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VORWORT

Geoditische und geophysikalische Anwendungen des amerikanischen Globalen Positionierungs-Systems (GPS)
beinhalten meist globale Phinomene wie Polschwankung, Nutation, Plattentektonik oder regionale Effekte wie den Post
Glacial Rebound. Werden Aufgaben dieser Art mit GPS untersucht, sind sie nicht zu trennen von der Bahnbestimmung
im weitesten Sinn und gehdren damit zu den anspruchsvollsten Fragestellungen der Satellitengeodasie.

Die vorliegende Arbeit gliedert sich in einen ersten eher theoretischen Teil (Kapitel 1-6) und einen angewandten Teil
(Kapitel 7-8). Die Modellierung von Satellitenbahnen und GPS Observablen, sowie die Definition und die GPS-techni-
sche Realisierung des Referenzsystems sind zentral fiir Herrn Mervart. Diese Aspekte sind in den Kapiteln 2 bis 5 kom-
petent abgehandelt: Man findet dort eine prignante Diskussion der neuesten Satellitenbahnmodelle, der relativistischen
Effekte, der atmosphirischen Refraktion, aber auch die Definition des Phasenzentrums von Satelliten- und
Empfingerantennen.

Kapitel 6 gibt einen Uberblick tiber die verschiedenen Methoden zur Bestimmung der Phasenmehrdeutigkeiten
(Ambiguities). Der GPS Empfinger misst ja zum Zeitpunkt der Beobachtung die Trigerphase, welche interpretiert
werden kann als Summe der Distanz zwischen Empfinger und Satellit, und einer unbekannten, aber ganzen Zahl von
Wellenlingen der Trigerwelle des GPS-Signals. Kann diese ganze Zahl flir jedes Paar (Station, Satellit) bestimmt
werden, ist die Observable dquivalent der Distanz zwischen Satellit und Empfinger zum Zeitpunkt der Messung. Bei
geodynamischen Fragestellungen ist eine operationelle, das eigentliche Parameterbestimmungsverfahren nicht belastende
Bestimmung der Phasenmehrdeutigkeiten schon deshalb von Bedeutung, weil sich dadurch die Zahl der Unbekannten
um etwa 90 % reduziert (von etwa 6000 auf 500 Parameter im Falle einer Dreitageslosung, so wie sie vom CODE-
Rechenzentrum von IGS jeden Tag produziert wird). Die eingehend erlduterte QIF-Strategie (QIF = Quasi Ionosphere
Free) zur Bestimmung der erwihnten Mehrdeutigkeiten unterscheidet sich von den meisten andern Methoden dadurch,
dass sie die von den Satelliten ausgesandte Code-Information nicht verwendet. Sie ist somit auch unter AS (Anti-
Spoofing) voll einsetzbar. '

Im zweiten Teil der Arbeit erprobt Herr Mervart die vorgestellten Algorithmen in regionalen und globalen Netzen. Vier
Datensdtze von je etwa zwei Wochen Linge werden analysiert. Wichtig ist, dass der Autor konsequent die
Errungenschaften des International GPS Service for Geodynamics (IGS) zuriickgreift. So gelingt es ihm, die
unbekannten Phasenmehrdeutigkeiten fir jede Basislinie einzeln, und nicht erst im globalen Netz, zu bestimmen.
Dieses Vorgehen birgt den Schliissel zu einem operationellen Verfahren.

Die erste Kampagne (ein europaweites Netz unter Einbezug eines Teils des schweizerischen Landesnetzes, vermessen im
Jahre 1992) zeigte schon, dass die Verfahren im Prinzip funktionieren, und dass generell eine Verbesserung der Genauig-
keit der geodynamisch relevanten Parameter resultierte,

Die Auswertung eines europdischen Datensatzes von zwei Wochen zu Beginn des Jahres 1993 zeigte, dass die gegen-
tiber 1992 gesteigerte Qualitit der IGS-Satellitenbahnen (mehr Beobachtungen, bessere Auswerteverfahren) eine wesent-
liche Rolle spielte. Im Vergleich mit unseren damaligen operationellen Losungen konnte die Konsistenz der Lagekoor-
dinaten wesentlich (etwa um einen Faktor 2) gesteigert werden.

Zwei zweiwtchige Datensiitze wurden im Jahr 1994 ausgewertet. Der erste stammt vom Januar, der zweite vom Mai
1994. Die beiden Sitze unterscheiden sich dadurch, dass -wegen des gelinderten Ubertragungsmodus’ unter AS- im Mai
die meisten Empfiinger des IGS-Netzes nicht mehr in der Lage waren, genaue Code-Messungen durchzufiihren. Dass die
Phasenmehrdeutigkeiten im Mai trotzdem bestimmt werden konnten, ist der oben erwdhnten QIF-Strategie zu verdan-
ken. Beide Datensitze lieferten etwa gleich gute (im Vergleich zu 1993 nochmals deutlich bessere) Resultate. Neue
Aspekte wurden behandelt: Der Einfluss der Ambiguity-Losung auf einzelne Bahnparameter wurde untersucht, und es
konnte gezeigt werden, dass bei gelosten Phasenmehrdeutigkeiten die direkte Bestimmung der tiglichen Stations-
bewegungen (z.B. infolge der Kontinentalgezeiten) in den Bereich des Mdglichen ritckt.

Es verdient festgehalten zu werden, dass Herr Mervart seine Verfahren so weit optimieren konnte, dass sie seit Herbst
1994 routinemissig, zusitzlich zu den offiziellen L&sungen des Schweizer IGS Rechenzentrums, eingesetzt werden
konnten. Seit Juni 1995 liefern Herrn Mervart's Algorithmen sogar die offiziellen Resultate des CODE-Rechenzentrums.

Die Schweizerische Geoditische Kommission (SGK) dankt Herrn Mervart fiir diesen wesentlichen Beitrag im Rahmen
der Internationalen Assoziation fir Geodisie. Die Schweizerische Akademie der Naturwissenschaften (SANW) hat die
Druckkosten iibernommen, wofiir die SGK ihren Dank ausspricht.

Prof. Dr. G. Beutler Direktor F. Jeanrichard Prof. Dr. H.-G. Kahle
Direktor des Astronomischen Bundesamt fiir Landestopographie ETH Zirich
Instituts der Universitiit Bern Vizeprisident der SGK Prisident der SGK



PREFACE

Des phénoménes globaux tels que mouvements du péle, nutation, tectonique des plaques ou des effets régionaux tels
que le ,,Post Glacial Rebound“ influencent les applications géodésiques et géophysiques basées sur le systéme
américain GPS (Global Positioning System). L’étude de tels phénoménes ne peut pas étre séparée de la détermination
des orbites au sens large et fait ainsi partie des problémes de la géodésie par satellites les plus difficiles & résoudre.

Le travail présenté ici se divise en une partie théorique (chapitres 1-6) et en une partie pratique (chapitres 7-8). Les
préoccupations principales de M. Mervart sont d’une part la modélisation des orbites des satellites et des observations
GPS et d’autre part la définition et la réalisation technique du systéme de référence du point de vue GPS. Ces aspects
sont traités de facon compétente dans les chapitres 2 3 5: on y trouve une discussion pertinente de nouveaux modéles
d’orbites des satellites, des effets relativistes et de la réfraction atmosphérique. Une définition du centre de phase aussi
bien des antennes sur le satellite que celles des récepteurs compléte cette discussion.

Le chapitre 6 donne une vue d’ensemble des différentes méthodes de la résolution des ambiguités de phase. Au moment
de I’observation, le récepteur GPS mesure la phase de 1'onde porteuse qui peut étre interprétée en tant que somme de la
distance entre le récepteur et le satellite et d’'un nombre entier, mais inconnu, de longueurs d’onde de la porteuse du
signal GPS. Si ce nombre entier peut étre déterminé pour chaque couple station - satellite, I’observation correspond
alors & la distance entre la station et le satellite. Lors du traitement de problémes géodynamiques, il est important
d’avoir & sa disposition un procédé permettant de résoudre préalablement les ambiguités. Ainsi le nombre des
paramétres inconnus peut étre réduit d’environ 90%. Le centre de calcul CODE de I'lGS produit quotidiennement des
solutions comprenant 3 jours d’observations (three-day solution). Dans ce cas, le nombre de paramétres inconnus peut
étre réduit de 6000 4 500 environ. La stratégie QIF (QIF = Quasi lonosphere Free) décrite abondamment et utilisée pour
la résolution des ambiguités se différencie de la plupart des autres méthodes en ce sens qu’elle est indépendante du code
émis par les satellites. Elle est donc pleinement applicable également lorsque le signal GPS est brouillé par AS (Anti-
Spoofing).

Dans la deuxiéme partie de son mémoire, M. Mervart teste les algorithmes présentés dans des réseaux régionaux et
globaux. Quatre séries de données, correspondant chacune & environ deux semaines d’observations, sont analysées. Il
est important de remarquer que le travail de 1’auteur s’intégre pleinement dans les nouvelles techniques mises au point
par PIGS (International GPS Service for Geodynamics). Ainsi, il lui est possible de déterminer les ambiguités de phase
pour chaque base indépendament et non plus seulement de fagon globale. Cette approche constitue la clef de volte d’un
procédé rationnel.

La premiére campagne (un réseau européen, comprenant une partie du réseau suisse mesuré en 1992) démontra déja que
la méthode fonctionne et qu’une amélioration de la précision des paramétres déterminants pour la géodynamique en
résulte.

L’analyse d’une série de mesures effectuées & I’échelon européen durant deux semaines au début de 1993, montra
I’importance de la qualité des orbites des satellites calculées par I'IGS. Celle-ci s’est nettement améliorée par rapport &
1992 suite a I’augmentation du nombre des observations et & une meilleure méthode de calcul. En comparaison avec les
méthodes appliquées autrefois, la cohérence des coordonnées planimétriques a augmenté de fagon sensible (d’un facteur 2
environ).

Deux séries d’observations de deux semaines chacune furent analysées en 1994. La premiére série date de janvier, la
seconde de mai 1994. La série de mai fut observée alors que le signal GPS était brouillé par AS, ce qui n’était pas le
cas en janvier. Il est 2 remarquer que la plupart des récepteurs du réseau IGS n’étaient alors plus en mesure d’effectuer
des observations précises de code. Cette perturbation put étre contrée grace 4 la stratégie QIF, qui permit de résoudre les
ambiguités également lors de la campagne de mai. Les deux séries d’observations fournirent des résultats de qualité
équivalente et bien meilleure encore qu’en 1993. De nouveaux aspects furent étudiés, entre autre I’influence de la
résolution des ambiguités sur différents paramétres d’orbite. On a pu aussi démontrer que la détection de mouvements
journaliers dus par exemple aux marées continentales devenait envisageable.

11 est important de souligner que les méthodes de M. Mervart ont pu étre optimalisées de telle fagon que, depuis
I’automne 1994, elles sont utilisées régulierement par le centre suisse de calcul 1GS. Depuis juin 1995, les algorithmes
développés par M. Mervart sont utilisés par le centre de calcul CODE pour la production de résultats officiels.

La Commission Suisse de Géodésie (CGS) remercie Monsieur Mervart pour cette substantielle contribution entrant
dans le cadre des travaux de 1’Association Internationale de Géodésie. L’Académie Suisse des Sciences Naturelles
(ASSN) a pris a sa charge les colits d’impression du présent fascicule, la CGS lui exprime ici ses plus vifs
remerciements.

Prof. Dr. G. Beutler F. Jeanrichard, Directeur Prof. Dr. H.-G. Kahle

Directeur de I' Institut d'astronomie de I' Office fédéral de topographie ETH Zurich
de I' Université de Berne Vice-président de la CGS Président de la CGS



FOREWORD

In geodesy and geophysics, the American Global Positioning System (GPS) is usually applied to the investigation of
global phenomena, such as polar motion, nutation, plate tectonics, or regional effects such as post glacial rebound.
When investigating such occurrences with GPS, they cannot be separated from orbit determination in the widest sense,
and are therefore considered to be some of the most demanding questions in satellite geodesy.

This publication is divided into two parts; the first part (chapters 1-6) covers the more theoretical aspects while the
second part (chapters 7-8) refers to the application. Modeling satellite orbit and GPS observables, as well as defining
and realizing a reference system with the aid of GPS technology, are an important topic in this publication. These
aspects are covered in a competent manner in chapters 2 to 5 and a concise discussion is presented regarding the most
up-to-date satellite orbit models, the relativity effect, atmospheric refraction, as well as a definition of the phase center of
satellite and receiver antennas.

Chapter 6 gives an overview of the various methods for determining the ambiguities. At the epoch of observation the
GPS receiver measures the carrier phase, which can be interpreted as the sum of the distance between the receiver and the
satellite plus a unknown, but integer number, of wavelengths of the carrier wave of the GPS signal. If this unknown
integer can be determined for every pair (station/satellite), the observable is equivalent to the distance between the satel-
lite and the receiver at the epoch of measurement. For geodynamic investigations, it is important to have an operational
approach for determining the ambiguities, which does not burden the actual parameter computation. Thus the amount of
unknowns can be reduced by about 90 % (from about 6000 to 500 parameters in the case of a three-day solution, such
as the one produced on a daily basis by IGS® CODE-analysis center). The QIF-strategy (QIF = Quasi Ionosphere Free)
which is explained in detail and which is used to determine the above mentioned ambiguities, differs from most other
methods in that it does not use the code information sent out by the satellite. It is therefore also fully applicable under
AS (Anti-Spoofing).

In the second part of this volume Mr. Mervart tests the algorithms presented in regional and global networks. Four data
sets, each covering two weeks, are analyzed. An important factor is the consistency and integration of this strategy
within the framework of the International GPS Service for Geodynamics (IGS). The author was able to determine the
ambiguities for each base line individually, as opposed to using the global network. This method is the key to an oper-
ational procedure.

The first campaign (a Europe-wide network, which included part of the Swiss network measured in 1992) already
showed, that the procedure worked in principle, and that it resulted in a general improvement of the accuracy of the
geodynamically relevant parameters.

The evaluation of a European data set covering a two-week period at the beginning of 1993, showed that the quality
increase of the IGS-satellite orbits due to a permanent increase of the amount of observations and improved evaluation
procedures since 1992, played a fundamental role. Compared to our earlier operational results, the consistency of the
horizontal coordinates could be increased considerably (by about factor 2).

Two two-week data sets were evaluated in 1994, The first was from January, the second from May 1994. Both sets
differ from one another in that -due to the changed modus of transmission under AS- most receivers of the 1GS-network
were no longer able to carry out accurate code measurements in May. The fact that the ambiguities could still be
determined in May, was due to the above mentioned QIF-strategy. Both data sets delivered about equally good results
(even clearly better than those of 1993). New aspects were addressed: The influence of the ambiguity solution on
individual orbit parameters was investigated and it was possible to show that the direct determination of the daily
movements of the stations (e.g. due to continental tides) would soon be realizable.

It must be said that Mr. Mervart was able to perfect his procedure to such an extent, that since the autumn of 1994 it is
routinely used in addition to the official results of the Swiss IGS analysis center. Since June 1995, Mr. Mervart’s
algorithms are also included in the processing of the official results of the CODE analysis center.

The Swiss Geodetic Commission (SGC) would like to thank Mr. Mervart for his fundamental contribution within the
framework of the International Association for Geodesy. The SGC is most grateful to The Swiss Academy of Sciences
(SANW) who kindly offered to carry the printing costs.

Prof. Dr. G. Beutler F. Jeanrichard Prof. Dr. H.-G. Kahle
Director of the Astronomical Federal Office of Topography ETH Zurich
Institute, University of Berne Vice President President
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Part 1

Theory






1. NAVSTAR GPS

The abbreviations in the title of this chapter stand for NAVigation Satellite Timing And
Ranging Global Positioning System [Rothacher, 1991]. It should be said that other authors
interpret the abbreviation “NAVSTAR” as NAVigation System with Time And Ranging
[Wiibbena, 1991] or NAVigation System using Time And Ranging [Landau, 1988] or NAV-
igation System using Timing And Ranging [Hofmann-Wellenhof, 1992]. Apart from this
small terminological problem the name of the system expresses its basic features. There
are several other Global Positioning Systems either operational or under development. Let
us mention the TRANSIT, DORIS, PRARE or GLONASS systems. Each system uses its
own measurement types (doppler, ranges, phases, one-way or two-way observation etc.)
depending on the application type, the accuracies to be obtained, and the potential users.
Undoubtedly the system NAVSTAR has the greatest impact on the scientific community
at present. It is fully operational and yields highest accuracy. Therefore this thesis deals
only with NAVSTAR GPS and from now on we will use the term GPS as a synonymous
to NAVSTAR GPS. However many methods and processing techniques are similar for the
other systems too. In 1973 the U.S. Department of Defence decided to establish, develop,
test, acquire, and deploy a spaceborne positioning system. The result of this decision is
the present NAVSTAR GPS. According to [Wooden, 1985]

“The NAVSTAR Global Positioning System (GPS) is an all-weather,
space-based navigation system under development by the U.S. Depart-
ment of Defence to satisfy the requirements for the military forces to
accurately determine their position, velocity, and time in a common ref-
erence system, anywhere on or near the Earth on a continuous basis.”

From this definition it is clear that the primary goals for developing GPS were of a military
nature. But the U.S. Congress has allowed the civilians to use this system with some
restrictions. The first geodetic instruments, the Macrometer Interferometric SurveyorTM
and the Texas Instruments T1-4100 were in commercial use at the time the military was
still testing navigation receivers. The first civilian applications of the GPS were attempts
to establish high-accuracy geodetic networks.



1. NAVSTAR GPS

1.1 The Principle of Operation

The principle of satellite positioning is quite simple: the geocentric satellite position vector
r! is assumed to be known and the position vector of the receiver o, is to be estimated
using the measurements which contain information about the topocentric satellite position
vector o. The GPS measurements are based on receiving and processing of electromagnetic
waves transmitted by the satellite (see Section 1.3). It is obvious that the accuracy of the
position is affected by the following factors:

e accuracy of the satellite’s position,
e accuracy of the measurements, and
e geometry.

It is worth noting that the main error source — the accuracy of satellite orbits — may
be considerably reduced if so-called relative positioning is used. Let us assume two sites
which receive simultaneously the signal from the same satellites. In that case the relative
position of these two sites is much more accurate than the position of each of these sites
in a global coordinate system. According to Bauer$ima’s rule

18y . 18g]
|| lo]

b is the baseline vector (pointing from one site to the other), Abis the error of this vector, o
is the topocentric satellite position vector and Ag the corresponding orbit error. The orbit
accuracy will be discussed in Chapter 2. GPS consists of three integral design parts: the
space segment, the control segment, and the user segment which will be briefly described.
Then the structure of the satellite signal and the measurement types will be introduced.

(1.1)

1.2 The Segments of the NAVSTAR GPS

The Space Segment

The proposed constellation of the GPS has been subject to several changes due to budget-
ary problems. The present full constellation should provide global coverage with four to
eight simultaneously observable satellites above 15° elevation. This is accomplished by
24 satellites (21 production satellites and 3 active spares). The satellites are located in
six planes in almost circular orbits with an altitude of about 20 200 km above the earth,
an inclination of 55° and with an orbital period of approximately 11 hours 58 minutes or
half a sidereal day. Thus almost the same earth-satellite configuration will repeat itself 4
minutes earlier every day. There is no essential difference between the production satellites
and the active spares. The spare satellites are used to replace a malfunctioning production
satellite to maintain the required coverage. Three replacements are possible before a new
satellite has to be launched.

The GPS satellites provide a platform for radio transceivers, atomic clocks, computers,
and various equipment used for positioning requirements and for a series of other military



1.2 The Segments of the NAVSTAR GPS

projects (e.g. atomic flash detection). The electronic equipment of the satellites allows the
user to operate a receiver to measure quasi-simultaneously topocentric distances to more
than three satellites. Each satellite broadcasts a message which allows the user to recog-
nize the satellite and to determine its spatial position »* for arbitrary time instants. The
satellites are equipped with solar panels for power supply, the reaction wheels for attitude
control and a propulsion system for orbit adjustments. The first satellites launched (1978
~ 1985) were Block I satellites for the test phase of the project. Three of these satellites
were still operational in 1992, one was still operational in 1994. They differed from the
newer satellites by their orbit characteristics. According to proposed constellation of that
time, their orbits were inclined 63° to the equator. For the first operational constellation
the Block II satellites (see Figure 1.1) are designed.

Figure 1.1: NAVSTAR Block II spacecraft [Fliegel et al., 1992]

The first Block II satellite was launched in February 1989. The satellites currently
being launched are Block Ila satellites. Altogether 28 Block II and Block Ila satellites are
designated for the first operational constellation. An important difference between Block
I and Block II satellites is related to U.S. national security. Block I satellites signals were
fully available to civilian users while some Block II signals are restricted. There are already
plans for satellites which will replace the Block II's. These satellites are called Block IR
(the “R” denotes replacement). They will introduce some new design features (e.g. inter-
satellite communications and ranging) and they are expected to have on-board hydrogen
masers, which are at least one order of magnitude more precise than the atomic clocks in
the Block II satellites. Block IIR satellites should be available by 1995.




1. NAVSTAR GPS

The Control Segment

The control segment monitors the functioning of the satellites and uploads orbital, clock-
correction, and auxiliary data into the satellite memories. The so-called Operational Con-
trol System (OCS) consists of a master control station, worldwide monitor stations, and
ground control stations. This system became operational in September 1985. The master
control station is located in Colorado Springs. It collects the tracking data from the mon-
itor stations and calculates the satellite orbit and clock parameters to be broadcast by the
satellites in real time. The results are passed to the ground control stations for upload to
the satellite.

Colorado Springs is a monitor station as well. Four additional monitor stations are
located at Hawaii (Pacific Ocean), Ascension Island (South Atlantic), Diego Garcia (In-
dian Ocean) and Kwajalein (Pacific Ocean). These five stations are equipped with precise
cesium time standards and P-code receivers. The measurements are transmitted to the
master control station. The monitor stations form the official network for determining the
broadcast ephemerides and for modeling the satellite clocks. This orbit information is mod-
ulated onto the satellite signal and thus available for real-time navigation. For a posteriori
geodetic and geophysical analysis more precise orbits are required. Since 1992 such high
precision orbits are determined by the International GPS Service for Geodynamics (IGS)
~ see Section 2.2.

The stations at Ascension Island, Diego Garcia, and Kwajalein, are at the same time
so-called ground control stations. They are equipped with communication links to the
satellites. The satellite ephemerides and the clock information, calculated at the master
control station, are uploaded to each GPS satellite. At present the uploading is performed
once per day.

The User Segment

The user segment consists of all the GPS receivers. There are different receiver types
commercially available by now. A simple classification based on the availability of the codes
is presented in the next section. All national and international groups and organizations
established for distributing GPS information might be considered as a part of the user
segment too. Chapter 2 deals with one of the most important of such organizations — the
International GPS Service for Geodynamics (IGS).

1.3 The Satellite Signal

All signals transmitted by the satellite (see Table 1.1) are derived from the fundamental
frequency f, of the satellite oscillator. Its stability is in the range of 10~ over one day
for Block II satellites [McCaskill et al., 1985].
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1.3 The Satellite Signal

Table 1.1: Components of the satellite signal [Hofmann-Wellenhof et al., 1992]

Component Frequency {MHz]

Fundamental frequency  f = 10.23

Carrier L, fi=154 fo = 1575.42 (A = 19.0 cm)
Carrier Lo f2=120 fo = 1227.60 (A; = 24.4 cm)
P-code P(t) fo = 10.23

C/A-code C(t) fo/10 = 1.023

Navigation message D(t) f,/204600 = 50-10°

The two sinusoidal carrier signals with frequencies f; and fa (corresponding wavelengths
A1 = 19 cm and A; = 24 cm) are modulated with the codes and the navigation message
to transmit information such as the readings of the satellite clocks, the orbital parameters
etc. The so-called biphase modulation is used. The two codes P(t), C(t) and the nav-
igation message D(t) consist of a sequences with two states +1, —1, where according to
[Bauerdima, 1982] the resulting signals may be described as

Li(t) = a, P(t) D(t) cos2r(fit) + a. C(t) D(t) sin2r(fyt)

Lo(t) b, P(t) D(t) cos2r(fat) (1.2)

I

where a,, a. and b, are the amplitudes of the signals which are not of interest in our
context. '

1.3.1 Pseudorandom Codes

The reading of the satellite clocks at the transmission time tf is coded into the signal.
The receiver decoding this signal at time ¢, may compute the so-called pseudorange to the
satellite from the relation:

oh = c- (t, — t') (1.3)

where ¢ is the velocity of light. The term g}, is called pseudorange because it is a biased
distance. The largest bias is due to the receiver clock error. For real-time navigation
the receiver clock error §; must be introduced as the fourth unknown parameter (three
parameters describe the position of the receiver). Thus at least four satellites have to
be observed simultaneously to estimate these four unknowns. For geodetic positioning
different methods and different observables may be used. Both codes consist of so-called
pseudorandom noise (PRN) sequences. The generation of these sequences is based on
hardware devices called tapped feedback shift registers [Wells et al., 1986]. The C/A-code
(Coarse-Acquisition or Clear-Access) is generated by the combination of two 10-bit tapped
feedback shift registers where the output of both registers are added again by binary
operation to produce the code sequence. A unique code is assigned to each satellite, the
sequence has a length of 1023 bits and because of the basic frequency of 1.023 MHz it
repeats itself every millisecond. The time interval between two subsequent bits (= 107° s)

11



1. NAVSTAR GPS

approximately corresponds to 300 meters. The achievable code accuracy of about 3 m is
a function of this 300 m C/A-code wavelength.

The generation of the P-code (Precise or Protected) is similar but the length of the
resulting sequence is approximately 2.3547 - 10!* bits corresponding to a time span of
approximately 266 days. The total code is partitioned into 37 one-week segments. To
each satellite one segment is assigned which defines the PRN number of the satellite. The
P-code repeats itself every week. The time interval between subsequent bits is 10 times
smaller than in the case of the C/A-code. Therefore the accuracy is approximately 10
times higher than for the C/A-code. The P-code may be encrypted. This procedure is
called Anti-Spoofing (AS) and converts the P-code to the Y-code which is only useable
when a secret conversion algorithm is accessible to the receiver.

1.3.2 The Navigation Message

The navigation message is 1500 bits long and contains information concerning the satellite
clock, the satellite orbit, the satellite health status, and various other data. The message
is subdivided into five subframes. Each subframe contains 10 words. The first word is the
so-called telemetry word (TLM) containing a synchronization pattern and some diagnostic
messages. The second word of each subframe is the hand-over word (HOW). This word
contains also the so-called Z-count which gives the number of 1.5 s intervals since the
beginning of the current GPS week. This number and the P-code give the reading of the
satellite clock at signal transmission time. The first subframe contains various flags and
the polynomial coefficients which define the satellite clock correction (see Table 1.2).

Table 1.2: Broadcast clock parameters [Wiibbena, 1991]

Parameter Explanation
Code-T'lag L Indicator for C/A or P-code on L,
Weck No. GPS week

L.-P-Data-I'lag Indicator for data on Ls-P-code
SV-Accuracy (URA) Measure for distance accuracy

SV-Health Satellite health indicator
Tan Group delay difference Li-L,-P-Code
AODC Age of clock data
toc Reference epoch
ag, ay, U Clock correction polynomial coeflicients

The second and the third subframe contain the broadcast ephemerides of the satellite (see
Table 1.3).



1.3 The Satellite Signal

Table 1.3: Broadcast ephemerides [Hofmann-Wellenhof et al., 1992]

Parameter Explanation
AODE Age of ephemerides data
te Ephemerides reference epoch
va, e, My, wg, o, o Keplerian parameters at ¢,
dn Mean motion difference
di Rate of inclination angle
d 2 Rate of node’s right ascension
Clucy, Clus Correction coeff. (argument of perigee)
Crey, Cre Correction coeff. (geocentric distance)
Cliey Cis Correction coeff. (inclination)

Using the broadcast ephemerides the following set of elements (compare also Appendix
A) for epoch t may be computed:

M o= Mo+ [\/&+dn] (t-t.),

( = G+dQ(t-t)—wg (t—1ty),

w = wy+ Cyue cos(2u) + Cy, sin(2u) , (1.4)
r = ryp+ Cp cos(2u) + C,, sin(2u) ,

i = i+ Ci cos(2u)+Cy, sin{2u) +di (t—t.) .

M is the mean anomaly, € is the longitude of the ascending node, r is the length of
the geocentric radius vector, 7 is the inclination of the orbital plane with respect to the
equatorial plane, wg is the earth rotation rate, and ¢, is time at the beginning of the
current GPS week. The equations for the computation of the Cartesian coordinates in the
carth-fixed system (WGS-84 — see [Decker, 1986]) are listed in Appendix A.

The fourth and the fifth subframe contain data for military use, information on the
ionosphere and so-called almanac data (low-accuracy orbits of all the GPS satellites).

1.3.3 Signal Processing

The receiver contains elements for signal reception and signal processing (antenna, pre-
amplifier, radio frequency section, microprocessor, storage device, control device and power
supply). The main part of the receiver is the radio frequency (RI') section. The receivers
may be divided into three groups:

1. Codeless receivers.
2. C/A-code receivers.

3. P-code receivers (which may use the C/A-code in adition).
According to the number of frequencies there are two groups of receivers:

1. Single-band receivers {only L, may be processed).
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1. NAVSTAR GPS

2. Dual-band receivers (both frequencies may be processed).

Another classification may be introduced according to the number of satellites which may
be simultaneously tracked. Essentially there are

1. Single-channel receivers.

2. Multi-channel receivers.

Multi-channel receivers assign a physical channel to each satellite, where the satellite is
continuously tracked. The receivers with a limited number of physical channels have to
alternate satellite tracking by rapid sequencing (20 milliseconds). The modern receivers
for precise geodetical measurements are usually dual-band P-code multi-channel receivers.

After signal input from the antenna, the signals are discriminated. Usually this is
achieved through the C/A-codes which are unique for each satellite. The basic elements
of the RF section are oscillators to generate a reference frequency, filters to eliminate
undesired frequencies, and mixers. The pseudorange measurements are done as follows: A
reference carrier is generated in the receiver and then modulated with a copy of the known
PRN code. This modulated reference signal is then correlated with the received satellite
signal. This correlation gives the time difference t;, — t — see Equation (1.3). From the
received satellite signal the PRN code is removed, the navigation message is decoded and
eliminated by high-pass filtering. The result of this technique consists of:

the pseudorange g} = ¢ - (t;x — t').
the navigation message, and

the unmodulated Doppler-shifted satellite signal, the so-called reconstructed carrier.

The phase measurements are based on processing the reconstructed signal carrier. This sig-
nal is usually obtained by the code demodulation technique using the correlation between
the received signal and the signal copy generated by the receiver. Other techniques must
be used for the L, phase in C/A-code receivers or for both phases in the case of the code-
less receiver. One technique is the so-called squaring technique, where the received signal
is multiplied with itself and hence all “7 modulations” are removed. The result is the
unmodulated squared carrier with half the period. From this squared carrier a sine-wave
is derived the wavelength of which is only half the wavelength of the original signal.

The receiver receives the signal at time ¢, (reading of the receiver clock). This signal was
transmitted by the satellite at time ' (reading of the satellite clock). At time t' the phase
of the satellite oscillator equals ¢'(¢') and at time ¢, the phase of the receiver oscillator
equals ¢ (t;). The receiver thus compares the following two signals:

Y =a' cos 2rd'(t') and gy =ay cos 2mi(ty) (1.5)
where «' and a, are the amplitudes of the signals. Multiplying these two signals we obtain:

i
; a'ay

v =y = 5 {eos2n[¢(1) — dult)] +eos2m [§ (1) + ()]} (L9)
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1.8 The Satellite Signal

After applying a low-pass filter, the high frequency part ¢(t') + ¢4 (¢) is eliminated and
¥ = &' (t)) — du(ts) + mj, (1.7)

may be measured. The accuracy of the phase measurements is about 1-3 mm, but the
exact number of integer wavelength between the satellite and the receiver n} is not known
at the time of the first measurement. The unknown integer number of cycles ni to be
added to the phase measurement to get a range is called the initia! phase ambiguity (see
Section 5.1). This phase ambiguity remains the same as long as the receiver keeps lock on
the phase transmitted by the satellite.
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2. The International GPS Service
for Geodynamics (IGS)

The International Association of Geodesy (IAG), member of the International Union of
Geodesy and Geophysics (IUGG), recognized that the GPS is becoming one of the most
important geodetic measurement systems. The GPS offers new possibilities in different
fields of science such as monitoring of the pole motion and the crustal deformation, pre-
cise positioning of mobile platforms, monitoring of ionospheric conditions and the time
transfer. The primary motivation in planning the International GPS Service for Geody-
namics (IGS) was the recognition by 1989 that the most demanding civilian users of the
GPS satellites, the geophysical community, were purchasing receivers in exceedingly large
numbers, but the observations as well as the subsequent data analyses were not based
on common standards and thus the geodynamical interpretation of the results generally
based on repeated observations performed sometimes by diverse groups could not be trus-
ted [Mueller and Beutler, 1992]. Standards for equipment, site selection and preparation,
data handling, data analysis, etc. were needed. The other motivation was the generation of
precise ephemerides for the satellites together with by-products such as earth orientation
parameters and the monitoring of ionospheric conditions. At its XX-th General Assembly
in Vienna in August 1991 the IUGG adopted the following resolution:

RESOLUTION No. 5. The IUGG

recognizing that the use of the Global Positioning System (GPS) for Geodesy and Geophysics

is rapidly increasing and that this system will play a major role over the next decades in

global and regional studies of the Earth and its evolution, and

noting that is fully scientific potential can only be realized with international cooperation

and coordination to deploy and operate a global tracking network with data analysis and

effective dissemination of data,

recomimends that the concept of an luternational GPS Service for Geodynamics (IGS) be

explored over the next four years, that as a first step one or more campaigns be conducted

to test and evaluate the concept, that all Member Countries participate to the best of their

ability, and that this activity be coordinated as closely as possible with comparable global

deployments by other member associations, as well as those by other organization, and

requests that existing global geodetic systems such as Very Long Baseline Interferometry

(VLBI) and Satellite Laser Ranging (SLR) be used to carry out intensive observing cam-

paigns in conjunction with the proposed IGS work.
Based on this resolution the IGS was planned and established. The primary goal of the
IGS is to provide the scientific community with the following products:

16



2.1 Structure of the IGS

e high precision orbits, including force model parameters,

e earth orientation parameters (EOPs),

ionosphere information,

GPS clock estimates, and
o ties to the terrestrial frame through co-location with other techniques.

