Astronomisch-geodätische Arbeiten in der Schweiz

herausgegeben von der

Schweizerischen Geodätischen Kommission

(Organ der Schweizerischen Naturforschenden Gesellschaft)

Siebenundzwanzigster Band

- I. Die Bestimmung der Azimute Gurten-Rötifluh und Rigi-Lägern
- II. Die Bestimmung der Polhöhe auf Rigi-Kulm

bearbeitet von Dr. E. Hunziker

Astronomisch-geodätische Arbeiten in der Schweiz

herausgegeben von der

Schweizerischen Geodätischen Kommission (Organ der Schweizerischen Naturforschenden Gesellschaft)

Siebenundzwanzigster Band

- I. Die Bestimmung der Azimute Gurten-Rötifluh und Rigi-Lägern
- II. Die Bestimmung der Polhöhe auf Rigi-Kulm

bearbeitet von Dr. E. Hunziker

.

.

•

Inhaltsverzeichnis

1,	Die Bestimmungen der Azimute Gurten-Rötifluh und Rigi-Lägern	
1.	Die Beobachtungsstationen	7
2.	Instrumentelles und Stationseinrichtung	8
	a) Auf dem Gurten	8
	b) Auf dem Rigi	9
3.	Das Beobachtungsverfahren	9
	a) Die Reduktionsformeln	9
	b) Die Reduktion der beobachteten Uhrzeiten auf den Achsenäquator und vom Achsenäquator auf den Instrumentenvertikal	11
	c) Die Messung des Anschlusswinkels	. 12
4.	Die zeitliche Anordnung der Beobachtungen	13
5.	Die Sternprogramme und Einstelltabellen	13
6.	Die Genauigkeit der Durchgangsbeobachtungen	20
7.	Die Instrumentalfehler	21
	a) Die Kontaktbreite	21
	b) Der tote Gang der Mikrometerschraube	21
	c) Die Neigungen der Drehachse	22
8.	Der Winkelwert einer Umdrehung der Mikrometerschraube	24
9.	Die Anschlusswinkel Instrumentenvertikal-Objekt	25
10.	Der Zeitdienst, die Uhrkorrektionen und die abendlichen Uhrgänge	28
11.	Ableitung des Instrumentenazimutes und der Uhrkorrektion	29
	a) Die beobachteten Durchgangszeiten und Neigungen	29
	b) Reduktion der Durchgangsbeobachtungen auf den Instrumentenvertikal	29
	c) Berechnung der Paarwerte des Instrumentenazimutes und der Uhrkorrektion	30
12.	Die beobachteten Azimute des Vertikals durch das irdische Objekt und deren Genauigkeit	51
	a) Azimutbestimmung Gurten-Rötifluh	51
	b) Azimutbestimmung Rigi-Lägern	54
13.	Zentrierungen, Endergebnisse und Laplacescher Widerspruch	57
		31
11	Die Bestimmung der Polhöhe auf Rigi-Kulm	
11.	Die Destimming der Fonone auf Rigi-Kum	
1.	Einleitende Bemerkungen	58
2.	Das Sternprogramm	58
3.	Die Konstanten und die Aufstellungsfehler des Instrumentes	60
	a) Der Schraubenwert des Mikrometers	60
	b) Die Fadendistanzen	60
	c) Die Angaben der Libellen	60
	d) Instrumentenazimut, Kollimation und Neigung der Horizontalachse	62
4.	Die Reduktion der Beobachtungen	62
5.	Das Endergebnis. Zentrierung frühere Breitenbestimmung auf Rigi-Kulm	72

Vorwort

Die Schweizerische Geodätische Kommission beschloss an ihrer Sitzung vom Jahre 1943, auf einigen Punkten des Schweizerischen Triangulationsnetzes erster Ordnung astronomische Beobachtungen durchzuführen, um diese Punkte als Laplace-Stationen später in die längst vorgesehene neue Netzberechnung einzuführen. Als erste sollten die Punkte Gurten und Rigi beobachtet werden. Die Kommission beschloss zudem, die Azimute auf Grund von Durchgangsbeobachtungen durch den Vertikal der Mire zu bestimmen. Massgebend für diesen Entscheid war in erster Linie der Umstand, dass der Kommission damals ein geeignetes Universalinstrument nicht zur Verfügung stand, während sie Durchgangsinstrumente besass, deren hohe Qualität bekannt war. In mehreren Studien hatte zudem das damalige leitende Mitglied für astronomische Beobachtungen, Prof. Niethammer, die Vorzüge von Durchgangsbeobachtungen gegenüber Beobachtungen, bei denen Kreise abgelesen werden – er bezeichnete später nur jene als genaue Methoden –, nachzuweisen versucht. Die Kommission beabsichtigte daher, die Beobachtungen auf Gurten und Rigi so zu gestalten, dass sie als Versuche für die vorgeschlagene Methode gelten konnten.

Die Beobachtungen und Berechnungen für die Punkte Gurten und Rigi stammen aus den Jahren 1945 und 1949. Wenn sich die Kommission damals veranlasst sah, die Publikation nicht unmittelbar nach Abschluss der Beobachtungen und Berechnungen herauszugeben, so liegt der Grund darin, dass die Ergebnisse auf der Station Gurten nicht den Erwartungen entsprachen. Es traten systematische Differenzen zwischen Teilmitteln auf, die als anormal betrachtet wurden. Zahlreiche Untersuchungen – sie stammen von den Herren Bachmann, Hunziker und Schürer – hatten den Zweck, die Ursachen dieser Unterschiede aufzudecken. Sie führten nicht zu einwandfreien Schlussfolgerungen. Es blieb nur die Vermutung, dass die Refraktionsverhältnisse an den einzelnen Beobachtungsabenden sehr verschieden waren. Ähnliche Erscheinungen zeigten sich bei den später beobachteten Laplacepunkten und sind auch aus dem Ausland bekannt.

Heute besteht kein Hindernis mehr, die seinerzeitigen Beobachtungen und Berechnungen bekanntzugeben und das Manuskript in der Form zu publizieren, wie es Herr Dr. Hunziker in Anlehnung an die Publikationen von Prof. Niethammer der Kommission vorlegte. Herr Dr. Hunziker wird sich im Ruhestand darüber freuen, dass seine Arbeit endlich öffentliche Anerkennung findet, nachdem sie lange nur innerhalb der Kommission gewürdigt worden ist. Unsere Kommission verdankt ihm mehrere Bände ihrer Publikationsreihen. Sie alle legen Zeugnis ab von der ausserordentlichen Sorgfalt, die Herr Dr. Hunziker bei allen seinen Arbeiten anwendete.

Die Schweizerische Geodätische Kommission würde sich freuen, wenn weitere Kreise, namentlich auch Geodäten des Auslandes, sich mit den recht eigenartigen Ergebnissen der Station Gurten befassen würden. Soweit das Beobachtungs- und Berechnungsmaterial nicht im vorliegenden Band zu finden ist, wird es ihnen gerne zur Verfügung gestellt.

Der Präsident der Schweizerischen Geodätischen Kommission Prof. Dr. F. Kobold

Zürich, den 19. August 1968

I. Die Bestimmungen der Azimute Gurten-Rötifluh und Rigi-Lägern

1. Die Beobachtungsstationen

Die abgerundeten geographischen Koordinaten der beiden Punkte 1. Ordnung des schweizerischen Dreiecksnetzes Gurten-Ost (B) und Rigi sind:

Station	Geographische Breite	Länge östl. Greenwich	Höhe über Meer	
Gurten-Ost	46° 55′	29 ^m 47 ^s	858 m	
Rigi	47° 3′,7	33 ^m 56 ^s	1798 m	

Um den Beobachtungspfeiler ist jeweils die kleine, zerlegbare Holzhütte, die in Band 22 der Astronomischgeodätischen Arbeiten der Schweiz auf den Seiten 12 und 13 beschrieben ist, aufgebaut worden*. Die leichte Hütte musste auf der Station Rigi gründlich verankert werden. Die Drahtseile waren an Eisenringen befestigt, die anlässlich der Längendifferenzbestimmungen im Jahre 1925 in den Boden einbetoniert worden sind. Der Weststurm vom 2. und 3. August 1949 zeigte sehr eindringlich, wie nötig eine solche Verspannung an ungeschützten, dem Winde ausgesetzten Orten ist.

a) Gurten-Ost (B)

Der Triangulationspunkt 1. Ordnung Gurten-Ost liegt auf der Ostkuppe des Gurten bei Bern. Eine Lageskizze des Punktes findet man in Band 23, Seite 51. Südöstlich des Zentrums ist im Juni 1945 ein Beobachtungspfeiler gemauert worden. Er liegt hart am Strässchen nach Gurtendorf. Es ist empfehlenswert, ihn von nun an mit «astronomischer Pfeiler 1945» zu bezeichnen. Seine kreisförmige Deckplatte hat einen Durchmesser von 70 cm; in ihrem Zentrum befindet sich ein einzementierter Nagelkopf.

Nachstehend sind die Koordinaten und die Meereshöhen der Punkte Gurten-Ost Zentrum, astronomischer Pfeiler 1945, Instrumentenmitte 1945 und Punkt 1. Ordnung Rötifluh zusammengestellt:

Punkt	Y	X	Meereshöhe
Gurten-Ost (B)	+ 392,94 m	— 3756,57 m	858,09 m Steinoberfläche
Astronomischer Pfeiler 1945	+ 407,82 m	— 3763,48 m	(Radschraube nivelliert) 858,38 m Deckplatte
Instrumentenmitte 1945	+ 407,81 m	- 3763,47 m	(Nagelkopf) 858,38 m
Rötifluh	+ 6757,26 m	+ 34121,83 m	1396,51 m Pfeileroberfläche

Von der Eidgenössischen Landestopographie sind das Azimut der Richtung Zentrum-astronomischer Pfeiler zu 127^g 65° 84°° oder 114° 53′ 33″ und die auf Zentimeter abgerundete Distanz Zentrum-astronomischer Pfeiler zu 16,41m bestimmt worden.

Auf den astronomischen Pfeiler bezogene geographische Koordinaten sind zu verbessern um

$$\Delta \varphi = +0$$
",22 und $\Delta \lambda = -0$ s,047

um die Breite und östliche Länge des Zentrums Gurten-Ost zu erhalten.

Die Beobachtungsstation Gurten war mit dem Punkt 1. Ordnung Rötifluh telephonisch verbunden.

^{*} Im folgenden werden die Bände dieser Veröffentlichung kurz mit «Band N» bezeichnet.

b) Rigi

Die Beobachtungen auf dem Triangulationspunkt 1. Ordnung Rigi sind auf dem sogenannten astronomischen Pfeiler ausgeführt worden. Er diente schon im Jahre 1925, anlässlich der Längendifferenzbestimmungen Rigi-Zürich und Rigi-Genf als Aufstellungsort eines Durchgangsinstrumentes. Seine Deckplatte wies keinen Zentrumsbolzen auf. Mitte Juni 1949 wurde ein solcher eingesetzt. Beim Bezug der Station, Anfang Juli, zeigte es sich, dass die Deckplatte wackelte. Das Meisseln und der eingeführte Zement hatten offenbar die Loslösung von der Unterlage bewirkt. Nach sorgfältiger Unterlegung der Platte mit Metall- und Blechstücken wurde – im Hinblick auf die guten Erfahrungen mit dem zerlegbaren Holzpfeiler – gewagt, darauf zu beobachten. Es ist denn auch während keiner Beobachtungsnacht eine Störung aufgetreten, die eine Bewegung der Platte vermuten liesse. Um den Pfeiler vor weiterer Zerstörung zu schützen, ist unmittelbar nach Beendigung der Beobachtungen eine neue Deckplatte aufgegossen und ein neuer Verputz angebracht worden.

Die Lage des astronomischen Pfeilers in bezug auf das Zentrum des Signalsteines ist mit allen nötigen Angaben in der Skizze auf Seite 7 des Bandes 21 gegeben. Um die geographische Breite und die östliche Länge des Zentrums zu erhalten, sind an die beobachteten Breiten und Längen des astronomischen Pfeilers die folgenden Beträge anzubringen:

$$\Delta \varphi = +0'', 10; \Delta \lambda = -0^{s}, 020$$

Die nachstehende Übersicht gibt die Koordinaten und die Meereshöhen der Punkte Rigi Signalsteinzentrum, astronomischer Pfeiler 1925, Instrumentenmitte 1949 und Punkt 1. Ordnung Lägern.

Punkt	Υ .	X	Meereshöhe
Rigi, Signalsteinzentrum	+ 79 520,05 m	+ 12 273,44 m	1797,52 m Steinspitze
Astronomischer Pfeiler 1925	+ 79 526,52 m	+ 12 270,51 m	1798,22 m Pfeileroberfläche
Instrumentenmitte 1949	+ 79 526,52 m	+ 12 270, € 0 m	•
Lägern	+ 72 506,71 m	+ 59 415,88 m	856,11 m Pfeileroberfläche

Der Gebrauchswert des Azimutes der Richtung vom Signalsteinzentrum nach der Instrumentenmitte ist von Herrn *Huber*, Ingenieur an der Eidgenössischen Landestopographie, bestimmt worden zu 114°25′, die auf Zentimeter aufgerundete Distanz zu 7,11 m.

Der Kosten wegen ist darauf verzichtet worden, eine telephonische Verbindung zwischen der Beobachtungsstation auf dem Rigi und dem Punkt 1. Ordnung Lägern zu erstellen. Bei zukünftigen Azimutbestimmungen, insbesondere im Gebirge, dürfte es aber unumgänglich sein, eine Verständigung der beiden Stationen mittels drahtloser Telephonie zu ermöglichen.

2. Instrumentelles und Stationseinrichtungen

a) Auf dem Gurten

Die Sterndurchgänge sind mit Hilfe des Bambergschen Durchgangsinstrumentes Nr. 8804 und eines Undulators registriert worden. Der Instrumentenvertikal – das heisst die Ebene senkrecht zur Horizontalprojektion der Drehachse des Instrumentes – stand mit grosser Annäherung im Vertikal von Rötifluh, dessen Nordazimut rund +9°31′ beträgt.

Als Beobachtungsuhr diente die Pendeluhr Riefler Nr.327, deren Registriervorrichtung jede zweite Sekunde einen Stromkreis unterbricht. Die Uhr befand sich in einem Kellerraum des Hotels Gurten-Kulm. Zwischen Uhr und Undulator war ein Siemenssches Federrelais eingeschaltet. Eine doppeladrige Leitung verband den Uhrenraum mit der Beobachtungsstation.

Zum Abhören der rhythmischen Zeitzeichen wurde der Dreikreisempfänger der Telefunkengesellschaft verwendet. Die Zeitzeichen wurden zur Koinzidenz gebracht mit den Sekundenschlägen des Nardinschen Deckchronometers Nr.13711. Dieser wies einen täglichen Gang von rund +29 Sekunden (zurückbleiben) gegenüber mittlerer Zeit auf.

Auf Rötifluh befand sich, zentrisch aufgestellt, ein Glühlampenscheinwerfer, Modell Gotthardbesatzung. Die reflektierende kreisförmige Rückwand weist einen Durchmesser von 25 cm auf. Sie war bis auf eine freie Öffnung von 3 cm Breite und 25 cm Höhe abgeblendet. Als Energiequelle dienten Akkumulatoren. An einigen Abenden wurde eine 100-Watt-Lampe verwendet, an anderen eine solche von 50 Watt. Bei ruhiger Luft erzeugte die schwächere Lampe im Fernrohr ein Bild ähnlich dem eines Sternes 6. Grösse.

b) Auf dem Rigi

Zur Beobachtung der Sterndurchgänge wurde das Bambergsche Durchgangsinstrument Nr. 13999 verwendet. Der Instrumentenvertikal wich wiederum nur sehr wenig vom Vertikal des Objektes ab. Das Nordazimut Rigi-Lägern beträgt rund 352°18'.

Alle Sterndurchgänge sind mit einem Chronographen registriert worden. Er wurde im Juni 1949 bei der Firma Favag in Neuenburg gekauft. Der eine der beiden Schreibstifte wurde unmittelbar – ohne Zwischenschaltung eines Relais – jede zweite Sekunde durch die Registriervorrichtung des Marine-Chronometers Nardin Nr. 34/7845 betätigt. Der zweite Schreibstift befand sich entweder im Stromkreis des unpersönlichen Mikrometers, oder er war auf ein von Herrn Ingenieur Berger hergestelltes Empfangsgerät geschaltet. Dieses Empfangsgerät ist eigens zur Aufnahme der Zeitzeichen von Rugby (Wellenlänge 18740 m) gebaut worden; es hat auf dem Rigi störungsfrei gearbeitet. Der elektrische Teil des Chronographen ist von Herrn Berger so ergänzt worden, dass sich die Zeitzeichen ohne Zwischengerät registrieren lassen. Es genügte, dazu eine einfache Hüttenantenne zu benutzen, das heisst einen den Hüttenwänden entlang gezogenen Draht.

In gleicher Weise wie auf Rötifluh stand auch auf Lägern ein Glühlampenscheinwerfer zur Verfügung. Die dazugehörenden Akkumulatoren wurden mit Hilfe eines 1-Zylinder-Benzinmotors an Ort und Stelle aufgeladen. Der Scheinwerfer war in zentrische Stellung gebracht und mit Gips auf dem Pfeiler festgemacht worden. Aus Blech verfertigte Masken konnten so aufgesetzt werden, dass nur ein zentraler senkrechter Streifen von 4 oder 5 cm Breite frei blieb. Die ganze Einrichtung hat sich als sehr schwerfällig und störungsreich erwiesen. Man wird sie in Zukunft kaum mehr verwenden.

Die Möglichkeit, sich mit der Signalstation Lägern telephonisch zu verständigen, bestand für den Beobachter auf dem Rigi nur bis ungefähr 22^h30^m. Dabei konnten die Telephonstationen im Hotel Rigi-Kulm und im Gasthaus Lägern-Hochwacht benutzt werden.

3. Das Beobachtungsverfahren

In diesem Abschnitt wird nur so weit auf die Methode der Durchgangsbeobachtungen in einem beliebigen Vertikal eingegangen, als zum Verständnis des verwendeten Reduktionsverfahrens nötig ist. Ausführliche Behandlungen der Methode findet man in den folgenden Veröffentlichungen von *Th. Niethammer*:

- «Die direkte Bestimmung des Azimutes eines irdischen Objektes», Annexe au Procès-Verbal de la 86° Séance de la Commission géodésique suisse, 1940;
- «Die simultane Bestimmung der Zeit, der Polhöhe und des Azimutes zweier Richtungen», Verhandlungen der Naturforschenden Gesellschaft in Basel, Band LIV, 1943;
- «Die genauen Methoden der astronomisch-geographischen Ortsbestimmung», Verlag Birkhäuser, Basel 1947.

a) Die Reduktionsformeln

Bezeichnen wir mit a das von Süden über Westen positiv gezählte Azimut, mit p die Poldistanz und mit t den Stundenwinkel eines Sternes, ferner mit Φ die Poldistanz des Zenites, so besteht die Beziehung:

$$tg a = -\frac{tg p \cdot cosec \Phi \cdot sin t}{1 - tg p \cdot cotg \Phi \cdot cos t}$$
 (1)

Zur Kontrolle wurde das Azimut auch mit Benutzung eines Hilfswinkels Ψ gerechnet. Es ist:

$$tg a = \sin \Psi \cdot \csc (\Psi - \Phi) \cdot tg t$$
(2)

$$\operatorname{tg} \Psi = \cos t \cdot \operatorname{tg} p$$

Der Differentialausdruck für eine Azimutänderung da lautet:

$$\sin z \cdot da = -\sin q \cdot dp + \cos q \cdot \sin p \cdot dt + \cos z \cdot \sin a \cdot d\Phi \tag{3}$$

wenn die Zenitdistanz mit z und der parallaktische Winkel mit q bezeichnet wird. Führt man noch die Uhrzeit U, die Uhrkorrektion u und die Rektaszension α ein, so hat man:

$$t = (U+u) - \alpha$$
, also $dt = (dU+du) - d\alpha$

Wird das Azimut gerechnet mit den Näherungswerten u_0 und Φ_0 , wo $u = u_0 + du$ und $\Phi = \Phi_0 + d\Phi$, so geht ein Näherungswert a_i hervor. Dann ist:

$$a = a_i + da_i$$

Das Glied da_i ist bestimmt durch die Beziehung (3).

Bezeichnet man mit a_0 einen beliebigen Näherungswert von a_0 , so ergibt sich:

$$a = a_0 + da = a_i + da_i$$

oder

wo

$$da - da_i = a_i - a_0 \tag{3a}$$

Setzen wir in (3), nachdem dt durch $(dU+du)-d\alpha$ ersetzt worden ist, dp, d\alpha, dU und d\Phi gleich Null, so wird:

$$\mathrm{d}a_i = \frac{\cos q \cdot \sin p}{\sin z} \cdot \mathrm{d}u$$

Dies eingesetzt in (3a) gibt:

$$da - \frac{\cos q \cdot \sin p}{\sin z} \cdot du = a_i - a_0$$

Die Differenz $(a_i - a_0)$ kann als fingierte Beobachtung betrachtet werden. Ihr Gewicht g ist näherungsweise proportional $\sin^2 z$ anzusetzen. Die mit \sqrt{g} multiplizierte Fehlergleichung lautet dann:

$$\sin z \cdot da - \cos q \cdot \sin p \cdot du = (a_i - a_0) \sin z + v$$

Wegen des Einflusses der täglichen Aberration muss an die Grösse $(a_i - a_0)$ sin z noch die Korrektur

$$\delta_a = -0^{\circ},322 \cdot \sin \Phi \cdot \cos a$$

angebracht werden.

Es seien, in nicht allzu grosser Entfernung vom Meridian (< 20°) die Durchgänge von Sternpaaren, je eines Südsternes und eines Nordsternes, beobachtet worden. Die Auswertung kann auf verschiedene Arten vorgenommen werden.

1. Aus der Beobachtung jedes einzelnen Sternpaares lässt sich ein Wert a des Azimutes und ein Wert u der Uhrkorrektion ableiten. Man hat für jeden Sterndurchgang die Beziehung:

$$\sin z \cdot da - \cos q \cdot \sin p \cdot du = \{(a_i - a_0) \sin z + \delta_a\} = l \tag{4}$$

Die zwei Gleichungen, die einem Sternpaar zugeordnet sind, geben eine gute Bestimmung der beiden Unbekannten da und du. Die eingeführten Gewichte bleiben ohne Einfluss auf die Unbekannten.

2. Es besteht die Möglichkeit, zu allen Beobachtungen die Fehlergleichungen

$$v = \sin z \cdot da - \cos q \cdot \sin p \cdot du - l$$

aufzustellen und nach der Methode der kleinsten Quadrate auszugleichen. Daraus geht je ein Abendwert von a und u hervor. Die Einführung von Gewichten ist in diesem Falle von Bedeutung.

3. Die Grössen da und du können aus jedem Sternpaar gerechnet werden mit Hilfe der Beziehungen:

$$x \cdot \sin z \mp y \cdot \cos z = l \begin{cases} -\text{Südseite} \\ +\text{Nordseite} \end{cases} \text{ des Vertikals}$$

$$x = da - du \cdot \cos \Phi$$

$$y = +du \cdot \sin \Phi \cdot \cos a + d\Phi \cdot \sin a$$
(5)

Wie ersichtlich, lassen sich aus Durchgangsbeobachtungen in einem Vertikal nur zwei der drei Grössen da, du und $d\Phi$ bestimmen. Wird das Azimut gesucht, so muss die Polhöhe oder die Uhrkorrektion bekannt sein, oder man hat nicht nur in einem Vertikal, sondern in deren zweien Durchgänge zu beobachten.

Die auf dem Gurten und dem Rigi ausgeführten Messungen sind nach der ersten Art ausgewertet worden. Machen sich im Laufe einer Beobachtungsnacht Unregelmässigkeiten in der Instrumentenstellung oder veränderliche Lateralrefraktionen geltend, so verraten sie sich in den Azimutwerten a, die aus den einzelnen Paaren hervorgehen. Fügt man zu einem solchen Einzelwert a des Instrumentenvertikales noch den kurz vor oder nach dem betreffenden Sternpaar beobachteten Anschlusswinkel Instrumentenvertikal-Objekt hinzu, so erhält man eine selbständige, von den übrigen Beobachtungen des Abends unabhängige Azimutbestimmung.

Werden einzelne Sternpaare in mehreren, nicht zu weit voneinander abliegenden Nächten beobachtet und ändert sich die Azimutstellung des Instrumentes von Abend zu Abend nur wenig, so bleiben auch die Änderungen dt des Stundenwinkels klein. Von den Änderungen d δ der Deklination trifft dies ohnehin zu. In diesem Falle lässt sich die rechte Seite der Gleichungen (4) auf einfache Art mittels des Ausdruckes

$$\Delta l = \sin q \cdot d\delta + 15 \cdot \cos \delta \cdot \cos q \cdot dt \tag{6}$$

ableiten, wenn die siebenstellige Berechnung einer entsprechenden Durchgangsbeobachtung bereits vorliegt. Wendet man – von einem siebenstellig gerechneten Werte ausgehend – den Differentialausdruck über mehrere Abende hinweg an, bis zu einem letzten ebenfalls siebenstellig abgeleiteten Wert, so müssen die beiden Beträge l des letzten Abends bis auf wenige Hundertstel Bogensekunden miteinander übereinstimmen. Durch diese Kontrolle wird geprüft, ob sowohl die beiden siebenstelligen Berechnungen als auch die Anwendungen des Ausdruckes (6) fehlerfrei erfolgt sind.

b) Die Reduktion der beobachteten Uhrzeiten auf den Achsenäquator und vom Achsenäquator auf den Instrumentenvertikal

Als Achsenäquator wird die Ebene bezeichnet, die zur Drehachse des Durchgangsinstrumentes senkrecht steht und durch deren Mitte geht. Der Instrumentenvertikal enthält diesen Punkt ebenfalls und steht senkrecht zur Horizontalprojektion der Drehachse. Der Winkel zwischen dem Achsenäquator und dem Instrumentenvertikal ist also gleich der Neigung i der Drehachse.

Die Uhrzeit, die von einem bestimmten Kontakt in der ersten Stellung des Instrumentes registriert wird, nennen wir U'; die vom gleichen Kontakt in der zweiten Instrumentenstellung registrierte Uhrzeit sei U''. An das arithmetische Mittel $\frac{1}{2}$ (U'+U'') sind zwei Korrekturen anzubringen, um die Zeit des Durchganges des Sternes durch den Achsenäquator zu erhalten. Eine erste Korrektur ist deshalb nötig, weil sich das Sternbild vor und nach dem Umlegen des Instrumentes nicht mit der gleichen azimutalen Geschwindigkeit bewegt. Mit der zweiten Korrektur beseitigt man den Einfluss der Kontaktbreite und des toten Ganges. An Stelle der Korrektur der beobachteten Uhrzeit $\overline{U} = \frac{1}{2} (U'+U'')$ betrachten wir die gleiche Korrektur des zugeordneten Stundenwinkels \overline{t} . Bezeichnet man die Uhrkorrektion mit u und die Rektaszension des Sternes mit α , so ist:

$$\overline{t} = \overline{U} + u - \alpha$$

Im Augenblick, wo sich der Stern im Achsenäquator befindet, habe er den Stundenwinkel t_A . Die an \overline{U} anzubringende Korrektur, um t_A zu erhalten, ist dann $(t_A - \overline{t})$. Man hat

$$t_A = \overline{U} + (t_A - \overline{t}) + u - \alpha$$

Der Ausdruck für die in Zeitsekunden ausgedrückte Reduktion $(t_A - \overline{t})$ lautet:

$$(t_A - \bar{t}) = -\frac{m''}{15} \cot g (\mu - \bar{t}) + e \cdot k \cdot \csc p \cdot \sec q$$

Die Bedeutung der hierin auftretenden Grössen soll weiter unten erörtert werden.

Infolge der Neigung i der Horizontalachse bleibt noch die Reduktion der Durchgangszeiten vom Achsenäquator auf den Instrumentenvertikal anzubringen. Der Stundenwinkel des Sternes beim Durchgang durch den Instrumentenvertikal sei t. Dann beträgt die Reduktion $(t-t_A)$:

$$(t-t_A) = i \cdot \cos z \cdot \operatorname{cosec} p \cdot \sec q$$

Addiert man $(t-t_A)$ zur Reduktion $(t_A-\bar{t})$, so erhält man die Gesamtreduktion $(t-\bar{t})$ der Durchgangszeiten auf den Instrumentenvertikal:

$$(t-\bar{t}) = -\frac{m''}{15}\operatorname{cotg}(\mu-\bar{t}) + (e \cdot k + i \cdot \cos z)\operatorname{cosec} p \cdot \sec q \tag{7}$$

Über die Grössen, die in diesem Ausdruck auftreten, ist folgendes zu sagen:

Der Faktor m" ist gegeben durch die Beziehung

$$m'' = 2 \cdot \frac{\sin^2 \frac{\Theta}{2}}{\sin 1''}$$

wo $\Theta = \frac{1}{2}(U'' - U')$, das heisst gleich der halben Differenz der beobachteten Durchgangszeiten in den beiden Instrumentenstellungen. Das m'' braucht nicht für jedes Kontaktpaar gerechnet zu werden. Den 10 benutzten Kontaktpaaren entsprechend, wurde ein Mittelwert eingeführt, so dass für jeden Sterndurchgang die Rechnung nur einmal auszuführen war.

Mit μ wird der Stundenwinkel des Poles Q des Instrumentenäquators, dessen Azimut um 90° grösser ist als dasjenige des Sternes, bezeichnet. Bleibt die Neigung i klein, so lässt sich μ rechnen aus der Beziehung

$$tg \mu = -\frac{\cot g \, a_0}{\cos \Phi}$$

Zur Bestimmung des \bar{t} in der Differenz $\mu - \bar{t}$ genügt es, einen Näherungswert u_0 der Uhrkorrektion einzuführen:

$$\bar{t} = \bar{U} + u_0 - \alpha$$

Im zweiten Glied bedeutet k den in Zeitsekunden ausgedrückten Winkelwert der halben Summe von Kontaktbreite und totem Gang:

$$k = \frac{1}{2}$$
 (Kontaktbreite + toter Gang)

Dem Faktor e ist der Wert +1 oder -1 beizulegen, je nachdem ob sich der Stern dem zugeordneten Pol Q des Achsenäquators nähert oder sich von ihm entfernt.

Die Neigung i bedeutet die Erhebung des dem Stern zugeordneten Poles Q des Achsenäquators über die Horizontebene.

Der parallaktische Winkel q lässt sich auf einfache Weise rechnen aus:

$$\sin q = \sin a_s \cdot \sin \Phi \cdot \csc p$$

Das Produkt sin $a_s \cdot \sin \Phi$ ist für einen bestimmten Vertikal konstant und ist gleich dem Sinus des Abstandes des Äquatorpoles von diesem Vertikal.

