Astronomisch-geodätische Arbeiten in der Schweiz

herausgegeben von der
Schweizerischen Geodätischen Kommission
(Organ der Schweizerischen Naturforschenden Gesellschaft)

Arbeiten der Bodenseekonferenz

Dreißigster Band
Basismessung Heerbrugg 1959
Teil II
Messung der Basislänge
bearbeitet von Karl Gerke, Braunschweig, mit Beiträgen von Werner Fischer, Zürich, unter Mitwirkung von Hermann Fricke, Braunschweig.

Astronomisch-geodätische Arbeiten in der Schweiz

herausgegeben von der
Schweizerischen Geodätischen Kommission
(Organ der Schweizerischen Naturforschenden Gesellschaft)

Arbeiten der Bodenseekonferenz

Dreißigster Band

Teil II

Basismessung Heerbrugg 1959
Messung der Basislänge
bearbeitet von Karl Gerke, Braunschweig, mit Beiträgen von Werner Fischer, Zürich, unter Mitwirkung von Hermann Fricke, Braunschweig.

Adresse der Schweizerischen Geodätischen Kommission:
Institut für Geodäsie und Photogrammetrie
Eidg. Technische Hochschule Zürich
Rämistraße 101
$\mathrm{CH}-8006$ Zürich

Redaktion des 30. Bandes:
Dipl. Ing. W. Fischer, Zürich
Dr. G. Kirschmer, München

$V O R W O R T$ DES HERAUSGEBERS

Im Vorwort zur Publikationsreihe über die Basismessung Heerbrugg 1959 im ersten Heft ist darauf hingewiesen worden, daß die Publikation der Beobachtungen und Berechnungen in verschiedenen Teilheften erfolgen wird.
Im vorliegenden Teil II wird über die Messung und Berechnung der Basislänge berichtet. Verfasser ist Prof.em.Dr.-Ing. Karl Gerke von der Technischen Universität Braunschweig. Einzelne Beiträge zu diesem Heft lieferten Dipl. Tng. W. Fischer von der Eidg. Technischen Hochschule Zürich und Dipl.-Ing. H. Fricke von der Technischen Universität Braunschweig.
Die Schweizerische Geodatische Kommission freut sich, daß es Prof. Gerke, dem seinerzeit die Leitung der Drahtmessungen übertragen war, gelungen ist, das nicht leichte Thema in wissenschaftlich einwandfreier und klarer Art zu behandeln. Sie dankt ihm und den Mitverfassern auch im Namen der Bodenseekonferenz für all das, was sie fur dieses internationale Unternehmen der Basismessung Heerbrugg getan haben.

Prof. Dr. F. Kobold
Ehrenpräsident der
Schweiz. Geodatischen Kommission

$V O R W O R T D E S V E R A S S E R S$

Die Schweizerische Geodätische Kommission legt nun in der Reihe "Astronomischgeodätische Arbeiten in der Schweiz" den Teil II uber die Messung der Basislänge der Publikation "Basismessung Heerbrugg 1959" vor.
Die Fertigstellung des Manuskripts und die Herausgabe haben sich aus vielen Gründen verzögert, dennoch soll und darf auf die Publikation nicht verzichtet werden, um die Erfahrungen bei einer der letzten europäischen Basismessungen mit Invardrähten festzuhalten und die besonderen Eigenarten dieser geodätischen Grundinie und die Bedeutung einer solchen Gemeinschaftsarbeit erkennbar zu machen.
Die Erfahrungen konnten auf die Basismessung München 1958 gestützt und an die Drahtmessungen der Basen Meppen 1960 und Göttingen 1961 weitergegeben werden.
Dank gebuhrt allen Mitarbeitern bei der Vorbereitung der Basis, bei der Durchführung der Messungen sowie bei den Auswertungen in den Rechenstellen und besonders in der zentralen Rechenstelle beim Institut für Angewandte Geodäsie (IfAG) in Frankfurt a.M.
Es soll aber auch die entgegenkommende Einstellung der Schweizer Zollbehörden, die verstandnisvolle Hilfe der Internationalen Rheinbauleitung und besonders die uberaus wertvolle Unterstützung der Vorbereitung der Messungen und der Feldauswertung durch die Firma Wild Heerbrugg AG hervorgehoben werden.
Die für die vorliegende Veröffentlichung notwendigen Berechnungen und das Manuskript waren bereits abgeschlossen, ehe der Bericht "International Standard Base Lines" von T. Honkasalo [10] bekannt wurde. Dessen Ausfuhrungen sind folgende Tatsachen zu entnehmen, die für die Bestimmung der Basislänge von Bedeutung sind.
Die Längen der für die Interferenzmessung der Normalstrecken benützten Quarzmeter wurden durch Längenvergleich auf die Längen der beiden Quarzmeter VIII und XI bezogen, die 1953 im Bureau International des Poids et Mesures geeicht worden waren. Spätere Eichmessungen zeigten, daß diese Längen zu kurz waren und alle Längen des Quarzmeter-Systems $u m+1,03 \mu$ korrigiert werden mußten.
In der Folge waren auch die Länge der Normalstrecke München und alle daraus abgeleiteten Längen L nachträglich um einen Betrag $+1,03 \mu / \mathrm{m} \cdot \mathrm{L}$ zu vergrößern. Dies konnte aber in den verschiedenen Tabellen nicht mehr berücksichtigt werden. Deshalb treten zwischen den aus dem Normalstreckenvergleich und den aus dem Laborvergleich abgeleiteten Längen Differenzen von der Größenordnung $1 \mu / m$ auf (z.B. im Abschnitt 4.3), die wiederholt zu Diskussionen geführt hatten.
Lediglich im Schlußkapitel 9 mit der Zusammenstellung der Ergebnisse wurden die aus der Normalstrecke München abgeleiteten Längenwerte nachträglich korrigiert (vgl. Abschnitte 9.2.1 und 9.4). Danach ergibt sich eine ausgezeichnete Übereinstimmung der mit amtlichen Drahtkonstanten und Drahtkonstanten aus dem Normalstreckenvergleich ermittelten Basislänge.

Prof. em. Dr.-Ing. K. Gerke

IN HALTSVERZEICHNIS

Seite

1. Einleitung 5
2. Anlage und Ausbau der Basis 7
3. Zeitplan der Basismessung 11
4. Längenvergleich der Meßdrähte vor und nach der Basismessung 13
4.1 Vergleich der amtlichen Eichinstitute 13
4.1.1 Bureau International des Poids et Mesures 13
4.1.2 Physikalisch-Technische Bundesanstalt 14
4.2 Vergleich auf der Normalstrecke München 15
4.3 Zusammenstellung der Vergleichsergebnisse 15
5. Örtliche Messungen auf der Basis 17
5.1 Drahtmessungen 17
5.2 Temperaturmessungen für die Drähte 19
5.3 Ablotungen 20
5.4 Nivellement 20
5.5 Alignement 22
5.6 Messung der Brechungswinkel 24
5.7 Messung des Hilfsdreiecks 26
5.8 Schweremessungen 26
6. Feldauswertung 28
6.1 Drahtkonstanten (k_{o}) 28
6.2 Temperaturkorrektion (k_{6}) 28
6.3 Kontrolle und Zusammenstellungen 28
7. Korrektionen an den Drahtmessungen 30
7.1 Kontrolle der Feldauswertung 30
7.2 Nivellementskorrektionen ($\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$) 30
7.3 Alignementskorrektionen (k_{4}) 31
7.4 Ablotungskorrektion (k_{5}) 31
7.5 Skalenneigungskorrektion (k_{7}) 31
8. 6 Reduktion auf Meereshorizont (k_{8}) 32
9. 7 Spanngewichtskorrektion (k_{9}) 32
7.8 Schwerekorrektion (k_{10}) 32
7.9 Zusammenfassung der Korrektionen 33
10. Reduktion des Basispolygons 35
8.1 Reduktion auf gleichen Horizont 35
11. 2 Reduktion der Hilfsbasis 35
8.3 Reduktion der 4. Stufe 35
8.4 Reduktion der 3. Stufe 36
8.5 Reduktion der 2. Stufe 36
12. 6 Reduktion der 1. Stufe 38
13. 7 Zusammenfassung der Reduktionen 41
14. Zusammenstellung der Ergebnisse 42
9.1 Ergebnisse der Messungen auf der Normalstrecke 42
9.2 Ergebnisse der Messungen auf der Basis 43
9.2.1 Mit Drahtkonstanten aus dem Normalstreckenvergleich 43
9.2.2 Mit Drahtkonstanten der amtlichen Eichinstitute 44
9.3 Fehlerbetrachtungen 45
9.3.1 Genauigkeit der Drahtmessung 45
9.3.2 Mittlerer Fehler des Hilfsdreiecks 45
9.3.3 Fehleranteil der Reduktion des Basispolygons 46
9.3.4 Fehleranteil der Drahtmessung 47
9.3.5 Gesamtfehler der Basislänge 47
9.4 Endgültige Basislänge und ihr mittlerer Fehler 48
15. Literaturverzeichnis 49
ANLAGEN
1 Basis Heerbrugg 1:25000
2 Basispolygon Heerbrugg 1959
3 Hilfsdreieck Basisende Süd
Basisende Nord - Beobachtungspfeiler

- Einmessung des Pfeilers" " - Exzentrizität der Bolzen
7 Basisende Süd - Beobachtungspfeiler
8 Basispunkt A
9 Basispunkt B
10 Basisende Süd - Lage der Kontrollbolzen
11 Basispunkt A - Lage der Versicherungsmarken
12 Basisende Süd und Basispunkt A - Exzentrizität der Bolzen
13 Zeitplan für die Messungen
14 Certificat des BIPM
15 Prüfschein der PTB
16 Ergebnisse der Temperaturmessungen am 7.9.59
17 Zusammenstellung der Ergebnisse der Drahtmessungen auf der NormalstreckeMünchen
18 Zusammenstellung der Ergebnisse der Drahtmessungen für die Basis mit amt-lichen Drahtkonstanten
19 Zusammenstellung der Ergebnisse der Drahtmessungen für die Basis mit Draht-konstanten aus dem Normalstreckenvergleich

1. Einleitung

Die Bodenseekonferenz hat entsprechend den Empfehlungen der Internationalen Union für Geodäsie und Geophysik zur Maßstabsübertragung und entsprechend ihren eigenen Gedanken zur Schaffung eines Testnetzes für neue elektronische Entfernungsmeßverfahren im Bergland auf ihren Sitzungen am 31. Mai 1957 in Lochau bei Bregenz, am 10. Dezember 1957 in Zürich, am 23. und 24. Januar 1959 in München sowie am 25. Mai 1959 in Bad Balgach beschlossen, eine geodätische Basis mit Vergrößerungsnetz gemeinsam von den Ländern Schweiz, Österreich und Deutschland anzulegen und zu messen [1]. Nach eingehenden Beratungen und Erkundungen wurde diese Basis bei Heerbrugg im Rheintal angelegt, so daß eine gute Maßstabskontrolle für die Dreiecksnetze der beteiligten Länder gewährleistet war. Die einzelnen Seiten des Vergrößerungsnetzes hatten so unterschiedliche topographische Profile, da $ß$ aus der Analyse der Ergebnisse der elektrooptischen Entfernungsmessungen und derjenigen mit Mikrowellen neue Erkenntnisse erwartet werden durften.

Der nördliche Basisendpunkt war auf dem westlichen Widerlager der Diepoldsauer Rheinbrücke vorgesehen, die evtl. Lageveränderungen wurden durch Wiederholungsmessungen in einem kleinen Kontrollnetz bestimmt. Der südliche Endpunkt der Basis war auf dem geologisch stabilen Montlinger Berg festgelegt. Die mit Invardrähten zu messenden 24 m -Strecken folgten dem westlichen Rheindamm, sie lagen damit auf einem stärker als gewöhnlich bei Basismessungen ausgebogenen Polygonzug (Anlage 1), boten dadurch aber i.a. gute Meßbedingungen.

Die Meßtrupps wurden von den drei beteiligten Ländern gestellt; das Personal für die Drahtmessung wurde zu einem einheitlichen Training zusammengefaßt, um nach den Erfahrungen der Messungen auf der Basis München 1958 ein gleiches Verfahren und gute Sorgfalt zu sichern. Allerdings muß erwähnt werden, daß die zur Verfügung stehenden Meßdrähte z. T. alte Invardrähte, z. T. aber auch junge Invar- bzw. Indilatansdrähte waren, was zweifellos bei der Analyse der Ergebnisse erkennbar und zu beachten sein wird.

Die Leitung der Drahtmessungen wurde dem Verfasser übertragen. Es sei bereits hier darauf hingewiesen, daß nach den Messungen auch verabredet wurde, für die Auswertung einheitliche Methoden anzuwenden, ja, daß auch gemeinsame Auswertewochen stattgefunden haben. Dennoch haben die einzelnen Dienststellen teilweise unterschiedliche Reihenfolgen und Zusammenfassungen der Korrektionen gewählt, so da $ß$ die Zwischenergebnisse nicht immer verglichen werden können.

Bild 1: Pfeiler BN auf dem westlichen Widerlager der Straßenbrücke Widnau Diepoldsau

Bild 3: P.feiler A mit Blickrichtung gegen die Basis, dahinter der erste 24 mPunkt mit kleinem Podest

Bild 2: Blick vom Pfeiler BS auf dem Montlinger Berg in Richtung BN

Bild 4: Eisenrohrstativ über BP 7 mit Blick gegen das nördliche Basisende
2. Anlage und Ausbau der Basis

Über die Gründe der Anlage der Basis bei Heerbrugg, im Rheintal auf der schweizerischen Seite, wird im Teil I der Publikation über die Basismessung Heerbrugg berichtet [1].

Zur Schaffung guter Meßbedingungen für die einzelnen Drahtlagen sowie zur Vermeidung von Flurschaden und zur Umgehung der Baustellen der Nationalstraße vom Bodensee nach Chur wurde die Basis entlang dem westlichen Hochwasserdamm der Internationalen Rheinbauleitung angelegt. Ein weiterer Vorteil war, daß der Materialtransport mit der auf dem Damm verlaufenden Kleinbahn durchgeführt werden konnte. Die Internationale Rheinbauleitung erklärte sich überdies bereit, den normalen Verkehr dieser Bahn während der Messungen einzustellen; Notfälle sollten ausgenommen sein, sind aber nicht eingetreten. Soweit erforderlich, durften auch einige Pfähle zwischen die Schienen gesetzt werden.

Nachteilig war bei dieser Anlage die - vor allem im Nordteil - starke Ausbiegung der Meßstrecke (Anlage 1). Der nördliche Endpunkt der Basis auf dem westlichen Widerlager der Straßenbrücke Widnau - Diepoldsau gestattete den direkten Anschluß der Drahtmessungen. Die Lage des südlichen Basisendpunktes auf dem Montlinger Berg, 60 m über der Rheinebene, machte dagegen die trigonometrische Bestimmung der Teilstrecke BS - A mit Hilfe einer 216 m langen Hilfsbasis erforderlich (Anlagen 2 und 3).

Die erste Absteckung der Basisstrecke erfolgte durch die Eidgenössische Landestopographie; sie diente in erster Linie der endgültigen Festlegung der Endpunkte und der Brechpunkte des Basispolygons.

Die zweite Absteckung wurde in der Zeit vom 11. bis 20. Juni 1959 vom Institut für Angewandte Geodäsie, Frankfurt a. M., durchgeführt, und zwar zwischen den bereits betonierten Zwischenpunkten A, 41, 56, 95, 130, 165, 208, 251 und BN.

Um für das Teilstück von BP 5 bis BN (Anlagen 1 und 2) das Alignement zu vereinfachen, entschloß man sich am 4. August 1959 nach einer gemeinsamen Begehung der Meßstrecke durch Vertreter der Firma Wild, der Schweizerischen Geodätischen Kommission und des Instituts für Angewandte Geodäsie, diesen Teil in einer dritten Absteckung neu zu überarbeiten.

Auf dem Basisendpunkt Nord wurde ein Betonpfeiler errichtet, der durch Anker fest mit dem Widerlager verbunden war (Anlage 4, Bild 1). Etwaige Lageveränderungen sollten durch ein kleines Kontrollnetz bestimmt werden (Anlage 5). Der im Pfeiler eingelassene Kappenbolzen wurde während des Baues lagemäßig gegenüber der Bodenmarke festgelegt (Anlage 6).

Der Basisendpunkt Süd sowie die Endpunkte A und B der Hilfsbasis am Fuß des Montlinger Berges sind ebenfalls durch Betonpfeiler vermarkt worden (Anlagen 7, 8 und 9, Bilder 2 und 3). Beim Punkt Basis Süd sind zudem vier kleine Versicherungsbolzen in den Fels des Montlinger Berges eingelassen worden, mit deren Hilfe die Lage des Pfeilers jederzeit kontrolliert werden konnte (Anlage 10). Auch für die Kontrolle des Pfeilers A wurden im Abstand von je 5 m vier Versicherungsmarken im Boden verankert (Anlage 11). Beim Pfeiler B, der lediglich als Hilfspunkt diente, wurde hingegen auf eine weitere Versicherung verzichtet. Die Lage der Kappenbolzen in den Pfeilern BS und A gegenüber der unterirdischen Festlegung wurde während des Baues bestimmt (Anlage 12).

Die Brechpunkte BP 1 bis BP 7 des Basispolygons (Anlagen 1 und 2) sind durch unterirdische Betonpfähle (U. F.) versichert worden, in deren Kopffläche von $20 \times 20 \mathrm{~cm}$ ein Bronzebolzen eingelassen wurde. Darüber wurden für die Aufnahme des Jäderinzapfens und die Aufstellung des Theodolits sowie des Ablotegerätes von der Firma Wild konstruierte Eisenrohrstative mit horizontaler Kopffläche einbetoniert (Bild 4).

Längs der im Bogen verlaufenden Dammkrone von BP 5 bis BN wurden an geeigneten Punkten der bestehenden Meßstrecke Nebenpolygonpunkte festgelegt. Auf den dadurch entstandenen $\mathrm{Ne}-$ benpolygonseiten 208-219, 219-230 und 277-287 lagen die 24 m -Punkte bereits in einer Geraden oder mußten noch endgültig in diese eingefluchtet werden. Bei den Nebenpolygonseiten 165-179, 179-194, 230-242, 242-251, 257-267 und 267-277 war es hingegen zweckmäßiger, die Meßstrecke in zwei Geraden mit einem gemeinsamen Knickpunkt aufzuteilen. Lediglich die Abschnitte 194-208, 251-257, 262-267 und 291-297 (= BN) wurden in ihrem ge-

Bild 5: Pfahl auf Punkt 96 mit Jäderinzapfen

Bild 6: Punkt 19 mit Podest und Steg über den Zapfenbach, im Hintergrund der Montlinger Berg

Bild 7: Punkt 37 bei der Natio-nalstraßen-Baustelle mit Podest

Bild 8: Punkt 38 bei der Natio-nalstraßen-Baustelle mit Podest
krümmten Verlauf belassen; sie folgten damit dem Rand der Dammkrone, während beim letzten Abschnitt die durch die bereits feststehende Lage des nördlichen Basisendpunktes bedingte Verkürzung der Meßstrecke die vorhandene Ausbiegung unumgänglich machte.

Auch auf der Strecke von BP 3 bis BP 5 wurden zwei zusätzliche Brechpunkte vorgesehen, da die 24 m -Punkte wegen der schwierigen Sichtverhältnisse nicht in eine Gerade gelegt werden konnten. Einige Punkte mußten neu in die dadurch festgelegten Nebenpolygonseiten eingefluchtet werden. Der Nebenpolygonpunkt 148 wurde übrigens nachträglich als Hauptpolygonpunkt behandelt, weil die direkte Visur von BP 4 nach BP 5 nahe dem Boden verlief und dadurch schwierig zu beobachten war.

Der Verlauf der so gestalteten Basisstrecke ist in Anlage 2 schematisch dargestellt.
An den 24 m -Punkten sind Holzpfähle von etwa 2 m Länge eingerammt worden, so daß sie etwa $0,7 \mathrm{~m}$ über dem Boden herausragten. In ihre Kopffläche wurden einteilige Jäderinzapfen eingeschraubt; es waren die gleichen Jäderinzapfen wie bei der Basismessung München 1958 [2] (Bild 5). Besondere Ausbauten für eine gute Drahtmessung waren nur auf der Strecke von A bis 95 erforderlich. Der Zapfenbachübergang wurde durch einen Steg geschaffen (Bild 6). Der in die Bachböschung fallende 24 m -Punkt 19 mu abgestützt werden. Für die Überwindung der Böschung an der im Bau befindlichen Nationalstraße bei den 24 m -Punkten 33, 37 und 38 und der Dammböschungen bei den 24 m -Punkten 57 bis 61 , 83 und 84 sowie 92 und 93 wurden längere Holzpfähle eingerammt, so daß die Höhenunterschiede der einzelnen Drahtlagen höchstens 1 m betrugen. Sie wurden sorgfältig abgestützt sowie mit Podesten umbaut, die sie nirgends berührten (Bilder 7 und 8).

