo (2.5-42)
| (Znlo + tilo)uilo

The unknown parameters may be summarized in the new parameter estimation
vector

AB; = [AB. AW =[AB., Atg, Aty, Aty Dai ,AB;, Ay, Afi] . (25-43)

For the free network conditions of Section 2.6.4 we will assume that the two systems
show only small rotation-, translation- and scale differences. The rotation matrices
(2.5-34) may then be simplified. A comparison with eqns. (2.6-21) and (2.6-22) leads
to the same results using simplified transformation equations and using the apriori
values hi|o = [0,0,0,0,0,0,1].

Eqn. (2.5-35) in matrix notation reads as

AB,
- ~ At ~ ~

AB; = E;AB; = [Eli E,, Ej E4e] Asl- + (ﬁclo - ﬂilo) (2-5‘44)
1

Af;

and may be interpreted as a parameter transformation of type (2.5-5): Aﬁ =
BAﬁ + dB. The corresponding normal equation system derived from the given
parameter estimation G; and its covariance matrix 3; is transformed according to
eqns. (2.5-8)-(2.5-10). The quadratic form y’' Py is transformed using eqn. (2.5-11).

The estimation of Helmert parameters thus implies to perform these transformations
prior to the accumulation of the normal equation systems.

Note that it is not possible to invert the resulting expanded NEQ system because
the Helmert parameters are one-to-one correlated with the coordinate parameters.
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A combination of several (instead of only two) sequential solutions including Helmert
parameters for each solution is possible in general. In any case we have to select one
solution-as a reference without specifying any translation, rotation and scale pa-
rameters with respect to the combined solution. An alternative would be to set up
Helmert parameters for each solution and to constrain e.g. the sums of all Helmert
parameters to zeros.

Such a procedure corresponds rather to a multi-Helmert transformation than to an
estimation of a combined coordinate set.

We should emphasize that this procedure (using only two sequential solutions) is
slightly different to the commonly applied seven parameter Helmert transformation
between two coordinate sets because we estimate in our case coordinates and Helmert
parameters together instead of Helmert parameters only. Constrammg the combined
solution 3, to 8, would include the second case also: B, = (8, + T2) - f2 - Us.

We should also point out that this method takes into account the full variance
covariance information.

The nonlinearity of equation (2.5-31) makes it necessary to iterate the combination
in case of bad apriori values or in case of larger values for the Helmert parameters.

2.5.2.7 Other Applications

The estimation of parameters introduced aposteriori in the combination may be
extended to other parameter types in the model of the GPS observations. For the
"history” of more than 2 years of the GPS derived earth rotation parameters within
IGS it is possible to set up Fourier parameters to analyse possible oscillations (see
next section).

Potential candidates for such applications are all parameters which occure in the
sequential solutions (center of mass, gravity field parameter, satellite antenna off-
sets, etc. ) and should be modeled with a new parameter representation valid for
the entire period of time.

Such an analysis is mostly done using the raw day-by-day earth rotation values
without considering the correlations to other parameters. Introducing Fourier pa-
rameters directly in the combined solution includes all correlations automatically
and makes it possible to study the influences on the other parameters.

2.5.3 Estimation of Fourier Coefficients

Let us assume that we estimate in the sequential least-squares adjustments (no.
i) the values z; which are valid for the time interval ¢t € [t;,¢;1+1]. If we suspect a
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periodical signal of a given frequency in the data we may try to estimate Fourier
coefficients as new unknown parameters. Let us adopt the one-frequency model:

z; = a-cos(0;+ @) = azrcosO; + ay;sin O; (2.5-45)
with
z; time series of estimated parameters z(t;)
a, unknown amplitude and phase offset

Gzr,0z; unknown in-phase- (realr) coefficient and out-of-phase- (imaginary,i) coef-
ficients

O; = w- (¢t —t;): given phase argument of an oscillation with frequency w with
respect to the reference epoch ¢;

From eqn. (2.5-45) we can conclude:
azr =a-cos¢ and ay; = —a-sing. (2.5-46)

Let us further assume that in the time interval [¢;,¢;41] of the i-th observation
sequence we represent z; by a polynomial in time ¢ of degree ¢ with the coefficients
Z;i as the unknown parameters:

ri(t) = zq::rik-(t-—ti)k (2.5-47)
k=0

The sequence of observations z;(t) is therefore modeled by g + 1 parameters z,
k=0,1,.
From eqn. (2.5-47) we may obtain the partial derivatives

s (t) = rmi(t) = Z = k)|o:,k(t ;)7 (2.5-48)
and with ¢ := #;: )
Tip = Hxﬁ’“)(t,-). (2.5-49)

Introducing the right hand side of eqn. (2.5-45) in this expression gives the trans-
formation equations for the parameters z;; for the reference epoch ¢ = ¢; and
k=0,1,...,q9

Ty = %[axr(cos@i)(k) + ami(sin@i)(")]. (2.5-50)
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In matrix notation we find for the parameters of the interval (t;,¢i+1]:

Ti0
xT; = = B;T (2.5-51)
Tig 3 (g41yx1
with
cos ©; sin ©;
B; = : 5:[2@] . (2.5-52)
(% cos ©;)(9 (%sin@i)(‘” (g41)x2 7t loxa

Taking into account all n intervals of the time series we end up with the following
transformation equations:

Ty

T = = Bz (2.5-53)
Tn n-{g+1)x1

with
B,
B=| : s E=| % : (2.5-54)
: Gzi o1
B n-(g+1)x2

In the case of polar motion or nutation we have to consider two parameter types
together. Assuming that we estimate the coefficients with respect to the same fre-
quency w we end up with the two equations

T; = Qg C08O; + ay;sinB;

Yi = Gy Sin©; + ay; cos O;. (2.5-55)

An equivalent formulation is the splitting up in prograde and retrograde coefficients
in the following way:

z; = AT .cos(0;+¢7) = afcos®; —a;sin®; rosrade

y = A*-sin(;+¢*) = afsin®;+q;sing; [ P8 (2.5-56)
z; = A -cos(—0; +¢ ) = 4, cos8;+a;sinG; retrograde |
yi = A7 -sin(=0;+¢7) = —a;sin®; +a; cos©; =

The identity of eqns. (2.5-56) and (2.5-55) is confirmed through the following rela-
tions

agr = (a,: +a7)/2 5 ey = (agr —ay)
azi = —(af ~a7)/2 5 af = (azi+ay) 2.5-57
ayr = (a;" ~a7)/2 3 af = (azr +ay) (2. )
Ay: = (a:— + ai_)/2 } a;*- = "'(aa:i - ayz)
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allowing a transformation from one set to the other by

azr | 1 01 0] ay

Gz _ 1} 010 -1 a; | |

agr |~ 2| -1 01 0]]|a]| "’ (2:5-58)
ayi | 010 1] a?’

a;r | 1 0 -1 077 az

a | _ |0 1 0 1| aw

af | T |1 0 10| ay (2.5-59)
al | 0 -1 0 1| ay

This procedure is useful because we know for many applications from theory that
significant signals are expected only either for the prograde terms or for the retro-
grade terms. Instead of solving for the unknowns af, a;",
solve for either a;f and a] or ] and a] .

Below we derive formulae for the estimation of retrograde and prograde coefficients
separately. The procedure is identical to the steps (2.5-50) - (2.5-54).

a, and a; we may only

Let us start with the retrograde part: From eqn. (2.5-56) we get 2 (¢ + 1) trans-

formation equations using the epoch ¢t = t; as reference for k = 0,1,...,q:
i = filey(cos©)®  + af(sin®;)*¥)] (2.5-60)
vik = ml-ay (sin©)® + i (cos©;)*)]
or in matrix notation
Zi0
Yio
zyli=| = By ay|” (2.5-61)
Yig Ig.(q+1)x1
with
] cos ©; sin ®; |
—sin ©; cos ©;
b7 - cair= || ese
1}
%(COS @i)(q) é(Sin @i)(Q) 2x1
L —é(sin@)i)(q) %(COS ©,) d2:(g+1)x2

For an estimation of the prograde frequencies we get a similar expression:

46

zyl; = B zy|*

(2.5-63)




2.5 Parameter Transformations

with
cos ©; —sin©;
sin ©; cos ©;
.o n a e — a+
Bf = .. paylt=| G| (2569
E;l—!(cos @i)(Q) —%(sin @i)(Q) t la2x1
i E}‘!(Sin 62)((1) .‘.Il_l(cos @l)(Q) | PR

Taking into account all n intervals of the time series we end up with the following
transformation equations for the estimation of the coefficients of the retrograde
frequency w:

zy1
zyl=| = B~y (2.5-65)
TYln 2-n-(g+1)x2
with
By
B™ =] ; TY|” = [ Zf_ ] : (2.5-66)
B; ! 2x1

2-n-(g+1)x2

Similar equations with the index ..* instead of ..~ may be derived for the coefficients
corresponding to the prograde terms.

Both, pro- and retrograde coefficients, may be easily estimated using the transform-
ation equation
[ g+ g-1|@v

zy| [B B ][@I“]' (2.5-67)
The equations (2.5-53), (2.5-65) or (2.5-67) have the form (2.5-5). The correspond-
ing NEQ system can be transformed according to eqns. (2.5-8)-(2.5-10) and (2.5-11).
Equation (2.5-67) causes for example a reduction of the effective number of param-
eters for each component z(t) and y(t) from 2-n- (¢+ 1) parameters to four Fourier
coeflicients with respect to the given frequency w. If we want to estimate coefficients
for additional frequencies we can extend the transformation equations (2.5-54), (2.5-
65) or (2.5-67) with additional coefficients. The estimation of an offset and a drift
may be performed in a similar way as in the example of the estimation of station
coordinates and velocities.

In the case of the nutation parameters we can derive with the described method

the amplitudes and phases for selected prograde and retrograde frequencies based
on the analysis of the sequential NEQ system taking into account all parameters of
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the GPS model. That there are already important signals with respect to the IAU
1990 nutation model is demonstrated by WEBER ET AL. [1995A].

The earth rotation estimates z and y base on predicted apriori information. The es-
timated parameter increments A3 are not suited to search for signals. It is necessary
to transform the NEQ systems first to a well-defined apriori pole.

2.5.4 Blocking Frequencies.

Blocking certain frequencies is explained for a special application: Retrograde di-
urnal terms in the polar motion cannot be estimated with GPS because these terms
are one-to-one correlated with a constant rotation of the entire orbit system [BEUT-
LER 1995]. If we intend to solve for subdiurnal signals in the earth rotation we must
be able to constrain (block) the diurnal retrograde signal especially if we simultan-
eously solve for the orbit parameters.

55 430
& &
é 503 g
é s | §
1N
¢ ] 1
L3 >
R i
3 ] 3
as = T L} T T T 1 T 1
13 14 15 18 17 18 ] 20 13 14 15 16 17 18 19
Day of Year 1994 Day of Year 1994
=== Subdaily estimates (na diumal retrograde biocking) using 7-days—arcs == Subdaly estimates (no diumal retrograde blocking} using 7 —days—~arcs
*ea Subdaiy estimates (with diumal retrograde blocking) using 7 —days —arcs *~ea Subdaly estimates (with diumal retrograde blocking) using 7 —days~arcs
w=== Mean daily values from CODE overlapping 3~ days—arcs w=== Maan daily values from CODE overiapping 3~-days~arcs
(a) x-pole (b) y-pole

Figure 2.3: Sub-diurnal pole estimates of a 7-days-arc with and without blocking the
retrograde diurnal frequency. For comparison we refer also to the values
of the CODE solution stemming from the middle day of overlapping
3-days-arcs.

If we are not interested in the orbits we are free to leave these signals in the estimates
and to interpret only for the coefficients corresponding to the other frequencies.
Figure 2.3 show a typical example for the signal in the z and the y pole if we block
and resp. if we do not block the retrograde diurnal signal. We solved for one set
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of orbital parameters valid for seven days based on the combination of 1-day-arcs
(see Chapter 4) allowing stochastic pulses every 12 hours for all satellites. The pole
estimates (of degree 1 for each one hour subinterval) are made continuous with the
constraints (2.6-12). For comparison the values of the middle day of overlapping
3-days-solutions are given also. To avoid the slightly larger noise at the beginning
an the end of the 7-days-arc it might be useful to analyse the spectrum of the sub-
diurnal estimates only the middle three to five days. We can easily verify that the
main oscillation is a retrograde diurnal signal: the amplitudes of y are a quarter of a
revolution earlier on its maxima than the z estimates. We may illustrate this fact if
we consider an eastward rotation in the usual left hand pole coordinate system.
The procedure of the blocking of a particular frequency is similar to the estimation
of Fourier coefficients (section 2.5.3).

