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FOREWORD 
 
The importance of reliable navigation goes hand in hand with the rise of systems operating 
(semi)autonomously in the air, on the road or on the water.  
That translates to an urgency of correctly determining the level of trust of a navigation solution, 
especially that provided by the fusion of inertial and satellite observations. In aviation such measure 
of trust is related to an integrity, concept of which is applicable to a wide range of safety-critical 
application such as autonomous driving. Integrity is based on probabilistic measures that among 
other things account for imperfections in the predicted confidence levels in the estimated position. 
In turn, this is related to the shortcomings of observation stochastic models (e.g., noise of inertial, 
code or carrier-phase of GNSS signals, etc.). The dissertation of Omar García Crespillo offers a 
new view on how to deal with such “uncertainty of uncertainty” rigorously in the realm of an 
important class of time-correlated stochastic processes frequently used in the state-space estimators 
such as (Extended) Kalman Filters.    
 
More particularly, special form of autoregressive processes such as Gauss Markov processes, or 
their linear combination, allow to capture complicated phenomena in sensor’s behavior such as the 
noise encountered in oscillators or in inertial sensors of varying quality. The choice of model 
structure and its parameters is derived from the available information such as data or other 
knowledge that are both somewhat limited. Despite that, some newer methods of parameter 
identification allow quantifying such uncertainty precisely. However, how to reflect the uncertainty 
of stochastic parameters in the concept of “over-bounding” for the purpose of integrity was not 
completely clear for this type of processes. Although the presented work demonstrates how to 
correctly account for such uncertainty for one Gauss Markov process of the 1st order, the described 
path of analytical derivation can be extended for stochastic processes of a higher order, or their 
linear combination. In this perspective, the presented methodology is applicable beyond the 
exemplified case of INS/GNSS integration with inertial sensors of higher quality. As such, this 
study is filling an important gap of knowledge while having an immediate practical use within the 
integrated navigation.   
 
The core of the dissertation has been published within several symposia of the Institute of 
Navigation (ION) and IEEE, such as ION-GNSS or PLANS, as well as in the well-respected ION 
journal of Navigation.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Prof. Dr. Jan Skaloud      Prof. Dr. Markus Rothacher 
EPF Lausanne      ETH Zürich 
Thesis director      President of SGK  



PREFACE 
 
L'importance d'une navigation fiable va de pair avec l'essor de systèmes fonctionnant de manière 
(semi-)autonome dans les airs, sur la route ou sur l'eau.  
Cela se traduit par la nécessité de déterminer correctement le niveau de confiance de la solution de 
navigation, notamment celle obtenue par la fusion d'observations inertielles et satellitaires. Dans le 
domaine de l'aviation, cette mesure de confiance est liée à l'intégrité, dont le concept est applicable 
à un large éventail d'applications critiques pour la sécurité telles que la conduite autonome par 
exemple. Le concept d'intégrité est basé sur des mesures probabilistes qui, entre autres, tiennent 
compte des imperfections dans la prédiction des niveaux de confiance de la position estimée. Ces 
imperfections sont causées par des imprécisions dans les modèles d'erreurs stochastiques des 
observations (inertielles, de code, ou de phase des signaux GNSS, …). 
La thèse d'Omar García Crespillo offre un nouveau point de vue sur la manière de traiter 
rigoureusement cette « incertitude de l'incertitude » dans le domaine d'une classe importante de 
processus stochastiques corrélés dans le temps et fréquemment utilisés dans les estimateurs tels que 
les filtres de Kalman (étendus).    
 