2.1 Structure of the IGS

To fulfill the tasks mentioned above the following structure of the IGS has been established:

A core network, comprising approximately 40 globally distributed, very high quality
GPS receiver-sites, with continuous, reliable operation, near-real-time data acquisition and
transmission to data/processing centers (sece Figure 2.1).

GPS TRACKING NETWORK OF THE INTERNATIONAL GPS SERVICE FOR GEODYNAMICS
OPERATIONAL AND PLANNED STATIONS
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Figure 2.1: IGS 1994 Core Network

A much larger set of fiducial stations (between 100 and 200) providing denser coverage
of tectonic deformation zones, regions of post-glacial rebound etc. Such sites might be
occupied at regular intervals to determine secular geodetic signals. These stations will
also provide direct access to the terrestrial reference frame through their ties to the core
network.

Local sites which meet local needs and programs. There are no IGS constraints on
these sites as they are clearly of local importance. However it is recommended that, on
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2. The International GPS Service for Geodynamics (IGS)

the local level, they are treated in the same manner as higher level IGS sites.

Data Centers receive the data from the stations and facilitate transfer of the data to
the analysis centers [Morgan and Gurtner, 1992]. The data centers structure is hierarchical:
Operational Centers are responsible for the operation of a number of instruments (the
data flow between the instruments and the cenwer being a local matter). The center is
responsible for transforming the data into the Receiver INdependent EXchange [Gurtner
and Mader, 1990] format and performing on-site archiving of the raw instrument and
RINEX format. Regional Data Centers are responsible for the collection, distribution and
archiving of regional core and fiducial data (and not local data any more). Three Global
Data Centers or Network Centers (see Table 2.1) are linked in a triangle with each other.
Each center has a complete copy of core station data, all status reports and campaign
output products.

Table 2.1: Global Data Centers of IGS

Abbreviation Institution Location  Country
CDDIS Crustal Dynamics Data Information System Greenbelt USA
IGN Intitute Géographique National Paris France
SIO Scripps Institution of Oceanography San Diego USA

Analysis Centers provide analyses of the core and fiducial station data and derive the
desired products. Analysis centers fall into the following categories: Processing Centers
focus on the global analysis of data collected by the core and fiducial stations. The list of
processing centers active end of 1993 is given in Table 2.2.

Table 2.2: Processing Centers of 1GS

Abbreviation Institution Location Country

CODE" Center for Orbit Determination . Berne Switzerland
in Europe

EMR Energy, Mines and Resources Ottawa Canada

ESOC European Space Operations Center Darmstadt Germany

GFZ German Geod. Research Institute  Potsdam Germany

JPL Jet Propulsion Laboratory, USA Pasadena USA

NOAA National Oceanic and Atmospheric  Silver Spring USA
Administration

SIO Scripps Inst. of Oceanography San Diego USA

') Joint project of the Astronomical Institute University of Berne (AIUB), the Federal Institute
of Topography, Berne, the Institut Géographique National (IGN), Paris, and the Institute of
Applied Geodesy (ITAG}, Frankfurt

The processing centers provide the products on a regular basis with a delay of a few
days only. Associate Processing Centers will also provide global analysis, but will focus
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2.2 IGS Data Processing at the CODE

on specific time periods or data sets. Evaluation Centers will evaluate the products of the
Processing Centers and the Associate Processing Centers.

The organization responsible for the general management of the service and for provid-
ing internal coordination of IGS activities is the Central Bureau located at the Jet
Propulsion Laboratory (JPL) in Pasadena.

The controlling institution of the IGS is the Governing Board. It consists of 15 mem-
bers.

The 1992 and 1993 IGS Activities

In May 1992 the IGS organized the communications test which showed, that the capacity

-of the international scientific data network was sufficient to handle data from the core net-
work. Then a 3-month test campaign, the 1992 1GS Test Campaign (June 21 - September
23, 1992) took place. During this campaign the data from the global core network were
processed with a delay of several days only. To densify the core network the two-weeks
intensive observation campaign Epoch’92 (July 27 - August 9) was organized and the
data from the fiducial sites were collected. On 23 September 1992 the 1992 IGS Campaign
officially ended. The participating organizations decided to establish the IGS Pilot Service
starting November 1, 1992 to bridge the gap between the 1992 IGS Campaign and the
start of the official IGS on January 1, 1994.

2.2 IGS Data Processing at the CODE

In this section the IGS Data Processing at the Center for Orbit Determination in Europe
(CODE) will be briefly described. The CODE is one of the processing centers of the IGS
(see Table 2.2) which produce the IGS products {orbits, earth rotation parameters etc.).
The processing centers use different processing strategies and different software packages
and their results are regularly compared (see e.g. [Goad, 1993]). The CODE was planned
in 1991, the contributors to the CODE are

e the Astronomical Institute, University of Berne (AIUB), Berne
e the Federal Office of Topography (L+T), Berne

e the Institut Géographique National, (IGN), Paris

e the Institut fiir Angewandte Geodasie (IfAG), Frankfurt

The computing center is located at the AIUB and the data processing is done with the
Bernese GPS Software [Rothacher et al., 1993a]. The data have been processed (including
days with Anti-Spoofing) since the beginning of the 1992 Campaign (June 21, 1992} and
the results (satellite ephemerides, earth rotation parameters and station coordinates) are
available at CODE directly and/or through the network centers (Table 2.1).
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Processing Strategy

The input data are sent to the CODE automatically through Internet from the IGN and
from the IfAG. The data are decompressed and pre-processed. The broadcast orbits are
used as a priori orbit information. Than one-day solution is performed for check purposes.
The final products stem from overlapping 3-days solutions (see Figure 2.2).

Day1 Day2 Day3
L — | first 3-days solution

(T R S— ] second 3-days solution

[ ) third 3-days solution

resulting orbit

Figure 2.2: Overlapping 3-days solutions [Brockmann et al., 1993]

All solutions are based on the ionosphere-free linear combination, the modeling follows
the IGS standards [Goad, 1992], and the following types of parameters are estimated:

e coordinates of the non-VLBI/SLR sites,

e 6 orbital elements plus radiation pressure parameters per satellite (see Chapter 4),

e 4 troposphere zenith delays per day and site,

e daily values of the x- and y-pole coordinates and the derivative él;(UTl - UTQC),
and

e initial carrier phase ambiguities.

The approximate size of one 3-days solution may be characterized by 35 sites, more than
3000 unknown parameters and more than 80000 double difference observations when work-
ing with a sampling of 1 observation per 2 minutes.

Orbit Consistency

It is difficult to estimate the orbit quality. We use the overlapping solutions to check the
consistency. We take the resulting ephemerides from consecutive middle days (of 3-days
solutions), and we fit a new arc through these days. The rms of this fit is a measure for
the consistency of the orbits [Rothacher et al., 1993b]. Figure 2.3 shows the results for
PRN 2.

20



2.2 IGS Data Processing at the CODE

Residuals for PRN 2
PRN=2

Residuals in Meters

49004 49006 49008 49010 49012 49014 49018 49018
Modified Julian Date

Figure 2.3: Orbit consistency [Beutler et al., 1994a]

Another possibility to estimate the accuracy of the orbits is to compare the results of
various processing centers. The centers use different models and different software packages
however they use almost the same data. IGS orbit comparisons were one of responsibil-
ities of the IGS Analysis Center Coordinator (Prof. Clyde Goad from the QOhio State
University). The rms of the Helmert transformation between the orbits of two processing
centers reaches the value of about 20-30 cm at present [Goad, 1993].

Earth Rotation Parameters

The results of the earth rotation parameters estimation from June 21, 1992 to November
19, 1994 are shown in Figure 2.4. The quality of the pole coordinates was about 1 mas
initially, and is now of the order of 0.4 mas for the x- and y- coordinate compared to
the IERS solution C04 [Feissel, 1993]. The estimates of UT1 — UTC drift agree with the
IERS values on the level of 0.05 ms per day [Rothacher et al., 1993b]. This high accuracy
is achieved thanks to the use of longer arcs (the main reason for using 3-days arcs). The
UT1 - UTC values (see Figure 2.4) may not be directly estimated using GPS (this value
is strongly correlated to the right ascensions of the ascending nodes of the GPS orbits)
but it is integrated from the UT1 — UTC drift (or length of day) estimations. The stability
of the UT1 — UTC obtained from GPS is remarkable. Since the beginning of 1994 UT1 -
UTC estimations of the CODE processing center are used for the UT1 prediction by the
IERS Rapid Service. '
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Figure 2.4: Earth rotation parameters

The long-term stability of the GPS solution might be guaranteed through monthly VLBI
contributions. The advantage of GPS is its high data rate (diurnal or even sub-diurnal)
and its low production price [Gambis et al., 1993], [Brockmann et al., 1993].

Table 2.3: Residuals of a 7-parameter Helmert transformation between the mean
GPS coordinates (days 171-285, only European stations) and the ITRF91
[Rothacher, 1993c]

Station name | VLBI / SLR Residuals in Meter
North ‘ East I Up
Graz Lustbiihl SLR 0.0047 -0.0192 0.0041
Herstmonceux SLR -0.0013 -0.0097 0.0039
Kootwijk SLR 0.0057 -0.0019 -0.0249
Madrid VLBI 0.0007 0.0174 0.0105
Matera SLR -0.0096 -0.0031 0.0092
Tromsoe VLBI -0.0009 0.0077 0.06070
Wettzell VLBI 0.0153 0.0076 -0.0065
Onsala VLBI 0.0062 -0.0007 0.0068
Metsahovi VLBI -0.0167  0.0053 0.0030
Zimmerwald SLR -0.0039 -0.0032 -0.0130
rms of transformation 0.0111
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Site Coordinates

The stations of the core network with well-established VLBI/SLR coordinates are kept
fixed, the coordinates of other stations are estimated. The quality of the results may be
estimated from Table 2.3 where the residuals of a Helmert transformation are shown. The
first set of coordinates is the ITRF91 set derived from VLBI and SLR solutions [Boucher et
al., 1992, the second set is the mean set of 115 3-days solutions [Brockmann et al., 1993},
all stations estimated (with loose a priori constraints). From Table 2.3 we conclude, that
the GPS solutions agree with the ITRF91 coordinates (established through VLBI and
SLR) on the 1 cm level.
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3. Reference Systems in Space
Geodesy

3.1 Coordinate Systems

The geometric distance o} between the receiver k and satellite ¢ is the most important
constituent of the range measured by GPS receivers (see Section 5.1). This distance is a
(very simple) function of the receiver position vector g, and the satellite position vector r.

The components of the receiver position vector g, are considered in the International
Terrestrial Reference Frame (ITRF). The origin, the reference directions, and the scale
of the ITRF are implicitly defined by the cartesian coordinates and velocities adopted
for various “primary” observing stations of the IERS [Seidelmann, 1992]. The origin of
the ITRF is located at the center of mass of the Earth with an uncertainty of less than
£10 cm. The standard unit of length is SI meter. The ITRF shows no global net rotation or
translation with time due to the motions of the stations or the tectonic plates they lie on,
and therefore the coordinates of the receiver in this frame are (nearly) time-independent.

ITRF is not suitable for orbit determination purposes because the satellite motion is
(almost) independent on the earth rotation. The equations of motion of the satellite have
the most convenient form if a celestial reference frame is used. International Celestial Ref-
erence Frame (ICRF) is defined using the coordinates of “primary” radio sources [Seidel-
mann, 1992]. The origin is at the barycenter of the solar system. The so-called ephemeris
pole is given for epoch J2000.0 by the IAU 1976 Precession and the IAU 1980 Nutation
Theory. The parameters that describe the rotation of the ITRF relative to the ICRF (in
conjunction with the given precession and nutation model) are the Earth rotation para-
meters (ERP).

The two reference frames mentioned above are supplemented by the IERS Standards.
The IERS Standards (parameters and methods of data reduction) describe how observation
will be used in order to determine the dynamic connection between terrestrial system and
a celestial one. The IERS Reference Frames and the IERS Standards represent the IERS

Reference System.
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3.1 Coordinate Systems

3.1.1 Transformation Between the ITRF and the ICRF

The celestial and the terrestrial coordinate systems are connected at any given instant
using a rotation matrix . One could express this matrix as a function of three Eulerian
angles. However, for historical reasons, and in order to associate the motions of the Earth
with physical processes and to allow for successive approximation of the motion, this
matrix is expressed in terms of precession, nutation, polar motion, and rotation about the
Earth’s axis:

=R-p, R=P".NT.RT.Y.X, (3.1)
with
T ... coordinates of the receiver position vector in the space-fixed reference frame,
2, ... coordinates of the receiver position vector in the earth-fixed reference frame,

P . Precession Matrix!,

N ... Nutation Matrix?,

R ... Apparent Sidereal Time Matrix! (contains UT1-UTC),
X, Y ... Polar Coordinate Matrices.

Rotation and Polar Motion

The polar coordinate matrices are
X =Ry(z,), Y =Ry, (3.2)

where R;(a) denotes a particular rotation matrix about axis ¢ and angle «, and z,, y, are
the pole coordinates evaluated from VLBI, SLR and GPS observations and published in
IERS Bulletins. TERS Bulletin A is published by the National Earth Orientation Service
(NEOS). It is issued each week and contains Earth rotation parameters determined from
the combination of other recently determined ERP series, predictions of Earth rotation
parameters daily for“up to 90 days in the future and other miscellaneous data. IERS
Bulletin B is published by the Central Bureau of the IERS. It is issued each month and
contains final ERP values. It should be mentioned that up to parts in 102

X'Y=Y-X (3.3)
Earth rotation matrix R has the form .
R = R;(GAST) (3.4)

where GAST is the Greenwich Apparent Sidereal Time, which is given by the equation of
equinoxes:

GAST = GMST + At cos(eq + Ae) (3.9)

where GMST is the Greenwich Mean Sidereal Time (see (3.16) to (3.19)), € is the mean
obliquity of date and A, Ae are nutations in longitude and obliquity, which are given by
IAU 1980 nutation series. For numerical computation of these terms see [Seidelmann, 1992].

!The denotation in (3.1) corresponds to [Seidelmann, 1992]. In “IERS Standards (1992)” the matrices
PT NT,RT are denoted P, N, R,
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3. Reference Systems in Space Geodesy

Nutation

The nutation is the sum of periodic motions of the ephemeris pole around the mean
ephemeris pole with the greatest amplitude of about 9” and a variety of periods of up to
18.6 years. The nutation matrix is given by [Seidelmann, 1992)

N = R (-¢€) - R3(-Av) - Ri(en) , €=¢€+ Ac, (3.6)

where € it the true obliquity of date.

Precession

The lunisolar precession is the smooth, long-period motion of the mean pole of the equator
about the pole of the ecliptic, with a period of about 26,000 years. Both, the precession
and the nutation are due to the torque of the Sun and Moon. Planetary precession is the
motion of the ecliptic pole due to the gravitational action of the planets on the Earth’s
orbit. The precession matrix P may be expressed as

P = Ry(~z4) - Ry(04) - Ra(—Ca) - (3.7)
The series for the precession angles z4, 6.4, and {4 (IAU 1976 precession parameters) may
be found e.g. in [Seidelmann, 1992].
3.1.2 Crustal Motion
Solid Earth Tides

The solid earth tides is the response of the solid earth to lunar and solar attraction (the
effect of other bodies is negligible). This effect is rather complicated due to the coupling
with the ocean tides and the effects of local geology. The vector displacement of the station
due to the tidal deformation may be computed from [Seidelmann, 1992]

Ag= Z [gg?ga] { 3la(Ry; - 0,)) oz + [3 (%2 ~ 12) (Ro; - 0,)° — %3] go} . (3.8)

where

GM; is the gravitational parameter for the attracting body j (Moon or Sun),
GM is the gravitational parameter for the Earth,
Ry;, R; is the unit vector from the geocenter to the tide-producing body and the mag-

nitude of that vector,

0, 0 is the unit vector from the geocenter to the station and the magnitude of that
vector,

ho is the nominal second-degree Love number, and

s is the nominal Shida number.

Apart from the expression above [Seidelmann, 1992] introduces a small correction for
frequency-dependent Love number h. This correction represents a periodic change in sta-
tion height with maximum amplitude of about 1 cm.
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3.1 Coordinate Systems

Ocean Loading

Ocean loading is the elastic response of the earth’s crust to ocean tides. Modeling of this
effect is rather difficult, several similar models have been proposed in the past decade (see
e.g. [Pagiatakis et al., 1982]). The receiver motions caused by ocean loading appear to be
limited to approximately 3 cm for sites well removed from the coast. The radial, N-S and
E~W components of the displacement vector E(t) are given by [Seidelmann, 1992]

N Al cos(wit + ¢; — 67)
E@t)=)_ ¢ AN cos(wit +¢; — 6¥5) | (3.9)
=1L APV cos(wit + ¢ — 6FW)

where w; is the frequency of the tidal constituents and ¢; the corresponding astronomical
argument. The amplitudes A7, AN®, AFY and the Greenwich phase lags 87, §N5, §EW of
each tidal component are determined by the particular model assumed for the deformation
of the Earth.

Polar Tides

Another secondary tidal effect are the polar tides. It is the elastic response of the earth’s
crust to displacements of the spin relativ to the principal axis or earth inertia. This effect
should be taken into account if centimeter accuracy is desired, especially for measurements
spanning an appreciable fraction of a year. According to [Seidelmann, 1992] the radial
displacement S,, and the horizontal displacements Se and Sy, positive upward, south,
and east, respectively, may be computed as '

S, = =32 sin20(z,cos A — y,sinA) mm , (3.10)
Se = =9 cos20(z,cos A — y,sinA) mm , (3.11)
Sy = 9 cosO(z,sin A+ y,cosA) mm , (3.12)

where O is the colatitude, A is the eastward longitude, and Z,, Y, are expressed in seconds
of arc. Taking into account that x, and y, vary, at most, 0.3 arcsec, the maximum radial
displacement is approximately 10 mm, and the maximum horizontal displacement is about
3 mm.

Plate Motions

The results of investigations in the field of plate motions show that for global high precision
networks the following model for the coordinates of stations should be introduced:

r=r1o+iy (t—t) , (3.13)

where t is the epoch of measurement, ¢, is a reference epoch, to which the receiver co-
ordinates r, and velocities 7, refer. Precise reference frames (e.g. the ITRF) contain the
velocity vectors 1y based on geodynamical models in addition to the station coordinates.
The time derivations of the coordinates may reach a few centimeters per year.
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3. Reference Systems in Space Geodesy

3.2 Time Scale

In the international system of physical units SI the time unit 1 SI second is defined as fixed
multiple of oscillation periods of the resonance frequency which belongs to the transition
between two energy levels of the cesium 133. THe energy levels and the state of cesium
atom are exactly specified. It is important that this definition uses the proper time. Such
approach is suitable for most of physical measurements when the experiment and the clock
are close together. For the astronomical measurement the difference between the proper
time and the coordinate time due to relativistic effects should be taken into account. The
following time scales are important for GPS processing:

International Atomic Time (TAI)

International Atomic Time ( Temps Atomigue International, or TAI) is a coordinate times-
cale defined on the geoid of a “nonrotating Earth”. The unit of TAI is the atomic second.
On the geoid 1 atomic second is equal to 1 SI second. Practically TAI is made available by
the dissemination of corrections to be added to the readings of national time scales and
clocks.

Universal Coordinated Time UTC

This time is based on TAI but it is keeping close to Universal Time UT1 (see below) by
inserting integer leap second at distinct epochs:

UTC=TAI+n-1",  |JUTL-UTC|< 0.9° (3.14)

UTC is used as civil time due to small difference from UT1.

Time GPS

GPS system time is defined by _
GPS = TAI - 19° (3.15)

This time was selected so that the difference between GPS and UTC was zero at so-called

standard GPS epoch on January 6th, 1980.

Universal Time UT1

The Universal Time UT1 is defined by the equation [Seidelmann, 1992)

GMST = GMST of 0"UT1+r-UT1, (3.16)
where
r = 1.002737909350795 + 5.9006 - 10~ - T, ~ 5.9-1071%. T2 , (3.17)
(Julian UT1 date) — 2451545.0
= 1
L. 36525 ' (3.18)
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3.2 Time Scale

and GMST of 0"UT1 (Greenwich Mecan Sidereal Time at 0* UT1, the Greenwich hour
angle of the mean (FK5) equinox of date) may be expressed as

GMST of 0*UT1 = (3.19)
6"41™50.54841° + 8640184.812866° T, + 0.093104* T — 6.2° - 107° - T5> .

These expressions produce UT1 which tracks the Greenwich hour angle of the real sun to
within 16™. However, it really is sidereal time, modified to fit our intuitive desire to have
the sun directly overhead at noon on the Greenwich meridian. The differences of UT1 from
an independent measure of time e.g. the difference

UT1 - UTC (3.20)
is used to specify the orientation of the earth.

Julian Date

The Julian Date (JD) defines the number of days elapsed since the epoch 4713 B.C,,
January 1.5¢. The Modified Julian Date (MJD) is obtained by subtracting 2,400,000.5
days from JD.

Table 3.1: Standard epochs

Civilian Date Julian Date Explanation
1980 January 6.0¢° 2444244.5  GPS standard epoch
2000 January 1.5* 2451545.0  Current standard epoch (J2000.0)

In Table 3.1 the standard epochs used at present and the corresponding Julian Dates are
shown.
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4. Modeling the Satellite Motion

The equation of motion for an artificial earth satellite may be written as

. GM .
iP=-—3 -£+Q(t.£,£.1h.---.pn) ) (4.1)

where

r or r(t,pi,...,Pn) is the geocentric position vector of the satellite at time ¢. At the
same time r represents the coordinate column matrix of this vector in an inertial
coordinate system r = (21, z2,23)7, » = |r].

7 and i are the first and the second time derivatives of r(t).
GM = p is the product gravitational constant times mass of the earth.
a is the acceleration caused by perturbing forces (see Table 4.1)
P, & =1,2,...,n are the parameters of the force ficld to be solved for.
A particular (unique) solution of the differential equation (4.1) may e.g. be defined by

1. supplying initial values (position and velocity) at epoch ¢

E(to) = Iy ((/l’(/L’y-“r(/t}) (42)
’—(tﬂ) = ’—O (qlvq‘.’y-"yqG)

2. supplying boundary values at epochs t; and ¢,.

r(t) = 21 (91,4202 Gs) (4.3)
E(tl) = I ((11,(12'---5(16)

where the ¢;, i = 1,...,6 are six parameters uniquely defining the vectors r, and r; or
r; and r, respectively. If we know the parameters ¢;, ¢ = 1,...,6 and all force model
parameters p;, j = 1,...,n the satellite orbit is uniquely defined and may be computed
using numerical integration techniques. The techniques used in the Bernese GPS Software
are described in [Beutler, 1990].

The perturbing acceleration ¢ consists of a big variety of components, a selection based
on [Landau, 1988] is given in Table 4.1.
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4.1 Estimation of Satellite Orbits

Table 4.1: Effect of perturbing forces on GPS satellites

Perturbing Force Acceleration Orbit Effect [m]
[m/s"] After 1 Day | After 7 Days
Earth’s oblatness (Cap) 5.10°° 10 000 100 000
Non-sphericity of the earth 3-10°7 200 3 400
(Chamy Samy n,m < 8)
Non-sphericity of the earth 0.03 0.1
(Crmy Snmy n,m > 8)
Attraction by the moon 5.10"¢ 3 000 8 000
Attraction by the sun 2.10°° 800 3 500
Earth’s tidal potential 1-10°° 0.3 1.2
Ocean tides 5.1071° 0.04 0.2
Direct solar rad. pressure 6-10"8 200 1 000
y-bias effect 5.10"10 1.4 51
Albedo 4.10°1° 0.03
Relativistic effects 3-1071° A

In the Bernese GPS Software Version 3.4 [Rothacher et al., 1993a] the force model consists
of '

e The earth’s gravity potential (complete up to degree and order 8 or higher).
e The gravitational attraction from sun and moon.

e Earth’s tidal potential.

e Solar radiation pressure.

4.1 Estimation of Satellite Orbits

For the estimation of the satellite orbits we need observations. Two types of observations
may be used used in the Bernese GPS software:

1. Double difference GPS carrier phases and, optionally, code observations.

2. Geocentric satellite positions as fictitious observations. These positions are computed
either from broadcast clements or they are given in so-called precise ephemerides files.

In our case orbit determination is always an orbit improvement process. Initially even a
Keplerian orbit might be used as a first approximation. In any case, it is necessary to
linearize the observation equation. In the linearization scheme below the observation site
parameters (coordinates, tropospheric corrections etc.) are disregarded. Be O(t,r(t)) a
GPS observable, then

Olt,£() = Olt,£°(8)) + 52+ (2(t) = £°(1) (4.4)
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4. Modeling the Satellite Motion

where the partial derivation has to be taken at the point r®(t). The improved orbit r(t)
is defined by equation (4.1) and by the initial conditions (4.2). The approximated orbit
r®(t) is defined by the following initial value problem:

wa GI\I a sa ,.a a
= —- pad '£a+-(£(t$r. y I 1p1""’p”) (45)

or, in abbreviated notation:

where:

f=0fs f3)T is the column matrix with the Keplerian term of the force field in the
inertial coordinate system,

a = (a1,as,a3)7 is the column matrix with the perturbation terms in the inertial co-
ordinate system.

The corresponding initial conditions are

r%(to) =15 (47,43, 45) » (ko) = 25 (41h43v -1 45) - (4.7)
All the approximate values ¢f, i = 1,...,6 and p{, j = 1,...,n are assumed to be known.
The initial value problem (4.5) is solved by numerical integration techniques, where highest
accuracy is required [Beutler, 1990]. The integration technique used in Bernese software
[Rothacher et al., 1993a] is the following: the arc is divided into subintervals of the same
length (1 hour for GPS satellites). Within each subinterval the solution is approximated
by a polynomial function of order ¢ (usually ¢ = 10 or ¢ = 12 is used):

r(t) = Z: g (t—to)" . (4.8)

In the first subinterval the coefficients ¢; of the polynomial are defined by asking that

1. the approximating function fulfils the same initial (or boundary) conditions (4.7) as
the true solution,

2. the approximating function fulfils the differential equation system (4.5) for ¢ — 1
different time arguments ¢;, j =1,2,...,¢— 1 in the partial interval.

The solution of a system of differential equations has thus been reduced to the solution
of a system of nonlinear algebraic equations. This system is solved iteratively, starting
with approximate values for the coefficients ¢; which are then successively improved. This
procedure may be applied in the first subinterval containing the initial epoch resp. the
two boundary epochs. In the other partial intervals the polynomial from the preceeding
interval has to be used to define new initial conditions at the common interval boundary.
The numerical approximation of the orbit is thus defined by several sets of polynomial
coefficients. Neglecting rounding errors the approximation errors may be kept below any
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4.2 Modeling the Perturbing Forces

given limit and therefore the resulting approximation may be considered as a true solution
of the equations of motion. Using the notation

Ag=q—q , Apj=p;-p; (4.9)
the improved orbit r(t) may be expressed as
6 n
r(t + 2,086+ 2, (A, (4.10)
i=1 i=1

where

20= (G )z 0= (G ) (.11)

The functions z,,(t) and z, (t) are solutlons of the initial va,lue problems we obtain from
the primary problem (4.5) and (4.7) by taking the derivative of the equations (4.5) and
(4.7) with respect to the parameters ¢;, ¢ = 1,...,6 and p;, j = 1,...,n respectively and
changing the sequence of derivating with respect to these parameters and with respect to
time. Using the abbreviated notation (4.6) we get the so-called variational equations

w IS+ a) oNf+a) .
= ( ar g=qa i + T q=qe % (4.12)
p=p* p=p°
with the initial conditions
org N _ 0ig
2, (to) = 9q: £,,(to) = s (4.13)
e 2/ +a) of +a)
.. 0(f +a o(f+a . da
.’3.}1j b ( aL qzq: ipj + ai g=ge ip, + 5});' (4.14)
p=p p=pe
with initial conditions
2, (k) =0, £,.(t)=0. (4.15)

This means that in each iteration step of the 01b1t improvement process we have to solve
one system of differential equations (4.5), six systems of type (4.12), and n systems of
type (4.14). The orbit improvement process may then be seen as a standard least-squares
adjustment.

4.2 Modeling the Perturbing Forces

4.2.1 Gravitational Effects
Non-Central Part of the Earth Gravitational Potential

The non-spherical part '/ of the earth’s gravity potential may be represented by a spherical
harmonic expansion. In the earth-fixed geocentric system (e.g. the International Terrestrial
Reference Frame, ITRF) we may write:
GM & fa .
) ( e) Z Pam(sin B) - (Cop - cosmA + Sy - sinmA) (4.16)
r

n=2 m=0

V=
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4. Modeling the Satellite Motion

where:

a. is the mean equatorial radius of the earth,

r is the geocentric satellite distance,

A is the geocentric longitude of the satellite,

B is the geocentric latitude of the satellite,

P,,, is the associated Legendre function of degree n and order m,

Crm, Snm are the coefficients of the development (the terms with m = 0 are the zonal,
those with m = n the sectorial, and those with m # 0, m # n are the tesseral
coefficients).

The perturbing acceleration g, (t) due to the non-sphericity of the earth’s potential is then
given by:
a,(t) = PT(t)- NT(t) - Ry(~GAST) - Ry(y,) - Ra(,) - VV' (4.17)

where

the matrices PT(t), NT(t), R3(-0), R, (y,) and Ra(x,) are used for the transformation
from the earth-fixed into the inertial coordinate system — see 3.1),

VV'is the gradient of the non-spherical geopotential.

Supposing that r = (21,22, ¥3)7 are the cartesian coordinates of the satellite in the earth-
fixed system, the gradient VV' may be computed as

ar/dxy 0p/0x, IN/0x, av'[or
VV' = | Orfdz, 88/0z: 0N Oxy |-]| OV'/OB (4.18)
Or/0xs O08/0xs N0z, WAL
D
where
oV’ GM & [a\" noo
5 = - ,.Iz > (-(;—) “(n+1): Y Punlsing) -
n=2 m=0
* (Cam s cosmA 4+ Sy, - sinmA) (4.19)
// y o2 n n
%‘B— = g}j-\i > (%5) . Z [Pyms1(sin ) — m - tan 8 - Py, (sin B)] -
n=2 m=0
« (Cum rcosmA + S,,,, -sin mA) (4.20)
a‘/, GA[ (o) . n n .
o = > (%—) Y m: Pyy(sing) -
n=2 m=0
- (=Chm - sinmA + Sy, - cosmA) (4.21)

and the elements of the matrix D are given by

o x or T ar T3 s
AR =2 == (4.22)
().731 r 8.7;3 r ().’153 r
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4.2 Modeling the Perturbing Forces

9B -z B —T223 ()ﬂ a3 + 23

= y B = e —_—_— 4.23
dzy  rai+ a3 Ova  r2\/ai+ a3 0’03 r2 ( )
oA -2y oA x oA =0 (4.24)

, 8_3:1_—11+3,2 T 23+ 23 ' Ozs
Because the GPS satellites are in high altitude orbits, they are much less affected by the
short wavelength terms of the geopotential than low orbiting satellites. Therefore it is
usually sufficient to use an earth potential model up to degree and order 8 [Beutler et
al., 1985] and to assume that the potential coefficients Cy,,, Sun are known. Nevertheless
it it possible to estimate some coeflicients too. In that case the partial derivative a,(t) of
the gravitational acceleration a(t) has to be computed as

a,(t) = PT(t)-NT(t)- Rs(~GAST) - R\(y,) - Ra(2,) -

a4
(4.25)
o [ GM (ﬁi) Py (sin ) { Cf)smA ] {f p= C"nm

r r sin mA if p=Sum

Direct Gravitational Effects of Moon, Sun and Planets

The gravitational perturbations due to third bodies are caused only by the difference
between the force on the satellite and that on the earth. The perturbing acceleration is
given by

r—r; r, _
a t) = -G Ei M; (IE— _7_:'.’3 + ILP) (4-26)
where

r is the geocentric position vector of the satellite,
r; is the geocentric position vector of the third body (moon, sun etc.) and
M; is the mass of the corresponding third body.
In the Bernese software only the perturbations due to the moon and the sun are considered.

According to [Landau and Hagmaier, 1986] the total effect on the GPS orbit due to all
planets is only about 30 cm for an arc of one week.

Solid Earth Tides and Ocean Loading

The gravitational attraction of third bodies also has an indirect effect on the satellite orbit
due to the tidal deformations of the earth’s gravity potential. The perturbing acceleration
due to the potential caused by the solid carth tides may be found in [Melchior, 1983]:

a(t) = CI;I(i ZI T (Pz' %) T’;—I — Pj(cos z;) l—:"—l) (4.27)

where the same notation as in equation (4.26) is used. k, is Love number of degree 2, the
angle z; is defined by

I~

Tzl (.28

cCos z; =

1~
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4. Modeling the Satellite Motion

and

Pj(cosz;) =3-cosz;, Pylcosz) ==+ (5 cos’z ~1) (4.29)

2
In the Bernese software only the contributions due to moon and sun are considered.

Ocean loading is the elastic response of the parth’s crust to ocean tides. The most
complete model for ocean loading appears to be that described by [Pagiatakis et al., 1982].
It should be noted that this effect is difficult to model because the ocean waves caused by
the moon and the sun cannot propagate without friction and interact with the sea floor
too (shallow waters). Therefore the acceleration of the order 5-1071¢ m.s~2 [Landau, 1988]
due to ocean loading is neglected in our model.