If we apply the parameter transformation equation (2.5-65) to the corresponding
NEQ system Nzy| = b we find according to eqns. (2.5-8)-(2.5-10):

B~ 'NB zy|-=B~'b (2.5-68)

and therefore
Y|~ = (B NB™)"'B~b= (B 'NB~) !B~ Nzy] (2.5-69)
To constrain the retrograde diurnal signal we have to set up the condition y|~ = 0.

This can be achieved by introducing a fictitious observation with a large weight (or a
small variance ¢2)) which, according to Section 2.6.2, is equivalent to the introduction
of real constraints in the least-squares adjustment. With eqn. (2.5-69) we get the
pseudo-observation equation

(B'NB™)"'B~'Naxy|+e=0 with D(D)= gg—I. (2.5-70)
w

Using eqn. (2.6-3) thus leads to a superposition of the left hand side of the normal
equations in the following way:

9 .

N=N+ gg-NB‘(B"NB‘)‘l(B"NB‘)“B"N (2.5-71)
2 .

The constraints are much simpler if we assume that all parameters zy| are determ-

ined with the same quality and that there are no correlations between the subsequent

pole intervals (IN = ¢ I'). For the blocking of the retrograde diurnal terms such an

assumption is justified, because this signal cannot be estimated by GPS. Due to the

simple structure of the matrix B~ we find according to eqns. (2.5-62) and (2.5-66):

(B~'B™)' = n_-(qlTnI (2.5-72)
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and instead of eqn. (2.5-71) we have

2
— g [
N = 9 BB~ 2.5-73
02n2(q+1)2 ( 7 ) ’
with
By By ... By,
) By By ... By
BB~ =|". , - (2.5-74)
Bln Bln Bnn

2:n-(g+1)x 2-n-(q+i).

The blocking of the prograde frequencies - for which we have in case of GPS no
reason - might be done in an analogous way to the above procedure. We would end
up with a matrix B* B + with opposite signs for all terms which are mixed in z;; and
y;k- This is a logical consequence because the superposition of B~ B =" and B*B™*'
has to result in a matrix with no correlations between the parameters of the time
series of £ and those of y. Blocking both, the prograde and the retrograde part of the
oscillation is therefore identical with blocking the frequency w in z independently of
the blocking for y. The corresponding equations to block w only in one time series
are given by replacing every second column and row by zeros.

The procedure described above is an elegant way to protect the sub-diurnal estimates
from the presence of retrograde diurnal signals without setting up Fourier parameters
explicitly in the normal equations.

2.6 Constraints for Normal Equations

2.6.1 Apriori Constraints as Fictitious Observations

In general, the observations from a given measurement type are not sensitive to
all parameters in the theoretical model. In this case the normal equations (NEQs)
N 3 = b are singular which is equivalent to det N = 0.

For example, distance measurements contain no information concerning the orient-
ation of the geodetic datum.

Additional information must be introduced in the least-squares solution to make the
normal equations non-singular. One way is to hold the coordinates of at least one
station fixed. This is equivalent to form the NEQs without this parameter.

Also for many other applications it is usefull to be able to incorporate exterior
information about parameters of the form

HB=w+e, with D(w)=d’Py! (2.6-1)

where
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H  r x u matrix with given coefficients with rg H =r,
r number of constraining equations with r < u,
B vector of unknown parameters with dimension u x 1,
r X 1 vector of known constants,
ey, 1 %1 residual vector, and
P,;l dispersion matrix of the introduced constraining equation with dimension rxr.

There is one important difference of such constraints in comparison to exact con-
straints in the GMM (Section 2.1.2): In eqn. (2.6-1) a dispersion matrix of the con-
straining equation is specified whereas in the GMM with constraints the dispersion
matrix is implicitely defined as P;l — 0 respectively P,, — co. The proof is given
in the following of this section. The GMM with constraints minimizes the squared
sum of the residuals and fulfills also the introduced constraints. For the observation

equations (2.6-1) this is only valid in the frame of the specified dispersion matrix
Pl

If the constraints are nonlinear a linearization has to be performed through a first
order Taylor series expansion.

We may interpret the constraints (2.6-1) as additional pseudo-observations, or to
distinguish it, as fictitious observations. That leads us to the observation equations:

[z]+[‘§i}=[§]3WithD([i])=o2[P; P?Zl] (2.6-2)

or to the assqciated NEQ system Kfﬁ = b:
(X'PX + HP,H)3 = X'Py+ H'P,w. (2.6-3)

To constrain the parameter §; in 8 = (61,-+,0;,-+,0.) with the help of the
specified weight P; to its apriori value §; we set up the fictitious observation equation
Bj +e; = 0 and D(B;) = o2P;*. This results in

0,

r=1, w=w;=0, H=I;= ( 0,0,---, -,0) and

1 ..
J
P, =diag ( 0,0,---, 1,0,---,0).

To complete the estimation procedure the formula for the computation of the estim-
ated variance of unit weight 2 respectively € is given below.
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From eqns. (2.6-2) and (2.1-9) we obtain
Q =e,Pe, + €, Pyey,. (2.6-4)

This means that in comparison to the model without additional observation equa-
tions the form e, Pey + e}, Pyey is minimized in the LSE instead of e, Pey, only.

Using e, = XB—-yand e, = HB — w and eqn. (2.6-3) we may also write

0 = y'Py+wP,w—(yYPX +wP,H)B (2.6-5)
= y'Py+bB+w'P,w. (2.6-6)

The estimated variance of the unit weight is computed as

P U (2.6-7)

This procedure is very useful to constrain parameters to special values without using
the more complex formulae of the GMM with constraints. Nevertheless, constraining
of parameters using this simple method must be applied very carefully, because we
should be able to answer the question: Is the resulting estimation of a parameter a
consequence of the original observations or is the result already strongly influenced
by the additional fictitious observation equation.

Problematic is the dependence of the specified apriori weight matrix P, on the
number of observation equations used in the original NEQ system.

If only a very small number of observations is involved, a small weight may be suf-
ficient to constrain a particular parameter to a special value. This may not be true
for a NEQ system based on a large amount of observations.

The same weight may in this case not be able to constrain the parameter on the
wished value.

Using too large weights may generate numerical problems for the inversion step
and for the computation of the variance of the unit weight. The ”correction” terms
H'P,H, w!,P,H and w!,P,w,, are responsible for this. Especially if the values
for P,, are large and the values for w are small, numerical problems may occur.

Constraining should therefore only be applied to set up all parameter types in the
sequential solutions even if a parameter estimate is not significant. Parameters, which
may cause singularity problems are potential candidates for the constraining, too. In
the accumulation step of sequential normal equations it will be possible to estimate
in a second step these parameters without any constraints.
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2.6.2 Constraints as Fictitious Observations with Large Weights

We can transform the formulae derived above into the formulae of the GMM with
constraints of section 2.1.2 using infinitely large weights P,,. The identity is useful
because it is much easier to handle the introduction of apriori constraints. Further-
more a steady transition from loose constraints to an exact constraints is possible.
Using P! = 021 with o2 as a very small value which causes a strong weighting
for the additional fictitious observations w we get from eqn. (2.6-3)

B=(X'PX +HH/c2) (X'Py+ Hw/cl). (2.6-8)
Using the matrix identity (2.2-9) (A"} = X'PX,B=H',C=-H,D™ ! = I/02)
and taking into account eqn. (2.1-32) we find
lim 8 = lim [(X'PX)"YX'Py
a2,—0 g2 -0
+H'(02I+ HX'PX)'H') Y (w - H'(X'PX) ' X'Py)]
+ lzimo[(X’PX)_l(H'(a?uI +HX'PX)'H'Y 'w+ (1/62)H'w
257 d
—(1/e2)H' (021 + HX'PX)'H)"'H(X'PX) ™ H'w)
= B+ lim [(1/o2)H'w — (1/02) H'w)
02,-0

~

= f. (2.6-9)
For small variances of the additional fictitious observations the introduction of apri-
ori constraints is identical to the case of the GMM with constraints.
In the following sections we will mainly use the expression conditions if we mean
constraints which are realized using a strong constraining weight or using the meth-
ods of parameter transformation (Section 2.5).

The same is also true for the estimates D(3):

~ -~

lim D(B) = D(B)

a2, —0

and for 2 and 52, because with eqns. (2.6-5) and (2.6-9) we obtain

lim @ = lim [Py + (1/o2)w'w — (y'PX + (1/02)w' H)B]
a2, —0 g2, —0
= y'Py-— y'PX,B -w'k
= Q
lim 5 = &. (2.6-10)
02, —0

That lima'zu_,o[(l/aﬁ,)(Hﬁ —w)] = k may be verified with eqn. (2.6-3) and with the
relation H'k = X'Py — X'PX 3 using eqn. (2.1-31).
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2. Least-Squares Adjustment

2.6.3 Applications for Apriori Constraints

The introduction of apriori constraints is not only used for defining the geodetic
datum. Most of the parameters in the model of the GPS observations may be con-

strained.

Constraints using w = @ in eqn. (2.6-1) are frequently used for
eter types: '

the following param-

e coordinates (absolute constraints, free network conditions)

e velocities (absolute and relative constraints)

e troposphere (absolute and relative constraints)

e orbit (keplerian-, dynamical-, stochastic-) parameters
e center of mass

e carth rotation parameters (UT1 and nutation absolute
strained to a VLBI value and continuity constraints)

e satellite antenna offsets

value has to be con-

Table 2.1: Constraints and constraining options used in the program ADDNEQ.

[HB=w-+e | H | w [ Pw |
Constraining and fixing on apriori values
Bi=0+e; [o,--+,0,1,0,-+-,0] [0] [Ug/ﬂ:] ]
Constraining and fixing on apriori values fopew
ﬂi = ﬂOnew _,60+ei [0)...!07110"."0] [ﬂOnew _ﬂOI [Ugldzabs]
Relative constraints between parameters
ﬂi_ﬁi+1 =0+e; [01"'a0’1)_1101""0] [0] [‘7(2)/012.?1“

Continuity between subsequent polynonials:
see eqns. (2.6-12), (2.6-13)

Common polynomials in subsequent time intervals:
eqn. (2.6-16)

” Absolute” polynomials:
eqns. (2.6-16), (2.6.3.3)

Free networks:

eqns. (2.6-18), (2.6-21)

%used for troposphere parameters; can be derived from power spectral
process [ROTHACHER, 1992], also used for relative velocity constraints
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2.6 Constraints for Normal Equations

Constraints using w # @ are implemented only for coordinates, velocities and earth
rotation parameters. In this case it is possible to constrain a parameter to a value
different from the apriori value used in the individual NEQs.

In the following we will focus on some useful constraints implemented in the pro-
gram ADDNEQ, which was developed for combining NEQs. Table 2.1 summarizes the
discussed applications. Let us discuss below the options in Table 2.1 in more detail.

2.6.3.1 Continuity of Polynomials Referring to Consecutive Time Intervals

Let us assume that a process (e.g. earth

rotation) is modeled in the time inter- .,_\.

val I = [t;,ti+1] (interval length At;;1q) °

with polynomials of degree m (see Figure

2.4): Bo,i+1y s Bmit+1
m .

pi(t) = Z Bij,i (t—t;). (2.6-11) Boiy 1 Bm,i apriori values
Jj=0 c S ©

Let us assume that in the next time interval | Atiiy | Atigyio A

I = [ti41,ti+2] the model parameters are ! ! !

,30714_1, s ,,Bm,i+1- Figure 2.4: Discontinuous Polynomials.

A least-squares estimation of all parameters results in general in a discontinuity at
the time interval boundary t;;+;. To make the estimation continuous we have to set
up the constraining equation

m . ) _
Zﬁjﬂ'Atg,i-}-l — Bo,i+1 = 0 where At'z?,i+1 = (tiy1 — ;)7 (2.6-12)
j=0

and we have to specify a corresponding weighting. In matrix representation we obtain
from eqn. (2.6-1) HB = w + e, and D(w) = ¢?P ! with

H = [0 0 1 Aty - A, =1 0 - 0]

B = | o Boi Bii o Bmgi Boi+ o o
- 12.6-13)
P, = [Ug/agx]'

If we ask for continuity at subsequent interval boundaries we have to set up for each
interval boundary one equation of the form (2.6-13).

55



2. Least-Squares Adjustment

2.6.3.2 Common Polynomials in Subsequent Time Intervals
cont. + const. drift

As an example for a modification of the poly-
nomial degree in subsequent intervals we men-
tion the special case of changing a model
characterized by degree 1 polynomials (offset
plus drift) in all n subintervals to one de-
gree 1 polynomial valid for the entire inter-

cont. polygon

val (covering all subintervals). Figure 2.5 il- BoirBri  Boi+1,P1i41
lustrates this application. We have to ensure G o 2priori values,
continuity between the intervals and we have | At; i1 | Atip1iv2 |
to ask in addirion for identical first order coef- I I I
ficients.