Des variantes spéciales de processus autorégressifs tels que les processus de Gauss-Markov, ou des 
combinaisons linéaires de tels processus permettent de modéliser des phénomènes complexes dans 
le comportement des capteurs tels que le bruit dans les oscillateurs ou les capteurs inertiels. Le 
choix de la structure du modèle et de ses paramètres est dérivé d’informations disponibles telles 
que les données ou d'autres connaissances qui présentent souvent des incertitudes. Malgré cela, 
certaines méthodes d'identification des paramètres de processus stochastiques plus récent 
permettent de quantifier précisément cette incertitude. La manière de refléter l'incertitude des 
paramètres stochastiques dans le concept de « over-bounding » de l'estimation à des fins d'intégrité 
n'était cependant complètement claire pour ce type de processus. Bien que le travail présenté 
démontre comment tenir compte correctement d'une telle incertitude pour un processus de Markov 
de Gauss de 1er ordre, la procédure de dérivation analytique décrite dans cette thèse peut être 
étendue à des processus stochastiques d'ordre supérieur, ou à des combinaisons linéaires de tels 
processus. Dans cette perspective, la méthodologie présentée est applicable au-delà du cas étudié 
de l'intégration INS/GNSS avec des capteurs inertiels de qualité supérieure. En tant que telle, cette 
étude comble un manque important de connaissances tout en étant applicable en pratique dans le 
domaine de la navigation intégrée.  
 
L'essentiel de la thèse a été publié dans plusieurs symposiums de l'Institute of Navigation (ION) et 
de l'IEEE, tels que ION-GNSS ou PLANS, ainsi que dans le très respecté journal ION de la 
navigation.  
 
 
 
 
 
 
 
 
 
 
 
Prof. Dr. Jan Skaloud     Prof. Dr. Markus Rothacher 
EPF Lausanne      ETH Zürich 
Directeur de thèse     Président de la CGS  



VORWORT 
 
Die Bedeutung einer zuverlässigen Navigation geht Hand in Hand mit der Zunahme von (halb-
)autonom operierenden Systemen in der Luft, auf der Straße oder auf dem Wasser.  
Daraus ergibt sich die klare Notwendigkeit, den Grad der Zuverlässigkeit einer Navigationslösung 
korrekt zu bestimmen, insbesondere einer Lösung, die durch eine Kombination von Trägheits- und 
Satellitenbeobachtungen berechnet wird. In der Luftfahrt ist der Mass an Zuverlässigkeit mit dem 
Begriff Integrität verbunden, deren Konzept auf ein breites Spektrum sicherheitskritischer 
Anwendungen wie das autonome Fahren anwendbar ist. Die Integrität basiert auf probabilistischen 
Grössen, die unter anderem Unzulänglichkeiten in den vorhergesagten Zuverlässigkeitsniveaus der 
geschätzten Position berücksichtigen. Dies hängt wiederum mit den Unzulänglichkeiten 
stochastischer Beobachtungsmodelle zusammen (z.B. für die Trägheitsbeobachtungen oder für die 
Code- oder Trägerphasenmessungen von GNSS-Signalen). Die Dissertation von Omar García 
Crespillo eröffnet eine neue Sichtweise darauf, wie man mit einer solchen "Ungewissheit der 
Ungewissheit" im Bereich einer wichtigen Klasse von zeitkorrelierten stochastischen Prozessen, 
die häufig von Schätzern im Zustandsraum wie den (erweiterten) Kalman-Filtern verwendet 
werden, rigoros umgehen kann.    
 