4.2.2 Solar Radiation Pressure

The modeling of the solar radiation pressure seems to be the most difficult part in the
force model due to the complicated shape and changes of the orientation of the satellites.
Resulting perturbing acceleration is quite large. The neglection of this effect will result
in orbit errors of the order of 200 m for one day arc. Since the orientation of the orbits
with respect to the sun changes slowly, solar radiation also causes considerable resonance
effects [Rothacher, 1991]. The effect of the solar radiation pressure may be divided into
two parts:

1. direct radiation pressure (drp) and

2. earth albedo radiation pressure (arp).

Direct Radiation Pressure

As a priori models for the direct radiation pressure we use the ROCK 4 model (for
Block I satellites) and the ROCK 42 model (for Block II satellites). [Fliegel et al., 1992].
Fliegel makes the distinction between the S- and T-models (T-models include thermal
re-radiation). Both are implemented in the Bernese software, at present we are using the
T10-model for the Block I satellites and the T20-model for Block 11 satellites. In principle
the models are based on the equation [Cappellari et al., 1976]

a=p- P2 LEDA Lotp +a, (4.30)
mo |-l ‘

where
v is the eclipse factor

v = 0 if the satellite is in the shadow
v = 1 if the satellite is in the sunlight
0 < v < 1 if the satellite is in the penumbra

P, is the radiation pressure of the sun acting on an ideal absorbing body in a distance of

o

1 Astronomical Unit. According to [Willson, 1978] P, = 4.5605-107° N.m™",
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4.2 Modeling the Perturbing Forces

a, is the Astronomical Unit (semi-major axis of the earth’s orbit around the sun),
(1 4+ 9) is reflection coefficient depending on the reflective properties of the material,
A is effective cross-section area of the satellite,

m is mass of the satellite,

r is geocentric position of the satellite,

'y is geocentric position of the sun and

a,

is acceleration perpendicular to the incident radiation, this acceleration has the dir-
ection of the y-axis in a satellite fixed coordinate system (see Figure 1.1) and is
therefore called y-bias. The y-bias is caused probably by a misalignment of the solar
panels and the asymmetric thermal radiation (preferably in the direction of the
y-axis).

The ROCK 4 and ROCK 42 models depict the satellite as a number of flat or cylindrical
surfaces. For each surface element the reflexion coefficient 7 and the coefficient p for the
so-called diffusion reflexion are assumed to be known. The resulting acceleration caused
by each surface element depends on these two coefficients, on the shape of the surface (flat
or cylindrical) and on the angle § between the normal of the surface and the direction
to the sun. The y-bias is considered to be constant. The details may be found in [Fliegel
et al., 1992]. However the modeling is extremely difficult because the factor P, may vary
in an unpredictable way over the year, the values of the coefficients 1 and g are not
exactly known (and might not be constant in time), because the shadowing effect due to
the antennas and the satellite body is not considered, and because the orientation of the
satellite with respect to inertial system is not perfect as it should. For all these reasons
we use the following model [Beutler et al., 1994a]

Qrp = CRock T Xy(t) -y + Xa(t) - o+ X3(t) - €3 (4.31)

where the unit vectors g;, i = 1,2,3 are defined by

~

— Ty

&= =€, €=¢€Xe : (4.32)

1~ |1

—ro 1]

The vector e, is one of the unit vectors of the satellite fixed coordinate system. The vectors
€., e, and e, (e, has the direction from the satellite to the center of the earth) and hence
the orientation of the satellite are defined by the following equations:

; i e=aXe (4.33)

It is easy to verify that the vectors e;, i = 1,2,3 are orthogonal and form a right-handed

R - _ e, x(r—
ST o YT e x(z-

.
v

&5

system. The coefficients X;(t), ¢ = 1,2, 3 are modeled with three parameters each:

Xi(t) = Xoi+ Ai-cos(u+ ), i=1,2,3 (4.34)
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where u = v(t) + w =~ M(t) + w is the argument of latitude. In the actual parameter
estimation it is not possible to solve directly for the phase angles ¢;, but we have to
introduce auxiliary unknowns X¢; = A; - cos ¢y, Xs; = —4; -sin ¢; and our model is

Xi(t) = Xoi + Xei - cos(M +w) + Xs; -sin(M +w), i=1,2,3 (4.35)

The test results with this new radiation pressure model were of the same quality whether or
not the Rock 4, Rock 42 term ap,., was used in the equation (4.31) {Beutler et al., 1994a].
This is due to the fact that the major part of the term ap,, may be absorbed by the
terms (4.35).

Albedo Radiation Pressure

The earth and its atmosphere reflect some of the received solar radiation back into space.
The albedo radiation pressure is caused by this reflected radiation. The modeling of the
resulting acceleration is more complicated than that of the direct radiation pressure be-
cause of the necessity to integrate over all surface elements of the earth illuminated by the
sun. On the other hand this acceleration is small (see Table 4.1) and therefore we adopt
the following simplifications:

1. all surface elements d ¢ have the same diffusion properties (we do not distinguish
between land, sea, clouds etc.) and

2. the total power (energy per time unit) received by the element d ¢ is proportional
to cos 2, - d o according to Lambert’s law (zg is the angle between the normal of the
surface element and the direction to the source of the radiation - in our case z is
the zenith angle of the sun). The energy reradiated into a direction with the zenith
distance z is proportional to cos z - coszg - do.

The radiation received at the satellite position on a unit surface normal to the direction
surface element — satellite is then proportional to coszg +cosz - d o / . For a spherical
satellite the resulting acceleration may be modeled by

(_z:/ p-A (1+7;).cosz®;cosz do (4.36)
Q m 0

where p and z are the topocentric distance and zenith angle of the satellite seen from the
earth’s surface element d o, A is the cross-section of the satellite, (1 + 7) is the reflection
coefficient, m is the mass of the satellite, and p is unknown parameter of the model.
The integration must be performed over all the illuminated surface elements of the earth.
[Beutler et al., 1994a] introduces such a model for GPS satellites and depict the GPS
satellite into two parts — the spherically symmetrical central body and the solar panels.
The sunlit semi-sphere of the earth is divided into n - m surface elements with the same
surface area (n is the number of zones, m the number of sectors) and the integration is
approximated by a summation over these elements.
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4.2 Modeling the Perturbing Forces

Eclipses

The radiation pressure (direct and albedo) vanishes if the satellite enters into the earth’s
shadow. Each GPS satellite has two eclipse seasons per year, each lasting for about seven
weeks. In the Bernese software a simple cylinder model for the shadow of the earth is used.
The shadow coefficient v in equation (4.30) is given by

{0 if cos7=lf:f_o"‘.<0 and |r| V1 —=cos?’y < a,

1 else

(4.37)

The orbit quality during eclipse seasons may be considerably degraded for a number of
reasons (e.g. penumbra problem, but also attitude control problems).

Further Perturbations and Empirical Modeling

There are further small perturbing accelerations which are not considered in our force
model. The first one is a part of the general relativistic effect due to the gravity field of the
earth. This effect is described in [Zhu et al., 1987]. The second effect — atmospheric drag -
due to the interaction with the particles of the atmosphere is very small for GPS satellites
which are very far from the earth’s surface. It should be mentioned that the parameters of
the radiation pressure model (4.35) may also absorb unmodeled perturbations. In this sense
our force model is close to the model proposed by [Colombo, 1989]. Colombo’s empirical
model is based on the assumption that many of the small unmodeled forces acting on
GPS satellites are either constant or periodic with the satellites’ revolution times as basic
periods. The perturbing accelerations may be developed into a Fourier series. Using the
(R,S,W) components (R=radial, S=perpendicular to R in the orbital plane and W=out
of plane) the acceleration may be expressed as

0o Rei-cosiM + Rg; -siniM
a=> | Sci-cosiM + Ss; -siniM (4.38)
i=0 \ We; -cosiM + Ws; -siniM

[Colombo, 1989] suggests to consider only the terms ¢ = 0 and i = 1. The resulting model

Ry + R¢y ~cosM + Rgy »sin M
a = So + Scy - cosM + Sg, -sin M (4.39)
Wy + Wey -cos M + Wy -sin M
is similar to the model (4.35) proposed by [Beutler et al., 1994a]. The difference is subtle,
but important. In both cases we have a set of three orthogonal forces which are rotating
once per satellite revolution in the inertial space. But the rotation axes and the angular
velocities of the rotation of the two systems are different: in Colombo’s model the rotation
axis is normal to the orbital plane and the angular velocity is uniform, in Beutler’s model
the rotation axis is the direction satellite & sun and the angular velocity depends on
the inclination of the orbit with respect to the terminator plane. [Beutler et al., 1994a]
claim that with the same number of parameters (9 parameters) the model {4.35) gives
significantly better results than the model (4.39).
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5.1 Phase Pseudoranges

In the Section 1.3.3 we described the principle of the signal processing. In this section we
want to introduce the observation equations. We assume that the both oscillators (satellite
and receiver) are biased and their frequencies fi and fr, are generally not identical and
equal to the nominal frequency fp. It should be mentioned that we simplify our notation
and we do not distinguish explicitly between different reference frames. More exactly we
should say that e.g. fi is not equal to the nominal frequency in satellite-fixed reference
frame. We use the fact that the receiver compares the phases of two signals and that
the phases are invariant with respect to the Lorentz transformation. Let us introduce the
following notation:

ty is the epoch of the measurement {(GPS system time), to this time all the quantities
should be referred,

Yiw(tp) is the phase measurement (in cycles) for the epoch ¢, 7 is a satellite index, k is
the receiver index and r is the frequency index,

¢%(tY) is the phase of the carrier at the emission time t' (reading of the satellite clock),

¢rk(tx) is the phase generated by receiver at signal reception time t; (reading of the
receiver clock),

nk, is the unknown integer number of cycles (so-called ambiguity), and

i : - :
€y (tp) is the measurement noise.

Using this notation we can write the initial form of the observation equation [Re-
mondi, 1985b] :

Ve (ty) = Sp(t') = Grulti) = npy + €ki () © (5.1)

The signal reception time ¢, may be written as:
te =+ %(L,) (5.2)

where &4(t,) is the error of the receiver clock at time ¢, with respect to GPS system time.
Similarly, the emission time # may be written as:

=t +8(t) — (e, t') (5.3)
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where 7(tx,t') is the signal travel time (about 0.07 seconds). According to [McCaskill et
al., 1985] the stability of the satellite oscillator A f*/f# is about 10~!* within one second.
The stability of the receiver clocks is only of the order of 10~!! [Remondi, 1985a]. Thanks
to such a high stability of the oscillators the following approximations may be used:

Gp(t’) = Splty) + (e (tp) — T(tx, ) fi (5.4)
dru(te) = dri(ty) + 0 (L) fre (5.5)

where fry is the frequency of the receiver oscillator and f} is the frequency of the satellite
oscillator. Substituting last two equations into the equation (5.1) yields:

"/)}’k(tl‘) = g‘511"(t1’) + (sk(tp) (f;‘ - ka) - f}“ T(tkvti) - é["k(tp) - niFk + eipk(tp) 3 (5'6)

Let us assume that the phase of an ideal oscillator is exactly zero at time t5. Then the
phases of the satellite and recciver oscillators at time ¢, are

Gp(te) = fr (=8 (t0)),  om(to) = fr (—8k(to)) - (5.7)

The last two equations define the satellite clock error §°(t,) at time ¢, and the receiver
clock error &, (o) at time to. The phases of both signals at time ¢, are then expressed as

tp . .
Selty) = [0 dt+ gi(to) (55)
ty
drnlty) = [ e (®) AU+ Srulto) (5.9)
The integrals on the right hand side are (according to definition of §' and &)
te | . .
S de= fps (t - 8(t) = (to = &(t0))) (5.10)
tP
fr(t) dt = fp - (r,, = 8ulty) = (to = Bu(t0))) (5.11)
to
which finally yields
nlly) = Brulty) = fr - (8lty) = 6(1,)) - (5.12)

Substituting this expression into the equation (5.6) the observation equation takes on the
form

@b;‘k(tlﬁ) = 0y (tp) (f;‘ - ka) - f;‘ T(tk»ti) + Jr (5k(tp) - 6i(tp)) - n;‘k + 5"Fk (tp) . (5-13)

In equation (5.13) all the terms are referred to the time t,. The only exéeption is the signal
travel time 7(t;,¢'). We may assume this time interval to be a function of reception time
tr and expand it into a Taylor series with the time ¢, as an origin. Because the second
time derivative is negligible (at maximum 8.7-107!° s~! according to [Landau, 1988]) we
have:

b — U =1(t) =1(t,) + ((ll—tr(tp) Si(t,) - (5.14)
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Substituting this expression into equation (5.13) the observation equation is given by

Dk (te) = 0 (tp) (fr— fri = fr ;?—tr(tp)) = Fir(t) + fr (0u(ty) = 8 () — min o+ € (8) -

(5.15)
Because of the high stability of the satellitc osciflator (A f}/fi = 107!3) it is possible to
neglect the difference between the nominal frequency fp and the frequency of the satellite
oscillator fi:

1/);'lc (tp) = 6 (tp) (2fF - fre = fF (%T(tp)) = fr7(tp) = fr 5‘(%) - "ipk + fi‘k (tp) - (5.16)

The terms 26,(t,) fr and 8 (t,) frx only depend on the receiver and are the same for all
satellites. On the contrary the term fr 8'(t,) depends on the satellite only and remains
the same for all receivers which receive the signal from one satellite. These terms may be
eliminated using the double difference techniques like e.g. in the Bernese GPS software
[Rothacher et al., 1993a). Let us denote the geometrical distance between the satellite (at
the emission time) and the receiver (at the reception time) p}(t,) = 7(¢,) ¢, where cis the
velocity of light (this distance is biased by tropospheric and ionospheric delays). Then

d 1d
3 . t) - ‘. t\ 3 e
fe T37t) = 3o ekt (5.17)
where Ap = ¢/ fr is the carrier wavelength. Multiplying equation (5.16) by —Ar and using

the notation

L}‘k = —/\p "/szk y Ai =cC 6i(l},) 3 Ak =2 C(gk(tp) _C(Sl\'(tp)'[ff y w}k = /\p E;"k (518)

f

we get the observation equation in the “final” form:

5.2 Code Pseudoranges

Using the known codes modulated on the GPS carriers, the GPS receivers are able to
measure directly the biased travel time 7 of the signali. Because the bias is caused by
satellite and receiver clock errors the distance ¢ - is called the pseudorange between the
satellite and the receiver. Using the same notation as in the previous section we may write

Piy = ¢ [t = 8uty) = (¢ = 6 (1)) + Kpi + why (5.20)

where K gy is the difference between the reference time for the detection of the signal and
the reference time for the generation of the signal in receiver [Landau, 1988]. K r; remains
constant for each receiver channel. Due to the high stability of the satellite oscillator we
may exchange 8*(t') and &'(t,). Thus the last equation gets the form

b= [t = 0u(ty) = (€ = F ()] + Kp + why - (5.21)

Using equations (5.14) and (5.17) we get:

. o d . ) y ) ;
P}'k = Q;\ + bk("p) '(-]-—t-gz -C Ok(tp) + c 0'(tp) + I(pk + Wey. - (5.22)
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5.3 Biases

The phase measurements (equation (5.19)), and the code pseudoranges (equation (5.22))
are affected by both, systematic errors and random noise. The errors sources may be
classified according to [Hoffman-Wellenhof et al., 1992] into three groups, namely satellite
related errors, propagation medium related errors, and receiver related errors. Some of these
biases are listed in Table 5.1.

Table 5.1: Range biases

Source Effect

Satellite Orbital errors (if not estimated)
Clock biases
Antenna offsets
Antenna phase center variations

Signal propagation Tropospheric refraction
Ionospheric refraction

Receiver Antenna phase center variations
Clock biases

5.3.1 Forming Differences

Using the differencing techniques as e.g. described by [King et al., 1985] or [Wells et
al., 1986] allows us to eliminate or reduce some of the mentioned biases. Let us define the
single difference operator (between a pair of receivers) by

d(Xp X)) =X - X = X, (5.23)
and the double difference operator (between a pair of receivers and between a pair of
satellites) by

dd(X, X, XL X)) = X{, - X, =X . (5.24)
Applying the double diflerence operator in equation (5.19) we get:
L;‘g‘.kl = 9;\]1 + & - (6 — Oi) — 8- (61— d)) + Ar n‘ijl - w;ikl ’ (5.25)

where F denotes the frequency, k, { are the receiver indices and ¢, j are the satellite indices.
The maximum radial velocity ¢i in the case of a stationary receiver is about 900 m.s!
and therefore the clock bias J; should be known with an accuracy of about 10~° s if the
millimeter accuracy is required. The receiver clock biases are estimated with an accuracy
better than 107° s using the code pseudoranges [Schildknecht, 1986) which allows to correct
the phase measurements. By transfering these corrections into the absolute term Lgk, the
(double difference) observation equation may be written in the very simple form:

g i ni i 5
Fri = Of1+ AP Mgy — Wiy : (5.26)
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5. Modeling the GPS Qbservables

Double differences are the basic observables in the Bernese GPS software [Rothacher et
al., 1993a} and the mathematical correlations of the observations are taken into account
[Beutler et al., 1986] .

Using double difference observations LY,,(t) from two different epochs t; and t, the
triple difference may be formed (the noise is negfected):

LEu(ts) — L (t) = 0li(t) - aii(t1) - (5.27)

In the above equation we assumed that the unknown ambiguity parameter n,, remained
unchanged within the time interval < t{,¢; > and therefore the phase ambiguity bias was
eliminated. This is indeed true if the receiver did not loose lock within this time interval
and no cycle slip (see Section 6.2) occurred.

5.3.2 Atmospheric Effects

In equation (5.26) the ionospheric delay, the tropospheric delay, and the relativistic effects
are not given explicitly. After separating these terms from the geometric double difference
distance g} the observation equation reads as

i i " ij ij
i = 00— Dion + Dtrop = Dyt + Ap 0y — whyy (5.28)
where .

oY, is now the unbiased double difference distance,
A;on 18 the ionospheric refraction correction,

A¢pop is the tropospheric refraction correction, and
A, is the correction due to the theory of relativity.

Phase and Group Velocity

Let us assume that a single electromagnetic wave with wavelength A and frequency f
propagates through the atmosphere. The velocity of its phase

v = f A (5.29)

is called phase velocity. The carrier waves L; and L, are propagating with this velocity.
Actually every radio signal is composed of many electromagnetic waves with slightly dif-
ferent frequencies. The signal width is the difference between the highest and the lowest
frequency. The energy propagates with the so-called group velocity. Let us assume two
different frequencies f and f’. Their elongations are given by

y=A sin [‘27r-<ft——§>] , ¥ =A sin [27r-<f't—:\:€;>] , (5.30)

where x is the distance from the transmitter. The summation of both waves y + 3 results
in signal with periodical changes of the amplitude with the frequency

_f=r
Jor = — (5.31)
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and with the width of the group of waves

1 1 /1 1
=3 G w) (>:32)
The propagation velocity of the group of waves (and of the energy) is given by
f-r
Vyr = )\gr fgr = —,\—:—:\7 . )\)\I . (533)

For slightly different frequencies the group velocity may be expressed as
ﬂ 2.
dA

Forming the total differential of equation (5.29) and using equation (5.34) we obtain the
Rayleigh’s equation:

(5.34)

Vgr = —

du,
Uy = Uph = A — ’A" (5.35)
The refractive indices n,, and ng, are defined
¢ ¢
Npp = — ,  Ngp = — . (5.36)
Uph Vgr
Differentiation of the phase velocity with respect to A yields
1 1 1 dn
L1 Ldm) oan
Ngr  Mpp npn dA

Using approximation (1 +¢)~! =1 — ¢ yields so called modified Rayleigh’s equation

d Npn

dA

Ngr = Npp — A

(5.38)

Ionospheric Refraction

The ionosphere (the part of the earth’s atmosphere containing free electrons) extends from
about 50 km to 1 000 km above the earth’s surface. The ionosphere is a dispersive medium
for the GPS radio signals, which means that the refractive index is frequency-dependent.
The influence of the ionosphere on the propagation of the electromagnetic waves is called
ionospheric refraction. According to [Stein, 1982] or [Seeber, 1989] we may write
k y T 2.3

Npp = 1— = k=403 N, [Hz"m"] , (5.39)

where N, is the electron density (i.e. number of free electrons per m3). The modified

Rayleigh’s equation yields
k
Ngr = 14+ — .
g f_

A consequence of the last two equations is the delay of GPS code measurements and

(5.40)

the advance of carrier phases. The cffect has the same absolute value for code and phase
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5. Modeling the GPS Qbservables

measurements, but the signs are opposite. As a consequence of the Fermat’s principle, the
measured range s is

s=/nds, (5.41)

where the integral is extended along the path of the signal. The unbiased distance results
forn=1:

Sp = /ds . ' (5.42)
Thus the ionospheric refraction s — s, may be written as

k k
Aion,ph = - F ds= _Al'on ) Aion,gr = / F ds= Aion . (5’43)
Let us assume that we observe a satellite at zenith. Then the total electron content N, is
given by

N, = /Ne ds (5.44)
and the ionospheric refraction correction by

103
f2

In the general case the zenith distance of the satellite must be taken into account. Using

Ajgn = N, [Hz’m%] . ' (5.45)

a single layer model according to [Wild et al., 1989] the ionospheric refraction correction

may be written as

Aion = *L% Nc [szlns] ) (5-46)

92

cosz f*?

where the reduced zenith distance =’ is given by

sinz' = sin =, (5.47)

R
R + hion.
where R is the mean radius of the earth, z is the zenith distance of the satellite and the
height of the layer h;,, is according to [Wild et al., 1989] about 350 km.
Tropospheric Refraction

Tropospheric refraction is the effect of the neutral (i.e. the non-ionized) part of the earth’s
atmosphere. The troposphere is a nondispersive medium with respect to radio waves up
to frequencies of about 15 GHz (see e.g. [Bauersima, 1983]). The tropospheric refraction
is thus the same for both carriers L; and L,. The tropospheric path delay is defined by

Aprop = / (n—1)ds=10"° f Ntrer ds (5.48)

where 7 is the refractive index and N°? the so-called refractivity. According to [Hop-
field, 1969] it is possible to separate N'"° into a dry and a wet component

Niror — Ar}i"l’l‘ + Niror , (5.49)

w
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where the dry part is due to the dry atmosphere and the wet part due to the water vapor in
the atmosphere. About 90 % of the tropospheric refraction stems from the dry component
[Janes et al., 1989]. Using the last equation we may write

Atrop = Dirop.d + Diropw = 107° / NY? ds+107° ] NP ds. (5.50)

According to [Essen and Froome, 1951] we have

I’
mb

Ny =77.64 2 [I‘ and  NI& = -12.96 —[

72
£l= = ]+3718 10° — [I ] . (5.51)

T2 |mb

where p is the atmospheric pressure in millibars, T' the temperature in degrees Kelvin and
e is the partial pressure of water vapor in millibars. The coefficients have been determined
empirically.
The tropospheric delay depends on the distance travelled by the radio wave through
the neutral atmosphere and is therefore also a function of the satellite’s elevation angle.
To show this elevation-dependence the tropospheric delay is often written as the product
~ of the delay at zenith A?  and the so-called mapping function f(2):

Alrop - f( ) Atrop * (552)

According to [Rothacher, 1991] it is better to use different mapping functions for the dry
and wet part of the tropospheric delay:

A“‘"P = fd(z) trop 4t fuw (Z) hop w * (553)

The same author states, however, that for elevations above about 20° the approximation

fd(Z) = fw(z) = f(Z) = 1

cos z
is sufficient if some a priori model for the tropospheric refraction is used and only the

trop

(5.54)

correction with respect to this model is estimated.
Several models for the tropospheric refraction are implemented in the Bernese GPS
- software:

e the Saastamoinen model [Saastamoinen, 1973},
e the modified Hopfield model [Goad and Goodman, 1974},
o the simplified Hopfield model [Wells, 1974], and

o the differential refraction model based on formulae by Essen and Froome [Rothacher
et al., 1986].

Usually the Saastamoinen model is used as a priori model for the tropospheric re-
fraction. This model is based on the gas laws, when some approximations are made.
[Saastamoinen, 1973] gives the equation

Atrop = % [p-{- (&;5 + 0. 05) e — tan? z] , (5.55)
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where the atmospheric pressure p and the partial water vapor pressure e are in millibars,
and the temperature T in degrees Kelvin. The result is in meters. [Bauersima, 1983] uses
the special correction terms B and 6 RR:

5 rard 54
Dtrep = 0.002277 [p+ (1205

Ccos 2

+ 0.05) e— B tan® z] +4R . (5.56)

The correction term B is a function of the height of the observing site, the second term
0 R depends on the height and on the elevation of the satellite.

In the model either measured data (pressure, temperature, humidity) or the values
derived from a standard atmosphere model may be used. Experience shows that the es-
timation of troposphere parameters is necessary if highest accuracy is required. In the
Bernese GPS software usually the deterministic estimation of several zenith delays per
session is used (only the corrections with respect to a priori model are estimated). A priori
constraints for these parameters may be introduced.

5.3.3 Relativistic Effects

The fundamental frequency f = 10.23 MHz of the GPS signal is biased by the effects of
special and general relativity. Because these effects are small only the linear terms are
usually taken into account:

(5.57)

Arel,l = -9

- f'f—f ;(3)2+AU_

c ct

v is the velocity of the satellite and AU is the difference of the gravitational potential
between the position of the satellite and the position of the receiver. Assuming a circular
orbit and a spherical earth gives the numerical value
I —
fF-7_ 4.464.1071° | (5.58)
f
[Ashby, 1987] shows that taking into account the Jo-term for the potential yields the
slightly different result 4.465 - 1071°. According to [Spilker, 1980] this effect is eliminated
by emitting the frequency 10.22999999545 MHz instead of 10.23 MHz.
Another small periodic effect due to the non-circular orbit is given by [Gibson, 1983)

- 2
Oretn = EVGM -ae sink, (5.59)

where e denotes the eccentricity, ¢ the semimajor axis, and F the eccentric anomaly. This
effect cancels out in the case of relative positioning.

The receiver oscillator located at the earth’s surface is biased by a relativistic effect due
to the rotation of the earth. This effect is usually corrected by the receiver firmware.
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5.3.4 Effects of Antenna Orientation

The phase measurements depend on the orientation of the antennas of transmitter and
receiver, and the direction of the line of sight. With increasing accuracy in the GPS
this effect becomes important. It should be mentioned that this effect is not eliminated
completely using the differenced observables and that it may reach a maximum value of
half a cycle.

The formulas expressing this effect were derived by [Wu et al., 1992] where it was as-
sumed that the GPS signal is a right-handed circularly polarized (RCP) wave. An effective
dipole D of a crossed dipole receiver antenna is defined by

D=&-kh-2)+kxg, (5.60)

where & and § are the unit vectors in the directions of the two dipole elements in the
receiving antenna and & is a unit vector pointing from the transmitter to the receiver. The
difference of the first two terms on the right hand side is the projection of & onto a plane
normal to I;', and the last term is the projection of § onto the same plane rotated by 90°.
Introducing the third unit vector £ which is orthogonal to & and § we may express the
vector multiplication as

~

Exg=hxGxa)=2k-2)-i(k-3). (5.61)
Thus . ) o -
D=3&(1-k-2)-k(k-2)+3(k-2). (5.62)
Similarly we define an effective dipole for the transmitter by
D=&+kk-2)-kxgp . (5.63)

The phase correction Ay is determined by the angle between the two effective dipoles and
its past history:

Ap=2Nrn+4d0, (5.64)
where d¢ is a fractional part of a cycle given by
. DD
d¢ = sign(¢) arccos (—:—-—:.—) (5.65)
|D| D]
¢=k-(D'x D) (5.66)

and N is an integer given by
N = nint [(Aapres — 66)/27] , (5.67)

where Ag ;e is the previous value of phase correction and “nint” is the nearest integer.
This equation assumes that the computation is done at a sampling rate which is high
enough so that the change in the correction is always less than 180° between successive
epochs. The value N could be chosen arbitrarily at the beginning of a phase tracking
session, usually it is set to zero. The sign convention is such that a positive value of Ag
has the same effect on the computed value of the carrier phase as an increased geometric
range.
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5.3.56 Antenna Phase Center Variations

The GPS measurements are referred to the so-called antenna phase center. The phase
centers are not identical for the L; and.L, measurements. Choosing the L, phase center
as a reference and assuming that the phase centers are both on the vertical axis of the
antenna, the observation equations for the two frequencies are

W= G+ g+ M nl + AT - A
Ly, = oh+0 ok +deni,+ A=Ay —A,coszl (5.68)

where z}, is the zenith distance of the satellite . The distance between the two phase centers
A, (usually several millimeters) should be known for all antenna types.

Experience shows that the position of the antenna phase center is not constant but it
depends on the direction the radio signal is comming from. The azimuth dependence is
not highly significant but the correction due to the zenith distance should be applied for
precise positioning. Using the same antenna types greatly reduced this effect at least for
short baselines, but not necessarily for long baselines because the zenith distances z}, 2}
are not equal. The antenna phase center variations must be carefully modeled if different
antenna types are used.

5.3.6 Multipath

Multipath implies that the signal arrives at the receiver’s antenna via more than one path.
It is mainly caused by reflecting surfaces near by the receiver, but according to [Young
et al., 1985] reflections near the satellite may show up too. It is almost impossible to
model multipath because it depends on the very variable geometrical situation. However
using a special combination of L, and L, code and carrier phase measurements, mul-
tipath effects may be estimated because all biases mentioned in previous sections (with
exception of ionospheric refraction and multipath) influence code and carrier phases by
the same amount. The difference between the ionosphere-free combination of phase meas-
urements Lz and the same combination of code measurements Pj is biased by multipath
only. The only problem is the low accuracy of the code measurements, which means that
small multipath effects remain undetected. The best way to reduce multipath is using the
signal polarization method. GPS signals are right-handed circularly polarized, whereas
the reflected signals are left-handed polarized. Modern antenna types reduce the effect of
multipath considerably.
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5.4 Linear Combinations of Observables

A dual-band P-code receiver allows us to form more linear combinations of the original
carrier phase measurements L, L, and/or code measurements Py, Ps:

L, = (AP I Ly + Qo Lo
P, = ﬁm,l * Pl + /3171,2 ‘ P’.Z (5.69)
Wpn = Ln—P,

Different linear combinations allows us to eliminate or reduce different biases. Only the
linear combinations available in the Bernese GPS software are discussed below.

The Original Carrier Observations L; and L,

The original carriers L, and L» are biased by all effects mentioned in the previous sections.
Their measurement noise is very small. According to [Rothacher, 1991] the noise of the
L3, resp. Ly, resp. Ly linear combinations (see below) are roughly 3 times, resp. 1.4 times,
resp. 5 times larger than the noise of a L; or L, obscrvation. Using the original carriers is
recommended in small networks only, where the biases are reduced enough by differencing,.

The Ionosphere-free Linear Combination L3

The linear combination

1 o o -
Ly= ——F (i Li = fi L) (5.70)
1

ft = f3 ”
is often called “ionosphere-free” because the ionospheric path delay is practicaly eliminated
(the formal “wavelength” of this linear combination is discussed in Section 6.3.1). The same
is true for the combination of code measurements
Py=——(} P = f} Py) (
3= w5 1= J3 £2) . .
fi-

(@]
-1
-
—

The difference W3 = Lz — P3 may be used for multipath detection (see section 5.3.6).

The Geometry-free Linear Combination L,

The linear combination

L4 = Ll - L-) (572)

is independent of receiver clocks and of the geometry (orbits, station coordinates). It
contains the ionospheric delays and the initial phase ambiguities and may be used for
the estimation of ionosphere. The same linear combination may be formed using the code
observations too.
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Wide-lane Linear Combination Ly

If we neglect all biases with the exception of the initial phase ambiguities the basic equa-
tions for L, and L. measurements may be written as

Ly = o +’/<1"1

Ly = o+ Ams. (5.73)

Using equation (5.69) the general linear combination of phase observations is
Ly = (@1 + Qmz)o+ Aty + 0 2dans . (5.74)
The wide-lane combination has to meet the following condition:

Ln =0+ Annn , (5.75)
where n,, should be an integer again. Comparing to (5.74) leads the following two equa-
tions:

Omi+Qpmo = 1 (5.76)
Q1 A1y + Qo pdaly = Ay . (5.77)

[Cocard and Geiger, 1992] look for the coefficients oy, and ap, 2 leading the maximum
wavelength A,,. They introduce two integers ?,, 1 and i,, ; with

. Gy ’\1 . (A )‘2
2 = et 1 = —, 5.78
m,1 /\m 1 m,2 )\m ( )
Thus
Ny = Imy Wyt i M2 (5.79)
and n,, is an integer by design. The corresponding wavelength A, is given by
AL Aq A , Ay TT
/\m = = , Q=== (580)

tm,) ’\'_’ + im.,f.’ ’\1 q-tm + In2

[Cocard and Geiger, 1992} show e.g. that the wavelength of a combination of L; and L.
reaches 14.653 m for i,,, = —7 and i,, » = 9. The problem is the propagation of stochastic
and systematic errors. Expressing the first equation (5.69) in cycles

¢1n = im,X él + im.ﬂ 053 ) (5-81)

and assuming the mean square error a; in cycles of L; being equal to the mean square
error oy in cycles of L

NPy, (5.82)

o
the mean square error of our combination is (in cycles of L,,)

- =
O = [ty im0 0y . (5.83)
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5.4 Linear Combinations of Observables

This formula shows that the noise expressed in cycles of the corresponding wavelength is
always greater than the noise of L; or L, separately.