Figure 2.5: Common Polynomials in sub-
sequent time intervals.

With m = 1 we obtain from eqn. (2.6-12):

Bo,i + Brildtiiv1 — Boiy1 =0, i=1,2,...,n—1 (2.6-14)
Identical linear terms result if we ask for
Bi—bi+1=0, i=12,...,n—1 (2.6-15)
The latter two equations may be written in matrix representation H3 = w where
H - [0 -~ 01 Atjiyp =1 0 0 -+ 0
10 -~ 00 1 0 -10 .-+ 0
B = [+,B04 BrirBoit+1,Brit1, ) (2.6-16)
w = 0
- 0
[ 02/02 0
P — 0 fixy .
Y 0 o%/agx2

The value 0%,, has to ensure that the constraint of the identical linear terms (2.6-
15)is fulfilled. Eqns. (2.6-14) and (2.6-15) are two constraints for four parameters
Bo,iy Bi,is Bo,i+1, B1,i+1, s0 only two of them are independent (needed to represent a
degree 1 polynomial). '

For more than two intervals we have to introduce two constraints of type (2.6-16)
for each additional interval.

In the IGS processing at CODE this procedure is used to set up earth rotation
parameters of degree 1 for each day. The ERP estimates are showing at present a
better consistency and reasonable drift rates if we solve in the.3-days-solutions only
for one linear model covering all 3 days (see Figure 8.14).
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2.6 Constraints for Normal Equations

2.6.3.3 Constraints Concerning the " Absolute” Estimates

If the apriori pole for each interval shows a behavior as shown in Figure 2.6 the

~ equations (2.6-16) are forcing the estimates to be linear and continuous, but the res-

ulting parameters (apriori value + estimated linear "absolut” estimation

value) still is "contamined” by the changing

drifts of the apriori model.

Using ,

w= [ 0 ] (2.6-17)
dit1,i+2 — dijit1

in eqn. (2.6-16) (instead of a zero vector) we

have condition equations which enforce a lin-

ear behavior for the resulting ”absolute” es-

timate.

Examples are given in Section 8.4.

linear in 643

apriori values

Atispr | Atit1iy2
| |

. 2.6.4 Free Network Adjustment Figure 2.6: ” Absolute” estimation.

The theoretical model for the GPS observables makes it impossible to determine the
coordinates of all stations together with the orbits and earth rotation parameters
without defining the geodetic datum for any of the used GPS sites.

In general, a (static) reference frame needs a minimum of seven parameters to define
the location, the orientation and the scale of the coordinate system. Allowing also for
constant (in time) site velocities leaves us with the twice the number of parameters
to define the reference frame unambiguously.

The No-Net-Translation and Rotation Conditions are a useful instrument to define
the geodetic datum without fixing coordinates to predefined values. Possible prob-
lems in all coordinates are detectable without relying on the specific values of some
fix stations.

The derivation of these equations is similar as in conventional 3-dimensional geo-
detic methods (minimal and inner constraint adjustment). Assuming that only the
inner geometry of a network may actually by determined (if e.g. only distance meas-
urements are available) the whole network can be translated, rotated and rescaled
without affecting the original observations. The resulting NEQ system has a rank
defect of 7 in the three-dimensional space. '

Without going into the detail of other one-to-one correlations in the GPS system
(especially with pole coordinates, orbits and gravity field parameters) we will discuss
only the rank defect due to the definition of the geodetic datum.

Regarding the GPS observations as an observation type without any ”absolute”
information we can directly apply the methods of the conventional 3-dimensional
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2. Least-Squares Adjustment

geodesy.
Without changing the inner geometry it is possible to apply the following linear
transformation to the unknown parameters:

 Ba=pBc+Hh (2.6-18)
where

Bc Parameter vector (only coordinates) before transformation (with respect to
apriori coordinates X;;),

ﬂc, - [Blca T alaic’ e ] ’ ﬁic = [xic) Yics zic]a (26'19)

Ba Parameter vector after transformation (with respect to apriori coordinates
Xio)’

Ba' = [B1as 1 Bias ] s Bia = [Tins Yia» 2ia s (2.6-20)
H' Transformation matrix (inner c&nstmint matriz) with rg (H') = T:
Is 51 Xy,
H' = Ia S, Xm , (2.6-21)
I; Identity matrix of dimension 3,
S; Rotation matrix (valid only for small rotations) with
0 oz, —Yi
Si=| -2z, 0 Tip | (2.6-22)
Yie —Tip O
X, Apriori coordinates with
Xio == [B1g:" 1 Bior "] » Bio = [Tig» Yio» 2ip] and (2.6-23)
h  Translation, rotation and scale parameter vector
h' = [tz tystzy @, By, f1 (2.6-24)

Introducing eqns. (2.6-18) and (2.6-21) into the observation equation of the GMM
(2.1-2) gives
XB,+e, =Xﬁc+XH't+_ea = E(y). (2.6-25)
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2.6 Constraints for Normal Equations

From this we conclude
XH =0. (2.6-26)

KocH {1988] showed that the matrix

(2.6-27)

X'PX H
Sl

is in this case non-singular, even if X'P X is singular.

The matrix D is equal to the left hand part of the NEQ system (2.1-31) of the GMM
with constraints on parameters (see eqn. (2.1-30)):

E(y)=XB and HB=0 ; D(y)=o’P L (2.6-28)

The additional r constraints enable the inversion of the NEQ matrix which means
that now the parameter vector 3 € R" is estimable in the space R*~".

Depending on the actual choice of the matrix H' we get for the inverse of D the
reflezive generalized inverse or the pseudoinverse. These two inverse matrices have
different properties concerning the trace of the matrix. Sites can be excluded if we
set the corresponding rows of the matrix H' to zero. Let us assume that % sites
should be used for the setting up of the matrix H. In our implementation station
selection for the datum definition is possible with a selection matrix S which is in

principle the identity matrix, but contains zero on all main diagonals for the stations
which should be excluded: H = SH.

The first three equations of HB3 = @ may be written as:

k k k
Z dz; =0, Z dy; =0, Zézi =0 (2.6-29)
i=1 i=1 =1

where dz;, 0y;, 62; are the estimates for the coordinates of one of the % sites referring
to the apriori values z;,, ¥i,, %, -

This means that the coordinate origin (z;, ys, 2s), given by the apriori coordinates
of the k sites

k k k
.'L‘s=]./kZ:L‘io, ys=1/k2y,-0, Zs=1/kzzioa (2.6-30)

is identical to the one of the estimated coordinates (zs,, ys,, zs,). For the z-
coordinates we may verify this statement using egns. (2.6-29) and (2.6-30):

k k k k
Ts, = 1/k2xi =1/k Z(xio +6z;) = l/kz:ﬂ:i0 + l/kz&zi =z, (2.6-31)
i=1 i=1 i=1 i=1
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2. Least-Squares Adjustment

Let the other 4 conditions be given by the matrix H, as a submatrix of H. The
corresponding subset of constraints (2.6-28) then reads

H,3=0. (2.6-32)

Assuming that the parameter vector 3 plus an error vector e may be derived by a
rotation and a scale (analogous to (2.6-18)) results in the observation equation

Sl Xlg

Ho=8+e; 0=[a,B,7,f] ; H,= (2.6-33)

S; X,

Interpretating this equation as an observation equation with D(8) = o*I leads us
using eqns. (2.1-5) (2.1-30), and (2.6-32) to the least-squares estimate:

6= (H,H))"'H,3=0. (2.6-34)

In other words: The last four conditions force the estimates of 3 to have no rotation
and no scale change with respect to the used apriori coordinates.

The definition of the geodetic datum of the network is based on the used apriori
coordinates. With the results of Section 2.5.2 we are almost free in the selection
of the apriori coordinates. Instead of transformation of the normal equations to a
different set of apriori coordinates we may also introduce the conditions H3 = w
with w = HdB and dB as the difference between the new coordinate set and the
originally used one.

An alignment of the free solution with different systems (e.g. different ITRF systems)
is therefore easily possible.

Lets us underline that with free network solutions we estimate coordinates for all
involved sites without fixing a minimum of 7 coordinates on predefined values.

The estimaj’i‘on of parameters ﬁ* and the associated estimation of the covariance
matrix D(8 ) in the GMM not of full rank is given by KocH [1988]:

g =(X'PX +HH) 'X'Py and (2.6-35)

D) =o’D7' = {(X'PX + HH) - H'(HH'HH')'H}. (26-36)
Comparison of eqn. (2.6-35) with the normal equation (2.6-3) shows the identity for
the estimates of the GMM not of full rank with the GMM with constraints (P,, = I,

w = ). In practice we use constraints according to Section 2.6.1 and Section 2.6.2
to realize the free network conditions.
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-

m
—— Y cm Error EII'Ese
..... cm/y Error Ellipse

(a) No-net-translation conditions applied

— 1 cm Error Ellipse
_____ 1 cmﬁ Error Ellipse

(b) No-net-translation plus z-rotation conditions applied -

Figure 2.7: Error ellipses for coordinates and velocities of a 2-years free network

solution (1993-1994) using different conditions.
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2. Least-Squares Adjustment

The same is not true for D(B3"). The term —H'(HH HH')"'H is a specialty of
the GMM not of full rank.

The usage of the free network conditions (2.6-28) is also possible if no rank defect
is present.

In the case when velocities are estimated together with site coordinates we may in-
troduce " free velocity” conditions to enable a velocity estimation for all sites without
relying on specific predefined values. If the estimation should be based on a reference
velocity field we may define the necessary conditions by selecting a list of stations
which serve as the reference.

Figure 2.7 demonstrates the effect of free network conditions on the global IGS
network. In both cases we selected 13 IGS core sites to define with their ITRF93
coordinates an apriori network. We established in both cases a free network solution
with coordinate and velocity estimation for each site. The datum definition for the
velocities was simplified to the constraining of the three velocity components of the
site (WETT) to the ITRF93 values.

In case (a) we implemented only the three condition equations with respect to the
translation which means that the center given by the estimated coordinates of the
13 sites is identical to the center given by their ITRF93 coordinates.

The error ellipses indicate that the longitudes are weakly determined by GPS. In
case (b) we add the condition equation for the rotation about the z-axis to reduce
the uncertainties in the estimation of the longitudes. An equivalent and frequently
used possibility for the definition of the reference frame consists of fixing three
components of one particular site and the latitude of a second site on predefined
values [MA ET AL. 1995]. The resulting error ellipses are typical for GPS: Slightly
larger uncertainties for the longitudes than for the latitudes are due to the dominant
north-south motion of the satellites.

The formal errors of the velocities are identical in both cases.

Introducing more than four condition equations would not help to reduce the formal
errors. We find already small differences in the coordinate estimates of solution (b)
if we use more than the mentioned four conditions. This indicates that additional
conditions would noticeable bias the GPS solutions.

It is not clear at present which is the minimum number of conditions necessary for
the definition of the velocities. The use of the three translational free network condi-
tions may align the velocity estimates with a given apriori velocity field (for example
ITRF93 [BOUCHER AND ALTAMIMI 1994] or NUVEL1 [DEMETS ET AL. 1990]).
Such a procedure is equivalent to fixing three components of one site on predefined
values (method applied for the solutions in Figure 2.7).
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‘The integration of GPS networks into a given reference frame is a candidate for
the use of the free network conditions. In the official surveying applications of a
country it is in most cases not allowed to change the coordinates of the reference
frame. Even if the final solution will fix all reference sites, a free network solution
should be performed to detect possible inconsistencies between the GPS network
and the reference frame. Because of such problems GPS serves in many cases only
as a baseline length generator ignoring the full information of a network solution.
The combination/integration is done with the help of standard geodetlc adjustment
programs [EISELE 1991].

The number of condition equations may also be reduced. In small networks (< 10
km) based on fixed GPS orbits it may useful to permit only a translation (which
is identical with the fixing of the 3 coordinates of one station) and take over the
orientation and the scale from GPS. The datum information coming from GPS is
completely ignored if the full number of 7 conditions is used.

2.7 Equivalence of Combining Normal Equations and Cov-
ariances

In this section we demonstrate the equivalence of sequential LSE estimates using
normal equations or using covariances.

In Table 2.2 we give the two possibilities to store the necessary information to
produce a combined solution.

Table 2.2: Required information from each sequential solution for the production of
a combined solution.