Insbesondere spezielle Formen von autoregressiven Prozessen wie die Gauß-Markov-Prozesse 
oder Linearkombination davon ermöglichen es, komplizierte Phänomene im Sensorverhalten zu 
erfassen, wie z.B. das Rauschen von Oszillatoren oder von Trägheitssensoren unterschiedlicher 
Qualität. Die Wahl der Modellstruktur und deren Parametrisierung ergibt sich aus den verfügbaren 
Informationen über die Daten oder aus anderem Wissen, wobei beide Quellen nur begrenzt 
Information enthalten. Dennoch ermöglichen einige neuere Methoden der Parameteridentifizierung 
eine genaue Quantifizierung dieser Unsicherheit. Allerdings war bei dieser Art von Prozessen nicht 
klar, wie die Unsicherheit der stochastischen Parameter im Konzept des "over-bounding" zum 
Zwecke der Integrität wiedergegeben werden kann. Obwohl die vorliegende Arbeit nur zeigt, wie 
diese Unsicherheit für einen Gauß-Markov-Prozess erster Ordnung korrekt berücksichtigt werden 
kann, lässt sich der beschriebene Weg der analytischen Herleitung auch auf stochastische Prozesse 
höherer Ordnung und  Linearkombinationen davon ausdehnen. Unter diesem Gesichtspunkt ist die 
vorgestellte Methodik auch über den beispielhaften Fall der INS/GNSS-Integration hinaus auf 
Trägheitssensoren höherer Qualität anwendbar. Damit füllt diese Studie eine wichtige 
Wissenslücke und hat gleichzeitig einen unmittelbaren praktischen Nutzen für die auf einer 
Sensorintegration beruhenden Navigation.   
 
Der Kern der Dissertation wurde auf mehreren Symposien des Institute of Navigation (ION) und 
des IEEE, wie z.B. ION-GNSS oder PLANS, sowie in der angesehenen ION-Zeitschrift für 
Navigation veröffentlicht. 
 
 
 
 
 
 
 
 
 
 
Prof. Dr. Jan Skaloud     Prof. Dr. Markus Rothacher 
EPF Lausanne      ETH Zürich 
Dissertationsleiter     Präsident der SGK 



 



Abstract
Safety-critical navigation applications require that estimation errors be reliably quantified and

bounded. Over the last decade, significant effort has been put to guarantee a bounded position

estimation by using Global Navigation Satellite Systems (GNSS) by means of satellite-based

or ground-based augmentation systems (SBAS, GBAS) and Advanced Receiver Autonomous

Integrity Monitoring (ARAIM) for aviation. This has been achieved by carefully designing

models that overbound the different residual error components in range measurements (e.g.,

satellite clock and orbit, tropospheric and multipath among others). On the other hand, and

as part of Aircraft-based Augmentation Systems (ABAS), the use of Inertial Reference Systems

(IRS) has been traditionally included as additional source of redundant navigation information.

More recently, the use of Inertial Navigation Systems (INS) with a wider spectrum of possible

inertial sensor qualities in tighter integration with single-frequency GNSS has seen its way

in a new Minimum Operational Performance Standard (MOPS). New GNSS/INS systems

and standards could still benefit from the methodologies and aspects developed for future

dual-frequency/multiconstellation GNSS standards. However, safety-related GNSS systems

like ARAIM are snapshot-based, that is, the position estimation is performed independently

at every epoch, whereas GNSS/INS systems are typically based on Kalman filtering (KF).

Therefore, the existing error overbounding models and methodologies are not enough to

produce a robust KF position estimation since the impact of time-correlation in measurements

must also be accounted for. Moreover, it has been observed that the time-correlation of

different GNSS errors presents also some level of uncertain behavior, which makes very

challenging for linear dynamic systems to produce a guaranteed solution.

As proposed by GNSS Minimum Operational Performance Standards (MOPS), there are sources

of time-correlated errors that can be well modelled using a first order Gauss-Markov pro-

cess (GMP). Using this GMP parametric model, it is possible to capture the uncertain time-

correlated nature of error processes by allowing the variance and time correlation constant

of the GMP model to be in a bounded range. Under this situation, the first part of this thesis

studies the propagation of the uncertain models through the Kalman filter estimation and

provides new theoretical tools in time and frequency domain to bound the KF error estimation

covariance. As a result, tight stationary bounding models on the GMP uncertain processes

are derived in both continuous and discrete time domain. This is extended to non-stationary
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models that provide tighter error bounding during an initial transient phase when measure-

ments are first introduced (which will be relevant in scenarios with changing number of visible

satellites). The new models can very easily be used during the KF implementation which

might be very attractive by regulators and designers. In the second part of the thesis, the

new overbounding GMP models are applied for a dual-frequency GPS-Galileo tightly-coupled

GNSS/INS integration. The design of the filter and of error models is performed following

compatibility with current aviation standards and ARAIM Working Group C results. The

impact of the use of the new models is analysed in terms of conservativeness, integrity and

continuity based on realistic operational simulations linked to airport runways. The benefit

of an overbounded GNSS/INS solution is also compared with the current baseline ARAIM

algorithm solution.