Beim Punkt 172 war es wegen eines Förderbandes bei einer Materialdeponie der Internationalen Rheinbauleitung nicht möglich, einen Pfahl einzurammen. Deshalb wurde an dieser Stelle ein kleines Holzstativ mit Jäderinzapfen benutzt, von denen das Institut für Angewandte Geodäsie sechs in Bereitschaft hatte (Bild 9). Ein weiteres Stativ mußte in der zweiten Hälfte der Basismessung anstelle des durch ein Landwirtschaftsfahrzeug abgebrochenen 24 m -Pfahls 77 eingesetzt werden.

Um auf den Nebenpolygonpunkten 117, 148, 179, 194, 219, 230, 242, 257, 267, 277 und 287 Winkelmessungen ausführen zu können, wurden die normalen Holzpfähle durch längere und stärkere Pfähle ersetzt, die als Instrumentenstandpunkte ausgebildet wurden. Zu diesem Zweck wurden auf ihrer horizontalen Kopffläche verleimte Holzteller von 25 cm Durchmesser und 5 cm Dicke aufgesetzt. Die in der Mitte derselben eingelassenen Messinghülsen gestatteten bei der Winkelmessung die Zentrierung der Wild T3-Theodolite mit der Zentrierkugel, bei der Drahtmessung den Einsatz der für diese Punkte aus Bronze angefertigten Jäderin-Steckzapfen (Bilder 10, 11 und 12).

Der gesamte Ausbau wurde vom 3. 8. bis 8. 8. 1959 nochmals kontrolliert. Die Zeitdifferenz zwischen Ausbau und Messung - bei anderen Basismessungen > 3 Monate - betrug nur 1 - 2 Monate, weil der Bahnverkehr auf dem Hochwasserdamm nicht länger unterbrochen werden konnte.

Bild 9: Aufstellen eines kleinen Holzstativs als Ersatz für einen abgebrochenen Pfahl

Bild 11: Winkelmessung mit Wild T3-Theodolit auf einem Instrumentenstandpunkt

Bild 10: Als Instrumentenstandpunkt ausgebildeter Holzpfahl mit Jäderinzapfen

Bild 12: Instrumentenstandpunkt mit Wild T3-Theodolit

Sämtliche Meßdrähte und Reservedrähte wurden vor und nach der Basismessung teilweise beim Bureau International des Poids et Mesures (BIPM) in Sèvres und teilweise bei der Physika -lisch-Technischen Bundesanstalt (PTB) in Braunschweig verglichen. Diese amtlichen Vergleiche fanden vor der Basismessung vom 15. Mai bis 1. August 1959 und nach der Basismessung vom 15. Oktober bis 15. Dezember 1959 statt.

Der gesamte Zeitplan [1] für die Drahtmessungen auf der Normalstrecke und auf der Basis wurde für Doppelmessungen - hin und zurück - auf jeder Strecke aufgestellt und konnte wegen der günstigen Wetterlage eingehalten werden. Somit fand der Drahtvergleich auf der Normalstrecke am 26. und 27. August, die eigentliche Basismessung vom 31. August bis 10. September und der abschließende Drahtvergleich auf der Normalstrecke am 14. und 15. September 1959 statt.

Den sechs Meßtrupps waren folgende Drähte zugeteilt worden:

Tabelle 1

Meßtrupp	Land/ Institut	$\begin{gathered} \text { Meßdrähte } \\ \text { a b } \end{gathered}$		Reservedrähte c
I	Schweiz	K 1	K 2	98
II	Österreich	527	526	255811
III	Österreich	529	528	255812
				255813
IV	$\text { I.Abt. DGFI }{ }^{\mathrm{x})}$ München	511	510	509
V	II. Abt. DGFI, Frankfurt	A 27	38	302
VI	II. Abt. DGFI, Frankfurt	37	301	36

x) Deutsches Geodätisches Forschungsinstitut

Ausgehend von dem Gedanken, die Meßdrähte nicht länger als fünf bis sechs Tage ungeprüft zu lassen, wurde eine Basisstrecke als örtliche Relativ-Vergleichsstrecke ausgewählt und mehrfach gemessen. Für den Relativ-Vergleich der Meßdrähte wurde der Basisabschnitt von Punkt 95 bis 130 (= 35 Drahtlagen) ausgewählt. Die Auswahl erfolgte wegen der guten Meßbedingungen und der guten Anfahrtsmöglichkeit, zum andern wegen der passenden Länge, die eine Hin- und Rückmessung mit mehreren Drähten an einem Tag ermöglichte, wie etwa auf der Münchener Normalstrecke.

Auch die übrige Basisstrecke wurde in mehrere Tagesabschnitte unterteilt, deren Hin- und Rückmessung von allen sechs Trupps jeweils in einem Tag möglich war. Eine Übersicht über die Reihenfolge der Drahtmessungen gibt die nachstehende Tabelle 2.

Tabelle 2

Der Zeitplan für alle Hilfsmessungen richtete sich weitgehend nach demjenigen für die Drahtmessungen. Die Ablotung der Endpunkte und der Brechungspunkte BP 1 bis BP 7 hatte am Tag der Messung des jeweiligen Abschnitts vor und nach der Drahtmessung zu erfolgen. Auch die Messung des Nivellements, des Alignements und der Brechungswinkel war grundsätzlich vor und nach jeder Drahtmessung vorgesehen, wobei für die letzteren ein zeitlicher Abstand von höchstens einigen Tagen toleriert war.

Die vorgesehenen Meßoperationen, sowohl Drahtmessungen als auch Hilfsmessungen, sind in einem Zeitdiagramm dargestellt (Anlage 13). Der tatsächliche Meßablauf deckte sich auch bei den Hilfsmessungen weitgehend damit, wenn er auch aus personellen Gründen zeitlich gerafft werden mußte. Im Abschnitt 5 wird ausführlicher darüber berichtet.

4. Längenvergleich der Meßdrähte vor und nach der Basismessung

Die Drähte K 1 und K 2 des schweizerischen Meßtrupps K sind erst im Jahr 1959 von der Firma Kern \& Co. AG, Aarau, aus Invar hergestellt worden, sie waren damit für die Messungen noch sehr junge Drähte. Die Drähte der österreichischen Trupps II und III sind von Secrétan, Paris, aus Invar und die des Trupps IV (München) von Askania, Berlin, aus Indilatans angefertigt worden. Über die Herkunft der Drähte der Trupps V und VI (Frankfurt) wird ausführ lich in [2] berichtet.

Nach der Empfehlung der IAG von Rom 1954 (Bulletin géodésique Nr. 35 (1955) S. 96-97) sollte in jedem Land eine Standard-Basis errichtet werden, die nach der Väisälä-Methode gemessen zum Vergleich der Invarbänder bzw. -drähte und Geodimeter dienen und einen einheitlichen Maßstab sichern sollte. In den an diese Empfehlung anschließenden Diskussionen und Beratungen wurde festgelegt, daß dann die Basislänge mit den Ergebnissen der Drahtvergleiche auf dieser Normalstrecke zu berechnen sei. Für wissenschaftliche Untersuchungen sollten aber auch zusätzlich amtliche Drahtkonstantenbestimmungen bei den Eichinstituten vorgenommen werden.

Die Ausdehnungskoeffizienten sollten mindestens in einem Zeitraum von etwa 2 Jahren bestimmt werden.

4.1 Vergleich der amtlichen Eichinstitute

Die für die Messung vorgesehenen Drähte wurden zum Vergleich auf die amtlichen Eichinstitute Bureau International des Poids et Mesures (BIPM), Sèvres bei Paris (4 Me Mdrähte) und Physi-kalisch-Technische Bundesanstalt (PTB), Braunschweig (8 Meßdrähte) verteilt. Damit sollte ein Teil der Drähte in Paris an das 1959 noch geltende Internationale Urmeter, der andere Teil an den in Deutschland vorhandenen Prototyp angeschlossen werden.

Die Reservedrähte wurden ebenfalls verglichen, aber für Messungen auf der Basis nicht benutzt. Es werden daher im folgenden nur die Ergebnisse der Meßdrähte mitgeteilt.

4.1.1 Bureau International des Poids et Mesures

Die schweizerischen Drähte wurden in ihren Transportkisten per Bahn nach Paris und wieder zurück geschickt. Die Invardrähte der II. Abt. des DGFI wurden in ihren hölzèrnen Transportkisten von Frankfurt nach Paris in einem VW-Kombi transportiert; die Kisten wurden während der Fahrt auf Gummischläuche gelegt, um Fahrterschütterungen nicht zu übertragen.

Das BIPM hat vor der Basismessung lediglich den Längenvergleich durchgeführt, also die Drahtkonstante k_{O} bestimmt, weil nach seiner Auffassung die Zeit vom Vergleich bis zur Basismessung für die Bestimmung der Ausdehnungskoeffizienten zu kurz war. Für die jungen Drähte K 1 und K 2 wurde im Dezember 1959 im Anschluß an den Längenvergleich nach der Basismessung der Ausdehnungskoeffizient bestimmt. Für die Drähte A 27 und 301 stammen die Ausdehnungskoeffizienten vom November 1958, sie waren s.Zt. im Anschluß an den Längenvergleich nach der Basismessung München 1958 bestimmt worden, es wurden nach der Basismessung lediglich die Drahtkonstanten k_{o} ermittelt.

Diese Drahtkonstanten und Ausdehnungskoeffizienten der Meßdrähte wurden in Tabelle 3 zusammengestellt. Diese Werte beziehen sich auf eine Temperatur von $15^{\circ} \mathrm{C}$, ein Spanngewicht von $10,000 \mathrm{~kg}$ und eine Schwere von $980,940 \mathrm{Gal}$.

Draht Nr .	$\mathrm{k}_{\mathrm{o}}^{\mathrm{vc}}$	Werte der Basismessung α		Werte h der Basismessung α	Mittel k_{0}	Differenz + = Lángung - = KUrzung
	mm	$\mu /{ }^{\circ} \mathrm{C}, \mathrm{m}$	mm	$\mu^{\circ} \mathrm{C}, \mathrm{m}$	mm	μ
K 1	- 0,48	-	- 0,62	$(+0,035+0,00308 \cdot t) \cdot 10^{-6}$	- 0,550	- 140
K 2	- 0,81		- 1,21	$(+0,034+0,00305 \cdot t) \cdot 10^{-6}$	- 1,010	- 400
A 27	- 7,58	$(-0,165+0,00225 \cdot t) \cdot 10^{-6}$	- 7,57	$(10,034+0,00305 \cdot t) \cdot 10^{-6}$	- 7,575	$+\quad 10$
301	+13,57	$(-0,295+0,00827 \cdot t) \cdot 10^{-6}$	+ 13,61	-	+13,590	+ 40

Als Beispiel ist der Prüfschein (Certificat) vom 14. August 1959 abgedruckt (Anlage 14). Über die Verfahren für den Längenvergleich und für die Bestimmung des Ausdehnungskoeffizienten berichtet A. Bonhoure [3].

4.1.2 Physikalisch-Technische Bundesanstalt

Die Längenbestimmungen der Drähte $526,527,528$ und 529 (österreichische Meßdrähte) sind etwa dreiviertel Jahr vor der Basismessung bzw. ein halbes Jahr nachher von der PTB durchgeführt worden. Unmittelbar vor und nach der Basismessung wurden ebenfalls von der PTB nur die Drähte 510, 511, 37 und 38 der Münchener und Frankfurter Meßtrupps verglichen. Nach der Basismessung wurden auch deren Ausdehnungskoeffizienten bestimmt. Die Temperaturkorrektion k_{6} der Drähte 37 und 38 wurde mit Ausdehnungskoeffizienten berechnet, die sich als Mittelwerte ihrer Bestimmungen vor und nach der Basismessung München 1958 ergaben.

Die Ergebnisse der Längenvergleiche und Bestimmungen der Ausdehnungskoeffizienten sind in der folgenden Tabelle 4 zusammengestellt (reduzierte Werte). Diese Werte beziehen sich auf eine Temperatur von $20^{\circ} \mathrm{C}$, ein Spanngewicht von $10,000 \mathrm{~kg}$ und eine Schwere von $981,2682 \mathrm{Gal}$ (Einfluß der Skalenneigung berücksichtigt).

Tabelle 4

Draht Nr .	Werte vor der Basismessung				Werte nach der Basismessung				Mittel	Differenz
		${ }^{\text {b }}$ 。		a		k_{0}		${ }^{\circ}{ }^{\text {a }}$	k。	$\begin{aligned} & +=\text { Langung } \\ & -=\text { Kurzung } \\ & \hline \end{aligned}$
		mm		$\mu^{\circ} \mathrm{C}, \mathrm{m}$		mm		$\mathrm{H}^{\prime}{ }^{\circ} \mathrm{C}, \mathrm{m}$	mm	μ
526	Dez. 58	+ 0,705	Dez. 58	+0,12	März 60	+ 0,661	-	-	+ 0,683	- 44
527	Dez. 58	- 0,186	Dez. 58	+ 0,11	März 60	-0,201	-	-	- 0,194	- 15
528	Dez. 58	+ 0,375	Dez. 58	+ 0,11	März 60	+0,361	-	-	+ 0,368	- 14
529	Dez. 58	- 0,498	Dez. 58	+ 0,12	März 60	-0,483	-	-	- 0,490	+ 15
510	Aug. 59	+ 0,544	-	-	Nov. 59	+0,519	Nov. 59	+0,35	+ 0,532	- 25
511	Aug. 59	+ 0,462	-	-	Nov. 59	+ 0,448	Nov. 59	+0,28	+0,455	- 14
37	Jul1 59	-12,203	$\begin{aligned} & \text { Aug. } 1 \\ & \text { Okt. } 58 \end{aligned}$	+0,25	Nov. 59	-12,201	Nov. 59	+0,25	-12,202	+ 2
38	Juli 59	- 5,032	Aug. 1 Okt. 58	+0,32	Nov. 59	- 5,046	Nov. 59	+ 0,30	- 5,039	- 14

Als Beispiel ist in Anlage 15 der Prüfschein vom 15. Dezember 1958 abgedruckt. Die Längen vergleiche sind auf der Vergleichsstrecke im Meßkeller der PTB mit einer Genauigkeit von $\pm 20 \mu$ ausgeführt worden. Die Ausdehnungskoeffizienten sind mit einer Genauigkeit von $\pm 0,05 \mu / 0 \mathrm{C}, \mathrm{m}$ bestimmt worden. Über das Vergleichsverfahren der PTB haben Ch. Hoffrogge und H. Rummert berichtet [4].

4.2 Vergleich auf der Normalstrecke München

Die Anlage und der Bau der europäischen Normalstrecke im Ebersberger Forst bei München ist von M. Kneißl [5] beschrieben worden. Über die Interferenzmessungen der Normalstrecke haben M. Kneißl und G. Eichhorn berichtet [6].

Die Normalstrecke wurde mit allen Meß-und Reservedrähten zweimal gemessen, und zwar je einmal vor und nach der Basismessung. Es sollten die Vergleichsmessungen auf der Normalstrecke von denselben Beobachtern und Spannbockträgern und unter den gleichen Verhältnissen wie bei der Basismessung ausgeführt werden. Leider haben in einigen Fällen die Beobachter gewechselt. Im großen und ganzen enthalten aber die aus dem Vergleich der mit den Drähten gemessenen Länge mit der interferometrisch bestimmten Normalstrecke abgeleiteten Drahtkonstanten alle persönlichen Einflüsse der Beobachter und alle sachlichen Einflüsse des Meßverfahrens.

Für die Berechnung der Drahtkonstanten ist das Ergebnis der Interferenzmessung auf den mittleren Messungshorizont der Drahtstrecke von $550,760 \mathrm{~m}$ ü. NN reduziert worden; das ergab die Länge von $864019,535 \mathrm{~mm}$ zwischen den Zapfen 0 und 864 . Die nachstehende Tabelle 5 enthält die aus den Vergleichsmessungen ermittelten Drahtkonstanten k_{O}.

Diese Werte beziehen sich auf eine Temperatur von $15^{\circ} \mathrm{C}$ (BIPM) bzw. $20^{\circ} \mathrm{C}$ (PTB), ein Spanngewicht von $10,000 \mathrm{~kg}$ und eine Schwere von 980, 7133 Gal (Normalstrecke München).

Tabelle 5

Draht Nr.	Eichin - stitut	Drahtkonstanten k_{o}			Differenzen + = Längung - = Kürzung
		1. Messung $26 . / 27.8 .59$	2. Messung 14./15.9.59	Mittel	
		mm	mm	mm	μ
K 1	BIPM	- 0,600	- 0,715	- 0,658	- 115
K 2	BIPM	- 1,018	- 1,183	- 1,100	- 165
526	PTB	+ 0,614	+ 0,636	+ 0,625	+ 22
527	PTB	- 0,210	- 0,252	- 0,231	- 42
528	PTB	+ 0,362	+ 0,337	+ 0,350	- 25
529	PTB	- 0,543	- 0,529	- 0,536	+ 14
510	PTB	+ 0,539	+ 0,545	+ 0,542	+ 6
511	PTB	+ 0,445	+ 0,437	$+0,441$	- 8
A 27	BIPM	- 7,586	- 7,595	- 7,590	- 9
301	BIPM	+ 13,561	+ 13,586	+ 13,574	+ 25
37	PTB	- 12,254	- 12,239	- 12,246	+ 15
38	PTB	- 5,066	- 5,064	- 5,065	+ 2

4.3 Zusammenstellung der Vergleichsergebnisse

In der nachstehenden Tabelle 6 sind die Ergebnisse der in den amtlichen Eichinstituten und auf der Normalstrecke München durchgeführten Drahtvergleiche - reduziert auf die einheitliche Bezugsschwere der Normalstrecke München mit $g=980,7133 \mathrm{Gal}$ - zusammengestellt worden.

Tabelle 6

Draht Nr .	$\begin{aligned} & \text { Teil- } \\ & \text { nehmer } \end{aligned}$	Bezugs temp.	Eichinst.	$\begin{aligned} & \text { Labor } \\ & \text { 1. Verg1. } \end{aligned}$	Drahtkon Normal 1. Messung 26.127.8.59	tanten k_{0} trecke 2.Messung 14./15.9.59	$\left\lvert\, \begin{gathered} \text { Labor } \\ \text { 2.Verg1. } \end{gathered}\right.$	$\underset{\text { Labor }}{\substack{\text { M1 }}}$	el Normalstrecke	L - N	$\begin{gathered} \Delta \mathrm{L} \\ \text { nach-vor } \\ \hline \end{gathered}$	$\begin{gathered} \Delta N \\ \text { nach-vor } \end{gathered}$
		${ }^{\circ} \mathrm{C}$		mm	mm	mm	mm	mm	mm	н	μ	μ
K 1	Schwe1z	15	BIPM	- 0,482	- 0,600	- 0,715	- 0,622	- 0,552	- 0,658	+ 106	- 140	- 115
K 2	Schweiz	15	BIPM	- 0,812	- 1,018	- 1,183	- 1,212	- 1,012	- 1,100	+ 88	- 400	- 165
526	Usterr.	20	PTB	+ 0,701	+ 0,614	+ 0,636	+ 0,657	+ 0,679	+ 0,625	+. 54	- 44	+ 22
527	Osterr.	20	PTB	- 0,190	- 0,210	- 0,252	- 0,205	- 0,198	- 0,231	+ 33	- 15	- 42
528	Oster	20	PTB	+ 0,371	+ 0,362	+ 0,337	+0,357	+ 0,364	+0,350	$+\quad 14$	- 14	- 25
529	Oste	20	PTB	- 0,502	- 0,543	- 0,529	- 0,487	-0,494	- 0,536	+ 42	+ 15	+ 14
510	Munchen	20	PTB	+ 0,540	+ 0,539	+ 0,545	+ 0,515	+0,528	+0,542	- 14	- 25	+
511	Munchen	20	PTB	+ 0,458	+ 0,445	+ 0,437	+ 0,444	+ 0,451	+0,441	$+10$	- 14	
A 27	Frankf.	15	BIPM	- 7,582	- 7,586	- 7,595	- 7,572	- 7,577	- 7,590	+ 13	+ 10	9
301	Frankf.	15	BIPM	+13,568	+13,561	+13,586	+13,608	+13,588	+13,574	+ 14	+ 40	25
37	Frankf.	20	PTB	-12,207	-12,254	-12,239	-12,205	-12,206	$-12,246$	+ 40	+ 2	+ 15
38	Frankf.	20	PTB	- 5,036	- 5,066	- 5,064	- 5,050	- 5,043	- 5,065	+	- 14	+

Diese Werte beziehen sich auf eine Temperatur von $15^{\circ} \mathrm{C}$ (BIPM) bzw. $20^{\circ} \mathrm{C}$ (PTB), ein Spanngewicht von $10,000 \mathrm{~kg}$ und eine Schwere von $980,7133 \mathrm{Gal}$ (Normalstrecke Munchen).