Der Stundenwinkel t ist nun gegeben durch den Ausdruck

$$t = \overline{U} + (t - \overline{t}) + u - \alpha$$

Statt der Uhrkorrektion u setzen wir deren Näherungswert u_0 . Es ist $u = u_0 + du$, und man hat:

$$t_0 = \overline{U} + (t - \overline{t}) + u_0 - \alpha \tag{8}$$

Mit diesem Stundenwinkel t_0 ist in die Gleichung (1) einzugehen.

c) Die Messung des Anschlusswinkels

Als Anschlusswinkel ΔA bezeichnen wir den kleingehaltenen Winkel zwischen dem Instrumentenvertikal und dem Vertikal durch das irdische Objekt, dessen Azimut A bestimmt werden soll. In den vorigen beiden Abschnitten ist

dargelegt, wie aus den Durchgangsbeobachtungen das Azimut a des Instrumentenvertikales erhalten wird. Es besteht die einfache Beziehung:

$$A = a + \Delta A$$

Der Anschlusswinkel ΔA kann mikrometrisch gemessen werden. Dabei wird der bewegliche Vertikalfaden in beiden Fernrohrlagen auf das Objekt eingestellt. Die entsprechenden Ablesungen an der Trommel des Mikrometers seien M' und M''. Bei den verwendeten Bambergschen Durchgangsinstrumenten wächst die Trommelablesung, wenn der Faden im Sinne wachsenden Azimutes bewegt wird. Die Ablesung M' wurde erhalten, wenn das Fernrohrobjektiv rechts vom Beobachter liegt; M'' entspreche der Lage Objektiv auf der linken Seite. Befindet sich das Objekt in Meridiannähe im Norden, so gehört zur Fernrohrlage Okular Ost die Ablesung M' und zur Lage Okular West die Ablesung M''. Den Abstand des Objektes vom Achsenäquator, positiv genommen im Sinne wachsenden Azimutes, bezeichnen wir mit f. Dann ist:

$$f = \frac{1}{2} \left(M' - M'' \right) R$$

wo R den Winkelwert einer Umdrehung der Mikrometerschraube bedeutet.

Der Anschlusswinkel ΔA geht hervor aus der Beziehung:

$$\Delta A = (f - i \cdot \cos z_0) \csc z_0^{\prime} \tag{9}$$

Die Neigung i der Achse hat positives Vorzeichen, wenn das Achsenende, welches dem Objekt im Sinne wachsenden Azimutes um 90° vorangeht, über dem Horizonte liegt. Befindet sich das Objekt im Norden, so bedeutet demnach i die Erhebung des Ostendes über den Horizont. Mit z_0 ist die Zenitdistanz des Objektes bezeichnet; sie kann grösser sein als 90°.

4. Die zeitliche Anordnung der Beobachtungen

Die Messungen auf dem Gurten fielen in eine ununterbrochene Schönwetterlage. Vom 12. Juli bis am 25. Juli 1945 konnte an 10 Abenden gearbeitet werden.

Mit Beobachten wurde frühestens eine Stunde nach Sonnenuntergang begonnen. Das Hüttendach ist so frühzeitig geöffnet worden, dass sich die Temperaturunterschiede noch vor Beginn der Messungen ausgeglichen hatten. Die Arbeitszeit erstreckte sich über 4 Stunden, in der Regel von 22^h bis 2^h. Trotz den getroffenen Vorsichtsmassnahmen weisen die Beobachtungsergebnisse der Station Gurten gewisse systematisch auftretende Eigenheiten auf.

Während einer ungestörten Schönwetterlage können sich unverändert wirkende Einflüsse geltend machen und die Messergebnisse systematisch verfälschen. Demnach ist es günstiger, wenn die Beobachtungen nicht alle in die gleiche Witterungsperiode fallen, wenn sich zwischen den einzelnen Gruppen die atmosphärischen Verhältnisse stark ändern. Im Hinblick darauf wurde angestrebt, die Azimutbestimmungen auf dem Rigi zu verteilen. Sie zerfallen in 3 Gruppen. In die erste gehören die 4 Beobachtungsnächte vom 9. bis zum 12.Juli 1949. Diese Nächte wiesen sehr ähnliche Verhältnisse auf; stets befand sich eine träge Dunstschicht über dem Mittelland, so dass tagsüber vom Rigi aus auch mit einem Feldstecher die Lägern nie sichtbar war. Die zwei Nächte vom 21. und 22.Juli bilden die zweite Gruppe. Zwischen dem 12. und 21.Juli herrschte schlechtes Wetter, Regen und Nebeltreiben. Ferner wehte am 2. und 3. August in der ganzen Schweiz ungewöhnlich starker Westwind, der auf dem Rigi Sturmcharakter annahm. Zwischen der zweiten Gruppe und der vom 4. bis 8. August durchgeführten, aus 3 Beobachtungsnächten bestehenden dritten Gruppe wurden die Luftschichten zwischen Rigi und Lägern gründlich durcheinandergewirbelt.

Die Wahrscheinlichkeit, dass allfällige Refraktionsanomalien sich in allen Beobachtungsnächten auf die gleiche systematische Weise geltend machten, ist also bei den Bestimmungen auf dem Rigi geringer als bei den Messungen auf dem Gurten.

5. Die Sternprogramme und Einstelltabellen

Das Sternprogramm der Station Gurten enthielt 22 Sternpaare. Die Örter wurden alle dem Berliner Jahrbuch 1945 entnommen. Die Durchgangsbeobachtungen umfassten 13 Sternpaare.

Für die Station Rigi wurde ein Programm von 25 Sternpaaren gerechnet. Die Örter dieser Sterne stammen aus dem Katalog «Apparent places of fundamental stars 1949». Auf dem Rigi sind 16 verschiedene Sternpaare beobachtet worden.

Die Auswahl der Sterne wurde so vorgenommen, dass die Summe der Zenitdistanzen eines Paares im Durchschnitt nicht erheblich unter 90° liegt.

Zur Berechnung der Einstelltabellen wurde das rechtwinklige Dreieck benutzt, das entsteht, wenn vom Pol des Äquators das Lot auf den Vertikal des Objektes gefällt wird. Bezeichnen wir den Fusspunkt dieses Lotes mit L, so ist im Dreieck Zenit-Pol-L der Winkel in L ein rechter, der Winkel im Zenit gleich dem Azimut a des Vertikales oder gleich (360-a) und die Seite Zenit-Pol gleich Φ . Ferner bezeichnen wir die Seite Pol-L mit \bar{p} , die Seite Zenit-L mit \bar{z} und den im Uhrzeigersinn gemessenen Winkel zwischen dem Lot Pol-L und der Seite Pol-Zenit mit \bar{t} . Es ist:

```
\sin \bar{p} = \sin a \cdot \sin \Phi
\cos \bar{t} = \operatorname{tg} \ \bar{p} \cdot \operatorname{cotg} \Phi
\cos \bar{z} = \sec \bar{p} \cdot \cos \Phi
```

Nun betrachten wir das rechtwinklige Dreieck, dessen zwei Ecken Pol und L die gleichen sind wie in dem eben verwendeten Dreieck und dessen dritte Ecke gebildet wird durch den Ort S eines Sternes, der sich im Vertikal des Objektes befindet. Den im Uhrzeigersinn gemessenen Winkel zwischen dem Lot Pol-L und der Seite Pol-Stern bezeichnen wir mit Δt , die Seite Stern-L mit Δz . Man hat:

```
\cos \Delta t = \operatorname{tg} \ \bar{p} \cdot \operatorname{cotg} p\cos \Delta z = \operatorname{sec} \bar{p} \cdot \operatorname{cos} p
```

Wir sprechen von einem oberen Durchgang, wenn der Stern zwischen L und dem Zenit durch den Vertikal geht, von einem unteren Durchgang, wenn dies zwischen L und dem Horizont geschieht. In der nachstehenden kleinen Übersicht ist zusammengestellt, in welchem Quadranten die Winkel liegen und wie aus \bar{t} und Δt sowie aus \bar{z} und Δz in einfacher Weise der Stundenwinkel und die Zenitdistanz beim Durchgang des Sternes durch den Vertikal hervorgehen.

		Der m	eridiannahe Vertika	al des Objektes verlä	uf t			
Grösse .	östlich de	es Poles, \bar{t} im 1. Qu	ıadranten	westlich des Poles, \bar{t} im 4. Quadranten				
	Südstern	Nordst	ern	Südstern	Nords	tern		
		oberer Durchgang	unterer Durchgang		oberer Durchgang	unterer Durchgang		
Δt	1. oder 2. Qu.	1.Quadrant	4. Quadrant	3. oder 4. Qu.	4. Quadrant	1.Quadrant		
Stundenwinkel	$\Delta t - \bar{t}$ positiv 1. Quadrant	$\Delta t - \bar{t}$ negativ 4. Quadrant	$\Delta t - \bar{t}$ positiv 3. Quadrant	$\Delta t - \bar{t}$ negativ 4. Quadrant	$\Delta t - \bar{t}$ positiv 1. Quadrant	$\Delta t + (24^{h} - \tilde{t})$ positiv 2. Quadrant		
Zenitdistanz	$\Delta z - ar{z}$ südlich	$ar{z} - \Delta z$ nördlich	$ ilde{z} + \Delta z$ nördlich	$\Delta z - ar{z}$ südlich	$ar{z} - \Delta z$ nördlich	$ar{z} + \Delta z$ nördlich		

Für die beiden Vertikale Gurten-Rötifluh und Rigi-Lägern sind Tabellen des Stundenwinkels und der Zenitdistanz aufgestellt worden mit den folgenden runden Werten der Poldistanz als Argument:

- von $p = 100^{\circ}$ bis 70° in Intervallen von Grad zu Grad
- von $p = 30^{\circ}$ bis 10° in Intervallen von Grad zu Grad
- von $p = 10^{\circ}$ bis 7° in Intervallen von $\frac{1}{2}$ zu $\frac{1}{2}$ Grad

Die einem Stern zugeordneten Werte konnten daraus linear interpoliert werden. Sie entsprechen dem Durchgang durch den Mittelfaden.

Weiter wurden noch die Korrekturen δt und δz gerechnet, die anzubringen sind, um Stundenwinkel und Zenitdistanz der Südsterne beim Eintritt des Sternbildes ins Gesichtsfeld zu erhalten, sowie die gleichen Elemente der Nordsterne bei einem Abstand des Sternbildes vom Mittelfaden, der 3 Umdrehungen der Mikrometerschraube entspricht. Den Abstand des Sternbildes vom mittleren Vertikalfaden bezeichnen wir mit δF . Die Zeit δt , die ein Sternbild braucht, um diesen Abstand zu durchlaufen, beträgt:

$$\delta t = \delta F \cdot \operatorname{cosec} p \cdot \operatorname{sec} q$$

Der parallaktische Winkel ergibt sich aus:

$$\sin q = \sin \bar{p} \cdot \csc p$$

Bei den verwendeten Bambergschen Durchgangsinstrumenten beträgt δF rund 84° im Augenblick des Eintrittes des Sternbildes ins Gesichtsfeld und rund 32°, wenn das Sternbild um 3^R vom Achsenäquator entfernt ist. Weiter hat man:

$$\delta z = 15 \cdot \sin a \cdot \sin \Phi \cdot \delta t$$

wobei δt in Zeitminuten einzuführen ist und δz in Bogenminuten erhalten wird.

Um die Zeit des Eintrittes des Sternbildes oder den Beginn der Beobachtung zu erhalten, war δt von der Durchgangszeit durch den Vertikal zu subtrahieren. Verläuft der Vertikal östlich des Poles, so ist bei einem Südsterndurchgang δz vom Absolutwert der Zenitdistanz z – im Augenblick des Durchganges durch den Vertikal – zu subtrahieren, bei einem Nordsterndurchgang zu addieren. Verläuft der Vertikal westlich des Poles, so hat man die Korrekturen δz mit umgekehrtem Vorzeichen anzubringen.

In der Tabelle 1 findet man die Angaben zusammengestellt, die sich auf die 13 auf dem Gurten beobachteten Sternpaare beziehen; Tabelle 2 enthält die entsprechenden Angaben für die auf dem Rigi beobachteten 16 Sternpaare. Aus den beiden Tabellen sind ersichtlich:

Die Ordnungsnummer des Paares; die Nummer des Sternes – für die Station Gurten bezogen auf das Berliner Jahrbuch 1945, für die Station Rigi dem Katalog «Apparent places of fundamental stars 1949» entnommen; die Grösse, die Rektaszension und die Deklination; die Sternzeit des Durchganges durch die Vertikale Gurten-Rötifluh oder Rigi-Lägern; die Zenitdistanzen beim Durchgang durch den Vertikal und die Summe der zwei Zenitdistanzen eines Paares. Die Buchstaben O und U nach der Kolonne «Sternzeit» geben an, ob es sich bei den nördlichen Sternen um einen oberen oder unteren Durchgang handelt. Mit s oder n wird in der drittletzten Kolonne darauf hingewiesen, ob eine südliche oder eine nördliche Zenitdistanz vorliegt. Die Zahlen N der letzten Kolonne geben an, wie oft ein Sternpaar beobachtet wurde. Die scheinbaren Örter der in Tabelle 1 aufgeführten Sterne mit eingeklammerter Nummer sind nicht im Jahrbuch enthalten; sie mussten gerechnet werden.

Die Deklinationen der Südsterne liegen zwischen $-10^{\circ}2'$ und $+18^{\circ}7'$, diejenigen der Nordsterne zwischen 69°20' und 79°38' in Tabelle 1 und zwischen 60°56' und 82°49' in Tabelle 2. Durchschnittlich gingen in einer Stunde ungefähr 3 Sternpaare durch den Vertikal. Sooft die Pausen zwischen den einzelnen Sternpaaren dazu ausreichten, wurde der Anschlusswinkel gemessen. Auf dem Rigi wurde auf die Beobachtungen einiger Sternpaare verzichtet, um häufiger Einstellungen auf das Objekt zu erhalten. Dabei ist darauf geachtet worden, dass im Laufe einer Nacht die Anzahl der Paare mit oberem Durchgang des Nordsternes gleich gross ausfiel wie die Anzahl der Paare mit unterem Durchgang des Nordsternes.

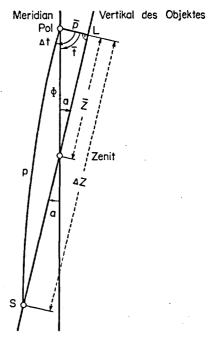


Tabelle 1: Sternprogramm für Rigi; $\varphi = 47^{\circ}3,7$

Paar Nr.	Boss Nr.	М	^α 1949 , 0	Δα	δ _{1949,0}	Prob. Err. ⁸ 50	Zenitdistanz- Differenzen z - z n
1	23 726 23 821	4,5 5,2	17 ^h 28 ^m ,7 32,1	3 ^m ,4	26° 8,8 68 10,1	0 , 07	- 11,6
2	24 093 24 342	5,7 5,1	17 42,9 51,6	8,7	53 49,3 40 1,0	0,14 ,09	+ 17,1
3	24 518 24 607	5,9 6,1	17 58,5 18 1,8	3,3	45 30,2 48 27,7	0,13 ,17	+ 9,5
4	24 916 25 056	5,0 5,5	18 13,6 19,0	5,4	64 22,8 29 50,0	0,06 ,13	- 5,4
5	25 519 25 643	5,6 5,5	18 37,1 41,9	4,8	62 28,8 31 52,5	0,11 ,14	- 13,9
6	25 732 25 904	5,9 5,6	18 44,6 50,4	5,8	41 23,2 52 54,5	0,18 ,13	- 10,3
7	26 055 26 317	5,8 5,5	18 56,2 19 4,6	8,4	65 11,4 28 32,8	0,17 ,10	+ 23,2
8	26 542 26 638	5,6 4,6	19 13,1 16,5	3,4	21 8,5 73 15,7	0,10 ,06	- 16,8
9	26 708 26 846	6,1 5,1	19 19,3 24,3	5,0	57 32,9 36 12,9	0,17 ,08	. + 21,6
10	26 947 27 070	3,9 5,3	19 28,4 33,0	4,6	51 37,2 42 18,0	0,05 ,13	+ 12,2
11	27 068 27 213	5,6 5,4	19 33,0 37,8	4,8	51 7,6 42 42,0	0,12 ,08	+ 17,8
12	27 315 27 506	6,0 5,2	19 42,0 49,3	7,3	41 39,0 52 51,4	0,16 ,09	- 23,0
13	27 856 28 042	4,7 5,9	20 2,6 9,9	7,3	67 43,7 26 19,5	0,09	+ 4,2
14	27 858 28 071	5,7 5,7	20 2,6 10,7	8,1	32 4,4 61 55,4	0,11 ,09	+ 7,6
15	28 108 28 218	4,3 4,9	20 12,2 15,9	3,7	56 24,7 37 52,4	0,06 ,13	- 9,7
16	28 304 28 378	5,6 4,6	20 18,8 21,8	3,0	62 5,7 32 1,4	0,11 ,11	+ 0,3
17	28 339 28 537	5,9 4,9	20 20,4 28,5	8,1	45 37,8 48 46,8	0,15 ,09	- 17,2

Tabelle 2: Sternprogramm, Station Rigi; $\varphi = 47^{\circ}$ 3;7 Azimut Rigi - Lägern $a_n = 352^{\circ}$ 17;7

					n '			
Stern- paar Nr.	Stern Katalog Nr.	М	A.R. 1949,0	^δ 1949 , 0		n Vertikal - Lägern Zenit- distanz	Summe der Zenit- distanzen z + z s n	N
1	1445 1432	5,0 5,8		- 4 ⁰ 08,9 + 60 55,8	16 ^h 34 ^m ,2 47,0 0	51 [°] 29' s 14 03 n	65°,5	1
2	260 1459	4,8 4,4		+ 77 02,8 + 4 11,0		54 33 n 43 07 s	97,7	3
3	606 668	5,5 3,7	_	+ 76 00,4 + 2 43,5	17 15,8 0 23,8	29 41 n 44 35 s	74,3	5
4	639 688	3,2 3,4		+ 65 46,6 - 2 54,8	17 33,0 0 55,0	19 00 n 50 14 s	69,2	5
5	1478 284	5,7 5,8		+ 8 00,1 + 68 34,4	18 03,6 09,1 ປ	39 17 s 63 29 n	102,8	7
6	1484 310	5,4 5,7		+ 9 04,9 + 75 54,9	18 14,8 24,9 U	38 12 s 55 46 n	94,0	8
7	685 1500	5,0 5,4		+ 64 22,8 - 8 01,6	18 35,1 0 44,3	17 34 n 55 23 s	73,0	5
8	Nf 1511	5,3 4,6		+ 82 49,2 + 7 16,2	18 55,6 U 19 11,7	47 36 n 40 00 s	87,6	9
9	744 714	5,6 4,9		- 10 53,7 + 71 13,8	•	58 16 s 24 38 n	82,9	9
10	1494 1536	5,4 5,8	· .	+ 75 22,5 - 10 01,7	•	29 00 n 57 24 s	86,4	9
11	357 772	4,6 5,2		+ 70 03,4 + 9 54,3	20 08,9 U 17,8	61 57 n 37 22 s	99,3	9
12	372 1541	6,0 4,5		+ 73 07,4 + 15 56,4		58 45 n 31 19 s	1 90.1 1	3
13	395 1555	5,0 4,8	1	+ 75 58,6 + 9 55,5	20 42,1 U 49,0	55 42 n 37 21 s	93,1	6
14	734 1569	6,0 4,8		+ 79 30,1 - 8 05,0	21 01,1 0 09,4	33 34 n 55 27 s	89,0	5
15	1574 770	5,5 5,2	1	+ 2 27,0 + 74 46,8	-	44 52 s 28 22 n	73,2	3
16	803 840	2,6 4,3		+ 62 22,1 - 8 02,3		15 31 n 55 24 s	, ,,, ч	3

Mittel 84,3

Tabelle 3: Mittlere Fehler eines Doppelkontaktes: Station Gurten, 1945

Kat. Nr.	M	A.R. 1945,0	^δ 1945 , 0	n	μ	μ'	<u>μ</u> ,
1536	5,8	20 ^h 29 ^m 4	- 10° 02,5	6	± 0,034	± 0,029	1,2
1547	4,8	20 49,7	- 9 11,5	. 1	,041	,029	(1,4)
1486	4,7	18 39,3	- 9 06,4	9	,031	,029	1,1
1500	5,4	19 09,7	- 8 02,0	9	,034	,029	1,2
717	3,6	19 03,3	- 4 58,0	10	,032	,029	1,1
688	3,4	18 18,5	- 2 54,9	9	,032	,029	1,1
677	4,0	17 57,9	+ 2 56,0	9	,032	,029	1,1
7 49 .	3,9	19 52,6	+ 6 16,1	10	,030	,029	1,0
1524	5,6	20 01,5	+ 7 07,3	8	,033	,029	1,1
1555	4,8	21 07,6	+ 9 54,5	1	,040	,029	(1,4)
1442	4,3	16 51,4	+ 10 15,3	3	,033	,029	1,1
656	2,1	17 32,4	+ 12 35,9	10	,027	,029	0,9
1454	5,2	17 17,9	+ 18 06,7	10	,028	,029	1,0
						Mittel	: 1,1
234 บ	4,7	6 ^h 12 ^m ,8	+ 69° 20,6	9	± 0,0711)	± 0,062	1,1
809 o	3,3	21 28,0	+ 70 19,1	8	,066	,065	1,0
817 0	4,8	21 41,1	+ 71 03,5	6	,066	,067	1,0
714 0	4,9	18 55,1	+ 71 13,4	10	,066	,068	1,0
837 0	5,0	22 08,8	+ 72 04,2	1	,050	,071	(0,7)
695 0	3,7	18 22,0	+ 72 42,6	3	,101	,074	1,4
729 0	4,6	19 16,6	+ 73 15,2	9	,082	,076	1,1
770 O	5,2	20 32,3	+ 74 46,0	10	,084	,085	1,0
173 บ	6,0	4 41,4	+ 75 50,7	9	,112 ²)	,092	1,2
115 U	5,5	3 13,3	+ 77 32,1	10	,138	,108	1,3
759 O	4,4	20 10,8	+ 77 32,8	9	,142	,108	1,3
191 U	5,2	5 13,5	+ 79 10,4	10	,208	,131	1,6
248 บ	5,6	6 36,9	+ 79 37,8	1	,195		(1,4)
		er er er 🐷 er er				Mittel	: 1,2

Mittel ohne Sterne mit $\delta > 77^{\circ}:1,1$

¹⁾ ohne Berücksichtigung des Durchgangs vom 25. Juli, der nur eine reduzierte Anzahl Kontakte aufwies (Feldbuch: Sehr schwach, Wolken)

²) ohne Berücksichtigung des Durchgangs vom 13. Juli, der eine extreme Verbesserung von 1,2 Sekunden enthält.

Tabelle 4: Mittlere Fehler eines Doppelkontaktes; Station Rigi, 1949.

Kat. Nr.	М	A.R. 1949,0	δ _{1949,0}	n	μ	μ'	$\frac{\mu}{\mu}$,
744	5,6	19 ^h 48 ^m 0	- 10°53,7	9	± 0,029	± 0,029	1,0
1536	5,8	20 29,6	- 10 01,7	9	,037	,029	1,3
1569	4,8	21 35,0	- 8 05,0	5	,028	,029	1,0
840	4,3	22 14,1	- 8 02,3	3	,032	,029	1,1
1500	5,4	19 09,9	- 8 01,6	5	,034	,029	1,2
1445	5,0	16 58,4	- 4 08,9	1	,039	,029	(1,3)
688	3,4	18 18,7	- 2 54,8	5	,029	,029	1,0
1574	5,5	21 44,6	+ 2 27,0	3	,039	,029	1;3
668	3,7	17 45,3	+ 2 43,5	5	,028	,029	1,0
1459	4,4	17 24,0	+ 4 11,0	3	,031	,029	1,1
1511	4,6	19 31,6	+ 7 16,2	9	,032	,029	1,1
1478	5,7	18 23,2	+ 8 00,1	7 .	,033	,029	1,1
1484	5,4	18 34,0	+ 9 04,9	8	,033	,029	1,1
772	5,2	20 36,7	+ 9.54,3	9	,031	,029	1,1
1555	4,8	21 07,9	+ 9 55,5	6	,034	,029	1,2
1541	4,5	20 44,3	+ 15 56,4	3	,029	,029	1,0
				·		MILL	el: 1,1
1432 0	5,8	16 ^h 31,7	+ 60°55;8	1 .	± 0,049	± 0,046	(1,1)
803 0	2,6	21 17,4	+ 62 22,1	3	,040	,048	0,8
685 0	5,0	18 13,6	+ 64 22,8	5	,054	,050	1,1
639 0	3,4	17 08,6	+ 65 46,6	5 .	,056	,053	1,1
284 U	5,8	7 25,6	+ 68 34,4	7	,062	,059	1,0
375 บ	4,6	9 30,0	+ 70 03,4	9	,071	,063	1,1
714 0	4,9	18 55,0	+ 71 13,8	9	,058	,066	0,9
372 บ	6,0	9 53,9	+ 73 07,4	3	,081	,074	1,1
770 O	5,2	20 32,2	+ 74 46,8	3	,070	,082	0,9
1494 0	5,4	18 48,0	+ 75 22,5	9	,072	,085	0,8
310 U	5,7	8 13,2	+ 75 54,9	8	,095	,089	1,1
395 ປ	5,0	10 30,8	+ 75 58,6	6	,087	,089	1,0
606 O	5,5	16 12,2	+ 76 00,4	5	,089	,089	1,0
260 U	4,8	6 52,7	+ 77 02,8	3	,114	,097	1,2
734 0	6,0	19 24,8	+ 79 30,1	5	,150	,125	1,2
Nf U	5,3	10 25,0	+ 82 49,2	9	,462	,229	el: $\frac{2,0}{1,1}$

Mittel: $\overline{1,1}$ Mittel ohne Sterne mit $\delta > 77^{\circ}$: 1,0

6. Die Genauigkeit der Durchgangsbeobachtungen

Es ist darauf verzichtet worden, das Fernrohr in der Zenitdistanz nachzuführen. Die Sternbilder bewegten sich also während des Beobachtungsvorganges nicht nur senkrecht zum Vertikalfaden, sondern auch in dessen Richtung. Stets wurde darauf geachtet, dass sich das Sternbild bei den zwei Registrierungen ein und desselben Kontaktes in den beiden Fernrohrlagen näherungsweise an der gleichen Stelle des beweglichen Vertikalfadens befand. Mit je grösserer Annäherung dies geschieht, um so vollständiger wird der Fehlereinfluss der Fadenschiefe ausgemerzt. Beträgt die Schiefe des beweglichen Vertikalfadens 1', so sollen die beiden Stellen weniger als 3°,4 voneinander entfernt sein. Dann wird der Abstand des Sternbildes vom Vertikalmittelfaden um weniger als 0°,001 verfälscht.

In der Richtung des Vertikalfadens beträgt die Ausdehnung des Gesichtsfeldes rund 100 Zeitsekunden. Soll die Fadenschiefe 1' nicht übersteigen, so darf das scharfe Bild eines Punktes, der zuerst am einen Ende des Vertikalfadens eingestellt wurde, nach dem Kippen des Fernrohres am gegenüberliegenden Rande des Gesichtsfeldes nicht mehr als 0",4 Abstand vom Faden haben. Die Dicke des Fadens war von der Grössenordnung 0",2. Es wurde so lange berichtigt, bis der angezielte Punkt beim Kippen unter dem Faden blieb. Auf dem Gurten war das Bild des Lichtsignales auf Rötifluh nur während der Vorbereitungsarbeiten ruhig genug, um die beschriebene Korrektur vornehmen zu können; in den eigentlichen Beobachtungsnächten flackerte das Bild viel zu sehr. Günstiger lagen die Verhältnisse auf dem Rigi. Das Bild des Signales auf Lägern war in der Regel so ruhig, dass es sich ohne Schwierigkeit scharf anzielen liess.

Die Durchgangszeiten sind stets aus 10 Kontaktpaaren abgeleitet worden. Aus jedem Sterndurchgang wurde der mittlere Fehler eines Doppelkontaktes gerechnet. Die Durchschnittswerte jedes einzelnen Sternes sind in den Tabellen 3 und 4 aufgeführt; man findet sie in der drittletzten, mit μ überschriebenen Kolonne. Die Zahlen n der voranstehenden Kolonne geben an, aus wieviel Einzelwerten die μ hervorgegangen sind. Die Gesamtzahl der beobachteten Sterndurchgänge beträgt 190 auf dem Gurten und 180 auf dem Rigi. In den Tabellen 3 und 4 sind die Sterne nach der Deklination geordnet. Die erste Kolonne gibt die Sternnummern; in Tabelle 3 beziehen sie sich auf das Berliner Jahrbuch, in Tabelle 4 auf den Katalog «Apparent places of fundamental stars». Ein zugefügtes O oder U weist darauf hin, ob es sich um einen oberen oder unteren nördlichen Durchgang handelt.

Liegen Meridianbeobachtungen vor, so lassen sich die mittleren Fehler eines Doppelkontaktes ausgleichen nach dem Ansatz

$$\mu'_{M} = \sqrt{a^2 + \frac{b^2}{V^2} \cdot \sec^2 \delta}$$

Sind Durchgänge ausserhalb des Meridianes beobachtet worden, so kann man einen entsprechenden Ansatz aufstellen, indem an Stelle der Geschwindigkeit des Sternbildes senkrecht zum Meridian die Geschwindigkeit senkrecht zum betreffenden Vertikal gesetzt wird. Der Ausdruck lautet dann:

$$\mu' = \sqrt{a^2 + \frac{b^2}{V^2} \cdot \sec^2 \delta \cdot \sec^2 q}$$

In den Jahren 1924-1930 sind vom gleichen Beobachter mit dem Durchgangsinstrument Bamberg Nr. 8804 eine grosse Anzahl von Meridiandurchgängen beobachtet worden. Die daraus abgeleiteten Konstanten a und b betragen:

$$a = 0.021$$
; $b = 1.67$

Die verwendete Vergrösserung V war durchweg 86fach. Die Werte μ' , die in der zweitletzten Kolonne der Tabellen 3 und 4 stehen, wurden durch Einsetzen dieser Konstanten a, b und V erhalten. Auf dem Gurten und auf dem Rigi waren die Durchgangsbeobachtungen zu wenig zahlreich, um daraus zuverlässige Werte von a und b ableiten zu können.

In der letzten Kolonne der beiden Tabellen stehen die Quotienten μ : μ '. Ihr Durchschnittswert beläuft sich in Tabelle 3 auf 1,1 bei den Süd- und auf 1,2 bei den Nordsternen. Die eingeklammerten Beträge gingen nur aus einer einzigen Durchgangsbeobachtung hervor; wegen ihrer grossen Unsicherheit sind sie nicht zur Mittelbildung verwendet worden. Die auf gleiche Art gerechneten Durchschnittswerte der Tabelle 4 betragen sowohl bei den Südals auch bei den Nordsternen 1,1. Dazu ist noch zu bemerken, dass an den Mikrometerkontakten keine Korrekturen wegen der Bahnkrümmung angebracht worden sind. Diese Reduktion wurde zur Vereinfachung der Rechnung erst an den gemittelten Durchgangszeiten berücksichtigt (vgl. 11. Kapitel). Dadurch wurde die Berechnung von μ etwas verfälscht, und zwar um so mehr, je grösser die Deklination des beobachteten Sterns war. Dies kommt in den

Tabellen 3 und 4 im allmählichen Anwachsen des Quotienten $\mu: \mu'$ mit wachsendem δ der Nordsterne zum Ausdruck. Der Durchschnittswert wurde deshalb auch noch unter Weglassung aller Sterne mit $\delta > 77^{\circ}$ gebildet, wodurch er in Tabelle 3 von 1,2 auf 1,1 und in Tabelle 4 von 1,1 auf 1,0 sank.