This thesis supports the evolution of safe GNSS-based positioning systems from only snapshot

based to filtered solutions. Ensuring integrity for Kalman filter in general and for GNSS/INS

systems in particular is a game changer to achieve higher performance levels for future dual-

frequency multi-constellation aviation services and is of vital importance for new ground and

air applications like autonomous vehicles or urban air mobility.

Key words: ABAS, GNSS/INS, Overbounding, ARAIM, Guaranteed estimation, Colored-noise
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Zusammenfassung
Sicherheitskritische Navigationsanwendungen erfordern es, dass die Schätzfehler zuverlässig

identifiziert, quantifiziert und begrenzt werden. In den letzten zehn Jahren wurden erheb-

liche Anstrengungen unternommen, eine Positionsschätzung mit beschränktem Fehler für

die Luftfahrt zu gewährleisten. Dies wurde durch den Einsatz globaler Satellitennavigations-

systeme (GNSS) und satellitengestützten oder bodengestützten Augmentierungssystemen

(SBAS, GBAS) und Advanced Receiver Autonomous Integrity Monitoring (ARAIM) realisiert.

Dafür war die sorgfältige Entwicklung von Fehlermodellen nötig, welche die verschiedenen

Restfehlerkomponenten (z.B. in der Modellierung der Satellitenuhr und -orbit, Troposphäre

und Mehrwegeffekte) der Entfernungsmessungen abdecken. Andererseits wurden im Rahmen

von Avionik-basierten Augmentierungssystemen (ABAS) traditionell Trägheitsreferenzsysteme

(IRS) als zusätzliche Quelle für redundante Navigationsinformationen eingesetzt. In jüngster

Zeit hat die enge Integration von Trägheitsnavigationssystemen (INS) mit GNSS unter Berück-

sichtigung eines breiteren Spektrums an möglichen Trägheitssensoren verschieder Qualität

ihren Weg in einen neuen Minimum Operational Performance Standard (MOPS) gefunden.

Neue GNSS/INS-Systeme und -Normen könnten außerdem von den Methoden und Aspekten

profitieren, welche für künftige GNSS-Normen unter Verwendung von Signalen in mehreren

Frequenzenbändern und von mehreren Konstellationen entwickelt werden. Sicherheitsrele-

vante GNSS-Systeme wie ARAIM basieren jedoch auf einer Momentaufnahme des Systems,

d. h. die Positionsschätzung wird in jedem Zeitschritt unabhängig von vorherigen durchge-

führt. GNSS/INS-Systeme basieren in der Regel auf einer Kalman-Filterung (KF), welche eine

zeitliche Korrelation des Systems berücksichtigt. Da die bestehenden Modelle und Methoden

zur Fehlerbegrenzung die Auswirkung dieser Zeitkorrelation der Messungen aktuell nicht

berücksichtigen, reichen diese nicht aus, um eine robuste KF-Positionsschätzung zu erzielen.

Darüber hinaus wurde festgestellt, dass die Zeitkorrelation verschiedener GNSS-Fehler auch

zusätzliche Unsicherheit birgt, was eine zuverlässige Fehlerbegrenzung darauf aufbauender

Schätzungen in linearen dynamischen Systemen erheblich erschwert.