We have to assume that the influence of the tropospheric refraction A,,, is identical
on both frequencies (in meters), Thus (using (5.76))

Am,trop = (O'm,l + 0’111,2) Atrop = Al.rop . (5'84)

Assuming that the influence of the ionospheric refraction equals A;,, for the observations
on L; we have (notice (5.45), (5.80))

Am,ion = (Q'm,l + (12 : C"m,'.l) Aion ’ (585)

or using (5.78) A A
/ . A
o= et gring) - (5.86)

To minimize the fraction on the left-hand side of the equation (5.86) (if the ionosphere

refraction is small comparing to the formal wavelength, the ionosphere refraction is not
dangerous for ambiguity resolution) we should require

2 =|tm1+ ¢ ina2| — min. . (5.87)
On the other hand according to (5.84) and (5.80)

Am,lrcp _ Atrop . Atrop
/\m )‘m ’\‘2

(q * 2.m,l + im,’_’) (588)
and we should ask
e =|q imi+ina2| = min. (5.89)

Obviously it is not possible to meet both requirements (5.87) and (5.89) for ¢, 1 22 # 0.
A good idea seems to be to minimize the sum ¢; + ¢a. Using the unequality

L g imatime |+ tma+ ¢ tme |21 ¢ tmgFimatims+q tmpe | (5.90)
we can conclude that it is necessary to require
g imitimetimy+ ¢ tne=(1+q) (i1 +im2) =0=> i1 = —tmp2 (5.91)
According to (5.83) the choice
tma =1, ima=-1 (5.92)

seems to be optimal. This combination called Ls is used in the Bernese GPS software. In
length units it may be written as
1
(fr Ly — fa La) . (5.93)
Si= /2

The wavelength of this combination (about 0.86 m) is roughly 4 times longer than A, or

L5:

Aa. It means that ambiguity resolution is usually much simpler in Ly than in L; or L,.
According to (5.79) the Ls initial phase ambiguity is

Ng = Ny — N2 , (5.94)

where n; and n. are the initial phase ambiguities for the original carriers. The correspond-
ing linear combination P, using code observations is not of importance in processing.
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5. Modeling the GPS Qbservables

The Melbourne-Wibbena Linear Combination

The Melbourne-Wiibbena combination is a linear combination of both, carrier phase (L,
and L,) and P-code (P, and P») observables described by [Wiibbena, 1985] and [Mel-
bourne, 1985]. This combination eliminates the effect of the ionosphere, of the geometry,
of the clocks, and of the troposphere. It may therefore even be used in the kinematic case.
Three conditions have to be met (notice (5.69}), the “geometry-, clock- and troposphere-
free” condition

,Bm,l + ﬂm,? = Q1 + Qp 2y (5~95)

the “ionosphere-free” condition
2 2
Q1 +q Qyp2 = _‘ﬁm,l -4 ﬂm,ﬂ . (5'96)

and the third condition which is the same as for the wide-lane combination and makes
sure that the resulting ambiguity is an integer. Therefore the coefficients ay, 1, ;52 may
be expressed using the integers ip, 1, im 2 — see equation (5.78).

Neglecting the phase noise the rms of such a combination (expressed in meters) is given

by
aw = /Bt Bha op (5.97)
where ap is the rms of the code measurements. Using i,,1 = 1, {2 = —1 we get the
following set of coeflicients:
fi fa f fa
Qp1 = y Oy = — s ﬂm, = ) ﬁm,ﬁ = 5.98
AR A fi— f A S+ fo (5.98)
The combination may be written as
We=Ls— P, - (5.99)
where Lg is given by equation (5.93) and P; by equation
> 1
Py = m(h Pi+ f2 P2) . (5.100)
The corresponding observation equation reads as
Wy = Asns = As(ng — ma) .« (5.101)

The only problem may be the multipath. With good P-code data this linear combination
may be used for the resolution of the wide-lane ambiguities ns.

Table 5.2: Values of the factor Q = ow /(A cop) [m™! ]
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5.4 Linear Combinations of Observables

Ln,2
Im1 -3 -2 -1 0 1 2 3
-3 | -160.95 -134.23 -107.51 - -54.08 -27.40 -2.48
-2 |-134.03 -107.30 -80.58 - -27.16 -1.65  26.40
-11-107.10 -80.38 -53.65 - -0.83  26.55 53.27
0 - - - - - - -
11 -53.27  -26.55 0.83 - 53.65 30.38 107.10
2] -26.40 1.65 2716 - 80.58 107.30 134.03
3 2.48 27.40 54.08 - 107.51 134.23 160.95

Theoretically it would be possible to use other combinations of i, 1, im,2. But the factor
Q = ow/(Am - 9p) (see equation (5.97)) is too high in those cases (see Table 5.2).
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6. Ambiguity Resolution
Strategies

6.1 Optimization of the Differencing

[Goad and Mueller, 1988] propose an algorithm for generating an optimum set of inde-
pendent single and double difference observables for a network with an arbitrary number
of receivers. In the case of single (between reccivers) differences the basic idea is to order
the baselines according to some criterion (e.g. the baseline length) and to form step by
step the best independent baselines. The Cholesky decomposition method is proposed to
decide whether a particular set of baselines is independent.

In the Bernese GPS software a different, more efficient algorithm to check the inde-
pendence is used. First, like in the above method, the baselines are ordered according to
a criterion (we use either the baseline length or the number of available single difference
observables as our criterion). Then all the stations receive the initial flag 0. We take the
best baseline into the optimal set, the two corresponding stations receive the flags 1. The
“maximum flag” is set to 1. Now we proceed to the second baseline. If the corresponding
stations have the flag 0 we change them to 2, and 2 is the value of the “maximum flag”,
too. In the opposite case (one station has the flag 0 and the other 1), both flags will be
1 and the “maximum flag” remains 1. From now on we proceed as follows: we choose the
next baseline according to our criterion and have to distinguish the following four cases:

e Both stations of the new baseline have the flags 0 — in this case these two stations
receive flags equal to “maximum flag +17, and we have to increment the “maximum
flag” accordingly.

e One station has the flag 0 but the flag of the other station is not equal to 0 - in
this case the station with flag 0 receives the (non zero) flag of the other station. The
“maximum flag” is not changed.

e The two flags are not equal and both flags are not equal to 0 ~ let us assume that
the first station has a lower flag than the second one. We have to change the flags
of all stations which have the same flag as the first station. They obtain flags equal
to the flag of the second station.



6.2 Pre-Processing

e The two flags have the same values but are different from 0 — this means that this
baseline is dependent and cannot be added to the optimal set.

This procedure is repeated until all independent baselines have been formed.

6.2 Pre-Processing

It was shown in the previous sections that the receiver can measure the difference between
the phase of the satellite transmitted carrier and the phase of the receiver generated replica
of the signal. This measurement yields a value between 0 and 1 cycle (0 and 27). After
turning on the receiver an integer counter is initialized. During tracking the counter is
incremented by one whenever the fractional phase changes from 2z to 0. Thus for every
epoch the accumulated phase is the sum of the direct measured fractional phase and the
integer count. The initial integer number n¥., of cycles between the satellite 7 and receiver
k is unknown and has to be estimated (see equation (5.19)). This phase ambiguity remains
unchanged as long as no loss of the signal lock occurs. A loss of lock causes a jump in the
instantaneous accumulated phase by an integer number of cycles. The difference

Mg (Ligr) = iy (1) # 0 (6.1)

is called cycle slip. According to [Hofmann-Wellenhof et al., 1992] the following sources
for cycle slips have to be distinguished:

e obstructions of the satellite signal due to trees, buildings, ctc.,

e low signal-to-noise ratio due to bad ionospheric conditions, multipath, high receiver
dynamics, or low satellite elevation,

e failure in the receiver software, and

e malfunctioning of the satellite oscillator.

A crucial of the processing of GPS measurcinents is the so-called pre-processing. The
following tasks have to be accomplished:

1. Check all the observations and find the time intervals < ¢;, ¢t;4; > which are corrupted
by cycle slips. ‘

2. Repair the cycle slips. It means to estimate the difference nk., (ti41) — n'% (4;) and to
correct all observations following the epoch ¢; by this difference. If it is not possible to
estimate this difference with a sufficient confidential level, a new unknown ambiguity
parameter n', ({;4,) must be introduced.

In the Bernese GPS software [Rothacher et al., 1993a] two pre-processing programs may
be used. The first program checks the undifferenced observations using the Melbourne-
Wiibbena linear combination. This program may therefore only be used if P-code meas-
urements are available on both frequencies. It should be mentioned that this method
cannot detect cycle slips if the equation

"ik(tiﬂ) - "ik(ti) = "lizk(tvrl) - né’k(ti) (6.2)
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holds. Therefore, using the second pre-processing program is mandatory even if the check
with the Melbourne-Wiibbena combination was performed before.

The principal pre-processing program in the Bernese GPS software is called MAUPRP
(Manual and AUtomatic PRe-Processing). It screens single difference observation files
forming and analyzing all useful linear combinations of phase observations. The program
either assumes that the wide-lane combination is not corrupted by cycle slips (this is
true if the previous pre-processing program was used) or it looks for the wide-lane cycle
slips too. The quality of results is the same in both cases, the difference is the required
CPU time. MAUPRP does not use code measurements, the pre-processing is thus code-
independent. This aspect is e.g. important when processing A/S data. The preprocessing
program consists of the following parts:

e Checking by smoothing: The goal is to identify time intervals within which with
utmost certainty there are no cycle slips. Usually a fair amount of data not corrupted
by cycle slips may be found. The program checks whether the observations are values
of a smooth function of time and whether they may be represented within an interval
of a few minutes by a polynomial of low degree, say ¢, by computing the (¢ + 1)**
derivative and by checking whether or not this quantity is zero within its expected
bias. If this is true the current time interval considered is shifted by one epoch, if it
is false, the last observation of the current interval is marked and replaced by the
following one.

e Triple difference solution: With those data identified as clean in the first step
a triple difference (see 5.27)) solution is performed (the overview of the adjustment
methods used is given in Appendix C). This solution is not as accurate as the result of
the least-squares adjustment using double differences, but it is a fair approximation
of the final solution. The main advantage is that an undetected cycle slip corrupts
one triple difference only.

e The automatic cycle slip detection is the nucleus of the program. First the
program eliminates big jumps on the single difference level. Such jumps usually
originate from the receiver clock and are common to all satellites. Therefore these
clock jumps are irrelevant for double difference processing algorithms. Then the
results of the previous two parts (coordinates of the receiver) are used to detect the
cycle slips in the following way:

Let us assume that the positions of the satellites are known for every epoch ¢; in the
same coordinate system in which the coordinates of the receivers were computed within
first two parts of the program MAUPRP. We may thus compute for every epoch ¢; the
distances between the satellites and the receivers. Let us denote p the corresponding triple
difference of these distances. Using the measurements from the epochs ¢;_, and ¢, this
triple difference distance may be computed again using the phase measurement differences
between the two epochs either on the first or on the second frequency. In the ideal case
the both corresponding triple differences ¢, and g, are identical and equal to . The terms
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6.2 Pre-Processing

o — o; are called residuals:

The program MAUPRP interprets the residuals as follows:

™" = bl’\l + ddd (Aion) y I'a = I)QAQ + ddd (§1 wn) s (6.4)
2
where ddd(A;,,) is the change of the ionospheric refraction in the triple difference as “seen”
by the L; carrier. Now, the no-cycle-slip hypothesis (b = 0 and b, = 0) is checked. The
ionosphere-free residual is computed as

/i /2
r3=a;-r + ay-ra, where o= 7z _1 7 and ap = —m , (6.5)
where the following condition should be met:
I3l < 3vB/(0101)? + (a0)? (6.6)

(\/_ = V23 due to triple differences). Equations (6.4) allow us to compute ddd(A;,n)
independently from both carriers (we assume b, = b, = 0 at present). The mean value m

1;1 == (1 1+ = f > (6.7)

is computed as

5

and we now check whether the condition
m < Mion (6.8)

is met. The value of M;,, and a priori rms of the zero difference observables o, and o, are
input variables. If conditions (6.6) and (6.8) hold, the no-cycle-slip hypothesis is accepted.
In the opposite case a search over the values b; and b, is performed. All combinations

by = mnt( )+z, i = —=Ji,...,—1,0,1,...,J;
| (6.9)
by = mnt( )+1+], j = —=Js,...,—L0,1,...,J5
(nint = nearest integer) are formed and the “corrected” residuals
=11 —=bpAr, 1y =12 — byide (6.10)

are tested in the same way as the original residuals r; and r;. The program user has to
specify the search ranges J; and Js. If one combination of ry;, ro; meet the no-cycle-slip
hypothesis, the observation are corrected by by;Ay, by;A;. If no “good” combination is
found, a new ambiguity parameter is introduced.
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6.3 Ambiguity Resolution

The unknown integer number of cycles in the observation equations has to be estimated
in a first step as a real valued parameter. Under certain conditions some or all of the
real valued estimates for the ambiguities can be related unmistakably to the true integer
values. By introducing these true ambiguities into a subsequent least-squares adjustment
(see Appendix C) as known values, the solution will get much more stable. The accuracy
of the results may improve by a factor of up to 4 [Gurtner et al., 1985]. Numerous methods
have.been proposed dealing with the resolution of initial phase ambiguity parameters. We
distinguish two cases:

Classic Static Positioning: The site occupation time is long (hours to days), the num-
ber of measurements is big. This implies that on short baselines the rms of the
estimated ambiguities is much smaller than 1 cycle.

Rapid Static Positioning: Thesite occupation time is small (several minutes), the rms
of the real valued ambiguity estimates is of the order of 1 cycle or even greater.
Ambiguity resolution still may be possible on short baselines using the FARA (Fast
Ambiguity Resolution Approach). For more information see [Frei and Beutler, 1990],
[Frei, 1991].

In the present investigation we are only considering the case of classic static positioning,.

6.3.1 Review of Existing Techniques
The Observation Equations

We consider dual-band P-code receiver. Four double difference observation equations are
available at epoch ¢ for a set of two receivers &,0 and two satellites ¢, j. According to
equations (5.28) and (5.45) we may write these equations as follows:

Ly = o — dd(Aion) + A1 1)y (6.11)
Li, = o - ﬁ— cdd(Dign) + Az 1, (6.12)
P, = o+ (l;l(/;\ion) . (6.13)
P = o)+ L dd(A) (6.14)

]

All observables have the dimension of length, terms due to noise, tropospheric refraction
and multipath are not explicitly shown, and higher-order ionospheric terms are ignored.
The main differences between the phase- and the code- observation equations are: (1)
the presence of the ambiguity term in the phase equations, (2) the opposite sign of the
ionospheric range corrections, and (3) the measurement noise, where we may assume that
the rms errors of the code is much larger than the rms error of the phase.
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Wide-Lane and Narrow-Lane Ambiguity Resolution

In equations (6.11) - (6.14) four unknowns, namely g}, dd(A ;on).,.nﬁ., a.nd‘ ni,, are present
on the right hand side. We can obtain the following relations for n}}, and n3), by eliminating
the other unknowns:

i+ 2-fi i
L CANLECLINY -5 AR L T A T 6.15
1kt ™ fl- _ f_ 1k f1 f'_), 2&1 1 1k ( )
f + f': i 2- ij
L"kl fi — ';-, Pf:i, + f f}‘? Plkl = AQ . 7l2'i,l . (6.16)

It would be possible to use these relations for resolution of the n; and n, ambiguities, but
the accuracy analysis (see e.g. [Beutler et al., 1994b]) show that the minimum number of
observation epochs which are necessary for a safe resolution of the n, or n, ambiguities is
too high. Much easier is to resolve the wide-lane ambiguity ns = n, — n» using the linear
combination

flif-.,(fl Ll—'fg Lg)-‘flifq(fl P1+f Pﬁ)—/\s ns , Where /\5-—flff2

Therefore many ambiguity resolution strategies resolve first the wide-lane ambiguity para-

. (6.17)

meter ng = n; — na (see (5.94)). The idea to resolve the wide-lane ambiguities using
the linear combination (6.17) was proposed independently by [Melbourne, 1985] and
[Wiibbena, 1985]. Using the observations of precise dual-band P-code receivers it is possible
to resolve the wide-lane ambiguities without any assumptions concerning the ionosphere,
the troposphere, the orbits, and the clocks (receivers and satellites).

After wide-lane ambiguity resolution the ionosphere-free combination (5.70)

Lsu = L’u + Bau ) (6.18)

may be used to resolve the ambiguity n,. The ionosphere-free linear combination could
not be used for ambiguity resolution directly because the ionosphere-free bias

1 2 ij 2 ij
By, = S (fand - amdy) (6.19)

fi—-f

could not be expressed in form Aj - n3, where n3 is an integer ambiguity. Introducing the
known wide-lane ambiguity ns = n; — na, the ionosphere-free bias (6.19) may be written

as
S S S
B, = ¢ —=— g, + ——— ni,, 6.20
3k = f1’ 72 Mgk + it I Pkt ( )
)

where the first term on the right hand side is known. The main advantage is the fact that
the ionosphere refraction has been eliminated. But the formal wavelength A; is about 11
cm only. Therefore the remaining unknown bias Az - n; is called narrow-lane ambiguity.
Due to the small wavelength A; all other biases (e.g. orbits or troposphere) have to be
modeled very carefully.
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If Anti-Spoofing (AS) is turned on, the precise code observations will no longer be
available. [Bock et al., 1986] proposes a different approach. Let us extend the equations
equations (6.11) and (6.12) by a pseudoobservation equation for the ionospheric effect
dd(Aion):

Llu = Qljz —dd(Aien) + M Vl';jkl ' (6.21)
L, = of- f d(Dion) + Ao iy (6.22)
Liy = dd(A) . (6.23)

The third equation incorpora.tes a priori information concerning the ionosphere in the form
of weighted constraints. Introducing such a pseudoobservation may be used for various
unknown parameters. No doubt, it is now possible to use the least-squares adjustment.
The most important question is, which a priori variance o7 for the parameters A;,, is to
be used. It may be assumed, that o} = o} = a2 (i.e. the measurement noise is the same
for L; and La. Two extremes may be considered for the a priori weights of A;,,. Assuming
o} = 0 implies that we ignore the contribution of the ionosphere completely. The other
extreme, g7 — 0o, is equivalent to the ionosphere-free combination (5.70). The advantage
of this approach is that it is possible to assign. o} “appropriately” according to the baseline
length.

Another method proposes [Blewitt, 1989]. The geometry-free linear combination (5.72)
may be written as

i fi- I

where B;jm is given by equation (6.19). From the equation (6.24) the wide-lane ambiguity
may be expressed:

3

o= 5 [l (L - 1) + Bl - (6:25)

The ionosphere-free bias B, may be estimated using ionosphere-free linear combination.
The precision of this estimation is typically much better than 10 cm and its contribution to
the error in the wide-lane bias is usually insignificant. The problem is the unknown value of
the differential ionospheric delay I}7 which is nominally assumed to be zero. [Blewitt, 1989]
proposes to estimate (6.25) when the |1,:{| is expected to be at a minimum. This time is
approximately when the undifferenced ionospheric delay I} and L}, are at a minimum.
Thus the single difference Li,, = (L, —L},) is evaluated when (L}, +L%,) is at a minimum,
and similarly for LZ,,. The principle is that instead of approximation

Ly - Ij = Ly (6.26)
the more optimal differencing (at different times)

Ly -1} = ( fm) (6.27)

Lj
4kl
min|Ly, 4L, | min{L? k+L |
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6. Ambiguity Resolution Stralegies

must be met if, and only if the ambiguities for the same pair of satellites and for the same
pair of receivers but for different carriers are tested. The geometry free linear combination
(5.72) yields:

Ly = L+ Mnfhy — Aanly , I = dd (L;_f_:»iA‘O") ) (6.31)

Using this combination the difference between two geometry-free biases
ij R¥)
Tkt — TAap o (6.32)

where
A7 R¥) R¥} a5 ¥} 7
The = Mg = Aasy s Tdan = Mg — AT 1ok (6.33)

is computed. ai%,, 25, are the real valued ambiguities and 2%, ', are the alternative
integer values. The value (6.32) is the difference between the ionosphere bias which was
estimated during the initial ambiguity-free solution and the ionosphere bias which would be
the result of the alternative ambiguity-fixed solution. The difference should be very small
in any case. This test represents graphically a narrow confidence band if the alternative
ambiguities 24 ,,,, 2% ,,, are plotted [Frei and Beutler, 1990].

The Ambiguity Function Method

This method was first proposed by [Counselman and Gourewitch, 1981}, it was further
developed by [Remondi, 1984]. Due to problems with systematic errors this method is
applicable for small networks only. The method is summarized here for the sake of com-
pleteness.

Let us assume that a single baseline is processed. The position of the first receiver is
fixed, the coordinates of the second receiver were estimated (using e.g. a triple difference
solution). We now introduce a cube with this approximate position as a center and the
dimensions 2éa x 260 x 2£0 (o is the standard deviation of the estimated coordinates, § is
the confidence factor) and we partition the cube into a regular grid. Each of the grid points
is considered as a candidate for the true solution. The coordinates are known for each grid
point as well as the corresponding single differences g}, (the satellite positions are known).
The single difference observation equation may be written in the form (aplying the single
difference operator on the equation (5.19))

2% 0N o i '
5% (L= oy) =27y — 27 [y . (6.34)
The key is to circumvent the ambiguities nd, by defining the following complex-valued
function:

2=

ei [T (Li,—ai,)] — ei [27r ny, -2r jAH] = ei 27 nj, . e-—i 27 fAK ) (6.35)
If the ambiguity n7, is an integer number

b

¢ ¥ " = cos(2r ny) 41 sin(27 nf)) =14+14-0 (6.36)
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is used. However the effectiveness of this method depends on ionospheric conditions. Under
worse ionospheric conditions this method could not be used for baselines longer than about
100 km. The other problem is that the diffcrencing between different times introduces the
clock errors.

The “Search” Strategy

This strategy implemented as FARA (Fast Ambiguity Resolution Approach) in the Bernese
GPS software [Frei and Beutler, 1990] uses the following information from the initial
adjustment:

z = (1,...,2,)7, the part of the solution vector consisting of all real-valued (double
difference) ambiguities,
Q, the corresponding cofactor matrix, and

oZ, the a posteriori variance factor,

where u is the number of double difference ambiguities. From the a posteriori variance
factor and the cofactor matrix the standard deviation m; for the ambiguity parameter 2;
or the standard deviation m;; for the difference x;; between any two parameters z;, z;
may be computed:

m; = 0oVQii,  Myj = 00\/@;.‘ -2:Qi; +Qy; - (6.28)

Choosing a confidence level o and using the Student’s distribution we compute the up-
per and lower range-width £ for the integer valued alternative parameter z4; or for the
difference 2 4;; between two such parameters. Thus

=&y < ay Lap+&emy, i=1,2,...,u (6.29)

:L',-j—-f“ln,‘js Taij SlL’,‘j'*'E'Tn,'j ) 'i,j"—‘l,?,...,’ll., l?}é] . (630)

All possible combinations of integer values which meet the conditions (6.29) and (6.30)
are used to form alternative ambiguity vectors z,,, h = 1,..., N to the initial ambigu-
ity estimate z. These alternatives are generated in forming all possible combinations of:
vector components using the integer values within corresponding confidence ranges. Each
of these alternative vectors should be introduced into a subsequent adjustment run. The
integer ambiguities are treated in these adjustments as known quantities. The resulting
standard deviations @, are indicators for the success of the process: the integer vector z,
yielding the smallest standard deviation is selected as the final solution unless either its
standard deviation is not compatible with a, (the fraction a,/0, is too high), or there is
another vector z, yielding almost identical standard deviation (the fraction oq/a; =~ 1).
The problem is computation time: in general it is difficult to compute the least-squares
adjustments for all alternative vectors because this number may be rather large.

The FARA [Frei and Beutler, 1990] improves the situation considerably if only short
baselines are involved and both frequencies (L, and Lj) are processed. A new condition

G3



6.3 Ambiguity Resolution

and the equation (6.35) may be simply written as
¢ [ Whimel)] = mi2m g0 . (6.37)

Now, we can form the sum over all satellites observed in one epoch:

N' . . .

Z e [gx‘ (Lix‘ei;)] =N, e~ 2% JAu , (6.38)

j=1 - ’
where N, is number of satellites observed. The right-hand side of the last equation does
not depend on the satellite. Its absolute value is N,. The left-hand side is a sum of unit
vectors’in the complex plane. The absolute value of thls sum is lower than or equal to N,.
Thus

Alt:) E ¢ 13 W)l < v, (6.39)

i=1

Both sides of the inequality (6.39) are equal if, and only if single differences
- L{-t - Q{—r | (6.40)

are the same for all satellites j. This is true if the coordinates of the receivers are correct
and there are no systematic and random errors. Now, we may sum the A(t;) from the
equation (6.39) over all epochs ¢; ,i=1,2,.

Z Alt;) . - (6.41)

This sum considered as a function of the grid point is called ambigjuity Junction. According
to (6.39) this function is bounded and therefore it has a supremum. [Remondi, 1984]
proposes to accept as a solution the grid point from the grided cube which coordinates
yield the maximum of the ambiguity function (6.41).

The Search using Kalman Filtering

This method was proposed by [Magill, 1965] for kinematic applications and by [Brown
and Hwang, 1983] for geodetical applications. The method was also described by
[Landau, 1988]. We assume that we know some alternative ambiguity vectors z; , i =
1,..., N (compare the section about the search strategy) and we want to select one of
these vectors as a true solution. The method is based on Kalman filter processes (see
Appendix C).

We estimate unknown parameters (coordinates, troposphere etc.) using Kalman filter
estimator. The ambiguities are fixed (they have integer values z;). Each alternative vec-
tor z; , ¢ = 1,..., N define one filter process (the only difference between various filter
processes are the initial conditions - the initial phase ambiguities). Denoting by £, the
observations predicted by the filter process i for the epochs ¢, , k= 1,...,n and by £,
the actual observations for the same epochs, the filter process with minimum mean square
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difference £,: = (L —£,) is accepted as a true solution. The probability p(...) of the ob-
servations £ = (£,,...,£,)T under the assumption that the ambiguities have values z; may
be for the filter express by the product of n probability density functions [Magill, 1965]

ST /-1s ~ .
- LIQUE, . bo=0, - Az}, (6.42)

Hrm

where the covariance matrix @, is given by (equation C.50) -

Q= (Qi+4Q.47). (6.43)
The Bayes’ law yields the a posteriori probability density

p(z,]) = — i) plz)
TR plezy) plz;)

where the sum is done over all N filters (over all N various initial ambiguity parameter
sets). Assuming p(z;) = 1/N = konst. the equation (6.44) may be simply written as

(6.44)

< Pz
| p(z:l6) = SNtz (6.45)

Assuming that the matrices @, are the same for all filters and using the equation (6.42)

yields
-4y TQr ‘z .
Pz = — . (6.46)
ZN lzk L -A- * -k_,

j=1 €

The denominator on the right hand side remains the same for all filters. Therefore the
maximum probability p(z;|€) may be found as maximum of the function

-~y e

It means that the filter which has the maximum probability p(z;]¢) has at the same time

;f’b:

Q:'e,, (6.47)

52, . . -1 . .
the minimum mean square residuum  ~ if the weight matrix Q! is used. The problem is
that if many filters were tested the computational burden could become overwhelming,.

6.3.2 Our Approach

We have to distinguish between the strategy used for ambiguity resolution and the al-
gorithm implemented to reach that goal.

Strategy

Since 21 June 1992 the data from the IGS Core Network (see Section 2.1) are processed
on a daily basis at the Astronomical Institute of the University of Berne. We assume that
the International GPS Service for Geodynamics (IGS) will provide us with:
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1. high accuracy orbits (better than 0.5 m), and
2. regional ionosphere models.

The first IGS product should allow us to resolve the narrow-lane ambiguities not in a
network-mode but in a baseline-oriented mode. This strategy promises to be much more
efficient than usual network-oriented processing schemes, because the computing time
grows not linearly but with a much higher power with the number of ambiguities involved
(depending somewhat on the algorithm chosen). It also promises to be more reliable,
because in our case the search ranges can be opened up in a “generous” way, and more
runs can be made.

The second product should allow us to resolve the wide-lane ambiguities without having
access to the P-code. This aspect is most important because soon the P-code will no longer
be available to the scientific community. Again, the wide-lane ambiguity resolution is done
in the baseline-mode and the idea was (and is) to take out the principal ionosphere-induced
biases by a ionosphere model and to hope that the “irregular” part of the ionosphere will
be averaged out by using long observation sessions. The ionosphere model produced by
Bernese software [Wild et al., 1989] is a single layer model computed from zero difference
phase observations of one or more reference stations. The reference stations have to be
equipped with dual-band receivers. The model is based on the following assumptions (see
also section 5.3.2):

e All free electrons are concentrated in a spherical layer of infinitesimal thickness at
height h;,. above earth surface. The height h;,, is an input parameter. Usually the
value 350 km is used.

e The total electron content N, is an analytical function of two spherical coordinates.
The geocentric latitude 3 and the hour angle of the sun ¢ are used as the coordinates.
layer. :

e The ionospheric refraction correction for phase observations is given by the equation
(5.45), 8 and t; are computed for the intersection point of the spherical layer with
the line connecting the receiver and the satellite,

In the model the total electron content N, is represented as a Taylor series development:

oo
Ne(to,8) =Y New (to = too)* (B=5a), k+1=1i. (6.48)
i=0
The degrees of Taylor series development, separated for latitude, hour angle and for mixed
terms, may be defined by the user. The origin for the Taylor development is automatically
computed. The origin 3y in latitude is the mean value of the latitudes of all stations, the
time origin t, is computed as the mean value of the lowest start time and of the highest
ending time of all observation files of one session. {y is then computed as the hour angle
of the sun at time ¢, refered to the meridian of the mean station of the session considered.
This model is used when processing the wide-lane linear combination of baselines up to
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300 km in the “vicinity” of the reference receiver the data of which were used to define
the local ionosphere model. Such data are e.g. available from the IGS permanent stations.

As mentioned above we are going to use the IGS products for the ambiguity resolution.
On the other hand fixing the ambiguity biases provide a better type of observables which
improve the estimations of other parameters (in"Chapter 7 we will e.g. demonstrate a very
close relation between the ambiguities and the orbit parameters) and using ambiguity
fixing techniques for routine 1GS processing is very attractive. Therefore we tested our
ambiguity resolution strategy with data from the IGS Core Network. These data have the
following features:

e The session lengths are 24 hours generally.
e Many long baselines (the distances between the receivers) are involved.

e A big variety of parameters (coordinates, orbits, carth rotation, atmosphere) has to
be estimated.

These facts imply the algorithm.

The Algorithm

The Bernese GPS software uses double difference observations and therefore the double
difference ambiguities are estimated. Single difference {between receivers) ambiguities are
then saved. For each session and each baseline we have to select one single difference bias
Ny, as reference and actually our unknown ambiguity parameters are the differences

LI | J v
Nep = Np = Wpg (6.49)

The choice of the reference ambiguity is in principle arbitrary. In practice usually the
ambiguity associated with the biggest number of observations is selected as reference. If
there are N single difference ambiguities for one session and one baseline, there are N -1
linearly independent unknown ambiguity parameters. (If there is an epoch when all the
single difference phase measurements were initialized again, the session breaks up into two
parts and for each part one reference ambiguity must be selected. In that case only N —2
ambiguity parameters have to be estimated.)

Figure 6.1 shows the satellite visibility for a short (several minutes) session. For short
session there is usually one (or more) satellite(s) which was observed all the time. One of
these satellites may be selected as the reference satellite (the corresponding ambiguity as
reference ambiguity).
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PRN1
PRN2
PRN3
PRN4
PRN5

time

Figure 6.1: Satellite visibility plot for a short session and a short baseline

For longer sessions the situation is different:

e No satellite is observed during the entire session.

e There are periods during which only few satellites were observed. For very long
baselines there are even periods during which only one or two satellites were observed.

The typical situation shows Iigure (6.2):

A3 ‘46

PRN1 —
Ay
PRN2
Ay
PRN3
Az

Ay

PRN5
A5 AS
time

Figure 6.2: Satellite visibility plot for a long session and a long baseline

In this case our algorithm selects (single difference) ambiguity A; as a reference. Typically
general search finds several alternative ambiguity vectors which lead almost to the same
a posteriori rms. A detailed inspection shows that the (double difference) ambiguities
As — Ay, Ag — A, A7 — A}, Ag — A, have large a posteriori rms errors. On the other hand
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the parameters Az — Ay, Ay — Ay, As — A} are well estimated. We suspect that this result
is a consequence of the selection of the reference ambiguity. This actually is the case: if we
select A, as our reference the parameters Ag — Aa, A7 — Aa, Az — A, have small a posteriori
rms errors and the parameters A, — A, Az — Aa, Ay — Ay, A5 — A, large ones. The following
conclusions may be drawn:

o The diflerences between certain single difference ambiguities and the reference am-
biguity are well estimated the other differences have large a posteriori rms errors.
Which parameters are well estimated depends on the selection of the reference am-
biguity.

o It is difficult to resolve all the ambiguities if the long sessions are processed because
each selection of the reference ambiguity lead to some ambiguity parameters with
large a posteriori rms errors. This is a problem if the search strategy is used (this
strategy could resolve either all the ambiguities or none).

These considerations show that it is necessary to optimize the (double) differencing. Such
optimization was proposed by [Blewitt, 1989], who processes undifferenced data and forms
an optimal set of statistically indebendent linear combinations. Qur approach is in principle
equivalent to that proposed by [Blewitt, 1989] with the following differences:

e We process double differenced data. The single (between receivers) differences are
created explicitly and stored in files (about the optimization of this differencing
see Section 6.1), the double differences are created during the initial least-squares
adjustment.

o We are not actually forming statistically independent linear combinations of ambigu-
ities. We replace this procedure by an iterative scheme, where in each iteration step
we are only resolving “the best” ambiguity. Assuming that ni,, denotes our reference
ambiguity, we are resolving cither the double difference ambiguity parameter

ij J
Npgt = Npgy = WEpy (6.50)
directly or the difference between two of these terms
i i1j i2j
npd = npl - 0@, (6.51)
which, as a matter of fact, is a double difference ambiguity again.