Die geringe Abweichung des Durchschnittswertes der μ : μ' vom Werte 1 besagt, dass die Beobachtungen in den beiden Vertikalen Gurten-Rötifluh und Rigi-Lägern, verglichen mit Beobachtungen von Meridiandurchgängen, bloss eine kleine Zunahme des mittleren Fehlers eines Doppelkontaktes ergeben haben. Mit anderen Worten, das Schieflaufen der Sternbilder bewirkte nur eine unbedeutende Verringerung der Genauigkeit des Nachfahrens. Ferner zeigt die Übereinstimmung der Durchschnittswerte μ : μ' in den beiden Tabellen 3 und 4, dass die Beobachtungen der Sternbilder mit den unpersönlichen Mikrometern der beiden Durchgangsinstrumente gleich genau ausgefallen sind.

7. Die Instrumentalfehler

a) Die Kontaktbreite

An der Registriertrommel des unpersönlichen Mikrometers sind Kontaktstreifen angebracht, deren Breite kurz als Kontaktbreite bezeichnet wird. Diese ist auf verschiedene Weise bestimmt worden, je nachdem mit einem Undulator oder mit einem Chronographen gearbeitet wurde.

Das Ansprechen des Undulators ist nicht hörbar. Deshalb wurde bei der Bestimmung der Kontaktbreite auf der Station Gurten der Kopfhörer des Dreikreisempfängers so in den Mikrometerkreis eingeschaltet, dass jeder Trommelkontakt das Telephon kurzschloss. Bei langsamem Drehen der Trommel liessen sich dann die Kontaktstellen abhören und die zugeordneten Ablesungen vornehmen. Die Registriertrommel ist derart während zweier voller Umdrehungen abgetastet worden, sowohl im Sinne zunehmender als auch im Sinne abnehmender Teilung. Die zwei auf dem Gurten durchgeführten Bestimmungen haben ergeben:

Ort	Datum 1945	Kontaktbreite D.I. Nr. 8804
Gurten	13.Juli	+ 0°,105
Gurten	26.Juli	$+0^{\circ},103$

In die Reduktionsrechnungen ist der Mittelwert +0°,104 eingeführt worden.

Auf dem Rigi wurde bei eingeschaltetem Mikrometerkreis die Registriertrommel vorsichtig gedreht, bis der Chronograph ansprach. Die Kontakte wurden wiederum über 2 volle Umdrehungen abgetastet. Es sind 4 Bestimmungen vorgenommen worden, am 8. und 23. Juli sowie am 2. und 10. August. Sie ergaben alle den gleichen Wert 0°, 105. Dieser Betrag ist zur Auswertung der auf dem Rigi ausgeführten Beobachtungen benützt worden.

b) Der tote Gang der Mikrometerschraube

Die beobachteten Sterndurchgänge gruppieren sich um die beiden Zenitdistanzen 45° Nord und 45° Süd. Der tote Gang der Mikrometerschraube wurde dementsprechend in den beiden Fernrohrstellungen 45° und 315° bestimmt. Aus den Messungen auf dem Gurten und auf dem Rigi gingen die nachstehenden Durchschnittswerte hervor.

Ort	Datum	Fernroh 45°	rstellung 315°	Ort	Datum	Fernroh 45°	rstellung 315°
	1945	D.I. N	Ir. 8804		1949	D.I. N	r. 13999
Gurten	12.Juli	0 ^s ,001	$+0^{\circ},002$	- Rigi	8.Juli	- 0 ^s ,004	- 0°,002
	26.Juli	0 ^s ,005	$+0^{s},003$	_	23.Juli	$-0^{s},002$	$+0^{\circ},015$
	Mittel:	0 ⁸ ,003	$+0^{s},002$		2. August	$-0^{\rm s},002$	+ 0°,009
	Gesamtmittel:	- 0	8,000		10. August	$+0^{\circ},007$	$+0^{\circ},010$
			•		Mittel:	0s,000	+ 0s,008
			•		Gesamtmittel:	+ 0	,004

Zur Auswertung der Durchgangsbeobachtungen sind die Gesamtmittel verwendet worden.

Bei der Messung des toten Ganges wird ein einfacher Faden in die Mitte eines Doppelfadens gebracht, das eine Mal im Sinne zunehmender, das andere Mal im Sinne abnehmender Teilung der Mikrometertrommel. Die Fadendicke belief sich auf wenige Zehntel Bogensekunden.

Der Abstand zwischen den Doppelfäden des Mikrometers vom D.I. Nr. 13999 war ungewöhnlich gross, rund 20". Ein so breiter Zwischenraum bewirkt eine Abnahme der Einstellgenauigkeit, und man kann sich fragen, ob wirklich der tote Gang der Mikrometerschraube oder hauptsächlich der systematische Unterschied der Einstellungen in den beiden Bewegungsrichtungen gemessen wurde. Auf alle Fälle erklärt der grosse Abstand der Doppelfäden des D.I. Nr. 13999 die stärkere Streuung der Einzelwerte.

In der Reduktionsformel tritt die halbe Summe der Kontaktbreite und des toten Ganges auf. Es wurden die folgenden Mittelwerte eingeführt: ½ (Kontaktbreite+toter Gang) gleich

- +0°,052 auf Station Gurten
- +0°,054 auf Station Rigi

c) Die Neigungen der Drehachse

Der Teilwert der Achsenlibelle ist jeweils vor Beginn der Feldarbeit sowie nach deren Beendigung im Geodätischen Institut der Eidgenössischen Technischen Hochschule in Zürich bestimmt worden. Die gefundenen Mittelwerte betragen:

	Teilwert in						Teilwert in			
Datum		Blasen- änge	Bogen- sek.	Zeit- sek.	Saal- temperatur	Datum	Blasen- länge	Bogen- sek.	Zeit- sek.	Saal- temperatur
1945	A	chsenli	belle des	D.I. Nr. 8	804	1949	Achsenli	belle des	D.I. Nr. 1	3999
15.Juni		4 ^p ,8 0 ^p ,2	1",24 1",26	0°,083 0°,084	} + 18°	30.–31. Mai	31 ^p ,2 36 ^p ,0 41 ^p ,1	1",11 1",10 1",12	0s,074 0s,074 0s,075	} + 15-16
10. August		4p,8 9p,8	1*,24 1*,26	0°,083 0°,084	} + 18°		45 ^p ,0	1″,10	.0 ^s ,074	
					•	25.–26. August	33 ^p ,4 41 ^p ,0	1″,09 1″,10	0°,073 0°,074	} + 19°

Die Ergebnisse der beiden im Jahre 1945 durchgeführten Untersuchungen sind gleich ausgefallen. Die Abhängigkeit des Teilwertes von der Blasenlänge und von der Teilungsstelle erwies sich als so gering, dass sie vernachlässigt werden konnte. Auf dem Gurten schwankte die Blasenlänge zwischen 32°,6 und 39°,3. Die beobachteten Neigungen wurden mit dem Mittelwert 1 Pars = 0°,0835 umgerechnet.

Während der Beobachtungen auf dem Rigi blieb die Blasenlänge innerhalb der Grenzen 34°,0 und 39°,5. Eine schwach angedeutete Abhängigkeit des Teilwertes von Blasenlänge und Teilungsstelle berücksichtigend, sind die Neigungen mit den folgenden Beträgen gerechnet worden:

1949	Verwendeter Teilwert
9. Juli	1",11
1021.Juli	1",10
22.Juli-5, August	1",11
78. August	1",10

Sowohl auf dem Gurten als auch auf dem Rigi ist die Libelle immer vor und nach jedem Sterndurchgang sowie anlässlich jeder Messung des Anschlusswinkels abgelesen worden. Störungen traten keine auf. Die Neigungen der beiden Sterne eines Paares stimmten durchweg gut miteinander überein.

Die nachstehende Übersicht gibt von jeder Beobachtungsnacht das algebraische Mittel und das Mittel der Absolutwerte der beobachteten Neigungen, ferner den kleinsten und den grössten vorgekommenen Neigungsbetrag. Es soll noch darauf hingewiesen werden, dass in diesem Abschnitt unter Neigung stets die Erhebung des Westendes der Drehachse verstanden wird.

	Gurten 1945				Rigi 1949				
Datum	Abendmittel		Extremwerte eines Abends		Datum	Abendmittel		Extremwerte eines Abends	
1945	algebraisch	absolut	Minimum	Maximum	1949	algebraisch	absolut	Minimum	Maximum
12.Juli	+ 0°.075	0s,075	+ 0°,042	+ 0 ^s ,106	9.Juli	+ 0s,145	0s,145	+ 0°,124	+ 0s,168
13.Juli	$+0^{s},045$	0s,045	$+0^{s},015$	$+ 0^{s},071$	10.Juli	$-0^{s},148$	0s,148	- 0 ^s ,205	- 0s,035
14.Juli	$+ 0^{\circ},053$	0s,053	$+0^{s},013$	+ 0°,092	11.Juli	$-0^{s},165$	0s,165	- 0°,229	0°,063
17.Juli	$-0^{s},024$	0s,026	- 0°,046	$+0^{s},015$	12.Juli	$-0^{s},122$	0s,122	- 0°,211	$-0^{s},028$
18.Juli	$+0^{s},072$	0s,072	$+0^{s},052$	$+0^{s},084$					
21.Juli	$-0^{s},031$	0s,032	$-0^{s},052$	$+0^{s},010$	21.Juli	$+ 0^{s},063$	0°,063	$+0^{s},015$	$+0^{9},104$
22.Juli	$+ 0^{\circ},003$	0s,011	0 ^s ,025	$+ 0^{\circ},036$	22.Juli	$+ 0^{s},024$	0s,024	$+ 0^{s},009$	+ 0°,054
23.Juli	$-0^{8},044$	0s,044	$-0^{\circ},071$	$-0^{s},017$					•
24.Juli	$+ 0^{s},014$	0s,018	$-0^{s},010$	$+ 0^{s},038$	4. August	— 0 ^s ,169	0°,169	— 0 ^s ,194	— 0 ^s ,137
25.Juli	$-0^{s},023$	0s,023	- 0°,050	$-0^{\rm s},006$	5. August	$-0^{\rm s},027$	0s,032	- 0 ^s ,065	$+0^{s},024$
	•	-	•		7. August	$+0^{s},013$	0s,027	- 0°,041	+ 0°,065
					8. August	$-0^{\rm s},033$	0s,055	$-0^{\circ},118$	$+0^{s},070$

Aus der Zusammenstellung ist ersichtlich, dass die beobachteten Neigungen auf beiden Stationen klein geblieben sind. Das arithmetische Mittel der Differenzen zwischen kleinstem und grösstem Wert eines Abends beträgt 0^s,056 auf Station Gurten und 0^s,114 auf Station Rigi.

Die auf Station Gurten gemessenen Neigungen weisen besonders geringfügige Schwankungen auf. Dies mag zur Hauptsache von der Stabilität des Pfeilers herrühren sowie von den getroffenen Vorsichtsmassnahmen, mit Beobachten frühestens eine Stunde nach Sonnenuntergang anzufangen und das Hüttendach mindestens eine Stunde vor Arbeitsbeginn abzudecken.

Die Neigungen, die auf der Station Rigi erhalten wurden, änderten sich während der einzelnen Nächte etwas mehr als diejenigen der Station Gurten. Im Laufe einer Nacht hat sich stets das Westende des Instrumentes gleichmässig gesenkt; eine Ausnahme macht allein der 9. Juli, an dem nur 3 Sternpaare beobachtet wurden. Nachfolgend führen wir die Unterschiede $(i_l - i_e)$ der beim letzten und beim ersten Sterndurchgang beobachteten Neigungen auf. Das Zeitintervall zwischen diesen beiden Libellenablesungen beträgt im Durchschnitt 3,7 Stunden.

Datum 1949	Beobachteter Neigungs- unterschied $i_l - i_e$	Zeitintervall	Neigungsänderung in einer Stunde
10.Juli	- 0s,163	4 ^h 0 ^m	- 0°,041
11.Juli	$-0^{8},165$	4h 5m .	0 ^s ,040
12.Juli	- 0°,170	3 ^h 30 ^m	− 0 °,049
21.Juli	0°,063	3h 10m	- 0°,020
22.Juli	0 ^s ,045	3h 30m	- 0°,013
4. August	- 0 ^s ,042	3h 50m	0°,011
5. August	- 0 ^s ,087	3h 50m	$-0^{s},023$
7. August	— 0°,096	3 ^h 50 ^m	$-0^{s},025$
8. August	0°,161	3h 30m	- 0 ^s ,046

Die auffallende Erscheinung kann vom Instrument herrühren. Eine grössere Wahrscheinlichkeit hat die Annahme einer Lageänderung des Untergrundes für sich.

Die Neigungen sind weder geglättet noch ausgeglichen worden. Jede Durchgangszeit wurde mit Hilfe der unmittelbar vorher und nachher vorgenommenen Libellenablesungen vom Instrumentenäquator auf den Instrumentenvertikal reduziert. Auf diese Weise gehen aus den einzelnen Sternpaaren vollständig voneinander unabhängige Instrumentenazimute hervor. Die beobachteten Neigungen findet man im Kapitel 11, Abschnitt a, Tabellen 9 und 10, einzeln aufgeführt.

8. Der Winkelwert einer Umdrehung der Mikrometerschraube

Die mikrometrische Messung des Anschlusswinkels Instrumentenvertikal-Objekt erfordert die genaue Kenntnis des Winkelwertes einer Umdrehung der Mikrometerschraube. Der im folgenden kurz mit Schraubenwert bezeichnete Betrag ist aus Durchgangsbeobachtungen von Südsternen abgeleitet worden. Dem Sternbild wurde jeweils kurz nach dessen Eintritt ins Gesichtsfeld und – ohne Umlegen des Fernrohres – kurz vor seinem Austritt so nachgefahren, dass je 20 entsprechende Kontakte hervorgingen. Der Zeitunterschied zwischen den Kontakten eines Paares entsprach n ganzen Umdrehungen der Mikrometerschraube. In der Regel war n gleich 10. Auf diese Weise wurden aus jedem Sterndurchgang 20 Werte des n-fachen Schraubenwertes erhalten.

Nach der beschriebenen Art sind auf dem Gurten am 12. und 13. Juli je 3 und am 23. und 24. Juli je 2 Südsterndurchgänge beobachtet worden. Bildet man aus den zeitlich benachbarten Bestimmungen die Mittelwerte, so ergibt sich:

- 12. und 13. Juli 1945: Schraubenwert = 10° , 509 $\pm 0^{\circ}$, 002
- 23. und 24. Juli 1945: Schraubenwert = 10° ,513 $\pm 0^{\circ}$,001

Der Unterschied liegt zwischen dem anderthalbfachen und dem doppelten Betrag seines mittleren Fehlers; er ist also nicht verbürgt. Dementsprechend wurden auf der Station Gurten die Anschlusswinkel mit dem Gesamtmittel:

Schraubenwert = 10^{s} ,511 $\pm 0^{s}$,001₅ = 157'',66 $\pm 0''$,02 gerechnet

Die Bestimmungen des Schraubenwertes, die auf dem Rigi vorgenommen wurden, zerfallen in 2 Gruppen. Die Beobachtungen von 7 Südsterndurchgängen in der Zeit vom 7. bis 20. Juli bilden die erste Gruppe, die 5 Durchgangsbeobachtungen vom 4. bis 8. August die zweite Gruppe. Zwischenhinein wurde das Mikrometer herausgenommen und neu eingesetzt. Die beiden Gruppenergebnisse sind:

- 1. Gruppe, Schraubenwert = 10° ,503 $\pm 0^{\circ}$,002 = 157'',54 $\pm 0''$,03
- 2. Gruppe, Schraubenwert = 10° ,510 $\pm 0^{\circ}$,001 = 157'',65 $\pm 0''$,02

Eine Prüfung des Unterschiedes der beiden Mittelwerte mit Hilfe statistischer Methoden* ergibt mit einer Wahrscheinlichkeit zwischen 95 und 99%, dass der Unterschied nicht zufälliger Art ist. Die Azimutmessungen vom 9. bis 22. Juli wurden deshalb mit dem ersten, diejenigen vom 4. bis 8. August mit dem zweiten Wert gerechnet.

Die Wirkung eines Fehlers im Schraubenwert lässt sich weitgehend unterdrücken, wenn entweder dafür gesorgt wird, dass positive und negative Werte des Anschlusswinkels sich nahezu aufheben, oder wenn der Anschlusswinkel klein gehalten wird. Auf dem Gurten kam die erste, auf dem Rigi die zweite Art zur Anwendung.

Die Abendwerte des mit F bezeichneten Abstandes der Lichtsignale Rötifluh oder Lägern vom Achsenäquator sind nachstehend aufgeführt.

Station Gurten, Signal Rötifluh

Datum 1945	<i>F</i>	Datum 1945	F	Datum 1945	F
12.Juli	- 0 ^R ,139	18.Juli	- 0 ^R ,316	24. Juli	- 0 ^R ,214
13.Juli	$+0^{R},218$	21.Juli	$+0^{R},343$	25.Juli	$+0^{R},226$
14.Juli	$+0^{R},232$	22.Jul i	$+0^{R},361$		•
17.Juli	$-0^{R},318$	23.Juli	-0^{R} ,397		
Sumi	me: $-0^{R},007$	S	Summe: — 0R,009	Su	mme: + 0 ^R ,012

Die Gesamtsumme der F beträgt -0^R ,004, der Mittelwert also -0^R ,0004.

Station Rigi, Signal Lägern

Datum 1949	F	Datum 1949	F	Datum 1949	F
9.Juli	+ 0 ^R ,001	21.Juli	+ 0 ^R ,026	4. August	+ 0 ^R ,011
10.Juli	$+0^{R},005$	22.Juli	$+0^{R},024$	5. August	$+0^{R},018$
11.Juli	$+0^{R},011$			8. August	$+0^{R}.065$
12.Juli	$+0^{R},012$				
Sumi	me: + 0 ^R ,029	Sur	nme: + 0 ^R ,050	Sum	me: + 0 ^R ,094

^{*} A.Linder: Statistische Methoden für Naturwissenschafter, Mediziner und Ingenieure. Birkhäuser, Basel.

Als Mittelwert erhält man $+0^R$,019. Weshalb der am 7. August aufgetretene Abendwert hier fehlt, findet man in Abschnitt 9 begründet.

Es soll noch der Einfluss eines Schraubenwertfehlers auf das Endergebnis abgeschätzt werden. Wir nehmen an, der eingeführte Schraubenwert sei mindestens um den dreifachen Betrag seines mittleren Fehlers falsch; das ergibt für beide Stationen einen maximalen Fehler <0",1. Die Endergebnisse würden demnach verfälscht um weniger als 4" \cdot 10^{-5} auf dem Gurten und 2" \cdot 10^{-3} auf dem Rigi. Beide Beträge bleiben unterhalb der Rechnungsschärfe.

9. Die Anschlusswinkel Instrumentenvertikal-Objekt

Die Anschlusswinkel wurden im Laufe einer Nacht möglichst oft gemessen. Den folgenden Beobachtungsvorgang nennen wir einen Satz: je 8 Objekteinstellungen und Trommelablesungen in beiden Okularlagen, wobei gleich häufig der Faden von links und von rechts an das Signal herangeführt wird. Reichte die zur Verfügung stehende Zeit zur Durchführung eines Satzes nicht aus, so begnügte sich der Beobachter mit einem halben Satz, das heisst mit 4 Einstellungen in jeder Okularlage.

Das arithmetische Mittel aus den 8 oder 4 Trommelablesungen soll je nach der Okularlage mit T_E oder T_W bezeichnet werden, der Schraubenwert mit R. Dann beträgt der Abstand f des Objektes vom Achsenäquator:

$$f = \frac{T_E - T_W}{2} \cdot R$$

Die Zenitdistanz des Objektes betrug $z_0 = 89^{\circ}20'$ auf dem Gurten und $z_0 = 91^{\circ}20'$ auf dem Rigi. Dementsprechend gehen aus Gleichung (9) in Abschnitt 3c die folgenden Gebrauchsformeln hervor:

Gurten-Rötifluh

$$\Delta A = \left\{ \frac{T_E - T_W}{2} \cdot R - i \cdot 0,0116 \right\} 1,0001$$

Rigi-Lägern

$$\Delta A = \left\{ \frac{T_E - T_W}{2} \cdot R + i \cdot 0,0233 \right\} 1,0003$$

Die Neigung i ist hier positiv einzuführen, wenn das Ostende der Drehachse höher liegt als das Westende.

Auf dem Gurten sind ausschliesslich ganze, auf dem Rigi ganze und halbe Sätze gemessen worden. In der nachstehenden Übersicht ist angegeben, wie viele Sätze und Halbsätze in einer Nacht beobachtet wurden. Ferner findet man darin den Durchschnittswert des mittleren Fehlers m einer einzelnen Einstellung, herrührend vom Ziel- und vom Ablesefehler, für jede Beobachtungsnacht aufgeführt.

	Anzahl	M.F. m		Anzahl der		M.F. m	
Datum 1945	der Sätze	einer Einstellung	Datum 1949	Sätze	Halb- sätze	einer Einstellun	
12.Juli	5	± 0",39	9.Juli	_	6	± 0",27	
13.Juli	10	± 0",87	10. Juli	6	2	$\pm 0",27$	
14.Juli	13	± 0",49	11 .J uli	4	5	$\pm 0",32$	
17.Juli	10	± 0″,48	12.Juli	6	2	士 0",27	
18.Juli	11	± 0',73					
21.Juli	11	$\pm 0",52$	21.Juli	6		土 0",25	
22.Juli	11	$\pm 0'',61$	22.Juli	8	_	$\pm 0",22$	
23.Juli	11	$\pm 0'',55$	e e e e e e e e e e e e e e e e e e e				
24.Juli	11	$\pm 0",43$	4. August	8 .	-	土 0",39	
25.Juli	12	$\pm 0",81$	5. August	7	-	$\pm 0",36$	
			8. August	8.	2	\pm 0",27	
Durchschnitt:		± 0",59	Durchschnitt:			± 0",29	

Aus den Messungen auf dem Gurten geht der Durchschnittswert $m=\pm 0$ ",59 hervor; der entsprechende Durchschnitt, abgeleitet aus den Beobachtungen auf dem Rigi, ergibt den bedeutend kleineren Betrag ± 0 ",29. Der Unterschied rührt daher, dass sich das Fernrohrbild des Signales Lägern ruhiger verhielt und schärfer anzielen liess als

dasjenige des Signales Rötifluh. Den grössten mittleren Fehler m ergeben die Beobachtungen vom 13. Juli 1945. In dieser Nacht wehte auf Rötifluh sehr heftiger Westwind; auf dem Gurten blies es kräftig von Süden. Das Fernrohrbild bot sich dar als verschwommener Fleck, der wie eine kleine Flamme tanzte und flackerte. Auch während der übrigen im Juli 1945 durchgeführten Beobachtungen ging auf Rötifluh ein so starker Wind, dass Gefahr bestand, es blase den Scheinwerfer vom Pfeiler hinunter. Im Gegensatz dazu traten in den Beobachtungsnächten des Jahres 1949 nur bedeutend schwächere Luftströmungen auf.

Der Abstand f weist einen mittleren Fehler $\frac{m}{4}$ oder $\frac{m}{2\sqrt{2}}$ auf, je nachdem ob er aus einem ganzen oder aus einem

halben Satz erhalten wird. Der Einfluss der Neigung bleibt so gering, dass der mittlere Fehler des f gleich dem mittleren Fehler des Anschlusswinkels ΔA gesetzt werden kann. Demnach ging auf dem Gurten das ΔA aus einem Satz hervor mit einem mittleren Fehler von durchschnittlich ± 0 ",15; auf dem Rigi wurde das ΔA aus einem Satz mit einem mittleren Fehler von ± 0 ",07, aus einem Halbsatz mit einem mittleren Fehler von 0",10 erhalten. Diese mittleren Fehler setzen sich zusammen aus dem Zielfehler und dem Ablesefehler sowie aus allfälligen Schwankungen der Seitenrefraktion während einer Satz- oder Halbsatzmessung.

Die Schwankungen zwischen den einzelnen im Laufe einer Nacht gemessenen Anschlusswinkeln ΔA sind oft bedeutend grösser, als die mittleren Fehler m erwarten lassen. Dies dürfte zur Hauptsache von Veränderungen der Instrumentenstellung und der Seitenrefraktion herrühren. Die Grössenordnung der Ausschläge ist aus den nachstehenden in den einzelnen Nächten aufgetretenen Extremwerten ersichtlich.

Datum		Anschlusswinkel ΔA		Datum	Anschlusswinkel ΔA		
1945	Minimum	Maximum	Differenz	1949	Minimum	Maximum	Differenz
12.Juli	- 22",17	— 21″,40	0",77	9.Juli	0",65	+ 0",71	1″,36
13.Juli	+32'',98	+35'',31	2",33	10.Juli	- 0",55	+ 1'.84	2,39
14.Juli	+ 35*,96	+37,36	1",40	11.Juli	+ 1",59	+ 2'.12	0″,53
17.Juli	- 51 *,02	- 49 *,32	1",70	12.Juli	+1",24	+ 2",53	1",29
18.Juli	50",49	 49",24	1*,25				•
21.Juli	$+53^{\circ},61$	+54'',86	1",25	21.Juli	+ 2",84	+ 4".91	2",07
22.Juli	+55",76	+58*,02	2",26	22.Juli	+ 2",47	+ 4",40	1",93
23.Juli	-63'',17	-61'',03	2",14		• •		-,-
24.Juli	- 34",46	- 32",70	1",76	4. August	+ 0".94	+ 2",61	1",67
25.Juli	+ 34",93	+36",33	1″,40	5. August	+ 1".40	+ 3",63	2",23
	•	•	·	8. August	+ 9",25	+ 11",53	2*,28
		Durchschni	tt: 1,63		•	Durchschnit	it: 1",75

Im Durchschnitt haben sich die ΔA im Laufe einer Nacht zwischen Grenzen gehalten, die um rund 1",7 auseinanderliegen. Obwohl sich das Signal auf Rötifluh bedeutend ungünstiger darbot als das Signal auf Lägern, streuten die ΔA auf den beiden Stationen Gurten und Rigi durchschnittlich um gleichviel. Dazu ist zu bemerken, dass sich der Pfeiler auf dem Gurten ruhiger verhielt als der Pfeiler auf dem Rigi; die Betrachtung der beobachteten Achsenneigungen zeigt dies deutlich. Weiter ist erwähnenswert, dass in der Zeit vom 9. bis 22. Juli 1949 an der Azimutstellung des Instrumentes nichts geändert wurde; ebenso blieb die Azimutschraube vom 4. auf den 5. August 1949 unberührt. Nach dem 5. August 1949 war eine Verstellung nötig gewesen, weil das Bild des Signales Lägern so nahe an einen der festen Faden gerückt war, dass dies die Zielung störte.

Wie bereits in Abschnitt 3a gesagt wurde, ist aus jedem Sternpaar ein Wert des Azimutes abgeleitet worden. Diese Einzelwerte wären vollständig voneinander unabhängig, wenn stets vor und nach jedem Sternpaar der Anschlusswinkel ΔA gemessen würde; zwischen 2 aufeinanderfolgenden Sternpaaren wäre also ΔA 2 mal zu beobachten. Dazu reicht die Zeit nicht aus, wenn in $3\frac{1}{2}$ bis 4 Stunden die Durchgänge von 10 Sternpaaren registriert werden sollen. Die Einrahmung des Durchganges eines einzelnen Sternpaares mit Messungen des Anschlusswinkels kam auf dem Gurten 49mal, auf dem Rigi 30mal vor. Ferner wurden auf dem Gurten 19mal 2 Sternpaare mit Messungen des Anschlusswinkels eingerahmt und 2mal 3 Sternpaare. Die entsprechenden Zahlen der Station Rigi sind: 18mal 2 Sternpaare, 2mal 3 Sternpaare und 2mal 4 Sternpaare. Aus je 2 einrahmenden Anschlusswinkeln sind für die Epochen der Sternpaare die ΔA linear interpoliert worden. Auf dem Gurten mussten am letzten Abend die ΔA für 2 Sternpaare extrapoliert werden. Die beobachteten und die daraus abgeleiteten ΔA sind in den Tabellen 13 bis 17 vollständig aufgeführt.

Es folgen noch einige Bemerkungen über das Verhalten der ΔA auf den beiden Stationen. Die ΔA einer Nacht wurden graphisch aufgetragen und aufeinanderfolgende Punkte durch eine Gerade miteinander verbunden. Über die so entstehenden gebrochenen Linienzüge lässt sich folgendes sagen:

a) Station Gurten

Die ΔA von 7 Nächten streuen unregelmässig um die Achsenparallele, deren Ordinate gleich dem Mittelwert der ΔA ist. Ein systematischer Verlauf ist nur in 3 Nächten angedeutet; am 14. Juli lässt sich der Linienzug durch einen schwach ansteigenden, nach unten konkaven Bogen ersetzen, am 22. Juli durch eine abfallende Gerade und am 25. Juli durch eine sinusartige Kurve.

b) Station Rigi

Die Linienzüge vom 10. und 21. Juli zeigen eine Zunahme des ΔA während der ganzen Beobachtungsdauer; die übrigen verlaufen unregelmässig. In 5 von 9 Nächten hat die erste der verwendeten Messungen des ΔA einen bedeutend kleineren Wert ergeben als die zweite. Die betreffenden Abende und ΔA sind:

Anschlusswinkel						
Datum 1949	vor dem ersten Sternpaar MEZ Δ <i>A</i>	nach dem ersten Sternpaar MEZ Δ <i>A</i>	Zunahme des ΔA			
10.Juli	21 ^h 39 ^m - 0",55	22 ^h 20 ^m + 0",45	+ 1",00			
21.Juli	$21^{\rm h}26^{\rm m}+2'',84$	$22^{h} 09^{m} + 3'',82$	+ 0",98			
22.Juli	$21^{\text{h}} 32^{\text{m}} + 2^{\text{m}},47$	$22^{h}04^{m} + 4'',09$	+1",62			
5. August	$21^{h} 26^{m} + 1'',40$	$22^{h} 02^{m} + 3'',01$	+1",61			
8. August	$21^{h}13^{m}+9",55$	$21^{\rm h} 50^{\rm m} + 10'',78$	+ 1",23			

In all diesen Nächten hat die erste Messung das kleinste ΔA ergeben; ferner nehmen die Unterschiede zwischen grösstem und kleinstem ΔA grössere Beträge an als in den übrigen Nächten.

Die beste Übereinstimmung der beobachteten ΔA trat am 11. Juli auf; sie liegen innerhalb des Bereiches einer halben Bogensekunde.

Einer besonderen Erwähnung bedürfen die Messungen des Anschlusswinkels vom 7. August. Ihre Ergebnisse fallen vollständig aus der Reihe. Wie aus den nachstehenden Einzelwerten hervorgeht, streuten die ΔA viel stärker als in den übrigen Nächten.