Combination based on
Covariances | Normal equations
(X'PX)™! X'PX

¢ X'Py;Blo

52 y' Py

nyu n;u

The difference between the first line elements in Table (2.2) is obvious: The left
hand side NEQ matrix is saved in case of normal equations, the inverted matrix (the
cofactor matrix) in case of the other storage type. The information with respect to
the computation of the variance of unit weight is given in the lines three and four.
The last line elements are identical and the equivalence of the third line elements is
given with the eqns. (2.1-9) and (2.1-10).
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The difference in the second line is essential. The right hand side of the NEQ system
X'Py is directly dependent on the used apriori information because of (2.1-27).
Therefore we have to store the associated apriori information B|y. In case of storing
directly 3 this is not necessary because we can recompute X'Py using (2.1-27) in
the following way: "

X'Py=X'PX(B~Blars). (2.7-1)

The selection of the arbitrary apriori information 8|, has to ensure that the lin-
earized Taylor series expansion is still valid and that the effect on the computation
of the design matrix X (which was originally computed using Blo) is negligible.
The above statement is true for both methods because the combination of the sequen-
tial solutions has to be performed using a common apriori value for each parameter.
To make sure that all sequential adjustments meet these requirements it is there-
fore useful to store also the used apriori information together with the estimates,
in particular if the estimates show larger discrepancies. Under unfavourable circum-
stances this implies repetition of the individual sequential solutions or exclusion of
the solution from the combined solution.

As already shown at the end of Section 2.4.2 with equation (2.4-28) we need also
the apriori information if apriori constraints are applied.

From the point of view of computing time the storing of normal equations is much
more efficient because the combinations based according to Section 2.3 on a pure
superposition of normal equations.

The combination based on covariances requires an inversion and a reconstruction of
the normal equation part X’'Py according to (2.7-1) or the use of the more com-
plicated combination formulae (2.4-27).

This statement is also valid for the removal of apriori constraints if we compare eqns.
(2.4-28) with eqns. (2.6-3) and (2.6-5).

The covariances are on the other hand much more suited to give information about
the quality of the solutions. The rms of each parameter, the three-dimensional error
ellipses for each site and correlations between the parameters are directly accessible.
Another advantage has to be seen in the fact that one may easily exclude parameters
from the system by skipping the corresponding rows and columns in the parameter
estimation vector and in the covariance matrix whereas we have to apply the pre-
elimination formulae in the case of normal equation storage (see Section 2.2).

Both methods are implemented in two different programs in the Bernese software
package [ROTHACHER ET AL. 1993].

The combination program COMPAR is based on the covariance storing method
corresponding to the first column in Table 2.2. It is closely related to the classical
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geodetic application: Combination using only the coordinate estimations of each in-
dividual LSE together with the corresponding covariance information.

The second storage type is underlying the more general program ADDNEQ which
is used to combine all parameter types of the GPS observation model.

2.8 Estimation of Group RMS Values

2.8.1 General Estimation Formulae

To get an idea of the contribution and the quality of different types of observations
we devide the total rms into rms values for different groups.

This procedure approximates the more general variance component estimation where
variance-covariance components are estimated for each observation group. These ad-
ditional unknowns allows it to model different observation qualities. A more realistic
dispersion matrix will lead us to a more reliable estimation of the primary unknown
parameters 3.

On the normal equation level we have no connection to the original observations.
Therefore we assume that each sequential solution is already performed with a real-
istic weighting matrix. In Section 2.3.2 we proved the concept that the combination of
normal equations is identical with introducing simple pseudo-observation equations
of type (2.3-12) consisting only of the results of each individual solution. Therefore
we may split up the pseudo-observations in different observation groups also on nor-
mal equation level. Each group may consist of different types of parameters or may
consist of sets of different parameters.

The group rms is well suited to give additional information concerning the quality
of each parameter. We will see a close relationship to an rms value derived from
repeatabilities.

Let us splitt up the observation equations into two parts. As opposed to Section
2.3.2 we assume 71 = 2 = 0. From eqns.(2.3-17) and (2.3-31) we find

Q = Y|Py + ¥4 Pay; — (¥iP1X1 + Y5 P2X2)B, with (2.8-1)

-~

B. = (XIP\X\+X}yPyX2) (X} Pry, + X3Poyy) = Qs 5. b5

and the total rms results in

Q
62 = =< with the total redundancy f. from eqn. (2.3-20). (2.8-2)

[
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The group rms for each individual observation series is given by

Q, =&, P8, #U ; 51 = (2.8-3)
fie
~ ~ - Q
Oy, =&, Py,&, # D ; 33, = f2c (2.8-4)
2
with the relation to the combined solution given by eqn. (2.3-25)
Q. =Q1, +Q, and fc = f1, + fo.. (2.8-5)

The vector €;, refers to the combined solution and is different from the residuals &;
of the sequential solution. This was already pointed out in Section 2.3.4.

The redundancies f;, and fo, respectively are computed using (2.1-11):

F oo | Fu Fo|_[Li-PiXiQzp Xy -PiX1Q55 X3
T | Fa Fip | —P2X2Q[§C5CX'1 12—P2X2QECECX'2
flc = Sp (Il - PleQEcﬁcXi) =n; — Sp (PIXIQEcEchI) . (2.8-6)
fo. = Sp(I2—P2X2Qp 5 X35) =n2 - Sp (P2X2Qz 5 X3).

A comparison of f;, and fp, with eqn. (2.3-20) shows the difference to the re-
dundance f; and fo of each individual solution. There we found f; = n; —
Sp (P Xi(X!P; X;)"1X!) = n; — u; because P; X;(XP;X;)"' X is idempotent
(property A% = A).

2.8.2 Applications of the Group RMS

In this section the following important applications will be discussed:

e Group rms of one apriori constraint
e Group rms of all apriori constraints
e Group rms of a single parameter type

e Group rms of a set of parameter types

2.8.2.1 Group RMS of One Apriori Constraint

For the simple constraining of the parameter fi of vector 8 according to Table
2.1 we find with y,, = w =0, n, =r =1, Xo = H = [0,---,0,1,0,---,0],
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— — 52/,2 Py — P = .
P2 = Pw = UO/Uabs and €y, = €y = ﬁk.

a3 i -
' '
foo., = 1=—=—(Qz3 )k 5 Qz3 )= |X1P1 X1+ —5—HH
o BeBe BeBe o
abs abs kk
2 Q
— (Aay2. % . o _ 2
Q. = Bk = 5 o= i : (2.8-7)
Oabs 2e
and with eqn. (2.8-5)
Q
. _ . =2 8al
flc = fc — f2c ’ Qlc = Qc - Q2C ) 0’1c = flc . (28'8)
c
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Figure 2.8: Influence of constraints on the estimation (a) and the associated rms (b),
the degree of freedom (c) and the group rms of the constraint equation
(d) for the coordinate component z of three different IGS stations. The
example was extracted from a monthly solution of 53 globally distributed
IGS stations of January 1995.
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2. Least-Squares Adjustment

For small variances limo2,, — 0 we obtain fo, = 0 and f. = fi1.. The constraint
equation is in this case more than an additional (fictitious) observation because
the weight forces the combined estimation to the apriori value. For large variances
lim ast —ooweget fo, =1and fo= fi, +1.

Figure 2.8 shows the dependencies between constraints and paramter estimates for
a monthly solution for three different stations. Constraints > 10~2m enable a free
parameter estimation. Apriori constraints of about 1 mm influence already the solu-
tion. With values of < 1075m (0.01 mm) the parameters are fixed on the apriori
values with an aposteriori rms which is equivalent to the introduced constraint. The
degree of freedom of the constraint equation and the group rms are important in-
formation to judge the influence on the solution. Apriori constraints ranging between
10~2m and 10~%m (1 mm - 0.01 mm) are critical because they realize neither a free
parameter estimation nor a fixed solution.

2.8.2.2 Group RMS of All Apriori Constraints

The group rms values of all r constraint equations can easily be derived analogous
to the previous section. We obtain

T 2 2 -1

o g,
fo = r=2 3 Qppli i (Qpp)i= (X’1P1X1 + =3 .H’H)“
i=1 ~abs; abs; i

T 2 . Q‘Zc
;o y 02, = .
i=1 Uabsi f2c

Q9

I
™)
©
5%
nl 9
o

(2.8-9)

c

2.8.2.3 Group RMS of a Single Parameter Type

The group rms of a parameter is a useful information concerning the quality of the
parameter in addition to the resulting rms of the combination. Let us assume that we
sort the observation vector in a way that all pseudo-observations of a certain param-
eter are contained in y, whereas all other parameter estimations of all sequential
solution are located in y; . Let us in particular assume that all ny estimations of
the parameter §; are contained in y, . The observation equations (2.3-12) lead to
the following substitutions:

!
)

v = [(Bi)ks (Buy)i]
X, = [1?1,"'a1]'(n2x1) )

(n2x1)

(X1P1X1)kk 0
Py = diag((XiP:Xi)kk) = _
0 (X;nPannz)kk

(nzxnz)
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& = [(Bok =Bk Bk — Bk

!
axt)” (2.8-10)

Using these substitutions in eqns. (2.8-4) and (2.8-6) the group rms for the parameter
Br may be computed as:

na
fro = m—(Qz5)k D (XiPiXi)m
i=1

ng
D, = > Bk — B)e) X iPiX )k
i=1
52 = L (2.8-11)
fa.
Equation (Qﬁcﬁc)kk = (X2, ((X:P;X;)kk) ™! only holds if the individual parame-
ter estimates (ﬁi)k, i=1,...,n9 are totally independent determined from all other

-~

parameters. In this case we get fo, = ng — 1. The group rms of the parameter (3,)
is reduced to the weighted mean rms.

This simplification indicates that the group rms of a parameter is a quality value
which is comparable to the rms value derived from repeatabilities.

2.8.2.4 Group RMS of a Set of Parameter Types

The coordinate triple of a single site is an example for a set of parameters. It may
also be very useful to derive a group rms for all coordinates. This value may be inter-
preted as the variance of unit weight of a coordinate observation and may therefore
be used as the scaling factor for the associated coordinate covarinces instead of using
the derived variance of the unit weight of the original observations (phase observa-
tion in case of GPS).

For the sake of completeness we include the relevant formulae below. For u, coordi-
nate values we find from the observation equations the substitutions:

~ o~ !
y2 pomcd [ﬁ17°"’6n2](n2-ucxuc) ;
X2 = [I1)I2,"'7In2]'(n2'ucxuc) ;
X! P1X, 0
Py, = diag(XﬁPiXi) = ;
0 X,712P"2X"'2 (n2-ucXna-uc)

o~ —~

& = [Be=BuB=Bu), (2.8-12)

N2 UcXUe) )
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2. Least-Squares Adjustment

With eqns. (2.8-4) and (2.8-6) we obtain the group rms for all coordinates:

Ue N2
foo = m2=) ) (XiPiXiQp 5 )rk
k=1i=1
na - ~ - -
Q. = > (B.-B:)X{P:Xi(B, - B;)
i=1

83 = %" (2.8-13)

With eqn. (2.1-9) 22, may be computed as:

Q. = Y BXIPiXi(B:-B.) (2.8-14)
i=1

= > b5'(Bi - Bo) (2.8-15)
i=1

This method is more efficient computationally because bﬁ' is already given from the
left hand side normal equation vector b5 = y'PX.

2.8.2.5 Example

We demonstrated that the group rms values are in a certain sense comparable to
quality values derived from repeatabilities.

In the most cases the latter values are a more realistic quality indicator than the
formal errors of the combined solution.

The main difference between internal precision and group rms values resides in the
used degree of freedom. In eqn. (2.8-11) the redundancy is of the order of the number
of sequential estimations for the specific parameter, whereas the combined solution
refers to the total number of original observations. The difference comes from the
introduction of the pseudo-observation equation (2.3-12) using already derived pa-
rameter values as new observations. This ignores the fact that each parameter was
already a product of many different observations.

That the rule of thumb ”Multiplication of the combined solution rms with an em-
pirical factor of 3-5” gives a more realistic value for the accuracy of a parameter is
shown in Table 2.3.