Wie in den GNSS MOPS vorgeschlagen, gibt es Arten von zeitkorrelierten Fehlern, die mit

Hilfe von Gauß-Markov-Prozessen (GMP) gut modelliert werden können. Mit Hilfe dieses

GMP-Parametermodells ist es möglich, die unsichere zeitkorrelierte Natur der Fehlerprozesse

zu erfassen. Dies wird erreicht, indem man die Varianz und die Zeitkorrelationskonstante
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des GMP-Modells in einem bestimmten, begrenzten Bereich zulässt. Der erste Teil dieser

Arbeit untersucht für genau diesen Fall, die Ausbreitung der unsicheren Modelle durch die

Kalman-Filter-Schätzung und liefert neue theoretische Werkzeuge im Zeit- und Frequenz-

bereich zur Begrenzung der Kovarianz der KF-Fehlerschätzung. Als Ergebnis werden enge

stationäre Begrenzungsmodelle für die unsicheren GMP-Prozesse, sowohl im kontinuierlichen

als auch im diskreten Zeitbereich, abgeleitet. Dies wird weiter auf nicht-stationären Modellen

erweitert, welche eine engere Fehlerbegrenzung während einer anfänglichen Übergangsphase

ermöglichen. Dies ist notwendig, wenn die Messungen zum ersten Mal eingeführt werden,

z.B. in Szenarien mit einer wechselnden Anzahl von sichtbaren Satelliten. Die neuen Modelle

können sehr einfach während der KF-Implementierung verwendet werden, was für Regulie-

rungsbehörden und Designer sehr attraktiv sein könnte. Im zweiten Teil der Arbeit werden

die neuen übergreifenden GMP-Modelle auf den Fall einer engen Kopplung zwischen GNSS

und Trägheitsnavigation angewendet. Der Entwurf der Filter- und Fehlermodelle erfolgt unter

Berücksichtigung der Kompatibilität mit aktuellen Luftfahrtstandards und den Ergebnissen

der ARAIM Working Group C. Die Auswirkungen der Verwendung der neuen Modelle werden

im Hinblick auf Konservativität, Integrität und Verfügbarkeit auf der Grundlage realistischer

Flugbahnsimulationen analysiert. Der Vorteil einer überlagerten GNSS/INS-Lösung wird auch

mit der aktuellen Basislösung des ARAIM-Algorithmus verglichen.

Diese Arbeit unterstützt die Evolution eines integritätsabgesicherten GNSS-basierten Po-

sitionierungssystemen von bisher schnappschussbasierter Verarbeitung hin zur Nutzung

ganzer Zeitreihen von Messungen zur Positionsschätzung. Die Sicherstellung der Integri-

tät von Kalman-Filtern im Allgemeinen und von GNSS/INS-Systemen im Besonderen ist

ein entscheidender Faktor für das Erreichen höherer Leistungsniveaus in der Luftfahrt und

von entscheidender Bedeutung für neue Anwendungen am Boden und in der Luft, wie z. B.

autonome Fahrzeuge oder urbane Mobilität in der Luft.

Stichwörter: ABAS, GNSS/INS, Overbounding, ARAIM, Guaranteed estimation, Colored-noise
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1 Introduction

1.1 Background

Navigation systems in safety-critical transportation applications must meet different levels of

requirements in terms of accuracy, integrity, availability and continuity in order to reach the

required level of maturity and trust. Over the last decades, satellite navigation has position

itself as the primary positioning system in aviation as it is envisioned for other future land

and air autonomous applications. In aviation, Global Navigation Satellite Systems (GNSS) is

augmented with other systems in order to achieve the safety required for certification. The

current augmentation systems are Satellite based Augmentation System (SBAS), Ground based

Augmentation Systems (GBAS) and Aircraft based Augmentation System (ABAS). SBAS and