	MEZ	ΔA	Differenz
7.August 1949	21h 12m 21h 56m 22h 28m 22h 50m 23h 16m 23h 46m 00h 38m 01h 22m	- 53",73 - 57",48 - 58",45 - 59",59 - 58",57 - 56",80 - 59",82 - 58",55	- 3*,75 - 0",97 - 1",14 + 1",02 + 1",77 - 3*,02 + 1",27

Am Instrument war seit den Beobachtungen vom 5. August nichts anderes vorgenommen worden als eine Schwenkung von rund einer Bogenminute durch Betätigung der Azimutverstellschraube. Eine am nächsten Tage durchgeführte Untersuchung des Instrumentes liess keine einleuchtende Erklärung für die ungewöhnlich grossen Schwankungen des Anschlusswinkels finden. Während der Beobachtungen vom 8. August traten keine Störungen mehr auf. Ergänzend ist noch hinzuzufügen, dass sich in den Achsenneigungen vom 7. August nichts Ungewohntes zeigt. Ferner stimmen die Einzelwerte des Azimutes a des Instrumentenvertikales – hervorgegangen aus 10 beobachteten Sternpaaren – gut miteinander überein; ihr Mittelwert weist einen mittleren Fehler von ± 0 °,20 auf. Da es nicht gelang, die Ursache der Störung festzustellen, wurden die Messungen des 7. August zwar weiterhin aufgeführt, aber zur Ableitung der Endergebnisse nicht verwendet.

10. Der Zeitdienst, die Uhrkorrektionen und die Uhrgänge

Bei der verwendeten Methode ist nur der Uhrgang während der kurzen Zeitintervalle, in denen ein einzelnes Sternpaar beobachtet wird, von Bedeutung. Aus den Durchgangsbeobachtungen eines jeden Sternpaares geht ausser dem Azimut auch eine Verbesserung der eingeführten Uhrkorrektion hervor.

Auf dem Gurten sind zur Bestimmung der Uhrkorrektion die rhythmischen Zeitzeichen der Sendestation Rugby nach der Methode des Koinzidenzenbildes* abgehört worden. Als Koinzidenzuhr diente der Deckchronometer Nardin Nr. 13711. Vergleichungen mit diesem Chronometer ergaben die Korrektionen der Beobachtungsuhr Riefler Nr. 327 und des in Reserve gehaltenen Deckchronometers Nardin Nr. 15282.

Die Korrektionen und Gänge der Beobachtungsuhr Riefler Nr. 327 sind weiter unten zusammengestellt. Aus den ersten zwei Kolonnen ist ersichtlich, wann die Zeitzeichen abgehört wurden. Infolge einer Störung in der Leitung vom Hotel Gurten nach der Beobachtungshütte konnte am 12. Juli 1945 um 19^h die Rieflersche Pendeluhr nicht mit der Koinzidenzuhr verglichen werden. Deshalb musste der in Klammern gesetzte Wert der Uhrkorrektion und des Ganges extrapoliert werden. In der Absicht, den Uhrgang um 0^s,2 zu beschleunigen, sind am 23. Juli 1945, kurz

	Stati	on Gurten	Jaliaka			Stat	ion Rigi	
Datum			ieluhr Nr. 327		Datum		Marinechron Nardi	
1945	MEZ		on Täglicher Gang		1949	MEZ	Uhrkorrektion u	
12.Juli	19 ^h	$(-0^{s},289)$	(0.750)		9.Juli	11h	- 3°,42	
13.Juli	11h	— 0s,789	$\frac{(-0^{s},750)}{}$		10.Juli	11 ^h	3s,77	- 0 ⁸ ,35
13.Juli	19h	- 1°,039	- 0°,750	•	11.Juli	11h	- 4 ^s ,17	- 0 ^s ,40
14.Juli	11h	- 1°,538	- 0°,750		12.Juli	. 11h	- 4s,64	<u>- 0°,47</u>
14.Juli	19 ^h	<u>— 1^s,530</u>	+ 0°,024		13.Juli	11 ^h	- 5 ⁸ ,34	$\frac{-0^{s},70}{}$
15.Juli	19h	— 1°,389	+ 0°,141				·	
16.Juli	19հ	- 1 ^s ,209	+ 0°,180 + 0°,168		21.Juli	11 ^h	<u> 118,52</u>	00.54
17.Juli	19 ^h	<u>— 18,041</u>			22.Juli	11h	<u>— 12^s,06</u>	- 0°,54
18.Juli	19 ^h	- 0°,937	+ 0s,104		23.Juli	19 ^h	— 13 ^s ,45	- 1 ⁸ ,04
19.Juli	19 ^h	- 0°,852	+ 0 ^s ,085 + 0 ^s ,227		24. Juli	11 ^h	— 13°,92	- 0°,70
20, Juli	19h	— 0 ^s ,625	+ 0°,366					
21.Juli	19h	<u> </u>	+ 0s,227		4. August	11 ^h	<u>— 19°,86</u>	0°,73
22.Juli	19h	<u> </u>	+ 0°,391		5. August	11 ^h	<u>— 20^s,59</u>	- 0°,46
23.Juli	19հ	$+0^{s},359$	+ 0 ^s ,673		6. August	11 ^h	- 21°,05	- 0°,61
24.Juli	19 ^h ·	+ 1°,032	+ 0s,470		7. August	11h	<u>— 21⁸,66</u>	- 0°,48
25.Juli	11 ^h	+ 18,346	+ 0s,237		8. August	11h	<u>— 22°,14</u>	- 0°,50
25.Juli	19h	+ 18,425	+ 0°,363		9. August	11 ^h	— 22°,64	
26.Juli	11 ^h	+ 18,667	1 0,505					

^{*} Band 22, Seiten 61-81.

vor 19^h, die nötigen Gewichtszulagen zugefügt worden. Statt zu gehorchen, ging die Uhr während der nächsten zwei Tage noch langsamer; erst am dritten Tag sank der Gang auf +0^s,24.

Im Sommer 1949 diente auf dem Rigi der Marinechronometer Nardin Nr. 34 als Beobachtungsuhr. Mit dem neu gebauten Empfänger und dem neu erworbenen Favag-Chronographen sind täglich um 11^h MEZ die Zeitzeichen der Sendestation Rugby registriert worden. Am 23. Juli war der Chronograph einer Störung wegen um 11^h nicht funktionsbereit; aus diesem Grunde wurden an diesem Tag die Zeitzeichen um 19^h aufgenommen.

Die Uhrkorrektionen und die täglichen Gänge des Marinechronometers an den Beobachtungs- und den unmittelbar benachbarten Tagen findet man ebenfalls in der Zusammenstellung Seite 28 aufgeführt. Alle zur Auswertung der Messungen verwendeten Uhrkorrektionen und Gänge sind durch Unterstreichung hervorgehoben.

11. Ableitung des Instrumentenazimutes und der Uhrkorrektion

a) Die beobachteten Durchgangszeiten und Neigungen

In den Tabellen 5 bis 10 sind die folgenden, den einzelnen Sterndurchgängen zugeordneten Werte zusammengestellt:

 \overline{U} die beobachteten Durchgangszeiten durch den Achsenäquator

m'' die Mittelwerte $m'' = 2 \frac{\sin^2 \frac{\Theta}{2}}{\sin 1''}$, abgeleitet aus den halben Differenzen Θ der Ablesungen symmetrischer Kon-

takte, erhalten in den beiden Instrumentenstellungen

i die Erhebung des auf der Westseite liegenden Endes der Drehachse

Ausgehend von diesen unmittelbar aus den Beobachtungen hervorgegangenen Grössen, kann mit Hilfe des Berliner Jahrbuches 1945, des Sternkataloges 1949, der im nächsten Abschnitt gegebenen Stations- und Sternkonstanten sowie der aufgeführten Gänge der Beobachtungsuhr aus jedem Sternpaar das Azimut a des Instrumentenvertikales und die Uhrkorrektion u abgeleitet werden.

Die Durchgangszeiten \overline{U} wurden aus 10 Kontaktpaaren gemittelt. Sie sind in den Tabellen 5 und 6 auf 3 Stellen genau angegeben. Bei den polnahen Sternen haben die letzte und zuweilen auch die vorletzte Stelle bloss die Bedeutung einer Rechnungsgrösse; der mittlere Fehler, der sich aus der inneren Übereinstimmung der einzelnen Kontaktpaare ergibt, beträgt einige Hundertstel-, von Stern N_f sogar über eine Zehntelsekunde. Die Mittelwerte m'' sind folgendermassen gebildet worden: Aus den Ablesungen der 10 Kontaktpaare der Südsterne wurden 2 in der Mitte gelegene, zusammengehörende U' und U'' herausgegriffen. Hierauf konnte mit dem Argument $\Theta = \frac{1}{2} (U'' - U')$ den Albrechtschen Tafeln der Logarithmus der Funktion

$$m'' = 2 \frac{\sin^2 \frac{\Theta}{2}}{\sin 1''}$$

entnommen werden. Mehr Arbeitsaufwand erforderte die Bestimmung der m'' der Nordsterne. Aus den Zeiten U' und U'' eines jeden Kontaktpaares wurde die halbe Differenz Θ gerechnet. Dann folgte die Entnahme der Logarithmen $\log m''$ aus den Albrechtschen Tafeln und die Mittelbildung der 10 Beträge m''. Die Durchschnittsbeträge der m'' eines jeden Sternes sind in den Tabellen 7 und 8 aufgeführt. Je rascher sich die Beobachtungen in den beiden Instrumentenlagen folgten, um so kleiner fallen die m'' aus.

In den Tabellen 9 und 10 stehen die beobachteten Erhebungen *i* des auf der Westseite liegenden Endes der Drehachse. Das Verhalten der *i* ist schon im Kapitel 7, Abschnitt c, besprochen worden. Wir wiederholen, dass die Neigungen *i* weder gemittelt noch sonstwie geglättet wurden. Zur Reduktion eines jeden Sterndurchganges dienten einzig die 2 ihn einrahmenden Libellenablesungen.

b) Reduktion der Durchgangsbeobachtungen auf den Instrumentenvertikal

Im Ausdruck für die Reduktion $(t-\bar{t})$ der Durchgangszeiten auf den Instrumentenvertikal – Formel (7), Seite 12 – treten die Faktoren cos z und cosec $p \cdot \sec q$ auf. Sie sind in der Tabelle 11 von jedem Stern angeführt. Diese Zusam-

menstellung gibt ausser der Ordnungszahl des Sternpaares und der Nummer eines jeden Sternes auch die Konstanten $\sin z$ und $\sin p \cdot \cos q$, die in Gleichung (4) vorkommen. Zudem wurde in die Tabelle 11 unter der Station Rigi auch der Faktor $\sin q$ aufgenommen, was im Hinblick auf Formel (6) geschah. Die Zenitdistanz z beim Durchgang durch den Vertikal des Objektes ist schon in den Tabellen 1 und 2 im Kapitel «Die Sternprogramme und Ephemeriden» enthalten. Es genügte, für die Poldistanzen p mittlere Werte einzuführen, weil die Beobachtungsnächte sich nur über einen kurzen Zeitbereich erstreckten. Die Faktoren $\sin p \cdot \cos q$ und $\sin q$ der Station Rigi werden mit Rücksicht auf Formel (6) auf 4 Stellen genau gegeben. Die Näherungswerte der Uhrkorrektion und des eingeführten Uhrganges sind schon im Abschnitt 10 zusammengestellt worden.

In der Formel (7) tritt der Stundenwinkel μ des Poles des Instrumentenäquators auf. Ausser den μ findet man in der nachfolgenden kleinen Übersicht auch die Faktoren e.

Station	Ų			е	
	Südstern	Nordstern	Südstern	Nords	tern
				oberer Durchgang	unterer Durchgang
Gurten Rigi	6h 28m 0s 5h 37m 23s	18h 28m 0s 17h 37m 23s	+ 1 + 1	- 1 - 1	+ 1 + 1

Die Neigung i bezieht sich auf das Achsenende, dessen Azimut um 90° grösser ist als das Azimut des Sternes. Demnach bedeutet i bei südlichen Sterndurchgängen die Erhebung des auf der Westseite gelegenen Achsenendes, bei nördlichen Durchgängen die Erhebung des östlich gelegenen Endes der Achse.

Als Beispiel ist in den Tabellen 12a und 12b die Berechnung der Reduktion $(t-\bar{t})$ aller am 18. Juli 1945 auf dem Gurten beobachteten Durchgänge gegeben. Zur Bildung des Stundenwinkels \bar{t} wird nicht die Uhrkorrektion u, sondern deren Näherungswert u_0 benutzt; aus diesem Grunde gehen Näherungswerte \bar{t}_0 von \bar{t} hervor.

Das Glied $\frac{m''}{15}$ cotg $(\mu - \bar{t}_0)$, herrührend von der Reduktion der beobachteten Durchgangszeit auf den Achsen-

äquator, erreicht an diesem Abend bei den Südsternen ein einziges Mal den Absolutwert 0 $^{\circ}$,002; sonst bleibt es $\leq 0^{\circ}$,001. Angesichts der Ungenauigkeit der Durchgangsbeobachtungen hätte man es ruhig vernachlässigen können. Im Gegensatz dazu verursacht bei Stern 191^u die ungleichförmige Geschwindigkeit des Sternbildes in der Richtung senkrecht zum Instrumentenvertikal eine Korrektur von 0 $^{\circ}$,37. Die kleinste, einem Nordstern zugeordnete Korrektur beläuft sich auf 0 $^{\circ}$,03. Die Reduktion der Nordsterne darf also nicht ohne Berücksichtigung des von m'' abhängenden Gliedes durchgeführt werden.

c) Berechnung der Paarwerte des Instrumentenazimutes und der Uhrkorrektion

Aus jedem Sterndurchgang ist mit Hilfe der Formel

$$\operatorname{tg} a_{i} = -\frac{\operatorname{tg} p \cdot \operatorname{cosec} \Phi \cdot \sin t_{0}}{1 - \operatorname{tg} p \cdot \operatorname{cotg} \Phi \cdot \cos t_{0}}$$

ein Näherungswert a_i des Azimutes gerechnet worden. Auf der rechten Seite der Gleichung (4), Seite 10, steht das Absolutglied

$$(a_i - a_0) \sin z_i + \delta a_i = l_i$$

Der Einfluss δa der täglichen Aberration ist gegeben durch den Ausdruck

$$\delta a = -0$$
",322 · sin Φ · cos a

Die δa der beiden Stationen und die verwendeten Poldistanzen des Zenites betragen:

Station	Südstern	Nordstern	Φ
Gurten, astronomischer Pfeiler	- 0",22	+ 0*,22	43° 4′ 50°,31
Rigi, astronomischer Pfeiler	- 0",22	+ 0",22	42° 56′ 18″,37

Wiederum beschränken wir uns darauf, die Einzelwerte eines Abends, des 18. Juli 1945, herauszugreifen. Als abgerundeter Näherungswert a_0 wurde willkürlich $a_0 = 9^{\circ}31'54''$ gewählt. Die Auflösung der Gleichungen des Südsternes s und des Nordsternes n eines Paares:

$$\sin z_s \cdot da - \cos q_s \cdot \sin p_s \cdot du = l_s$$

 $\sin z_n \cdot da - \cos q_n \cdot \sin p_n \cdot du = l_n$

hat je einen Wert der zwei Unbekannten da und du ergeben. Man findet die Einzelwerte a_i , die Absolutglieder l_i und die Paarwerte der Unbekannten in der nachstehenden Zusammenstellung.

Die Paarwerte des Instrumentenazimutes $a_{beob} = a_0 + da$ sämtlicher Beobachtungsabende sind in den Tabellen 13 aufgeführt.

Gurten, 18.Juli 1945

Stern- paar	Stern Nr.	ai	l_i	d <i>a</i>	d <i>u</i>	Stern- paar	Stern Nr.	a_i	l_i	d <i>a</i>	du
2	1454 115 ⁰	9° 31′ 51″,34 53″,54	- 1",51 - 0",15	+ 0",20	+ 1",70	7	770° 717	54*,82 54*,31	+ 0",62 + 0",03	+ 0",93	+ 0",72
3	656 7140	53″,50 54″,95	-0",50 + 0",62	+ 0",78	+ 0",97	8	1500 234 ^v	54″,10 54″,67	- 0",14 \ + 0",81	+ 1",41	+ 1",32
4	729° 677	55″,47 54″,02	+ 0",89 - 0",21	+ 1",30	+ 1",13	9	191 ^v 749	54",25 53",88	+0",42 $-0",30$	+ 0*,68	+ 0*,76
5 '	759 <i>0</i> 688	54*,71 53*,80	+ 0",60 - 0",37	+ 0″, 79	+ 0",98	10	1524 8090	52″,30 55″,60	1",32 +- 0",87	+ 0*,73	+ 1",82
6	173 <i>^v</i> 1486	54 ", 03 54 ", 46	+ 0",24 + 0",16	+ 0",32	+ 0",11	11	817 <i>º</i> 1536	54",29 54",02	+0",34 -0",20	+ 0",41	+ 0",56

Die im Kapitel 10 gegebenen Uhrkorrektionen gingen aus den Aufnahmen der rhythmischen Zeitzeichen hervor. Dabei wurden die folgenden geographischen Längen eingeführt:

Gurten, Zentrum, $\lambda = 29^{m}46^{s},698$ östlich Greenwich

Rigi, Zentrum, $\lambda = 33^{m}56^{s}$,379 östlich Greenwich

Wir beziehen die Verbesserungen du der Uhrkorrektion auf das Zentrum, indem wir die beobachteten Werte der Station Gurten um 0°,047 und diejenigen der Station Rigi um 0°,020 vermindern. Die Mittelwerte dieser auf das Zentrum reduzierten du sind:

Abendwerte der Verbesserungen du der eingeführten Uhrkorrektionen

Datum	D	Surten 1945 J.I. Nr. 8804 hr Riefler N du	r. 327		Datum				
Datum		ua		m	Datum	n	du .		m
12.Juli	7	$+0^{s},118$	$\pm 0^{s},016$	\pm 0 $^{\mathrm{s}}$,044	9.Juli	3	- 0°,098	± 0°,030	± 0°,052
13.Juli	10	$+0^{s},073$	$\pm 0^{s},009$	$\pm 0^{s},027$	10.Juli	10	$-0^{s},107$	$\pm 0^{s},011$	$+ 0^{s},033$
14.Juli	9	+ 0°,096	$\pm 0^{s},008$	$\pm 0^{s},024$	11.Juli	10	$+ 0^{\circ},347$	$\pm 0^{\rm s},021$	± 0°,067
17.Juli	8	$+0^{s},097$	$\pm 0^{\circ},015$	$\pm 0^{s},042$	12.Juli	10	- 0 ^s ,015	$\pm 0^{\circ},013$	± 0°,040
18.Juli	10	$+0^{\rm s},020$	$\pm 0^{s},011$	$\pm 0^{\rm s},034$	21.Juli	10	+ 0°.053	± 0°.013	$\pm 0^{\circ},040$
21.Juli	10	$+0^{s},030$	$\pm 0^{s},008$	$\pm 0^{s},024$	22.Juli	9	$+0^{\rm s},200$	$\pm 0^{\rm s},010$	± 0°.029
22.Juli	10	$+0^{\circ},034$	\pm 0 $^{\mathrm{s}}$,014	$\pm 0^{s},046$	4. August	9	$-0^{\rm s},057$	$\pm 0^{\circ},016$	$\pm 0^{\rm s},047$
23.Juli	10	$+0^{s},044$	$\pm 0^{s},011$	$\pm 0^{s},035$	5. August	10	+ 0°,029	$\pm 0^{\circ},013$	$\pm 0^{\circ},041$
24.Juli	10	$+0^{s},093$	$\pm 0^{s},012$	$\pm 0^{\rm s},038$	7. August	10	+ 0s,049	$\pm 0^{s},010$	$\pm 0^{s},033$
25.Juli	11	$+0^{s},072$	$\pm 0^{s},014$	$+0^{s},047$	8. August	9	$+0^{s},024$	± 0°,015	± 0°,046

Die mit n und m überschriebenen Spalten geben die Anzahl der beobachteten Sternpaare und den mittleren Fehler der aus einem einzelnen Sternpaar hervorgegangenen du. Auf dem Gurten wurden die Zeitzeichen von Rugby mit Hilfe der Methode des Koinzidenzenbildes abgehört, in der Regel um 19^h. Im Gegensatz dazu sind auf dem Rigi die Zeitzeichen registriert worden – mit einer einzigen Ausnahme stets um 11^h. Ein einzelnes Sternpaar hat im Durchschnitt die Verbesserung du der Uhrkorrektion ergeben mit einem mittleren Fehler von

±0°,036 auf der Station Gurten und

±0s,043 auf der Station Rigi

In den du wirken sich die folgenden Einflüsse aus: die persönliche und instrumentelle Gleichung; der Fehler der eingeführten geographischen Länge; die Fehler der Aufnahme und der Sendezeiten der rhythmischen Zeitzeichen; die Unregelmässigkeiten des Uhrganges, welcher zur Ableitung der eingeführten Uhrkorrektion benutzt wurde.

Aus früheren Beobachtungen hat sich für die Kombination Beobachter *Hunziker* und Durchgangsinstrument Nr. 8804 eine persönliche und instrumentelle Gleichung von einigen Tausendstelsekunden ergeben*. Vermutlich ist die persönliche und instrumentelle Gleichung des gleichen Beobachters mit dem Schwesterinstrument Nr. 13999 von der gleichen Grössenordnung.

Der Fehler der geographischen Länge dürfte $\pm 0^{\circ}$,01 bis $\pm 0^{\circ}$,02 betragen. Die Korrekturen, die von den gefundenen du subtrahiert werden müssen, um die vom Fehler der Sendezeiten befreiten Verbesserungen der eingeführten Uhrkorrektion zu erhalten, bezeichnen wir mit Δ . Die nachstehende kleine Übersicht gibt die Δ und die korrigierten Verbesserungen (d $u-\Delta$) der eingeführten Uhrkorrektion u_0 :

Peno	Gurten 1945 deluhr Riefler Nr	.327	Rigi 1949 Marinechronometer Nardin						
Datum	. ⊿	d <i>u−∆</i>	Datum	Δ	d <i>u-∆</i>				
12.Juli	(+ 0°,061)	+ 0°,057	9.Juli	+ 0°,063	- 0 ^s ,161				
13.Juli	$+0^{s},061$	$+0^{s},012$	10. Juli	$+0^{s},062$	— 0°,169				
14.Juli	$+ 0^{s},067$	$+0^{s},029$	11.Juli	$+ 0^{s},062$	$+ 0^{s},285$				
17.Juli	$+0^{\circ},065$	$+0^{\rm s},032$	12.Juli	$+ 0^{s},065$	$-0^{s},080$				
18.Juli	$+0^{\rm s},065$	- 0 ^s ,045	21.Juli	+ 0°,063	0s,010				
21.Juli	$+ 0^{s},068$	$-0^{\rm s},038$	22.Juli	$+ 0^{s},063$	$+0^{s},137$				
22.Juli	$+ 0^{s},063$	- 0 ^s ,029	4. August	+ 0°,066	$-0^{s},123$				
23.Juli	$+ 0^{s},063$	$-0^{s},019$	5. August	$+0^{s},067$	-08,038				
24.Juli	$+ 0^{\circ},054$	$+ 0^{\circ},039$	7. August	$+0^{s},067$	$-0^{s},018$				
25.Juli	$+ 0^{\circ},058$	$+ 0^{\circ},014$	8. August	$+0^{s},065$	$-0^{s},041$				
	Mittel	$+0^{\circ},005$		Mittel	$-0^{s},022$				
		$\pm 0^{s},011$			$\pm 0^{s},044$				

Die korrigierten Verbesserungen, hervorgegangen aus den Beobachtungen auf dem Rigi, streuen viel stärker als die $(du-\Delta)$, die dem Gurten zugeordnet sind. Das war im vornherein zu erwarten, da auf dem Gurten eine Pendeluhr benutzt wurde und weil zudem die Epochen der vor den Durchgangsbeobachtungen abgehörten Zeitzeichen nur rund 3 Stunden vor dem Beginn der Sternbeobachtungen lagen. Im Gegensatz dazu wurde auf dem Rigi ein Chronometer verwendet, und die Epochen der aufgenommenen Zeitzeichen befanden sich in der Regel 11 Stunden vor Beginn und 9 Stunden nach Beendigung der astronomischen Messungen. Bei der Azimutbestimmung im Vertikal des Objektes spielt der Uhrgang nur eine untergeordnete Rolle. Selbst eine so grosse Abweichung des eingeführten Uhrganges von seinem wahren Wert, wie sie am 11. Juli 1949 aufgetreten sein muss, bleibt ohne Bedeutung, weil nur der Uhrgang zwischen den Durchgängen der beiden Sterne eines Paares zählt. Hingegen sind die auf Seite 31 angegebenen mittleren Fehler m stark vom Fehler des eingeführten Uhrganges abhängig. Dementsprechend weist der 11. Juli den grössten mittleren Fehler m eines aus einem Sternpaar gefundenen du auf; er beträgt $\pm 0^{\circ}$,067.

Sollen aus den Beobachtungen nicht nur Azimute, sondern auch Einbeobachterlängen abgeleitet werden, so sind an die eingeführten Längen λ_0 die Mittelwerte der $(du-\Delta)$ als Verbesserungen anzubringen. Dies geht aus der folgenden Überlegung hervor:

Der benutzte Näherungswert u_0 der Uhrkorrektion wurde gebildet mit Hilfe des Ausdruckes:

$$u_0 = (\lambda_0 + T_0) - U$$

Darin bedeuten λ_0 einen Näherungswert der Länge, T_0 die theoretische Epoche des Zeichens Nr. 153,5 einer Signalreihe und U die Uhrzeit dieses Zeichens. Die endgültige Uhrkorrektion wird

$$u_0 + du = u = \lambda_0 + T_0 - U + du$$
 oder
$$u = (\lambda_0 + d\lambda + T_0 + \Delta) - U$$

Als Mittelwert λ_m der Längenverbesserung erhält man:

$$\mathrm{d}\lambda_m = \frac{\sum_{1}^{n} \left(\mathrm{d}u - \Delta\right)}{n}$$

* Band 23, Seite 73.

Nun sind aber als Näherungswerte λ_0 die ausgeglichenen, Band 21, Seite 244, entnommenen Beträge verwendet worden. Die aus Beobachtungen im Vertikal des Objektes hervorgehenden Einbeobachterlängen weichen demnach im Mittel um

- +0°,005 ±0°,011 auf Station Gurten und um
- $-0^{\circ},022 \pm 0^{\circ},044$ auf Station Rigi

von den definitiven, aus früheren Bestimmungen erhaltenen Längen ab. Die Unterschiede betragen rund die Hälfte ihrer mittleren Fehler. Stark fällt ins Gewicht, ob – wie auf dem Gurten – mit einer Pendeluhr und mit Zeitzeichenaufnahmen, die in die Nähe der Sternbeobachtungen fallen, oder – wie auf dem Rigi – mit einem Marinechronometer und manche Stunde vor und nach den astronomischen Beobachtungen aufgenommenen Signalen gearbeitet wird.