Die Mittelwerte der Differenzen zwischen den in den amtlichen Labors und auf der Normalstrecke bestimmten Drahtkonstanten (Labor-Normalstrecke) betragen für alle

$$
\begin{array}{ll}
\text { in der PTB verglichenen Drähte: } & +25 \mu / 24 \mathrm{~m}=+1,04 \mu / \mathrm{m}, \\
\text { im BIPM verglichenen Drähte }(\mathrm{A} 27,301):+14 \mu / 24 \mathrm{~m}=+0,58 \mu / \mathrm{m}
\end{array}
$$

(Drähte K 1 und K 2 ausgenommen, da bei diesen eine sprunghafte Längenänderung auftrat).

Daraus folgt, daß die in der PTB verglichenen Meßdrähte bei der Normalstreckenmessung durchschnittlich um etwa $25 \mu / 24 \mathrm{~m}$ kleinere Werte hatten als beim Laborvergleich, die beim BIPM verglichenen Meßdrähte dagegen nur um etwa $14 \quad \mu / 24 \mathrm{~m}$ kleinere Werte. Zwischen den aus beiden Labors übertragenen Längen tritt somit eine scheinbare Maßstabsdifferenz von etwa $0,5 \mu / \mathrm{m}$ auf, die allerdings nicht sehr signifikant ist. Bei der Basismessung München 1958 war dagegen eine solche Differenz von etwa $2 \mu / m$ festgestellt worden [2].

Für die durchschnittliche Veränderung der Drahtlängen ergeben sich folgende Ergebnisse (nach - vor):

Drahtkonstanten der amtlichen Eichinstitute

$$
\begin{array}{ll}
\text { Veränderung aller Meßdrähte } & -0,050 \mathrm{~mm} \\
\text { Veränderung der } 10 \mathrm{Me} \text { Mdrähte, } \\
\text { ohne schweizerische Drähte }
\end{array} \quad-0,006 \mathrm{~mm}
$$

Drahtkonstanten aus der Normalstrecke

Veränderung aller Meßdrähte	$-0,023 \mathrm{~mm}$
Veränderung der 10 Me drähte, ohne schweizerische Drähte	$\pm 0,000 \mathrm{~mm}$

5. Örtliche Messungen auf der Basis

Die Drahtmessungen konnten in der vorgesehenen Zeit erledigt werden, hingegen mußten aus personellen Gründen alle Hilfsmessungen in kürzerer Zeit durchgeführt werden, als ursprünglich dafür vorgesehen war. Sie konnten im wesentlichen in die beiden Wochen verlegt werden, während derer die Drahtmessungen liefen. Lediglich die Brechungswinkel wurden in der Woche vor und in der Woche nach der Drahtmessung gemessen.

5.1 Drahtmessungen

Die Drahtmessungen konnten planmäßig (vgl. Abschnitt 3) durchgeführt werden. Das Beobachtungswetter war an einigen Tagen nicht besonders günstig, um die Mittagsstunden traten Temperaturen bis zu $31^{\circ} \mathrm{C}$ auf. Zeitweise war es auch etwas windig. Ausfall der Messungen durch Regen trat nicht ein.

Die Meßdrähte waren in der Regel der vollen Sonneneinstrahlung ausgesetzt, nur wenige einzelstehende Bäume warfen Schatten auf die Meßstrecke. Die Standfestigkeit der Pfähle war im allgemeinen sehr gut. Besonders bei den Kunstbauten wurde darauf geachtet, daß selbst geringe Stöße gegen die hohen Pfähle vermieden wurden.

Bei den Messungen wurden, wie bei der Basismessung München 1958, je 5 gleichzeitige Able sungen gemacht. Dabei wurde der Draht abwechselnd vor und zurück verschoben, um einmal die Schätzfehler zu verringern und zum anderen die Rollenreibung zu überwinden. Die Skalen an den Drähten wurden von den Beobachtern auf $1 / 10 \mathrm{~mm}$ durch Schätzung mit freiem Auge abgelesen. Der Feldbuchführer saß stets bei einem Beobachter und ließ sich von diesem die Ablesungen leise sagen und von dem anderen laut zurufen, damit jede gegenseitige Beeinflussung ausge schaltet wurde. Eine Erschwerung der Verständigung trat lediglich bei der Baustelle an der Nationalstraße durch Baggerlärm ein. Jeweils in der Mitte zwischen zwei unterirdischen Festlegungen wurden die Beobachter gewechselt, um die persönlichen Schätzfehler möglichst zu eliminieren. Die Pfähle, an denen der Beobachterwechsel stattfand, waren durch schwarze Streifen markiert (Bild 13). Die Spannbockträger wechselten im allgemeinen nicht. Bei den deutschen Meßtrupps fand kein Austausch des Personals statt, wohl aber bei den Schweizern und Österreichern.

Die Meßrichtung bei den Tagesabschnitten richtete sich nach den Standpunkten der Drahtgalgen, die an günstigen Stellen (bei Punkt 95 und 208) aufgestellt wurden. Während der Mittagspause wurden die Drähte in den Galgen aufgehängt und nachmittags von hier die Rückmessung durchgeführt (Bild 14).

Die Jäderinzapfen waren so eingesetzt, daß die Beobachter auf dem Hochwasserdamm stets mit dem Rücken zum Rhein saßen. Durch den südwestlich-nordöstlichen Verlauf der Meßstrecke stand dadurch die Sonne vormittags im Rücken und nachmittags seitlich der Beobachter.

Als Spannböcke wurden die in den Frankfurter Institutswerkstätten nach Art der Witramschen Spannböcke gefertigten Stahlrohrrahmen benutzt. Die Kugellager für die Rollen der Spannböcke sind mit besonderer Sorgfalt ausgesucht und eingebaut worden. Die Schweizer benutzten eine von Kern \& Co. AG, Aarau, angefertigte Meßausrüstung (Bild 15). Die Spannböcke waren aus Leichtmetallrohren gebaut, die Rollen ebenfalls mit Kugellagern versehen; zur Befestigung des Meßdrahts diente anstelle eines Drahts ein Stahlbändchen mit Karabinerhaken. Vor und nach jeder Drahtmessung wurde die Rollenreibung überprüft. Hierzu wurden die paarweise benutzten Spannböcke gegenübergestellt und erst das eine und dann das andere Gewicht durch Auflegen kleiner Zusatzgewichte zum Sinken gebracht (Bild 16). Dieses Verfahren wurde ab 1960 (Basismessung Meppen) aufgegeben und durch eine bessere Methode der direkten Bestimmung des wirksamen Spanngewichts ersetzt.

Über die Ergebnisse der Drahtmessungen wird in Abschnitt 7 berichtet.

Bild 13: Pfahl 113 der örtlichen Vergleichsstrecke mit der Markierung für den Beobachterwechsel

Bild 15: Spannbock von Kern \& Co. AG, Aarau

Bild 14: Drahtgalgen bei BP 6 am Ende der Tagesabschnitte 3 und 4 , im Hintergrund das Dorf Diepoldsau

Bild 16: Tarierprobe des schweizerischen Meßtrupps

5.2 Temperaturmessungen für die Drähte

Die Temperatur wurde von den Feldbuchführern bei jeder Drahtlage unter Vermerk der Uhrzeit gemessen. In Abweichung davon wurde beim schweizerischen Meßtrupp die Temperatur auf jedem Feldblatt nur ein- bis zweimal unter Angabe der Uhrzeit notiert, das heißt, durchschnittlich bei jeder 6. bis 3. Drahtlage. Infolgedessen mußten später bei der Auswertung interpolierte Temperaturwerte für die übrigen Drahtlagen verwendet werden. Alle Meßtrupps verwendeten Normalthermometer (Schleuderthermometer). Die Meßtrupps IV (München) und V (Frankfurt) benutzten gelegentlich auch Honkasalo-Thermometer.

Nach den Erfahrungen von München 1958 wurde darüber hinaus an repräsentativer Stelle der jeweiligen Tagesabschnitte eine Temperaturstation eingerichtet. Dort wurde in etwa $0,7 \mathrm{~m}$ Höhe über dem Boden, wie bei den Drahtmessungen, ein Reservedraht (Draht Nr. 391) aufgehängt und die Temperatur des Drahtes mit dem elektrischen Widerstandsmeßgerät, das bereits 1955 auf Veranlassung des IfAG von Hartmann und Braun, Frankfurt a. M., gebaut wurde, direkt bestimmt. Die Lufttemperatur in der unmittelbaren Umgebung des Drahtes wurde mit 4 entlang dem Draht aufgehängten Präzisionsthermometern (Quecksilberthermometern), die beim Instrumentenamt des Deutschen Wetterdienstes München geeicht worden waren (Abweichungen kleiner $0,1^{\circ} \mathrm{C}$), gemessen. Zusätzlich wurde die Lufttemperatur durch ein Schleuderthermometer und ein Honkasalo-Thermometer ermittelt.

Die Lage der Repräsentativstellen ist in der nachfolgenden Tabelle 7 angegeben.

Tabelle 7

Datum	Abschnitt	Drahtlagen-Nr.
26.8.	Normalstrecke	5
27.8.	Normalstrecke	27
31.8.	Vergleichsstrecke (2)	115
1.9.	1	51
2.9.	3	169
3.9.	4	258
4.9.	Vergleichsstrecke (2)	115
5.9.	Vergleichsstrecke (2)	115
7.9.	1	51
8.9.	3	169
9.9.	4	258
10.9.	Vergleichsstrecke (2)	115
14.9.	Normalstrecke	8
15.9.	Normalstrecke	8

Auf der Sitzung der Bodenseekonferenz am 27./28. November 1959 in Salzburg wurde über die Verwertung der Temperaturmessungen, insbesondere der Widerstandsmessung, ausführlich diskutiert. Die eingesetzte Studiengruppe kam zu dem Ergebnis, daß die Extrapolation der auf den Temperaturstationen gemessenen Temperaturen auf die jeweiligen Drahtlagen zu groß sei. Auf der Arbeitstagung in München vom 1. - 4. 12. 1959 wurde daher die Verwendung der am Draht gemessenen Temperaturen beschlossen.

Die Temperaturmessung für jeden Meßdraht und für jede Drahtlage mit Widerstandsmeßgeräten wäre wegen des zu großen Aufwandes nicht in Frage gekommen. Die Honkasalo-Thermometer des DGFI I. Abt. erwiesen sich für den Feldgebrauch als zu empfindlich.

- Als Beispiel sind in Anlage 16 die Temperaturmessungen vom 7. 9. 1959 wiedergegeben.

5.3 Ablotungen

Die Ablotung der Endpunkte und der Zwischenpunkte erfolgte nach zwei verschiedenen Methoden durch Ingenieure der Schweizerischen Geodätischen Kommission.

Die Endpunkte A und BN der Meßstrecke sowie der Basisendpunkt BS auf dem Montlinger Berg wurden durch Richtungsmessungen lagemäßig bestimmt. Dazu wurden am Meßtag des betreffenden Basisabschnitts normalerweise vier Sätze nach den Versicherungsbolzen (Anlagen 5, 10 und 11) gemessen, zwei vor und zwei nach Durchgang der Drahtmeßtrupps. Die Messungen auf BN erledigte der Alignements-Trupp im Rahmen der dortigen Alignements-Messungen (vgl. Abschnitt 5.5), diejenigen auf den Pfeilern A und BS im Zusammenhang mit der Messung des Hilfsdreiecks (vgl. Abschnitt 5.7).

Aus dem Vergleich mit den bei der Errichtung der Pfeiler gemessenen Sätzen wurden Querverschiebungen ermittelt, deren graphischer Auftrag für alle drei Pfeiler keine Lageänderung auf zeigte. Die Ergebnisse der Drahtmessungen bezogen sich somit ohne irgendwelche Ablotungskorrektionen auf die ursprünglichen Pfeilerzentren (Lochbolzen).

Die Ablotung der Brechpunkte BP 1 bis BP 7 des Basispolygons konnte dank den von der Firma Wild entwickelten Eisenrohrstativen wesentlich vereinfacht werden. Diese fest einbetonierten Stative wiesen über der horizontalen Kopfplatte einen mit drei Stellschrauben verschiebbaren Teller zur Zentrierung auf, der in der Mitte eine Steckhülse für den Jäderinzapfen trug (Bild 17).

Das Ablotegerät der Firma Wild bestand im wesentlichen aus einem T2-Fernrohr, das um eine Vertikalachse drehbar gelagert war, die mit zwei Kreuzlibellen senkrecht gestellt werden konnte (Bild 18) und das zentrisch zur Steckhülse aufgestellt werden konnte.

Die Zentrierung der Brechpunkte eines Tagesabschnitts erfolgte jeweils am Morgen vor Beginn der Drahtmessungen. Nach Abschluß der Drahtmessungen wurde die Lage der Jäderinzapfen bzw. der Steckhülsen nochmals kontrolliert, wobei sich niemals eine meßbare Verschiebung zeigte. Die Eisenrohrstative erwiesen sich somit als so stabil, daß alle Drahtmessungen ohne Berücksichtigung von Ablotungskorrektionen auf die unterirdischen Versicherungen der Brechpunkte bezogen werden konnten.

5.4 Nivellement

Die Durchführung des Nivellements über die Meßstrecke wurde der Schweiz übertragen. Vereinbarungsgemäß war für den weitaus größten Teil der Basis mit flachem Verlauf ein technisches Nivellement vorgesehen, während bei den wenigen Steilstrecken ein Präzisionsnivellement erforderlich war.

Im Prinzip sollte jeder Tagesabschnitt einmal vor und einmal nach der Drahtmessung nivelliert werden. Bei zweimaliger Messung jedes Tagesabschnittes erforderte das drei Nivellements über die ganze Strecke. Bei der örtlichen Vergleichsstrecke, die in der Mitte der Basismessung auch noch mit allen Reservedrähten gemessen wurde, bedingte dies sogar vier Nivellements. Dazu mußte die Höhe von zwei Stativ-Jäderinzapfen (77 und 172) jeweils unmittelbar vor und nach den Drahtmessungen bestimmt werden.

Das Instrumentarium bestand aus dem automatischen Nivellierinstrument Zeiss Ni 2 Nr. 143260 des Geodätischen Instituts der ETH und zwei $1,5 \mathrm{~m}$-Invarlatten mit $1 / 2 \mathrm{~cm}$-Teilung der Firma Nestler, die vom Institut für Angewandte Geodäsie, Frankfurt a. M., zur Verfügung gestellt wurden (Bild 19). Dazu kamen noch zwei Nivellierhütchen, die vor jeder Lattenaufstellung über die Jäderinzapfen gestülpt wurden, um diese zu schützen (Bild 20).

Die fest in die Pfähle eingeschraubten Jäderinzapfen erwiesen sich als so stabil, daß die aus den drei bzw. vier Nivellements gefundenen Höhendifferenzen gemittelt werden konnten. Die Zusammenstellung aller Höhendifferenzen wurde am 18. Dezember 1959 allen beteiligten Instituten zur Verfügung gestellt.

Der Anschluß des Nivellements an das Eidgenössische Landesnivellement war an drei Stellen möglich, nämlich vom Pfeiler A beim südlichen Basisende an den Höhenfixpunkt $\oplus 525$ am Fuß

Bild 17: Eisenrohrstativ mit verschiebbarem Teller und drei Stellschrauben

Bild 18: Ablotgerät Wild auf Eisenrohrstativ (vor der Vertikalstellung)

Bild 20: Jäderinzapfen 96 mit aufgesetztem Nivellierhütchen
des Montlinger Bergs, ungefähr in der Mitte an den Punkt $\oplus 526$ am Zollhaus Kriessern und vom Pfeiler Basis Nord an den Punkt $\oplus 545$ am Widerlager der Straßenbrücke Widnau - Diepoldsau.

Bei der Durchrechnung des Nivellements vom Montlinger Berg ($\oplus 525$) aus zeigte sich beim Abschluß an der Diepoldsauer Brücke ein Widerspruch von 54 mm . Der im Fels des Montlinger Bergs verankerte Höhenfixpunkt $\oplus 525$ durfte mit Sicherheit als stabil betrachtet werden, hingegen traten hinsichtlich der Höhenbeständigkeit des Punktes an der Diepoldsauer Brücke mitten in der Rheinebene Zweifel auf. Mit Brief vom 23. Dezember 1959 an die Eidg. Landestopographie wurde deshalb angeregt, die Höhe der Anschlußpunkte neu zu überprüfen. Dies geschah im Laufe des Jahres 1960 im Rahmen der üblichen Revisionsarbeiten, und am 21. Dezember 1960 teilte die Eidg. Landestopographie die neue Höhe des Punktes $\oplus 545 \mathrm{mit}$, woraus hervorging, daß sich dieser seit seiner letzten Bestimmung im Jahre 1950 um 52 mm gesenkt hatte.

Damit war es nun möglich, für alle Jäderinzapfen definitive Höhen zu berechnen. Nachdem sich der Punkt $\oplus 545$ als unstabil erwiesen hatte, wurde jedoch auf eine Ausgleichung des Basisnivellements verzichtet, und die Höhen wurden auf Grund der gemittelten Höhendifferenzen lediglich vom Fixpunkt $\oplus 525$ aus berechnet. Dies wurde vom Institut für Angewandte Geodäsie, Frankfurt a.M., durchgeführt, das ebenfalls die mittlere Höhe jeder Teilstrecke bestimmte. Die Zusammenstellung aller Höhen im schweizerischen Höhensystem wurde im Februar 1961 allen beteiligten Instituten zugestellt.

5.5 Alignement

Das Alignement wurde ebenfalls von der Schweiz ausgeführt. Es wurde dreimal aligniert, und zwar - ebenso wie beim Nivellement - vor, zwischen und nach den Drahtmessungen, die Vergleichsstrecke dagegen viermal.

Bei dem stark gekrümmten Verlauf der Basis Heerbrugg konnte das Alignement nicht in einem Schritt erfolgen. Deshalb wurde eine Bestimmung in mehreren Stufen vorgesehen, wie sie aus der Anlage 2 hervorgeht. In der 1. Stufe werden die Ausweichungen der Hauptpolygonpunkte aus der Basislinie BS - BN bestimmt. Die 2. Stufe legt die Ausweichungen der Nebenpolygonpunkte aus den Hauptpolygonseiten fest. In der 3. Stufe werden die Ausweichungen der Knickpunkte aus den Nebenpolygonseiten ermittelt. Erst die 4. Stufe umfaßt die üblichen Alignementsmessungen, das heißt, die Bestimmung der Ausweichung der Jäderinzapfen aus der jeweiligen Bezugslinie. In diesem Abschnitt wird nur diese 4. Stufe behandelt, während alle übrigen Stufen im Abschnitt 5.6 (Messung der Brechungswinkel) dargestellt werden.

Das verfügbare Instrumentarium bestand aus zwei Wild T3-Theodoliten mit Zentrierkugel (Bild 21) des Geodätischen Instituts der ETH (Nr. 72 mit 360°-Teilung, Nr. $29882 \mathrm{mit} 400^{\circ} \mathrm{g}_{\text {-Tei- }}$ lung), zwei Meßbalken (Bild 22) und zwei Alignementshütchen des Instituts für Angewandte Geodäsie sowie den von der Firma Wild zur Verfügung gestellten vier Polygon-Zieltafeln mit elektrischer Beleuchtung (Bild 23) und zwei kleinen Zielmarken (Bild 24), die alle in die Steckhülsen der Haupt- und Nebenpolygonpunkte eingesetzt werden konnten.

Nachdem bei der endgültigen Absteckung der Meßstrecke die Pfähle der 24 m -Punkte nach Möglichkeit in Geraden gesetzt worden waren, konnte das Alignement weitgehend durch Skalenablesung erfolgen. Auf der südlichen Basishälfte mußte der Theodolit mehrmals (zwischen zwei 24 m -Punkten) in die Polygonseiten eingefluchtet werden. Selbstverständlich wurde auch von den Endpunkten selbst aligniert mit Ausgangsrichtung zum gegenüberliegenden Endpunkt. Auf der nördlichen Basishälfte konnten hingegen ausschließlich Polygonpunkte oder als Instrumentenstandpunkte ausgebildete Nebenpolygonpunkte für das Alignement benutzt werden.