In more detail our algorithmn works as follows: we adopt a similar notation as in the section
“The Search Strategy”: let x;, z; be (double difference) ambiguity parameters. For the each
parameter z; we compute the a posteriori rms error in the initial least-squares adjustment:

o; = 0o/ Qi (6.52)

and for each difference z; — z; the error is

o = 00\/st -2-Qi; +Qj; - (6.53)
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o; and o;; are sorted according to their value. Within one iteration step the N,,,, best de
termined ambiguities (or differences between ambiguities) are resolved (rounded to nearest
integers) provided:

e The corresponding sigma is compatible with oy (6 < Omar OF 0i < Omar), and

e within the confidence interval (x; — oy, x; + €03) or (x;; — &0y, xi; + &0;;) is exactly
one integer number.

Npiozy Omar and € are the input parameters of the program. In the next iteration step the
< 1]

integer values are introduced for the resolved ambiguities and for the resolved differences

between ambiguities. The iteration process terminates if:

1. All the ambiguities have been resolved, or
2. in the last step no ambiguity could be resolved based on the above criteria.

The iteration process described above may be applied for every linear combination. It may
be used in the baseline mode, in session mode or even if several sessions are treated in the
same program run.

6.4 Quasi-Ionosphere-Free (QIF) Ambiguity Resolution
Strategy

6.4.1 Principles

1994 Anti-spoofing (AS) was turned on for all Block II satellites and the quality of code
measurements of the Rogue receivers dramatically decreased. We wanted to find a new
approach how to resolve the ambiguities for long baselines (up to about 1000 km) without
using code measurements. The result is the Quasi-lonosphere-Free (QIF) ambiguity resol-
ution strategy.

The simplified form of the observation equations reads as (see (5.28))

L, = o—-A4)Xng, (6.54)
Lg = —_- % . A + /\g o . (6.55)
The corresponding equation for the ionosphere-free linear combination thus may be written
as
¢
Ly=o0+ 33=Q+']-‘=_T':f'§‘ (fi mp = fana) . (6.56)
i = J3

The initial least-squares adjustment using both frequencies L, and L, adjustment give real-
valued ambiguity estimates b, and b, and we may compute the corresponding ionosphere-
free bias Bj; as

- ¢

Bs = T (fi by = fo ba) (6.57)
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This bias may be expressed in narrow-lane cycles (one cycle corresponding to a wavelength

»of As=c/(fi+ fo) =11l cm):

; Bs -~ fit+/ f1 fa
by = —=15B;- = b, — b
3 As s ¢ Hi—f ! h=1 2
= Bibi+B20s. (6.58)

Denoting the correct integer (resolved) ambiguity values ny; and n,; and introducing the
associated Li-bias

bai; = B iy + P2 naj (6.59)

we may use the difference
dai; = |bs — byij] (6.60)
as a criterion for the selection of the “best” pair of integers ny;, no;. However, many pairs

nys, Naj give differences d;; of the same (small) order of magnitude. These pairs lie on a
narrow band in the (n,, n,) space. The equation of the center line of this band is

Bi i+ fa nay = by . (6.61)

The band-width is essentially given by the rms of the bias b3. A unique solution only
results if it is possible to limit the search range. This principle is shown in Figure 6.3.

QIF: L1-L2-ambiguity space

T

L1-ambiguity (cyc)

<10

L2-ambiguity (cyc)

Figure 6.3: Search ranges in (n,, n.) space

One solid line is described by the equation (6.61). It goes through the real valued
estimate (by, by) as well as through the point (7, ;, na ;) which is accepted as “true” solution.
This line represents an ionosphere-free combination (constant ionosphere-free bias). The
second solid line represents the constant wide-lane ambiguity (accepted as “true” value)
and goes through the point (n,;, ns ;) too. The dashed rectangle represents a search range
in (1, n.) space and the dashed trapezoid represents the search range in (n,, ns) space -
equation (6.67).
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6.4 Quasi-Ionosphere-Free (QIF) Ambiguity Resolution Strategy

6.4.2 The Estimation of the Ionosphere

For baselines longer than about 10 km the processing of the two frequencies L; and L,
separately does not give sufficiently good initial real valued estimates b, and by due to
the influence of the ionospheric refraction. Two types of models to reduce the ionospheric
biases were considered.

Satellite and Epoch Specific Ionosphere Estimation

[Schaer, 1994] proposes to estimate one ionospheric correction A}, (¢;) for each satellite
i, each receiver pair kI and each epoch (t;). The method is similar to that described by
[Bock et al., 1986]. Estimating these parameters without any a priori constraints would be
equivalent to processing the ionosphere-free linear combination. If we want to resolve the
integer ambiguities it is necessary to constrain these parameters to within a few decimeters.
This constraining may be achieved by introducing an artificial observation

Aga(t)) = Dy apr(t5) = 0 (6.62)
each epoch with the a priori weight. The actual a priori values A, .apr(tj) may stem from
an ionosphere model. In many cases (relatively short baselines) A“apr( i} = 0 may be
sufficient. It is of course necessary to pre-eliminate all epoch specific ionosphere parameters

;;,‘ap,, (t;), 1 =1,2,...,n, (n, is the number of satellites per epoch) after having processed
epoch t; because a “terrible” number of parameters would have to be handled in the normal
equation system after n, epochs.

Deterministic Model

For longer baselines it seems to be necessary to introduce an a priori ionospheric model
or to estimate such a model during the initial solution. As a priori models the single-
layer models described by [Wild et al. 1989] may be used. These models develop the
clectron content in the layer into a Taylor series in the latitude and the hour angle of
Sun. These models reduce the ionosphere biases considerably for baselines up to about
200 km as shown in [Mervart et al., 1994] and they enable to resolve wide-lane ambiguities
using wide-lane linear combination. However using the QIF strategy no a priori model is
necessary up to baseline length about 400 km. For the baselines up to 1000 kin we used
the model based on the following assumptions:

o All the free electrons arc considered to be concentrated in a spherical layer of in-
finitesimal thickness at height h;,, above earth surface. The height h;,, is an input
parameter. Usually the value hy,, = 350 km is used.

e The total electron content NN, is given by the equation
N, = Z Z P (cos(¢g — &)
n=0m=0 (663)
(apmcosm(Ag = Ag) + by mssinm - (Ag — Ag))
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where

P : associated Legendre function of the degree n and order m,

¢g : latitude of the intersection point of the spherical layer with the line connecting
the receiver and the satellite,

Ag : longitude of the intersection point of the spherical layer with the line connect-
ing the receiver and the satellite,

¢ : latitude of Sun,

Ao : longitude of Sun.

It is possible to estimate several sets of model parameters ay, y,, b, s per observation session.
An example of the result is given in Section 7.

6.4.3 Implementation of the QIF Strategy

The QIF approach is implemented in our “Sigma” strategy [Mervart et al., 1994]. Let us
denote by by;, by;,, byi, the (real valued) double difference L,~ambiguities. Similarly b,;,
byj, and byj, are the Lo—ambiguities. Now we check whether the pair

bli } b‘.’_]

or the pair

bli[ - blin ' b2j| - b?j: ]

which, as a matter of fact, is a pair of double difference ambiguities again, meets the
requirements to be round to integers and accepted as the pair of correct integer valued
ambiguities. In particular we proceed as follows. We compute the rms error for each Lj
ambiguity bias b; associated with a pair b,;,bs; or with a pair of differences by;, — by,

szl - b'ljz :

0 =09 \/ﬁf Qu+2 By B2 Q2+ 53 Q2 (6.64)
where
Qu= Q(blivbli) v Q= Q(bli,sz) v Qa= Q(bi’jab'lj) (6-65)

in the case of pair by;,bo; (Q(...) is an element of the variance-covariance matrix) or

Qu = Qb 015,) =2 Qbyis biiy) + Q(baiy b1iy)
Ql'l = Q(blinb?h) - Q(bliﬂb?j:.-) - Q(b“ﬂb?jl) +Q(b1i27b3f2) (666)
Q22 = Q(baj,,b5,) — 2 Q(bajy, baj,) + Q(baj,, bay,)

in the case of pair of differences bii, — bysyy boj, — baj,. Now, we sort the ambiguity pairs
according to values @. For the ambiguity pair (or pair of the differences) with the smallest &
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(if this @ is lower than adopted omax) we define the search ranges (omitting the “solution
cde s s
indices” 1, j)

7y =nint(b) X7, 1=0;1;...; ¢
s = nint(by — b)) £k, k=0;1;...;kmar (6.67)

y = 1 — Nig

H

and for each pair 7, 72, of integers within the search range we compute the test value (6.60)
ds = |By (by = 7iy) + B2 (b2 — 7iz)] . (6.68)

The pair associated with the smallest value dj is accepted as a solution unless
d3 > dmax , (6.69)

where dmay is a user defined maximum value. If no ambiguity set passed the test we pro-
ceed to the next pair of ambiguities associated with the second smallest . After accepting
one pair the entire least-squares adjustment and the procedure described above are re-
peated. The ambiguities are thus resolved iteratively. All or only a subset of ambiguity
pairs may be resolved in the iteration process.
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7. Test Campaigns and Results

7.1 Epoch’92 and EUREF-CH

The International GPS Service for Geodynamics (IGS) [Mueller and Beutler, 1992, [Beut-
ler et al., 1994c] organized two campaigns in 1992:

e The IGS test campaign (21 June 1992 - 23 September 1992). This campaign was
followed by the so-called Pilot Service to bridge the gap between the 1992 IGS Test
Campaign and the start of the official IGS service on January 1, 1994.

e Epoch’d2 - a two weeks campaign centered around August 1, 1992,

The main purpose of the 3 months campaign was to prove that the scientific community
is able to produce high-accuracy orbits on an operational basis. Data (code and phase on
both carrier frequencies) were gathered by a core network of about 30 globally distributed
stations (equipped with high precision dual-band P-Code receivers and near-real time data
links to the network centers) — see [Beutler, 1993b].

Table 7.1: Stdtions and baselines used from the IGS Core Network

Station Abbreviations || Baseline | Length (km)
Graz GRAZ GZ GZ-WZ 300
Kootwijk KOSG KO || WZ-ZA 480
Mas Palomas MASP MP || KO-ZA 600
Madrid MADR MD || KO-ON 700
Matera MATE MT || GZ-MT 720
Metsahovi METS MS || MS-ON 780
Onsala ONSA ON | MS-TR 1080
Tromso TROM TR | MD-ZA 1180
Wettzell WETT WZ || MD-MP 1740
Zimmerwald ZIMA ZA '

The main purpose of Epoch’92 is a first densification of the core network: in addition
to the 30 core stations about 100 so-called fiducial stations were collecting data during
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Epoch’92. From this campaign we selected 10 stations listed in Table 7.1 and formed the
linear independent set of shortest baselines. All the stations were (and still are) equipped
with dual band P-code receivers. Because for test purposes we wanted to use the P-code
measurements we have chosen four sessions without anti-spoofing (AS). The sessions are
given in Table 7.2 (where the session number is identical with the day number of the year
1992). The session lengths are 24 hours in each case.

Table 7.2: List of sessions used from Epoch’92

Session Date Time
217 4th AUG 1992 { 0- 24
218 5th AUG 1992 | 0- 24
219 G6th AUG 1992 | 0 - 24
220 Tth AUG 1992 0- 24

At the same time the EUREF-CH campaign was organized by the Swiss Federal Office
of Topography. The 5 EUREF stations in Switzerland were occupied from 3 to 8 August
1992. Two different receiver types were used (sce Table 7.3). The campaign took place
during Epoch’92 in order to take advantage of the highest possible orbit accuracy. The
main goal of the campaign was to improve the coordinates of the Swiss EUREF stations in
the ITRF. These EURET stations will provide the reference frame for the new first order
GPS survey in Switzerland.

4 Trimble 4000 SLD and 2 Trimble 4000 SST receivers were used. At the Satellite Laser
Ranging (SLR) site in Zimmerwald (which is at the same time also an IGS station) both
receiver types were used simultaneously in order to allow baseline formation with the
same receiver type. It should be mentioned that the Trimble 4000 SLD are non-P-code
receivers. They reconstruct the L, carrier using a squaring technique which leads to half-
cycle ambiguities for the L. phase. The Trimble SST uses a different (cross correlation)
technique allowing to work with full-cycle ambiguities on Ls. Both receivers have full-cycle
ambiguities on the L, carrier, which implies that for the resolution of the narrow-lane
ambiguities we may work with full-cycle ambiguities.
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Table 7.3: Stations and baselines of the EUREF-CH campaign

Station Abbreviations: Receiver Baseline | Length (km)
Zimmerwald 1 ZIM]1 Z1 Trimble 4000 SLD || Z1-CH | 78
Zimmerwald 2 ZIM2 Z2 Trimble 4000 SST || Z1-LG 114
Chrischona CHRI CH | Trimble 4000 SLD || Z2-MG 159

La Givrine LAGl LG | Trimble 4000 SLD || Z1-PF 190

Mt. Generoso MTGE MG | Trimble 4000 SST

Pfinder PFAN PF | Trimble 4000 SLD

We processed the 7 sessions of Table 7.4. Due to technical reasons it was not possible to
generate 1 day sessions.

Table 7.4: List of sessions used from EUREF-CH campaign

Session Date
2171 | 4th AUG 1992  6:00 - 4th AUG 1992 18:00
2172 4th AUG 1992 18:00 - 5th AUG 1992  6:00
2181 | 5th AUG 1992 6:00 - 5th AUG 1992 18:00
2182 | 5th AUG 1992 18:00 - o6th AUG 1992  6:00
2191 | 6th AUG 1992  6:00 - 6th AUG 1992 18:00
2192 | 6th AUG 1992 18:00 - T7th AUG 1992  6:00
2201 | Tth AUG 1992 6:00 - 7th AUG 1992 18:00

For both campaigns we have used the orbits computed by the Center for Orbit Determ-
ination in Europe (CODE) using the measurements of the IGS stations.

Ambiguity Resolution Strategy

For the resolution of the initial phase ambiguities we used the following two products of
the International GPS Service for Geodynamics (IGS):

1. High accuracy orbits (better than 0.5 m).
2. Regional ionosphere models.

The first IGS product should allow us to resolve the narrow-lane ambiguities not in a
network-mode but in a baseline-oriented mode. This strategy promises to be much more
efficient than the usual network-oriented processing schemes, because the computing time
grows not linearly but with a much higher power with the number of ambiguities involved
(depending somewhat on the algorithm chosen). It also promises to be more reliable,
because in our case the search ranges can be opened up in a "generous” way, and more
test runs can be made.
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WIDE-LANE AMBIGUITIES
(all ambiguities, the EUREF-CI campaign)
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Figure 7.1: Distribution of the fractional parts

The second product should allow us to resolve the wide-lane ambiguities without having
access to the P-code. This aspect is most important because today the P-code is no longer
available to the scientific community. Below we will use local single-layer models for the
total electron content based on the phase measurements of one dual-band receiver in the
IGS network. These models are used when processing the wide-lane linear combination of
baselines up to 300 km in the "vicinity” of the reference receiver. Again, the wide-lane
ambiguity resolution is done in the baseline-mode. The idea was {and is) to take out the
principal ionosphere-induced biases by a model and to hope that the "irregular” part of
the ionosphere will be averaged out by using long observation sessions.

Wide-Lane Ambiguity Resolution

For the Epoch’92 data set we used the Melbourne-Wiibbena linear combination of the
two phase and the two code observations (see Section 5.1) for ambiguity resolution. This
approach is very reliable. In Table 7.6 (column L) the number of resolved wide-lane
ambiguities is shown. For the EUREF-CH data we did not have this possibility because P-
code measurements were not available. The most serious problem - ionospheric refraction
— was addressed by using the ionosphere models produced by program IONEST of the
Bernese GPS Software (Wild,1989) using the L, and L. observations of the Trimble SST
receiver located at Zimmerwald. In Figure 7.1 the distribution of the fractional parts of the
wide-lane ambiguities before the first iteration step of our ambiguity resolution scheme (see
Section 6.3.2) is shown for all baselines and session (458 ambiguities). The mean square
fractional parts of wide-lane ambiguities for all EUREF-CH baselines are listed in Table
7.5.
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Table 7.5: The results of the wide-lane ambiguity resolution

Baseline | Length | sess. [ amb. | Mean square fract. part amb.
(km) no ion. model | ion. model | resolved
Z1-CH 78 7 125 0.253 0.164 116
Z1-LG 114 7 122 0.274 0.172 110
22-MG 159 7 92 0.197 - 0.117 89
Z1-PF 190 7 119 0.277 0.230 - 97

Without using the ionosphere model it was not possible to resolve the ambiguities. With
the ionosphere model we resolved about 90 % of all ambiguities. The coordinates were fixed
on the values obtained using the ionosphere free linear combination without resolving the
ambiguities (compare also [Wild, 1993]).

Narrow-Lane Ambiguity Resolution

As mentioned this step was performed baseline by baseline. The iterative approach is very
important because it is necessary to estimate not only the ambiguities, but coordinates and
troposphere parameters too. For each baseline we held one station fixed and we estimated
the coordinates of the second one. For each station we estimated one troposphere parameter
per 6 hours. The results from both campaigns (Epoch’92 and EUREF-CH) are presented
together. In Figure 7.2 a typical example is shown for the development of the fractional
part of the narrow-lane ambiguities during the iteration process (three double difference
ambiguities stemming from satellites 13, 14, 23 and 25).

Bascline: Graz - Matera
Session: 219

03
Sat. 23-14
02 F o e e Sat. 13-14
Tt e st L e . Sat. 25-14
5 (L8 I
K]
g
§ 0.0 §-
e
=
0.1
-0.2

0 s 10 Y 20 25
Iteration Step

Figure 7.2: Development of the fractional part of the narrow-lane ambiguities (double
differences 25-14, 13-14 and 23-14) during the iteration process
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In Table 7.6 the number of resolved ambiguities is shown. The number of resolved ambi-
guities depends on the confidence level in our statistical tests. We used a very conservative
confidence level (about 99 %) and therefore we could only resolve about 85 % of the am-
biguities. In the same table the results using the broadcast orbits instead of IGS orbits

are shown.

Table 7.6: The results of the narrow-lane ambiguity resolution

Broadcast orbits

CODE orbits

Baseline | Length | sess. | amb. | Ly amb. | mean sq. | amb. | mean sq. | amb.
(km) total | resolved { frac. part | res. | frac. part | res.
Z1-CH 78 7 125 116* 0.252 105 0.160 103
Z1-LG 114 7 122 110° 0.287 80 0.238 107
Z2-MG 159 7 92 89* 0.294 65 0.119 87
Z1-PF 190 7 119 97" 0.281 82 0.302 69
GZ-WZ 300 4 103 103* 0.276 54 0.201 93
WZ-ZA 480 4 101 94~ 0.278 53 0.258 72
KO-ZA 600 4 104 95 0.311 57 0.217 66
KO-ON 700 4 109 104** 0.288 60 0.233 97
GZ-MT 720 4 100 100** 0.292 63 0.214 94
MS-ON 780 4 126 126> 0.285 80 0.217 119
MS-TR | 1080 4 130 127 0.280 89 0.226 106
MD-ZA | 1180 4 106 95** 0.277 70 0.222 67
MD-MP | 1740 4 113 96"~ 0.277 39 0.236 64

* ionosphere models used

** Melbourne-Wiibbena approach used

It is very interesting to inspect the distribution of the fractional part of narrow-lane ambi-
guities before resolution (IFigure 7.3). In essence we conclude that narrow-lane ambiguity
resolution is most successful using the IGS orbits and almost impossible using the broad-

cast orbits for baselines longer than about 100 km.




7.1 Epoch’92 and EUREF-CH

NARROW-LANE AMBIGUITIES
(all ambiguities, EUREF-CH and Epoch’92)

60

Number of Amb.
2

40

20 |

broadcast orbits
CODE orbits

-0.2

01 0O

0.1

Fractional Part

0.2

Figure 7.3: Distribution of the fractional parts

Quality of Results

Below, the day to day repeatabilities of our baseline estimations are used as a measure for
the success of ambiguity resolution. All the ambiguities previously resolved were fixed and
we produced a solution based on the ionosphere-free linear combination. We estimated
the troposphere parameters (one parameter per station and 6 hours interval) and the
coordinates of all the stations (Epoch’92 and EUREF-CH) with respect to Zimmerwald.
We used various observation windows i.e. we used the data from the entire sessions and
then from 8, 4, 2 and 1 hours only. The results may be found in Figures 7.4 and 7.5.
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Figure 7.4: Day to day repeatability of the horizontal position (¢, A) for different session
lengths; stations of the Europen Core Network
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Figure 7.5: Day to day repeatability of the horizontal position (¢, A) for different session

lengths; Swiss EUREF stations

The repeatability of the coordinates is a good indicator for the stability of the solutions.
To show the quality of various types of solutions (ambiguities fixed or free and various

data intervals) we computed a set of mean coordinates for each type of solution from all

sessions. We used the full-session ambiguity fixed solution as a reference and computed
the Helmert transformation between this reference solution and all others. The results
(horizontal positions) are given in Figure 7.6. The residuals in height component were
about 2 times larger and we did not detected any significant difference between ambiguity
fixed and ambiguity free solutions.
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Figure 7.6: Rms of residuals in the horizontal position (¢, A) after Helmert transformation
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7.2 January’93

In January’93 seven IGS Analysis Centers (see Table 2.2) were producing GPS orbits,
earth rotation parameters, station coordinates, and other relevant parameters using the
data from the IGS Core Network (see Section 2.1). The results of the IGS processing
centers were regularly compared by [Goad, 1993]. These comparisons showed that the
consistency of the daily orbit systems from different centers approached the 25 cm level,
after a 7-parameter Helmert transformation. In order to improve the consistency between
the different processing centers even more and to detect the reason for some small system-
atic differences between the results of different IGS Analysis Centers the Analysis Center
Coordinator during the IGS Pilot Service, Prof. C.C. Goad, selected two weeks (17 - 30
January 1993, GPS weeks 680 and 681) to be reprocessed by all IGS processing centers,
using the same coordinates (and local ties, antenna heights) for the stations held fixed.
We used this data set to test our ambiguity resolution strategies, where we focused our
attention on the data from 10 European IGS Core Stations. Our test network is given in
Figure 7.7. It covers an area of roughly 5000 km (N-S) x 2000 km (E-W).

Figure 7.7: Test network

Because the CODE Analysis Center works with overlapping 3-days solutions, where the
result for the middle day of every 3-days solution is extracted and delivered to the I1GS
data centers [Rothacher, 1993b], we had to use the data from 16 days (16 — 31 January
1993). The station names, abbreviations and the availability of data are listed in Table
7.7.
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Table 7.7: List of stations

Date

STATION ABBREV. 1111222222222233

6 789012345678 901
Graz GRAZ GZ | XX XXXXXXXXXXXXXX
Kootwijk KOSG KO X XXXXXXXXXXXXXXX
Madrid MADR MD{X X 4+$ XX XXXXXXXXXX+
Matera MATE MT [ X X X XX XXXXXXXX+XX
Tromso TROM TR [ X X X XX XXXXXXXXXXX
Wettzell WETT WZ [ X X XXXXXXXXXXXXXX
Onsala ONSA ON XXX XXXXXXXXXXXXX
Metsahovi METS MSE|XXXXXXXXXXXXXXXX
Ny Allesund NYAL NA | XXXXXXXoo0o+XXo0oXoo
Mas Palomas MASP MP | X + + X X X X X X X XXX XXX
X ...data available + ...few hours of data only o ...data not available

The Bernese GPS Software explicitly creates the so-called single difference files (differ-
ences of quasi-simultaneous observations to the same satellite as seen from different sta-
tions). For ambiguity resolution purposes we used the set of the shortest linearly independ-
ent baselines. The distances between all stations may be extracted from Table 7.8. The
baselines selected according to the above mentioned criterion are underlined. The distance
lengths vary between 700 ki and 1700 km.

Table 7.8: Distances between stations (km) for the January’93 campaign

NYAL GRAZ KOSG MADR MATE TROM ONSA METS WETT
MASP 5646 3409 3209 1745 3244 5019 3874 4590 3361
NYAL 3508 20964 4264 4190 1053 2387 2119 3283
GRAZ 899 1741 719 2507 1172 1572 302
KOSG 1512 1523 2054 700 1449 602
MADR 1765 3480 2205 2930 1655
MATE 3198 188 2231 990
TROM 1406 1079 2296
ONSA 784 919
METS 1433

All the stations were occupied with dual band P-code receivers (Rogues). Because anti-
spoofing (AS) was not switched on during that time we could use all four types of observ-
ables (L, and L, phases and both P-codes).

Wide-Lane Ambiguity Resolution

In a first step we resolved the wide-lane ambiguities using the Melbourne-Wiibbena linear
combination. Figure 7.8 shows the distribution of the fractional parts of wide-lane ambigu-
ities after the initial solution. It should be mentioned that during the initial least-squares
adjustment all the unknown ambiguity parameters from one session are refered to one
(single difference) reference ambiguity (see Section 6.3.2).
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Figure 7.8: Distribution of the fractional parts for the January’93 campaign

The main advantage of our new ambiguity resolution strategy [Mervart et al., 1994] is
the optimization of the double differencing. Actually we resolve the differences (see Section
6.3.2)

' =gl — g = by - 03 (7.1)
where the satellite pairs 7;, i, are selected in order to minimize the a posteriori rms of the
ambiguity parameters. The power of this approach is demonstrated in Figure 7.9 which
shows the distribution of the fractional parts of the wide-lane ambiguities actually resolved.
From the Figures 7.8 and 7.9 we conclude that the wide-lane ambiguity resolution using
the Melbourne-Wiibbena linear combination is highly successful and very reliable. In this
case we were able to resolve 97 % of 5234 unknown ambiguity parameters. It should be
mentioned that this number depends on the confidential level £ and maximal a posteriori
IMS Tpyqe (Section 6.3.2). In this case we used € = 3 and 0, = 0.1.

Narrow—Lane Ambiguity Resolution

Narrow-lane ambiguity resolution was attempted up to baseline-lengths of about 2000 km.
Previous experiences (Epoch’92 campaign) told us that narrow-lane ambiguity resolution
would be possible only with orbits of excellent quality. The same tests indicated that ambi-
guity resolution considerably improves the accuracy of results (repeatability of coordinates
etc.) for sessions shorter than 24 hours. During the Epoch’92 campaign we resolved the
ambiguities on the simple baseline level, then we processed the entire network keeping the
orbits fixed. Our January’93 test should answer the following questions:

1. Is it possible to resolve the narrow-lane ambiguities on the baseline level using IGS
orbits?
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Figure 7.9: Distribution of the fractional parts

2. Which criterion should be applied to check the quality of results?

3. Does ambiguity resolution improve the accuracy of results of 3—days solutions too?
4. Is it necessary to improve the orbits during the final network adjustment?

To answer the first question we used the following two strategies:

Strategy A: The entire network was processed ‘en bloc’ for each session (24 hours). We
estimated the ambiguities, the coordinates of all the stations with the exception of
Wettzell, troposphere parameters (one parameter per station and per 6 hours obser-
vation time interval), and 7 orbit parameters for each satellite (6 initial conditions
plus the direct solar radiation pressure parameter py [Beutler et al., 1994a]). The
y-biases were kept fixed on the values obtained in the standard 3-days solution.

Strategy B: Each baseline was processed separately. We constrained the coordinates to
1 cm to the mean coordinates obtained from the 14 standard IGS 3-days solutions.
For this mean set of coordinates an accuracy of about 1 ¢cm could be expected.
In addition to station coordinates and ambiguities we solved for the troposphere
parameters (one parameter per station and per 6 hours observation time interval)
too. We used the IGS orbits from the Center for Orbit Determination in Europe
(CODE) and made no further orbits improvement. The essential difference between
the two strategics thus hesides in the fact that in strategy A we make an attempt
for a regional orbit improvement, in strategy B the orbits are kept fixed.

The iterative approach to resolve ambiguities described in [Mervart et al., 1994] is an
essential element because of the correlations between various parameter types. Within one
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7.2 January’93

iteration step only the limited (selected) number of the best-determined ambiguities are
fixed and the following least-squares adjustment serves as an initial solution for the next
iteration step. The first impression concerning the reliability of the ambiguity resolution
stemms from the distribution of the fractional parts of the ambiguities when they are
actually fixed (i.e. in the iteration step when the ambiguities were actually fixed). This
distribution of the fractional parts of ambiguities in the moment of fixing for both strategies
is given in Figure 7.10.

NARROW-I:ANE AMBIG UITIES (EUROPE) NAkRO\V-MN E AMBIGUITIES (EUROPE)
Session Level Adjustment Baseline Level Adjustment
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Figure 7.10: Distribution of the fractional parts of the ambiguities when accepted to be

fixed

We used a very conservative confidence level in our statistical tests (§ = 3 and opmq, =
0.07 and nevertheless we were able to resolve in both cases 82 % of the narrow-lane
ambiguities (about 18 % of fractional parts outside the 3. 0.07 = 0.21 limit should be
added in Figure 7.10). We may conclude that ambiguity resolution was highly successful.

According to the distribution of the fractional parts the resolution of the narrow-lane -
ambiguities on the baseline level seems to be slightly better than the strategy A. This result
is important because it demonstrates the possibility to resolve the narrow-lane ambiguities
using IGS orbits without further orbit improvement. We want to study this aspect in more
detail by taking into account the quality of the solutions (using strategies A and B) too.
The following aspects are considered: '

e We expect sub-centimeter accuracy for our results. Therefore only the “free network”
approach (orily one station kept fixed) is valid because the a priori coordinates
(ITRF) of the fiducial stations have rms errors of the order of 1 ¢m.

e It is not sufficient to simply study the coordinates’ repeatability because the resulting
network of stations may be corrupted by small rotations if only one station is kept
fixed. This argument is certainly relevant in the case of Strategy A. Therefore a
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Helmert transformation must be used to compare the daily solutions.

e Orbit quality and orbit parametrization are crucial. It should be kept in mind that
the observations used for ambiguity resolution were also used (together with data
from stations outside Europe) for orbit détermination. Therefore it would not be
correct to use the same fixed orbits to test the quality of results. The only possibility
is to estimate the orbit parameters again, but this time with fixed ambiguities. The
fixing of ambiguities potentially provides a better type of (unbiased) observable and
promises higher orbit accuracy.

Taking into account these considerations the following approach was chosen: fourteen
3-days solutions were performed, where the coordinates of all stations (with the exception
of Wettzell) were computed. For the tropospheric delay we used the Saastamoinen model
(see Section 5.3.2) as an a priori model and we estimated one zenith correction per station
and per each 6 hours time interval. The following sets of solutions were inspected.

Solution Type 1: float solution. All the ambiguities were estimated as real numbers. As
an orbit model we used our stochastic model [Beutler et al., 1994a] where apart from
the standard 8 orbit parameters (6 initial conditions, direct solar pressure parameter
Po and y-bias parameter py) we solved for three stochastic force parameters (in radial,
along track and out of plane directions) per satellite and per satellite revolution (12
hours).

Solution Type 2: ambiguities fixed solution. 82 % of the narrow-lane ambiguities were
kept fixed on the values obtained from the previous ambiguity resolution step using
the strategy A (session level ambiguity resolution). The same (stochastic) orbit model
was used as in the solution of Type 1.

Solution Type 3: ambiguities fixed solution but this time the integer values of the am-
biguities stem from the ambiguity resolution performed using strategy B (baseline
level ambiguity resolution). The stochastic orbit model described above was used
again.

Solution Type 4: an ambiguities fixed solution differing from the solution type 3 by
the orbit model - the standard model (8 parameters per arc and per satellite) were
estimated.

We chose the set of a priori ITRF coordinates as a reference system and for each 3-days
solution we computed the residuals after the 7 parameters Helmert transformation into the
reference system. Thus for each type of solution and for each individual coordinate (three
components for each station) we obtained 14 sets of residuals. The residuals depend on
the (arbitrary) choice of the reference system and can not be used as a good criterion for
the solutions quality. But the repeatability, in particular the standard- deviation of these
14 values may serve as the criterion to judge our solution types.
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Figure 7.11: Standard deviations of the residuals after the Helmert transformation into
the reference system

Figure 7.11 shows the results of the solutions 1, 2 and 3. The ambiguities fixed solutions
(2 and 3) show smaller deviations of the residuals, which means that these types of solutions
provide better consistency of results and better coordinates repeatability.

Figure 7.11 shows almost the same quality for the solution types 2 and 3. It is interesting
to compare solutions 3 and 4 in Figure 7.12. We conclude that the orbit parametrization
actually is relevant and that the standard orbit model {solution type 4) is not sufficient
for hightest accuracy applications.
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Figure 7.12: Standard deviations of the residuals after the Helmert transformation into
the reference system
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The ambiguity parameters are identical for both solutions, the only difference is the
orbit model. The solution 4 is still better than the float solution but the superiority of
solution 3 over solution 4 is obvious. It proves the importance of the orbit model.

Conclusions

Let us summarize the findings of this section: Observations from 16 days in January 1993
stemming from the European part of the IGS netork were used to test our ambiguity
resolution methods. We used the Melbourne-Wiibbena approach to fix the wide lane am-
biguities. This step could be performed without any problems (Figures 7.8, 7.9). We used
two strategies to fix the narrow lane ambiguities: Strategy A was a network approach (the
entire 10 stations network was analysed for each day), strategy B was a baseline approach
(the ambiguities were resolved baseline by baseline, separately on each day). The success
and the results were very similar in both cases. This aspect is important becuase strategy
B is much more flexible and much less CPU demanding. From Figures 7.11a,b we conclude
that ambiguity resolution actually improves the results: The coordinate consistency in the
network improved by a factor of up to 2 for strategy A as well as for strategy B. A similar
effect could not be seen for the station heights. The results from January 1993 campaign
we used to prepare more detailed tests which are described in the following chapter.
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8.1 January 1994

The IGS went through a remarkable development in 1993 [Beutler et al., 1994c]. The global
coverage of tracking sites could be improved considerably, the analysis was refined, the
terrestrial reference frame was improved dramatically (transit from the ITRF 91 to the
ITRF 92), and, last but not least there is a combined IGS orbit available since November
1993. The theory behind this combined orbit may be found in [Springer and Beutler, 1993],
it is produced by the analysis center coordinator Dr. Jan Kouba from National Resources,
Canada. His weekly analyses (IGS report series, e.g. reports No. 1079, 1099, 1109) clearly
demonstrate that the consistency of the orbit series from individual IGS processing centers
approach the 10 cm level in 1994. For the CODE processing center the rms uncertainty
per satellite coordinate is of the order of 12 c¢m, an estimated improvement of about a
factor of 2 since January 1993. The estimated accuracy of the combined IGS orbit for the
time period of January 1994 is of the same order of magnitude.