Tabelle 5: 1945, Gurten. Beobachtete Durchgangszeiten $\overline{\textbf{U}}_{\bullet}$

	7	·		· · · · · · · · · · · · · · · · · · ·								
Paar Nr.	Stern Nr.B.J.		12.Juli	13.Juli	14.Juli	17.Juli	18.Juli	21.Juli	22.Juli	23.Juli	24.Juli	25.Juli
	1442	17 ^h 14 ^m	39,692	38,146	38 <mark>\$</mark> 484							
1	695 0	24	19,149	26,196	26,751							
					, ,							
• •	1454	17 37	20,140	18,996	19,335	21,850	21,628	17,454	17 ^s ,042	20 ^{\$} ,774	18 ^{\$} ,993	16,378
2 ·	115 บ	44	61,43*	46,006	45,876	70,624	70,704	40,028	39,052	73,400	64,340	44,402
		i										
3	656	17 54	31,772	30,409	30,644	33,616	33,456	28,740	28,282	32,629	30,718	27,724
,	714 0	18 4	53,550	59,682	60,261	51,779	51,342	60,512	60,428	48,838	50,812	56,806
	720 0	10 15		5, 570	55.054	,, ,,,	11.066	006				
4	729 0 677	18 15 24	}	54,570	55,054	44,771	44,266 33,837	55,806 28,299	55,729	41,596	44,202	51,795
	077	24		30,122	30,265	33,967	33,037	20,299	27,896	33,098	31,010	27,453
	759 0	18 34		60,534	61,168	44,015	43,519	63,383	63,346	39,994	44,610	57,472
5	688	47		44,117	44,234	48,316	48,208	42,145	41,802	47,525	45,298	41,408
								,	-		-	·
_	173 ช	18 56		17,214	16,850	38,372	38,290	11,336	10,632	40,438	32,487	14,723
6	1486	19 11		22,953	23,108	27,550	27,522	20,940	20,498	26,883	24,490	20,225
7	770 0	19 21	31,814	40,293	40,684	28,704	28,378	42,149	42,032	25,403		37,596
•	717	33	34,651	32,402	32,570	36,768	36,674	30,486	30,126	35,934	33,752	29,736
	1500	19 41	21,358	19,034		23,598	23,508	17,057	. 16,632	22,869	20,522	16,375
8	234 บ	50	55,984	46,592		61,580	61,502	42,297	41,656	62,354	56,529	44,170
			,	,,,,,		02,500	01,501	.2,2,1	12,030	02,00	30,323	'',1'
	ט 191	20 6	76,796	57,286	56,958	86,300	86,633	49,538	48,706	89,650	78,828	54,516
9	749	17	43,738	42,004	42,128	45,603	45,520	40,262	39,878	44,766	42,747	39,332
					:							
10	1524		10,502	8,847	9,020		12,242	7,093		11,508		
10	809 O	41	48,168	53,842	54,094		46,143	54,726	54,466	44,070	45,526	
	017.0	00 51							4			
11	- 817 O 1536	20 51 21 1					40,957	50,189	49,980	38,838		46,694
	1550	£1 1,					61,264	54,689	54,246	60,688	58,275	54,060
	837 O	21 14		,			,					31,243
12	1547	21										48,158
		•										-
13	1555	21 31										1,370
13	248 บ	38	.									2,496

^{*} nur 6 Kontaktpaare

Tabelle 6: 1949, Rigi. Beobachtete Durchgangszeiten $\overline{\mathbf{U}}.$

Paar Nr.	Stern Kat.Nr.		9.Juli	10.Juli	ll.Juli	12.Juli	21.Juli	22.Juli	4.Aug.	5.Aug.	7.Aug.	8.Aug.
1	1445 1432 0	16 ^h 34 ^m		19 ^{\$} ,528		,	. , .					
2	260 U 1459	16 56 17 3		3,200 0,163	3,142 0,031	4,077 0,969	Ť.,					
3	606 O 668	17 16 23		9,218 49,110	8,826 49,016	9,316 49,940	15,518 56,452	16,020 57,184				-
4	639 O 688	17 33 55		11,010 5,168	10,936 5,092	11,670 6,020	17,970 12,612	18,812		,	•	
5	1478 284 U	18 3 8			-	38,812 58,084	45,302 65,178	_	54 <mark>,</mark> 098	54,428 75,020	58 <mark>,</mark> 132 86,804	55,638 75,501
6	1484 310 U	18 14 24		52,492 49,260	52,450 49,166	53,364 50,155	59,900 57,108	i i	68,692 67,011	69,038 67,592	72,646 84,162	70,243 67,692
7	685 O 1500	18 35 44		12,102 26,230	12,114 26,195	13,013 27,124	19,426 33,648					,
8	Nf U	18 55 19 11		27,458 45,896	27,409 45,888		36,072 53,274	•	46,518 62,246	46,918 62,562	85,212 66,268	44,495 63,797
9	744 714 O	19 21 35		25,071 9,253	25,113 9,358	1	32,582 16,554	l '	41,496 25,306	41,895 25,517	46,550 20,770	42,905 27,674
10	1494 0 1536	19 47 20 3	49,135 22,156		51,113 22,721		58,150 30,156	1	66,993	66,841	59,262 44,098	69,570 40,659
11	357 บ 772	20 8 17	52,711 47,842	52,344		53,360 49,446	59,952 55,956	60,733	68,862 64,970		81,860 68,920	69,900 66,628
12	372 U	20 20		54,292 46,756	54,268		61,819 54,226					
13	395 U 1555	20 42 49			3,536 1,447			11,494 9,662	19,531 17,958			19,782
14	734 O 1569	21 0	56,782 31,780						76,794 48,942	76,677	63,076	80,466 50,552
15	1574 770 0	21 23 28								18,740 47,214		20,019
16	803 O 840	21 35							29,144	1	28,212	

Tabelle 7: 1945, Gurten. Mittelwerte $m'' = 2 \frac{\sin^2 \frac{\theta}{2}}{\sin 1''}$

		-, Ju					_ sin	1"			
Paar Nr.	Stern Nr.B.J.	12. Juli	13. Juli	14. Juli	17. Juli	18. Juli	21. Juli	22. Juli	23. Juli	24. Juli	25. Juli
1	1442 695 0	0,92 6,69	0;'63 5,27	0,71 2,91		,					
2	1454 115 U	0,52 2,36	0,83 13,12	0,83 3,22	0;71 3,25	0;75 7,53	0;'71 3,75	0;49 3,47	0;79 4,85	0,483 3,61	0,83 5,11
3	656 714 O	0,75 4,41	0,52 1,71	0,63 1,34	0,75 2,28	0,29	0,63 1,50	0,59 1,58	0,63 1,50	0,52 1,87	0,59 2,63
4	729 O 677		2,70 0,67	2,22 0,49	2,08 0,49	2,23 0,63	2,96 0,59	3,78 0,67	1,97 0,59	2,70 0,67	3,07 0,63
5	759 O 688		5,21 0,75	4,83 0,67	4,61 0,54	5,02 0,70	4,28 0,71	4,30 0,71	4,04 0,79	4,86 0,56	6,58 0,56
6	173 U 1486		5,56 0,71	3,41 0,71	3,87 0,71	2,00 0,75	5,07 0,52	3,06 0,79	2,87 0,67	3,22 0,71	2,95 0,63
7	770 O 717	6,20 0,83	5,51 0,49	2,30 0,79	3,24 0,75	2,54 0,67	1,83 0,52	2,64 0,56	3,06 0,71	2,81 0,71	3,97 0,56
8	1500 234 U	0,75 3,66	0,92 3,37		0,71 2,36	0,79 1,39	0,63 1,38	0,75 1,98	0,56 1,72	0,75 1,24	0,71 2,34
9	191 U 749	13,90 0,59	8,76 0,75	5,34 0,71	6,89 0,71	7,54 0,87	5,91 0,71	5,66 0,63	8,13 0,75	5,38 0,75	8,10 0,67
10	1524 809 O	0,71 4,17	0,71 3,20	0,87 2,94		0,70 2,04	0,67 1,32	0,71 2,48	0,75 2,30	0,75 2,09	
11	817 0 1536					2,73 1,01	1,85 0,56	1,93 0,52	1,86 0,63	1,74 0,79	2,57 0,59
12	837 O 1547										2,24 0,63
13	1555 248 U							į			0,71 8,13

Tabelle 8: 1949, Rigi. Mittelwerte m'' = $2 \frac{\sin^2 \frac{\theta}{2}}{\sin 1}$

Paar Nr.	Stern Kat.Nr.	9. Juli	10. Juli	11. Juli	12. Juli	21. Juli	22. Juli	4. Aug.	5. Aug.	7. Aug.	8. Aug.
1	1445 1432 0		1,06 2,83								,
2	260 U 1459		5,30 0,96	3,60 0,83	2, 93 0,71	٠					
3	606 O 668		6,04 0,67	3,70 0,67	1,90 0,79	2,08 0,87	2,63 0,71	•		·	
4	639 O 688	· .	3,12 1,01	3,70 0,83	1,10 0,63	1,28 0,59	1,12 0,67			5	
5	1478 284 U	,			0,79 2,79	0,87 1,98	0,83 2,31	0;75 1,34	0;71 1,66	0;79 1,75	0 , 75
6	1484 310 U		0,87 4,89	1,06 3,46	0,87 3,74	0,37 5,21		0,75	0,83 3,99	0,79 1,96	0,75 2,82
7	685 O 1500	-	3,03 0,67	2,38 0,49	1,92 0,67	2,01 0,67	0,96 0,83				
8	Nf U 1511		11,12 0,96	6,83 0,71	3,71 0,59	6,07 0,87	14,40 0,63	11,55 0,83	21,4	13,41 0,71	12,24 0,67
9	744 714 O		0,83 2,70	0,71 0,99	0,87 1,63	0,67 1,51	0,83	0,79	0,79 2,42	0,83 2,16	0,79 1,40
10	1494 O 1536	4;'97 0,79		3,37 0,87	4,67 0,83	3,72 0,83	2,45 0,83	4,04 0,87	1,94 0,67	2,48 0,67	2,42 0,75
11	357 ປ 772	1,51 0,75	1,90 0,40		3,12 0,92	2,83 0,75	1,55 0,49	2,36 0,83	2,04 0,79	1,40 0,67	1,67 0,75
12	372 U 1541		1,54 0,63	1,47 0,59		0,63 0,87					
13	395 U 1555			3,65 0,83			4,85 0,71	2,49 0,59	2,55 0,63	3,76 0,71	1,90 0,67
14	734 0 1569	3,30 0,56						8,35 0,71	5,80 0,71	6,48 0,71	4,48 0,79
15	1574 770 O								0,71	0,79 1,52	0,71 1,45
16	803 O 840							1,04 0,56	5,52 0,75	0,92	

Tabelle 9: 1945, Gurten. Beobachtete Neigungen i.

				1				· · · · · · · · · · · · · · · · · · ·	,		
Paar Nr.	Stern Nr.B.J.	12.Juli	13.Juli	14.Juli	17.Juli	18.Juli	21.Juli	22.Juli	23.Juli	24.Juli	25.Juli
•	1442	+ 0,075	+ 0.071	+ 0,015							
1	695 0	+ 71		+ 13		,	·				
		•				1					
	1454	+ 0,075	+ 0,067	+ 0,036	- 0,046	+ 0,063	- 0,027	+ 0,008	- 0,021	- 0,006	- 0,050
2	115 ປ	+ 67	+ 42	+ 36	- 40	+ 71		+ 36	- 23	. 0	- 36
							,				
2	656	+ 0,088	+ 0,054	+ 0,038	- 0,042	+ 0,084	- 0,033	+ 0,002	- 0,017	- 0,008	- 0,019
3.	714 0	+ 81	+ 40	+ 42	- 23	+ 69	- 23	- 8	- 38	- 10	- 40
		·	·								
4	729 0		+ 0,048		•		Į	+ 0,019		- 0,010	- 0,031
	677		+ 40	+ 61	- 42	+ 75	- 52	- 4	- 38	+ 2	- 15
	759 O		+ 0,017	+ 0,050	- 0,042	. 0 005	0.0/0	0.004	0.040	0.010	0.010
5	688		+ 54	+ 48	- 33	+ 0,065 + 71		-	- 0,042	_	,
	000		, ,,	+ 40	- 33	, ,	- 25	- 13	- 42	+ 10	- 19
	173 ປ		+ 0,052	+ 0,067	- 0,023	+ 0,084	- 0,033	- 0,004	- 0,027	+ 0,006	- 0,006
6	1486	•	+ 31	+ 42	- 23	+ 65	- 50	0,004	- 46	+ 21	- 29
								_			
	770 O	+ 0,042	+ 0,015	+ 0,071	- 0,013	+ 0,077	- 0,044	- 0,019	- 0,054	+ 0,013	- 0,013
7	717	+ 48	+ 63	+ 56	- 6	+ 69	- 48	- 25	- 44	+ 25	- 23
		•			. ,						
8	1500	+ 0,054	+ 0,033		- 0,019	+ 0,052	- 0,033	- 0,002	- 0,048	+ 0,023	- 0,015
	234 ช	+ 90	+ 56		+ 0,006	+ 79	- 19	+ 8	- 54	+ 33	- 19
		,					·			, .	
9	191 U	+ 0,106	,	+ 0,061	•		-	+ 0,004	- 0,033		- 0,031
	749	+ 92	+ 42	+ 90	+ 0,015	+ 67	- 29	+ `6	- 56	+ 29	- 21
	1524	+ 0,088	+ 0.033	+ 0 079		+ 0.067	+ 0,010	+ 0 006	_ 0 067	+ 0 020	
10	809 O	+ 75	+ 50	+ 92	•	+ 71	- 0,035	+ 2	- 46	+ 0,029	
						. , ,	0,033		- 40	7 21	
	817 0					+ 0,081	- 0,042	+ 0,025	- 0,065	+ 0,025	- 0,015
11	1536			İ		+ 79	- 36	+ 31	- 71	+ 33	- 38
ļ		,									
10	837 0	·				"					- 0,040
12	1547							ı			- 10
								.]			•
13	1555		·		İ			, ,			- 0,015
l	248 ប	١		ļ	J	i			1		- 17

Tabelle 10: 1949, Rigi. Beobachtete Neigungen i.

Paar Nr.	Stern Kat.Nr.	9.Juli	10.Juli	11.Juli	12.Juli	21.Juli	22.Juli	4.Aug.	5.Aug.	7.Aug.	8.Aug.
1	1445 1432 O		- 0,035 - 89	,							
2	260 U 1459		- 0,080 - ,117	- 0,063 - ,102	- 0,028 - 33						
3	606 O 668		- 0,124 - ,131	- 0,120 - ,115	- 0,031 - 52	+ 0,083 + 72	' '				
4	639 O 688		- 0,146 ,157	- 0,130 - ,157	- 0,076 - 96	+ 0,080	-			,	·
5	1478 284 U		• •		- 0,098 - ,105	+ 0,085 + 72		- 0,137 - ,157	+ 0,024 + 17	+ 0,065 + 50	+ 0,043 + 70
6	1484 310 U		- 0,144 - ,142	- 0,152 - ,152	- 0,118 - ,128	+ 0,074		- 0,148 - ,159	· ·	+ 0,061 + 52	+ 0,041
7	685 O		- 0,165 - ,154	- 0,163 - ,148	- 0,141 - ,130	+ 0,057 + 81	ļ				
8	Nf U 1511		- 0,159 - ,187	- 0,170 - ,191	- 0,152 - ,163	1		- 0,174 - ,174		+ 0,056	
9	744 714 O		- 0,174 - ,166	- 0,181 - ,170	- 0,155 - ,161			1		+ 0,031	- 0,015 - 6
10	1494 O 1536	+_0 ^s ,124 +_,154		- 0,198 - ,198				- 0,172 - ,181	- 0,024 - 22	+ 0,018	- 0,031 - 43
11	357 U	+ 0,130	- 0,204 - ,188		- 0,185 - ,198			- 0,174 - ,181		- 0,009 - 2	- 0,037 - 43
12	372 U 1541		- 0,205 - ,198			+ 0,015					
13	395 ປ 1555	-		- 0,213 - ,228	1		+ 0,026	- 0,194 - ,174	l '	+ 0,002	- 0,083 - 85
14	734 0 1569	+ 0,168					:	- 0,183 - ,174			- 0,094 - 96
15	1574 770 0								- 0,056 - 52	- 0,020 0	- 0,109 - ,118
16	803 0 840				9			- 0,166 - ,179	i	1	

	sin q	- 0,0916 + 0,1880	+,0,4074	+ 0,3777	+ 0,2226	- 0,0922	- 0,0925 + 0,3753	+ 0,2112	+ 0,7309	- 0,0930 + 0,2838	+ 0,3616	+ 0,2678	+ 0,3146	+ 0,3769	+ 0,5011	- 0,0914 + 0,3479	+ 0,1969 - 0,0922
	b oes•d oesoo	+ 1,007	+ 4,886	- 4,467 + 1,005		+ 1,014	+ 1,017	- 2,366 + 1,014	+11,727* +1,012	+ 1,023	- 4,248* + 1,020	+ 3,043 + 1,019	+ 3,639 + 1,045	+ 4,456 + 1,019	- 6,34 ¹ * + 1,014	+ 1,005	- 2,199 + 1,014
Rigi 1949	sin p*cos q	+ 0,9932	+ 0,2047	- 0,2239 + 0,9947	- 0,4000	+ 0,9860	+ 0,9832	- 0,4224	+ 0,0853	+ 0,9772	- 0,2354	+ 0,3286	+ 0,2755 + 0,9572	+ 0,2244	- 0,1577 + 0,9858	+ 0,9949	- 0,4547
	z soo	0,623	0,580	0,869	0,946	0,774	0,786	0,953	0,674	0,526	0,875	0,470	0,519	0,563	0,833	0,709	0,964
	sin z	0,782	0,815	0,495	0,326	0,633	0,618	0,302	0,739	0,850	0,485	0,882	0,855	0,826	0,553	0,705	0,267
	Durch- gang	0	Þ	0	. 0	Þ	þ	0	D	0	0	Þ	Þ	, Þ	0	0	0
	Stern Kat.Nr.	1445 1432	260 1459	909	639	1478	1484	685	N£ 1511	744	1494 1536	357	372 1541	395 1555	734 1569	1574 770	803 840
1	u					· · ·											
	Paar Nr.	F-1	7		. 4	. 50	9	7	∞	6	10	11	12	13	14	15	16
•	cosec p.sec q Nr.	+ 1,023	+ 1,060 + 5,440 2	+ 1,032 - 3,319 3	- 3,775 + 1,008	·	+ 4,612 + 1,019 6	- 4,217 + 1,010 7	+ 1,017 + 2,993	+ 6,668* + 1,013	-,	- 3,287 + 1,022	- 2,863 + 1,020	+ 1,022 + 7,143	1		16
,	b sec d	1,023 3,640	1,060		3,775	5,449	4,612 1,019			6,668* 1,013	1,014	3,287				die 1	16
ın 1945	b oesed oesoo b sooed	0,977 + 1,023 0,275 - 3,640	0,944 + 1,060 0,184 + 5,440	0,969 + 1,032 0,301 - 3,319	0,265 - 3,775 0,992 + 1,008	0,184 - 5,449 0,992 + 1,008	0,217 + 4,612 0,981 + 1,019	0,237 -	0,984 + 1,017 0,334 + 2,993	0,150 + 6,66% 0,988 + 1,013	0,986 + 1,014 0,317 - 3,153	0,304 - 3,287 0,978 + 1,022	0,286 - 2,863 0,981 + 1,020	0,979 + 1,022 1 0,140 + 7,143 1		die 1	16
Gurten 1945	s z sin p·cos q cosec p·sec q	+ 0,977 + 1,023 - 0,275 - 3,640	+ 0,944 + 1,060 + 0,184 + 5,440	+ 0,969 + 1,032 - 0,301 - 3,319	- 0,265 - 3,775 + 0,992 + 1,008	- 0,184 - 5,449 + 0,992 + 1,008	+ 0,217 + 4,612 + 0,981 + 1,019	- 0,237 + 0,990 +	+ 0,984 + 1,017 + 0,334 + 2,993	+ 0,150 + 6,668* + 0,988 + 1,013	+ 0,986 + 1,014 - 0,317 - 3,153	- 0,304 - 3,287 + 0,978 + 1,022	- 0,286 - 2,863 + 0,981 + 1,020	+ 0,979 + 1,022 + 0,140 + 7,143 1		die 1	16
Gurten 1945	z cos z sin p·cos q cosec p·sec q	0,799 + 0,977 + 1,023 0,894 - 0,275 - 3,640	0,874 + 0,944 + 1,060 0,597 + 0,184 + 5,440	0,823 + 0,969 + 1,032 0,906 - 0,301 - 3,319	0,889 - 0,265 - 3,775 0,715 + 0,992 + 1,008	0,848 - 0,184 - 5,449 0,639 + 0,992 + 1,008	0,570 + 0,217 + 4,612 0,552 + 0,981 + 1,019	0,876 - 0,237 - 0,611 + 0,990 +	0,568 + 0,984 + 1,017 0,464 + 0,334 + 2,993	0,624 + 0,150 + 6,668* 0,755 + 0,988 + 1,013	0,764 + 0,986 + 1,014 0,913 - 0,317 - 3,153	0,907 - 0,304 - 3,287 0,538 + 0,978 + 1,022	0,899 - 0,286 - 2,863 0,551 + 0,981 + 1,020	0,795 + 0,979 + 1,022 1 0,632 + 0,140 + 7,143 1		die 1	16
Gurten 1945	sin z cos z sin p·cos q cosec p·sec q	0,602 0,799 + 0,977 + 1,023 0,448 0,894 - 0,275 - 3,640	0,486 0,874 + 0,944 + 1,060 0,802 0,597 + 0,184 + 5,440	0,568 0,823 + 0,969 + 1,032 0,423 0,906 - 0,301 - 3,319	0,457 0,889 - 0,265 - 3,775 0,699 0,715 + 0,992 + 1,008	0,530 0,848 - 0,184 - 5,449 0,769 0,639 + 0,992 + 1,008	0,822 0,570 + 0,217 + 4,612 0,834 0,552 + 0,981 + 1,019	0,483 0,876 - 0,237 - 0,791 0,611 + 0,990 +	0,823 0,568 + 0,984 + 1,017 0,886 0,464 + 0,334 + 2,993	0,781 0,624 + 0,150 + 6,668* 0,656 0,755 + 0,988 + 1,013	0,645 0,764 + 0,986 + 1,014 0,408 0,913 - 0,317 - 3,153	0,420 0,907 - 0,304 - 3,287 0,843 0,538 + 0,978 + 1,022	0,437 0,899 - 0,286 - 2,863 0,835 0,551 + 0,981 + 1,020	0,607 0,795 + 0,979 + 1,022 1 0,774 0,632 + 0,140 + 7,143 1			16

Tabelle 12 a: Gurten, 18. Juli 1945

Stern 8	1454 18° 6'51,92	115 U 77 ⁰ 31'52,'99	656 12 ⁰ 36' 1 <mark>,</mark> '66	714 0 71 ⁰ 13 ¹ 33,96	729 0 73°15'20,'09	677 + 2 [°] 56' 2"95	759 0 77 [°] 32'49,"77	688 - 2°54'48"07	173 U 75°50'29"20	1486 - 9 ⁰ 6*19,"39
ָם	17 ^h 37 ^m 21,628	17 ^h 45 ^m 10,704	17 ^h 54 ^m 33,456	18 ^h 4 ^m 51,342	18 ^h 15 ^m 44,266	18 ^h 24 ^m 33,837	18 ^h 34 ^m 43,519	18 ^h 47 ^m 48,208	18 ^h 56 ^m 38,290	19 ^h 11 ^m 27,522
on.	- 0,925	- 0,925	- 0,924	- 0,923	- 0,923	- 0,922	- 0,922	- 0,921	- 0,920	- 0,920
ಶ	17 17 55,042	3 13 15,27	17 32 24,569	18 55 8,63	19 16 41,74.	17 57 55,200	20 10 52,60	18 18 29,678	4 41 21,63.	18 39 17,719
$\bar{t}_0 = \bar{U} + u_0 - \alpha$	+ 19 25,661	14 31 54,51	+ 22 7,963	- 50 18,21	-1 0 58,40	+ 26 37,715	-1 36 10,000	+ 29 17,609	14 15 15,74	+ 32 8,883
,	s m.d.	g E	β	e .c	ت ع ع		0 E 2.	ه 5 عـ	į E	; ;
고 고 I (1)	6 8 34	18 ⁻ 28 ⁻ 0 ⁻ 3 56 5	6-28-0- 6 5 52	18 ⁻ 28 0 ⁻ 19 18 18	18"28" 0° 19 28 58	6 ⁻²⁸ 0 ² 6 1 22	18"28" 0° 20 4 10	6"28" 0" 5 58 42	18"28" 0° 4 12 44	6"28" 0° 5 55 51
							•		-	
1/15	1/15	8,8239	1/15	8,8239	8,8239	1/15	8,8239	1/15	8,8239	.1/15
= ∃	0,75	0,8768	0,29	0,0492	0,3483	0,63	0,7007	0,70	0,3010	0,75
cotg (µ-to)	- 0,037	9,7784	- 0,026	9,5510 п	9,6116 n	900 ° 0 -	9,7795 n	900*0 +	9,7037	+ 0,018
$\frac{m}{15}$ cotg(μ - $\bar{\epsilon}_o$)	- 0,002	9,4791	- 0,001	8,4241 n	8,7838 n	000*0 -	9,3041 n	, 000,0 +	8,8286	+ 0,001
		. •						,		
મન	+ 0°063	- 0°,071	+ 0,084	690 <mark>°</mark> 0 –	- 0°073	+ 0,075	- 0°065	+ 0,071	- 0°084	+ 0,065
i · cos z	+ 0,055	- 0,042	690*0 +	- 0,063	- 0,065	+ 0,054	- 0,055	+ 0,045	- 0,048	+ 0,036
ek	+ 0,052	+ 0,052	+ 0,052	- 0,052	- 0,052	+ 0,052	- 0,052	+ 0,052	+ 0,052	+ 0,052
•			,							
(ek + 1.cos z)	+ 0,107	+ 0,010	+ 0,121	- 0,115	- 0,117	+ 0,106	- 0,107	+ 0,097	+ 0,004	+ 0°088
o=b oes.d oesoo	+ 1,060	+ 5,440	+ 1,032	- 3,319	- 3,775	+ 1,008	- 5,449	+ 1,008	+ 4,612	+ 1,019
•			,							
(ek+1.cos z).c	+ 0,113	+ 0,054	+ 0,125	+ 0,378	+ 0,442	+ 0,107	+ 0,583	+ 0,098	+ 0,018	060*0 +
$-\frac{15}{15} \cot g(\mu - t_0)$	+	- 0,301	+	+ 0,027	+ 0,061	0	+ 0,201	0	- 0,067	- 1
1.										
LO LO LO	+ 0,115 +19 ^m 25,776	$-0,247$ $14^{h}31^{m}54.26$	+ 0,126 +22 ^m 8,089	+ 0,405	+ 0,503 -1 ^h 0 ^m 57,90•	+ 0,107 +26 ^m 37 ⁸ 822	+ 0,784 -1 ^h 36 ^m 9 ⁸ 22.	860°0 +	- 0,049	+ 0,089 + 32 ^m 8972
1		•		•			1 1 6 1		***	11/62

Tabelle 12 b: Gurten, 18. Juli 1945

1536 -10° 2'24"37	21 ^h 2 ^m 1,246 - 0,913 20 29 25,231 + 32 35,120	6 ^h 28 ^m 0 ^s 5 55 25	1/15 1,01 + 0,020	+ 0,001	+ 0,079 + 0,043 + 0,052	+ 0,095	+ 0,097	+ 0,096 +32 ^m 35,216
817 0 71 ⁰ 3'24,"71	20 ^h 51 ^m 40,957 - 0,914 21 41 11,32· - 49 31,28·	18 ^h 28 ^m 0 ^s 19 17 31	8,8239 0,4362 9,5462 n	8,8063 n	- 0,081 - 0,073 - 0,052	- 0,125 - 3,287	+ 0,411	+ 0,475
809 0 19,5 1,61°07	20 ^h 41 ^m 46,143 - 0,914 21 28 1,40· - 46 16,17·	18 ^h 28 ^m 0 ^s 19 14 16	8,8239 0,3096 9,5262 n	8,6597 n	- 0,°071 - 0,065 - 0,052	- 0,117 - 3,153	+ 0,369	+ 0,415 -46 ^m 15,75•
1524 + 7° 7'24,04	20 ^h 26 ^m 12,242 - 0,915 20 1 29,080 + 24 42,247	6 ^h 28 ^m 0 ^s 6 3 18	1/15 0,70 - 0,014	- 0,001	+ 0,067 + 0,051 + 0,052	+ 0,103	+ 0,104	+ 0,105 +24 ^m 42,352
749 + 6°16'11,'56	20 ^h 17 ^m 45,520 - 0,916 19 52 38,647 + 25 5,957	6 ^h 28 ^m 0 ^s 6 2 54	1/15 0,87 - 0,013	- 0,001	+ 0,067 + 0,051 + 0,052	+ 0,103	+ 0,104	+ 0,105 +25 ^m 6,062
191 U 79 ⁰ 10,11,05	20 ^h 7 ^m 26,633 - 0,916 5 13 23,60. 14 54 2,12.	18 ^h 28 ^m 0 ^s 3 33 58	8,8239 0,8774 9,8693	9,5706	- 0,079 - 0,049 + 0,052	+ 0,003	+ 0,020	- 0,352 14 ^h 54 ^m 1,77
234 U 69 ⁰ 20'26,"15	19 ^h 51 ^m 1,502 - 0,917 6 12 45,18• 13 38 15,40•	18 ^h 28 ^m 0 ^s 4 49 45	8,8239 0,1430 9,5003	8,4672	- 0,079 - 0,037 + 0,052	+ 0,015	+ 0,045	+ 0,016 13 ^h 38 ^m 15,42•
1500 - 8° 1'53,"03	19 ^h 41 ^m 23, ⁵ 508 - 0,918 19 9 43,734 + 31 38,856	6 ^h 28 ^m 0 ^s 5 56 21	1/15 .0,79 + 0,016	+ 0,001	+ 0,052 + 0,030 + 0,052	+ 0,082	+ 0,083	+ 0,082 +31 ^m 38,938
717 - 4°57'53,67	19 ^h 33 ^m 36, ⁸ 674 - 0,918 19 3 21,795 + 30 13,961	6 ^h 28 ^m 0 ^s 5 57 46	1/15 0,67 + 0,010	000°0 +	+ 0,069 + 0,042 + 0,052	+ 0,094	+ 0,095	+ 0,095 +30 ^m 14,056
770 0	19 ^h 21 ^m 28,378 - 0,919 20 32 20,36. -1 10 52,90.	18 ^h 28 ^m 0 ^s 19 38 53	8,8239 0,4048 9,6631 n	8,8918 n	- 0,057 - 0,067 - 0,052	- 0,119	+ 0,502	+ 0,580 - 1 ^h 10 ^m 52,32
Stern	$ \begin{array}{ccc} \ddot{U} & & & \\ U & & & \\ \alpha & & & \\ \ddot{v}_o & = & & & \\ \ddot{v}_o - \alpha & & & \\ \end{array} $	ا با ع ا ع	1/15 m" cotg (u-to)	$\frac{\pi}{15}$ cotg(μ - \tilde{t}_0)	; i • cos z ek	(ek + i·cos z) cosec p·sec q=c	(ek+i·cos z)·c - π/5 cotg(μ-τ̄ ₀)	to - fo

Tabelle 13: Anschlusswinkel ΔA und Paarwerte des Azimutes A

Ort	Epc	che	Δ	A			1
Datum	Stern- zeit	M.E.Z.	beob.	inter- poliert	a _{beob.}	A	Stern- paar
Gurten	_				+ 9°31'	+ 9°31'	
12.Juli 1945	16 ^h 50 ^m	22 ^h 00 ^m	- 22,17			1	
	17 19		,	- 22,12	26,18	4,06	10
•	17 41			- 22,08	26,94	4,86	2 U
	17 50	23 00	- 22,06	ļ		,	
-	18 00			- 21,97	26,17	4,20	3 0
	19 05	0 15	- 21,40				
:	19 27			- 21,59	26,92	5,33	7 0
	19 46			- 21,75	27,87	6,12	8 U
	20 05	1 15	- 21,91				
	20 13			- 21,90	27,07	5,17	9 U
	20 34	0.00	01:07	- 21,88	25,46	3,58	10 0
	20 50	2 00	- 21,87				
13.Juli 1945					+ 9°30	+ 9°31'	
13.3011 1943	16 ^h 50 ^m	21 ^h 55 ^m	+ 35,31		7 9 30	7 9 31	
	17 00	22 05	+ 34,85		· .		
	17 19	22 03	1 34,03	+ 34,76	29;32	4,08	10
	17 30	22 35	+ 34,71	1 31,	25,52		
•	17 41		.,,,,	+ 34,23	29,55	3,78	2 U
	18 00 ⁻	·		+ 33,41	30,60	4,01	3 0
	18 10	23 15	+ 32,98				
	18 20	,	-	+ 33,77	30,19	3,96	4 0
	18 25	23 30	+ 34,16				
	18 41			+ 34,05	30,29	4,34	5 0
	19 00	0 05	+ 33,91				<u>.</u>
•	19 04			+ 34,37	31,36	5,73	6 U
	19 10	0 15	+ 35,07	0.00			
• '	19 27			+ 34,33	30,69	5,02	7 0
	19 46	1 00	. 22 10	+ 33,51	29,91	3,42	8 ប
•	19 55	1 00	+ 33,12	24.06	20.07	4 12	9 17
	20 13 20 30	1 35	+ 34,94	+ 34,06	30,07	4,13	90
٠	20 30	1 33	7 34,34	+ 34,99	29,04	4,03	10 0
i	20 45	1 50	+ 35,14	34,55	25,04	7,05	10 0
	20 13	130	33,11		1.		
14.Juli 1945			· ·		+ 9°30'	+ 9°31'	
	16 ^h 55 ^m	21 ^h 55 ^m	+ 35,96	· ·		J	
	17 19			+ 36,46	28,43	4,,89	10
	17 25	22 25	+ 36,59		,		
	17 41			+ 36,31	29,11	5,42	2 U
•	17 50	22 50	+ 36,16				
,	18 00			+ 36,43	27,65	4,08	3 0
•	18 05	23 05	+ 36,56	06.75		,	, _
	18 20	00.0-	. 06 =6	+ 36,58	28,00	4,58	4 0
•	18 25	23 25	+ 36,59				
	18 40 18 41	23 40	+ 36,79	+ 37,10	27,40	4,50	5 0
	1 TO 4T	٠	ļ	1 + 3/,10	27,40	4,50	ט כ י