GBAS rely on the transmission of corrections to the user GNSS receiver to correct for large

portion of Signal-in-Space (SiS) errors in transmitted GNSS signals affecting positioning and

its integrity. ABAS, on the other side, relies on onboard redundancy either between satellite

measurements or between GNSS receiver and other sensors to protect against system or

observation faults. The first type of ABAS based on GNSS onboard redundancy is Receiver Au-

tonomous Integrity Monitoring (RAIM) and it is used for flight predictive monitoring and fault

detection during non-critical flight phases. Its evolution is called Advanced RAIM (ARAIM)

and it is based on the availability of multiple GNSS frequencies and constellations. Significant

effort has been put by regulators and the scientific community to develop ARAIM for this

purpose. This included on one side the development of positioning, fault detection and

integrity risk quantification algorithms and, on the other side, the development of specific

methodologies and error models that guarantee a safe positioning information. ARAIM is

based on snapshot estimators, in the sense that a position solution at one epoch is computed

independently of past. This has the advantage that the integrity assessment can be done to

some extent separately for each epoch.

The other type of ABAS systems are generally named Aircraft Autonomous Integrity Moni-
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toring (AAIM). Among them, the most important one includes the use of single or multiple

Inertial Reference System (IRS) onboard the aircraft. The position solution from high grade

inertial units can be used as consistency check with satellite positioning or other systems.

Traditionally IRS is initiated at the gate and it drifts over time due to residual errors in initial

attitude and the accumulation of errors from its accelerometers and gyroscopes as they are

integrated into velocity and then position. In order to bound the IRS error growth, avionics

systems might correct periodically their position with other radionavigation systems like DME

or GNSS. The most common algorithm to combine GNSS with IRS is the Kalman filter, which

is a sequential estimator. In future avionic systems targeting stringent operations and possibly

using inertial systems with higher error drift rate, a tighter GNSS/INS integration must be

considered together with dedicated fault detection and integrity monitoring functions. Al-

though ARAIM and AAIM development have recently grown to some extent in parallel, they

share the same fundamentals. However, there are still some challenges to be overcome within

GNSS/INS integrated navigation so that it can adopt some of the recent developments in

multi-frequency, multi-constellation GNSS positioning and integrity monitoring. Safe error

modelling and especially accounting in error model uncertainties is one of such aspects.

Indeed, correlated errors affect GNSS code and carrier phase measurements as well as observa-

tions of inertial sensors. If not properly modelled, a GNSS/INS Kalman filter estimator would

provide misleading information on the estimated confidence. This is challenging as some

parameters related to the time-correlated error model might be difficult to obtain accurately.

Model uncertainty has been well treated for GBAS and ARAIM by using dedicated overbound-

ing methodologies. However these methods were developed to cover the proper integrity risk

quantification only for snapshot estimators like the classical GNSS only least-squares. Answer

how to better handle the possible error model uncertainty for time correlated errors and their

impact on GNSS/INS position estimation is the main driver of this thesis.
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1.2 Problem Statement and Example

Figure 1.1: Train localization problem

1.2 Problem Statement and Example

In order to understand the problem with linear dynamic estimators under the limited knowl-

edge of time-correlated processes, a simple example is first presented. Consider the local-

ization of a train that is travelling along a straight track as depicted in Fig. 1.1. The goal is to

estimate the position of the train at the start of mission at a certain time t0, such that p0 = p(t0)

along with its constant speed v . Direct observation of the current position of the train at

discrete times tk is available with the measurement zk . However, let us assume that this

measurement contains both a white noise error ν and a varying bias a that can be modelled

by a Gauss-Markov process. Modeling the GMP as an augmented state, the problem can be

summarized by the following set of dynamic and measurement equations:


p0,k

vk

ak

 =


1 0 0

0 1 0

0 0 α




p0,k−1

vk−1

ak−1

+


0

0
p

qawk

 , (1.1)

zk =
[

1 k∆t 1
]

p0,k

vk

ak

+νk , (1.2)

with

α = e
−∆t
τ ,

qa =σ2
a(1−e

−2∆t
τ ),

and
wk = N (0,1),

νk = N
(
0,σ2

ν

)
,

(1.3)