Auf den wenigen Meßstrecken mit gekrümmtem Verlauf war ein Alignement durch Richtungsmessungen erforderlich, wobei die Jäderinzapfen durch Alignierhütchen signalisiert oder auch direkt angezielt wurden. Zuerst wurde der mit einer kleinen Zielmarke signalisierte Bezugspunkt in der einen Fernrohrlage angezielt und der Horizontalkreis abgelesen. Dann wurden, beginnend beim nächstgelegenen Zapfen, die Richtungen nach den Jäderinzapfen gemessen, solange eine sichere Einstellung derselben möglich war. Die Messung wurde hierauf in der anderen Fernrohrlage und in umgekehrter Reihenfolge wiederholt. Auf dem stark ausgebogenen Abschnitt 291-297 wurde das Alignement am Tag der Drahtmessung zweimal gemessen (wenn möglich vor und nach der Drahtmessung), auf den übrigen Abschnitten im Zuge des Alignements durch

Bild 21: Wild T3-Theodolit auf Eisenrohrstativ

Bild 23: Polygon-Zieltafel
Wild auf Eisenrohrstativ

Bild 22: Meßbalken des IfAG für das Alignement

Bild 24: Kleine Zielmarke Wild auf Instrumentenstandpunkt

Skalenablesung meist nur einmal. Bei den Nebenpolygonseiten 194-208 und 251-257, bei denen die Meßstrecke ganz im Bogen verlief, wurde dafür von beiden Seiten her aligniert.

5.6 Messung der Brechungswinkel

Entsprechend dem im Abschnitt 2 beschriebenen Ausbau des Basispolygons waren folgende Winkel zu messen (Anlage 2):

1. zur Reduktion der Hauptpolygonseiten auf die Basis (1. Reduktionsstufe) die Brechungswinkel des Hauptpolygons,
2. zur Reduktion der Nebenpolygonseiten auf die fünf Hauptpolygonseiten von BP 3 bis BN (2. Reduktionsstufe)

- die Brechungswinkel der Nebenpolygone,
- die Reduktionswinkel auf den Nebenpolygonpunkten zwischen den Hauptpolygonpunkten,

3. zur Reduktion der Teilstrecken zu den gemeinsamen Knickpunkten auf die Nebenpolygonseiten (3. Reduktionsstufe) die Anschlußwinkel dieser Punkte an die Nebenpolygonseiten.

Bei den Brechungswinkeln des Hauptpolygons war eine dreimalige Messung in 10 Sätzen vorgesehen und zwar vor und nach der Drahtmessung zur Zeit des Normalstreckenvergleichs sowie während der Drahtmessung als Nachtmessung (Anlage 13); aus personellen Gründen mußte jedoch auf die Nachtmessung verzichtet werden. Die Winkel der 2. und 3. Reduktionsstufe sollten dreimal in drei Sätzen gemessen werden, einmal vor der Drahtmessung, einmal zwischen den beiden Drahtmessungen und einmal nach der Drahtmessung jedes Tagesabschnitts. Bei der örtlichen Vergleichsstrecke war wegen der zusätzlichen Vergleichsmessung eine weitere Winkelmessung erforderlich. Diese Anordnung konnte weitgehend eingehalten werden, wobei es sich als zweckmäßig erwies, die Messungen gleichzeitig mit den Alignementsmessungen des betreffenden Tagesabschnitts zu erledigen. Zur weiteren Vereinfachung des Messungsablaufs wurden zudem alle Winkel einer Station nach Möglichkeit in einem einzigen Richtungssatz gemessen, der bis zu fünf Richtungen umfaßte.

Merkliche Schwierigkeiten bei der Messung traten nur auf der Seite BP 4 (130) - BP 5 (165) des Hauptpolygons auf; diese Visur verlief sehr nahe dem Boden, was zu den bekannten refraktionsbedingten Schwankungen führte. Um eine einwandfreie Übertragung des Basispolygons zu erreichen, wurden deshalb zusätzlich die Winkel nach dem Nebenpolygonpunkt 148 sowie der Brechungswinkel auf diesem Punkt wie Hauptpolygonwinkel in 10 Sätzen gemessen.

Die Messung der Brechungswinkel wurde von Mitarbeitern der Schweizerischen Geodätischen Kommission ausgeführt. Gemessen wurde mit einem Wild T3-Theodolit mit Zentrierkugel. Diese wurde in die Lochbolzen der Pfeiler bzw. in die Bronze-Steckhülsen auf den Eisenrohrstativen der Hauptpolygonpunkte BP 1 bis BP 7 eingesetzt, die vorher wie bei den Drahtmessungen mit dem Ablotgerät über den Bronzebolzen der Betonpfähle zentriert worden waren. Die Signalisierung erfolgte durch Wild Polygon-Zieltafeln mit elektrischer Beleuchtung, die von der Firma Wild mit Steckzapfen versehen worden waren, so daß sie ebenfalls direkt in die Lochbolzen oder die vorher abgeloteten Steckhülsen eingesetzt werden konnten. Die Messungen der 2. und 3. Reduktionsstufe wurden durch die beiden Alignements-Trupps mit deren Instrumentarium ausgeführt, so daß auf die Angaben im Abschnitt 5.5 verwiesen werden kann.

Die für die Reduktion des Basispolygons in den verschiedenen Reduktionsstufen benötigten Winkel sind den gemittelten Richtungssätzen der einzelnen Meßperioden entnommen worden und in Tabelle 8 zusammengestellt. Aus dem Vergleich der Resultate vor, zwischen und nach den Drahtmessungen durfte geschlossen werden, daß sich die Punkte im Lauf der Basismessung nicht verändert hatten, so daß alle Drahtmessungen mit den über die ganze Zeit gemittelten Winkeln reduziert werden konnten.

Tabelle 8

Winkel	Standpunkt	Ziel von	nach	Datum der Messungen	Anzahl Sätze	Mittel aus allen Beobachtungen
1. Stufe						${ }_{396}{ }^{\text {g }}$
	BS	BN	41	26.8., 15.9.	20	$396^{\circ}, 32045$
	41	BS	56	26, 15	20	200,01805
	56	41	95	27, 15	20	199,98035
	95	56	130	27, 16	20	215,74480
	130	95	165	27, 16	20	200,52160
	165	130	208	28, 16	20	193,42215
	208	165	251	28, 31, 5, 17	33	190,54841
	251	208	BN	28,1,7,11,17	29	190,53930
	BN	251	BS	28, 17	20	12,90620
	BS	BN	A	26, 15	20	396,32085
	A	BS	41	26, 16	20	199,99930
	41	A	56	26, 15	20	200,01825
	130	95	148	29, 16	20	200,57935
	148	130	165	29, 7, 9, 16	26	199,88215
	165	148	208	29, 9, 16	23	193,48254
2. Stufe	95	130	117	28, 2, 8, 11	12	399,8074
	117	95	130	28, 2, 8, 11	12	200,5209
	130	117	95	28, 2, 8, 11	12	399,6723
	165	208	179	31, 5, 9	9	3,1701
	179	165	194	31, 5, 9	9	196,7280
	194	179	208	31, 5, 10	9	197,0428
	208	194	165	31, 5, 9	9	3,0602
	208	251	219	31, 5, 9	9	3,4811
	219	208	230	1, 8, 9, 9	11	197,6576
	230	219	242	1, 8, 10	9	197,2672
	242	230	251	1, 8, 10, 10	12	198,0839
	251	242	208	1, 7, 11	9	3,5147
	251	BN	257	1, 7, 11	9	4,0973
	257	251	267	1, 7, 10	9	198,6018
	267	257	277	1, 7, 10	9	197,2168
	277	267	287	2, 7, 10	9	197,8437
	287	277	BN	2, 7, 10	9	199,4005
	BN	287	251	7, 10	6	2,8398
2. Stufe	179	165	208	31, 5, 9	9	195,3004
	194	165	208	31, 5, 10	9	195,4630
	219	208	251	1, 8, 9, 9	11	195,3241
	230	208	251	$1,8,10$	9	195,2742
	242	208	251	$1,8,10,10$	12	195,5566
3. Stufe	165	179	171	31, 5, 9	9	2,0080
	179	171	165	31, 5, 9	9	1,5059
	179	194	187	31, 5, 9	9	0,4827
	194	187	179	31, 5, 10	9	0,5517
	230	242	236	1, 8, 10	9	0,6452
	242	236	230	1, 8, 10, 10	12	0,6452
	242	251	246	1, 8, 10, 10	12	0,3655
	251	246	242	1, 7, 11	9	0,2928
	257	267	262	1, 7, 10	9	0,4515
	267	262	257	1, 7, 10	8	0,4506
	267	277	272	1, 7, 10	9	0,6183
	277	272	267	2, 7, 10	9	0,6184
	287	291	BN	2, 7, 10	9	0,0209
	BN	287	291	3, 9	6	0,0142

5.7 Messung des Hilfsdreiecks

Zur Übertragung der Hilfsbasis A - B auf die erste Seite BS - A des Basispolygons mußten alle drei Winkel im Dreieck A - B - BS gemessen werden. Sie wurden an den beiden Tagen gemessen, an denen die Länge der Hilfsbasis bestimmt wurde, und zwar am Vormittag vor und am Nachmittag nach Durchgang der Drahtmeßtrupps. Damit bestand Gewähr dafür, daß die tatsächlich gemessene Länge der Hilfsbasis auf die Basis übertragen wurde.

Die Messungen wurden von dem Alignements-Trupp durchgeführt, der dazu einen Wild T3-Theodolit mit Zentrierkugel benutzte. Zur Signalisierung dienten die speziellen Wild Polygon-Zieltafeln, welche direkt in die Lochbolzen der drei Pfeiler eingesteckt werden konnten. An jedem Tag wurden zweimal fünf Sätze gemessen, deren Mittelwerte in der Tabelle 9 zusammengestellt sind.

Tabelle 9

Stand punkt	Zielpunkt		gemessener Winkel		Mittel	Verbes serung	ausgegli- chener Winkel
	von	nach	1. Messung x)	$\begin{gathered} \text { 2. Messung } \\ \mathrm{xx}) \end{gathered}$			
BS	B	A	$\begin{gathered} \mathrm{g} \\ 83,2240 \end{gathered}$$43$	$\begin{gathered} \mathrm{g} \\ 83,2240 \end{gathered}$$43$	$\begin{gathered} \mathrm{g} \\ 83,2242 \end{gathered}$	$\begin{aligned} & \text { cc } \\ & -2 \end{aligned}$	$\begin{gathered} \mathrm{g} \\ 83,2240 \end{gathered}$
A	BS	B	$\begin{array}{r} 51,6780 \\ 77 \end{array}$	$\begin{array}{r} 51,6772 \\ 77 \end{array}$	51, 6776	- 1	51, 6775
B	A	BS	65,0986	65,0988	65,0986	- 1	65,0985
			82	87			
					200,0004	- 4	200,0000

x) 1.9 .59 vormittags nachmittags
xx) 7.9.59
vormittags
nachmittags

Für den trigonometrischen Höhenanschluß des Pfeilers BS wurden an einem späteren Tag die gegenseitigen Höhenwinkel von A und B nach $B S$ gemessen.

5.8 Schweremessungen

Zwei Ingenieure der Schweizerischen Geodätischen Kommission bestimmten am 8. und 9. Oktober 1959 die Schwerebeschleunigung auf acht Punkten der Basis. Sie benutzten dazu das WordenGravimeter Nr. 472 des Geophysikalischen Instituts der ETH Zürich.

Die Messungen wurden in zwei Schleifen angeordnet, die an die beiden Punkte St. Margrethen und Altstätten des schweizerischen Schweregrundnetzes angeschlossen wurden. Die abgeleiteten Schwerewerte bezogen sich damit auf die Fundamentalstation Zürich des Schweregrundnetzes mit der Schwerebeschleunigung $g=980,667 \mathrm{Gal}$ im "alten Potsdamer System" (Potsdam: g = 981, 274 Gal). Für die acht Punkte wurden folgende Schwerewerte gefunden:

Station	Bezugspunkt	Meereshöhe	g
		m	Gal
BS	Pfeileroberfläche	477,53	980,6190
B	Pfeileroberfläche	420,56	980,6324
A	Pfeileroberfläche	419,62	980,6336
BP 2	Stativteller	421,85	980,6266
BP 4	Stativteller	419,89	980,6268
BP 5	Stativteller	418,48	980,6271
BP 7	Stativteller	415,60	980,6292
BN	Pfeileroberfläche	415,75	980,6315

Als Mittelwert für die ganze Meßstrecke von B über A nach BN wurde der runde Wert 980, 630 Gal angenommen.

6. Feldauswertung

Für die Feldauswertung der Drahtmessungen stand jedem Meßtrupp ein Auswerter zur Verfügung. Die Firma Wild hatte in Heerbrugg einen Raum für eine gemeinsame Auswertestelle zur Verfügung gestellt.

Die Feldbücher der einzelnen Trupps wurden laufend von der Meßstrecke zur Auswertestelle gebracht. Für den Protokolltransport waren 3 Dienstwagen im Einsatz. In der Auswertestelle erfolgte die Prüfung der bereits vom Feldbuchführer gerechneten Mittel der Drahtablesungen durch die Summenprobe. Nach Anbringen der Temperaturkorrektion und der Drahtkonstanten der amtlichen Eichinstitute wurden die Ergebnisse aus Hin- und Rückmessung für jeden Meßdraht und die Ergebnisse aller Trupps zusammengestellt.

Folgende Fehlergrenzen wurden täglich einzeln festgestellt:
a) $|\mathrm{H}-\mathrm{R}|<2 \cdot \sqrt{\mathrm{~S}_{(\mathrm{km})}}$
b) $|\mathrm{D}|<\sqrt{{ }^{\mathrm{s}}(\mathrm{km})} \cdot \sqrt{\mathrm{n}}$
($D=$ Differenz eines Drahtes zum Mittel aller n Drähte).
Bei Nichterfüllung sollten Wiederholungsmessungen nur in Ausnahmefällen veranlaßt werden. Es wurde stets der Grundsatz beachtet, daß die Ergebnisse aller Drahtmessungen Verwendung finden müssen, auch wenn einmal größere Differenzen aufgetreten sind, von groben Fehlern jedoch abgesehen.

6.1 Drahtkonstanten (k_{o})

Die Drahtkonstanten wurden im allgemeinen unverändert den amtlichen Prüfscheinen entnom men, diejenigen der schweizerischen Drähte K 1 und K 2 einer vorläufigen Mitteilung des BIPM. Für die in Braunschweig geeichten Frankfurter Drähte 37 und 38 wurde die Drahtkonstante auf die Bezugstemperatur $15^{\circ} \mathrm{C}$ umgerechnet, damit bei der Temperaturkorrektion alle Drähte der beiden Frankfurter Meßtrupps gleich behandelt werden konnten. Bei den österreichischen Drähten 526 bis 529 war hingegen die Korrektur wegen der Abweichung des Spanngewichts von $10,000 \mathrm{~kg}$ noch nicht angebracht. Die Längenberechnung ergab also vorläufige Werte.

6.2 Temperaturkorrektion (k_{6})

Für die Berechnung der Temperaturkorrektionen wurden die zuletzt vor der Basismessung bestimmten Ausdehnungskoeffizienten verwendet (Tabellen 3 und 4). Einzig bei den beiden neuen schweizerischen Drähten K 1 und K 2 konnten noch keine Temperaturkorrektionen angebracht werden, da deren Ausdehnungskoeffizienten erst nach der Basismessung (Dezember 1959/Januar 1960) bestimmt wurden. Die Ergebnisse dieser beiden Drähte konnten deshalb noch nicht mit denjenigen der übrigen Drähte verglichen werden.

Die Bezugstemperatur war entsprechend der Bezugstemperatur der Drahtkonstanten bei der Schweiz und bei Frankfurt $15^{\circ} \mathrm{C}$, bei Österreich und bei München $20^{\circ} \mathrm{C}$. Die Temperaturkorrektionen wurden im allgemeinen im Feldbuch direkt an die einzelnen Drahtlagen angebracht (IfAG-Trig. -Vordr. Nr. A 12), teilweise wurden sie aber auch summarisch für jeden Abschnitt von U. F. zu U. F. behandelt (vgl. Abschnitt 6.3).

6.3 Kontrolle und Zusammenstellungen

Nach Anbringen der Drahtkonstanten k_{O} und der Temperaturkorrektion k_{6} sind für jeden Meßdraht die Schrägentfernungen für jede Drahtlage in eine Zusammenstellung der Hin-und Rückmessung übernommen worden. In dieser Zusammenstellung waren einmal die Differenzen zwischen Hin- und Rückmessung für jede Drahtlage und gleichzeitig auch die Summe dieser Einzeldifferenzen, d.h. die Differenz zwischen Hin- und Rückmessung für jede Teilstrecke, erkennbar.

Teilweise wurden in dieser Zusammenstellung die Korrektionen k_{o} und k_{6} auch summarisch für jede Teilstrecke angebracht.

Einzelne größere Differenzen zwischen Hin- und Rückmessung einer Drahtlage traten im Tages abschnitt 1 von Punkt A bis 95 auf (Größenordnung 0, 3 bis $0,5 \mathrm{~mm}$). Diese deuten darauf hin, daß einzelne Pfähle nicht unverändert geblieben sind (Zapfenbachübergang, Baustelle an der Nationalstraße).

Die Ergebnisse aller Meßdrähte für jeden Tagesabschnitt, unterteilt von U. F. zu U. F., wurden besonders zusammengestellt. Hierdurch wurde ein Relativvergleich ermöglicht, der evtl. stetige oder plötzliche Längenänderungen von Drähten schon abends nach der Tagesmessung anzeigte. Es erwies sich auch als vorteilhaft, daß die Ergebnisse des Vortages am nächsten Mor- . gen vor der Messung den Meßtrupps bekanntgegeben werden konnten.

7. Korrektionen an den Drahtmessungen

Nach den Feldmessungen sind die Schlußauswertungen von den beteiligten Ländern bzw. Dienststellen unabhängig voneinander durchgeführt worden. Zur Koordination der Auswertearbeiten und zur Beseitigung von Rechenfehlern wurden zwei Rechenwochen in zentraler Lage in München vom 1. bis 4. Dezember 1959 und vom 9. bis 12. Februar 1960 abgehalten. Die Schlußergebnis se wurden der II. Abteilung des DGFI in Frankfurt zur endgültigen Zusammenstellung aller Ergebnisse übersandt.

Da die einzelnen Dienststellen trotz der gemeinsamen Rechenwochen teilweise unterschiedliche Reihenfolgen und Zusammenfassungen der Korrektionen gewählt haben, sind die Zwischenergebnisse nicht immer direkt vergleichbar, indessen sind die im folgenden mitgeteilten Endergebnisse vergleichbar.

Wie im Vorjahr bei der Basis München wurden meist folgende Korrektionen berechnet [8]:
k_{o} wegen der Drahtkonstante (Absolutglied der Zustandsgleichung)
$\mathrm{k}_{1}-\mathrm{k}_{3}$ wegen der Höhenunterschiede $\Delta \mathrm{h} /$ Drahtlage
k_{4} wegen der Ausweichung a aus der Geraden
k_{5} wegen der Ablotung über den U. F.
k_{6} wegen der Temperaturdifferenz gegenüber der Bezugstemperatur
k_{7} wegen der Skalenneigungen
k_{8} wegen der mittleren Höhe der Teilstrecken über der Bezugsfläche
k_{9} wegen der Spanngewichtsdifferenz zum Vergleichsspanngewicht
k_{10} wegen der Schweredifferenz zum Vergleichsort der Drähte.

Für die Normalstrecke wurden die Nivellements-, Alignements- und Ablotungskorrektionen von der I. Abteilung des DGFI ermittelt. Gegenüber dem Vorjahr ergaben sich nur geringe Änderungen.

7.1 Kontrolle der Feldauswertung

Alle in der Feldauswertung ermittelten Werte sind grundsätzlich nachgerechnet worden. Die Arbeit wurde von den einzelnen Ländern bis zur ersten Rechenwoche in München ausgeführt. Es zeigte sich auf der Arbeitstagung, daß diese Vorsichtsmaßnahme berechtigt war.

Nach der vollständigen Zweitrechnung wurden von den beteiligten Ländern die Drahtmessungen auf der Normalstrecke mit den erforderlichen Korrektionen versehen und mit dem Ergebnis der Interferenzmessung verglichen.