Tabelle 13 (Fortsetzung): Anschlusswinkel ΔA und Paarwerte des Azimutes A

Ort	_	che	4	A			
Datum	Stern- zeit	M.E.Z.	beob.	inter- poliert	abeob.	A .	Stern- paar
Gurten	19 ^h 00 ^m	o ^h oo ^m	+ 37,36				
	1 40 04	0.00	1 37,30	+ 37, 29	28,57	5,,86	6 U
(14.Juli 194	19 27			+ 36,91	28,81	5,72	7 0
	19 35	0 35	+ 36,77	. 50,51	20,01	3,72	' "
	20 13		, ,,,,	+ 36,67	28,67	5,34	9 U
	20 30	1 30	+ 36,62	30,07	20,0,]	
	20 34		1	+ 36,68	27,74	4,42	10 0
•	20 45	1 45	+ 36,84]		.,	
				·			
17.Juli 194	5 .				+ 9°31'	+ 9 ⁰ 31'	
	17 ^h 00 ^m	21 ^h 50 ^m	- 50,21				
	17 25	22 15	- 49,52				
	17 41			- 49",94	55, 87	5 , '93	2 0
	17 50	22 40	- 50,18				
	18 00			- 50,44	54,05	3,61	3 0
	18 10	23 00	- 50,71	_	,		
	18 20			- 50,58	54,96	4,38	4 0
	18 41			- 50,30	55,31	5,01	5 0
	19 00	23 50	- 50,05	1			
	19 04			- 50,12	56,17	6,05	6 U
	19 27	•		- 50,53	55,22	4,69	7 0
	19 46		·	- 50,86	56,52	5,66	8 U
	19 55	0 45	- 51,02				
	20 13			- 50,14	54,89	4,75	9 U
	20 30	1 20	- 49,32				
	20 55	1 45	- 49,90				
					١ ,		
18.Juli 194	5 h m	l b m	. 11		+ 9°31'	+ 9°31'	,
	17 ^h 05 ^m	21 ^h 50 ^m	- 49,24	ĺ ,,	,,	11	
	17 41			- 49,81	54, 20	4,39	2 ប
	17 50	22 35	- 49,95				
	18 00			- 50,21	54,78	4,57	3 0
	18 10	22 55	- 50,47				l .
	18 20			- 50,48	55,30	4,82	4 0
	18 40	23 25	- 50,49				
	18 41			- 50,47	54,79	4,32	5 0
	19 00	23 45	- 50,08	40.00			
	19 04	0.10	10.50	- 49,99	54,32	4,33	6 U
	19 25	0 10	- 49,53	/0.57			<u> </u>
	19 27			- 49,57	54,93	5,36	7 0
	19 46 19 55	0 40	- 50 12	- 49,95	55,41	5,46	8 ប
	19 55 20 13	0 40	- 50,13	- 50,15	5/. 60	/ 52	0 77
	20 13	1 15	_ 50 16	- 30,13	54,68	4,53	9 U
•	20 30	1 13	- 50,16	- 50,08	54,73	1. 45	10 0
Α.	20 57			- 49,62	54,73	4,65 4,79	11 0
	21 05	1 50	- 49,46	77,02	77,71	7,73	11 0

Tabelle 13 (Fortsetzung): Anschlusswinkel AA und Paarwerte des Azimutes A

Tabelle 13 (F	ortsetzur	ng): Anso	nlusswinke	1 ΔA und	Paarwerte d	les Azimut	es A
Ort		che		A			
Datum	Stern- zeit	M.E.Z.	beob.	inter- poliert	abeob.	A	Stern- paar
21.Juli 1945					+ 9°30'	+ 9°31'	
Gurten	17 ^h 10 ^m	21 ^h 45 ^m	+ 53,75		1 . 3 30	' ' ' ' ' ' ' '	
	17 15	21 50	+ 53,61				
0	17 41	21 30	. 55,01	+ 53,87	11,46	5,,33	2 ប
	18 00			+ 54,06	10,42	4,48	3 0
	18 10	22 45	+ 54,16	. 54,00	10,42	7,40	3.0
•	18 20	,5	31,20	+ 53,98	10,15	4,13	4 0
	18 40	23 15	+ 53,16	, 55,50	10,13	-,13	
	18 41	,	33,13	+ 53,65	9,63	3,28	5 0
	19 00	23 35	+ 54,39		,,,,,,		
	19 04		.,,,,,	+ 54,34	10,73	5,07	6 บ
	19 25	0 00	+ 54,10	.,,,,,	,	3,01	
	19 27			+ 54,10	10,68	4,78	7 0
	19 46		•	+ 54,08	10,76	4,84	8 U
	19 55	0 30	+ 54,07		10,70	,,,,,	
	20 13		, , , ,	+ 54,48	10,81	5,29	9 U
	20 30	1 05	+ 54,86		,		
•	20 34	_	,	+ 54,80	10,45	5,25	10 0
	20 55	1 30	+ 54,46			3,-3	
	20 57		, , , ,	+ 54,38	10,67	5,05	11 0
•	21 15	1 50	+ 53,69	,	20,07	, ,,,,	
	21 25、	2 00	+ 54,04				
				`		,	
22.Juli 1945	h	h	·		+ 9°30'	+ 9°31'	
	17 ^h 15 ^m	21 ^h 45 ^m	+ 58,02				·
	17 20	21 50	+ 57,30				
	17 25	21 55	+ 57,14				
	17 41			+ 57,12	7, 91	5,03	2 U
•	18 00			+ 57,10	7,07	4,17	3 0
İ	18 10	22 40	+ 57,09				
	18 20			+ 57,20	7,03	4,23	4 0
	18 40	23 10	+ 57,42				
	18 41			+ 57,40	7,34	4,74	5 0
	19 00	23 30	+ 56,98				
	19 04	•		+ 56,92	8,74	5,66	6 U
	19 25	23 55	+ 56,60			,	
	19 27			+ 56,61	8,57	5,18	7 0
	19 46			+ 56,75	8,11	4,86	8 U
	19 55	0 25	+ 56,82				
	20 13			+ 56,64	8,73	5,37	9 U
	20 30	1 00	+ 56,48				
•	20 34			+ 56,52	8,72	5,24	10 0
	20 57			+ 56,73	7,89	4,62	11 O
	21 05	1 35	+ 56,80		<u> </u>		
į	21 10	1 40	.+ 55,76			ĺ	

Tabelle 13 (Fortsetzung): Anschlusswinkel ΔA und Paarwerte des Azimutes A

Ort	- .	che	Δ				
Datum	Stern- zeit	M.E.Z.	beob.	inter- poliert	abeob.	A	Stern- paar
Gurten		_			+ 9°32'	+ 9°31'	
23.Juli 1945	17 ^h 25 ^m	21 ^h 50 ^m	- 63,17		1		
	17 30	21 55	- 62,66				1
	17 41		,	- 62,21	7,51	5,,30	2 U
	18 00	,		- 61,44	7,37	5,93	3 0
	18 10	22 35	- 61,03		•		
	18 20			- 61,41	7,44	6,03	4 0
	18 40	23 05	- 62,16				
	18 41			- 62,18	6,70	4,52	5.0
	19 00	23 25	- 62 , 54				,
	19 04	00.50	60.67	- 62,56	8,31	5,75	6 U
	19 25	23 50	- 62,67	- 62,69	7.56	1. 07	7 0
	19 27			- 62,69 - 62,87	7,56 8,39	4,87 5,52	7 U
	19 46 19 55	0 20	- 62,95	- 02,07	0,39	3,52	
	20 13	0 20	- 02,95	- 62,98	7,90	4,92	9 U
•	20 13	0 55	- 63,01	02,50	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,52	
	20 34	0 33	05,01	- 62,92	6,37	3,45	10 O
	20 55	1.20	- 62,46	02,52			
	20 57]	- 62,58	6,82	4,24	11 0
	21 05	1 30	- 63,04		,		
	21 10	1 35	- 62,49		,		
24.Juli 1945	h m	h m	,,		+ 9°31'	+ 9°31'	
	17 ^h 25 ^m	21 ^h 45 ^m	- 33,35	,			
	17 30	21 50	- 32,70	001110	20"/1	5,,29	2 77
	17 41			- 33,12	38,41		2 U 3 O
	18 00	22.20	- 34,21	- 33,83	37,08	3,25	3 0
•	18 10 18 20	22 30	- 34,21	- 34,16	37,51	3,35	4 0
	18 40	23 00	- 34,07	- 34,10	37,51	3,33	4 0
	18 41	25 00	- 54,07	- 34,04	37,76	3,72	5.0
,	19 00	23 20	- 33,43	31,01	37,70	3,	
	19 04	-5 -5	33,13	- 33,49	38,86	5,37	6 U
	19 25	23 45	- 33,80				
	19 27			- 33,83	38,58	4,75	7 0
	19 46			- 34,13	38,10	3,97	8 U
	19 55	0 15	- 34,27				
	20 13			- 33,56	37,88	4,32	9 U
	20 30	0 50	- 32,89				
	20 34			- 32,91	38,81	5,90	10 0
	20 55	1 15	- 33,01	22.20	20.16	4 06	11.0
	20 57	1 25	22.00	- 33,20	38,16	4,96	11 0
	21 05 21 10	1 25 1 30	- 33,98 - 34,46				
	21 10	1 30	- 34,40	•			
25.Juli 1945					+ 9°30'	+ 9°31'	
	17 ^h 41 ^m	_		+ 34,68	30,72	5,40	2 U
	17 55	22 ^h 15 ^m	+ 34,93				
	18 00		.	+ 35,02	29,47	4,49	3 0
	18 10	22 30	+ 35,20	1.33,02	1 2,77	1,77	"

Tabelle 13 (Fortsetzung): Anschlusswinkel ΔA und Paarwerte des Azimutes A

Ort .		Еро	che		ΔΑ	1		·	
Datum		Stern- zeit	M.E.Z.	beob.		ter- liert	abeob.	A	Stern- paar
Gurten	/.E.\	18 ^h 20 ^m	23 ^h 00 ^m	+ 35, 82	+ :	35,41	28,71	4,12	4 0
(25.Juli 19	45)	18 40 18 41	23 00	+ 35,82	+ ;	35,85	28,47	4,32	5 0
		19 00	23 20	+ 36,33		·			
		19 04 19 25	23 45	+ 36,17	+ :	36,30	29,84	6,14	6 บ
		19 27	23 43	1 30,17	+ ;	36,10	28,78	4,88	7 0
		19 46				35,46	30,30	5,76	8 U
		19 55 20 13	0 15	+ 35,16	1.	35,22	29,13	4,35	9 U
		20 13	0 40	+ 35,24	•	33,22	29,13	4,33	90
		20 25	0 45	+ 35,48					
		29 35	0 55	+ 35,94		•			
•		20 40 20 55	1 00 1 15	+ 35,74 + 36,23		٠			
		20 57	1 13	+ 30,23	+	36,23	28,64	4,87	11 0
		21 18			+	36,18	28,57	4,75	12 0
		21 25	1 45	+ 36,17		36,15	29,22	5,37	13 บ
		21 35			"	30,13			
Rigi		.h m	h m	- 11			352°17'	352 ⁰ 17'	
9.Juli 19	49	18 ^h 05 ^m	23 ^h 25 ^m	- 0,18 - 0,65					
		18 30 19 10	23 50	+ 0,49					
	,	19 35	0 55	- 0,06					
		19 56			+	0,05	44,69	44,74	10 0
. •		20 13 20 25	1 40	+ 0,21	+	0,15	43,38	43,53	11 U
•		20 25	1 70	, 0,21	+	0,61	44,97	45,58	14 0
		21 15	2 30	+ 0,71		·			
10.Juli 19	49						352°17'	352 ⁰ 17'	
		16 ^h 25 ^m	21 ^h 40 ^m	- 0,55					
		16 40			-	0,17	43,39	43,22	1 0
		17 00 17 05	22 20	+ : 0,45	+	0,32	43,58	43,90	2 U
		17 10	22 20		+	0,42	41,93	42,35	3 0
•		17 40	22 55	+ .0,25					
	`	17 44	22.20		+	0,34	43,07	43,41	4 0
		18 05 18 20	23 20	+ 0,84	+	0,93	43,13	44,06	6 U
		18 40			+	1,04	43,31	44,35	7 0
		19 00	0 15	+ 1,16		1 10	/0.00		
		19 04 19 25	0 40	+ 1,34	+	1,19	42,29	43,48	8 ប
•		19 28		-,5	+	1,36	42,92	44,28	9 0
		19 55	1 10	+ 1,57	1				
		20 13 20 24			+ +	1,69 1,77	42,05 41,99	43,74 43,76	11 U 12 U
		20 24	1 45	+ 1,84	1	-911		73,70	12 0

Tabelle 13 (Fortsetzung): Anschlusswinkel ΔA und Paarwerte des Azimutes A

Ort	-	che		Δ	A				
Datum	Stern- zeit	M.E.Z.		beob.	1	ter- liert	abeob.	A .	Stern- paar
Rigi							352°17'	352 ⁰ 17	
ll.Juli	16 ^h 30 ^m	21 ^h 40 ^m	+	1,,90		,,			
	17 00				+	1,63	43,04	44','67	2 U
	17 05	22 15	+	1,59	+	1 62	42,93	44,55	3 0
	17 10 17 40	22 50	+	1,80	+	1,62	42,93	44,55	3 0
	17 44	22 30	'	1,00	+	1,81	42,51	44,32	4~0
	18 05	23 15	+	1,85		-, -	,-	,	
•	18 20			·	+	1,83	42,59	44,42	6 U
	18 40		ļ		+	1,79	42,78	44,57	7 0
	19 00	0 10	+	1,76				,,,,,	
•	19 04	0.05		0 10	+	1,82	41,65	43,47	8 U
	19 25 19 28	0 35	+	2,12	+	2,06	42,45	44,51	9 0
*	19 50	1 00	+	1,63		2,00	42,43	44,51	
	19 56		'	1,05	+	1,68	42,27	43,95	10 0
	20 24				+	1,91	41,85	43,76	12 U
•	20 30	1 40	+	1,96					
	20 46			- •	+	1,70	42,63	44,33	13 U
	20 50	2 00	+	1,64					
10 1.15 10/0				•			352°17'	352°17'	,
12.Juli 1949	16 ^h 30 ^m	21 ^h 35 ^m	+	2,24			332 17	352 17	
	16 45	21 50	+	1,88					
	17 00		1	-,	+	1,40	41, 92	43,"32	2 U
•	17 05	22 10	+	1,24			,		
	17 10				+	1,32	43,14	44,46	3 0
	17 40	. 22 45	+	1,83		1 00	/2.02	1,, 7,	
•	17 44 18 06				+ +	1,82 1,79	42,92 42,23	44,74 44,02	4 O 5 U
	18 20				+	1,79	42,23	44,02	6 U
	18 40				+		42,45	44,18	7 0
	19 04				+	1,69	40,27	41,96	8 U
	19 05	0 10	+	1,69					
	19 25	0 30	+	2,53					
	19 28				+	2,46	41,88	44,34	9 0
	19 55	1 00	+	1,84		1 0/	40.00	66.10	10.0
	19 56 20 13				++	1,84 1,77	42,28 42,14	44,12	10 0 11 U
	20 13	1 35	+	1,71		1,//	42,14	43,91	11 0
	20 30			1,71					
21.Juli 1949	h	h					352°17'	352 [°] 17	
	16 ^h 55 ^m	21 ^h 25 ^m	+	2,84		11	,,	. 11	
	17 10				+	3, 17	40,53	43,70	3 0
	17 40	22 10	+	3,82	 .	2 02	/1 FO	\	4.0
	17 44 18 06				+	3,83 3,87	41,52 41,72	45,35 45,59	4 0 5 U
	18 20				+	3,90	39,65	43,55	6 U
	18 40				+	3,95	39,29	43,24	7 0
	19 00	23 30	+	3,99					

Tabelle 13 (Fortsetzung): Anschlusswinkel ΔA und Paarwerte des Azimutes A

Ort	Epo	che		Δ	A				
Datum	Stern- zeit	M.E.Z.		beob.	ı	ter- liert	abeob.	A	Stern- paar
Rigi (21.Juli 1949)	19 ^h 04 ^m 19 25	23 ^h 55 ^m	+	4,"31	+	4,04	39,11	43,15	8 ប
	19 28 19 55	0 25	+	4,14	+	4,29	39,95	44,24	90
	19 56	0 23	T	4,14	+	4,16	40,02	44,18	10 0
	20 13 20 24				+	4,49 4,70	39,60 39,73	44,09 44,43	11 U 12 U
	20 35	1 00	+	4,91		4,70	35,75	44,43	12 0
22.Juli 1949	h. m	h m		11			352°17'	352 [°] 17	
	17 ^h 05 ^m 17 10	21 ^h 30 ^m	+	2,47	+	2,70	41,93	44,63	3 0
	17 40 17 44	22 05	+	4,09	+	4,06	39,62	43,68	4 0
	18 06				+	3,90	40,66	44,56	5 Ü
	18 15 18 40	22 40	+	3,84	+	3,93	40,36	44,29	7 0
	19 04 19 05	23 30	+	4,02	+	4,02	39,48	43,50	8 U
	19 25	23 50	+	3,90		2.05	40.06	// 01	
	19 28 19 55	0 20	+	4,40	+	3,95	40,06	44,01	9 0
	19 56 20 13				++	4,37 3,91	40,81 40,37	45,18 44,28	10 O 11 U
	20 25 20 46	0 50	+	3,58	+	3,68	39,29	42,97	13 U
	21 05	1 30	+	3,78	`	3,00	33,23	42,57	
4.Aug. 1949	h m	h m		**			352°17'	352 ⁰ 17	
, -	17 ^h 55 ^m 18 06	21 ^h 30 ^m	+	1,50	+	1,44	42,70	44,14	5 U
	18 20	22 05		1 20	+	1,36	43,57	44,93	6 U
	18 30 19 04		+	1,30	+	0,95	42,86	43,81	8 U
	19 05 19 25	22 40 23 00	+ +	0,94 1,57					
	19 28 19 55	23 30	+	2,46	+	1,66	42,78	44,44	9 0
	19 56			-,	+	2,45	42,52	44,97	10 0
	20 13 20 20	23 55	+	2,13	+	2,22	41,43	43,65	11 U
÷	20 46 21 05			, .	++	2,19 2,24	41,17 42,92	43,36 45,16	13 U 14 O
	21 15 21 42	0 50	+	2,27	+	2,50	43,60	46,10	16 0
* .*	21 55	1 30	+	2,61		_,	,.,		
5.Aug. 1949	hm	h_m		. 11			352°17'	352 ⁰ 17	
	17 ^h 55 ^m 18 06	21 ^h 25 ^m	+	1,40	+	1, 91	42,06	43, 97	5 U
	18 20	1			+	2,55	41,96	44,51	l 6 U

Tabelle 13 (Fortsetzung): Anschlusswinkel ΔA und Paarwerte des Azimutes A

Ort	Еро	che	Δ	A			
Datum	Stern- zeit	M.E.Z.	beob.	inter- poliert	abeob.	A	Stern- paar
Rigi (5.Aug.1949)	18 ^h 30 ^m 19 04 19 05	22 ^h 00 ^m	+ 3,01	+ 2,98	41,03	44,01	8 U
	19 25 19 28 19 56 20 13	22 55	+ 3,03	+ 3,03 + 3,06 + 3,07	41,71 42,89 41,03	44,74 45,95 44,10	9 0 10 0 11 U
	20 25 20 46 21 05	23 55	+ 3,08	+ 3,31 + 3,52	41,16 41,84	44,47 45,36	13 U 14 O
	21 15 21 26 21 42 22 00	1 30	+ 3,63	+ 3,46 + 3,20	41,30	44,76 45,31	15 O 16 O
7.Aug. 1949	17 ^h 50 ^m	21 ^h 15 ^m	- 53,73		352°17'	352 ⁰ 17 '	
	18 06 18 20 18 35	22 00	- 57,48	- 55,06 - 56,23	44,57 43,87	49,51 47,64	.5 n 6 n
	19 04 19 05 19 25	22 30 22 50	- 58,45 - 59,59	- 58,42	43,31	44,89	8 0
	19 28 19 55 19 56	23 20	- 58,57	- 59,56 - 58,51	44,67	45,11 45,25	9 0 10 0 11 U
	20 13 20 25 20 46 21 05	23 50	- 56,80	- 57,51 - 58,07 - 59,22	43,57 43,05 44,23	46,06 44,98 45,01	13 U 14 O
	21 15 21 26 21 42	0 40	- 59,82	- 59,51 - 59,06	44,61 43,00	45,10 43,94	15 0 16 0
8.Aug. 1949	22 00	1 25	- 58,55		352 [°] 17'	352°17'	
	17 45 17 55 18 06 18 20	21 05 21 15	+ 9,25 + 9,55	+ 9,94 + 10,43	33, 94 34, 36	43,88 44,79	5 U
	18 30 18 40 19 04	21 50 22 00	+ 10,78 + 10,45	+ 9,92	32,11	42,03	8 U
	19 05 19 25 19 28 19 55	22 25 22 45 23 15	+ 9,90 + 10,31 + 10,46	+ 10,32	33,04	43,36	9 0
	19 56 20 13 20 20	23 40	+ 11,53	+ 10,50 + 11,23	33,70 33,63	44,20 44,86	10 0 11 U

Tabelle 13 (Fortsetzung): Anschlusswinkel AA und Paarwerte des Azimutes A

Ort	Epo	che	Δ	A				
Datum	Stern- zeit	M.E.Z.	beob. inter-		abeob.	A	Stern- paar	
Di -i	20 ^h 46 ^m			+ 11,04	31, 96	43,00	13 U	
Rigi (8.Aug.1949)	21 05			+ 10,69	33,48	44,17	14 0	
	21 15	o ^h 35 ^m	+ 10,,50					
	21 26			+ 10,49	32,95	43,44	15 0	
	22 00	1 20	1 + 10,45		1	ļ		

12. Die beobachteten Azimute des Vertikales durch das irdische Objekt und deren Genauigkeit

Die gemessenen und interpolierten Anschlusswinkel ΔA , die beobachteten Instrumentenazimute a und die Azimute A des Vertikales durch das irdische Objekt sind in den Tabellen 13 vollzählig aufgeführt. In die Ableitung der beobachteten Azimute der Vertikale Gurten-Rötifluh und Rigi-Lägern sowie ihrer Genauigkeit wird eine Untersuchung mit einbezogen, ob sich ein systematischer Unterschied zwischen den Ergebnissen aus den Sternpaaren mit Nordstern in oberem Durchgang und denen mit Nordstern in unterem Durchgang nachweisen lasse.

a) Azimutbestimmung Gurten-Rötifluh

Um die Ergebnisse der einzelnen Abende miteinander vergleichbar zu machen, reduzieren wir sie auf den mittleren Pol. Aus den Koordinaten des Momentanpoles – veröffentlicht vom internationalen Breitendienst – gehen die nachstehenden Korrekturen Δa_p der beobachteten a hervor:

Datum 1945	1214.Juli	17.–18.Juli	21.Juli	22.–23.Juli	24.–25.Juli
Δa_p	- 0",25	- 0",27	0",29	- 0″,30 ·	- 0°,31

Diese Δa_p sind an die A angebracht worden. Hierauf wurden die 56 Einzelwerte des Azimutes A_o aus oberem Durchgang und die 39 Einzelwerte A_v aus unterem Durchgang zu den einfachen arithmetischen Mitteln \overline{A}_o und \overline{A}_v zusammengezogen. Die gefundenen Beträge sind:

$$\overline{A}_{o} = 9^{\circ}31'4'',26 \pm 0'',09; N_{1} = 56$$

$$\overline{A}_{U} = 9^{\circ}31'4'',84 \pm 0'',11; N_{2} = 39$$

$$\overline{A}_{o} + \overline{A}_{U} = 9^{\circ}31'4'',55$$

$$\overline{A}_{U} - \overline{A}_{o} = +0'',58 \pm 0'',14$$

Wir heissen $\frac{\overline{A}_o + \overline{A}_v}{2}$ das beobachtete Azimut.

Das Gesamtmittel aller 95 Einzelwerte wird:

Es fällt um 0",05 kleiner aus als $\frac{\overline{A}_0 + \overline{A}_U}{2}$, weil mehr Sternpaare mit Nordstern in oberem Durchgang beobachtet wurden als solche mit Nordstern in unterem Durchgang.

Eine Prüfung des Unterschiedes $\overline{A}_{U}-\overline{A}_{O}$ mit Hilfe des von A. Linder* dargelegten Verfahrens ergibt folgendes: Aus der Beziehung

$$s^{2} = \frac{1}{N_{1} + N_{2} - 2} \left\{ \sum_{i=1}^{N_{1}} (A^{i}_{o} - \overline{A}_{o})^{2} + \sum_{i=1}^{N_{2}} (A^{i}_{v} - \overline{A}_{v})^{2} \right\}$$

^{*} A. Linder: Statistische Methoden für Naturwissenschafter, Mediziner und Ingenieure. Birkhäuser, Basel.

erhält man die Streuung s. Sie ist in unserem Falle identisch mit dem mittleren Fehler des aus einem einzelnen Sternpaar abgeleiteten Azimutes A, das vom systematischen Unterschied zwischen den Ergebnissen aus Sternbeobachtung in oberem oder in unterem Durchgang befreit wurde. Setzt man die entsprechenden Zahlenwerte ein, so wird:

$$s = \pm 0$$
,65

Die mit t bezeichnete Grösse

$$t = \frac{\overline{A}_U - \overline{A}_O}{s} \cdot \sqrt{\frac{N_1 \cdot N_2}{N_1 + N_2}}$$

nimmt den Wert 4,27 an. Die Tafel der t-Verteilung gibt für den Freiheitsgrad $N_1 + N_2 - 2 = 93$ zu den gewählten Sicherheitsschwellen P die folgenden t:

$$P = 0.05 = 5\%$$
; $t = 2.0$
 $P = 0.01 = 1\%$; $t = 2.6$
 $P = 0.001 = 1\%$; $t = 3.4$

Das von uns gefundene t = 4,3 liegt ausserhalb dieser Beträge, das heisst, die Wahrscheinlichkeit, dass die Differenz $\overline{A}_{v} - \overline{A}_{o} = +0$ ",58 zufälliger Art sei, beträgt weniger als 1‰. Der Unterschied ist demnach verbürgt, was auch ohne weiteres daraus hervorgeht, dass er den Betrag seines mittleren Fehlers um das Vierfache übersteigt.

Die oben aufgeführten Mittelwerte \overline{A}_0 und \overline{A}_U sind ohne verschiedene Gewichte – für die Ergebnisse der einzelnen Sternpaare – abgeleitet worden. Im Gegensatz dazu wurden bei einer vorangehenden, vorläufigen Berechnung solche Gewichte benutzt. Wir gehen kurz auf deren Bestimmung ein:

Theoretisch lässt sich der mittlere Fehler m_a des Azimutes a des Instrumentenvertikales, hervorgegangen aus der einmaligen Beobachtung eines Sternpaares, ansetzen zu:

$$m_a^2 = \frac{m_U^2 + m_s^2}{\sin^2 \phi \cdot \cos^2 a} \cdot \frac{(\cos q_1 \cdot \sin p_1)^2 + (\cos q_2 \cdot \sin p_2)^2}{\sin^2 (z_1 + z_2)}$$

Die Grösse m_U^2 bedeutet den Durchschnittswert des für alle Sterne gerechneten Ausdruckes

$$\frac{\mu^2 \cdot \cos^2 q \cdot \sin^2 p}{10} + (m_i \cdot \cos z)^2$$

wenn der mittlere Fehler eines Doppelkontaktes mit μ und der mittlere Fehler einer Bestimmung der Neigung der Drehachse mit m_l bezeichnet wird. Die 26 auf dem Gurten beobachteten Sterne haben ein durchschnittliches m_U^2 von 0,031 ergeben.

Der Fehler m_s rührt von der Unsicherheit des Sternortes her. Wird angenommen, diese sei in allen Richtungen gleich gross, so ist

$$m_s = m_p = \sin p \cdot m_a$$

Der Übergang vom Azimut des Instrumentenvertikales auf das Azimut des Objektes führt zu

$$m_A^2 = m_a^2 + m_{\Delta A}^2$$

worin $m_{\Delta A}$ den mittleren Fehler des Anschlusswinkels bezeichnet. Die gesuchten Gewichte g gehen aus dem Quotienten $g = \frac{c}{m_A^2}$ hervor. Auf dem Wege dazu müssen also Durchschnittswerte der Fehlerquadrate m_i^2 , m_s^2 und $m_{\Delta A}^2$

eingeführt und vorher mit mehr oder weniger grosser Willkür abgeschätzt werden.

Versuchsweise wurde eine Berechnung der \overline{A}_0 und \overline{A}_v mit Gewichten g vorgenommen. Bringt man durch geeignete Wahl von c den Durchschnittswert von g auf 1, so liegen die Gewichte zwischen 0,83 und 1,18. Bei jener vorläufigen Auswertung wurden die Azimute $A = a + \Delta A$ mit den Abendmitteln der Anschlusswinkel ΔA gerechnet. Dieselben Abendwerte der ΔA sind auch verwendet worden, um die \overline{A}_0 und \overline{A}_v mittels gleicher Gewichte zu bestimmen. Man gewinnt auf diese Weise ein Bild vom Einfluss der Gewichte g.

Die Ergebnisse sind nachstehend in den Spalten 2 und 3 aufgeführt. Ferner gibt die Übersicht in Spalte 4 die mit Hilfe interpolierter, von Sternpaar zu Sternpaar veränderlicher Anschlusswinkel abgeleiteten Durchschnittswerte \overline{A}_O und \overline{A}_U . Alle hier aufgeführten Zahlen enthalten die Reduktion auf den mittleren Pol noch nicht.

Grösse		Mittlere Abendwerte der Anschlusswinkel ΔA sowie						
	verschiedene Gewichte g	gleiche Gewichte	gleiche Gewichte					
$\frac{\overline{A}o}{\overline{A}v}$ $\overline{A}o + \overline{A}v$	9° 31′ 4″,56 ± 0″,09 5″,18 0″,09	4",55 ± 0",07 5",20 ± 0",10	4",55 ± 0",09 5",12 ± 0",11					
$\frac{\overline{A}o + \overline{A}v}{2}$	9° 31′ 4″,87	4*,88	4*,84					
$\overline{A}v - \overline{A}o$	$+0',62 \pm 0',13$	+ 0",65 ± 0",12	+ 0",57 ± 0",14					

Die Unterschiede zwischen den mit Gewichten g oder 1 gefundenen Ergebnissen der zweiten und dritten Spalte bleiben sehr gering. Vergleicht man sie mit den Zahlen der letzten Spalte, so erkennt man, dass die verschiedene Art der Einführung der Anschlusswinkel ΔA grössere Änderungen bewirkt als die Verwendung verschiedener Gewichte. Es lohnt sich also nicht, von 1 abweichende Gewichte einzuführen.

Nun soll geprüft werden, ob die Ursache eines systematischen Unterschiedes zwischen den Azimuten aus oberem oder unterem Durchgang im Auftreten seitlicher Refraktionen liegen könne. Zuerst ist festzustellen, mit was für einer Grössenordnung allfälliger seitlicher Refraktionen man im Maximum zu rechnen hat. Im Laufe der Längendifferenzbestimmung Poschiavo-Genf herrschte an einem Beobachtungsabend in Poschiavo heftiger Nordföhn. Die beobachtete Längendifferenz weicht an diesem Tage, dem 12. September 1921, um +0s,092 ab vom Gesamtmittel der übrigen 9 Abendwerte. In seiner Veröffentlichung «Die Genauigkeit der verschiedenen Zeitbestimmungsmethoden» legt Th. Niethammer dar, dass die Ausschläge der Uhrkorrektion und des Azimutes vom 12. September 1921 sich erklären lassen durch Refraktionsstörungen von rund 1" in Zenitnähe und von 0",8 in Polnähe. Er betrachtet seitliche Refraktionsstörungen von 1" als mögliche Extremfälle.