January 1994 was the last AS-free month: AS is turned on permanently since GPS
week 734. It seemed therefore worthwhile to go through essentially the same analysis as
in section 7.2, but using the state-of-the-art IGS orbit quality.

We selected 14 days in January 1994 (2nd January - 15th January) and we wanted to
use all 15 European Core stations which were at our disposal at that time (see Figure 2.1).
Unfortunately the data stemming from the stations Kiruna and Herstmonceux could no
be used due to their bad quality. Therefore only 13 stations were processed. The station
names and abbreviations are given in Table 8.1.
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Table 8.1: List of stations

STATION Abbreviation Receiver
Brussels BRUS Rogue SNR-8000
Graz GRAZ Rogue SNR-8C
Jozefoslaw JOZE Trimble 4000SSE
Kootwijk K0sG Rogue SNR-8
Madrid MADR Rogue SNR-8
Mas Palomas MASP Rogue SNR-8C
Matera MATE Rogue SNR-8
Metsahovi METS Rogue SNR-8C
Ny Allesund KYAL Rogue SNR-8
Onsala OESA Rogue SNR-8000
Tromso TROM Rogue SNR-8
Wettzell WETT Rogue SNR-800
Zimmerwald ZIMM Trimble 4000SSE

Using the data from this network we wanted to answer the same questions as in Section 7.2.
In addition we are considering the following aspects:
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Is there a substantial difference (repeatability of coordinates, ambiguity resolution
capability) if CODE orbits instead of 1GS orbits are used? A positive answer would
not be surprising because the CODE orbits are based on a network including many
European stations.

We will refine the discussion by taking into account the formal errors, too. This is
a delicate issue because formal errors tend to be too optimistic. This argument
is not valid, however, if we look e.g. at the fraction rms(ambiguity fixed solu-
tion)/rms(ambiguity float solution) for the parameters of interest (coordinates, orbit
parameters).

We will further refine the discussion by looking into the dependence on the baseline
length (fractional parts of wide lane (no effect expected) and narrow lane ambiguities,
repeatability of coordinates).

We will carefully analyse the height components. It was puzzling in the previous
analyses that there was no obvious difference between the fixed and the free solutions
regarding the heights. This effect has to be understood.

We will look in more detail into the problem of the session length. We will try to
define the optimum session length taking into account economical considerations. We
will also more carefully analyse the repeatability of short sessions (daily variations)
by producing time series of one hour solutions.

We will produce purely regional orbits using floating resp. fixed ambiguities and
compare the quality of these regional orbits with the quality of the global orbit. This
problem area is of interest even independently of the ambiguity resolution aspect:
what orbit quality can be achieved from a regional tracking network?

Last but not least the analysis in this section will serve as a valid reference for the
analysis in the next section, where we will look into the effect of AS (by analysing
data from May 1994).



8.1 January 1994

Wide-Lane Ambiguity Resolution

For the wide-lane ambiguity resolution we wanted to use the Melbourne-Wiibbena ap-
proach. This method should be independent of the geometry (and therefore of the baseline
length). An important question is whether the combination of different receiver types has
any influence on the quality of results (on the fractional parts of wide-lane ambiguities).
Considering this aspect we tried to form the baselines between receivers of the same type.
The baselines we selected are given in Table 8.2,

Table 8.2: List of baselines

Station 1 Station 2 Receiver Types® Length (km)
BRUS KOSG Turbo - Rogue 184
BRUS MADR Turbo — Rogue 1329
BRUS ONSA Turbo — Turbo 884
BRUS WETT Turbo — Rogue 638
GRAZ WETT Rogue ~ Rogue 302
JOZE ZIMM Trimb ~ Trimb 1138
MADR MASP Rogue - Rogue 1745
MATE WETT Rogue - Rogue 990
METS TROM Rogue - Rogue 1082
NYAL TROM Rogue — Rogue 1053
ONSA METS Turbo - Rogue 784
WETT ZIMM Rogue - Trimb 476

*) Receivers Rogue SNR-8, 8C and 800 are denoted as Rogue,
Rogue SNR-8000 as Turbo and Trimble 4000SSE as Trimb

For the wide-lane ambiguity resolution we used the same method and program options
as described in Section 7.2. The distribution of the fractional parts of the ambiguities after
the initial least-squares adjustment and in the moment of fixing are given in Figures 8.1
and 8.2:
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FRACTIONAL PARTS OF WIDE-LANE AMBIGUITIES
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Figure 8.1: Fractional parts of wide-lane ambiguities for various baselines after the initial
adjustment

FRACTIONAL PARTS OF WIDE-LANE AMBIGUITIES
In the Moment of Fixing

o
g‘ R R
ogue-Rogue

2 Turbo.Turke
=] Turbo-Rogue
2 o + Trimb-Trimb
Regre] Rogus-Trmb
.g -
o

=]
E A
€
2
z

Figure 8.2: Fractional parts of wide-lane ambiguities for various baselines in the moment

of fixing

According to Figures 8.1 and 8.2 we may conclude that the distribution of the fractional
parts of the wide-lane ambiguities does not depend on the baseline length but on the
receiver types. Especially the combination of different receivers seems to be critical. To see

this effect in more detail we produced histograms for the different receiver combinations:
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Figure 8.5: Distribution of the fractional parts of wide-lane ambiguities after the initial

adjustment and in the moment of fixing (receiver types: Turbo Rogue — Rogue)
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Figure 8.7: Distribution of the fractional parts of wide-lane ambiguities after the initial
adjustment and in the moment of fixing (receiver types: Rogue — Trimble)

Figures 8.3 - 8.6 demonstrate the efficiency of the Melbourne-Wiibbena method if high
quality code measurements are available. The Turbo-Rogue receivers in Onsala and Brus-
sels give very good results in particular.! Figure 8.7 shows that on the other hand no good
results may be expected if a combination of different receiver types is used. In the entire
network we had 7125 wide-lane ambiguities and we were able to resolve 6652 ambiguities

(93 %).2

Narrow-lane Ambiguity Resolution

From the results of Chapter 7 we conclude that:

e Narrow-lane ambiguity resolution for baselines longer than about 500 km is possible
only if orbits of excellent quality are available.

e It is possible to resolve the ambiguities in the baseline mode.

As mentioned above the IGS provides at present two types of orbits, namely orbits
computed by the individual processing centers and the combined orbits. We wanted to see
whether there is a quality difference between the combined (IGS) orbits and the orbits
computed by the Center for Orbit Determination in Europe (COD orbits). The accuracy
of the IGS orbits could benefit from the statistics (combining several high quality orbits),
the COD orbits might be better for regional analyses in Europe because data from many
European stations are used in this case. We used both orbit types and estimated the

!Code data from Brussels were corrupted on days 006 and 009. Fractional parts of the ambiguities
stemming from these two days are not included in Figures 8.1, 8.2, 8.4 and 8.5; we used the data for
all further computations, however. There were no problems with phase measurements.

2Without data from Brussels on days 006, 009 we would have resolved 6652 of 6865 ambiguities or 97 %.

101



8. Test Campaigns in 1994

coordinates of all stations with respect to Wettzell plus the troposphere parameters (one
zenith delay per station and per 6 hours interval). We used the repeatability of 14 one-day
solutions as the quality criterion. The results are given in Table 8.3.

Table 8.3: Standard deviation of the coordinates (in meters) estimated from 14 1-day
solutions

IGS orbits
GRAZ KOSG MADR MATE TROM ZIMM ONSA METS NYAL MASP JOZE BRUS{ mean
N} 0.002 0.002 0.005 0.002 0.006 0.001 0.003 0.004 0.008 0.007 0.003 0.001{0.0034
E| 0.004 0.003 0.011 0.006 0.007 0.003 0.003 0.008 0.008 0.009 0.005 0.003}0.0054
Uj| 0.004 0.006 0.020 0.009 0.017 0.007 0.009 0.022 0.016 0.034 0.014 0.006]0.0126

COD orbits
GRAZ KOSG MADR MATE TROM ZIMM ONSA METS NYAL MASP JOZE BRUS| mean
N{ 0.002 0.002 0.006 0.002 0.006 0.001 0.003 0.003 0.009 0.006 0.003 0.0010.0034

E| 0.004 0.003 0.010 0.005 0.007 0.003 0.004 0.008 0.008 0.009 0.006 0.003|0.0054
Ul 0.004 0.006 0.021 0.009 0.016 0.007 0.009 0.023 0.011 0.039 0.012 0.005[0.0125

In Chapter 7 we have seen that it was not sufficient to study the coordinate repeat-
abilities because the resulting network of stations was biased by small rotations if only
one station was kept fixed. Therefore we chose the set of a priori coordinates as our refer-
ence system. For each 1-day solution we then computed the residuals of the 7-parameter
Helmert transformation into this reference system. The repeatability of the residuals is
given in Table 8.4.

Table 8.4: Standard deviations of the residuals after the Helmert transformation into the
reference system (in meters)

IGS orbits
GRAZ KOSG MADR MATE TROM WETT ZIMM ONSA METS NYAL MASP JOZE BRUS| mean
0.0019 0.0019 0.0062 0.0031 0.0046 0.0017 0.0017 0.0017 0.0051 0.0061 0.0150 0.0031 0.0020}0.0042
0.0039 0.0032 0.0116 0.0061 0.0064 0.0023 0.0041 0.0041 0.0083 0.0075 0.0150 0.0047 0.0030}0.0061
0.0064 0.0082 0.0162 0.0084 0.0143 0.0060 0.0071 0.0071 0.0199 0.0142 0.0248 0.0112 0.0080{0.0116

COD orbits
GRAZ KOSG MADR MATE TROM WETT ZIMM ONSA METS NYAL MASP JOZE BRUS| mean
0.0042 0.0074 0.0099 0.0057 0.0049 0.0039 0.0065 0.0033 0.0107 0.0052 0.0123 0.0068 0.0080]/0.0068
0.0031 0.0027 0.0076 0.0038 0.0029 0.0024 0.0033 0.0022 0.0069 0.0069 0.0041 0.0026 0.0031}0.0040
0.0053 0.0069 0.0074 0.0044 0.0085 0.0035 0.0044 0.0044 0.0189 0.0051 0.0054 0.0064 0.0062(0.0067

|z

cmzZ

From the results given in Tables 8.3 and 8.4 we may conclude that there is no significant
difference between the quality of IGS and COD orbits looking at the pure repeatability
of the coordinates. The standard deviations of the residuals after the Helmert Transform-
ation are slightly better if COD orbits are used. It is important that the repeatability
of the coordinates (Table 8.3) is not much worse than the repeatability of the residuals
after the Helmert transformation (Table 8.4). This means that there are no significant
rotations between any two 1-day orbits and it is possible to use the pure repeatability of
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the coordinates as a criterion to check the quality of different solutions. The results are
quite different from those of the January 93 campaign (Chapter 7).

FRACTIONAL PARTS OF NARROW-LANE AMBIGUITIES

Rogue-Rogue
Turbo-Tucho
Turbo-Rogue
- Trimb-Trimb
«  Rogue-Trimb

20

Number of Ambiguities
3 60

Figure 8.8: Fractional parts of narrow-lane ambiguities for various baselines after the initial
adjustment

FRACTIONAL PARTS OF NARROW-LANE AMBIGUITIES
In the Moment of Fixing

Rogue-Rogue
Turbo-Turbo
Turbo-Rogue
- Trimb-Trunb
......... Rogue-Trimb

120
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Figure 8.9: Fractional parts of narrow-lane ambiguities for various baselines in the moment
of fixing

The narrow-lane ambiguities were resolved in the baseline mode {we processed each
baseline separately) where we kept fixed the coordinates of the first station and we estim-
ated the coordinates of the second one (without any constraints); in addition we solved
for the troposphere parameters (four per day and station). We used the IGS orbits and
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made no attempt to further improve the orbits. We used the iterative approach described
in [Mervart et al., 1994] and within one iteration step we did not fix more than three
ambiguities. The fractional parts of the narrow-lane ambiguities are given in Figures 8.8

and 8.9:
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Figures 8.8 and 8.9 demonstrate that the distribution of the fractional parts of narrow-
lane ambiguities depends on the baseline length. This effect is presented once more in

Figures 8.10 and 8.11.
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These figures show that with high quality orbits narrow-lane ambiguity resolution is
possible without major problems up to baseline lengths of about 2000 km. The superiority
of the new ambiguity resolution strategy is obvious especially for long baselines. In the
entire network we had 7125 narrow-lane ambiguities of which 6652 could be resolved
(corresponding wide-lane ambiguities resolved) and we actually resolved 6495 of them.
This corresponds to 91 % of all ambiguities and to 98 % of the resolvable (wide-lane
resolved) ambiguities. This result is significantly better than that achieved using data
from the January 93 campaign (the same confidential level £ = 3 and a,,,; = 0.07 in our
statistical tests was used in both campaigns) . The reason for the better performance in
1994 is obviously the much improved orbit quality in January 1994.

Influence of Ambiguity Fixing on the Estimated Coordinates

The results presented above indicate that the ambiguities could be resolved in a reliable
way. The main questions to be answered are:

¢ How does ambiguity resolution improve the accuracy of the estimated parameters?
e Which other effects are important?

Let us first inspect the coordinates. We processed the entire network separately for each
day and estimated the coordinates of all stations relative to Wettzell. We compared the
following processing strategies (ambiguity fixed strategies are bold faced):

Table 8.5: Solution types

Strategy | Amb. Fixed A Priori Orbits # Trop. Par. Min. Elevation
IGS no IGS 4 20
IGS A T yes IGS 4 20
COD no COD 4 20
COD A yes COD 4 20
COD B no COD 12 20
CcCOD C yes COD 12 20
CODD no COD 4 15
COD E yes COD 4 15
CODF . no COD 12 15
COD G yes CcOD 12 15
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The first criterion was the repeatability of the daily coordinate esitmates. Table 8.6
shows the standard deviations of the coordinates in a local system (north, east and up):

Table 8.6: Standard deviations of the coordinates (in meters)

| [IGS 1GS A[COD COD A[COD B COD C[COD D €COD E[COD F COD GJ

GRAZ NJ0.002 0001 [0.002 '0.001 | 0.001 0.001 | 0.002 0.01 | 0.002 0.001
0.004 0.001 | 0.004 0.002 | 0003 0.002 | 0.004 0001 | 0.003 0.001
0.004 0.005 | 0.004 0.005 [ 0.004 0.005 | 0.004 0.005 | 0.004 0.004
0.002 0.002 | 0.002 0.002 | 0.002 0.002 | 0.003 0.003 | 0.002 0.002
0.003 0.003 | 0.003 0.002 | 0.003 0.002 | 0.004 0.002 | 0.003 0.002
0.006 0.006 | 0.006 0.006 | 0.005 0.004 | 0.006 0.006 | 0.005 0.004
0.005 0.004 {0.006 0.00¢ | 0.005 0.003 | 0.007 0.00¢ | 0.006 0.003
0.011 0.007 {0.010 0.006 | 0.008 0006 { 0.012 0.007 | 0.009  0.006
0.020 0.011 | 0.021 0013 | 0020 0011 | 0020 0.012 | 0.018 0.012
0.002 0.001 | 0.002 0.002 [ 0.002 0002 | 0.002 0.002 | 0.002 0.002
0.006 0.003 | 0.005 0.003 | 0.005 0003 | 0.005 0.003 { 0.005 0.003
0.009 0.011 | 0.009 0.012 | 0.006 0010 | 0.008 0.009 | 0.006 0.008
0.006 0.006 [ 0.006 0.007 | 0.005 0.006 | 0.006 0.007 | 0.005 0.006
0.007 0.007 | 0.007 0.005 | 0006 0004 | 0.009 0.005 | 0.007 0.004
0.017_0.021 | 0016 0.020 | 0015 0019 | 0.014 0.016 | 0.013 0.015
0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000  0.000
0.000 0.000 | 0.000  0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
0.001 0.001 [0.001 0.001 | 0.001 0001 | 0.001 0.001 | 0.001 0.001
0.003 0001 | 0.003 0002 [ 0.003 0002 | 0003 0.002 | 0.003 0.002
0.007 0.009 | 0.007 0.010 | 0.008  0.011 | 0.006 0.009 | 0.007  0.009
0.003 0003 [ 0.003 0004 | 0.002 0003 | 0.003 0.004 | 0.003 0.004
0.003 0.004 | 0.004 0.003 | 0.003 0.003 | 0005 0.003 | 0.004 0.002
0.009 0.009 | 0.009 0.008 | 0.007 0.007 | 0.007 0.007 | 0.007 0.007
0.004 0005 [ 0.003 0005 | 0.003 0004 | 0.003 0.005 | 0.003  0.004
0.008 0.005 | 0.008 0.004 | 0.007 0004 | 0.009 0004 | 0.007 0.004
0.022 0.026 | 0023 0.029 { 0020 0.030 | 0019 0.022 [ 0.016 0.021
0.008 0.009 [0.009 0010 | 0.007 0009 | 0.008 0.010 | 0.008 0.009
0.008 . 0.008 | 0.008 ©0.006 | 0.008 0.006 | 0.010 0.006 | 0.008  0.005
0.016 0.017 {0.011 0015 [ 0.011 0016 | 0.009 0.012 | 0.003 0.013
0.007 0.007 | 0.006 0.004 | 0.006 0.004 | 0.007 0.004 | 0.007 0.004
0.009 0.009 | 0.009 0.009 | 0.008 0008 | 0.010 0.009 | 0.008 0.008
0.034 0.025 | 0.039 0.036 | 0.040 0.036 | 0033 0.029 | 0035 0.028
0.003 0.003 | 0.003 0.002 | 0.003 0002 | 0.003 0.002 | 0.003 0.002
0.005 0.002 { 0.006 0.002 | 0.006 0.002 | 0.006 0.002 | 0.006 0.002
0.014 0.012 | 0012 0012 | 0010 0010 | 0012 0011 | 0011 0.009
0001 0002 [0.001 0.002 | 0.001 0001 | 0001 0.001 | 0.001 0.001
0.003 0.001 | 0.003 0.001 | 0.002 0001 | 0.004 0.002 | 0.003 0.002
0.006 0.009 | 0.005 0009 | 0.005 0008 | 0.005 0.007 | 0.005 0.007
0.0034 0.0034]0.0034 0.0034 | 0.0029 0.0029 | 0.0035 0.0034 | 0.0033 0.0030

0.0054 0.0039 |0.0054 0.0035 } 0.0048 0.0033 | 0.0062 0.0035 | 0.0051 0.0032
0.0126 0.0124]10.0125 0.0135 | 0.0116 0.0128 |0.0110 0.0112 | 0.0105 0.0105

KOSG

MADR

MATE

TROM

WETT

ZIMM

ONSA

METS

NYAL

MASP

JOZE

BRUS

mean

coZjjcmZicmZicmzZIcmzZacmzZicmzicamz|icmzZIc@m zZ|cmzZicm Zzicam Zijcm Z
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Table 8.7 shows the standard deviations of the residuals after the Helmert transformation
into the reference system. '

Table 8.7: Standard deviations of the residuals after the Helmert transformation into the

reference system (in meters)

[1Gs

IGS A[COD COD A[COD B COD C[COD D COD E[COD F COD GJ

GRAZ

0.0019 0.0029
0.0039 0.0017
0.0064 0.0036

0.0042
0.0031
0.0053

0.0030
0.0022
0.0034

0.0047
0.0035
0.0044

0.0031
0.0025
0.0031

0.0043
0.0030
0.0045

0.0036
0.0020
0.0040

0.0047
0.0030
0.0038

0.0029
0.0016
0.0031

KOSG

0.0019 0.0057
0.0032 0.0022
0.0082 0.0070

0.0074 .

0.0027
0.0069

0.0055
0.0019
0.0069

0.0067
0.0023
0.0063

0.0048
0.0012
0.0058

0.0064
0.0029
0.0057

0.0051
0.0019
0.0063

0.0065
0.0023
0.0054

0.0052
0.0015
0.0056

MADR

0.0062 0.0061
0.0116 0.0042
0.0162 0.0056

0.0099
0.0076
0.0074

0.0070
0.0034
0.0069

0.0071
0.0060
0.0062

0.0063
0.0035
0.0063

0.0089
0.0094
0.0052

0.0053
0.0039
0.0048

0.0061
0.0074
0.0046

0.0045
0.0037
0.0047

MATE

0.0031 0.0060
0.0061 0.0023
0.0084 0.0049

0.0057
0.0038
0.0044

0.0081
0.0035
0.0055

0.0044
0.0027
0.0040

0.0076
0.0036
0.0052

0.0063
0.0045
0.0047

0.0072
0.0030
0.0047

0.0050
0.0031
0.0041

0.0061
0.0029
0.0048

TROM

0.0046 0.0040
0.0064 0.0023
0.0143 0.0087

0.0049
0.0029
0.0085

0.0046
0.0028
0.0096

0.0043
0.0033
0.0080

0.0043
0.0025
0.0088

0.0045
0.0032
0.0071

0.0037
0.0026
0.0073

0.0040
0.0030
0.0061

0.0035
0.0022
0.0004

WETT

0.0017 0.0044
0.0023 0.0017
0.0060 0.0041

0.0039
0.0024
0.0035

0.0041
0.0020
0.0036

0.0038
0.0026
0.0027

0.0035
0.0020
0.0033

0.0042
0.0032
0.0031

0.0043
0.0021
0.0030

0.0044
0.0029
0.0026

0.0039
0.0018
0.0027

ZIMM

0.0017 0.0071
0.0041 0.0013
0.0071 0.0059

0.0065
0.0033
0.0044

0.0086
0.0014
0.0077

0.0073
0.0028
0.0053

0.0091
0.0011
0.0084

0.0065
0.0033
0.0045

0.0073
0.0015
0.0065

0.0069
0.0024
0.0048

0.0076
0.0010
0.0066

ONSA

0.0022 0.0027
0.0030 0.0027
0.0067 0.0038

0.0033
0.0022
0.0044

0.0029
0.0014
0.0040

0.0023
0.0019
0.0035

0.0023
0.0012
0.0036

0.0029
0.0020
0.0035

0.0028
0.0016
0.0036

0.0021
0.0017
0.0025

0.0018
0.0014
0.0026

METS

0.0051 0.0101
0.0083 0.0046
0.0199 0.0190

0.0107
0.0069
0.0189

0.0118
0.0047
0.0207

0.0095
0.0064
0.0173

0.0118
0.0047
0.0205

0.0088
0.0056
0.0145

0.0087
0.0032
0.0143

0.0077
0.0053
0.0129

0.0088
0.0032
0.0141

NYAL

0.0061 0.0040
0.0075 0.0038
0.0142 0.0047

0.0052
0.0069
0.0051

0.0036
0.0058
0.0078

0.0046
0.0073
0.0045

0.0032
0.0059
0.0084

0.0056
0.0068
0.0036

0.0037
0.0049
0.0057

0.0048
0.0068
0.0037

0.0037
0.0043
0.0056

MASP

0.0150 0.0108
0.0150 0.0041
0.0248 0.0053

0.0123
0.0041
0.005:4

0.0129
0.0042
0.006+4

0.0129
0.0046
0.0046

0.0123
0.0041
0.0062

0.0109
0.0045
0.0045

0.0102
0.0034
0.0043

0.0115
0.0039
0.0033

0.0095
0.0031
0.0039

JOZE

0.0031 0.0046
0.0047 0.0020
0.0112 0.0054

0.0068
0.0026
0.0064

0.0048
0.0026
0.0062

0.0063
0.0032
0.0060

0.0047
0.0019
0.0068

0.0073
0.0024
0.0076

0.0045
0.0022
0.0061

0.0063
0.0030
0.0065

0.0036
0.0015
0.0054

BRUS

0.0020 0.0073
0.0030 0.0018
0.0080 0.0066

0.0080
0.0031
0.0062

0.0074
0.0019
0.0070

0.0069
0.0025
0.0052

0.0072
0.0018
0.0070

0.0068
0.0034
0.0046

0.0061
0.0020
0.0053

0.0060
0.0028
0.0037

0.0063
0.0017
0.0052

mean

N
E
U
N
E
U
N
E
U
N
E
U
N
E
u
N
E
U
N
E
U
N
E
U
N
E
U
N
E
U
N
E
9]
N
E
U
N
E
U
N
E
U

0.0042 0.0058
0.0061 0.0027
0.0116 0.0065

0.0063
0.0040
0.0067

0.0065
0.0029
0.0074

0.0062
0.0038
0.0060

0.0062
0.0028
0.0072

0.0064
0.0042
0.0056

0.0056
0.0026
0.0058

0.0058
0.0037
0.0049

0.0052
0.0023
0.0054
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In Table 8.8 are the a posteriori rms errors (mean values from 14 least-squares adjust-
ments) based on the values stemming from the parameter estimation program GPSEST.

Table 8.8: Formal rms errors (in meters)

{ [1Gs 1Gs A[cOD COD AJCOD B COD C[COD D COD E[COD F COD G

108

GRAZ

0.0006 0.0006
0.0012 0.0004
0.0040 0.0046

0.0006
0.0012
0.0041

0.0006
0.0005
0.0050

0.0005
0.0011
0.0037

0.0006
0.0004
0.0046

0.0006
0.0012
0.0033

0.0006
0.0005
0.0037

0.0005
0.0011
0.0029

0.0005
0.0004
0.0033

KOSG

0.0007 0.0007
0.0014 0.0008
0.0042 0.0049

0.0007
0.0014
0.0043

0.0008
0.0008
0.0053

0.0006
0.0013
0.0039

0.0007
0.0008
0.0049

0.0007
0.0015
0.0035

0.0008
0.0008
0.0041

0.0007
0.0014
0.0032

0.0007
0.0007
0.0037

MADR

0.0009 0.0010
0.0017 0.0011
0.0037 0.0042

0.0009
0.0017
0.0038

0.0011
0.0012
0.0046

0.0008
0.0016
0.0035

0.0010
0.0011
0.0043

0.0009
0.0017
0.0031

0.0010
0.0010
0.0035

0.0008
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The best solution stems from the strategy COD G (ambiguity fixed, 12 troposphere
parameters per day and minimum elevation = 15°). It is interesting to plot the mean
deviations of the coordinates and corresponding formal rms errors as a function of the
distance from the fixed station (Wettzell). To show the influence of the resolution of
ambiguities the corresponding results obtained by strategy COD F (same options but
ambiguity free) are given too. ‘

STANDARD DEVIATIONS AND FORMAL RMS STANDARD DEVIATIONS AND FORMAL RMS
NORTH COMPONENT EAST COMPONENT
0.009 | —— Amb. fixed 0.009 | [
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Figure 8.12: Standard deviations of the coordinates and the corresponding formal rms
errors
Influence of Ambiguity Fixing on Troposphere Parameters

We estimated the zenith troposphere delays for all stations and for each interval of either
6 or 2 hours. These troposphere parameters seem to be highly correlated with the station
heights. Because the ambiguity resolution had almost no influence on the station heights
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(Table 8.6) it is interesting to inspect the formal errors of the troposphere parameters.
Table 8.9 shows the mean values computed from 14 1-day solutions. Obviously ambiguity
resolution does not improve the quality of the estimated troposphere parameters.

Table 8.9: Formal rms errors of the estimated troposphere zenith delays (in meters)

COD CODA CODBCODCCODD CODE CODF COD G
BRUS {0.0011 0.0011 0.0012 0.0016 0.0010 0.0010 0.0010 0.0010
KOSG {0.0020 0.0021 0.0022 0.0026 0.0011 0.0013 0.0015 0.0021
MADR}0.0037 0.0051 0.0028 0.0036 0.0041 0.0049 0.0025 0.0029
ONSA {0.0011 0.0018 0.0018 0.0020 0.0010 0.0010 0.0011 0.0011
WETT|}0.0011 0.0014 0.0017 0.0022 0.0010 0.0010 0.0012 0.0014
GRAZ [0.0074 0.0096 0.0052 0.0070 0.0076 0.0096 0.0055 0.0067
JOZE [0.0040 0.0051 0.0032 0.0039 0.0034 0.0042 0.0029 0.0034
ZIMM }0.0026 0.0035 0.0027 0.0031 0.0023 0.0027 0.0021 0.0024
MASP [0.0046 0.0056 0.0036 0.0043 0.0044 0.0054 0.0032 0.0038
METS {0.0014  0.0018 0.0020 0.0021 0.0010 0.0010 0.0011 0.0012
TROM|0.0016 0.0020 0.0020 0.0021 0.0010 0.0010 0.0011 0.0012
MATE [0.0021 0.0023 0.0025 0.0030 0.0014 0.0017 0.0022 0.0023
NYAL [0.0021 0.0029 0.0026 0.0034 0.0013 0.0018 0.0020 0.0023
mean |0.0027 0.0034 0.0026 0.0031 0.0024 0.0028 0.0021 0.0024

Influence of Ambiguity Fixing on Orbit Determination

In this section we want to answer two questions:

e What is the quality of regional orbits compared to global orbits?

e Does ambiguity resolution influence the estimated orbits?

To answer these two questions we used the following approach: for each strategy (Table
8.5) we computed the mean set of coordinates from our 14 one-day solutions. These co-
ordinates we kept fixed in the orbit determination step where we solved for 6 osculating
elements, 2 radiation pressure parameters, and in addition for a set of 3 stochastic paramet-
ers for the eclipsing satellites (per one revolution) as described in [Beutler et al., 1994a]).
In addition we solved for the specified number of troposphere parameters. The ambiguities
were kept fixed or free according to the strategy used (Table 8.5). First we computed 14
1-day arcs to find out the best strategy. Table 8.10 shows the mean residuals after fitting
one 14-days arc through our 14 1-day arcs (see [Beutler et al., 1994a]).
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"Table 8.10: Mean residuals after 14 days fit using ORBIMP program [Beutler et al., 1994a)
(in cm, non-eclipsing satellites only)

PRN

1 3 7 9 13 14 16 18 19 21 23 25 26 27 28 29 31 {mean
CcOoD 998 110 151 515 193 *** 188 766 *** 374 184 156 104 837 231 248 369| 316
COD A|[804 48 73 299 60 459 24 232 739 193 148 76 49 586 43 103 143| 148
COD B |*** 89 122 525 190 *** 65 358 *** 424 148 134 92 738 228 265 266| 260
COD C|*** 35 64 259 60 515 58 343 833 74 119 63 60 550 31 223 143| 148
COD D 909 78 124 596 192 *** 59 367 *** 305 155 114 105 529 109 222 412] 240
COD E|92 49 70 425 64 424 25 134 419 100 143 63 47 513 45 180 200f 147
COD F |511 61 103 687 171 926 49 254 *** 278 129 90 86 521 126 269 305 224
COD G|*** 33 64 381 51 482 22 78 497 68 111 42 52 436 31 128 178 120
**X:i>10m

It is interesting to inspect the mean formal rms errors of the orbital parameters in Table
8.11. Obviously ambiguity resolution considerably strengthens the orbital parameters.

Table 8.11: Formal rms errors of the orbital elements

a e [+ Q@ w wu| po P2

m {107} 10737 [108 m.s"2
COD 0.67] o {1 3 2175 28{0.212 0.198
COD A|0.26] 0 [0 1 1263 11{0.100 0.072
COD B (0.65] 0 [1 3 2115 27[0.207 0.193
COD Clo0.25] 0 [0 1 1177 10{0.095 0.068
COoD D |[0.52] o [1 2 1211 22|0.162 0.156
COD E|0.23] 0 [0 1 963 10{0.089 0.064
COD F (0.49] 0 |1 2 1123 21|0.153 0.148
COD G|o0.22{ 0 [0 1 869 039{0.082 0.059

We now selected strategies COD G (ambiguity fixed, 12 troposphere parameters per day
and station, minimal elevation 15°) and COD F (same options but ambiguities free) as our
“best” strategies and we computed 12 3-days arcs. From each 3-days solution we extracted
the middle day and used the tabular positions of these 12 orbit files as pseudoobservations
in an orbit improvement step where one 12-days arc was determined (it is exactly the
same approach which we used in routine IGS processing ~ see Chapter 2). The results are
given in Table 8.12. Strategy “Std.” in this Table is the standard solution produced by
the Center for Orbit Determination in Europe using the data of the global network.

Table 8.12: Mean residuals after 12 démys fit (in cm, non-eclipsing satellites only)

PRN
1 3 7 9 1314 16 18 19 21 23 25 26 27 28 29 31|{mean
Std. 1515 13 16 12 13 14 24 15 16 67 15 11 14 13 20 12§ 18

COD F |18 28 17 29 16 18 16 28 34 23 638 22 16 28 23 21 29| 26
COD G|{15 20 16 20 15 15 15 24 23 15 68 15 12 17 15 20 19{ 20
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8. Test Campaigns in 1994

Table 8.13: Formal rms errors of the orbital elements computed from 12-days fit

a e |t Q w uo| po P2

m [10-7[ 103" |10-10 p.5~2
CODF |oo01} 0 (00 70 1{0.326 0.191
COD GI0.00l 0 |0 0 51 0]0.258 0.058

The results are encouraging. Using only regional (European) data and fixing the ambi-
guities the resulting orbits are almost of the same quality as the orbits computed using
the data from a global network. Figure 8.13 shows the residuals of the best fitting 12 days
arc for strategy COD G and satellite 26 for the radial (R), the along-track (S) and the
out of plane (W) components.
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Figure 8.13: Orbit consistency

Short-period Variations of the Coordinates

It is known that ambiguity fixing is of great importance for short sessions (< 1*). In this
section we want to study short-period variations of the coordinates. The first problem
addressed concerns the session length necessary to obtain a coordinate accuracy of about
1 cm. To answer this question we selected day 003 of 1994 and we used strategy COD F
to process the entire network. We changed the session lengths from 1 hour up to 24
hours in 1 hour steps. Thus we obtained 24 coordinate sets. Each set of coordinates was
transformed into the reference set (mean coordinates from 14 1-day solutions) using a
7-parameter Helmert transformation. The rms of this transformation as a function of the
session length is given in Figure 8.14. Apart from strategy COD G (ambiguity fixed) the
results obtained using strategy COD F (ambiguity free) are given too.
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RMS OF THE HELMERT TRANSFORMATION

0.06

0.05

0.04 |

0.03 |

0.02 +

0.01 |

0.00 +

¢
!