Danach erfolgte dann - wieder voneinander unabhängig - die Längenberechnung der Neben - und Hauptpolygonseiten sowohl mit den von den amtlichen Eichinstituten ermittelten Drahtkonstanten als auch mit den auf der Normalstrecke bestimmten Drahtkonstanten. Es war jedoch beschlossen worden, daß die endgültige Länge der Basis nur mit den auf der Normalstrecke bestimmten Drahtkonstanten berechnet werden sollte, da diese die gleichen Einflüsse tragen wie bei der Basismessung. Die mit den Drahtkonstanten der amtlichen Eichinstitute berechnete Länge sollte dagegen zu wissenschaftlichen Betrachtungen dienen.

7. 2 Nivellementskorrektionen ($\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$)

Die Nivellementskorrektionen wurden von den Ländern unabhängig voneinander berechnet und an die Drahtmessungen angebracht. Für die Berechnung der Korrektion k_{1} (Reduktion der Schrägentfernung auf die Horizontale) wurden u.a. die Tabellen von Gigas [8] verwendet. Die Korrektion k_{1} lautet

$$
k_{1}=-\frac{\Delta h^{2}}{2 s}-\frac{\Delta h^{4}}{8 \cdot s^{3}}+\frac{\Delta h^{2}}{2 s} \cdot \frac{\partial}{s}-\frac{\Delta h^{2}}{2 s} \cdot \frac{\partial^{2}}{s^{2}}[m m]
$$

($\mathrm{s}=24,000 \mathrm{~m}, ~ \partial=$ Abweichung der Entfernung s zwischen den Zapfen von $24 \mathrm{~m}, \Delta \mathrm{~h}=$ Höhenunterschied der beiden Zapfen).

Die Korrektion k_{2} wegen der Deformation der Kettenlinie wurde nach der Formel von TárczyHornoch [9] berechnet:

$$
\mathrm{k}_{2}=+\frac{1}{6} \cdot \Delta \mathrm{~h}^{2} \cdot \mathrm{q}^{2} \cdot \mathrm{~s}[\mathrm{~mm}]
$$

$(q=0,000866[1 / m])$.
Die Korrektion k_{3} wegen der bei zunehmenden $\Delta \mathrm{h}$ eintretenden Spannungsänderung kann nach Tárczy-Hornoch [9] entfallen, wenn $\Delta \mathrm{h} \leqq 2 \mathrm{~m}$. Da die Höhenunterschiede unter diesem Betrag blieben, wurde $\mathrm{k}_{3}=0$ gesetzt.

Die Rechenstelle München hat anstelle der obigen angepaßten Gigas'schen Formeln wie bei der Basismessung München 1958 [7] die direkten Formeln von Tárczy-Hornoch für die Neigungsund Dehnungskorrektion benutzt. Wegen der Anpassung der obigen Formeln für k_{2} und k_{3} an die von Tárczy-Hornoch ergab sich jedoch kein nennenswerter Unterschied in den numerischen Ergebnissen.

Zur Berechnung der Korrektionen wurden die gemittelten Höhenunterschiede der Einzelnivellements verwendet. Die Höhenunterschiede der den mit kleinen Stativen besetzten Punkten benachbarten Drahtlagen wurden den technischen Nivellements entnommen, die jeweils vor der Drahtmessung durchgeführt worden waren. Mit Stativen besetzt waren

```
im Abschnitt 1 : Punkt 77
im Abschnitt 3 : Punkt }17
```


7. 3 Alignementskorrektionen $\left(\mathrm{k}_{4}\right)$

Die Alignementskorrektionen wurden ebenso wie die Nivellementskorrektionen von den Ländern unabhängig voneinander berechnet und an die Drahtmessungen angebracht. Für die Berechnung des Alignements durch Skalenablesung wurde die übliche Formel

$$
\mathrm{k}_{4}=-\frac{\mathrm{a}^{2}}{2 \mathrm{~s}}
$$

verwendet ($\mathrm{a}=$ Ausweichbetrag von der Parallelen zur Flucht). Teilweise wurden hierzu die Tabellen von Gigas [8] benutzt. Der Ausweichbetrag a wurde aus den Alignements vor, zwischen und nach den Drahtmessungen gemittelt, weil sich die Zapfen i.a. als stabil erwiesen hatten. Die Korrektionen für die Drahtlagen, die den mit Stativen besetzten Punkten benachbart waren, wurden gesondert aus den Ausweichbeträgen berechnet, die jeweils vor der Drahtmessung bestimmt worden waren.

Die Alignementskorrektionen für die durch Richtungsmessungen alignierten Teilstrecken wurden durch besondere Berechnungen ermittelt (vgl. Abschnitt 8.3). Hierbei wurden die Drahtlagen schrittweise mittels der Richtungsdifferenzen auf die Flucht der Teilstrecke reduziert.

7.4 Ablotungskorrektion $\left(\mathrm{k}_{5}\right)$

Die Ablotungskorrektionen waren infolge der zentrischen Aufstellung der Jäderin-Steckzapfen über U. F. mittels des optischen Ablotegerätes stets Null. Die Kontrolle der Ablotungen jeweils nach den Drahtmessungen zeigte keine Veränderungen.

7. 5 Skalenneigungskorrektion (k_{7})

Die Skalenneigungskorrektion ist nach der Formel

$$
\mathrm{k}_{7}=-\frac{1}{2} \cdot \mathrm{c} \cdot \mathrm{q}^{2} \cdot \mathrm{~s}^{2}=-0,00021599 \cdot \mathrm{c}_{[\mathrm{mm}]}[\mathrm{mm}]
$$

berechnet worden ($c=$ Differenz der Skalenablesungen an beiden Drahtenden).

Die Korrektionen wurden für jeden Draht ermittelt und summarisch an die einzelnen Teilstrekken angebracht. In der Rechenstelle München wurde die Skalenneigung bereits bei der Berechnung der Neigungs - und Dehnungskorrektion berücksichtigt.

Im Hinblick auf die später vorgesehenen Berechnungen der Lotkrümmung wurden auf Beschluß der beteiligten Länder die Ergebnisse der Drahtmessungen nicht auf den schweizerischen Landeshorizont reduziert. Es wurden stattdessen die Teilstrecken auf die mittlere Messungshöhe $\mathrm{h}_{\mathrm{m}}=420,000 \mathrm{~m}$ der Meßstrecke durch Anbringen von Reduktionen umgerechnet. Diese Korrektion wurde nach Anbringen aller übrigen Korrektionen als letzte summarisch an die Teilstrecken angebracht (vgl. Abschnitt 8.1).

Die Reduktionen wurden nach der Formel

$$
\mathrm{k}_{8}=-\frac{\mathrm{s}^{\prime} \cdot\left(\mathrm{h}-\mathrm{h}_{\mathrm{m}}\right)}{\mathrm{r}}[\mathrm{~mm}]
$$

für die Teilstrecken s^{\prime} berechnet. Die mittlere Höhe h der Teilstrecken wurde aus den Höhen der Jäderinzapfen, die aus den Nivellements über die Meßstrecken hergeleitet wurden, ermittelt (vgl. Abschnitt 5.4).

Der Krümmungsradius r des Bessel-Ellipsoids als Bezugsfläche ergab sich für die mittlere Breite und das mittlere Azimut der Basis zu

$$
\mathbf{r}=6375,8 \mathrm{~km} .
$$

7. 7 Spanngewichtskorrektion $\left(\mathrm{k}_{9}\right)$

Die Spanngewichte (einschließlich Karabinerhaken und Spannbandanteil) wurden von den beteiligten Ländern vor der Drahtmessung geeicht. Der Einfluß des Differenzbetrages gegenüber dem Soll-Spanngewicht von $10,000 \mathrm{~kg}$ auf die Drahtlänge wurde durch die Spanngewichtskorrektion berücksichtigt. Im allgemeinen gilt dabei die Faustregel, daß 1 g Spanngewichtsänderung eine Längenänderung von $+1 \mu$ pro Drahtlage hervorruft.

Mit diesem runden Wert haben die Rechenstellen Zürich und Frankfurt gerechnet, während die Rechenstelle Wien mit dem theoretisch ermittelten Wert $+1,049 \mu / g$ Spanngewichtsänderung gerechnet hat.

Die Rechenstelle München verwendete den Faktor $+1,072 \mu / \mathrm{g}$, der aus früheren Versuchen ermittelt war [7].

7. $8 \underline{\left.\text { Schwerekorrektion (} \mathrm{k}_{10} \text {) }\right) ~(1)}$

Die Schwerekorrektion

$$
\mathrm{k}_{10}=+7,02 \cdot \frac{\Delta \mathrm{~g}}{\mathrm{~g}}[\mathrm{~mm}]
$$

konnte mit den gemessenen Schwereunterschieden $\Delta \mathrm{g}=\mathrm{g}_{2}-\mathrm{g}_{1}$ zwischen den amtlichen Eichinstituten und den Meßorten (Normalstrecke und Basis) berechnet werden. g2 ist die Schwere am Meßort und g_{1} die Schwere an dem Ort, an welchem die Drähte verglichen wurden.

Den Korrektionen liegen die folgenden Schwerewerte im alten Potsdamer Schweresystem zugrunde:

BIPM	980,9408 Gal	
PTB	981,2682	$\prime \prime$
Normalstrecke	980,7133	$\prime \prime$
Basis	980,630	$"$.

Die Schwerekorrektionen pro Drahtlage betragen damit:

von PTB	nach Normalstrecke	$-3,97$	μ	
" PTB	"	Basis	$-4,56$	μ
" BIPM	$"$	Normalstrecke	$-1,62$	μ
" BIPM	" Basis	$-2,22 \mu$		
" Normalstrecke	" Basis	$-0,60 \mu$		

Die Korrektionen wurden i.a. summarisch an die Teilstrecken angebracht; eine Ausnahme machte die I. Abteilung des DGFI (München), die diese Korrektionen an ihren Drahtkonstanten berücksichtigte.

7.9 Zusammenfassung der Korrektionen

Nach der Kontrolle der Feldauswertung (vgl. Abschnitt 7.1) wurden aus den Zusammenstellungen der Hin- und Rückmessung für jede Teilstrecke die mit den einzelnen Drähten gemessenen Schrägentfernungen entnommen und mit allen erforderlichen Korrektionen versehen.

Die von der Schweiz, Österreich und der II. Abteilung des DGFI berechneten Schrägentfernungen enthalten die amtliche Drahtkonstante k_{o} vor der Basismessung, bezogen auf $10,000 \mathrm{~kg}$ Spanngewicht und die Schwere des jeweiligen Eichortes sowie die Temperaturkorrektion k_{6}. Es wurden daher in Tabellen zur Zusammenfassung der Korrektionen für Drahtmessungen für die Teilstrecken die Korrektionen k_{1} (Neigung), k_{2} (Deformation der Kettenlinie), k_{4} (Alignement), k_{7} (Skalenneigung), k_{9} (Spanngewicht) und k_{10} (Schwerkraft) aufgeführt und angebracht.

Die Schrägentfernungen der I. Abteilung des DGFI enthalten dagegen nur die Temperaturkorrektion k_{6}. In ähnlichen Tabellen wurden hier die Summe der Korrektionen $\mathrm{k}_{1}, \mathrm{k}_{2}$ und k_{7}, die Korrektion k_{4} und der n -fache Betrag der Drahtkonstanten k_{O}, und zwar je für die Labor- und Normalstreckenwerte vor und nach der Basismessung, eingetragen und den Schrägentfernungen hinzugefügt ($\mathrm{n}=$ Anzahl der Drahtlagen pro Teilstrecke). Die Drahtkonstanten sind im Gegensatz zu oben auf das tatsächliche Spanngewicht und die Schwerkraft am Meßort Heerbrugg bezogen.

Die Ergebnisse der Tabellen sind - für jeden Draht - die Längen der Teilstrecken in der mittleren Messungshöhe jeder Teilstrecke, im ersten Fall mit der amtlichen Drahtkonstante vor der Basismessung, im zweiten Fall mit allen Drahtkonstanten. Die Längen der Teilstrecken mit den übrigen Drahtkonstanten wurden von der Schweiz, Österreich und der II. Abteilung des DGFI anschließend gesondert berechnet.

In den Anlagen 18 und 19 sind die Längen der Teilstrecken im Basispolygon A - BN mit amtlichen Drahtkonstanten und mit Drahtkonstanten aus dem Normalstreckenvergleich zusammengestellt. Die Tabellen enthalten die numerischen Werte der zentralen Rechenstelle Frankfurt a. M..

Da die schweizerischen Drähte K 1 und K 2 große Abweichungen in ihren amtlichen Drahtkonstanten zeigten, wurden ihre Ergebnisse in der Anlage 18 nicht berücksichtigt. Es wird vermutet, daß diese Drähte während der Basismessung sprunghaft ihre Länge änderten. Die Ursache für die festgestellte Verkürzung wurde bisher nicht gefunden. Jedenfalls konnte weder die amtliche Drahtkonstante vor der Basismessung noch diejenige nach der Basismessung für die Berechnung der Teilstrecken benutzt werden. Auch die Drahtkonstanten aus den Normalstreckenvergleichen wiesen erhebliche Unterschiede auf, die allerdings kleiner waren als diejenigen der Labor-Drahtkonstanten (Tabelle 6). Dank der dreifachen Messung der örtlichen Vergleichsstrecke war es möglich, das Verhalten der beiden Drähte zu untersuchen, indem die mit den Drahtkonstanten aus dem Normalstreckenvergleich vor und nach der Basismessung abgeleiteten Längen mit dem Mittelwert der übrigen 10 Drähte verglichen wurden. Dabei zeigte sich, daß beim Draht K 1 eine sprunghafte Längenänderung zwischen der 1. und 2. örtlichen Vergleichsmessung eingetreten sein mußte. Beim Draht K 2 hingegen ließen sich sprunghafte, Längenänderungen zwischen dem 1. Normalstreckenvergleich und der 1. örtlichen Vergleichsmessung sowie zwischen der 2. und 3. örtlichen Vergleichsmessung vermuten. Zur zeitlichen und örtlichen Lokalisierung der Sprünge mußten nun bei beiden Drähten die Teilstreckenlängen der einzelnen Tagesabschnitte mit dem Mittel der übrigen 10 Drähte verglichen werden. Dies führte dazu, daß bei Draht K 1 die Teilstrecken A-41, 41-56 und 56-95 nur mit der Drahtkonstanten vor der Basismessung und die übrigen Teilstrecken nur mit der Drahtkonstanten n a ch der Ba-
sismessung berechnet wurden. Die Drahtmessungen auf der örtlichen Vergleichsstrecke vor der Basismessung wurden mit der Drahtkonstanten vor der Basismessung berechnet (Teilstrecken 95-117 und 117-130). Bei Draht K 2 wurde für alle Teilstrecken nur die Drahtkonstante $n a c h$ der Basismessung verwendet. Für die örtliche Vergleichsstrecke wurde insbesondere nur die Vergleichsmessung n a ch der Basismessung benutzt. Die Hilfsbasis A - B wurde bei Draht K 1 mit der Drahtkonstanten vor der Basismessung und bei K 2 mit der Drahtkonstanten $n a \operatorname{ch}$ der Basismessung berechnet. Nachdem so alle Teilstreckenlängen lediglich mit der Drahtkonstanten aus einem Normalstreckenvergleich berechnet werden konnten, anstatt, wie bei den übrigen Drähten mit dem Mittel aus zwei Vergleichen, war es naheliegend, diese Werte nur mit dem Gewicht 0,5 bei der Mittelung aller Ergebnisse einzuführen.

Die in den Anlagen 18, 19 und 20 zusammengestellten endgültigen Längen der Teilstrecken und der Hilfsbasis wurden anschließend durch Anbringen der Höhenreduktion k_{8} auf die mittlere Messungshöhe $\mathrm{h}_{\mathrm{m}}=420,000 \mathrm{~m}$ der Meßstrecke umgerechnet. Mit diesen Längen wurde dann die Reduktion des Basispolygons durchgeführt.

8. Reduktion des Basispolygons

Die Reduktion des Basispolygons wurde von der Schweiz, von der I. Abteilung und der II. Abteilung des DGFI unabhängig voneinander durchgeführt.

Entsprechend dem Aufbau der Meßstrecke erfolgte die Reduktion in mehreren Stufen. Die gemessenen Brechungswinkel wurden dabei in den Nebenpolygonen und im Hauptpolygon mit unterschiedlichen Gewichtsansätzen ausgeglichen, um den Einfluß auf das Reduktionsergebnis festzustellen. Auch wurde der Brechpunkt 148 einmal als Punkt des Hauptpolygons betrachtet. Eine Ausgleichung aller Brechungswinkel wurde von der Schweiz ausgeführt, eine genäherte Ausgleichung von der I. Abteilung des DGFI.

In den folgenden Abschnitten werden die Berechnungen und Ergebnisse zusammengestellt, soweit hierfür die Unterlagen bei der II. Abteilung des DGFI vorhanden waren.

8.1 Reduktion auf gleichen Horizont

Auf eine tabellarische Zusammenstellung der auf den einheitlichen Messungshorizont $\mathrm{h}_{\mathrm{m}}=$ $420,000 \mathrm{~m}$ reduzierten Teilstrecken wurde verzichtet, weil jede Rechenstelle geringfügig abweichende Teilstreckenlängen im mittleren Messungshorizont h angegeben hatte.

Der summarische Betrag der Teilstreckenlängen im jeweiligen Messungshorizont und der Korrektionen k_{8} auf den mittleren Messungshorizont $\mathrm{h}_{\mathrm{m}}=420,000 \mathrm{~m}$ ist im Abschnitt 9.2 angegeben. Die gesamte Höhenkorrektion auf den mittleren Messungshorizont $\mathrm{h}_{\mathrm{m}}=420,000 \mathrm{~m}$ betrug $+2,231 \mathrm{~mm}$.

8. 2 Reduktion der Hilfsbasis

Die indirekt bestimmte Strecke BS - A wurde mit Hilfe des Sinussatzes berechnet. Mit den ausgeglichenen Winkeln der Tabelle 9 ergab sich die Reduktion der Hilfsbasis A - B gut übereinstimmend zu

Schweiz:	$-25075,498 \mathrm{~mm}$
I. Abt. DGFI:	$-25075,49 \mathrm{~mm}$
II. Abt. DGFI:	$-25075,492 \mathrm{~mm}$

8. 3 Reduktion der 4. Stufe

Das Alignement durch Richtungsmessung auf den Teilstrecken 194-208, 251-257, 262-267 und 287 (291) - BN wird in den vorliegenden Berechnungen auch als Reduktion der 4. Stufe bezeichnet (vgl. Abschnitte 5.5 und 7.3). Die in allen Ländern unabhängig voneinander durchgeführten Berechnungen der 4. Stufe ergaben die in Tabelle 10 zusammengestellten Ergebnisse.

Tabelle 10

Teilstrecke	Schweiz	Österreich	I.Abtei- lung DGFI	II.Abtei- lung DGFI
$194-208$	mm	mm	mm	mm
$251-257$				
$262-267$				
$291-\mathrm{BN}$	$-24,605$	$-24,611$	$-24,608$	$-24,591$
Gesamt- reduktion	$-144,030$	$-144,214$	$-144,040$	$-144,039$

Diese Reduktionen wurden von allen Ländern als Alignementskorrektionen k_{4} in der Zusammenstellung der Korrektionen (IfAG-Trig.-Vordr. Nr. B 17) an die betreffenden Teilstreckenlängen ihrer Drähte angebracht. Sie erscheinen deshalb in der Zusammenfassung der Reduktionen (vgl. Abschnitt 8. 7) nicht mehr.

8.4 Reduktion der 3. Stufe

In der 3. Reduktionsstufe wurden die Seiten 165-179, 179-194, 230-242, 242-257, $257-$ 267, 267-277 und 287-BN der Nebenpolygone berechnet (vgl. Abschnitt 5. 6). Die Ergebnisse der Reduktion für die mit amtlichen und Drahtkonstanten aus der Normalstrecke berechneten Strecken enthält die nachstehende Tabelle 11.

Tabelle 11

Seite	Schweiz	I. Abteilung DGFI	II. Abteilung DGFI
	mm	mm	mm
165-179	- 125,432	- 125,44	- 125,432
179-194	- 11,833	- 11,85	- 11,843
230-242	- 14,797	- 14,78	- 14,791
242-251	- 2,853	- 2,85	- 2,850
257-267	- 6,029	- 6,04	- 6,030
267-277	- 11,323	- 11,33	- 11,323
287 - BN	- 0,006	- 0,00	- 0,008
Gesamtreduktion	- 172,273	- 172,29	- 172,277

Die Reduktionen weichen nur geringfügig voneinander ab und gelten sowohl für die Berechnung der Teilstrecken mit Drahtkonstanten aus der Normalstrecke wie auch mit amtlichen Drahtkonstanten.