Bezeichnet man im Vertikal mit dem Azimut a die seitliche Refraktion des Südsternes mit dr und diejenige des Nordsternes mit dr', so ist die Azimutverfälschung Δa gegeben durch den Ausdruck:

$$\Delta a = \{ + dr \cdot \cos q' \cdot \sin p' + dr' \cdot \cos q \cdot \sin p \} \cdot \csc \Phi \cdot \sec \alpha \cdot \csc (z + z')$$

Die Grössen p, q und z sind dem Südstern, p', q' und z' dem Nordstern zugeordnet. Bei den Bestimmungen auf dem Gurten betragen ihre Durchschnittswerte:

Südsterne:

$$z = +45^{\circ}$$
; $p = +87^{\circ}$,7; $\sin p \cos q = +0.992$

Nordsterne,

oberer Durchgang:

$$z' = +27^{\circ}$$
; $p' = +17^{\circ}$,1; $\sin p' \cos q' = -0.271$

unterer Durchgang:

$$z' = +55^{\circ}$$
; $p' = +13^{\circ}$,8; $\sin p' \cos q' = +0$,209

Ferner ist: $\Phi = 43^{\circ}$; $a = 9^{\circ}30'$

Damit ergeben sich die folgenden Azimutverfälschungen:

Sternpaar mit Nordstern in oberem Durchgang:

$$\Delta a_0 = \{-dr \cdot 0,271 + dr' \cdot 0,992\} \cdot 1,563$$

Sternpaar mit Nordstern in unterem Durchgang:

$$\Delta a_{U} = \{ +dr \cdot 0,209 + dr' \cdot 0,992 \} \cdot 1,510$$

Weichen Δa_0 und Δa_U voneinander ab, so macht sich dies als systematischer Unterschied zwischen den Azimuten aus oberem und aus unterem Nordsterndurchgang geltend.

Einige beliebig herausgegriffene Fälle seitlicher Refraktion führen zu den nachstehenden Beträgen:

1. Die seitliche Refraktion sei proportional dem Sinus der Zenitdistanz, also

$$dr = c \cdot \sin z$$
; $dr' = c \cdot \sin z'$

Dann ist:

$$\Delta a_{o} = +0",40 \cdot c$$

$$\Delta a_{U} = +1,45 \cdot c$$

$$\Delta a_{U} - \Delta a_{O} = +1",05 \cdot c$$

Der Mittelwert $\frac{\overline{A}_o + \overline{A}_v}{2}$ des Azimutes wird verfälscht um

$$\Delta a_M = +0^{\prime\prime},92 \cdot c$$

2. Im Süden mache sich keine seitliche Refraktion geltend; auf der Nordseite des Vertikales durch das Objekt wachse sie proportional dem Sinus der Zenitdistanz, also dr = 0; $dr' = c \cdot \sin z'$. Daraus geht hervor:

$$\Delta a_{O} = +0",70 \cdot c$$

$$\Delta a_{U} = +1,23 \cdot c$$

$$\Delta a_{U} - \Delta a_{O} = +0",53 \cdot c$$

$$\Delta a_{M} = +0",96 \cdot c$$

3. Sowohl in 45° südlicher Zenitdistanz als auch in der Umgebung des Poles betrage die seitliche Refraktion dr = dr' = +0",5. Die dadurch bewirkten Azimutfehler sind:

$$\Delta a_{O} = +0",56$$

$$\Delta a_{U} = +0,90$$

$$\Delta a_{U} - \Delta a_{O} = +0",34$$

$$\Delta a_{M} = +0",73$$

4. Im Süden sowie zwischen Zenit und Pol trete keine seitliche Refraktion auf; horizontwärts des Poles – im Bereiche der unteren Durchgänge, also in durchschnittlich 55° Zenitdistanz – belaufe sie sich auf +0",4. Man findet:

$$\Delta a_0 = 0'',00$$

$$\Delta a_U = + 0,60$$

$$\Delta a_U - \Delta a_O = +0'',60$$

$$\Delta a_M = +0'',30$$

Der unter Ziffer 1 aufgeführte Fall zeigt, dass eine seitliche Refraktion, die sowohl im nördlichen als auch im südlichen Teil des Vertikales proportional dem Sinus der Zenitdistanz wächst, schon bei einer Ablenkung c = 0",6 im Horizont einen systematischen Unterschied $\overline{A}_{v} - \overline{A}_{o}$ von 0",6 ergibt.

Tritt nur auf der nördlichen Hälfte des Vertikales eine seitliche Refraktion $c \cdot \sin z'$ auf – wie unter Ziffer 2 angenommen wird –, so bewirkt eine Ablenkung von 1" im Horizont eine Differenz $\overline{A}_{\nu} - \overline{A}_{0}$ von 0",53.

Die unter Ziffer 4 gewählte Annahme, allein die Sterne in unterem Durchgang erführen infolge Refraktion eine Versetzung, führt schon mit dr' = 0",4 zur Erklärung eines Unterschiedes $\overline{A}_U - \overline{A}_O$ von 0",60.

Zusammenfassend kann gesagt werden: Die auf dem Gurten aufgetretenen systematischen Unterschiede lassen sich ohne gewagte und unwahrscheinliche Annahmen aus seitlichen Refraktionen erklären. Die Möglichkeit des Einwirkens anderer Fehlerquellen bleibt natürlich ebenfalls bestehen.

b) Azimutbestimmung Rigi-Lägern

Die zeitliche Anordnung der Beobachtungen auf dem Rigi, die schon in Abschnitt 4 besprochen wurde, legt es nahe, 3 Gruppen zu bilden und diese gesondert zu behandeln. Die Bestimmungen umfassen:

- Gruppe 1, die Beobachtungen vom 9., 10., 11. und 12. Juli
- Gruppe 2, die Beobachtungen vom 21. und 22. Juli
- Gruppe 3, die Beobachtungen vom 4., 5. und 8. August 1949

Weshalb die Beobachtungen des 7. August keine Verwendung finden, ist am Ende des Abschnittes 9 dargelegt. Zuerst sind in jeder Gruppe die Azimute A, hervorgegangen aus Sternpaaren mit Nordstern in oberem oder in unterem Durchgang, getrennt gemittelt worden. Die nachfolgende kleine Übersicht enthält die gefundenen Beträge. N_1 und N_2 geben die Anzahl der Einzelwerte an.

	_	Az	imute A au	s Stern	paaren m	it	
Gruppe	Nordstern in oberem Durchgang				dstern nterem Di	Unterschied $\overline{A}v - \overline{A}o$	
	N_1	352° 17		N_2	352° 17		
1	17	44",22	± 0",17	16	43",78	± 0",15	 0″,44
2	10	44",25	土 0",21	9	44",01	\pm 0",27	 0",24
3	13	44",7 7	\pm 0",23	15	43",97	\pm 0",20	- 0″,80

Die 3 Unterschiede $\overline{A}_v - \overline{A}_o$ wurden mit Hilfe der oben erwähnten statistischen Methoden untersucht. Die Differenz -0'',44 der ersten Gruppe ist nicht verbürgt. Noch weniger ist es der Betrag -0'',24 der zweiten Gruppe. Die Wahrscheinlichkeit, dass der Unterschied -0'',80 der dritten Gruppe rein zufällig entstanden sei, liegt zwischen 1% und 5%. Demnach wäre er schwach verbürgt. Nun sind aber an allen Abenden der dritten Gruppe am Anfang 3 Paare mit Nordstern in unterem Durchgang und am Ende 2 Paare mit Nordstern in oberem Durchgang beobachtet worden. Die Mittelwerte der Anschlusswinkel ΔA und der Azimute, aus den Einzelwerten der ersten 3 und der letzten 2 Sternpaare gerechnet, nehmen die folgenden Beträge an:

Stern- beobachtungen	4. August 1949				5. August 1949	8	8. August 1949		
zwischen	ΔA	\boldsymbol{A}	D	ΔA	\boldsymbol{A}	D	ΔA	A	D
MEZ		352° 17′			352° 17′			352° 17′	-
21h 25m-22h 40m	+1*,25	44*,29	$\boldsymbol{\mathit{U}}$	$+2^{\circ},48$	44",16	U	+10",10	43",57	U
0h 25m- 1h 20m	+2",37	45″,63	0	+ 3",33	45″,04	0	+ 10",59	43″,80	0
Zunahme O-U	+ 1",12	+ 1",34		+ 0",85	+ 0",88		+ 0",49	+ 0",23	

Die Übereinstimmung in der Zunahme der ΔA und A ist augenfällig. Mit sehr grosser Wahrscheinlichkeit hat demnach in den herausgegriffenen Gruppen – der ersten 3 und der letzten 2 Sternpaare eines Abends – nicht die Art des Durchganges, sondern das Anwachsen des Anschlusswinkels ΔA die Veränderung des Mittelwertes A bewirkt. Um so mehr hat man Grund, dem nur schwach verbürgten Unterschied $\overline{A}_v - \overline{A}_o$ zu misstrauen. Vermutlich wird der grösste Teil davon durch die Verteilung der Durchgänge und die Änderungen des Anschlusswinkels vorgetäuscht.

Aus den Beobachtungen auf dem Rigi lässt sich nicht sicher feststellen, ob ein systematischer Unterschied besteht zwischen den Azimutwerten, hervorgegangen aus Sternpaaren mit Nordstern in oberem oder Nordstern in unterem Durchgang. Bemerkenswerterweise haben die auftretenden Differenzen umgekehrtes Vorzeichen als die Unterschiede, die aus den Beobachtungen auf dem Gurten hervorgehen. Nach dem Gesagten geht es an, die Mittelbildung ohne Rücksichtnahme auf die Durchgangsart durchzuführen. Vorher müssen noch die Reduktionen Δa_p auf den mittleren Pol angebracht werden. Innerhalb der einzelnen Gruppen ändern sich die Δa_p nicht; sie weisen die Werte auf:

Gruppe	1	2	3
$\overline{\Delta a_p}$	+ 0",09	+ 0",13	+ 0",17

Die damit erhaltenen Gruppenmittel sowie die Anzahl N der beobachteten Sternpaare betragen:

Gruppe	ne Beobachtungstage 1949		Auf den mittleren Pol reduziertes Azimut Rigi, astronomischer Pfeiler-Lägern		
1	9., 10., 11., 12.Juli	33	352° 17′ 44″,09	± 0",12	
2	21., 22.Juli	19	44*,27	0",17	
3	4., 5., 8. August 28		44*,51	0″,17	
	Mittel der 3 Grupper	nwerte	352° 17′ 44 ″, 29	± 0",12	

Zwischen dem Ergebnis der ersten und der dritten Gruppe tritt der grösste Unterschied auf: 0'',42 $\pm 0''$,21. Er beläuft sich auf das Doppelte seines mittleren Fehlers. Bildet man aus sämtlichen 80 Einzelwerten – je die Hälfte aus oberen und die Hälfte aus unteren Durchgängen – das Gesamtmittel, so geht das beobachtete Azimut hervor:

$$A = 352^{\circ}17'44'',28 \pm 0'',09$$

Das einfache arithmetische Mittel aus den 3 Gruppenresultaten und das Gesamtmittel aus allen Sternpaarergebnissen weichen nur um eine Einheit der zweiten Stelle voneinander ab; sie ergeben praktisch den gleichen Wert.

13. Zentrierungen, Endergebnisse und Laplacescher Widerspruch

Die rechtwinkligen Koordinaten der Instrumentenmitte sind im Abschnitt «1. Die Beobachtungsstationen» aufgeführt. Es bleibt nun noch die Übertragung der beobachteten Azimute auf das Zentrum der trigonometrischen Punkte 1. Ordnung vorzunehmen. Diese Reduktion besteht aus 2 Gliedern; das erste und weitaus grössere rührt her von der Zentrierung der Richtung; das zweite berücksichtigt die Konvergenz der Meridiane.

Azimutbestimmung	Gurten-Rötifluh	Rigi-Lägern
Zentrierung der Richtung	+ 1' 24",97	+ 26",05
Konvergenz der Meridiane	- 0",51	- 0",22
Gesamte Zentrierung	+ 1' 24",46	+ 25",83
Beobachtetes Azimut	. 9° 31′ 4″,55	352° 17′ 44″,28
Zentriertes Azimut	9° 32′ 29″,01	352° 18′ 10″,11

Ausser den astronomischen und geodätischen Azimuten Gurten-Rötifluh und Rigi-Lägern stellen wir nachstehend auch die astronomisch und geodätisch bestimmten geographischen Koordinaten der beiden Punkte Gurten und Rigi zusammen sowie die daraus hervorgehenden Lotabweichungskomponenten. In den mit «Entnommen» überschriebenen Spalten ist angegeben, woher die betreffenden Zahlen stammen.

Zentrum-Signalstein	Astronomisch	Entnommen	Geodätisch	Entnommen	Lotabweichungs- komponente
Punkt 1. Ordnung Gurten-Ost					
Polhöhe	46° 55′ 9″,91	Band 23, Seite 107	7″,00	Band 5, Seite 194	$\xi = + 2'',91$
Länge östlich Greenwich	$7^{\circ} 26' 40'',46$ = $29^{\text{m}} 46^{\text{s}},698$	Band 21, Seite 244	41",07	Band 5, Seite 194	$\eta_L = - 0'',42$
Azimut Gurten-Rötifluh	9° 32′ 29″,01	Band 27, s. oben	29",13	Brief der L+T	$\eta_A = - 0'',11$
Punkt 1. Ordnung Rigi					
Polhöhe	47° 3′ 41″,59	Band 27, Seite 73	28″,96	Band 5, Seite 194	$\xi = + 12'',63$
Länge östlich Greenwich	$8^{\circ} 29' 5'',69$ = $33^{\text{m}} 56^{\text{s}},379$	Band 21, Seite 244	11",11	Band 5, Seite 194	$\eta_L = -3'',69$
Azimut Rigi-Lägern	352° 18′ 10″,11	Band 27, s. oben	12",04	Band 5, Seite 185	$\eta_A = -1'',80$
Länge des Koordinaten-Nullpunktes, alte Sternwarte Bern	$7^{\circ} 26' 22'',50$ = $29^{\text{m}} 45^{\text{s}},500$	Band 23, Seite 75			

 $[\]xi$ positiv: nördliche Ablenkung des astronomischen Zenites

Zählt man die geographische Länge nach Osten positiv, so beträgt der Widerspruch der Laplaceschen Gleichung

$$w = A^{astr.} - A^{geod.} - (L^{astr.} - L^{geod.}) \sin \varphi \equiv (\eta_A - \eta_L) \operatorname{tg} \varphi$$

Es ergibt sich:	Gurten	Rigi
$A^{astr.} - A^{geod.} \equiv + \eta_A \cdot \operatorname{tg} \varphi$	- 0",12	– 1″,93
$-(L^{astr.}-L^{geod.})\sin \varphi \equiv -\eta_L \cdot \operatorname{tg} \varphi$	+ 0",45	+ 3",97
· w	+ 0",33	+ 2",04

 $[\]eta$ positiv: östliche Ablenkung des astronomischen Zenites

Alle astronomisch bestimmten Grössen beziehen sich auf den mittleren Pol.

II. Die Bestimmung der Polhöhe auf Rigi-Kulm

1. Einleitende Bemerkungen

Zur Bestimmung der Polhöhe auf Rigi-Kulm ist die Horrebow-Talcott-Methode verwendet worden. Im vornherein war festgesetzt, die Beobachtungen auf 3 bis 4 Abende zu beschränken.

Das auf dem Rigi zur Verfügung stehende Instrumentarium ist unter «I. Die Bestimmungen der Azimute Gurten-Rötifluh und Rigi-Lägern» in Abschnitt 2b aufgeführt. Ferner findet man im Abschnitt 1b die Beschreibung der Station Rigi und der Lage des astronomischen Pfeilers, auf welchem das Durchgangsinstrument Bamberg Nr. 13999 aufgestellt wurde, sowie die Koordinaten des astronomischen Pfeilers und des Zentrums in winkeltreuer schiefachsiger Zylinderprojektion. Zum Durchgangsinstrument Bamberg gehört ein besonderes, im Hinblick auf die Horrebow-Talcott-Methode gebautes Mikrometer. Es wurde mit 65facher Vergrösserung gearbeitet.

Der Umdrehungswert der Mikrometerschraube wurde nicht durch besondere Beobachtungen bestimmt. In gleicher Art wie bei den Polhöhenbestimmungen in Bern und auf dem Gurten – veröffentlicht in Band 23* – ist er zusammen mit der Polhöhe als Unbekannte in die Ausgleichung eingeführt worden.

Die in bekannter Weise ausgeführten Messungen fielen auf den 26., 28., 30. und 31. Juli 1949. Am ersten Abend sind 10, am zweiten und dritten Abend je 11 und am letzten Abend 6, im ganzen also 38 Paare, beobachtet worden. Am 28. Juli behinderten Wolken die Einstellung der Sternbilder der ersten 3 Paare. Ihre Ergebnisse streuten nicht auffällig, so dass es sich erübrigte, ihnen kleinere Gewichte zu geben.

2. Das Sternprogramm

Die mittleren Örter der in Tabelle 1 zusammengestellten 17 beobachteten Sternpaare stammen alle aus dem «General Catalogue of 33342 stars for the epoch 1950, by Benjamin Boss». Das aufgestellte Programm enthält 41 Sternpaare. Bei der Auswahl der beobachteten Paare gaben die Durchgangszeit, der Unterschied $(Z_s - Z_n)$ der Zenitdistanzen und die im Bossschen Katalog aufgeführten wahrscheinlichen Deklinationsfehler δ_{50} den Ausschlag. Der Durchschnittswert der δ_{50} beträgt 0",11; dem entspricht ein mittlerer Deklinationsfehler von ± 0 ",16.

Die Eigenschaften der verwendeten Sternpaare sind aus den nachstehenden Angaben ersichtlich. Ihre Rektaszensionen fallen in das Intervall zwischen 17^h25^m und 20^h30^m.

Rektaszensionsintervalle zwischen den 2 Sternen eines Paares	Maximum Minimum Mittel	8 ^m ,7 3 ^m ,0 5 ^m ,6	Helligkeit	{	Maximum Minimum Mittel	3м,9 6м,1 5м,4
	∫ Maximum	26°,1	Helligkeitsunterschiede	}	Maximum	1 ^M ,4
Zenitdistanzen	Mittel Maximum	11°,7 23′,2	in den Paaren	J	Mittel	0м,6
Zenitdistanzdifferenzen im Sinne $(Z_S - Z_N)$	Mittel der Absolutwerte arithmetisches Mittel	13',0 + 0',3				

Je kleiner das Mittel der Zenitdistanzdifferenzen $(Z_S - Z_N)$ gehalten wird, um so geringere Bedeutung fällt dem Fehler des Schraubenwertes zu. An den einzelnen Abenden und an allen 4 Abenden betragen die Summen der $(Z_S - Z_N)$:

^{*} Paul Engi: Bestimmung der Polhöhe des Nullpunktes der Schweizerischen Landesvermessung und des Trigonometrischen Hauptpunktes Gurten-Ost (B), Band 23, Seiten 77-107.

Stern- paar Nr.	Berliner Jahrbuch Nr.	М	A.R.1945.0	⁸ 1945 . 0		im Vertikal - Rötifluh Zenit- distanz	Summe der Zenit- N distanzen z _s + z _n
1	[1442] 695	4,3 3,7	,	o ' +10 15,3 +72 42,6	h m 17 14,7 24,1 0	o † 37 00 s 26 37 n	63,6 3
2	1454 115	5,2 5,5		+18 06,7 +77 32,1	17 37,3 45,6 U	29 05 s 53 20 n	82,4
3	656 [714]	2,1 4,9		+12 35,9 +71 13,4	17 54,6 18 04,8 0	34 38 s 25 02 n	59,7 10
4	729 677	4,6 4,0		+73 15,2 + 2 56,0	18 15,6 0 24,5	27 13 n 44 23 s	71,6 9
5	759 688	4,4 3,4		+77 32,8 - 2 54,9	18 34,4 o 47,8	32,02 n 50 14 s	82,2 9
6	173 [1486]	6,0 4,7		+75 50,7 - 9 06,4	18 57,0 U 19 11,5	55 17 n 56 29 s	111,8 9
7	770 717	5,2 3,6		+74 46,0 - 4 58,0	19 21,2 0 33,5	28 52 n 52 19 s	81,2 10
8	[1500] 234	5,4 4,7		- 8 02,0 +69 20,6	19 41,4 51,2 U	55 24 s 62 20 n	117,7 9
9	191 749	5,2 3,9		+79 10,4 + 6 16,1	,	51 22 n 41 00 s	92,4 10
10	[1524] 809	5,6 3,3		+ 7 07,3 +70 19,1	20 26,2 41,7 0	40 09 s 24 04 n	64,2 8
11	[817] [1536]	4,8 5,8	_	+71 03,5 -10 02,5	20 51,6 0 21 02,0	24 51 n 57 26 s	82,3 6
12	837 [1547]	5,0 4,8		+72 04,2 - 9 11,5	21 14,3 0 22,0	25 56 n 56 34 s	82,5
13	[1555] 248	4,8 5,6		+ 9 54,5 +79 37,8		37 21 s 50 47 n	88,1 1

Datum		$(Z_S-$	$-Z_N$)
1949	n	in Bogenminuten in	Schraubenumdrehungen
26.Juli	10	- 45',7	- 34 ^R ,8
28.Juli	11	– 38′,5	-29^{R} ,3
30.Juli	11	+ 55',1	$+42^{ m R}$,0
31.Juli	6	+ 24′,2	$+18^{R},4$
Gesamtsumme	38	- 4',9	- 3 ^R ,7

Mit *n* ist die Anzahl der beobachteten Sternpaare bezeichnet. Der Einfluss des Schraubenfehlers auf die abzuleitende Polhöhe wird im nächsten Abschnitt abgeschätzt.

3. Die Konstanten und die Aufstellungsfehler des Instrumentes

a) Der Schraubenwert des Mikrometers

Wie schon in den einleitenden Bemerkungen erwähnt ist, wurden keine besonderen Messungen zur Bestimmung des Schraubenwertes ausgeführt. Der Betrag, eine Umdrehung gleich 78",76, konnte als vorzüglicher Näherungswert Band 23 entnommen werden; es ist dies das Mittel der am genannten Ort auf Seite 107 in den Kolonnen Bern und Gurten gegebenen Werte.

Die Ausgleichung der Zenitdistanzdifferenzen, die auf dem Rigi beobachtet wurden, ergibt einen Schraubenwert von

$$R = 78'',79 \pm 0'',01$$

Es soll noch beachtet werden, was für eine Verfälschung der gesuchten Polhöhe ein Fehler von 0",03 im Schraubenwert – das heisst der dreifache mittlere Fehler – mit sich brächte. Die Summe der beobachteten Breitenwerte, hervorgegangen aus den 38 Paardurchgängen, würde in diesem Falle einen Fehler von $3.7 \cdot 0",03 = 0",11$ und das Endergebnis einen Fehler von 0",11:38=0",003 aufweisen. Die getroffene Wahl der Sternpaare hat also zur Folge, dass der Einfluss der Unsicherheit des Schraubenwertes unterhalb der Rechnungsschärfe bleibt.

b) Die Fadendistanzen

Die Sternbilder wurden ausschliesslich in symmetrischer Lage zum Mittelfaden eingestellt. Es erübrigte sich, die zur Berücksichtigung der Krümmung des Parallels nötigen Fadendistanzen neu zu bestimmen. Sie sind gesamthaft im Bande 23 aufgeführt. Auf dem Rigi wurden die Faden Nr.4, 6, 8 und die symmetrisch gelegenen Nr.4', 6', 8' benutzt. Ausnahmen davon sind nur selten aufgetreten. In der Regel kamen bei rasch laufenden Sternbildern die Faden Nr.4, 6, 6', 4' zur Verwendung, bei sich langsam bewegenden Sternbildern die Faden Nr.6, 8, 8', 6'. Die nachstehenden, auf Zehntelsekunden abgerundeten Fadenabstände F sind Band 23, Seite 89, entnommen; sie beziehen sich auf den Mittelfaden Nr.9.

Faden	F	F	Faden
4	340",4	339*,6	4'
6	171",4	168",3	6′
8	57",0	56".5	8′
9	0″,0	0′,0	9′

c) Die Angaben der Libellen

Die Angaben sind auf dem Rigi in der Gebrauchslage der Libellen bei 3 verschiedenen Blasenlängen bestimmt worden. Der bewegliche Einzelfaden wurde jeweils bei 2 extremen Stellungen der Blasen auf eine Lampe am

Westabhang der Albiskette eingestellt; jede Anzielung ergab eine dazugehörende Mikrometer- und Blasenablesung. Daraus gingen die folgenden, in Umdrehungen der Mikrometerschraube ausgedrückten Angaben hervor:

Datum 1949	Anzahl der Einzel- werte	Blasen- länge	Libelle I Angabe		Blasen- länge	Libelle II Angabe	I
1. August	8	14P,2	OR,0150	± 0 ^R ,0005 ₅	16 ^p ,1	0 ^R ,0146	± 0 ^R ,0004 ₉
31.Juli	16	15 ^p ,2	0 ^R ,0149	$\pm 0^{R},0002_{9}$	17 ^p ,1	0 ^R ,0148	$\pm 0^{R},0003_{4}$
1. August	8	17 ^p ,1	0 ^R ,0154	$\pm 0^{R},0001_{5}$	19 ^p ,9	$0^{R},0150$	$\pm 0^{R},0002_{1}$
		Mittel	0 ^R ,0151	= 1",19	Mittel	0 ^R ,0148	= 1",17

Eine schwache Zunahme der Angaben mit der Blasenlänge ist angedeutet, aber nicht verbürgt. Zu den Reduktionsrechnungen wurde das Gesamtmittel

1 Pars =
$$0^R$$
, 0150 = 1", 18

verwendet.

Das Anwachsen der Blasenlänge im Laufe der einzelnen Beobachtungsnächte ist aus der nachstehenden kleinen Übersicht zu ersehen:

Datum	Zunahme der	Blasenlänge
1949	Libelle I	Libelle II
26.Juli	von 14 ^p ,9 bis 15 ^p ,5	von 16 ^p ,9 bis 17 ^p ,3
28.Juli	von 13 ^p ,6 bis 15 ^p ,5	von 15p,6 bis 17p,4
30.Juli	von 15 ^p ,5 bis 17 ^p ,6	von 17p,6 bis 19p,4
31.Juli	von 14 ^p ,9 bis 15 ^p ,1	von 16p,7 bis 17p,0

Weiter bleibt noch der Einfluss eines Angabefehlers auf die abgeleitete Polhöhe abzuschätzen. Zu diesem Zwecke setzen wir die Unsicherheit der Angabe gleich ± 0 ", $1 = \pm 0$ R,00127 = $\pm 8,5$ % des benutzten Wertes. Das algebraische Mittel aus den halben Neigungsdifferenzen der 38 beobachteten Paare beträgt -0", 17. Demnach würde ein hochgegriffener Fehler der Angabe von $\pm 8,5$ % die Polhöhe um rund ∓ 0 ", 015 verfälschen.

Zur Kontrolle ist die Angabe auch mit dem Libellenprüfer des Geodätischen Institutes der Eidgenössischen Technischen Hochschule bestimmt worden. Die gefundenen Werte sind:

	Libe	lle I	Libe	lle II
Datum 1949	Blasen- länge	Angabe	Blasen- länge	Angabe
24. Mai	12 ^p ,0	1",07	12 ^p ,6	1″,04
24. Mai	16º,0	1 ″, 04	17º,6	1",02
27. Mai	21 ^p ,5	0",91	21°,9	0",92
	Mittel	1",01	Mittel	0″,99

Diese Beträge bleiben merklich unter dem Mittelwert, der auf dem Rigi erhalten wurde. Zudem zeigt sich bei den grossen Blasenlängen von über 21^p eine starke Abnahme. Zur Vergleichung lassen wir 4 Angabewerte folgen, die von Dr. *Engi* im Jahre 1938 in Zürich innerhalb von 10 Tagen bestimmt wurden (Band 23, Seite 87):

Datum		Ang	abe
1938	Art der Bestimmung	Libelle I	Libelle II
11.Juni	Libellen auf dem Prüfer	1",01	1″,00
21.Juni	Libellen in Gebrauchslage	1",24	1",20

Die Unterschiede machten sich also auch damals in der gleichen Grössenordnung geltend.

Zur Reduktion der Beobachtungen auf dem Rigi dienten ausschliesslich die in Gebrauchslage der Libellen abgeleiteten Angaben.

d) Instrumentenazimut, Kollimation und Neigung der Horizontalachse

Das Instrument wurde in gewohnter Weise mit Hilfe des Polarsternes in den Meridian gestellt. Hernach blieb die Aufstellung unverändert. Kontrollbeobachtungen zweier polnaher Sterne ergaben ein Instrumentenazimut von $k = +0^{\circ},05$. Auf Stationen mittlerer Breite sollen – wie Albrecht in den «Formeln und Hilfstafeln» anführt – das Instrumentenazimut und die Kollimation weniger als $50'' = 3\frac{1}{3}$ betragen; ihr Einfluss auf die Polhöhe erreicht dann nicht die Hundertstel-Bogensekunde. Zur genügend genauen Beseitigung der Kollimation konnte ein weit entferntes irdisches Objekt angezielt werden.

Die Neigung der Horizontalachse darf den Betrag von 40" nicht übersteigen, wenn der Einfluss auf die Polhöhe unter 0",01 bleiben soll. Die Ausschläge der Sekundenlibelle betragen nie mehr als einige Teilungsintervalle. Die Wirkung der aufgetretenen Neigung der Drehachse ist also vollständig vernachlässigbar.

4. Die Reduktion der Beobachtungen

In den Tabellen 2 ist die Ableitung der Polhöhe aus einem jeden Sternpaar gegeben. Die bekannte, dabei verwendete Formel lautet:

$$\varphi_b = \frac{1}{2} \left\{ (\delta_S + \delta_N) + R_0 (m_E - m_W) + (r_S - r_N) \right\}$$

Darin bedeuten: δ_S und δ_N die Deklinationen des südlichen und des nördlichen Sternes; m_E und m_W die in den Instrumentenstellungen Okular Ost und Okular West erhobenen und bereits wegen Krümmung des Parallels und wegen Neigung verbesserten Trommelablesungen; r_S und r_N die am Südstern und am Nordstern anzubringenden Verbesserungen wegen Refraktion. Der genäherte Schraubenwert wird R_0 genannt.

Die Korrektur wegen Krümmung des Parallels beträgt

$$\pm \frac{F^2}{2R_0} \sin 1'' \operatorname{tg} \delta$$

wenn mit F die Fadendistanz in Bogensekunden bezeichnet wird. Beim verwendeten Instrument bezieht sich das positive Zeichen auf die Lage Okular Ost und das negative Zeichen auf die Lage Okular West. Die Zahlenwerte für die Fäden 4, 4', 6, 6' und 8, 8' sind in Band 23 in der Tabelle auf Seite 90 für die Deklinationen von 24° bis 70° gegeben; sie konnten dort entnommen werden.