The averaged discrepancies between the estimated precision and the group rms of
each coordinate component is a factor of 5.9. A value of similar order of magnitude
(5.4) results for the discrepancies between the estimated variance of unit weight of a
single difference observation and the derived unit weight of a coordinate estimation
according to (2.8-13).
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2.8 Estimation of Group RMS Values

Table 2.3: Estimated rms values from a monthly solution: January 1995, 9 stations
fixed on ITRF93 apriori values. rms] is the formal rms derived from the
combination and rms2 is the group rms for each parameter according to

eqn. (2.8-11).

rms in x rms in y rmsin z Mean Ratio
Station- # | Fixed [mm) [mm] [mm] rms2/
name || days | Stat. || rmsl | rms2 | rmsl | rms2 | rmsl | rms2 rmsl
ALGO 30 0.6 3.3 0.8 4.2 0.8 3.4 5.3
WES2 30 0.5 2.9 0.7 4.0 0.6 4.0 6.1
AREQ 30 1.7 14.2 1.6 8.3 0.7 6.8 8.4
BOGT 15 1.2 2.9 1.7 9.8 0.6 6.6 8.4
SANT 30 1.8 16.3 1.6 9.7 1.0 8.2 8.2
KOUR 30 1.2 9.6 1.2 6.3 0.5 5.1 8.3
BRMU 30 0.7 3.4 0.8 5.0 0.6 4.0 6.4
STJO 30 0.6 2.7 0.6 4.6 0.7 5.6 6.2
BRUS 30 0.7 1.9 0.4 0.8 0.8 2.2 1.9
ONSA 27 0.5 2.8 0.3 11 0.7 3.9 3.7
ZIMM 30 0.5 2.0 0.3 14 0.5 1.3 3.9
CAS1 30 0.7 2.3 0.8 4.8 1.1 5.7 4.6
DAV1 30 0.8 3.0 0.9 5.1 1.3 4.1 4.5
MCMU 15 1.1 5.4 0.9 7.1 2.5 11.3 5.2
TIDB 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
KOKB 30 13 5.3 0.9 5.4 0.8 3.9 5.7
YARI1 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —_
MDO1 30 0.5 1.2 0.8 5.2 0.5 4.0 6.6
PIE1 30 0.4 2.0 0.7 5.3 0.5 4.3 7.1
RCMS5 30 0.6 2.7 0.8 5.5 0.5 4.4 7.2
DRAO 30 0.4 1.4 0.5 3.0 0.6 3.7 4.8
QUIN 30 0.4 3.0 0.5 5.6 0.5 5.2 10.1
YELL 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
KERG 30 0.8 3.5 1.0 3.6 1.0 2.6 3.9
FAIR 30 F 0.0 0.0 0.0 0.0 0.0 0.0 -—
FORT 30 1.6 16.3 1.5 6.6 0.6 5.4 8.8
GOLD 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —_
GRAZ 30 0.5 1.7 0.3 1.1 0.6 2.1 29
LJUB 30 0.6 1.7 0.4 1.2 0.7 1.7 2.5
MATE 30 1.1 3.3 0.6 1.4 0.9 3.0 2.3
WETT 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
KOSG 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
LAMA 30 0.5 2.0 0.3 1.5 0.7 34 3.4
METS 27 0.4 1.9 0.3 1.4 0.7 3.7 3.9
MASP 30 1.0 5.2 0.6 1.8 0.6 2.7 3.7
MADR 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
PAMA 30 4.3 14.3 4.6 23.1 1.5 5.4 7.7
TROM 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
TAIW 30 1.0 8.0 1.3 7.4 0.8 5.8 7.6
NYAL 30 0.4 1.0 0.3 1.3 1.6 33 2.3
TSKB 30 0.9 3.1 0.9 4.4 0.8 3.2 4.5
HERS 30 0.4 16.4 0.2 3.3 0.5 21.2 19.0

Variance of unit weight of a singl.-diff. observation [mm]: 3.5

Variance of unit weight of a coordinate observation (2.8-13) [mm]: | 18.9
Ratio: 5.4 5.9

The group rms of each coordinate component is also a useful instrument to detect
station problems. Whereas the estimated internal precision of the site HERS is
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2. Least-Squares Adjustment

comparable to the quality of other European sites we find much higher group rms
values for the x-y-z-components. This indicates that particular days are showing
large deviations to the combined solution.
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3. Orbit Determination

There are interesting applications for combining normal equations in the context of
satellite orbit modeling. :

In a first part we briefly introduce some modeling aspects. This includes a review of
the important perturbing forces acting on the GPS satellites. Most forces are known
with sufficient accuracy to allow introducing them as known. Other forces, such as
the radiation pressure, need to be estimated in the orbit determination process. The
same is true for so-called pseudo-stochastic parameters. Due to modeling problems
in particular for longer arcs (> 1 day) it is necessary to allow for velocity changes at
predefined time epochs. The principles of "classical” orbit determination will con-
clude this first part.

In the second part (next chapter) we present a method to produce n-days-arcs
based on n consecutive 1-day-arcs. The advantages of this method in comparison
to the "classical” method lie in the flexibility and the speed of computation. In the
combination step we do no longer have to process GPS observations but only normal
equations. This does not only saves time, but disk space, too. The combination
methods allow to generate long-arcs which would not be possible with the classical
approach due to computer memory and processing-time limitations.

3.1 Modeling the GPS Satellite Orbits

3.1.1 Equation of Motion for GPS Satellites

The equation of motion in a central force field is (according to Newton and Euler)
given by

m-+=F or #+=a (3.1-1)

where

m  the constant mass of a particle (satellite)

r, © position respectively acceleration vector in the inertial space
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3. Orbit Determination

F  external forces acting on the particle

a accelerations acting on the particle.

If the force field is reduced to the gravity attraction of a spherical earth, the above
equation characterizes the two-body problem.

Eqn. (3.1-1) is a differential equation of second order in the three-dimensional Euc-
lidian space. To specify a particular solution we have to define e.g. 6 initial conditions.
Usually this is done by the

initial values for r(t9)]o (position) and #(to)|o (velocity) at epoch ¢y or by

boundary values r(t1)|o and r(t2)]o at different time epochs ¢; and t,.

The six osculating Keplerian elements at epoch ty are an equivalent representation
to the initial conditions and therefore also suited to describe a particular solution of
the problem.

In general we have to take into account all accelerations a acting on the satellite.
Let us split up the acceleration vector a into the gravitational part ag (main effect)
and a perturbing part ap:

a =ag +ap. (3.1-2)

The two-body acceleration ag may be written according to the Newtonian law of
gravitation as

GMr
ag = —?—; (31-3)

where

r geocentric distance of the satellite

G, M Newtonian gravitational constant and mass of the Earth; for satellite meth-
ods we have: GM = 3.986004415 - 101* m3s~2 [IERS 1992; SEIDELMANN
AND FUKUSHIMA 1992]

whereas the perturbing acceleration may be expressed as

ap = aP(tara'i',QhQZ)"'a(In) (31'4)

with q1,¢o,...,qn as unknown parameters of the force field.
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3.1 Modeling the GPS Satellite Orbils

3.1.2 Perturbing Forces

In the following subsections we will give a brief summary of the most important
external forces acting on the GPS satellites. Table 3.1 gives a first impression of the
relevant perturbing accelerations for orbit dynamics.

Table 3.1: Effect of gravitational and non-gravitational perturbing forces on GPS
satellites (from LANDAU 1988).

Perturbing Force Acceleration Orbit Effect [m]
[m/s?] After 1 Day | After 7 Days
Earth’s oblatness (Cag) 5.107° 10 Q00 100 000
Non-sphericity of the earth 3.1077 200 3 400
(Crms Sam, n,m < 8) '
Non-sphericity of the earth 0.03 0.1
(Cnms Snm, n,m > 8) :
Attraction by the moon 5-107° 3 000 8 000
Attraction by the sun 2.107 800 3 500
Earth’s tidal potential 1-107° 0.3 1.2
Ocean tides 5.10-10 0.04 0.2
Direct solar rad. pressure 6-10° 200 1 000
y-bias effect 5-10710 1.4 51
Albedo 41010 0.03
Relativistic effects 3-10710

3.1.2.1 The Earth’s Gravity Field

The most important perturbing accelerations are resulting from the Earth’s gravity
field. Because of the high altitudes of the GPS satellites the effect due to the shorter
wavelengths of the gravity field is relatively small. Therefore it is usually sufficient
to use an earth potential model up to degree and order 8 [BEUTLER ET AL. 1985].
The coefficients of the gravity field are very well determined by the long history of
laser, altimetry and surface gravity data. The IERS standards recommend the use
of the GEM-T3 model [IERS 1992; LERCH ET AL. 1994] with the exception of the
terms Cog, C21, and Sz;. The reasons are explained below.

The gravity field of the Earth is a consequence of the mass distribution in the Earth’s
interior. The mathematical description of the potential field is usually performed
using a development in spherical harmonics [HEISKANEN AND MORITZ 1967] with
the harmonic geopotential coefficients Cpy and Sy, of degree n and order m as
model parameters. An equivalent approximation is the development in a series of
mass moments [HEITZ 1986].
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3. Orbit Determination

The coefficient of zero order is fixing the total mass of the Earth. The corresponding
term in the potential is the so-called Kepler term.

The three first order coeflicients are equivalent to the definition of the center of
mass. Setting these values to zero means to select the center of mass as the origin
of the terrestrial reference frame (which is actually the case for the ITRF).

The second order terms are also of great importance. The mass moments of order
two (or the coefficients Cor, and Say,) are functions of the components of the tensor
of inertia.

The geopotential of the non-rigid Earth is time dependent due to the solid tides.
This effect is usually modeled as a variation of the geopotential coefficients Chy,
and Sp;, [EANES ET AL. 1983]. SEIDELMANN [1992] summarizes an efficient two-
step computing procedure treating in the first step only the second order terms
and in the second step all higher order terms (to a large extent not important for
the GPS applications). The mean value of the tidal disturbance in Cyg is not zero.
SEIDELMANN [1992] published a mean value of Coo = —1.39119 - 1078 . k,, which
depends on the Love number of degree two ke. The current IERS recommended
geopotential model GEM-T3 does not include this permanent tidal disturbance. To
be consistent with the corresponding solid Earth tide model of IERS which is used to
define the terrestrial reference frame a corrected Cyg value (including the permanent
effect) should be used.

The coefficients Cs; and Ss; describe the position of the Earth’s figure axis with
respect to the ITRF pole. The figure axis should closely coincide with the observed
position of the rotation axis averaged over a period of many years. Therefore we can
assume that the estimated values correspond to the mean pole position. If this mean
pole is identical to the ITRF pole we can use Cy; = S2;1 = 0. To be consistent with the
IERS pole series it is recommended to use the normalized values Cg; = —0.17-10~°
and Sy, = 1.19 - 107° instead of the GEM-T3 values [IERS 1992).

It is worth to mention that the term Cyy (like the other zonal coefficients) is re-
sponsible for secular perturbations of the satellite orbits such as the movement of
the orbit nodes (for GPS satellites about —14.2° /year) [BEUTLER 1995].

The osculating elements are showing perturbations in the semi-major axis a of 1.7 km
with periods of 6 hours - also mainly due to the flattening of the Earth.

The geopotential coefficients with and up to order two are therefore essential for the
definition of the terrestrial reference frame.

All coefficients of higher orders are representing the irregular shape of the gravity
field corresponding to the mass distribution in the earth.

HUGENTOBLER AND BEUTLER [1993] found that the non-central gravity field
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(mainly the potential term n = 2, m = 3) is responsible for resonance effects.
Due to the revolution period of exactly half a sidereal day, which is a perfect 2:1
resonance with the earth rotation, the orbits of the GPS satellites are considerably
affected. Typical periods of orbital disturbances in the semi-major axis a resulting
from resonance effects are ranging from 8 to 25 years with amplitudes of about 4 km.
ROTHACHER [1992] pointed out that a drastic reduction would be obtained already
if the revolution period would be changed by two minutes.

It is possible to try to solve for some of these parameters using for example the
data of the global IGS network. The partial derivatives are given in LANDAU [1988].
First attempts were presented by BEUTLER ET AL. [1994]. Results of center of mass
estimates are shown in Section 8.5.

3.1.2.2 Gravity Effect of Sun, Moon and other Third Body's

In addition to the Earth gravitation we have to take into account the perturbation
forces of the Sun, the Moon and other planets.

The perturbing force of the third body is identical with the tidal force with respect
to the Earth’s center of mass. The effect of the other planets is small. The largest
effect would result from Venus with 1.5 - 1071% m/s? perturbation acceleration.

The perturbing acceleration caused by a third body mass shows a period of six hours
in an earth-fixed system as a consequence of the combined effect of the penods of
the satellites orbit and the Earth rotation.

The mean orbital elements, in which the higher frequency parts due to the
Earth’s non-central gravity field are removed, are dominated by annual, semian-
nual, monthly, semimonthly etc. oscillations caused by the tidal forces of the Sun
and the Moon. BEUTLER [1995] demonstrated this fact with his analysis of 2.5 years
of IGS orbit determination.

The use of the new DE400/LE400 [STANDISH 1995] ephemerides for Sun and Moon
is proposed in the IERS standards (1995) [IERS 1995].

3.1.2.3 Solid Earth Tide Effects

The gravity attraction of the Moon and the Sun has primary an effect on the de-
formation of the Earth. The satellite orbits are affected because with the tidal de-
formation also the gravity field changes. The perturbation acceleration depends on

the Love number k. Second order approximation formulae are given in LAMBECK
[1974].
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3.1.2.4 Direct Solar Radiation Pressure and y-Bias

Direct Radiation

The direct radiation pressure results from the interaction (absorption and reflection)
of the light emitted by the Sun with the surface of the satellite. All radiation models
are therefore strongly depending on the knowledge of the shape, the reflection coef-
ficients of the illuminated planes and the orientation of the satellite with respect to
the Sun.