8.5 Reduktion der 2. Stufe

Die Reduktion der 2. Stufe ergab die Hauptpolygonseiten $95-130$, 130-165, 165-208, $208-$ 251 und 251 - BN.

Die Ausgleichung der aus den Richtungssätzen entnommenen Winkel in den Nebenpolygonen ist in der nachstehenden Tabelle 12 zusammengestellt. Alle Winkel wurden bei der Ausgleichung als gleichgewichtig betrachtet.

Tabelle 12

Stand punkt	Zielpunkt		gemessene Winkel	Verb.	ausgeglichene Winkel
	von				
			g	cc	g
95	130	117	399, 8074	- 2	399, 8072
117	95	130	200,5209	- 2	200,5207
130	117	95	399,6723	- 2	399, 6721
			0,0006	- 6	0,0000
130	165	148	0,0577	- 1	0,0576
148	130	165	199,8822	- 1	199,8821
165	148	130	0, 0604	- 1	0,0603
			0, 0003	- 3	0,0000
165	208	179	3,1701	- 3	3,1698
179	165	194	196,7280	- 3	196,7277
194	179	208	197,0428	- 3	197, 0425
208	194	165	3,0602	- 2	3, 0600
			0,0011	- 11	0, 0000
208	251	219	3,4811	- 9	3,4802
219	208	230	197,6576	- 9	197,6567
230	219	242	197, 2672	- 9	197,2663
242	230	251	198, 0839	- 9	198, 0830
251	242	208	3,5147		3,5138
			0,0045	- 45	0,0000
251	BN	257	4, 0973	0	4,0973
257	251	267	198,6018	0	198,6018
267	257	277	197,2168	+ 1	197,2169
277	267	287	197,8437	0	197,8437
287	277	BN	199,4005	0	199,4005
BN	287	251	2,8398	0	2,8398
			399,9999	+ 1	0,0000

Abweichend von den Werten der Tabelle 12 wurden die nicht direkt gemessenen Winkel 165 -130-148und 148-165-130 des 2. Nebenpolygons von der Schweiz zu 0, 0578g bzw. 0, $060 \mathrm{~g}^{\mathrm{g}}$ und von der I. Abteilung des DGFI zu $0,0577 \mathrm{~g}$ bzw. $0,0602 \mathrm{~g}$ berechnet.

Die auf den Nebenpolygonpunkten 179, 194, 219, 230 und 242 nach den Hauptpolygonpunkten gemessenen Winkel (Tabelle 8) wurden bei der Reduktionsrechnung nicht berücksichtigt.

Die Reduktionsergebnisse für die mit Drahtkonstanten aus der Normalstrecke berechneten Strecken enthält Tabelle 13. Die Reduktionen für die mit amtlichen Drahtkonstanten berechneten Strecken sind nur um wenige μ kleiner.

Tabelle 13

Seite	Schweiz	I. Abteilung DGFI	II. Abteilung DGFI
	mm	mm	mm
95-130	6,55	6,58	- 6,567
130-165	0,36	- 0,33	- 0,349
165-208	- 805,23	- 805,24	- 805,249
208-251	- 856,43	- 856,43	- 856,422
251-BN	- 901,02	- 901,07	- 901,042
Gesamtreduktion	- 2569,59	- 2569,65	- 2569, 629

Die Werte weichen nur geringfügig voneinander ab.
8. 6 Reduktion der 1. Stufe

Die Reduktion der 1. Stufe wurde auf verschiedene Arten durchgeführt. Anlaß hierzu waren die teilweise stark abweichenden Satzzahlen der Brechungswinkel, die Überbestimmungen im Hauptpolygon und vermutete Seitenrefraktionseinflüsse zwischen den Brechungspunkten 130 und 165 sowie von 165 bis BN.

Die II. Abteilung des DGFI verteilte den Widerspruch im Hauptpolygon nach

1) $-\frac{w}{n}$ und
2) $-\frac{\frac{1}{p_{i}}}{\left[\frac{1}{\mathrm{p}}\right]} \cdot w$
$\left(p_{i}=\frac{n_{i}}{20}, n_{i}=\right.$ Anzahl der gemessenen Sätze).
Damit ergeben sich die folgenden Richtungswinkel der Hauptpolygonseiten (Tabelle 14).

Tabelle 14

Standpunkt	Zielpunktvon nach		gemessene Winkel	Ausgleichung nach 1)			Ausgleichung nach 2)				
			v_{1}	ausgegl. Winkel	$\begin{gathered} \text { Richtungs- } \\ \text { winkel } \end{gathered}$	p_{i}	v_{1}	ausgegl. Winkel	Richtungswinkel		
				G	cc	g	E		cc	g	g
BS	BN	A	396,32085	- 1,5	396,3207		1	- 1,3	396,32072		
A	BS	41	199,99930	- 1,0	199,9992	396,3207	1	-1,3	199,99917	396,32072	
41	A	56	200,01825	1,0	200,0181	396,3199	1	- 1,3	199,99917	396,31989	
56	4	5	200,01825		,01	396,3380	1	- 1,3	200,01812	396,33801	
56	41	95	199,98035	- 1,5	199,9802	396,3380	1	- 1,3	199,98022	396,33801	
95	56	130	215,74480	- 1,0	215,7447	396,3182	1	3		396,31823	
130	95	165	200,52160	- 1,0	200,5215	12,0629	1			12,06290	
165	130	208	193,42215		, 4	12,5844				12,58437	
208	165	251				6,0064	1	- 1	193,42202	6,00639	
208	165	251	190,54841	- 1,1	190,5483		1,65	-0,8	190,54833		
251	208	BN	190,53930	- 1,0	190,5392	,	1,45	- 0,9	190,53921	396,55472	
BN	251	BS	12,90620	- 1,0	12,9061	387,0939	1	- 1,3	12	387,09393	
			0,00121	- 12,1	0,0000			-12,1	0,000		

Außerdem wurde in einer weiteren Ausgleichung der Brechpunkt 148 in das Hauptpolygon mit einbezogen und der Widerspruch nach $-\frac{\mathrm{w}}{\mathrm{n}}$ verteilt (Tabelle 15).

Tabelle 15

Stand punkt	Zielpunkt		gemessene Winkel	Ausgleichung nach 1)			
			v_{i}	ausgegl. Winkel	Richtungs winkel		
				g	cc	g	g
BS	BN	A	396, 32085	- 1,5	396, 3207	396, 3207	
A	BS	41	199,99930	- 1,0	199,9992	396, 3199	
41	A	56	200, 01825	- 1,5	200, 0181	396, 3380	
56	41	95	199, 98035	- 1.5	199, 9802	396, 3182	
95	56	130	215, 74480	- 1,0	215, 7447	12,0629	
130	95	148	200,47935	- 1,5	200,5792	12,6421	
148	130	165	199, 88215	- 1,5	199, 8820	12,5241	
165	148	208	193,48254	- 1,4	193,4824	6,0065	
208	165	251	190,54841	- 1,1	190,5483	396,5548	
251	208	BN	190,53930	- 1,0	190,5392	387, 0940	
BN	251	BS	12,90620	- 2,0	12,9060		
			0,00150	- 15,0	0,0000		

In den Tabellen 14 und 15 wurden in den Ausgleichungen nach 1) die ausgeglichenen Winkel gleichzeitig auf volle Neusekunden gerundet.

Die Schweiz führte eine Ausgleichung aller mit dem Hauptpolygon zusammenhängenden Brechungswinkel mit unterschiedlichen Gewichten durch, allerdings unter Vernachlässigung der Tatsache, da β auf den Punkten BS, 41 bzw. 130 und 165 Richtungssätze gemessen worden waren. Eine genäherte Ausgleichung unter einfacher Mittelung der überbestimmten Winkel erfolgte von der I. Abteilung des DGFI.

Die endgültigen Richtungswinkel der Hauptpolygonseiten aus allen Berechnungen sind in der nachstehenden Tabelle 16 enthalten. Die Ergebnisse der Tabelle 15 sind in Tabelle 16 nicht mitaufgeführt.

Tabelle 16

Richtungs winkel von - nach	Richtungswinkel im Hauptpolygon				Differenzen		
	a)	b)	c)	d)	a) -b)	a) -c)	a! -d)
	Schweiz	I. Abt.	II. Abt.	II. Abt.			
		DGF	1)	2)			
	g	g	g	g	cc	cc	cc
BS - A	396, 3208	396, 3208	396,3207	396,32072	0	+ 1	+ 0,8
A - 41	396, 3201	396, 3201	396, 3199	396, 31989	0	$+2$	+ 2,1
41 - 56	396, 3383	396, 3382	396, 3380	396, 33801	+ 1	$+3$	+ 2, 9
$56-95$	396, 3187	396, 3184	396, 3182	396, 31823	+ 3	$+5$	+ 4,7
95-130	12,0634	12,0630	12,0629	12,06290	+ 4	+ 5	+ 5,0
130-165	12,5850	12,5845	12,5844	12,58437	+ 5	+ 6	+6,3
165-208	6,0069	6,0067	6, 0064	6,00639	+2	$+5$	+ 5,1
208-251	396, 5550	396,5549	396, 5547	396,55472	+1	+ 3	+2,8
251- BN	387, 0938	387, 0940	387, 0939	387, 09393	- 2	- 1	- 1,3

Die Ergebnisse der mit den Richtungswinkeln der Tabelle 16 durchgeführten Reduktionen sind in der folgenden Tabelle 17 zusammengestellt. Die Reduktionen beziehen sich auf Strecken, die mit Drahtkonstanten aus der Normalstrecke berechnet worden sind. Die Reduktionen für die mit amtlichen Drahtkonstanten berechneten Strecken weichen um - $1 \mu / \mathrm{m}$ ab (vgl. Abschnitt 9.2).

Tabelle 17

Seite	Länge ca.	a) Schweiz	Reduktion b) I. Abt. DGFI	$\begin{gathered} \text { r 1. Stufe } \\ \text { c) } \\ \text { II. Abt. } \\ \text { DGFI } \\ \text { 1) } \end{gathered}$	d) II. Abt. DGFI 2)	a) - b)	$\frac{\text { ifferenzer }}{\text { a) }-c \text {) }}$	a) - d)
	m	mm						
BS - A	191	- 318,92	- 318,93	- 318,943	- 318,940	+ 0,01	+ 0,023	+ 0,020
A - 41	984	- 1643,80	- 1643,83	- 1644,021	- 1644,031	+ 0,03	+ 0,221	+ 0,231
41-56	360	- 595,62	- 595,65	- 595,724	- 595,720	+ 0,03	+ 0,104	$+0,100$
56-95	936	- 1564,53	- 1564,78	- 1564,984	- 1564,956	+ 0,25	+ 0,454	$+0,426$
95-130	840	- 15041, 98	- 15041, 01	- 15040, 763	- 15040, 763	- 0,97	- 1,217	- 1,217
130-165	840	- 16367, 05	- 16365,80	- 16365,500	- 16365,424	- 1,25	- 1,550	1,626
165-208	1032	- 4588,97	- 4588,71	- 4588,197	- 4588,177	- 0,26	- 0,773	0,793
208-251	1032	- 1510,08	- 1510,18	- 1510,360	- 1510,339	+ 0,10	+ 0,280	+ 0,259
251 - BN	1103	- 22584,72	- 22583,99	- 22584,342	- 22584, 232	- 0,73	- 0,378	- 0,488
Gesamt reduktion		- 64215,67	- 64212,88	- 64212,834	- 64212,582	- 2,79	- 2,836	- 3,088

Die Tabelle 17 läßt zum Teil erhebliche Abweichungen der einzelnen Reduktionen untereinander erkennen. Im Gesamtbetrag der Reduktionen der 1. Stufe ergeben sich Abweichungen sogar bis zu 3 mm . Die Genauigkeit der betrachteten Basislänge hängt damit erheblich von der Genauigkeit der Winkelmessungen und ihrer Auswertung ab.

Tabelle 18

Seite	Länge ca.	Richtungs winkel	Reduktion
	m	g	mm
BS - A	191	396,3207	- 318,943
A - 41	984	396, 3199	- 1644,021
41-56	360	396, 3380	- 595,724
56-95	936	396, 3182	- 1564,984
95-117	528	11,8701	- 9155,788
117-130	$\frac{312}{840}$	12,3908	$\frac{-\quad 5892,982}{-15048,770}$
130-148	432	12,6421	- 8493,366
148-165	$\frac{408}{840}$	12,5241	$\frac{-7873,456}{-16366,822}$
165-179	336	9,1763	- 3485,745
179-194	360	5,9040	- 1547,907
194-208	$\frac{336}{1032}$	2,9465	$\begin{array}{r}\text { - } 359,940 \\ \hline-\quad 5393,592\end{array}$
208-219	264	0,0350	- 0,053
219-230	264	397,6917	- 173,613
230-242	288	394,9580	- 903,014
242-251	$\frac{216}{1032}$	393, 0410	- 1289,861
251-257	144	391,1913	- 1376,383
257-267	240	389, 7931	- 3080,419
267-277	240	387, 0100	- 4979,976
277-287	240	384,8537	- 6758,452
287-BN	$\frac{239}{1103}$	384,2542	$\begin{array}{r}-7289,157 \\ \hline-23484,387\end{array}$
			- 66783, 784

Die weitere Reduktion der II. Abteilung des DGFI mit Brechpunkt 148 als Hauptpunkt wurde unter gleichzeitiger Vereinigung der Nebenpolygone mit dem Hauptpolygon zu einem Polygon durchgeführt. Hierzu wurden die ausgeglichenen Brechungswinkel des Hauptpolygons (Tabelle 15) mit den ausgeglichenen Brechungs winkeln der Nebenpolygone (Tabelle 12) vereinigt und danach die Richtungswinkel des Gesamtpolygons berechnet. Die Ergebnisse dieser Reduktion sind in der nachstehenden Tabelle 18 enthalten.

8.7 Zusammenfassung der Reduktionen

Die vorliegende Basismessung hatte die Eigenart, da β, um gute Bedingungen für die Drahtmessungen zu erhalten, eine polygonale Ausbiegung gewählt wurde, die Reduktionen der gemessenen Längen auf die Basisflucht in 4 Stufen notwendig machte.

Das übliche Alignement wurde auch als Reduktion der 4. Stufe bezeichnet, weil für die stärker ausweichenden Punkte auch Richtungsmessungen erforderlich waren.
Die Reduktion auf die Nebenpolygonseiten wurde als die der 3. Stufe,
die Reduktion auf die Hauptpolygonseiten wurde als die der 2. Stufe,
die Reduktion auf die Basisflucht als die der 1. Stufe
bezeichnet.
Bei den Reduktionen in den Stufen 2 und 1 wurden mehrere Ansätze für die Richtungswinkel benutzt. Außerdem wurde versuchsweise der Brechpunkt 148 des Nebenpolygons auch einmal als Brechpunkt des Hauptpolygons betrachtet.

Für die Vergleiche der Reduktionen wurden die Differenzen zwischen der Schweizer Ausgleichung und den übrigen Ausgleichungen gebildet. Es ergaben sich dabei Abweichungen bis 3 mm , die ausschließlich aus den Reduktionen der 1. Stufe herrühren (Tabelle 19).

Tabelle 19

> 1) Widerspruch verteilt nach $-\frac{w}{n}$
> 2) Widerspruch verteilt nach $-\frac{\frac{1}{p_{1}}}{\left[\frac{1}{\mathrm{p}}\right]} \cdot w$
> 3) Haupt- u. Nebenpolygon vereinigt, Punkt 148 als Hauptpunkt, Widerspruch verteilt nach $-\frac{\mathrm{w}}{\mathrm{n}}$

Die Werte gelten für die mit den Drahtkonstanten aus dem Normalstreckenvergleich abgeleiteten Längen des Basispolygons von A nach BN und der Hilfsbasis A - B im mittleren Messungshorizont $h_{m}=420,000 \mathrm{~m}$.

Eine Einbeziehung des Brechpunktes 148 in das Hauptpolygon bringt zwar einen anderen fehlertheoretischen Ansatz, wirkt sich aber im Ergebnis nicht aus.

9.1 Ergebnisse der Messungen auf der Normalstrecke

Die Länge der Normalstrecke München wurde aus sämtlichen Messungen der Meßdrähte mit Ausnahme der schweizerischen mit den Drahtkonstanten der amtlichen Eichinstitute berechnet. Die Ergebnisse der Einzelmessungen und die Drahtmittel sind in der Anlage 17 zusammengestellt worden. Da die österreichischen Unterlagen für den Normalstreckenvergleich nicht vorliegen, wurden die Längen mit den österreichischen Drähten 526, 527, 528 und 529 aus den Differenzen zwischen den amtlichen Drahtkonstanten und den Drahtkonstanten aus der Normalstrecke errechnet.

Von Interesse ist der Vergleich der Mittelwerte für die im BIPM und die in der PTB verglichenen Drähte:

| Mittel BIPM | $(\mathrm{n}=2)$ | $: 864020,037 \mathrm{~mm}$ |
| :--- | :--- | :--- | :--- |
| Mittel PTB | $(\mathrm{n}=8)$ | $: 864020,462 \mathrm{~mm}$ |
| Gesamtmittel | $(\mathrm{n}=10)$ | $: 864020,377 \mathrm{~mm}$ |
| Interferenzmessung | $: 864019,535 \mathrm{~mm}$. | |

Es ergibt sich also

- zwischen dem Gesamtmittel der Messungen mit 10 Drähten und dem Übertragungswert der Interferenzmessung eine Differenz von ca. $-0,8 \mathrm{~mm}$,
- zwischen den Gruppenmitteln der im BIPM und in der PTB verglichenen Drähte eine, wenn auch nicht signifikante, Differenz von $0,425 \mathrm{~mm}$.

Diese letzte Differenz von etwa $0,5 \mu / \mathrm{m}$ ist bereits beim Vergleich der Drahtkonstanten aus Labor - und Normalstreckenvergleichen (vgl. Abschnitt 4.3) erwähnt worden.

Die Messungen auf der Normalstrecke eignen sich zur Beurteilung der Genauigkeit der Drahtmessungen, weil der Ausbau mit Betonpfählen die unveränderte Stellung der Jäderinzapfen während der Messung gewährleistet.