Ferner hat man die Libellenausschläge zu berücksichtigen. Die 8 Blasenablesungen, die dem ersten Sterndurchgang zugeordnet sind, wurden zum Mittelwert M_1 zusammengezogen. Auf gleiche Weise ging der zum zweiten Stern gehörende Betrag M_2 hervor. Die Korrektur wegen Neigung des Sternes mit dem kleineren M setzten wir gleich Null. In diesem Falle erhält die Mikrometerablesung m des andern Sternes eine positive Korrektur; sie ist gleich dem Absolutwert der Differenz der M, multipliziert mit der in Schraubenumdrehungen ausgedrückten mittleren Libellenangabe, also gleich $+ |(M_1 - M_2)| \cdot 0^R$,0150.

Die wegen der Refraktionseinflüsse anzubringende Verbesserung lässt sich ausdrücken durch die Beziehung:

$$(r_S - r_N) = \alpha \cdot \sin 1' \frac{(Z_S - Z_N)}{\cos^2 Z_m}$$

wenn die Zenitdistanzdifferenz $(Z_S - Z_N)$ in Bogenminuten eingeführt und die mittlere Zenitdistanz mit Z_m bezeichnet wird. Die Zahlenwerte der Korrektur $(r_S - r_N)$ konnten der in Band 23 auf Seite 92 gegebenen Zusammenstellung entnommen werden.

Aus jeder einzelnen Beobachtung eines Sternpaares geht ein Polhöhenwert φ_b hervor; diese φ_b sind paarweise zu Mittelwerten φ_p zusammengezogen worden. Führt man einen Näherungswert φ_0 der Breite sowie Verbesserungen $\Delta \varphi$ der Breite und ΔR des Schraubenwertes ein, so erhält man die Fehlergleichung

$$v = \Delta \varphi - \frac{1}{2} (m_E - m_W) \Delta R + (\varphi_0 - \varphi_p)$$

mit den Unbekannten $\Delta \varphi$ und ΔR und dem Gewicht p. Bei der Berechnung der p wurden die Unsicherheit der Deklinationen und die Anzahl n_p der Beobachtungen des betreffenden Paares berücksichtigt.

Die im Bossschen Katalog mit δ_{50} bezeichneten wahrscheinlichen Fehler der Deklinationen der beobachteten Sterne sind schon in Tabelle 1 aufgeführt. Bedeuten ε_S und ε_N die wahrscheinlichen Deklinationsfehler des Süd- und

des Nordsternes in der Beobachtungsepoche, so nimmt das Quadrat des mittleren Fehlers m_{δ} der Polhöhe, herrührend von der Unsicherheit der Deklinationen, die Form an:

$$m_{\delta}^2 = \left(\frac{1.48}{2}\right)^2 \cdot (\varepsilon_S^2 + \varepsilon_N^2)$$

Da die Epochen der Katalogangaben und der Beobachtungen nahe beieinander liegen, wurde an Stelle der ε die δ_{50} eingeführt. Wählt man als Einheit der δ_{50} und der m_p die Hunderstel-Bogensekunde, so ergeben sich die verwendeten Gewichte p aus der Beziehung

$$p = \frac{1000}{u^2}$$

In den Tabellen 2 sind die zur Auswertung eines jeden Sternpaardurchganges verwendeten Zahlenwerte und die daraus erhaltenen φ_b aufgeführt. Man findet in den einzelnen Spalten:

- 1. die Ordnungsnummer des Sternpaares
- 2. von jedem Stern die Ordnungsnummer des «General Catalogue» 1950 von B. Boss
- 3. die Stellung des Instrumentes, Okular im Osten oder im Westen
- 4. die Nummer der Faden, an denen das Sternbild eingestellt wurde
- 5. die Krümmung des Parallels
- 6. die Mittelwerte der Mikrometerablesungen, erhalten aus zwei symmetrisch zum Mittelfaden vorgenommenen Einstellungen
- 7. die wegen Krümmung des Parallels korrigierten Mittelwerte
- 8. das Gesamtmittel der reduzierten Mikrometerablesungen eines Sternes
- 9. die weiter oben besprochene Verbesserung wegen Neigung, so gerechnet, dass die Korrektur des einen Sternes gleich Null, die des andern stets positiv ist
- 10. die wegen Krümmung des Parallels und Neigung verbesserten Mikrometerablesungen mg und mw sowie deren Differenz (mg mw)
- 11. die Deklinationen der beiden Sterne, die Produkte R_0 ($m_E m_W$), den Refraktionseinfluss ($r_S r_N$) und den doppelten Betrag der beobachteten Polhöhe
- 12. die beobachtete Polhöhe

Die φ_b sind behaftet mit den Beobachtungsfehlern, den Fehlern der Deklinationen und dem Fehler des eingeführten Schraubenwertes. Zieht man sie paarweise zu Mittelwerten φ_p zusammen und bildet man die mittleren Fehler m_p der aus einmaliger Beobachtung des betreffenden Paares erhaltenen Polhöhe, so wirken sich die Fehler der Deklinationen und des eingeführten Schraubenwertes in den m_p nicht aus.

Der Berechnung der φ_p hat noch die Reduktion der φ_b auf den mittleren Pol voranzugehen. Wird die anzubringende Korrektur mit $\Delta \varphi_b$ bezeichnet und die auf den mittleren Pol bezogenen Breiten mit φ_b , so ist

$$\varphi_b' = \varphi_b + \Delta \varphi_b$$

Eine graphische Aufzeichnung der Polbewegung – die dazu benötigten Polkoordinaten wurden dem Bulletin géodésique Nr. 17, 1. September 1950, entnommen – ergab für die 4 Beobachtungsnächte die folgenden Korrekturen:

1949, 26. Juli
$$\Delta \varphi_b = -0'', 12$$

28. Juli $\Delta \varphi_b = -0'', 10$
30. Juli $\Delta \varphi_b = -0'', 09$
31. Juli $\Delta \varphi_b = -0'', 09$

In Tabelle 3 findet man die φ_b' zusammengestellt. Die sechste Spalte gibt die Paarmittel φ_p ; in der letzten Spalte stehen die mittleren Fehler m_p eines Einzelwertes. Der quadratische Mittelwert der m_p eignet sich zur Abschätzung der Beobachtungsfehler; er beträgt ± 0 ",32.

Der nächste Schritt besteht in der Ableitung der Gewichte p der einzelnen φ_p ; sie ist in Tabelle 4 ausführlich dargestellt.

Tabelle 2: Beobachtete Polhöhen

1	1		9		Ó		e		5		0
9- ^C	12		3'41,"36		3 41,40		3 41,73		3 41,55		3 41,70
			41 ₀				47				67
nationen (m_ m_ m_) (r_S - r_N)	9	51,92	36,08 0,22 22,71	23,51	57,97 0,29 22,80	49,63	27,25 0,10 23,46	48,91	58,09 0,25 23,10	23,56	8,54 0,43 23,40
Deklinationen $R_{O}(m_{E}^{-}m_{W}^{-})$ $(r_{S}^{-}r_{N})$ $2 \varphi_{L}$	F	260 8		53 49	+16	64 22 ,	5. 7	62 28 4	13 7	65 11 2	7 7 7 7
·	-								101		
Reduzierte Mikr. Ab- lesungen, (m _E - m _W)	10	19 <mark>8</mark> 187	10,349 - 8,838	22,678	9,753 +12,925	5,513	9,668	22,599	11,958	24,504	6,874
lg en	6	0	129	.0	- 651	13	0	0	10	0	77
Neigungen i			+ 0,029		+ 0,059	+ 0,013		·	+ 0,010		+ 0,044
ungen Ge- samt- mittel	89	R187	,320	,678	,694	,500	899*	,599	976	,504	830
Mikrometerablesungen ttel reduz. Ge- Faden f.Krüm. samt. f des Pa- mitte	7	R185	,325	,682	,695 ,693	,501 ,498	,668	,602 ,596	,950	,506	,829 ,831
Mikrome Mittel aus Faden f u. f'	9	19,187 ,189	10,316	22,677	9,698	5,494	9,670	22,609	11,948	24,498	6,831
Krümmung des Parallels	2	- 0,002 0	+ 0,009	+ 0,005	- 0,003	+ 0,007 + 2	- 0,002 - 1	- 0,007 - 2	+ 0,002	+ 0,008 + 2	0,002
Faden £, £'	4	4, - 6, 6'	4, 4° 6, 6° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6°	4, 4, 6, 6	4, 4' 6, 6'	4, 4, 6, 6	4, 4' 6, 6'	4, 4, 6,	6, 6	4, 4° 6, 6°	6, 6
0- ku- lar	eć.	3	ы	戶	⅓	ы	N	м	ы	ы	3
Boss Katalog Nr.	2	23 726	23 821	24 093	24 342	24 916	25 056	25 519	25 643	26 055	26 317
Stern- paar	-	•	-		7	,	4		<u>م</u>		
		1949									<u>`</u>
Datum		26.Juli 1949									

Tabelle 2 (Fortsetzung): Beobachtete Polhöhen

Datum	Stern- paar	Boss Katalog Nr.	0- ku- 1ar	Faden f, f'	Krümmung des Parallels	Mikrom Mittel aus Faden f u. f	Mikrometerablesungen ttel reduz. Ge- Faden f.Krüm. samt f des Pa- mitt.	ingen Ge- samt- mittel	Neigungen i	Reduzierte Mikr. Ab- lesungen, (mg - mg)	Deklinationen $R_{0}(m_{E}-m_{W})$ $(r_{S}-r_{N})$ $2 \varphi_{b}$	P-Q
(26.Juli 1949)	1	2 26 542	ж М	4, 4°	5	6	7 - R000	8 R 000	0	10 21 <mark>7</mark> 000		12
	&	26 638	Щ	4, 4 6, 6	+ 0,012	8,132	,144	,142	+ 03055	8,197	73 15 41,64 -16 48,36 - 0,35 94 7 23,65	47° 3'41"82
		26 947	ы	4, 4' 6, 6'	+ 0,004 + 1	20,486	,490	,486	0	20,486	51 37 14,29	
	10	27 070	```	4, 4 ¹ 6, 6 ¹	- 0,003 - 1	11,244	,241	,238	+ 0,012	11,250	+ +1	41,42
	1 1	27 315	В	4, 4,	- 0,003	24,854	,851	,852	0	24,852	41 38 59,96	
	17	27 506	ы	4, 4° 6, 6°	+ 0,005 + 1	7,268	,273	,270	900,0 +	7,276	7 7	42,12
	1	28 108	ы	4, 4° 6, 6°	+ 0,005 + 1	13,482	,487	,484	+ 0,025	13,509	56 24 40,00	
	15	28 218	B	4, 4° 6, 6°	- 0,003	20,893	,890 ,891	068*	0	20,890		42,01
	ļ	28 339	×	4, 4,	- 0,004 - 1	20,440	,436	,435	0	20,435	45 37 49,94	
	17	28 537	Ħ	4, 4' 6, 6'	+ 0,004 + 1	7,312	,316	,314	+ 0,018	7,332	7 17	41,90
28.Juli 1949		23 726	3	4, 4' 6, 6'	- 0,002	20,773	,771 ,770	,770	900*0 +	20,776	26 8 52,17 68 10 7 48	
* Wolke		23 821	ы	8, 8,	000,0 +	11,929	926,	,929	0	11,929	'' ''	41,32

Tabelle 2 (Fortsetzung): Beobachtete Polhöhen

							,				D.1.1 2	
Datum	Stern-	Boss	٠,	Faden	Krümmung	Mikrom Mittel Mittel	Mikrometerablesungen ttel reduz. Ge- Eadon f Vriim samt	ungen Ge-	Neigungen	Reduzierte Mikr. Ab-	Ro(m = m _W)	s _r o
	paar	Nr.	lar	f, f	nes Parallels	aus rauen fu. f'	des Pa-	samt mittel	• ન	lesungen,	•	٠
	1	2	6	+	5	9	7	8	6	_	11	12
(28.Juli 1949)		24 093	ы	* 0 ° 0 ° 8 ° 8	+ 0 ^R 000	_* 22\\$298	- R298	,3298	0	22\\$298	53 ⁰ 49 ¹ 23,89 40 1 1.38	
	7	24 342	3	4, 4,	- 0,003 - 1	9,366	,363	,362	+ 0%018	9,380	16 57,42 0,29 7 22,98	47° 3'41"49
		24 518	×	4, 4,	- 0,004 - 1	13,558	,554	,552	0	13,552	45 30 12,35 48 27 42 11	
	က	24 607	ы	4, 4° 6, 6°	+ 0,004 + 1	20,725	,729 ,735	,732	+ 0,017	20,749		40,73
		24 916	ы	6, 6, 8	+ 0,002	6,177	,179 ,180	,180	0	6,180	64 22 50,07	
	7	25 056	⋈	4, 4, 6, 6, 6	- 0,002 - 1	10,332 ,326	,325	,328	600 ° 0 +	10,337	5.	42,04
		25 519	Z	, 6, 8, 8,	- 0,002 - 1	20,770	,768 ,770	692,	+ 0,048	20,817	62 28 49,40 31 52 32.90	
	٧.	25 643	Þ	4, 4'	+ 0,002	10,156 ,165	,158 ,166	,162	0	10,162	7 - 13	41,43
		25 732	阳	6, 6 [†]	+ 0,001	14,542	,543	,542	+ 0,081	14,623	41 23 10,51	
	9	25 904	. 🗷 .	4, 4, 7, 7,	- 0,005 - 1	22,478	,473	,474		22,474	1 12	42,38
		26 542	3	4, 4, 6, 6	- 0,002 0	21,314	,312	,311	0	21,311	21 8 31,06 73 15 42,19	
* 11.011.0	8	26 638	ш	6, 6,	+ 0,002	8,491	,493 ,496	467	+ 0,017	8,511	-16 48,13 - 0,35 94 7 24,77	42,38

, de	12	47° 3'41,77		41,72		41,44		41,76	•	41,90		40,95
Deklinationen $R_{O}(m_{E}-m_{W})$ $(r_{S}-r_{N})$	51°37'14"83 42 18 1.40	12 7,11 0,20 7 23,54	41 39 0,47	7 - 73	67 43 41,04	4	62 5 42,26	+ +	26 8 52,51 68 10 7,92	111 3	53 49 24,34	+16 5
Reduzierte Mikr. Ab- lesungen (m _F m _W)	1.	11,540	24,416	6,816	16,354	13,202	16,478	16,618	11,816	20,658	9,816	22,709
Neigungen i	0	+ 0%094	0	+ 0,004	0	+ 0,081	0	+ 0,022	+ 0,018	0	0	+ 0,005
ingen Ge- samt- mittel	8 \$772	977,	,416	,812	,354	,121	,478	965.	,798	,658	,816	,704
Mikrometerablesungen ttel reduz. Ge- Faden f.Krüm. samt. f des Pa- mitte	7 \$774 ,771	444,	,417	,811	,356	,122 ,120	,479 ,476	,596	,796 ,800	,658	,815 ,816	,704
Mikrom Mittel aus Faden f u, f	6 20,769 ,770	11,452	24,420	6,806	16,354	13,124	16,481	16,594 ,594	11,794,800	20,660	9,820	22,701
Krümmung des Parallels	5 + 0%005 + 1	- 0,003 - 1	- 0,003	+ 0,005 + 1	+ 0,002	0,002	- 0,002	+ 0,002	+ 0,002	- 0,002 0	- 0,005 - 1	+ 0,003 + 1
Faden f, f	4, 4° 6, 6°	4, 4,	4, 4,	4, 4, 6, 6	6, 6 8, 8	4, 4, 6, 6, 6, 6, 1	6, 6, 8	4, 4' 6, 6'	4, 4,	, 8 8 8	4, 4,	, 4 6, 6 1, 6
0- ku- 1ar	е Ή	3	3	Þ	ы	M	ß	덦	ы	м	M	Þ
Boss Katalog Nr:	2 26 947	27 070	27 315	27 506	27 856	28 042	28 304	28 378	23 726	23 821	24 093	24 342
Stern- paar	-	01		12		13		16	· · · · · · · · · · · · · · · · · · ·	-		
Datum	(28.Juli 1949								30.Juli 1949			

Tabelle 2 (Fortsetzung): Beobachtete Polhöhen

						Mikrom	Mikrometerahlesungen	neoni			Doklinstionen	
Datum	Stern-			Faden	Krümmung	Mittel aus Faden	reduz.	Ge-	Neigungen	Reduzierte Mikr Ab-	Ro (mE - m _W)	9.
	paar	Nr.	lar	Ч	Parallels	f. u. f	des Pa- rallels	mittel	• 🗝	lesungen,	$(r_S - r_N)$ $2 \varphi_b$	a
	1	2	က	4	2	9	7	8	6	0	11	12
(30.Juli 1949		24 518	Ħ	4, 4° 6, 6°	+ 0\\\ 0 1	19,8882 ,888	, 889	R 888	0	19,8888	45°30'12''82	
	m	24 607	₩	6, 6	- 0,004 - 1	12,675	,671 ,672	,672	+ 0%017	12,689	0,16 0,16 7 22,57	47° 3'41"28
	. ,	24 916	⅓	6, 6, 8	- 0,002 0	19,252	,250	,248	+ 0,013	19,261	64 22 50,60	
	4	25 056	ы	6, 6	+ 0,002 + 1	15,078	,080	,078	0	14,078	5 7	41,50
		25 519	Þ	6,6	+ 0,002	10,490	,492	,492	+ 0,033	10,525	62 28 49,95	
,	٧.	25 643	В	4, 4, 6, 6, 6	- 0,002 - 1	21,188	,186 ,186	,186	0	21,186	7 13	41,70
	•	25 732	×	4, 4,	- 0,003 - 1	20,430	,427	,427	+ 0,010	20,437	41 23 11,03	
. ———	٥	25 904	E	6, 6	+ 0,005	12,552	,557	,556	0	12,556 - 7,881	수 . 우 ?	41,74
		26 055	ы	, 6, 6, 8, 8	+ 0,002	23,022	,024	,025	0	23,025	65 11 24,68	
÷	·	26 317	M	6, 6	- 0,002	5,428	,426	,424	+ 0,003	5,427	7 1 23	41,42
	(26 708	3	6, 6 8, 8	- 0,001 0	8,382	,381	,384	+ 0,014	866,8	57 32 55,56	
	ω 	26 846	<u>ы</u>	6, 6	+ 0,003	24,802	,803	,804	0	24,804	7. 51	41,15

Tabelle 2 (Fortsetzung): Beobachtete Polhöhen

φ _b	12	47° 3'41,'36		88*07	-	41,33	,	41,85		41,54		41,50
Deklinationen $R_{O}(m_{E}^{E}-m_{W}^{A})$ $(r_{S}^{G}-r_{N}^{A})$ $2 \ \psi_{D}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32 4 24,85 61 55 26,57	+ +	62 5 42,92	+ +	45 30 13,11 48 27 42,89		64 22 50,91 29 50 2.19	7	62 28 50,29 31 52 33,63	-13
Reduzierte Mikr. Ab- lesungen (m _E - m _W)	10 24 % 773	11,245	13,559	19,275	16,192	16,078	19,432	12,226	19,633	15,444	10,304	20,978
Neigungen i	9 + 0,017	0	+ 0,021	0	0	+ 0,073	990*0 +	0	0	+ 0,004	0	+ 0,012
nngen Ge- samt- mittel	8 R756	,245	,538	,275	,192	\$00.	,366	,226	,633	,440	,304	996*
Mikrometerablesungen ttel reduz. Ge- Faden F.Krüm. samt f des Pa- mitt.	7 \$756 756	,249	,537	,276	,190 ,193	,000	,368	,226	,634	,442	,307	968
Mikrom Mittel aus Faden f u. f	6 24 , 752 755	11,252	13,539	19,274 ,274	16,188 ,193	16,006	19,364	12,230	19,636	15,440	10,300	20,970
Krümmung des Parallels	5 + 0%004 + 1	00,00	- 0,002 - 1	+ 0,002	+ 0,002	- 0,002 - 1	+ 0,004	- 0,004 - 1	- 0,002	+ 0,002	+ 0,007	- 0,002 - 1
Faden f, f	4, 4,		4, 4,	8, 8	6, 6,	4, 4° 6, 6°	4, 4° 6, 6°	4, 4° 6, 6° 6° 1	6, 6 8, 8	4, 4° 6, 6°	4, 4' 6, 6'	4, 4° 6, 6°
0- ku- 1ar	е Έ	. 3	м	ы	ы	3	Þ	3	3	ы	ы	3
Boss Katalog Nr.	2 27 068	27 213	27 858	28 071	28 304	28 378	24 518	24 607	24 916	25 056	25 519	25 643
Stern- paar	-	11		14		16		ო .		7		· ·
Datum	(30.Juli 1949)						31.Juli 1949					

Tabelle 2 (Fortsetzung): Beobachtete Polhöhen

Deklinationen $ \begin{array}{ccc} R_{O}(m_{E} - m_{W}) & \varphi_{b} \\ (r_{S} - r_{N}) & \\ 2 & \varphi_{b} \end{array} $	11 12	41°23'11,"33 52 54 33 66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 11 25,02	+23 5,47 + 0,43 94 7 22,90 41,45	57 32 55,91 36 12 54 53	+ 0,37 + 23,37 + 0,37 + 0,37
Reduzierte R Mikr. Ab- lesungen, (m m.,)	10	20\$364 41	12,480 - 7,884 94	23,912 65	6,321 +17,591 94	8,412 57	24,821
Neigungen Re	6	0	+ 0 ^R 038	0	+ 0,029	970,0+	0
ungen Ge- samt- mittel	8	Ŗ364	,442	,912	,292	,336	,821
reduz. f.Krüm. des Pa- rallels	7	,362	,441	,910	,292	,337	,821
Mikrom Mittel aus Faden f u.f	9	20,370	12,436	23,908	6,294	8,338	24,818
Krümmung des Parallels	5	- 0,003 - 1	+ 0,005 + 1	+ 0,002	0,002	0,001	+ 0,003
Faden f, f	4	4, 4° 6, 6°	4, 4, 6, 6,	, 6 8 8 8	4, 4' 6, 6'	, 6 8 8 8	4, 4'
0- ku- 1ar	e	₿	ы	Þ	3	3	E1
Boss Katalog Nr.	2	25 732	25 904	26 055	26 317	26 708	26 846
Stern- paar	1	•	٥		_	,	6
Datum		(31.Juli 1949					

Tabelle 3: Auf den mittleren Pol reduzierte Breiten,

Rigi, 1949

$$\varphi'_{\text{beob.}} = 47^{\circ} 3' +$$

Paar	Juli 26.	Juli 28.	Juli 30.	Juli 31.	Mittel $arphi_{ extsf{p}}$	n _p	m p
					:		
1	41,"24	41,22*	41,81		41, 42	3	± 0,33
2	41,28	41,39*	40,86		41,18	3	,28
3		40,63*	41,19	41,76	41,19	3	, 56
4	41,61	41,94	41,41	41,45	41,60	4	,24
5	41,43	41,33	41,61	41,41	41,44	4	,12
6		42,28	41,65	41,85	41,93	3	,34
7	41,58		41,33	41,36	41,42	3	,14
8	41,70*	42,28			41,99	2	,41
9			41,06	41,50	41,28	2	,31
10	41,30	41,67			41,48	2	,26
11			41,27		41,27	1	_
12	42,00	41,62			41,81	2	,27
13		41,34			41,34	1	-
14		1	40,79		40,79	1	-
15	41,89				41,89	1	-
16		41,66	41,24		41,45	2	,30
17	41,78				41,78	1	
			Quadrati	scher Mitte	lwert :		± 0,32
			Anzahl d	ler beobacht	eten φ'b:	38	

·

* Wegen Bewölkung unvollständig beobachtete oder schwache Sternbilder.

Tabelle 4: Bestimmung der Gewichte p

Paar	Boss Nr.	ε ² 1950	$\varepsilon_{\rm S}^2 + \varepsilon_{\rm N}^2$	m ² δ	n	m ² : n	μ2	р	√ _p
1	23 726 23 821	49 49	98	54	3	341	395	2,53	1,59
2	24 093 24 342	196 81	277	152	3	341	493	2,03	1,42
3	24 518 24 607	169 289	458	252	3	341	593	1,69	1,30
4	24 916 25 056	36 169	205	113	4	·256	369	2,71	1,65
5	25 519 25 643	121 196	317	174	4	256	430	2,33	1,53
6	25 732 25 904	324 169	493	271	3	341	612	1,63	1,28
7	26 055 26 317	289 100	389	214	3	341	555	1,80	1,34
8	26 542 26 638	100 36	136	.75	2	512	587	1,70	1,31
9	26 708 26 846	289 64	353	194	2	512	706	1,42	1,19
10	26 947 27 070	25 169	194	107	2	512	619	1,62	1,27
11	27 068 27 213	144 64	208	114	1	1024	1138	0,88	0,94
12	27 315 27 506	256 81	337	185	2	512	697	1,43	1,20
13	27 856 28 042	81 81	162	89	1	1024	1113	0,90	0,95
14	27 858 28 071	121 81	202	111	1	1024	1135	0,88	0,94
15	28 108 28 218	36 169	205	113	1	1024	1137	0,88	0,94
16	28 804 28 378	121 121	242	133	2	512	645	1,55	1,24
17	28 339 28 537	225 81	306	168	1	1024	1192	0,84	0,92

5. Das Endergebnis, Zentrierung und frühere Breitenbestimmung auf Rigi-Kulm

Im vorigen Abschnitt ist dargelegt, dass aus der einmaligen Beobachtung eines jeden Sternpaares eine Fehlergleichung mit den Verbesserungen $\Delta \varphi$ der Breite und ΔR des Schraubenwertes als Unbekannte hervorgeht. Die Ausgleichung ergibt die folgende Polhöhe des astronomischen Pfeilers:

$$\varphi_{\text{astr. Pfeiler}} = 47^{\circ}3'41'',49 \pm 0'',05$$

Bildet man das einfache arithmetische Mittel der 38 in Tabelle 3 aufgeführten Einzelwerte φ_b , so erhält man den gleichen Wert 41",49.

Die Zentrierung vom astronomischen Pfeiler auf den Signalstein beträgt +0'',10. Als Endergebnis haben wir also die auf den mittleren Pol und auf das System des neuen Sternkataloges von B. Boss bezogene Breite

Rigi, Signalsteinzentrum

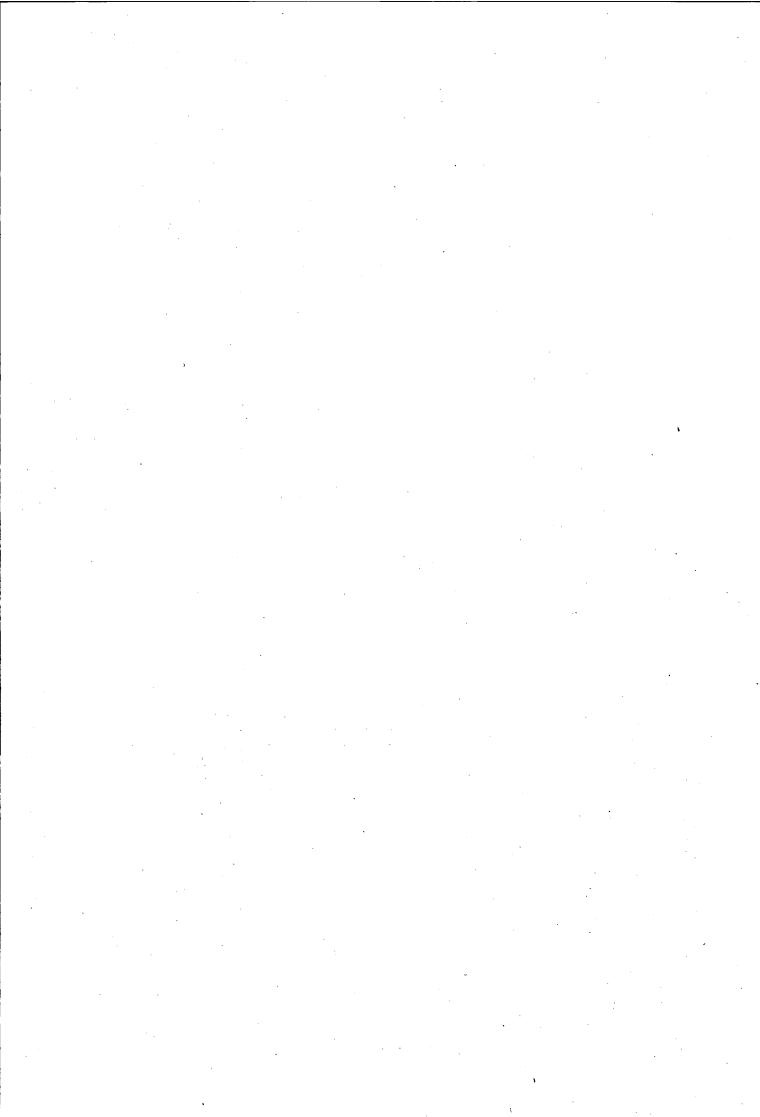
$$\varphi = 47^{\circ}3'41'',59 \pm 0'',05$$

Auf Rigi-Kulm wurde schon im Jahre 1867 die Polhöhe bestimmt. Abschliessend soll noch ein Blick auf die Ergebnisse der damaligen, von *E. Plantamour* ausgeführten Messungen geworfen werden. In der Veröffentlichung «Observations faites dans les stations astronomiques suisses», 1873, gibt *Plantamour* auf Seite 21 den als Gewichtsmittel aus 2 Bestimmungsarten abgeleiteten Wert

$$\varphi = 47^{\circ}3'41'',26 \pm 0'',31$$

Die an 7 Tagen vorgenommenen Durchgangsbeobachtungen von α Aurigae durch den ersten Vertikal führten zu

$$\varphi = 47^{\circ}3'41'',67 \pm 0'',59$$


Aus den ebenfalls bei Tageslicht erhobenen und auf 8 verschiedene Tage verteilten Messungen von Zirkummeridian-Zenit-Distanzen von 6 Sternen wurde

$$\varphi = 47^{\circ}3'41'',03 \pm 0'',44$$

gefunden.

Wie in der Veröffentlichung «Détermination télégraphique de la différence de longitude entre la station astronomique du Rigi-Kulm et les Observatoires de Zurich et de Neuchâtel», 1871, auf Seite 3 erwähnt ist, hatte Plantamour als günstigsten Ort zur Aufstellung des «Observatoire» – einer kleinen metallenen Kuppel – einen Punkt 16,43 m östlich des «Signales» gewählt. Der am Ende der genannten Veröffentlichung beigefügten Planskizze lässt sich entnehmen, dass das «Signal» sich ungefähr an der Stelle der heutigen Pyramide befand. Das «Observatoire», worin im Jahre 1867 die Ortsbestimmungen durchgeführt wurden, lag 2 bis 3 m südlich des «Signales». Der Breitenunterschied des Plantamourschen «Observatoire» und des im Jahre 1949 benutzten astronomischen Pfeilers ist also klein und dürfte höchstens ein paar wenige Meter betragen.