The satellite orientates its solar panels always in a plane which is perpendicular
to the Sun. Only eclipses (when the satellite is in the shadow of the Earth) are
an exception (see section 3.1.3). The perturbing force points in the direction sun
— satellite. This is the reason for the commonly used expression direct radiation
pressure.

Due to the ellipticity of the Earth’s orbit around the Sun and the changing angle
between the normal to the orbital plane and the unit vector pointing to the Sun we
have dominating annual variations in the radiation pressure. BEUTLER [1995] shows
an annual effect with an amplitude of 4 % of the total effect using the parameter
estimates of 2.5 years of IGS processing at CODE.

The perturbation acceleration formulae are given in [CAPPELLARI ET AL. 1976].
The IERS standards [IERS 1995] recommend the use of the so-called Rock 4
(Block I) and Rock42 (Block II) models [FLIEGEL ET AL. 1992]. Furthermore, a
distinction has to be made between the standard (S) models and the T-model which
includes thermal re-radiation.

The radiation pressure models are of importance only if we do not solve for radiation
parameters. For high precision applications these models are not sufficient enough.
If we determine in the least-squares adjustment a scale parameter (for the radi-
ation pressure) the resulting orbit is widely independent of the used apriori model
[ROTHACHER ET AL. 1995].

y-Bias
If the solar panels are not perfectly normal to the direction to the Sun there is also

an effect in the y-direction, the so-called y-bias. The real physical meaning of this
parameter is controversial discussed.

Extended Radiation Model

BEUTLER ET AL. [1994] demonstrated that GPS orbits with an arc length of several
days (up to 10 days) can be successfully represented with a modeling of the radiation
pressure in the following way:
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Qrpr = QRock + Xl (t)61 + X2(t)e2 + X3 (t)ef} (31'5)
with
GRock apriori radiation model (i.e. ROCK4 / Rock42 model)
ep = ]%8‘[5 direction of the direct radiation pressure (Sun (®) — satellite),
e =ey= gii(:::@) direction of the y-bias; e, = ——]%,
e;3 = e X ey, and
Xi =Xoi+ Xccosu(t) + Xgsinu(t), i=1,2,3; u(t) argument of latitude.

Instead of only two parameters py and p, for the modeling of the radiation pressure
we end up with nine parameters Xo;, X, and X;, ¢ = 1,2,3. These parameter
types are implemented in a parameter estimation program of the Bernese Software
(ORBIMP) treating the orbital positions as pseudo-observations. The program is used
by KouBA [1995B] to check the long-arc quality of the orbits of the IGS Analysis
Centers.

Recently the model has also been implemented in the main parameter estimation
program GPSEST and the combination program ADDNEQ. High quality long-arc orbits
(below 10 ¢m) are possible using this model together with pseudo-stochastic orbit
modeling (see Section 3.1.4).

3.1.2.5 Other Perturbations

Other effects with a perturbation acceleration smaller than 1-10~° are usually not
modeled

Albedo radiation pressure (radiation of lights which is reflected by the Earth)

Gravitational effects of the ocean tides

Relativistic effects due to the Earth’s gravity field

Thermal emission of the satellite

e Drag

3.1.3 Eclipsing Satellites

About twice per year, for usually two months twice per day, a GPS satellite is moving
through the shadow of the Earth. The maximum duration of an eclipse is about 55
minutes.

The modeling of GPS satellites during eclipse seasons is extremely difficult. On
board solar sensors are not able to determine the direction to the Sun during the
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eclipse periods. The satellite is rotating with a constant rotation rate during the
eclipse phase. After the shadow exit the satellite has an arbitrary orientation with
respect to the Sun. On the shortest possible way the satellite turns back to its usually
orientation. The rotation direction is ambiguous and depends on the orientation of
the satellite at the shadow exit.

More details are reported by BAR-SEVER [1994].

A possible corrective action for the orbit determination of eclipsing satellites is the
removal of data (about 1 hour) after the shadow exit and the introduction of pseudo-
stochastic parameters (see next section).

According to the weekly orbit comparisons performed by the IGS Analysis Center
Coordinator [KOUBA 1995B] the orbit quality of the eclipsing satellites is consider-
ably degraded compared to the other satellites.

3.1.4 Stochastic Orbit Modeling

Pseudo-stochastic parameters

are included as additional or- £ 38 o Siochastic /
bit parameters to absorb un- T 37222 Stochastic in R, S (1.D-6 weight
modeled per turbations S 46 *** Stochastic in R, S (1.D—5 weight) Ve
. ] - rd
: . . e
The physical meaning of the § as £
pseudo-stochastic parameters © 4, ’
. -
is a pulse s at a predefined . ,,
time 7 in a predefined direc- o - V4 .
. . . o 3 / -
tion characterized by the unit § 1 e e
. oy - 3. e -
vector e. The resulting orbit is ° e P
continuous. Only the satellite’s 2z 3° P o
velocity is allowed to have a & 2° s
discontinuity at the time 7 of % 28 P
g —
the pulse: < 27 , . . : . :
0 1 2 3
Vnew = VUold + S €. Arc length (in days)

Allowed directions are usually )
radial (R), along-track (S) and Figure 3.1: Improvement of the estimated rms

out-of-plane (W). We make aposte.riori oi.' single difference L; ob-

use of this type of orbit param- servations using pseudo-stochastic pa-

eters with much success for the rameters for longer arcs. Unit of the

following applications: sp}ac';ﬁed pseudo-stochastic weights is
m/s.

a) Modeling Eclipsing Satellites:
Due to the sometimes unpredictable behavior of an eclipsing satellite (see section
3.1.3) it is useful to set up these parameters to absorb a part of the modeling prob-
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lems. The quality of the 3-days-orbits increases significantly even if it does not reach
the quality of the non-eclipsing satellites. Usually we set up stochastic parameters in
the R and S direction twice a day (at midnight and noon UT). Parameters in the W
direction are set up, but they are tightly constrained for the parameter estimation.

b) Introducing Pseudo-Stochastic Pulses for All Satellites for Long Arcs (> 1
Day):

Figure 3.1 reflects the orbit model deficit for longer arcs showing an increase of the
estimated rms aposteriori of single difference L, phase observations. It is clearly
visible that pseudo-stochastic parameters with apriori rms values > 1-1075m/s? for
the R and the S direction are able to keep the increase of the rms for longer arcs
small. Additional parameters for the W directions create no improvement.

The longer the arcs the more important is stochastic orbit modeling. Long-arc com-
putation is the topic of Chapter 4. The quality of 7-days-arcs is shown in Figure
3.2. The rms values are obtained from a Helmert comparison of the orbits of a
particular day (within the 7-
days-arc) with the CODE or-

7-days-arcs bit (middle day of a 3-days-

rms of comparison in m arc, stochastic applied for all
06 satellites, apriori weights 1.d-

gf' 6 m/s? (R), 1.d-5 m/s?® (S),

oaf 1.d-9 m/s? (W), direct and

0.2 y-bias radiation pressure pa-

O'S: rameters). The upper (solid)

line corresponds to an orbit for
which all satellites are modeled
with identical options as for
the 3-days-arcs. For the days
at the arc boundaries (day 3
and -3 of the arc) we see dif-
ferences of up to 50 em. The
quality of the middle days is
not degraded by the longer arc
length. The agreement is of the
order of 6-8 ¢m. Using apriori
weights of 1.d-4 m/s? for the
R, S, and W component helps to reduce the problems at the arc boundaries. Never-
theless there is a considerable loss of quality (rms values of about 20 c¢m for the days
3 and -3). The limits for the use of the standard radiation pressure model together
with pseudo-stochastic parameters is given by arc lengths of about 3 days.

5. Oct. 95

15.Qct. 95

30. Oct. 95

Figure 3.2: Quality of 7-days-arcs using differ-
ent apriori weights for the pseudo-
stochastic parameters. Radiation pres-
sure model: direct radiation and y-bias.
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3. Orbit Determination

Most of the effect of the stochastic parameters is absorbed by the extended radiation
pressure model (3.1-5), which is, as already mentioned, now also implemented in the
parameter estimation program GPSEST and the stacking program ADDNEQ.

Using extended radiation model together with pseudo-stochastic parameters (weights
identical to the values of the 3-days-arcs) we are able to keep the rms values of Fig-
ure 3.2 for all days of the 7-days-arc below the 10 cm level. This means that there
is almost no difference in the quality between the orbits of the boundary days and
the orbits of the middle days [SPRINGER ET AL. 1996].

In spite of the larger degree of freedom it is useful even for shorter arc lengths
(including 1-day-arcs) to model all satellites using stochastic parameters. For 3-
days-arcs the advantage is clear (see e.g. the estimation of the center of mass in
Section 8.5).

c) Flexibility of the Modeling Using Normal Equations

The method of the orbit determination based on normal equations allows a very
flexible handling of the stochastic parameters. Setting up stochastic parameters for
all satellites in the daily solutions allows it to select the stochastic model later on
in the combination step. For satellites which behave well we may tightly constrain
the estimates, for others we may specify only loose constraints (see section 2.6.1).
We refer to Section 4.4 for setting up additional stochastic parameters at the day
boundaries of consecutive arcs.

3.2 Estimation of Satellite Orbits

The estimation of orbit parameters with the help of observations (GPS carrier phase
and pseudorange observations, observations of geocentric satellite positions in form
of broadcast messages [DIERENDONCK ET AL. 1978] or in form of precise orbits
[REMONDI 1989)]) is the task of the orbit determination.

Below we review the principles of a ”classical” orbit determination.

The linearized observation equations, taking into account only the orbital parameters
as unknowns, may be written as:

y(tvrali‘aq17q2v"aQTl)+e = y(t)TO)i'lO’QIIO’q?IO)"'1qn|0) (32'1)

+[ Bro Bq][AAT;]

where

¥, ylo observation vector and the corresponding apriori values of dimension nps,

Arv parameters characterizing initial conditions; vector contains geocentric posi-
tion = and velocity 7 of the satellite; Arv = rv — rv|o,
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3.2 Estimation of Satellite Orbits

Aq dynamical parameters g; ,i =1,...,nq; Ag =g — gy,

B,, partial derivatives with respect to rv: v ‘
(Brv)tJ—Ti-yT;TlD s i=1,...,n0 J=1,...,6,and

B, partial derivatives with respect to the dynamical parameters q:

(Bq)ij=g%g%;-lo 3 i=1,...,nobs, j:l,...,nq.

The orbit determination process asks not only for a best fitting approximation of
the observations, it also asks for the validity of the equation of motion (3.1-1) for
the resulting orbit.

We solve the orbit determination problem iteratively. The apriori orbit used for the
least-squares adjustment is obtained by solving the following initial value problem

N ‘ GM
#lo = (ag + ap)lo = — g + ap(t,7v|0,4q|o) (3.2-2)
Tio
where the initial conditions
’r‘(to)lo = 'I‘(to,’l“vlo)
*(to)le = 7(to,Tvl0) (3.2-3)
and qlo

are assumed known. The apriori values for the dynamical parameters g|o may be
assumed to be e.g. zero. In practice the program DEFSTD computes an apriori orbit
7(t)|o which is not an ephemeris table of satellite positions, but consists of several
sets of ¢ polynomial coefficients (usually one set per hour and ¢ = 11) to allow at any
time ¢ the computation of the satellite’s position and velocity [ROTHACHER ET AL.
1993; ROTHACHER 1992]. The approximation error with respect to the true solu-
tion of the equation of motion can be reduced to any given limit with the selection
of the polynomial degree.

The polynomial coefficients and the partials with respect to the dynamical param-
eters are stored for later use in the main parameter estimation process (program
GPSEST). The partials with respect to the Keplerian elements do not have to be
saved because they can be computed using analytical formulae.

The principles, advantages and disadvantages of analytical and numerical integration
methods are not discussed here. We refer to BEUTLER [1990] for detailed informa-
tions. From now on, eqn. (3.2-1) represents a standard parameter estimation process.