Der mittlere Fehler der Drahtmessung kann aus Beobachtungsdifferenzen d_{1} zwischen den gleichwertigen Hin- und Rückmessungen nach der Formel

$$
m_{1}= \pm \sqrt{\frac{\left[d_{1} d_{1}\right]}{2 \mathrm{n}}}
$$

ermittelt werden. Diese Beobachtungsdifferenzen sind durch den systematischen Einfluß der Dezimetergleichung beider Beobachter verfälscht, wie die Vorzeichenfolgen der Differenzen in den Zusammenstellungen der Hin- und Rückmessungen zeigen. Dennoch ist der mittlere Fehler ohne Elimination dieses systematischen Anteils berechnet worden und ergibt folgende Werte, die mit denen der Basismessung München 1958 (2) übereinstimmen:

Mittlerer Fehler der einmaligen Messung einer Drahtlage

$$
\mathrm{m}_{1}= \pm 0,06 \mathrm{~mm}
$$

Mittlerer Fehler des Mittels aus Hin- und Rückmessung für eine Drahtlage

$$
\mathrm{M}_{1}= \pm 0,04 \mathrm{~mm}
$$

Mittlerer Fehler des Mittels aus Hin- und Rückmessung für Kilometerstrecke

$$
\mathrm{M}_{\mathrm{km}}= \pm 0,28 \mathrm{~mm}
$$

Durch die Beobachterwechsel in der Mitte jedes Streckenabschnitts ist die sich für die gesamte Normalstrecke zwischen Hin- und Rückmessung mit einem Draht ergebende Differenz d_{2} frei von dem Einfluß der Dezimetergleichung beider Beobachter. Von den insgesamt 24 Differenzen d_{2}
der Hin- und Rückmessungen mit den 12 Meßdrähten vor und nach der Basismessung sind entge gen den Erwartungen jedoch 4 erheblich größer als die anderen ausgefallen, weil hier aus ungeklärter Ursache die Beobachterwechsel keinen Vorzeichenwechsel der Dezimetergleichung bewirkten. Die Berechnung der mittleren Fehler aus den Differenzen d_{2} wurden daher mit allen 24 Differenzen und mit den 20 "einwandfreien" Differenzen (die Ergebnisse stehen in Klammern dahinter) ausgeführt. Damit ist dann für die Länge der Normalstrecke von 864 m ($=36$ Drahtlagen)
der mittlere Fehler einer Messung $\mathrm{m}_{\mathrm{L}}= \pm \sqrt{\frac{\left[\mathrm{d}_{2} \mathrm{~d}_{2}\right]}{2 \mathrm{n}}}= \pm 0,44(0,27) \mathrm{mm}$
der mittlere Fehler des Mittels aus Hin- und Rückmessung

$$
\mathrm{M}_{\mathrm{L}}= \pm \frac{1}{2} \sqrt{\frac{\left[\mathrm{~d}_{2} \mathrm{~d}_{2}\right]}{\mathrm{n}}}= \pm 0,31(0,19) \mathrm{mm}
$$

der mittlere Kilometerfehler für das Mittel aus Hin- und Rückmessung

$$
\mathrm{M}_{\mathrm{km}}=+\frac{1}{2} \sqrt{\frac{\left[\mathrm{~d}_{2} \mathrm{~d}_{2}\right]}{\mathrm{n}} \cdot \frac{1000}{864}}= \pm 0,34(0,20) \mathrm{mm} .
$$

Die Berechnung des mittleren Fehlers aus den Verbesserungen der Einzelmittel jedes Drahtes gegen das Gesamtmittel aller Drähte dürfte dagegen der äußeren Genauigkeit des Meßverfahrens entsprechen, da in den Verbesserungen der Einfluß der Restfehler in den Drahtangaben, den Korrektionen und der Trupps enthalten sind. Hiernach ergibt sich
der mittlere Fehler des Mittels
aus einer einmaligen Hin-
und Rückmessung mit einem Draht

$$
\mathrm{M}_{864}= \pm \sqrt{\frac{[\mathrm{vv}]}{\mathrm{n}-1}}= \pm 1,0 \mathrm{~mm}
$$

der mittlere Fehler für das Mittel aus einer einmaligen Hinund Rückmessung einer Kilometerstrecke

$$
\mathrm{M}_{\mathrm{km}}= \pm \sqrt{\frac{[\mathrm{vv}]}{\mathrm{n}-1} \cdot \frac{1000}{864}}= \pm 1,1 \mathrm{~mm}
$$

Zusammenfassend betrachtet stimmen die aus den Beobachtungsdifferenzen d_{1} und d_{2} berechneten mittleren Fehler mit $\pm 0,2-0,3 \mathrm{~mm} / \mathrm{km}$ gut überein. Diese Werte geben nur die innere Meßgenauigkeit mit ein und demselben Draht an. Die äußere Genauigkeit des Mittels einer einmaligen Hin- und Rückmessung mit einem Draht, abgeleitet aus Messungen mit verschiedenen Drähten, dürfte dagegen mit etwa $\pm 1,1 \mathrm{~mm} / \mathrm{km}$ anzusetzen sein. Bei der Basismessung München 1958 wurde aus den Normalstreckenvergleichen ein mittlerer Kilometerfehler von $\pm 2,0 \mathrm{~mm}$ erhalten [2].

9.2 Ergebnisse der Messungen auf der Basis

Die Länge des Basispolygons B - A - BN in der mittleren Messungshöhe jeder Teilstrecke ist der Ausgangswert für alle im Abschnitt 8 geschilderten Reduktionen. Damit ergeben sich folgende Werte für die Länge der Basis.

9.2.1 Mit Drahtkonstanten aus dem Normalstreckenvergleich

Mit den Drahtkonstanten aus dem Normalstreckenvergleich ergibt sich die Länge des Basispolygons B - A - BN zu:

Länge des Basispolygons von Punkt A bis BN (Anlage 19)
Länge der Hilfsbasis A - B (Anlage 20)
Korrektion k_{8} (Reduktion auf mittlere Messungs höhe $\mathrm{h}_{\mathrm{m}}=420,000 \mathrm{~m}$)

Länge des Basispolygons von Punkt B über A bis BN (12 Drähte)
$7129923,5399 \mathrm{~mm}$
$216097,3415 \mathrm{~mm}$
$+\quad 2,2310 \mathrm{~mm}$

Die Ergebnisse für die Basislänge mit Drahtkonstanten aus dem Normalstreckenvergleich nach den verschiedenen Reduktionsverfahren sind von diesem Wert ausgehend in der nachstehenden Tabelle 20 zusammengestellt. Die größte Differenz der Werte untereinander beträgt $3,05 \mathrm{~mm}$ und ist damit von der Größenordnung 1:2400 000.

	Schweiz a)	I. Abt. DGFI b)	c)	II. Abt. DGFI d)	e)
Länge des Basispolygons	7346 023,112	7346023,112	7346023,112	7346023,112	7346023,112
Gesamtsumme d. Reduktionen	- 92033,031	- 92030,31	- 92030,232	- 92029,980	- 92031,553
Basislänge	7253 990,081	7253 992,802	7253 992,880	7253 993,132	7253991,559
2) Widerspruch verteilt nach $-\frac{p_{1}}{\left[\frac{1}{p}\right]}$.					
3) Haupt- u. Nebenpolygon vereinigt, Punkt 148 als Hauptpunkt, Widerspruch verteilt nach					

Als Basislänge wird der Mittelwert der fünf Einzelresultate angenommen, nämlich

$$
7253992 \mathrm{~mm} .
$$

Die festgestellte Längenkorrektur von $+1,03 \mu$ am Quarzmeter-System hat eine nachträgliche Längenänderung von $+1,03 \mu / \mathrm{m}$. L an der Länge der Normalstrecke München und somit auch an der Basislänge zur Folge. Die endgültige Länge ist daher 7, 47 mm größer, nämlich

$$
7253999 \mathrm{~mm} .
$$

9.2.2 Mit Drahtkonstanten der amtlichen Eichinstitute

Mit den Drahtkonstanten der amtlichen Eichinstitute ist die Länge des Basispolygons B - A BN:

Länge des Basispolygons von Punkt A bis BN (Anlage 18)
Länge der Hilfsbasis A - B (Anlage 20)
Korrektion k_{8} (Reduktion auf mittlere Messungs höhe $\mathrm{h}_{\mathrm{m}}=420,000 \mathrm{~m}$)

Länge des Basispolygons von Punkt B über A bis BN (10 Drähte)
$7129930,7139 \mathrm{~mm}$ $216097,5486 \mathrm{~mm}$
$+\quad 2,2310 \mathrm{~mm}$
$7346030,4935 \mathrm{~mm}$

Die Differenz der Längen des Basispolygons mit amtlichen Drahtkonstanten und den Drahtkonstanten aus dem Normalstreckenvergleich ist $+7,38 \mathrm{~mm}$ und liegt also in der Größenordnung von 1:1000000, die auch in Abschnitt 4.3 festgestellt wurde.

Die Basislänge mit amtlichen Drahtkonstanten nach den verschiedenen Reduktionsverfahren kann in gleicher Weise wie oben berechnet werden (Tabelle 21). Wegen des im Vorhergehenden festgestellten Maßstabsunterschiedes sind die Gesamtsummen der Reduktionen in Tabelle 19 jedoch, absolut betrachtet, um $1 \mu / \mathrm{m}$, mithin um 92μ zu vergrößern.

Als Basislänge mit amtlichen Drahtkonstanten wird der Mittelwert der fünf Einzelresultate in Tabelle 21 angenommen, nämlich

Tabelle 21

	Schweiz a)	I. Abt. DGFI b)	c)	II. Abt. DGFI d) 2)	$\begin{aligned} & \text { e) } \\ & \text { 3) } \end{aligned}$
Länge des Basispolygons	7346030,494	7346030,494	7346030,494	7346030,494	7346030,494
Gesamtsumme d. Reduktionen	- 92033,123	- 92 030,402	- 92030,324	- 92030,072	- 92031,645
Basislänge	7253 997,371	7254000,092	7254000,170	7254000,422	7253 998,849

1) Widerspruch verteilt nach $-\frac{w}{n}$
2) Widerspruch verteilt nach $-\frac{\frac{1}{p_{i}}}{\left[\frac{1}{p}\right]} \cdot w$
3) Haupt- u. Nebenpolygon vereinigt, Punkt 148 als Hauptpunkt, Widerspruch verteilt nach $-\frac{W}{n}$

9.3 Fehlerbetrachtungen

Für die Ermittlung des mittleren Fehlers der Basislänge müssen die Fehleranteile der einzelnen Messungen abgeschätzt werden. Fehlerquellen enthalten die Drahtmessungen, Winkelmessungen, Nivellements, Alignements und die Ablotungen. Die Fehleranteile der letzten drei Messungen sind jedoch gering. Werden die bei der Basismessung München 1958 angegebenen Werte angehalten und die im vorliegenden Falle etwas ungünstigeren Verhältnisse abgeschätzt, so wird der Fehleranteil für die Basislänge etwa $\leq 0,3 \mathrm{~mm}$ betragen.

9.3.1 Genauigkeit der Drahtmessung

Die Genauigkeit der Drahtmessungen kann aus den Verbesserungen der Einzelergebnisse der Drähte für das Basispolygon A - BN gegen das arithmetische Mittel berechnet werden. Der mittlere Fehler des Mittels beträgt für das $7,130 \mathrm{~km}$ lange Basispolygon A - BN

- mit den Drahtkonstanten der amtlichen Eichinstitute (Anlage 18, Spalte Summe)

$$
\pm 1,42 \mathrm{~mm}
$$

- mit den auf der Normalstrecke ermittelten Drahtkonstanten (Anlage 19, Spalte Summe)

$$
\pm 1,57 \mathrm{~mm}
$$

Die mittleren Kilometerfehler der Drahtmessungen können somit abgeschätzt werden zu $\mathrm{M}_{\mathrm{km}}=$ $\pm 0,53 \mathrm{~mm}$ bzw. $\pm 0,59 \mathrm{~mm}$. Überraschend ist hierbei der etwas größere mittlere Fehler mit den auf der Normalstrecke ermittelten Drahtkonstanten. Der Grund hierfür liegt in den relativ großen Abweichungen der Länge des Basispolygons zwischen den einzelnen Meßgruppen Schweiz, Österreich, Frankfurt und München. Die systematischen Fehlereinflüsse sind jedoch noch nicht aufgeklärt.

9.3.2 Mittlerer Fehler des Hilfsdreiecks

Der mittlere Fehler für die aus dem Hilfsdreieck am Basisendpunkt Süd abgeleitete Teilstrecke BS - A = b ergibt sich aus der Formel

$$
\begin{aligned}
& m_{b}^{2}=\left(\frac{b}{a}\right)^{2} m_{a}^{2}+\frac{2}{3}\left(\frac{b}{\rho c c}\right)^{2}\left(\operatorname{ctg}^{2} \alpha+\operatorname{ctg} \alpha \operatorname{ctg} \beta+\operatorname{ctg}^{2} \beta\right) m^{2} \\
& \left(a=\text { Hilfsbasis A }-B, m_{\Varangle}=m_{\alpha}=m_{\beta}=m_{\gamma}\right) .
\end{aligned}
$$

Mit $m_{\Varangle}= \pm 2,3^{c c}$, abgeleitet aus dem Winkelabschlußfehler im Hilfsdreieck, und $m_{a}=$ $\pm 0,59 \cdot \sqrt{0,216}= \pm 0,27 \mathrm{~mm}$ beträgt $\mathrm{m}_{\mathrm{b}}= \pm 0,56 \mathrm{~mm}$.

9. 3. 3 Fehleranteil der Reduktion des Basispolygons

Der Anteil des mittleren Fehlers aus der Reduktion des Basispolygons BS - BN ist sowohl nach einer Näherungsformel als auch nach der strengen Formel berechnet worden.

Die Näherungsformel lautet für das Hauptpolygon einschließlich der Nebenpolygone

$$
\begin{aligned}
& \bar{m}_{I I}^{2}=\left(y_{1}^{2}+2 y_{2}^{2}+3 y_{3}^{2}+4 y_{4}^{2}\right) m_{B}^{2} \\
& +\left(y_{51}^{2}+y_{52}^{2}\right) \cos ^{2} v_{5} m_{\beta_{5}}^{2}+5\left(x_{51}^{2}+x_{52}^{2}\right) \sin ^{2} v_{5} m_{\beta}^{2} \\
& +\left(y_{61}^{2}+y_{62}^{2}\right) \cos ^{2} \nu_{6} m_{\beta_{6}}^{2}+4\left(x_{61}^{2}+x_{62}^{2}\right) \sin ^{2} \nu_{6} m_{B}^{2} \\
& +\left(y_{71}^{2}+2 y_{72}^{2}+y_{73}^{2}\right) \cos ^{2} v_{\nu_{7}} \mathrm{~m}_{\beta_{7}}^{2}+3\left(x_{71}^{2}+x_{72}^{2}+x_{73}^{2}\right) \sin ^{2} \nu_{\nu_{7}} m_{\beta}^{2} \\
& +\left(y_{81}^{2}+2 y_{82}^{2}+2 y_{83}^{2}+y_{84}^{2}\right) \cos ^{2} \cdot \nu_{8} m_{\beta}^{2}+2\left(x_{81}^{2}+x_{82}^{2}+x_{83}^{2}+x_{84}^{2}\right) \sin v_{8}^{2} m_{B}^{2} \\
& +\left(y_{91}^{2}+2 y_{92}^{2}+3 y_{93}^{2}+2 y_{94}^{2}+y_{95}^{2}\right) \cos ^{2} v_{9} m_{\beta_{9}}^{2}+\left(x_{91}^{2}+x_{92}^{2}+x_{93}^{2}+x_{94}^{2}+x_{95}^{2}\right) \\
& \cdot \sin ^{2} v_{9} m_{\beta}^{2}
\end{aligned}
$$

wobei $\quad v_{i k}=$ Richtungswinkel der Strecke zwischen den Punkten i und k bezogen auf die Flucht des Haupt-bzw. betreffenden Nebenpolygons j,

$$
\begin{aligned}
& y_{i}=s_{i} \cdot \sin v_{i}, y_{i k}=s_{i k} \sin v_{i k}, x_{i}=s_{i} \cos v_{i}, x_{i k}=s_{i k} \cdot \cos v_{i k} \\
& m_{\beta}=\text { mittlerer Fehler der ausgeglichenen Brechungswinkel } \beta_{i m} \text { Hauptpolygon und } \\
& m_{\beta_{i}}=\text { mittlerer Fehler der ausgeglichenen Brechungswinkel } \beta_{i} \text { im i. Nebenpolygon. }
\end{aligned}
$$

In dieser Näherungsformel werden also die ausgeglichenen Richtungswinkel ν_{i} als 'beobachtete' Größen betrachtet und dabei noch ihr mittlerer Fehler durch die mittleren Fehler der ausgeglichenen Brechungswinkel m_{β} ausgedrückt.

Die strenge Formel für das Hauptpolygon, die mit den beobachteten Brechungswinkeln β^{\prime} nach dem Fehlerfortpflanzungsgesetz abgeleitet wurde, ist in allgemeiner Schreibweise

$$
m_{I I}^{\prime 2}=\frac{m_{\beta^{\prime}}^{2}}{n+1} \cdot \quad \sum_{i=1}^{n}\left(A_{i i} y_{i}^{2}+2 \cdot \sum_{k=i+1}^{n} A_{i k} y_{i} y_{k}\right)
$$

wobei

$$
\begin{aligned}
& m_{\beta^{\prime}}=\text { mittlerer Fehler der beobachteten Brechungswinkel } B^{\prime} \\
& A_{i k}=i[(n+1)-k] \\
& \text { und } n=9 \text { (Anzahl der zu reduzierenden Teilstrecken). }
\end{aligned}
$$

Für die Nebenpolygone (Index j) ist der mittlere Fehleranteil insgesamt

$$
m_{I I}^{\prime 2}=\sum_{j=5}^{9}\left\{\frac{m^{2} \beta_{j}^{\prime}}{n_{j}+1} \cdot \sum_{i=1}^{n_{j}}\left(A_{i j}^{(j)} y_{j i}^{2}+2 \cdot \sum_{k=i+1}^{n_{j}} A_{i k}^{(j)} y_{j i} y_{j k}\right)\right\}
$$

$\left(n_{5}=n_{6}=2, n_{7}=3, n_{8}=4, n_{9}=5\right)$. Der strenge mittlere Fehleranteil aus der Reduktion des Hauptpolygons und der Nebenpolygone ist damit

$$
m_{I I}^{2}=m_{I I}^{\prime 2}+m_{I I}^{\prime \prime 2}
$$

Aus dem Widerspruch $-12,1^{\text {cc }}$ (Tabelle 14) im Hauptpolygon und den mittleren Fehlern der Brechungswinkel in den Nebenpolygonen aus der Schweizer Gesamtausgleichung der Brechungs winkel ergeben sich folgende Werte:

m.F. der beob. Brechungswinkel	m. F. der ausgeglich. Brechungswinkel
$m_{\beta^{\prime}}= \pm 3,8^{\mathrm{cc}}$	$\mathrm{m}_{\beta}= \pm 3,6^{c c}$
$m_{\beta_{5}^{\prime}}= \pm 2,8$	$\mathrm{m}_{\beta_{5}}= \pm 2,2$
$\mathrm{m}_{\beta_{6}^{\prime}}= \pm 1,7$	$m_{\beta_{6}}= \pm 1,4$
$\mathrm{m}_{\beta^{\prime}{ }_{7}}= \pm 5,1$	$m_{\beta_{7}}= \pm 4,4$
$m_{\beta_{8}^{\prime}}= \pm 6,4$	$m_{\beta_{8}}= \pm 5,7$
$m_{\beta_{9}^{\prime}}= \pm 4,2$	$\mathrm{m}_{\beta_{9}}= \pm 3,9$

Mit diesen Werten berechnen sich die obigen mittleren Fehleranteile zu
Näherungsformel: $\bar{m}_{\mathrm{II}}= \pm 3,30 \mathrm{~mm}$
strenge Formel $: m_{I I}= \pm \sqrt{2,51^{2}+0,25^{2}}= \pm 2,53 \mathrm{~mm}$

9.3.4 Fehleranteil der Drahtmessung

Der von der Drahtmessung herrührende mittlere Fehleranteil ist für die Basislänge

$$
m_{I}^{2}=\sum_{i=1}^{4} \cos ^{2} v_{i} m_{s_{i}}^{2}+\sum_{i=5}^{9}\left(\cos ^{2} v_{i} \cdot \sum_{k=1}^{n_{i}} \cos ^{2} v_{i k} m_{s_{i k}}^{2}\right)
$$

(n_{i} s. oben).
Wird $m_{s_{1}}=m_{b}= \pm 0,56 \mathrm{~mm}$ und $m_{s_{i}}= \pm 0,59 \cdot \sqrt{s_{i}[\mathrm{~km}]} \mathrm{mm}$
(i $=2, \ldots, 9$) gesetzt, dann ist

$$
\mathrm{m}_{\mathrm{I}}= \pm 1,65 \mathrm{~mm} .
$$

9.3.5 Gesamtfehler der Basislänge

Der mittlere Fehler der Basislänge mit den auf der Normalstrecke ermittelten Drahtkonstanten ergibt sich damit zu

$$
\begin{aligned}
& \text { Näherungsformel: } \bar{m}= \pm \sqrt{1,65^{2}+3,30^{2}}= \pm 3,69 \mathrm{~mm} \\
& \text { strenge Formel }: m= \pm \sqrt{1,65^{2}+2,53^{2}}= \pm 3,02 \mathrm{~mm}
\end{aligned}
$$

Die entsprechenden Werte mit den Drahtkonstanten der amtlichen Eichinstitute weichen hiervon nur geringfügig $a b(\pm 3,62 \mathrm{~mm}$ bzw. $\pm 2,94 \mathrm{~mm}$).

Als Ergebnis der Genauigkeitsbetrachtungen kann somit der mittlere Fehler für die Basislänge (mit Drahtkonstanten aus der Normalstrecke und amtlichen Drahtkonstanten) in der Größenordnung von

$$
\pm 3 \mathrm{~mm}
$$

oder mit einem relativen Fehler von

$$
1: 2500000
$$

angegeben werden.

9.4 Endgültige Basislänge und ihr mittlerer Fehler

Die Messungen und Berechnungen führten für die Länge der Basis Heerbrugg im mittleren Mes sungshorizont $h_{m}=420,000 \mathrm{~m}$ auf folgende Werte:

- aus dem Normalstreckenvergleich, unter nachträglicher Berücksichtigung der Längenkorrektur von $+1,03 \mu$ am Quarzmeter-System

7253999 mm ,

- aus amtlichen Drahtkonstanten

7253999 mm .
Damit hat sich aus den Drahtmessungen auf der Basis Heerbrugg eine außerordentlich gute Übereinstimmung für die beiden Vergleichsverfahren - Normalstreckenvergleich und Laborvergleich - ergeben.

Die endgültige aus den Drahtmessungen abgeleitete Basislänge im mittleren Messungshorizont $\mathrm{h}_{\mathrm{m}}=420,000 \mathrm{~m}$ ist somit
$7253999 \mathrm{~mm} \pm 3 \mathrm{~mm}$.