-

—o— Amb. fixed
--9--- Amb. free

" L

12 14

16 18 20 22 24
Session Length (hours)

Figure 8.14: Rms of the 7-parameter Helmert transformation with the mean coordinate

set

Taking into account the results presented in Figure 8.14 we decided to use 2-hours
sessions and strategy COD G (ambiguity fixed) to study short-period variations of the
coordinates. We processed the entire network and we computed 14 - 12 = 168 sets of
coordinates (14 days, 12 solutions per day: oh - gl oh _4h etc.). The results for stations
Brussels and Matera are shown in Figures 8.15, 8.16 and 8.17:
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Figure 8.15: Development of the station coordinates stemming from 2 hours sessions
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Figure 8.16: Development of the station coordinates stemming from 2 hours sessions
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Figure 8.17: Development of the station coordinates stemming from 2 hours sessions

Other stations show very similar variations of the coordinates. In general we may say,
that no short-period variations in the position could be detected. Three stations (Kootwijk,
Matera and Onsala) show variations of the station height with a period close to 12 hours.
In Figure 8.15 we see two outlier days when we inspect the behaviour of the east-west
coordinate of the station Brussels. These two outliers are days 006 and 009 where the
code data were corrupted and no ambiguities could be resolved for this baseline. This
demonstrates that without ambiguity resolution it is almost impossible to study short-
period variations of the coordinates. .
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8.2 Ambiguity Resolution under AS after 31 January 1994

In this section we want to study the effect of AS on data processing, in particular on
ambiguity resolution after the (hopefully not) permanent turning on of AS. We will proceed
as follows:

e in a first step we summarize the key differences of operation of various receiver types
in the network without/with AS.

e in a second step we will make an attempt to analyse the data in exactly the same
way as in the previous chapter. We will focus on wide-lane ambiguity resolution to
check whether or not wide-lane ambiguity resolution is actually possible.

e we will summarize the receiver requirements for the future of the IGS network.

e we will demonstrate that, using the QIF technique outlined in Section 6.4 ambiguity
resolution on baselines up to 2000 km is still possible even if no P-code is available.

Data Selection and Ambiguity-Free Solutions

To test the influence of AS on our processing strategies we selected GPS weeks 749 and 750
(15th May - 28th May, 1994). We used the data from the same stations as in the January’94
campaign (see Table 8.1) and we formed exactly the same set of baselines (see Table 8.2).
The first important question was whether the ambiguity-free solutions computed from
AS data are of the same quality as the results obtained from January’94 campaign. To
answer this question we computed 14 one-day solutions using the strategies IGS, COD,
COD B, COD D and COD F (see Table 8.5). The results are given in Tables 8.14 and 8.15.
These tables correspond to Tables 8.6 and 8.7. They show the repeatabilities of the station
coordinates and the mean deviations of the residuals after a Helmert transformation into an
arbitrary reference system. Comparing the results from the January’94 campaign (Tables
8.6, 8.7) and from the May’94 campaign (8.14, 8.15) we conclude that AS had little or no
influence on the quality of the phase measurements.

Wide-lane Ambiguity Resolution using Melbourne-Wiibbena Approach

In the second step we tried to resolve the wide-lane ambiguities in the same way as we
did it in the January’d4 campaign — using the Melbourne-Wiibbena linear combination
of phase and code measurements. In previous analyses we demostrated that this strategy
is (almost) baseline length independent. The most important criterion seems to be the
quality of code measurements. Combining different receiver types might be critical too.
The fractional parts of the wide-lane ambiguities are given in Figures 8.18 - 8.20.
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Figure 8.18: Distribution of the fractional parts of wide-lane ambiguities after the initial

adjustment (receiver types: Rogue — Rogue and Turbo Rogue — Rogue)
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Figure 8.19: Distribution of the fractional parts of wide-lane ambiguities after the initial
adjustment (receiver types: Trimble — Trimble and Rogue — Trimble)

116



8.2 Ambiguity Resolution under AS after 31 January 1994
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Figure 8.20: Distribution of the fractional parts of wide-lane ambiguities after the initial
adjustment and in the moment of fixing (receiver types: Turbo Rogue — Turbo

Rogue)

From the results of the wide-lane ambiguity resolution we conclude that the quality of
code measurements decreased dramatically after AS was turned on. The code measure-
ments from the Rogue SNR-8, Rogue SNR-8C and Rogue SNR-800 receivers (denoted as
“Rogue” above) actually could not be used to resolve the wide-lane ambiguities.
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Figure 8.21: Distribution of the fractional parts of narrow-lane ambiguities after the initial
adjustment and in the moment of fixing (baseline Brussels — Onsala)

Good results were obtained using the data from Rogue SNR-8000 receivers (denoted as
“Turbo Rogue” above) but there were only two receivers of this type available in Europe
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- in May 1994. On this one baseline (Brussels — Onsala) we could resolve the narrow-lane
ambiguities in the same way as in the January’94 campaign. The fractional parts of the
narrow-lane ambiguities are given in Figure 8.21. With the exception of one baseline
(Brussels — Onsala) we had to conclude that it was not possible to use the Melbourne-
Wiibbena approach for ambiguity resolution.

Code Independent Ambiguity Resolution

The poor quality of the code measurements under AS was one reason to develop an
ambiguity resolution strategy not making use of the code measurements at all. The result
of this development is the Quasi Ionosphere-Free (QIF) Ambiguity Resolution Strategy
described in Section 6.4. This strategy uses the L, and L, phase measurements only. The
method is based on a stochastic modeling of the ionospheric delay [Schaer, 1994] and a
sophisticated ambiguity resolution algorithm. Using this strategy we were able to resolve
73.5 % of 15534 L, and L, ambiguities in the entire network (80.8 % on the baselines up
to 1000 km and 65.9 % on the baselines between 1000 and 2000 km). We used the value
dma: = 0.1 (equation (6.69)) and we restricted the search range for #is (equation (6.67))
by the condition |5 — nint(b; — b2)| < 0.5. The Ly residuals 75 (equation {6.67)) and the
L; residuals d3 (equation (6.69)) are given in Figures 8.22 and 8.23.
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Figure 8.22: L; and Lj residuals (see Section 6.4) — baselines up to 1000 km
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Figure 8.23: Ly and L; residuals (see Section 6.4) — baselines between 1000 km and 2000
km ‘

It is a critical issue to estimate the quality of the ambiguity resolution using the QIF
strategy from the distribution of the Ls and/or Lj residuals. The Ls residuals may take on
large values due to ionosphere and the Lj residuals are not allowed to be greater than dyq.
(equation 6.69). Nevertheless Figures 8.22 and 8.23 indicate that this strategy is reliable up
to baseline lengths of about 1000 km. It should be mentioned that no deterministic a priori
ionosphere model was used (Section 6.4). Developing and using a good a priori ionosphere
model should even improve our results. We had a good check of the ambiguity resolution
on the baseline Brussels — Onsala (884 km) because we could compare the results of two
different strategies, namely QIF and Melbourne-Wiibbena. All the ambiguities resolved
by both strategies were identical.

Influence of Ambiguity Fixing on the Coordinates and Orbits

In this step we wanted to check whether the ambiguities resolved using the QIF strategy
improve the repeatability of the coordinates in the same way as in the January’94 campaign
(when we could use P-code measurements and the Melbourne-Wiibbena approach). We
made the same tests as in Section 8.1; i.e. we computed 14 one-day solutions using the
strategies defined in Table 8.5 and we looked at the repeatability of the coordinates and of
the coordinate residuals after a Helmert transformation into the reference system (ITRF).
The results are given in Tables 8.14 and 8.15.

119



8. Test Campaigns in 1994

Table 8.14: Standard deviations of the coordinates (in meters)

| [IGS 1GS A[COD COD A[COD B COD C[COD D COD E|COD F COD G|

120

GRAZ N|0.003 0.002 | 0.003 0.002 0.003  0.002 0.003 0.003 | 0.003 0.002
E|0.007 0.002 [ 0.007 0.002 0.005 0.002 0.007 0.002 | 0.006 0.002
U] 0.008 0.010 | 0.008 0.011 0.008 0.010 0.008 0.008 } 0.008 0.006
KOSG N|0.003 0.00f | 0.003 0.002 0.003  0.002 0.004 0.003 | 0.003 0.002
E|0.005 0.004 | 0.006 0.004 0.005 0.004 0.006  0.004 0.006 0.004
U] 0.014 0.016 | 0.013 0.015 0.009 0.014 0.009 0.009 | 0.007 0.009
MADR N{0.005 0.004 | 0.006 0.005 0.007  0.005 0.005 0.004 | 0.006 0.005
E|0.008 0.006 ; 0.007 0.005 0.009  0.005 0.009 0.005 | 0.009 0.005
U] 0.017 0.018 [ 0.018 0.020 | 0.018 0.021 0.015 0.015 { 0.014 0.017
MATE N} o0.012 0.008 | 0.011 0.008 | 0.011 0.008 0.010 0.008 | 0.008 0.007 -
E{0.013 - 0.004 | 0015 0.006 | 0.012 0.005 0.017 0.006 | 0.012 0.004
U} 0.020 0.020 | 0.021 0.024 0.026  0.022 0.020 0.019 | 0.022 0.020
TROM Nj0.007 0.006 | 0.009 0.006 | 0.010 0.008 0.008  0.005 | 0.008 0.006
E[0.012 0.007 | 0.014 0.009 0.014 0.009 0.012 0.008 { 0.011 0.009
U|0.013 0.015 | 0.013 0.010 | 0.013 0.011 0.014 0.010 | 0.011 0.009
WETT N|0.000 0.000 | 0.000 0.000 | 0.000 0.000 0.000 0.000 | 0.000 0.000
E|0.000 0.000 | 0.000 0.000 0.000  0.000 0.000  0.000 } 0.000 0.000
Ul 0.000 0.000 | 0.000 0.000 0.000  0.0600 0.000 0.000 { 0.000 0.000
ZIMM "N} 0.002 0.001 | 0.002 0.001 0.002 0.001 0.002 0.002 | 0.002 0.001
E|0.008 0.002 | 0.008 0.002 0.008 - 0.002 0.008 0.002 | 0.007 0.002
U10.015 0.008 | 0.014 0.010 0.015 0.011 0.010 0.007 | 0.010 0.007
ONSA N|0.004 0.003 | 0.004 0.003 | 0.005 0.003 0.005 0.003 | 0.005 0.004
E|{ 0.004 0.004 | 0.006 0.004 0.004 0.004 0.007  0.004 | 0.005 0.004
U] 0.013 0.014 | 0.013 0.012 0.011 0.013 0.011 0.008 | 0.009 0.009
METS N|0.005 0.004 | 0.007 0.005 0.007  0.005 0.007  0.005 | 0.008 0.006
E|0.014 0.006 | 0.015 0.006 | 0.015 0.006 0.012 0.006 | 0.010 0.006
U}l0.014 0014 | 0014 0.013 | 0.013 0.013 0.013 0.010 | 0.010 0.010
NYAL N|0.009 0.008 | 0.011 0.008 | 0.011 0.010 0.010 0.007 | 0.009 0.008
E]0.014 0.007 | 0.018 0.011 0.018 0.012 0.016 0.011 0.015 0.011
Uj0.011 0.014 { 0.009 0.012 0.012 0.015 0.015 0.014 0.015 0.015
MASP N 0.009 0.009 { 0.009 0.009 0.008  0.009 0.006  0.007 | 0.007 0.007
E{0.010 0.007 { 0.009 0.010 | 0.010 0.010 0.009 0.010 | 0.009 0.009
U|0.027 0.021 { 0.030 0.024 0.029 0.029 0.026 0.018 | 0.021 0.018
JOZE. N} 0.003 0.003 | 0.003 0.003 0.003  0.003 0.004 0.003 { 0.004 0.003
E|0.007 0.004 | 0.007 0.004 0.007  0.004 0.008 0.005 |} 0.009 0.004
U|0.014 0.012 | 0.014 0.014 0.014 0.013 0.012 0.012 | 0.012 0.013
BRUS NJ|0.002 0.001 | 0.003 0.002 0.003  0.002 0.004 0.002 { 0.004 0.003
E{0.004 0.004 [ 0.005 0.004 0.004 0.004 0.006 0.004 | 0.006 0.004
U| 0.010 0.011 {0011 0.011 0.009 0.012 0.011 0.007 | 0.009 0.008
mean N|0.0049 0.0038 {0.0055 0.0042 | 0.0056 0.0045 | 0.0052 0.0040 | 0.0052 0.0042
E]0.0082 0.0044 [0.0090 0.0052 | 0.0085 0.0052 | 0.0090 0.0052 |0.0081 0.0049
Uj0.0135 0.0133[0.0137 0.0135 | 0.0136 0.0142 | 0.0126 0.0105 | 0.0114 0.0108




8.2 Ambiguity Resolution under AS after 31 January 1994

Table 8.15: Standard deviations of the residuals after the Helmert transformation into the
reference system (in meters)

[ |IGS 1GS AJcOD COD A[COD B COD C[COD D COD E[COD F COD G

GRAZ 0.0043 0.0059 [0.0048 0.0064 | 0.0044 0.0055 | 0.0032 0.0037 } 0.0041 0.0042
0.0052 0.0037 10.0047 0.0030 | 0.0032 0.0024 | 0.0049 0.0023 | 0.0032 0.0024
0.0059 0.0089 |0.0062 0.0089 | 0.0073 0.0076 | 0.0038 0.0056 | 0.0065 0.0054
0.0071 0.0058 |0.0066 0.0061 }0.0058 0.0049 | 0.0048 0.0048 | 0.0054 0.0040
0.0041 0.0018 |0.0046 0.0017 ]} 0.0043 0.0016 | 0.0038 0.0017 | 0.0038 0.0016
0.0061 0.0065 |0.0059 0.0070 }0.0053 0.0063 | 0.0034 0.0046 | 0.0046 0.0042
0.0088 0.0083 (0.0083 0.0097 | 0.0075 0.0099 | 0.0069 0.0075 { 0.0067 0.0083
0.0064 0.0021 |0.0063 0.0026 | 0.0046 0.0024 | 0.0083 0.0025 | 0.0061 0.0025
0.0095 0.0080 |0.0094 0.0080 | 0.0099 0.0079 | 0.0068 0.0061 { 0.0066 0.0063
0.0136 0.0143 (0.0141 0.0157 | 0.0162 0.0149 | 0.0117 0.0124 | 0.0122 0.0124
0.0135 0.0057 [{0.0130 0.0067 | 0.0117 0.0064 | 0.0143 0.0053 { 0.0099 0.0050
0.0061 0.0058 [0.0070 0.0073 | 0.0092 0.0096 | 0.0100 0.0087 j 0.0079 0.0088
0.0030 0.0032 {0.0031 0.0027 | 0.0031 0.0026 | 0.0037 0.0025 | 0.0030- 0.0022
0.0052 0.0024 (0.0052 0.0020 | 0.0049 0.0024 | 0.0045 0.0022 §0.0039 0.0018
0.0058 0.0055 {0.0060 0.0063 | 0.0055 0.0058 | 0.0052 0.0059 | 0.0051 0.0055
0.0064 0.0060 {0.0066 0.0059 | 0.0055 0.0052 | 0.0054 0.0039 |0.0048 0.0043
0.0048 0.0034 [0.0052 0.0032 | 0.0042 0.0029 | 0.0056 0.0033 | 0.0051 0.0031
0.0062 0.0061 {0.0060 0.0063 | 0.0045 0.0055 | 0.0047 0.0041 | 0.0042 0.0043
0.0091 0.0073;0.0087 0.0073 } 0.0104 0.0081 } 0.0071 0.0047 } 0.0065 0.0045
0.0058 0.0023]0.0056 0.0019 | 0.0064 0.0016 ) 0.0053 0.0022 { 0.0060 = 0.0019
0.0085 0.0072}0.0086 0.0074-{ 0.0109 0.0078 | 0.0061 0.0057 { 0.0060 0.0048
0.0059 0.00G1 {0.0059 0.0065 | 0.0057 0.0056 | 0.0043 0.0050 [ 0.0051 0.0047
0.0034 0.0019]0.0040 0.0018 | 0.0040 0.0017 | 0.0041 0.0017 [ 0.0034 0.0017
0.0082 0.0090 }0.0031 0.0096 | 0.0075 0.0089 } 0.0073 0.0073 | 0.0072 0.0068
0.0092 0.0051 {0.0077 0.0044 | 0.0072 0.0028 } 0.0057 0.0041 { 0.0038 0.0027
0.0067 0.0028 |{0.0063 0.0025 | 0.0063 0.0023 | 0.0063 0.0026 | 0.0060 0.0022
0.0106 0.003410.0097 0.0072 { 0.0086 0.0052 | 0.0086 0.0060 | 0.0065 0.0051
0.0053 0.0034 {0.0051 0.0037 | 0.0058 0.0036 | 0.0051 0.0034 | 0.0045 0.0032
0.0060 0.0041 {0.0063 0.0037 | 0.0072 0.0047 | 0.0069 0.0034 [ 0.0067 0.0032
0.0049 0.0052 {0.0050 0.0047 | 0.0054 0.0050 | 0.0046 0.0049 | 0.0048 0.0051
0.0118 0.0101 /0.0113 0.0091 | 0.0102 0.0087 | 0.0104 0.0071 [ 0.0078 0.0052
0.0084 0.0046 |0.0079  0.0050 | 0.0080 0.0056 | 0.0082 0.0048 | 0.0076 0.0049
0.0045 0.0037 [0.0041 0.0052 | 0.0042 0.0058 | 0.0033 0.0034 | 0.0040 0.0039
0.0040 0.0049 |0.0042 0.0068 | 0.0048 0.0060 | 0.0062 0.0071 | 0.0050 0.0069
0.0068 0.0038 {0.0068 0.0050 | 0.0080 0.0053 | 0.0075 0.0052 | 0.0086 0.0049
0.0055 0.0058 |0.0055 0.0079 [ 0.0066 0.0071 | 0.0073 0.0085 | 0.0059 0.0082
0.0055 0.0045 ;0.0045 0.0042 | 0.0055 0.0051 | 0.0059 0.0044 } 0.0058 0.0041
0.0037 0.00150.0037 0.0014 | 0.0041 0.0012 | 0.0043 0.0016 ] 0.0040 0.0013
0.0048 0.0043}0.0046 0.0038 | 0.0061 0.0049 | 0.0055 0.0040 | 0.0056 0.0037

0.0072 0.0065 [0.0070 0.0068 | 0.0071 0.0064 | 0.0062 0.0054 | 0.0057 0.0051
0.0062 0.0031 [0.0061 0.0031 | 0.0059 0.0031 | 0.0065 0.0030 | 0.0057 0.0028
0.0067 0.0065 |0.0066 0.0069 | 0.0070 0.0067 { 0.0059 0.0058 | 0.0058 0.0055

KOSG

MADR

MATE

TROM

WETT

ZIMM

ONSA

METS

NYAL

MASP
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mean
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8. Test Campaigns in 1994

The results in Tables 8.14 and 8.15 are comparable with those obtained using the
Melbourne-Wiibbena approach (Tables 8.6 and 8.7). In the next step we computed 3-
days solutions using strategies COD G (ambiguties fixed) and COD F (ambiguities free)
and solved for orbital parameters too. Again we extracted the middle days and define
them to be the “final” result. Then we fitted one 12-days arc through these 12 one-day
arcs using the program ORBIMP [Beutler et al., 1994a]. The mean residuals after this
12-days fit are given in Table 8.16. In this table there is a fit for the CODE orbits (“Std.”)
stemming from the global solution (data from the entire Core Network) too.

Table 8.16: Mean residuals after 12-days fit (in cm, non-eclipsing satellites only)

PRN
1 2 4 5 7 141516 17 18 20 21 22 23 24 26 28 29 31|mean
Std. 2520 2219 21 16 19 15 24 23 17 18 18 18 22 27 18 24 20| 20.3
COD F {27 28 28 29 27 23 32 20 39 73 29 28 35 30 24 31 23 46 26| 31.5
COD G129 34 22 27 26 18 21 18 29 31 23 21 21 20 22 31 24 28 26| 24.8

From the results given in Tables 8.14, 8.15 and 8.16 we conclude that ambiguity resol-
ution using the QIF strategy is comparable to ambiguity resolution using the Melbourne-
Wiibbena approach for baselines lengths up to about 2000 km. The main advantage of our
strategy consists in the code-independence.

8.3 Code-independent Ambiguity Resolution in Global Net-
works

The results obtained in Section 8.2 were encouraging enough to set up a routine ambiguity
fixing procedure for the global Core Network. This routine processing started on 17th July,
1994 (first day of GPS week 758). Subsequently for each day we resolved the ambiguities
using the QIF strategy on all the baselines shorter than 2000 km (about 20 baselines per
day). We use the CODE orbits computed without ambiguity resolution as a priori orbits
for the ambiguity resolution step. The ambiguities are resolved in the baseline mode (i.e.
we process each baseline separately) and we are able to resolve about 75 % of the am-
biguities. Then we produce 1-day and 3-days solutions exactly as in our standard IGS
processing [Rothacher et al., 1993b] but with ambiguities kept fixed on integer values. The
number of unknown parameters decreases significantly from about 7000 to about 5000 for
a 3-days solution (apart from the ambiguities we solve for coordinates, troposphere para-
meters, orbit parameters and earth orientation parameters). In this section we summarize
some results obtained from processing the first four weeks (GPS weeks 758 — 761). The
estimation of coordinates is corrupted by small errors of the VLBI stations kept fixed on
the a priori coordinates. Therefore we do not look at the coordinates at this section. In
Section 8.1 we have seen that ambiguity fixing had almost no influence on troposphere
parameters estimation. We expect essentially the same result for global analyses. Therefore
we do not look at troposphere parameters either. Consequently we focus on
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8.8 Code-independent Ambiguity Resolution in Global Networks

e orbit parameters (osculating elements, radiation pressure parameters and stochastic
orbit parameters),

e carth orientation parameters.

We will discuss the influence of ambiguity fixing on the formal errors of these parameters.
We will also try to define criteria for the real accuracy of our estimations. It must be
admitted that this is a difficult issue because we do not know “true” values for these
parameters.

Orbit Parameters

In our standard solution we compute 3-days arcs which are defined by the following para-
meters:

6 osculating Keplerian elements a, e, i, Q,w, uy,
2 radiation pressure parameters pq, pa,

stochastic orbit parameters (for eclipsing satellites only). For each eclipsing satellite we
estimate two stochastic orbit parameters per revolution (12 hours). These stochastic

parameters represent velocity changes in radial and out of plane directions [Beutler
et al., 1994a].

A first impression of the influence of ambiguity resolution on the orbit parameters is
given by Tables 8.17 and 8.18 where the formal rms errors are given for both, the float and
ambiguities fixed solutions. No a priori constraints are put on the osculating Keplerian
elements and radiation pressure parameters, rather heavy weights are on the stochastic
parameters. It should be mentioned that these constraints have an impact on the values
in Table 8.18.

Table 8.17: Formal rms errors of the orbital elements from a 3-days solution (days 230-232,
mean values over all satellites)

a € 1 Q W Up Po D2

m {10-10 10-3 " 1012 m.s—2
float, 0.0038] 3.16 |0.095 0.16 2.15 0.377|8.95 7.67
fixed 0.0024] 2.85 |0.068 0.11 1.99 0.241{8.21 5.12
improv.| 37 % |10 % |28 % 31 % 7% 36 %{8% 33%
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8. Test Campaigns in 1994

Table 8.18: Formal rms errors of the stochastic orbit parameters from a 3-days solution
(days 230-232, mean values over all eclipsing satellites)

radial along track
107% m -s71
float  |0.1150 0.0592
fixed [0.1194 0.0435
improv. 271 %

Based on Table 8.17 we would expect an improvement of about 30 % in orbit accuracy by
fixing the ambiguities. Let us therefore check the orbit consistency using the overlapping
orbits. The principle is shown in Figure 8.24.

' f : : Ist 3-days arc

} 1 2nd 3-days arc

— 24 hours interval

Figure 8.24: Overlapping 24 hours interval used for orbit consistency tests

We used the 24 hours intervals as defined by Figure 8.24 to compute 7-parameter
Helmert transformation between the orbit sets of subsequent days. Such Helmert trans-
formations were performed for 31 days (197-198, 198-199, ... 227-228). Because we expected
a worse orbit quality for the eclipsing satellites, we used the subset of non-eclipsing satel-
lites only to establish the parameters of the Helmert tranformation. The residuals after
the transformation were computed for both, the eclipsing and the non-eclipsing satellites.
The rms errors of the transformations are given in Table 8.19.
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8.8 Code-independent Ambiguity Resolution in Global Networks

Table 8.19: Rms errors of a Helmert transformations between the orbit sets of subsequent

days

Ambiguities Free

Ambiguities Fixed

Days R S W Total

R S W  Total

197-198] 0.049 0.299 0.142 0.193
198-199{ 0.076 0.347 0.194 0.234
199-200| 0.085 0.418 0.284 0.296
200-201{ 0.097 0.465 0.334 0.335
201-202{ 0.094 0.465 0.295 0.322
202-203( 0.077 0.383 0.244 0.266
203-204} 0.074 0.364 0.236 0.254
204-205| 0.091 0.420 0.270 0.293
205-206| 0.091 0.411 0.267 0.288
206-207| 0.076 0.360 0.259 0.260
207-208{ 0.103 0.599 0.285 0.388
208-209{ 0.104 0.468 0.302 0.327
209-210{ 0.068 0.298 0.196 0.209
210-211{ 0.084 0.398 0.271 0.282
211-212| 0.094 0.493 0.311 0.341
212-213(0.084 0.379 0.273 0.274
213-214/ 0.086 0.387 0.252 0.271
214-215| 0.068 0.346 0.239 0.246
215-216| 0.075 0.380 0.263 0.270
216-217( 0.076 0.353 0.261 0.257
217-218} 0.069 0.333 0.240 0.240
218-219] 0.070 0.369 0.249 0.260
219-220| 0.073 0.315 0.234 0.231
220-2211 0.069 0.295 0.205 0.211
221-222| 0.087 0.436 0.292 0.307
222-223| 0.089 0.432 0.303 0.309
223-224| 0.066 0.298 0.205 0.212
224-225/ 0.084 0.379 0.267 0.272
225-226 0.085 0.428 0.291 0.303
226-2271 0.078 0.383 0.263 0.272
227-228| 0.081 0.383 0.284 0.279

0.085 0.393 0.300 0.290
0.074 0.354 0.274 0.262
0.089 0.361 0.271 0.265
0.088 0.396 0.318 0.298
0.094 0.409 0315 0.303
0.078 0.346 0.275 0.259
0.065 0.297 0.231 0.221
0.082 0.359 0.267 0.262
0.089 0.375 0.278 0.274
0.075 0.329 0.245 0.241
0.104 0.447 0.341 0.330
0.086 0.366 0.292 0.275
0.059 0.270 0.202 0.198
0.086 0.373 0.293 0.278
0.086 0.401 0.301 0.294
0.084 0.379 0.290 0.280
0.075 0.324 0.242 0.238
0.076 0.319 0.240 0.234
0.078 0.343 0.261 0.253
0.077 0.356 0.276 0.264
0.076 0.329 0.247 0.242
0.069 0.332 0.245 0.241
0.074 0.326 0.252 0.242
0.067 0.303 0.231 0.224
0.092 0.419 0.305 0.304
0.099 0.437 0.319 0.318
0.067 0.307 0.220 0.222
0.076 0.366 0.278 0.269
0.072 0.400 0.325 0.300
0.063 0.328 0.274 0.250
0.070 0.349 0.283 0.262

mean [0.0807 0.3898 0.2584 0.2743

0.0792 0.3578 0.2739 0.2643

No significant difference between ambiguities free and fixed solutions can be seen in
Table 8.19. The residuals after the Helmert transformation for individual non-eclipsing

satellites are given in Figure 8.25.
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8. Test Campaigns in 1994

MEAN RESIDUALS AFTER A HELMERT TRANSFORMATION MEAN RESIDUALS AFTER A HELMERT TRANSFORMATION
Non-eclipsing Safellites, Amb. Free Non-edlipsing Sateltites, Amb, Fixed

0.6 0.6
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Figure 8.25: Residuals after the Helmert transformations between two sets of orbits (non-
eclipsing satellites)

On the other hand there is a significant difference between ambiguities free and fixed
solutions in the residuals of the eclipsing satellites which are given in Figure 8.26. In this
case the mean residual (mean over all satellites and all days) is 0.293 m in the case of
the ambiguities free solution and 0.2143 in the case of the ambiguities fixed solution. This
indicates an improvement of about 30 %.

MEAN RESIDUALS AFTER A HELMERT TRANSFORMATION MEAN RESIDUALS AFTER A HELMERT TRANSFORMATION
Eclipsing Satcllites, Amb, Free Edlipsing Satcllites, Amb, Fixed
0.8 03
07 ¢ 07
0.6 0.6
0.5 05
E 07 E 04
03 | 0.3
02 02}
0.1 01t
o 2(;0 205 21‘0 ZIIS Z‘ZAO 2.’|S o 260 ZOIS 21|0 21.5 50 255
Day of Year 1994 Day of Year 1994

Figure 8.26: Residuals after the Helmert transformations between two sets of orbits (ec-
lipsing satellites)
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8.3 Code-independent Ambiguity Resolution in Global Networks

It is interesting to compare our orbits (stemming from float and fixed solutions) with the
combined orbits computed from the results of all IGS Processing Centers. This comparison
is given in Table 8.20.