The improved orbit r(t) may be expressed using the apriori orbit (t)|o and the

increments Arv and Agq (linearization with respect to the unknowns necessary for
the least-squares adjustment) as

r(t)=r(@)l+ [ Cr(t) Colt) | [ . ] (3.2:4)

with
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3. Orbit Determination

C,,(t) partial derivatives with respect to rv:

c,,,(t))ij=%%%§|o s i=1,...,3, j=1,...,6

C,(t) partial derivatives with respect to the dynamical parameters gq:
9 i .
(Cq)(t)lj_mlo ’ 1"‘1 731 J=1,'-'7nq-

The partial derivatives in the matrices C,,(t) and C,(t) are solutions of the deriv-
ative of the (primary) initial value problem (3.2-2) and (3.2-3) with respect to the
parameters rv and q. The resulting set of differential equations expressed in matrix
notation are also called variational equations:

é’rv (t) __ Crv (t) C"'rv (t) Ar 0
[ AL ] - [ D) Cylt) ] [ 4, ] ¥ [ 4, } (.29
with the given initial conditions

rv(tO) MI ) C.’rv( M)_l

oTv - = “orv 3.2-6
Cq(to) @ N Cq(tO) = m) ( )
the 3 x 3 matrices
d(ac + ap); d(ag + ap);
Ap)yy = ———— Ay)ij = ———7—— .2-
( r)z] ( )] ]0 ? ( v)zJ a(r)J '0 (3 7)
and 3 X n, matrices containing the elements
d(ag + ap);
Ay = ——CG TP, 2-
(Ag)ik e lo (3.2-8)
The simplifications A, = 0 are valid if no velocity-dependent accelerations are act-
ing on the satellites (which is true for GPS) and A, = —-%”1(1 -3 %’;‘i) if we can

neglect the perturbation accelerations a, [BEUTLER 1982].

The accuracy requirements for the integration of the variational equations are less
stringent than for the integration of the equation of motion. An approximate solution
decreasing considerably the computational burden of the solution of the variational
equations may be found in [BEUTLER ET AL. 1994].

Such approximations are helpful because in each iteration step for the orbit improve-
ment we have to solve the non-linear differential equation of motion (3.2-2), (3.2-3)
and the 6 4+ ng linear differential equations (3.2-5), (3.2-6).

It should be mentioned, however, that the solutions of the variational equations are
produced using numerical integration, today.

The resulting orbit, computed by a new numerical integration using the improved

orbital elements, is a solution of the equation of motion and is the best fit to the
observations in a least-squares sense.
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4. Combination of Consecutive
Daily Arcs

4.1 Introduction

The combination of parameters on normal equation systems level is only possible if
the parameters are referring to the same apriori information. If this is not the case
we have to perform a parameter transformation (2.5-5) to make them identical. For
this procedure we need to know the apriori information for each particular solution.
This principle was applied to many examples in Section 2.5.2. We only have to make
sure that the linearization is still valid.

In the following sections we will apply the parameter transformation method for the
combination of the orbits:

Based on daily normal equation systems (NEQs) containing all parameters (includ-
ing orbit parameters referring to a well-defined 1-day apriori arc) we will develop
the formulae which are needed to form n-days-arcs. These developments were pub-
lished in [BEUTLER ET AL. 1996]. We review them below in view of our general
considerations in Chapter 2.

4.2 Problem Definition

We assume that each daily solution ¢ (out of totally n daily solutions) may contain
the following orbit parameters for a particular satellite:

e osculating orbital elements E;, 1 =1,2,...,n; k=1,2,...,6:
Keplerian orbital elements referring to the osculation epoch tg; of the arc for
day i (usually 0" GPS-time for the particular day). We use the representation
Ei = (Eily Ei?) e )Eiﬁ) = (a" C,’i, Q)w’u)i .

e dynamical parameters g, 1 =1,2,...,n; k=1,2,...,mg:
orbital parameters to model the perturbation forces due to solar radiation (sec-
tion 3.1.2.4). Usually only two radiation parameters (direct term and y-bias)
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4. Combination of Consecutive Daily Arcs

are estimated: q; = (a4, ay)i; m1 = 2. Additional parameters characterizing
radiation pressure according to eqn. (3.1-5) are implemented, too.

e pseudo-stochastic parameters si, t = 1,2,...,n; k = 1,2,..,my character-
ize velocity changes at predetermined times in predetermined directions. The
stochastic parameters are very useful to absorb unmodeled perturbation forces
(see Section 3.1.4) and therefore important for long-arc evaluations.

Let us summarize all m = 6 + m; + mo orbital parameters of a particular satellite
of day 7 in the following way:

0; = (041,02, -+, 0im) = (Ei1, Ei2, - -+, Ei6, Gi1,Gi2s - - « » Gimy > Sil 82, - « + » Simg)
(4.2-1)
For simplification we assume that each day ¢ contain the same number of dynamical
and stochastic parameters m; and m respectively (which is in general not the case).

The daily normal equations refer to the used apriori arc

ri(t)|o = r(t; 0ilo0, 0i2]0, - - - , Oimlo) (4.2-2)

We store the apriori arc as a set of polynomials for each component (resulting from
the solution of the equation of motion in a perturbed gravity field) allowing a com-
putation of the position and the velocity of the satellites at any time. Apriori values
for the radiation pressure parameters can be specified (see Section 3.1.2.4) and the
apriori values for the stochastic parameters are zero. We need this piece of inform-
ation together with the normal equations as input for the combination program
ADDNEQ.

The estimated orbit of day ¢ is given by

T'i(t) = T(t; 01,042, 7oim) (4.2-3)

using the "improved” parameters o; = 0;|o + do; for the orbit integration.
The combined orbit 7(t) is defined as

re(t) = 7(t;0c1,0c2;- - 30c)
= r(t;EclaECZ;“"E667QC1’QC23"°)qcmn
81135125+ -+ 331m21521: 8225+ 1 S2m2y -+ - 1 Sn1ySn2y .+« )snmz)'

(4.2-4)
The vector 7.(t) is now expressed for the entire n-days-arc as a function of one set
of six Keplerian elements, one set of m; dynamical parameters and n sets of my

pseudo stochastic parameters. As reference we use the initial epoch ¢; of arc number
1.
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4.3 Combination of Osculating Elements and Dynamical Parameters

This means that the Keplerian elements of the arcs ¢ = 2,3,...,n have to be ex-
pressed by those of the first day.

The dynamical parameters g; of the different days are combined to g, with a simple
superposition of the relevant NEQ-parts if the apriori models are identical.
It is also possible to solve for dynamical parameters each day separately even if we
solve for common osculating elements which will be demonstrated later on.

In addition, all (n-mg) pseudo-stochastic parameters remain as unknown parameters
in the combined orbit (4.2-4) because of the fact that the stochastic parameters s;;
of day ¢ have an influence on the orbit for all following days ¢ + 1,7 +2,...,n.

It is also possible to set up additional stochastic parameters in three linear independ-
ent directions (for example R, S, W) between two subsequent days. In this case we
have to add stochastical parameters s}, to the model for the combined orbit (4.2-4).

All the described combination possibilities for the different parameter types can be
realized using the parameter transformation (2.5-5). For simplification we discuss
the combination in the following steps:

e combination of the osculating elements and the dynamical parameters
e combination of the stochastic parameters

¢ combination of all orbit parameters together

4.3 Combination of Osculating Elements and Dynamical Pa-
rameters

4.3.1 One Set of Dynamical Parameters for the Combined Arc

Because the six osculating elements of day ¢ E; = (a,e,1,Q,w,u); at epoch ¢ are
equivalent to the position r;(¢) and velocity rsl) (t) of the satellite at this epoch, we
have to ask for continuity of position velocity at the day boundary (labeled with the
time argument ¢;;) if we try to express the orbital parameters of the day ¢ + 1 by
those of day ¢. For the dynamical parameters we have to ask for identical estimates.
The corresponding 6 + m; condition equations then read as:

ri(tiv1) = riptin)
rgl)(tiﬂ) = rﬁ-)l(ti-u) (4.3-1)

% =9+ = 4c
The linearized condition equations give directly the transformation equations from
day ¢+ 1 to day i. In order to simplify the notation we leave out the time argument
ti+1 which is the same in all the time dependent functions:

I
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4. Combination of Consecutive Daily Arcs

rio + kz TEL . Ay, + 2 Tl . Agig =
= ritilo + kZ }TTE‘_:_'_-"%‘% AEix + kE %ﬁ,’f Agit1k
(4.3-2)
rgl)lo + 263 T(l)lo - AEy + Z d’z:llo - Agy =
= vl + kil Z;:Elf: "AEine + g %%k— Agiv1k
gilo + Ag; = gialo + Ag;y- (4.3-3)

. . . 1), .
Let us summarize the position- and velocity- vectors r;|o and rg )Io into the one
column matrix

7ilo
r; = . 4.3-4

In matrix notation the condition equations (4.3-2) are given as

Hiyy Qi1 || ABin | _ | Hi Qi || ABi | | rvilo —rvinilo
0 I Ag;iy 0 I Ag; ilo — gitalo
(

with

? day number

H; Jacobian matrix of the transition from a set of osculating elements to initial
coordinates and velocities at time #;,1; analytical formulae are given in
[BEUTLER ET AL. 1996}:

[ ’I‘.)Z| d(T‘

dEix dEo | ](st) ; 7=1,2,3; k=1,2,...,6, (4.3-6)

(ri); and (’rﬁ ); being the j-th component of the vector r; and r( )

Q; partials with respect to the dynamical parameters; numerical computation
according to Section 3.2:

[ d(r'i| d(rgl))j

0 1=1,2,3;, k= 3-
dgik daix |O](6Xm1) y J ’ ’3a k 112a y 11 (437)

AE; estimated osculating elements of day i:

= [Eij — Eijlo)exyy 3 I=1,2...,6 (4.3-8)
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4.3 Combination of Osculating Elements and Dynamical Parameters

Ag; estimated dynamical parameters of day ¢:
| i — Gislolmy 1y 3 I=12,...,m (4.3-9)
E;lo apriori osculating orbital elements of the daily orbits at t = #;,;:
Eilo = (Ei1, Eig, ..., Eig)lo (4.3-10)
rv;lo apriori positions and velocities of the daily orbit arcs at ¢t = ¢;1;
ailo apriori dynamical parameters of the daily orbits:
ailo = (gi1, Gi2s - - » Gimy ) o (4.3-11)

To derive a transformation equation Which is identical to eqn. (2.5-5) Aﬁ = BAE’ +
dB we have to solve eqn. (4.3-5) for the parameters AS = [AE;11,q;,,]. With

-1
Hi Qi _ | H} -H Qin
[ - =1 ; (4.3-12)
we find that:
AE; Ky Liv1; AE; My
— y ) + ? 43'13
[Aqi“] [ 0 I Ag; N1 ( )
with
Kin, = H;—&-il'Hi
Lipg = Hiy-(Q:- Qi) (4.3-14)
My = H - {(rvilo — rvis1lo) — Qiy1 - (gilo — @iv1lo)}
Nitii = qlo— Qipilo.

In a final step we have to apply a sequence of transformations of type (4.3-13) to
express the parameters of day ¢+1 by those of the first day. This can be done, without
numerical integrations of the equation of motion, using the recursion formulae:

AE; Kit1n Liyia AE, M
= ’ ’ + ' 4.3-15
[ Agiq 0 I Aq Niy1a ( )
with

K1, = Ki;-K;;

Liszgy = Lig;+Ki;-Lipy (4.3-16)

Miyg = Mipi+ Livyi - (gilo — gilo) + Kivii - M '

Ni+1,1 = Q1|0 - Qi+1|0-
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4. Combination of Consecutive Daily Arcs

The corresponding normal equation system of day ¢ + 1 has to be transformed
according to eqns. (2.5-8)-(2.5-10) and (2.5-11) prior to the superposition to the
combined NEQ (containing the parameters E, = E; and q, = q;).

An alternative is the introduction of the transformation equations (4.3-15) as pseudo-
observations with heavy weights which is according to 2.6.2 identical to the GMM
with constraints. Such a procedure has the disadvantage that all orbit parameters E;
and gq; of the days ¢ = 2,3,...,n remain in the combined normal equation system.
The condition equations are linking these parameters to the ones of the first day.
The parameter transformation is an elegant method keeping the combined normal
equation system as small as possible using the parameters E. and g, only.

4.3.2 n Sets of Dynamical Parameters for the Combined Arc

If we solve for n-m; dynamical parameters g¢;; for the n-days-arc instead for g,k =
1,...,m1 we just have to skip the third condition equation in (4.3-1). In this case
the linearized transformation equations (4.3-13) are simplified to

AE;
AE;4 = [ Kini Livi Livin ] Ag; |+ M, (4.3-17)
Agiy
with
Kin:, = H i"+11 - H; (same as in the previous section)
7 )
Livyi = Hipi- Qs (4.3-18)
Liviivi = —Hj- Qi .
My = HZL - (rvilo — rviao).

The corresponding recursive formulae then read as:

AE;
Pt = Aq, —~
AE;y, = [ Kiin Nigg oo Nigin ] + My (4.3-19)
A‘1:‘+1
with
Kit1n = Kii,;-K;) (same as in the previous section)
B Lijripq for j=i+1
N = Lit1, + Kit1i- Ny for j=i (4.3-20)
Kip1i-Nij for j<i—1
My = M+ K- M.