10. Literaturverzeichnis

[1] Kobold, F. u. Fischer, W.:
[2] Gerke, K.:
[3] Bonhoure, A.:
[4] Hoffrogge, Ch. u. Rummert, H.:
[5] Kneißl, M.:
[6] Kneißl, M. u. Eichhorn, G.:
[7] Kneißl, M. u. Sigl, R.:
[8] Gigas, E.:
[9] Tárczy-Hornoch, A.:
[10] Honkasalo, T.:

Basismessung Heerbrugg 1959, Beschlüsse und Anlage. Astronomisch-geodätische Arbeiten in der Schweiz, Band 30, Teil I, 1974

Basis München 1958, Die Invardrahtmessungen des Instituts für Angewandte Geodäsie. DGK, Reihe B, Heft 56, Teil II, 1962

La base géodésique du Bureau International des Poids et Mesures. Rev. Métrol. pratique et légale, 1952

Meteranschluß von Invardrähten für Basismessungen. DGK, Reihe B, Heft 71, 1961

Normalstrecke, Basis und Basisvergrößerungsnetz München Ebersberg, Anlage und Vermessungsergebnisse 1958. Bayer. Akad. Wiss., Math. -Naturwiss. Kl., Abh. N.F., Heft 97, München 1959

Ergebnisse der Interferenzmessungen 1958 mit dem "Väisälä" Komparator auf der Münchener Normalstrecke. Bayer. Akad. Wiss., Math. -Naturwiss. Kl., Abh. N.F., Heft 98, München 1959

Basis Ebersberger Forst, Invardrahtmessungen der I. Abteilung des Deutschen Geodätischen Forschungsinstituts 1958. Bayer. Akad. Wiss., Math. -Naturwiss. Kl., Abh. N.F., Heft 99, München 1959

Handbuch für die Verwendung von Invardrähten bei Grundlinienmessungen. Berlin 1934

Über die Invardraht- und Bandmessung. ZfV, Stuttgart 1958

International Standard Base Lines. Veröff. des Finnischen Geodätischen Institutes, No. 65, The Finnish Geodetic Institute 1918-1968, Helsinki 1969

Basis Süd

Anlage 3

Basis Ende Süd

Situation

B

Basisende Nord

Beobachtungspfeiler von quadratischem querschnitt
über linkem bergseitigen :"iderlager der Mittleren Diepoldsauer-Brücke

?ajstan ? : 20

Basis Ende Nord

Situation

M 1:1000

EXZENTRIZITÄT

Anlage 6
des unteren Bolzens gegen den oberen
des Punktes $B N$

Basisende Süd auf dem Montlingerberg

1 Beobachtungspfeiler +4 Versicherungsbolzen in Fels

Masstab 1 : 20
घ

Basisrajet A am Muss des Nontlingerberges

Exzentrizitlit der unterin diachen Versicherung gegenuber Pfeilerbolzen siehe Spezialblatt.

Pfeiler B der Hilfsbasis
am Fuss des Montlingerberges

EXZENTRIZITÄTEN

der mittleren bzw. unteren Bolzen
gegen die oberen der Punkte BS u.A

BUREAU INTERNATIONAL

DES

14 aoat 1959

POIDS a MESURES

Pavillea de Eroteull, sivives (S.-®-0.)
$\mathrm{N}^{\circ} 32$

Abstract

CERTIFICAT de quatre fils géodésiques en invar de 24 m Nos A27, 301, 302, 303, appartenant à l'Institut de Géodésie Appliquée, à Francfort-sur-le-Main. (Addition au Certificat $\mathrm{N}^{\circ} 37$ du 26 décembre 1958)

Ces instruments ont été rapportés au Bureau International le 3 Juin 1959. Ils ont été comparés, sous la traction de 10 kilogrammes-force, à l'intervalle (0.24) de la base à repères du Bureau International.

On a effectué, dans l'état même de leur arrivée au Bureau, dix doubles séries de mesures des fils, à des températures comprises entre 18,7 et $21,3{ }^{\circ} \mathrm{C}$.

Les comparalsons ont été ramenées à la température de $15^{\circ} \mathrm{C}$, \&̀ $\mathrm{l}^{\prime} \mathrm{aide}$ des coefficients de dilatation suivants (coefficent's moyens entre 0 et $t^{\circ} \mathrm{C}$):

portés au précédent certificat.
On a obtenu les résultats suivants:

```
            Distance horizontale, à }1\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ ,
            des traits homologues des fils
librement suspendus sous une traction de 10 kg-force
```

| F11 N° | A27 | $24 \mathrm{~m}-7,58 \mathrm{~mm}$ |
| :---: | :---: | :---: | :---: |
| $"$ | 301 | $24 \mathrm{~m}+13,57 \mathrm{~mm}$ |
| $"$ | 302 | $24 \mathrm{~m}+10,46 \mathrm{~mm}$ |
| $"$ | 303 | $24 \mathrm{~m}+20,22 \mathrm{~mm}$ |

Ces mesures ont été effectuées de juin à aoat 1959.

Physikalisch-Technische Bundesanstalt

Prüfungsschein

Gegenstand: 4 Meßdrähte aus Indilatans von 24 m Länge
Herst.-Nr.: $526,527,528,529$
Hersteller: Secretan, Paris
Antragsteller: Deutsches Geodätisches Forschungsinstitut, München Gesch.-Nr.: PTB 24 296/58 I A/Y

Amtliches Zeichen: ... -

Die Drähte wurden Prei durchhängend zwischen 2 in gleicher Höhe liegenden Marken vermessen; das Spanngewicht betrug $10009,3 \mathrm{~g}$, die Fallbeschleunigung am MeBort $981,2682 \mathrm{Gal}$. In der folgenden Tabelle ist die Länge des betreffenden Intervalls bei $20^{\circ} \mathrm{C}$ angegeben, dabei wurden die skalen so betrachtet, daß sich ihre Nullmarken links befanden. Die Unsicherheit der Längenangaben betragt etwa $\pm 20 \mu \mathrm{~m}$.

Der Ausdehnungskoeffizient gilt fur Temperaturen zwischen 10 und $30{ }^{\circ} \mathrm{C} ;$ die Unsicherheit beträgt etwa $\pm 0,05 \mu \mathrm{~m} / \mathrm{grdm} \mathrm{m}$.

Draht Nr.	Intervall			24 Länge	Ausdehnungskoeffizient $\mu \mathrm{m} / \mathrm{grd} \mathrm{m}$
	linker Skalenstr		rechter Skalenstrich	24 m ... $\mu \mathrm{m}$	
526	0 mm	bis	0 mm	+ 715	$+0,12$
527	0 mm	bis	0 mm	- 176	+ 0,11
528	0 mm	bis	0 mm	+ 385	+ 0,11
529	0 mm	bis	1 mm	+ 512	+ 0,12

Wegen der bekannten Instabilität der hier verwendeten Eisen-Nickel-Legierungen ($36 \% \mathrm{Ni}$) gelten die Werte mit den angegebenen Unsicherheiten nur fur den Zeitpunkt der Prüfung.

Physikalisch-Technische Bundesanstalt
Braunschweig,
15. Dezember 1958.

Zusammenstellung der Ergebnisse der Drahtmessungen auf der Normalstrecke im mittleren Messungshorizont 550.760 m ü. NN

$\begin{gathered} \text { Draht } \\ \text { Nr. } \\ \text { Eich- } \end{gathered}$	Länge der Invardrahtstrecke nach Inter-ferenzmessung	Länge der Invardrahtstrecke nach Laboreichungen		
inst.		vor der Messung mm	nach der Messung mm	Gesamtmittel mm
527	864019.535	864020.266	864019.719	864020.754
PTB		21.789	21.241	
529		864021.022	864021.555	864021.034
PTB		20.514	21.047	
526		864022.667	864021.076	864021.479
PTB		21.882	20.291	
528		864019.870	864019.359	864020.066
PTB		20.773	20.262	
511		864020.054	864019.543	864019.938
PTB		20.334	19.823	
510		864019.626	864018.719	864019.073
PTB		19.427	18.520	
A 27		864019.680	864020.040	864020.016
BIPM		19.993	20.353	
37		864021.210	864021.282	864020.992
PTB		20.703	20.775	
301		864019.799	864021.239	864020.058
BIPM		18.877	20.317	
38		864020.609	864020.177	864020.360
PTB		20.542	20.110	

Für jeden Draht bedeuten die oberen Zahlen das jeweilige Mittel aus Hin- und Rückmessung auf der Normalstrecke vor der Basismessung, die unteren das entsprechende Mittel nach der Basismessung.

	＋1．es	cos	Smes					［12－102	112，		10，		㖪	边	：108， 19	${ }^{\text {Prozoso }}$															
	\ldots	\％min	\％as．	89， 2	\％	23．8．	．	2，	， 12.2	12	\％		， 12	＝	\％a，	\％s．	\％		． 2	．．．s		20，	Imo	－	20		＝	20：	\％$=$	…	
er				，	，	50，	\％ix	\％	\％				（eat					\％	\％		\％	\％	\％				\％			\％out	
$\underbrace{}_{\substack{22 \\ \mathrm{man}}}$		\％	${ }_{\text {ajom }}^{\text {ajom }}$		（eand	20\％	（10，			\％	\％．9．91			\％	？			发， 27	［5：920	coin			1：30			\％		cis		20，	
cos			\％	\％		\％			\％	\％	\％	\％			\％．	\％	\％ego						\％		and	\％	\％		\％	\％	Sex
$\left\lvert\, \begin{aligned} & \frac{s 8}{2 x} \end{aligned}\right.$	\％	\％${ }^{3}$	$\frac{10.75}{}$		\％\％ 3	${ }_{\text {a }}^{\text {and }}$		coid	（102	\％		\％	\％	¢：	\％：0．	\％og							1：9］			\％eso	，				\％
$\left\lvert\, \begin{aligned} & \mathrm{mm} \\ & \mathrm{ma} \end{aligned}\right.$			\％o．99	，				\％				（20	旡：092		\％			ana	\％	ana			\％．at				\pm	\pm		\％	
，					\％	${ }^{20.92}$		（10，				20．	\％o．	12，	\％	He，		\％	\％：	\％	超：	\％			\％ow	\％	citicie				边
		器：	\％i．	，	\％	\pm		\％o．	an	\％		\％	（1：90	\％ 0.20				迷：	1．5．						\％	\％	\％	$\frac{3}{3}$		（ent	3，
\cdots			\％	\％	？		\％	\％e．	\％	5：．0．			（\％）	\％		\％	\％			？		\％				\％	\％	，		\％	为：3：
\％	为	？	\％	\％		\％＂．	20，	\％				\％			\％	\％		W．	\％		？	\％	\％				\％	23．	\％		
${ }_{\substack{2 \\ n+8}}$	\％	\％	！				\％		\％	\％	器：			\ldots	\％	He，	\％，	\％		\％		\％	\％		：\％：	\％					

	Tetr																												
		${ }^{984} \times$	+360. ${ }^{\text {m }}$	\cdots	528.	+.....	..ma	${ }^{312.2}$. ${ }^{\text {man }}$	-	+12.n	+.... ${ }^{\text {an }}$	+....2m		${ }^{336} \times$	m	${ }^{26.4 .}$	nr		7		-n	., ${ }^{\text {n }}$	+...in	+....er		mn	..nm		$\xrightarrow{7128} \begin{aligned} & \text { 7.an } \\ & 7\end{aligned}$
	0.5	$\begin{aligned} & \frac{24,: 998}{224.898} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \frac{172.0974}{172.034} \\ \hline \end{array}$	$\begin{aligned} & \frac{40.5911}{40.594} \end{aligned}$	$\frac{244,824}{24 \cdot 924}$		$\frac{244.495}{243,455}$	$\frac{104.247}{104.147}$		$\frac{103.922}{103,322}$		$\frac{228.048}{128,0048}$	$\frac{38.740}{88.140}$	$\frac{109,2 \cdot 21}{1098.811}$	$\frac{.4 .7 .398}{\text { i4. }}$		$\frac{5.750}{15.260}$	$\frac{78.966}{78.666}$	${ }_{52} 5^{-539}$	$\frac{47.654}{47.664}$							$\frac{37.94}{132 \cdot 914}$		
																			$\frac{62.59}{62.539}$										1023.
		$\frac{312.601}{212.601}$	$\frac{172.067}{172.067}$	$\frac{39.857}{38.867}$		-	${ }^{2244.592}$ 24.192	-	\div		$\frac{174.52}{174.52}$	$\frac{127-709}{127.709}$	919			- 0	$\frac{15.992}{15.992}$			$\frac{47.748}{47,748}$			$\frac{107.24}{107.249}$		$\frac{15.035}{15.353}$	$\frac{75.127}{78.127}$		$\frac{340.934}{340.831}$	$\overline{1917.679}$
527	1			$\begin{aligned} & 40.489 \\ & \frac{40}{39} 989616 \end{aligned}$					103.892 $\frac{103}{103.30} 5$ 103.577								$\begin{aligned} & \text { 255.7.055} \\ & \frac{255}{15.575} \end{aligned}$	$\begin{gathered} 79.1096 \\ \frac{78}{78.565} \\ 789093 \end{gathered}$			隹1.605	${ }^{\frac{88}{82} .5689}$	$\frac{10,31.316}{107,142}$			$\frac{75.369}{76.177}$		$\frac{341.260}{341233}$	${ }^{\frac{19212.449}{1989} 744}$
529			$\frac{177.865}{170.759}$	\% $\frac{39}{36.005}$	${ }^{244,458} 2$		$\frac{244.211}{243.955}$	(ione	$\frac{103.283}{103.107}$	$\frac{1035}{102,987}$				$\frac{1099.545}{\frac{1094}{109.7545}}$				$\begin{aligned} & 78.787 \\ & \frac{78}{78} 78.87 \\ & 70.829 \end{aligned}$		$\begin{aligned} & \frac{47}{47.057} \\ & \frac{4058}{4092} \end{aligned}$		$\begin{aligned} & 82.256 \\ & \frac{82}{82565} \\ & \hline 2,350 \end{aligned}$	$\frac{106.985}{106.925}$	48.265			$\frac{132.715}{132.743}$		
526	1		$\frac{371,71}{171.552}$	- $\frac{40.067}{39,642}$	$\frac{244.588}{244.348}$		${ }^{2} \frac{244.154}{243.874}$				$\frac{174.956}{174.965}$						$\begin{aligned} & \frac{15: 8798}{\frac{15.59}{5} 5.9093} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 77.0999 \\ \hline 70.965 \end{array}$		$\begin{aligned} & \frac{47}{47.592} \\ & \frac{7}{47.651} \end{aligned}$					cisisien	$\begin{gathered} \frac{76.297}{76.097} \\ \hline 76.182 \end{gathered}$		340.969	$\frac{1924.502}{1920.844}$
528			$\frac{171.569}{171.258}$							$\begin{aligned} & 103.306 \\ & \frac{103.959}{1029040} \end{aligned}$																			
				3...95	${ }^{243.8699}$																								
512	1		$\frac{171}{\frac{171}{711}}$							$\begin{aligned} & 104.336 \\ & \frac{10454}{10.2565} \\ & \hline 1046 \end{aligned}$				$\begin{aligned} & 120.305 \\ & \frac{1105}{120.105} \\ & \hline 102505 \end{aligned}$				$\frac{78.799}{88,822}$	$\frac{888_{58}^{88}}{}$		$\frac{1.596}{11.708}$					$\begin{aligned} & 75.823 \\ & \hline \frac{75.903}{755862} \end{aligned}$			
510	1													$\begin{aligned} & 110.749 \\ & \frac{110}{110.762} \end{aligned}$			$\frac{16.883}{16.166}$		$\frac{66.95}{62.940}$	$\frac{4,875}{47,376}$	号 1.79		$\frac{107.470}{107,456}$			$\begin{aligned} & 75.672 \\ & \hline 55.627 \\ & \hline 55.650 \end{aligned}$			
	1																												
											174			$\frac{11}{10}$												$\frac{75,44}{75.696}$			
${ }^{37}$	1									$\begin{aligned} & 103 \\ & 103 \\ & 103 \end{aligned}$					$\frac{147}{\frac{1475}{149}}$		$\frac{15.54}{15.479}$		$\frac{62.655}{62.632}$	$\frac{47.84}{77.716}$	$\frac{11.660}{11.615}$	$\begin{aligned} & 5.504 \\ & \hline 5429 \end{aligned}$		$\frac{48,555}{48,558}$		$\begin{gathered} 76.260 \\ \frac{76.100}{7.190} \end{gathered}$			
301	1																												
				$\frac{41}{40}$																		${ }^{882.568}$							
${ }^{38}$	1			$\begin{aligned} & \frac{40.751}{40.89} \\ & \hline 0.820 \end{aligned}$			$\frac{244.93}{244 \cdot 9}$	$\frac{1203.145}{103.132}$					$\frac{88,297}{88.290}$	$\frac{110.064}{110.050}$			$\frac{16.160}{16.154}$	$\frac{78,346}{18,346}$					$\frac{107.553}{102,548}$	$\frac{48.713}{488.788}$	$\frac{16.010}{16.005}$		$\frac{132.962}{132.866}$		
						$\xrightarrow{244.736}$			(103.550																				
											174	$\frac{128}{128}$					${ }^{15}$		${ }_{5}^{62}$					49,5	15.8	$\frac{25.9}{}$			
						(20.34,		103.3797																					

Zusammenstellung der Ergebnisse der Drahtmessungen für die Hilfsbasis in mittlerer Messungshöhe

Draht Nr .	$\begin{aligned} & \text { Eich- } \\ & \text { inst. } \end{aligned}$	Gew.	Amtliche Drahtkonstanten $216 \mathrm{~m}$ +. . . .mm	$\begin{gathered} \text { Drahtkonstanten aus } \\ \text { dem Normalstrecken- } \\ \text { vergleich } \\ 216 \mathrm{~m} \\ +. . . \mathrm{mm} \end{gathered}$
K 1	BIPM	0,5		$\begin{aligned} & 97.784 \\ & \frac{-}{97.784} \end{aligned}$
K 2	BIPM	0,5		$\frac{96.926}{96.926}$
527	PTB	1	$\begin{array}{r} 97.471 \\ 97.335 \\ \hline 97.403 \end{array}$	$\begin{aligned} & 97.289 \\ & 96.908 \\ & \hline 97.099 \end{aligned}$
529	PTB	1	$\begin{aligned} & 97.400 \\ & 97.534 \\ & \hline 97.467 \end{aligned}$	$\begin{array}{r} 97.029 \\ 97.156 \\ \hline 97.092 \end{array}$
526	PTB	1	$\begin{array}{r} 97.793 \\ 37.395 \\ \hline 97.594 \end{array}$	$\begin{aligned} & 97.010 \\ & 97.206 \\ & \hline 97.108 \end{aligned}$
528	PTB	1	$\begin{array}{r} 97.255 \\ 97.127 \\ \hline 97.191 \end{array}$	$\begin{aligned} & 97.172 \\ & 96.946 \\ & \hline 97.059 \end{aligned}$
511	PTB	1	$\begin{array}{r} 97.449 \\ 97.321 \\ \hline 97.385 \end{array}$	$\begin{aligned} & 97.330 \\ & 97.260 \\ & \hline 97.295 \end{aligned}$
510	PTB	1	$\begin{array}{r} 98.038 \\ 97.811 \\ \hline 97.924 \end{array}$	$\begin{aligned} & 98.026 \\ & 98.076 \\ & \hline 98.051 \end{aligned}$
A 27	BIPM	1	$\begin{array}{r} 97.601 \\ 97.691 \\ \hline 97.646 \end{array}$	$\begin{array}{r} 97.564 \\ 97.484 \\ \hline 97.524 \end{array}$
37	PTB	1	$\begin{aligned} & 97.894 \\ & 97.912 \\ & \hline 97.903 \end{aligned}$	$\begin{array}{r} 97.470 \\ 97.606 \\ \hline 97.538 \end{array}$
301	BIPM	1	$\begin{aligned} & 97.222 \\ & 97.582 \\ & \hline 97.402 \end{aligned}$	$\begin{array}{r} 97.160 \\ 97.384 \\ \hline 97.272 \end{array}$
38	PTB	1	$\begin{array}{r} 97.625 \\ 97.517 \\ \hline 97.571 \end{array}$	$\begin{aligned} & 97.355 \\ & 97.373 \\ & \hline 97.364 \end{aligned}$
Mittel			$\begin{aligned} & 97.5748 \\ & 97.5225 \\ & \hline 97.5486 \end{aligned}$	$\begin{aligned} & 97.3616 \\ & 97.3202 \\ & \hline 97.3415 \end{aligned}$