Table 8.20: Results of a Helmert transformation between the CODE orbits (ambiguities
fixed and free) and the official IGS orbits

Ambiguities Free Ambiguities Fixed
Day| DX DY DZ RX RY RZ Scale RMS| DX DY DZ RX RY RZ Scale RMS
m mas ppb m m mas ppb m

198 | 0.005 0.039 -0.005 -0.17 -0.13 0.31 -0.2 0.12(-0.001 0.014 0.003 -0.35 0.05 0.34 -0.1 0.12
199 (0.016 0.021 -0.021 0.01 0.21 055 0.1 0.12}0.008 0.024 -0.021 -0.30 0.16 0.64 0.0 0.13
200 | 0.004 0.015 -0.015 -0.07 -0.03 0.43 0.2 0.11][-0.001 0.012 -0.003 -0.27 -0.01 0.49 -0.2 0.11
201 | 0.006 0.028 -0.015 -0.81 -0.23 0.26 -0.3 (.14 0.000 0.035 -0.015 -0.61 -0.15 0.49 -0.2 0.13
202 {0.000 0.023 -0.015 0.04 -0.15 049 -0.1 0.14{-0.010 0.026 -0.016 0.03 -0.29 0.61 -0.2 0.14
203 [ 0.005 0.024 -0.008 0.12 -0.31 0.26 0.1 0.13}-0.005 0.026 0.002 0.15 -0.40 0.28 0.0 Q.15
204 | 0.022 0.035 -0.019 0.18 0.16 0.49 0.1 0.130.013 0.034 -0.010 0.02 -0.09 041 0.2 0.14
205 }0.016 0.011 -0.016 -0.08 -0.38 0.35 -0.2 0.13}0.012 0.013 -0.016 0.02 -0.44 0.87 -0.1 0.13
206 {0.007 0.021 -0.018 -0.18 0.05 0.16 -0.1 0.13}0.006 0.022 -0.021 -0.24 0.00 0.28 0.0 0.12
207 {0.024 0.024 -0.022 -0.04 0.11 0.04 0.0 0.11}0.014 0.026 -0.020 -0.12 -0.05 0.05 0.0 0.12
208 |0.002 0.036 -0.001 -0.23 0.28 0.29 -0.1 0.14[0.002 0.018 -0.004 -0.32 0.27 0.43 -0.2 0.13
209 |0.008 0.024 -0.030 0.00 0.19 0.16 0.0 0.12]0.008 0.019 -0.026 -0.11 0.07 0.21 0.0 0.13
210 (0.017 0.019 -0.009 0.05 -0.07 0.18 -0.1 0.09{0.012 0.027 -0.017 -0.03 -0.19 0.18 0.2 0.11
211 | 0.009 0.013 -0.009 -0.40 -0.37 0.15 -0.1 0.11}0.006 0.016 -0.010 -0.38 -0.39 0.26 0.0 0.11
212 |0.007 0.029 -0.015 -0.36 -0.22 0.30 0.0 0.110.008 0.023 -0.014 -0.17 -0.25 0.45 -0.2 0.11
213 {0.009 0.022 -0.019 -0.06 0.04 -0.18 0.1 0.13(0.008 0.024 -0.027 -0.14 -0.06 0.14 -0.1 0.13
214 | 0.006 0.026 -0.028 0.14 -0.12 0.28 0.1 0.10|0.000 0.034 -0.021 0.08 -0.40 0.54 -0.1 0.11
215 {0.007 0.025 -0.013 -0.04 -0.09 0.42 0.0 0.10[0.006 0.033 -0.011 -0.08 -0.35 0.60 -0.1 0.10
216 {0.000 0.032 -0.017 -0.40 -0.15 0.62 0.0 0.11 |{0.000 0.035 -0.016 -0.33 -0.05 0.55 -0.1 0.11
217 | 0.005 0.022 -0.020 0.12 -0.14 0.72 0.0 0.12/0.000 0.031 -0.018 0.02 -0.04 0.66 0.1 0.12
218 |0.006 0.024 -0.022 0.09 0.20 0.64 -0.1 0.12(-0.001 0.027 -0.013 0.20 0.24 0.70 0.0 0.1l
219 |0.006 0.015 -0.020 0.17 -0.07 -0.08 0.0 0.11|0.003 0.027 -0.017 0.22 -0.12 0.06 0.1 0.11
220 |0.005 0.013 -0.013 0.33 -0.08 0.29 0.1 0.09|0.016 0.020 -0.005 0.18 -0.20 0.25 0.1 0.09
221 (-0.004 0.022 -0.008 0.09 -0.22 0.20 0.0 0.11 |-0.003 0.024 -0.008 0.05 -G.13 0.29 0.1 0.11
222 |(0.012 0.017 -0.009 0.10 -0.10 0.37 0.2 0.12}0.008 0.026 -0.007 0.08 -0.17 0.63 0.1 0.12
223 | 0.006 0.021 -0.010 0.01 -0.07 -0.05 0.0 0.11|0.003 0.031 -0.013 -0.07 0.00 0.28 0.2 0.11
224 | 0.010 0.020 -0.008 -0.16 -0.02 0.15 0.1 0.10}0.011 0.026 -0.012 -0.29 0.00 0.30 0.1 0.10
225 | 0.008 0.016 -0.004 -0.19 0.11 0.33 0.2 0.11{-0.001 0.015 -0.010 -0.17 -0.05 0.66 0.1 0.12
mean| 0.003 0.023 -0.015 -0.06 -0.06 0.29 0.0 0.12}0.004 0.025 -0.013 -0.10 -0.11 0.42 0.0 0.12

Despite of the consistency improvement indicated by Figure 8.26 we cannot conclude
from Table 8.20 that the ambiguities fixed solutions are superior to the ambiguities free
solutions. Considering that there is a significant difference between eclipsing and non-
eclipsing satellites (the eclipsing satellite orbits are modeled by more parameters) and
that the eclipsing satellites show better results in ambiguities fixed solution (even better
than the non-eclipsing satellites), we might have to conclude, that our standard orbit
model is not sufficient for 3-days orbit arcs. To check this assumption we computed 11
one-day arcs (days 230 — 240) and compared these 1-day orbits with our standard IGS
orbits through 7-parameter Helmert transformations. The results are given in Table 8.21.
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- Table 8.21: Results of Helmert transformation between 1-day orbits (fixed and float) and
standard IGS orbits

Ambiguities Free Ambiguities Fixed
Day| DX DY DZ RX RY RZ Scale RMS| DX DY DZ RX RY RZ Scale RMS
m mas ppb m m mas ppb m

230 |-0.018 0.027 -0.018 0.13 -0.31 -0.56 0.1 0.16 |-0.017 0.012 -0.005 -0.09 -0.12 -0.01 0.1 0.12
231 {-0.024 0.002 -0.002 0.21 -0.14 0.00 0.2 0.17|-0.009 -0.008 0.004 -0.01 -0.06 0.10 0.3 0.11
232 10.005 0.017 -0.025 0.49 -0.11 -0.26 -0.3 0.20{0.006 0.002 -0.016 0.49 0.04 0.10 -0.1 0.14
233 {-0.009 0.025 -0.010 0.09 -0.36 -0.17 0.1 0.15}0.006 0.001 -0.009 0.22 -0.22 0.03 0.0 0.12
234 |-0.014 0.006 -0.022 -0.03 -0.43 0.04 0.2 0.17{-0.030 0.021 -0.012 -0.28 -0.45 -0.08 0.3 0.15
235 {-0.019 -0.003 -0.005 -0.35 0.11 -0.26 0.1 0.16-0.010 -0.003 -0.005 -0.01 0.21 0.11 0.1 0.12
236 }-0.020 0.010 0.026 -0.07 -0.71 -0.96 0.4 0.19{0.002 0.018 0.013 -0.05 -0.36 -0.38 0.2 0.11
237 {-0.057 0.019 -0.004 -0.12 -0.26 -0.93 0.3 0.21 {-0.017 0.001 0.003 0.00 -0.25 -0.24 0.0 0.15
238 -0.019 0.004 -0.019 -0.11 -0.04 0.04 0.1 0.18}-0.009 0.000 -0.017 0.08 0.10 0.12 0.0 0.12
239 {-0.007 0.004 0.016 0.23 -0.08 0.31 0.3 0.19]-0.013 -0.005 0.009 0.26 0.08 0.10 0.1 0.11
240 [-0.017 0.015 0.002 -0.01 0.01 -0.02 0.0 0.16{-0.009 0.011 -0.010 0.19 0.08 -0.03 -0.1 0.10
mean|-0.018 0.012 -0.006 0.05 -0.21 -0.25 0.1 0.18[-0.009 0.004 -0.004 0.07 -0.09 -0.02 0.1 0.12

In this case the consistency is about 33 % better after ambiguity fixing as we would expect
it from Figure 8.26. The result corresponds to an improvement of the formal rms of orbital
parameters given in Table 8.17 and 8.18.

Earth Orientation Parameters

In our standard 3-days solutions we model the z- and y-pole coordinates by polynomials
of degree one for each day and we ask for continuity of the pole coordinates at the day
boundaries. This is equivalent to assuming that each coordinate of the pole is a polygon
and to solve for the eop values at oh UT on days 1,2,3, and 4. The final orbits are
always extracted from the middle day of each 3-days solution. Exactly two values of each
pole coordinate (2q,yo at ol and Tog, Yag at ‘2411) correspond to this part of the orbit
system. Due to format standards the resulting 1-week pole file which we send to IGS Data
centers contains only one value of each coordinate per day. These values are computed as
Ty = (To + 224)/2 and y12 = (Yo + y24)/2 respectively.

Table 8.22: Formal rms errors of the earth orientation parameters (mean values from days

197 - 230)
X-pole Y-pole UT1-UTC drift
108 10~ s/day
float 4.4 4.3 5.7
fixed 4.1 4.1 4.9
improv.| T% 5% 14 %

It is not possible to estimate UT1-UTC directly due to close correlation with the right
ascensions of the ascending nodes of the satellite orbital planes. Thus one has to solve
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8.8 Code-independent Ambiguity Resolution in Global Networks

for a drift in UT1-UTC only (which is equivalent to solving for the length of day). We
model this drift with a polynomial of degree one over three days. In the resulting 1-week
pole file we fix the value of UT1-UTC for 0b of the GPS weck on the a priori value. The
other values of UT1-UTC are computed from the estimated drifts. The formal rms of the
earth orientation parameters are given in Table 8.22. In Figures 8.27, 8.28 and 8.29 the

estimated Earth orientation parameters are shown.
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Figure 8.29: CODE Earth orientation parameters compared to the IERS Rapid Service
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In Figures 8.27 and 8.28 the thin lines connect the values zp, 224 (Or yo,¥y24) and the
thick lines the mean values ;5 (or y;2). It is rather difficult to judge the quality of the
estimations from the mean values 2,.,%,, because no “true” pole is available. It seems,
however, that the differences x24 — 2, y24 — Yo are somewhat more realistic in the case of
the ambiguities fixed solutions. As opposed to the coordinates and the orbit parameters
ambiguity resolution does not considerably improve the quality of the daily means for z-
and y-pole coordinates. This is in agreement with the improvement expected from Table
8.22.
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9. Summary and Outlook

The accuracy of GPS analyses in regional and global networks improved dramatically
during the last three years. The establishment of the International GPS Service for Geo-
dynamics (IGS) is one of the primary reasons for this development. It is possible now to
use the high accuracy orbits computed by the processing centers of the IGS and, since
November 1993 the combined IGS orbits. The achievements of the IGS were supported
by the development of the processing strategies and software packages and vice versa the
resulting IGS products (the high quality orbits in particular) allow to use new processing
methods. Here we summarize one result in the field of the resolution of the initial phase
ambiguities achieved during the years 1992 — 1994 and the benefit associated with this
development for the estimated parameters.

All the results discussed in Chapters 7 and 8 were computed at the Center for Orbit
Determination in Europe (CODE]), one of the processing centers of the IGS, located at
the Astronomical Institute of the University of Berne. The software package used for the
analyses was the Bernese GPS Software. This software was subject to a significant and
continuous development since 1992. In particular one should mention the automatization
of the processing and the improvement of the orbit models. In the framework of this PhD
thesis new ambiguity resolution strategies, to be summarized below, were developed and
tested. :

In 1992, soon after the start of the IGS test campaign (June 21st, 1992), we made
some tests concerning the benefit of the ambiguity resolution. The results of the Epoch’92
campaign and the EUREF-CH campaign were described in Chapter 7. The results of these
two campaigns allowed to draw the following conclusion:

o If precise code-measurements are available on both frequencies, the Melbourne-
Wiibbena linear combination may by used for the wide-lane ambiguity resolution.
This approach is very reliable and we did not find any limitation concerning the
baseline lengths (we processed baselines up to 2000 km).

e Without P-code measurements the wide-lane ambiguity resolution seemed to be crit-
ical or even impossible because of ionospheric refraction. Using regional ionosphere
models, however, allowed us to resolve the wide-lane ambiguities using the Ly linear
combination up to baseline lengths of about 200 km.

e The success of baseline-wise narrow-lane ambiguity resolution depends on the orbit
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9. Summary and Outlook

quality. For baselines longer than about 100 km it is mandatory to use the precise
orbits produced by the IGS. The accuracy of the broadcast orbits is not sufficient.

e The optimization of the double-difference ambiguity selection and the iterative ambi-

guity resolution algorithm proved to be of great importance if longer sessions (several
hours) and/or longer baselines should be processed.

e Resolution of the initial phase ambiguities improves the accuracy of the estimated

coordinates up to a factor of four if short sessions are used (1 or 2 hours only).

In 1993 we processed a regional network again. During the January’93 campaign we
focused on the relation between the accuracy of the orbits and the reliability of ambiguity
resolution. We wanted to see whether ambiguity resolution improves the accuracy of results
(coordinates in particular). We concluded that

e the orbit accuracy is critical for ambiguity resolution. With the orbit accuracy avail-

able in January 1993 we were able to resolve the ambiguities up to baseline lengths
of about 2000 km. The ambiguity resolution considerably improved the accuracy of
the results for shorter sessions (up to about 8 hours). For 24 hours sessions we saw
almost no difference between ambiguities-free and ambiguities-fixed estimations of
the coordinates if no further orbit improvement was made.

Estimating the orbit parameters and introducing new orbit modeling features we
observed an improvement of the coordinate repeatabilities of up to 50 % after the
fixing of the ambiguities. However, the resulting coordinates were corrupted by small
rotations of the entire network (we kept one station fixed only).

In 1994 the situation changed considerably. The IGS went through a remarkable devel-
opment in 1993 and the accuracy of orbits improved dramatically. We were able to take
advantage of this high accuracy and we tried to inspect the influence of the ambiguity
fixing on various parameter types. The January’94 campaign showed that:
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e The wide-lane ambiguity resolution using Melbourne-Wiibbena linear combination

is very reliable and does not depend on the baseline length. The combination of
different types of receivers proved to be critical. This problem should be studied in
detail in future.

Narrow-lane ambiguity resolution was possible without major problems up to
baseline lengths of about 2000 km. The available IGS orbits had an accuracy which
allowed to resolve the narrow-lane ambiguities in baseline mode without further orbit
improvements.

An inspection of the results of the 3-days solutions revealed that the formal errors of
the east-west coordinates decreased by about 50 % if the ambiguities could be fixed.
The ambiguity resolution had no influence on the accuracy of the height component




and on the north-south coordinates (the float estimation of the north-south coordin-
ates was already as accurate as the fixed estimation of the east-west coordinates).
The differences in the coordinate repeatabilities between the float and fixed estima-
tions correspond to the relations between formal errors. To achieve these results we
did not need to make any further orbit improvement. We used either the combined
IGS orbits or the orbits computed at CODE. We detected no difference between the
quality of the two orbit types.

e Ambiguity resolution had almost no influence on the estimations of the troposphere
zenith delays. These troposphere parameters are obviously strongly correlated with
the height components of the station positions.

e Ambiguity fixing allowed to compute regional orbits of almost the same quality as the
standard IGS orbits. In this case the ambiguity fixing brought an accuracy improve-
ment of about 30 %. It should be mentioned that no earth orientation parameters
were determined in this procedure.

e Ambiguity fixing allowed to study short period variations of the station coordinates.
2-hours sessions were sufficient to detect effects of about 1 cm.

Anti-Spoofing (AS) was turned on (more or less) permanently at the beginning of the
GPS week 734. AS severely affected the quality of the code measurements of some re-
ceiver types. Unfortunately the Rogue receivers widely used in IGS network show a poor
code quality under AS. We were no longer able to use the Melbourne-Wiibbena linear
combination for wide-lane ambiguity resolution for this receiver type. This was the mo-
tivation to develop a code-independent ambiguity resolution strategy. We called it the
QIF (Quasi lonosphere-Free) strategy and we tested it using observations from May 1994
(May’94 campaign) where the same set of stations and baselines was processed as in the
January’94 campaign. The following conclusions could be drawn:

e Using no code measurements but using the Quasi Ionosphere-Free Strategy it is
possible to achieve the same quality of results as with precise code measurements
and Melbourne-Wiibbena method up to baseline lengths of about 1000 km. Up to
baseline lengths of about 2000 km it is possible to achieve almost the same results
depending, however, on the ionospheric conditions.

The results obtained in the regional (European) network encouraged the attempt to re-
solve the ambiguities in the global IGS Core Network (up to baseline lengths of about 2000
km). For this purpose we set up a routine ambiguity fixing procedure for the IGS network.
The first results stem from GPS weeks 758 — 761. Focusing on the orbital parameters and
the earth orientation parameters we may conclude:

e Ambiguity resolution in the global network is possible and does improve the accuracy
of the orbit solutions. The accuracy improvements actually achieved (about 30 %
is expected from an inspection of the formal errors) are as expected for one-day
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‘arcs, whereas no significant improvement could be seen for 3-days arcs. This is an
indication that our orbit model is not sufficient for arc lengths > 1 day.

e No clear improvement of the earth orientation parameters could be observed when
fixing the ambiguities. This again is in agreement with the theoretical expectations.
The situation might change if the percentage of successfully resolved ambiguities (at
present about 30 % are actually resolved in the entire IGS network) should grow
significantly.

The ambiguity resolution procedure is now in a pre-operational phase: the ambiguities are
resolved baseline by baseline up to a length of about 2000 km using the QIF strategy and
the orbits which at present are our “final orbits”. New, and hopefully improved, orbits
(1-day and 3-days arc lengths) are produced afterwards. The quality of these new products
will be studied in the next few months. Should these tests be satisfactory the ambiguities-
fixed solution would become the official solution of the CODE processing center of the
IGS.

Let us finally underline that the procedure would be much simpler if high accuracy code
information would again become available. We are convinced that ambiguity resolution in
the entire (global) IGS network could be performed with success rate of about 60 % if all
remaining Rogue receivers would be replaced by Turbo Rogues or by any other receiver
type providing good code data (rms < 1 m) under AS, too.
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A. Review of the Keplerian motion

Neglecting all the perturbing forces listed in Table 4.1 the equation of motion (4.1) for an
artificial satellite reads as

Y

t+=5-r=0, (A.1)

o

-

where p = G - M is the product of the gravity constant and the mass of the earth.
This differential equation may be solved analytically, the result is the so-called Keplerian
motion. The orbit is a conic section where only the elliptic motion is of interest for our
purposes. The elliptic motion may e.g. be described by the six Keplerian orbital parameters
listed in Table A.1.

Table A.1: The Keplerian Elements

Parameter Notation
Q Right ascension of the ascending node

i Inclination of the orbital plane
with respect to the equatorial plane
Argument of perigee

a Semimajor axis of orbital ellipse
Numerical eccentricity of ellipse

To Perigee passing time

The interpretation of these parameters follows from Figure A.1. The instantaneous position
of the satellite within its orbit is described by angular quantitics known as anomalies. The
mean anomaly M (t) is a mathematical abstraction while the eccentric anomaly E(t) and -
the true anomaly v(t) have a geometrical meaning (Figure A.1).
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Figure A.1: The Keplerian elements and anomalies

M) =n(t-Ty), n= 27 = \/::3 , (A.2)

where U is the revolution period and n is the mean motion. The relation between the
mean anomaly and the eccentric anomaly is given by Kepler’s equation

E(t) = M(t) +e-sin E(t) , (A.3)

and the relation between the eccentric anomaly and the true anomaly by the equation

v(t) f1+e E{t)
tan 5 = 1_.eta.n 5 (A.4)

The length of the geocentric satellite-position vector is given by

a-(1-¢%

m—m=a.(l_e.COSE(t))’ (A.5)

r(t) =

and the components of this vector in the equatorial coordinate system by

cos v(t)
r(t) = R3(—Q) - Ri(—1) - Ra(—w)-r(t)- | sinv(t) | . (A.6)
b PG ’ 0

The velocity components in the equatorial system are obtained by taking the derivative
of the last equation with respect to time:

cos v(t) —o(t) sinv(t)
) =R |#(t)- | sinv(t) | +7()-] o(t) cosu(t) ) (A.7)
0 0
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which yields (using (A.5))
—sinv(t)

it)=R". G—(T"_—ez) cosv(t)+e | . (A.8)
0

On the other hand we may compute the Keplerian elements as a function of the vectors
r(to) = ry and #(ty) = £y. The components of the angular moment &

sin¢ sin §2
h=rxr=h —sint¢ cos§2 (A.9)
cosi

define the angles ¢ and 2. The vector ¢ pointing to the perigee is defined as

g:—(l_zxﬁ-{-u%) , (A.10)

and its length is proportional to the eccentricity e:

. . cos 2
e=1 , cosw=—=-| sinQ | . (A.11)
I q 0

The semimajor axis follows from the absolute value of vector h:

h? :
“=——7. A.12
) (A.12)
Using the transformation matrix R — equation (A.6) - it is possible to compute the true
anomaly:
z
y
R-r=| y |, v=arctan e (A.13)
0 ;

The perigee passing time may be computed using equations (A.2) — (A.4). The above
equations demonstrate that the six Keplerian elements of Table A.1 are unique functions
of the initial conditions (4.2) and vice versa. The six Keplerian elements may be used
as the initial conditions for the equation (4.1). In that case they define (together with
the parameters p;, j = 1,2,...,n) a real (non elliptic) orbit. Because the Kepleﬁan orbit
defined by the same six Keplerian elements is a good a.pproxima't.i(;n of the perturbed orbit
and it is tangential to the real orbit at time ¢t = ¢, (the positions and the velocities of
both orbits are equal at epoch ¢ = t,) these Keplerian elements are also called osculating
elements.
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B. Approximate Solutions of the
Variational Equations

The accuracy requirements for the integration of the variational equations are much less
stringent than for the integration of the equations of motion. We may e.g. use the following
approximations:

o (Q%W_L;)) “ (G M= (a_q?{__)) =

p=p?

)qzq, =0. (B.1)

This leaves us with the equations

5, o= A, (B.2)
2, = Aoz, ta,, (B.3)

where 2

a .
= — B.4
QIJ 0p] ( )
GM r.rf

Ay = ——% (I -3. p ) . (B.5)

A second idea to solve the variational equations approximately is to transform from the
equatorial system (equations (B.2) and (B.3)) into a uniformly rotating system (rotation
axis perpendicular to the orbital plane, angular velocity = mean motion of the satellite,
the z-axis colinear with the satellite position vector). For low eccentricity orbits the trans-
formed variational equations may be simplified considerably. [Colombo, 1989] refers to the
resulting equations as Hill’s equations. The technique was however already established by
Leonard Euler (1707-1783) and subsequently used be George William Hill (1838-1914).
The same technique was also used by [Beutler et al., 1994a]. The transformation matrix
between the two systems may be written as

Ry(M(t))- R, (B.6)

where M(t) is the mean anomaly and matrix R is given by equation (A.G). In
[Colombo, 1989] it was shown that for low eccentricity orbits the variational equations
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for a dynamical parameter p; simply read as (the index j is supressed)

30 O 010
ﬁp:n“- 00 0f-g+2n-f-100 -i_;p-}-@p, (B.7)
00 -1 000

where
n, = Ra(M()-R-z,, i =Rs(M() R-

._p

=

(B.8)

and n is the mean motion of the satellite. The expression (B.7) is a linear differential
equation with constant coefficients for 7,. The variational equation for parameter ¢; is
given by the homogeneous part of the equation (B.7):

P

3 0 O 010
h,=n"-100 0 'Qq+2-n.- -100 -7 . (B.9)
0 0 -1 000

The variational equations (B.7) and (B.9) are linear equations with constant coefficients.
The solution of the homogeneous equation (B.9) may be found formally

(e
1 0 cos M sin M 0 0 Zz
n,=| -3/2M 1 -2sinM 2cosM 0 0 63 = H(t)-¢ (B.10)
0 0 0 0 cosAM sinM c4
5

\ & )
The initial conditions for epoch t, may be written in the general form

ory"

Qq(to) = R3(M(t))- R 94 g, (B.11)
. _ " . ory' d R3(1\f[(t))] ) ary" .
1_)q(t0) = R3(M(to)) - R £ + [ a7 - R oa g, (B.12)

Introducing the general form for the solutions of the homogenous equations (B.9) into the
initial conditions (B.11), (B.12) we get the integration constants ¢;, ¢ =1,2,...,6.

-1
( e\ ( 1 0 cos M sin M 0 0 \
Ca -3/2M 1 -2sinM 2 cosM 0 0
cz | _ 0 0 0 0 cosM sin M
cs | 0 0 —n sinAM n cos A 0 0
Cs -3 0 -2ncosM —-2nsinM 0 0
\ Cs } \ 0 0 0 0 —n sinM n cosM /

(B.13)
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B. Approximate Solutions of the Variational Equations

Using equations (B.8), (B.10), (B.11), (B.12) and (B.13) it is possible to compute the
partial derivative z,,, i =1,...,6 of the orbit r(t) with respect to the parameters ¢;, i =
1,...,6 as a function of the initial conditions (4.13). It is thus possible now to introduce
the initial conditions not only for time ¢, but also for other epochs t;, i = 1,2,... and to
evaluate the variational equations separately for the intervals < ¢;_;,t; >, i =1,2,.... The
result is a piece-wise continuous orbit with discontinuities at the epochs t;, ¢ =1,2,...In
the Bernese GPS software the special case

. 0 .
(gw')z( N ) L i=1,2,... (B.14)
Qﬂ,i Q'I,"

is implemented. We call this approach pseudo-stochastic orbit model. The result is a con-
tinuous, but not differentiable orbit: obviously the velocity 7(¢) will have discontinuities
at the epochs t;, i =1,2,...

The solution of the inhomogeneous equation (B.7) may be obtained by applying the
method of variation of constants. Using the notation from equation (B.10) the solution of
the inhomogeneous equation may be written in the form

0, () = H(t) - c(t) (B.15)
Assuming 4
H(t)- -d_? =0 (B.16)

and introducing the equation (B.15) into the equation (B.7) we obtain the following dif-
ferential equation system for the functions ¢(t):

%%:G‘l(t)-((?‘ ) . (B.17)
a,

Because on the right hand side of the last equation all functions are known, its solution
may be found by numerical quadrature. Instead of integrating in steps with a size of a few
minutes typically, it is possible to integrate these six equations using a Gaussian quadrature
formula (e.g. of order 12) with the revolution period as step size and the perturbing
accelerations have to be computed only 12 times per revolution. The computational burden
(compared to a rigorous numerical integration of the “true” variational equations) is thus
considerably reduced.

142



C. Adjustment Methods

C.1 Least-Squares Adjustment

The adjustment method used in the Bernese GPS software is the standard least-squares
adjustment. The following model is used:

~

L T(X)

X = X,+z

L = L+w =  Az+9¥(Xy) (C.1)

w = A_‘T._(.[i_\l,(!\—'()))’
4

where
¥ is the model function,
L is the vector of measurements,
X, is the vector of a priori values for unknown parameters,
¢ is the vector of reduced measurements (terms “observed — computed”),
L is the vector of adjusted measurements,
X is the vector of adjusted parameters,
w are the corrections of measurements,
z  are the corrections to the a priori values of parameters.

The first design matrix A is defined by

A= (W:i)) . c2)

We assume that the function ¥ and the a priori values for the parameters (X,) are known.
The stochastic model is given by the covariance matrix

Kyu=02Qu=0:P". (C.3)

o? is the a priori variance and Q,, is the cofactor matrix of the observations. The
solution of the system (C.1) follows from the least-squares principle

w? Pw = min. , (C.4)
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which leads to the normal equations

T AT
ATPA z= ATP?, (C.5)
N=Q_, b

where Q,, is the cofactor matrix of the parameters. The standard a posteriori root
mean square error (a posteriori rms) is given by

T Pan T pp _ T
moz\/w P‘&:\/—-—g il &l‘), (C.6)

n—u

where n is the number of measurements and u the number of unknown parameters. The
covariance matrix of the parameters is

K, =m} Q.. - (C.7)

If the measurements L are uncorrelated, the weight matrix P is a diagonal matrix (P =
diag(piypa2y. .-y pa) ). In this case the elements N;. of the normal matrix N and the
elements b; of the right hand side vector b may be computed as (see e.g. [Beutler, 1982))

Ny = Z PjAjiAjky (C8)
i=1

b,‘ = Z ijjiej . (Cg)
Jj=1

Thus only one row (A;,,...,4;,) of the matrix A, one element of the vector ¢ and one
element of the diagonal matrix P must be simultaneously available in the storage. It
should be mentioned, however, that double differenced data are correlated and therefore
they lead to a non-diagonal matrix P.

C.1.1 Parameter Pre-Elimination

Let us (arbitrarily) divide the vector of unknown parameters z into two vectors z, and
Z,. The corresponding normal equations may be written as

Nll le 2, _ -131 )
(N'.n Nz:»).(;r,_,)—(gz)‘ (C.10)

From the last system the second part of vector 2z may be computed:

Ly = N'.72l (by = Naz,) - (C.11)
This leads to a new system of equations for the first part of the vector 2:
(Ni = NNZINay) 2, =b, - NpNg'b, (C12)

Let us now assume that z, consists of all ambiguity parameters. If the ambiguities are not
going to be resolved they may be pre-eliminated. This approach speeds up the parameter
estimation process.
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C.1.2 Ambiguity Fixing
Let us introduce the following notation:

z, the non-ambiguity parameters,
their a priori values,
o the ambiguity parameters,
23 their a priori values, and
0

o their known true (integer) values.

In the case of the float solution we have the observation equations

(A; As)- ( T ) - (L-"¥(2},2))) =w

|

and the system of normal equations

Ny Ny Ty} _ ATPﬁ _ b,

Ni N Lo - A;FP_K - b, ’
which gives the result

(N1 - NieN3y Nog) -z = b — NioN3b,

Introducing the known integer ambiguities we have

Ay, - (L- ‘I’(E?ai'z)) =,

tl

which gives immediately
Nz, = A{Pf., =_1!I1 .

We may write

and therefore
Nyz, = ATP(- ATPA.dx, .

To compute the a posteriori rms we may use the following expression:

(TPE = (" P{~2-dx] AT P(+dx; A} PAsdx, = (" PC—2-dx] b, +dx; Noxdx, .

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)
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C.2 Least-Squares Collocation

Adding a sfgnal s to the model (C.1) we get an observation equation of the following kind
(see e.g. [Gurtner, 1992]):

=Az—-s—w. (C.21)

Using the notation

B=(LnO=|: .. ¢+~ |, Q=(§) (C.22)
0 ... 10 ... 1

we may write the least-squares condition as

Q=vTPv+2 k" (Az — Bv — () = min. , (C.23)
A —
0

where the weight matrix P is

-1 0
P=Q'= ( . ) . (C.24)
0 T
The covariance matrices Q,, and Q,, are assumed to be known. The conditions

%—Q- = 2Py-2BTk=0=0v=QB"k (C.25)

Jv

N T ‘

— = 2 s = .

oz Ak=0 (C.26)

lead to the system

ATk =0 o
A-z - BQB".k . (C.27)
The vector of parameters according to (C.12) may be written as
z=(ATQ;'A)"" ATQ't, Q,.=BQB"=Q,,+Q,. (C.28)
S o S

Q..

C.3 Stochastic Estimation

Estimation based on a Kalman filter estimator is frequently used if a stochastic behaviour
for some parameters (e.g. troposphere parameters) is expected. The formulae may be
found in many textbooks (see e.g. [Beutler, 1983]). The algorithm consists of two steps:
prediction and update which will be briefly described. During the update step we will use
the formulae of the algorithm which are sometimes refered to as sequential adjustment.
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C.3 Stochastic Estimation

C.3.1 Sequential Adjustment

This method was already established by Karl Friedrich Gauss (1777-1855) and used for
the adjustment of geodetical networks by IFriedrich Robert Helmert (1843-1917). Therefore
in geodetical textbooks this algorithm is often refered to as Helmert’s method. [Brock-
mann, 1995] applies the sequential adjustment to the estimation of the coordinates and
other parameters from long-term GPS observations.

Assuming a partition of the observational model into two parts, and denoting by z,
and g, the (same) parameters which are estimated in both parts and by y, and y, the
(different) parameters which appear in the first part or in the second part only (and
therefore might be pre-eliminated), we may write:

Az, + By, -4 = w (C.29)
Aty + Bay, -6 = w,. (C.30)

Let us assume that there are no correlations between the two groups of observations (,
and ¢,. Then the cofactor matrix has a block diagonal structure

Pl oo
Qu= ( (; p;! ) ) (C.31)
where
P{'=Q., and P3;'=Q, . (C.32)

The corresponding normal equations are
ATP;A; AT P;B,; 2 Al Pt .
( BTP,A;, BTP;B, ) ' ( y ) - ( BTpy | Vhere i=12.  (C33)

Pre-climination of the parameters y, yields the solution

L=

-1
ATP.A; - ATP,B,(B] P,B;)"' BT P, A,)

C.34
ATP.(, - AT P,B,(B] P;B;)"' B P.(;) (€34

and the cofactor matrix
-1
Q... = (ATP;A; - ATP:By(B] PiB)'BI PiA;) , where i=12. (C.35)

The resulting vector @ may be estimated using the two solutions z,, 2, and the cofactor
matrices Q, ., Qq,.,- The “observation” equations are given by

&, , — I .
(5 )wm (1) er o

where I is a unit matrix and the weight matrix is given by

e Y '
P:( w0 ) : (C.37)
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This model leads to the normal equations

(o) (% o ) (1) e= ) (% % ) (2) o

which may be written as

(ATP1A; + AT P2 Ay)-AT P\ By(BTP\B,) B P Aj— \ _ _
~ATP,B,(BTP,B,) ' BT P, A, =
(C.39)
(AT P1£, + A] Poly)-A] P, By(B] P,By) "' B] P,{, -
-ATP,B,(BTP,B,) ' Bl P,¢, ‘

The sequential adjustment is equal to the adjustment in one block (see e.g. [Brock-
mann, 1995]) with the result

(ATPlAl +A3~P2A2) A'{PIBl Ag'Png Xz
BTpP A, BTpP,B, 0 Y,
BTP,A, 0 BTP,B, Y,
(C.40)
(AT Pily + A3 Ps(y)
= B?PI.&
B} Py,

C.3.2 Kalman Filtering

The first step of the Kalman filter is the so-called prediction. The state transition equation
describes the dynamics of the parameters:

2(tinr) = T(tipr, ) 2(t:) +e(tiyr i), (C.41)
where
z(t:) is the vector of parameter values at epoch t;,

T (ti41,t;) is the state transition matrix defining the transition from the state at epoch ¢;
to the expected state at epoch ¢4,

2(tiy1) is the vector of parameter values at epoch t;,,, and

e(ti+1,t;) is the vector of random perturbations affecting the state during the interval
between epochs t; and t;,;. For non-stochastic parameters e(t;,1,¢;) is zero.

Under some assumptions concerning the correlations between the measurement process
and the random motion (for details see e.g. [Beutler, 1983]) the cofactor matrix Q_(ti+1)
of the state vector 2(¢;4;) may be calculated by the law of covariance propagation

Q. (tiy1) = P71 = T(tiy1, i) Qo ()T (L1, 1) + Q. (tis1, i) (C.42)
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C.3 Stochastic Estimation

where the cofactor matrix Q,(¢i+1,¢:) is due to random perturbations. [Rothacher, 1991}
uses a random walk stochastic process to model the stochastic behaviour of the tropo-
sphere. In this case the state transition matrix T'(¢;4,,¢;) is equal to the identity matrix
and the prediction step is simply

z(tiv) = z(&), (C-43)
Q.(tiy1) = Q1)+ Q.(tirsts) - | (C.44)

The elements Q. ;; of the cofactor matrix Q,(t;41,¢;) are given by:

Qe ij = 0 for 4 # ]
Qe =0 for non-stochastic parameter ¢,
Q. jj = ®; - At for stochastic parameter j,

where At = t;4 — t; and @; is so-called power spectral density of parameter j, which has
to be specified for all stochastic parameters to be estimated with the Kalman filter.

The second step of the Kalman filter is the update step. We assume that at epoch ;4
the observations £(t;;;) and the corresponding cofactors @, = P; ! are available. Using the
state transition matrix T'(¢;44,¢;) the state vector z(t;41) may be predicted without using
the observations at time ¢;,,. We want to correct this prediction using the observations
£(ti+1) at time ¢;4, and compute the corrected state vector &(t;41). The following model -
possibly after a linearization — may be adopted:

Ad(ti) = Uiy =
Etig1) —2(tiya) =

[y

1Z

(C.45)

e

1Y

This is a special case of the sequential adjustment (B, = B, =0, A; = A, A, = I)
and the result is given by equation (C.39):

(AT Pe A+ P.) &(tin) = AT Pe lti) + Pr . (C46)
Usiﬁg the notation 2(t;41) = x(tiy1) + Az(tiy1) the result takes on the form
B(tier) = 2(tin) + Balins) = 2ltin) + K [0 - A 2(ti)] | (C.47)
where so-called gain matrix K is given by
K=(A"PA+P,) ATP,. (C.48)
Using the relation
(A”PA+R)” ATP=RA" (P + ART'AT) T, (C.49)

the gain matrix may be written in the form

K =Q.A" (Q,+4Q,A7) " . (C.50)
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