90



4.4 Combination of Stochastic Parameters

The above recursive formulae are the transformation equations for the orbital pa-
rameters AE; ) of day 7 4+ 1. The parameter transformation has to be applied, as
in the previous section, prior to the superposition to the combined normal equation
system.

4.4 Combination of Stochastic Parameters

Let us start with a brief definition of pseudo-stochastic parameters. We consider the
particular day ¢ with the day boundaries ¢; and ¢;4;. A pseudo-stochastic pulse s in
the direction e at the time 7 < ¢; allow according to Section 3.1.4 a velocity change
at that time:

Vnew (T) = 'Uald(’r) +s-e (4.4—1)

It is of greatest importance for the orbit combination that we can compute the ef-
fect of that specific pulse on the orbital elements at the time ¢; and all following
osculating epochs. Using the special perturbation theory of celestial mechanics we
are able to express the induced effect in the osculating elements as linear functions
of the pulse components of s - e.

A stochastic pulse s-e at time 7 changes for example the semi-major axis [BEUTLER
ET AL. 1996]:

2 a-(1-e?)
—————-(e-sinv rep + —— - eg). 4.4-2
n- m ( R r S ) ( )
Similar equations also exist for the other osculating elements as functions of eg, eg
and ey which are the components of the vector e in R—, §— and W— directions.

In matrix notation we can simplify the equations to

Aag(t) =5+

AE (1) = rs(7) - 5 (4.4-3)

For the case 7 = ¢; this already proves that the changes induced into the osculating
elements are linear functions of the pulse s.

For the case 7 < t; we have to solve the perturbation equations starting from the
elements E; = E(t;). In linearized form neglecting all terms higher than the first
order in the Taylor series development we may write:

AE (1) = My(t;,7) - AE; (t:) (4.4-4)
with 4(E;
(M (8, )) s = G (4.45)
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M, results from the solution of the variational equations (3.2-5) taking into account
all perturbation forces used in the orbit model.

Only in case of the simple Keplerian approximation we may assume M = I which
is sufficient for short arcs.

On the other hand we are able with eqns. (4.4-3) and (4.4-4) to take into account
the effect of a stochastic pulse s at time 7 onto the osculating elements at epoch ¢;
by the linear transformation equations

AE(t;)) = M7 t;, 1) - ks(T) - 5. (4.4-6)

This result opens also the possibility to set up additional stochastic parameters (up
to three pulses in three linearly independent directions) at the arc boundary ¢;. The
osculating elements at time t; - which are figuring in the NEQ system of day ¢ - may
be written as a linear function of these introduced stochastical parameters according
to (4.4-6). But even if we do not do that the osculating elements of day ¢ are in any
case functions of the stochastic parameters pertaining to epoch ¢;.

Let us assume that Aﬁi contain all parameters of the NEQ system ¢ plus all pseudo-
stochastical parameters which were set up in the previous days plus all the additional
ones at the day boundaries t;; j = 2,7. With (4.4-6) we get the parameter trans-
formation equations of type (2.5-5) AB; = BAB:

AE;
51
AB;=ABi=[I T\ ... Tiy T ... T} || 5ia (4.4-7)
s
with
AE; Keplerian parameters of NEQ system i:
5; pseudo-stochastical parameters of NEQ system j: sj1,852,.+.,8jma; J =
1,2,...,1—1
§; additional pseudo-stochastical parameters at the day boundary to the pre-
vious arc: 3;1,352,.. 2 Simgs J=2,00000
T; transition matrix of pseudo-stochastic parameters set up in the previous
arcs j = 1,2,...,1 — 1 according to (4.4-6)
T; transition matrix of additional pseudo-stochastic parameters set up at the

arc boundaries j = 2,3,...,1 according to (4.4-6)
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Parameters

Applying transformations (2.5-8)-(2.5-10) and (2.5-11) we get an ezpanded NEQ sys-
tem ¢ which can be superposed in the conventional way to the accumulated NEQ
system.

It should be mentioned that the expanded NEQ system will be singular because the
additional rows and columns are according to (4.4-6) linear functions of the rows and
columns of the osculating parameters in the original NEQ system. This singularity
disappears after the combination into the n-days-arc.

We have thus demonstrated that it is possible to take into account the changes of
the orbital elements at the osculating epoch induced by stochastical pulses set up
prior to that epoch and that it is possible to set up additional pseudo-stochastical
parameters at the day boundaries for any satellite. For an estimation of stochastic
pulses more frequently than once per day it is necessary to set up these parameters
already in the 1-day-solutions.

4.5 Combination of Osculating Elements, Dynamical Pa-
rameters and Stochastic Parameters

We developed in the previous subsections the orbit combination step separately for
osculating elements and dynamical parameters on the one hand and for pseudo-
stochastic parameters on the other hand. For the osculating elements and the dy-
namical parameters the recursive transformation equations (4.3-15) (common dy-
namical parameters) and (4.3-19) (separate dynamical parameters) were derived,
for the stochastical parameters the transformation equations (4.4-7) have to be ap-
plied.

The realization of the orbit combination covering all the kinds of orbital parameters
is merely the addition of the transformation equations.

In practice we proceed sequentially. After the parameter transformation for the
stochastical parameters leading to an expanded NEQ system the necessary trans-
formations are applied for the osculating elements and the dynamical parameters in
the daily normal equations.

4.6 Implementation Aspects

The described feature of computing n-days-arcs from n 1-day-arcs is implemented
in the program ADDNEQ of the Bernese Software V3.6.

The primary motivation was the reduction of the processing time of the CODE
processing center of the IGS without loss of accuracy. This was necessary because
with the steadily increasing data volume (Table 1.2 illustrates this statement) the
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turn around time for the daily solutions (and the final overlapping 3-days-solutions)
increased considerably leaving not enough time in the case of problems. Section 5.5
shows the effort of a new processing scheme based on daily solutions in comparison
with the conventional processing using the original observations for the overlapping
3-days-solutions. ‘

Additional motivation came from the fact that the estimation of UT1-UTC and
probably also subdiurnal variations in the earth’s rotation rate are more stable for
longer arcs. See Section 8.4 for more details.

For all the long-arc applications it is important that we are independent of a ”limit”
of the arc length. This is true for the demonstrated method even if we consider only
arc lengths of up to ten days. The only input we need is the daily NEQ systems and
the corresponding apriori arc information whereas the conventional method always
needs an apriori arc of the lengths of n days.

It is also true that the CPU requirements would never allow processing of arcs longer
than three to four days using the conventional method based on the original obser-
vations. Table 5.3 shows that the storage requirements of the original observations
are not negligible either.

The availability of a flexible and comfortable tool in case of satellite problems is a
necessary but also very helpful consequence of the long-arc evaluations. Satellites
which behave not properly are showing larger residuals with respect to the observa-
tions (increasing estimated rms of the phase observations). Other test criteria like
fitting a 7-days-arc through the resulting daily orbits according to BEUTLER ET AL.
[1994] and differences between consecutive daily orbits are also very helpful to de-
tect such problems.

The following options are available to the user:

e arbitrary arc-lengths are possible. For longer arcs (> 2 days) additional
stochastic parameters are necessary to absorb unmodeled perturbation forces
(see Section 3.1.4).

e New arcs (new osculating elements and new dynamical parameters) may be
set up at any day boundary for any satellite.

e New stochastic parameters in the R-,S-; W- directions may be set up at the
day boundaries for any satellite with any apriori weight.

o If a satellite is missing in a file we can bridge the gap (same orbital elements
before and after the gap) or we can set up new orbital elements after the gap.

e One manoeuver per satellite and per n-days-arc allow a setting up of a new arc
within a particular day without loosing data. For security it may be useful to
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delete one hour of data centered around the manoeuver. This and the setting
up of a new arc within the day has to be handled by the main parameter
estimation.

e It is possible to ask for one and the same set of dynamical parameters for
the entire n-days-arc (see Section 4.3.1) or to set up day-specific dynamical
parameters (see Sections 4.3.2)

The main gain of these options is the fact that a re-processing of the daily solutions
can be avoided in most cases.

4.7 Partial Derivatives: Computation and Accuracy

An important characteristic of the least-squares adjustment is the fact that the par-
tial derivatives with respect to the unknowns parameters can be computed with a
moderate accuracy if we iterate the least-squares adjustment process.

To avoid these iterations we have to compute the partial derivatives with an ac-
curacy which will not affect the resulting parameter estimation. This is usually the
case if the products (partial derivative) - (parameter increment) are well below the
formal errors of the particular parameters.

The product indicates already the dependence on the partial derivative but also on
the quality of the apriori information of the parameter.

Let us assume that the Keplerian orbit deviates with respect to the true orbit by
10 km after a day and 100 km after 3 days (see Table 3.1). This seems to be a
bad approximation but in view of the absolute distance to the satellite of 20000 km
the relative error is only 0.5 %. The same error can be expected for the partial
derivatives using Keplerian approximation. This means that with each iteration the
parameter increments are reduced by a factor of 2000.

The orbit combination based on 1-day-solutions shows an accuracy of the order of
20 cm (see Figure 4.1) with respect to a 3-days-solution. The last iteration of the
conventional solution is not contaminated by this error source because the maximum
parameter increments are of the order of 2—3 ¢m. The effect of a relative error of 0.5
% in the partial derivatives and a parameter increment of 20 cm is well below the
1 mm for the resulting orbit. The error propagation of an error in the semi-major
axis of Aa = 1 mm causes because of Kepler’s third law n%a® = GM an along track
error of —3T7NAa = 2.5 cm - N after N revolutions. This quality becomes important
for longer arcs.

To be on the safe side we compute the partial derivatives in (4.3-5) with analytical
formulae more accurately using the perturbation theory [BEUTLER ET AL. 1996).
Actually only the effect of the earth’s oblateness (Cag term) is taken into account
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which improves the accuracy with respect to the Keplerian approximation by a factor
of 10.

The partials with respect to the dynamical parameters are computed using numerical
integration in a simplified force field according to Section 3.2. That is satisfactory
from the point of view of the quality of the results but not from the storage point
of view (0.5 Mbyte per day and 1-day-arc).

After several promising attempts to compute the partials analytically, we ended up
by actually computing all partials through numerical integration. The disk storage

requirements were minimized by a very efficient way to store the partials (to be
published). ’

4.8 Equivalence of the Orbit Combination with the Conven-
tional Orbit Determination

Figure 4.1 demonstrates the
equivalence of the conventional 07

method (improvement of a 3- 06 1

days-arc with original observa- . '

tions) and the new developed o o8

method based on the combin- £ 04

ation of daily NEQ systems. 5 o3

For a month (since day 226 of &

year 1994) the orbits of the two 1 M w W

methods were compared us- o1

ing a seven parameter Helmert 004, MM ' --M '
transformations between the 220 230 240 250 260 270 280
two orbit systems. The rms Dy of Year 1954

values of transformation are of [0 GPSEST - 1D GPSEST __*== 30 GPSEST - 30 ADDNEQ ]
the order of 1 ¢m in the cases

in which no stochastic param-
eters are set up (no eclipsing Figure 4.1: Rms error of a seven parameter

satellites in the time period of Helmert transformation between the
the days 248 - 260). Before orbit systems generated using the con-
ventional method (GPSEST) and the
new method based on the combin-
ation of daily solutions (ADDNEQ).
selection of stochastic parame- The rms of transformation between the
ters for the eclipsing satellites 1-day- and the 3-days-orbits is also in-

for the 1-day- and the 3-days- cluded.
solutions. If a particular satel-

and after these days we have
rms values of up to 8 cm. The
reason for this is a different
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lite was eclipsed for the first time on day 3 of the 3-days-arc, stochastical parameters
were set up all 12 hours for all the days (totally 6 stochastic time epochs) in the
conventional, but only within the last day and for the arc boundaries (totally 3
stochastic time epochs) with the new procedure.

In all other cases (identical stochastical parameters) we find an agreement of 1-2 c¢m.
Actually we assume that the quality of the 3-days-orbits is (in the years 1994 and
1995) of the order of 10 ¢m [{KouBA 19958] which is about five times larger than
the effect coming from the new processing method.

A similar picture results from the comparison of the earth rotation parameters. The
derivations are below 0.03 mas for the x- and the y-component and 0.002 msec/day
for UT1-UTC which is a comfortable factor 10 below the current accuracy level given
by the annual comparisons of the different space techniques by the IERS annual re-
ports [IERS 1994].

The method was used operationally since January 1995 without causing any prob-
lems.

With the mentioned computation of the partials using analytically methods (see
previous section) the equivalence of orbit combination and conventional orbit de-
termination is of the order of 1-3 mm for the orbits - a necessary improvement in
view of the increased orbit quality in 1996.
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5. Processing Strategies using
Normal Equations

Sequential LSE has a big variety of applications in the processing of GPS observa-
tions, ranging from near-