where a is the augmented GMP state related to the measurement z, w is a white Gaussian

noise and ν is the measurement noise. The GMP parameters are its variance σ2
a and its

time correlation constant τ. Finally ∆t the time interval between measurements and k ∈N0

is the time index. Assuming that the parameters of the time correlated GMP can not be

determined exactly and can only be known within a certain range, such that σ2
a ∈ [σ2

min,σ2
max]

and τ ∈ [τmin,τmin], the following question is asked:
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Figure 1.2: Difference between KF estimated error standard deviation (σKF) and true KF
error standard deviation (σtrue filter error) for σ2

min =σ2
max = 1m2 , τmin = 10 s, τmax = 100 s and

τtrue = 50 s

? Under the presence of Gauss-Markov processes with uncertain but bounded parame-

ters, which model or values of variance and time correlation constant should be used so

that the estimated error covariance of a Kalman filter estimator properly overbounds the

true error?

For many years, it has been assumed that the largest possible value of the time correlation

constant would produce the safest estimation. This can be easily shown wrong within the

given example. Figure 1.2 shows for the estimated initial position and constant velocity the

difference between the estimated standard deviation from the Kalman filter covariance and

the true error standard deviation over time for two cases: one designing the KF with the

minimum value of the time constant (i.e., τ = τmin) and the other one choosing the maximum

value τmax. For both limiting values, there are time intervals when the difference is negative.

This means that the estimated standard deviation (or variance) via KF does not upper bound

the true estimated error.
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The plots were obtained by choosing an arbitrary value for the true time constant (that is

normally not known) in the middle of the range of possible error parameters values. The true

estimated error variance can be obtained in this case either via Monte Carlo simulation or via

sensitivity analysis as shown in Appendix A.1.

The main contribution of this thesis is in the development of theoretical approaches that

allows to properly account for parameter uncertainty of an error model as GMP so that the

predicted covariance of the KF estimator safely (yet tightly) overbounds the true error over the

whole interval.

1.3 Thesis Outline

This work is organized in three main parts preceded by this introductory chapter:

Part I contains preliminary information relevant for the main research subject. In particular,

Chapter 2 provides an introduction to Aircraft based Augmentation Systems (ABAS) in relation

to main safety and integrity requirements. The chapter discusses the most important elements

of GNSS navigation and integrity monitoring as well as the fundamentals of GNSS/INS inte-

gration. Chapter 3 discusses essential risk and error bounding elements related to stochastic

error models and their propagation within linear dynamic systems.

The second part of the thesis provides theoretical development for considering uncertainty in

parameters describing time-correlated errors. Different techniques and criteria are presented

to derive bounding conditions in time and frequency domain. As a result new Gauss-Markov

error parameters are derived in continuous time in Chapter 4 and in discrete-time in Chapter

5.

The last part of the thesis applies the newly derived error parameters in the design of a safe

GNSS/INS algorithm with integrity monitoring in Chapter 6. Chapter 7 presents a simulation

framework to study the performance of the algorithms and the achievable results in terms of

accuracy, integrity and continuity.

Finally, Chapter 8 closes this document with the main achievements and future research

recommendations.

5



Chapter 1 Introduction

1.4 Main Original Contributions

The main contributions of this thesis are :

1. Development of new theoretical tools in time and frequency domain to bound uncer-

tain time-correlated errors in linear dynamic systems: The traditional use of Kalman

filter sensitivity analysis is extended and particularized to consider a specific situation

of uncertain error parameters within Gauss-Markov structure. With this method new

conditions are obtained that allow for the explicit check of bounding conditions on

aposteriori Kalman filter covariance. In parallel, the use of frequency domain analysis is

presented and linked with the KF estimated error covariance, which allows to translate

KF covariance bounding conditions to the frequency domain.

2. Rigorous derivation of stationary Gauss-Markov bound model in continuous and

discrete-time with new tight bounding: Based on the sensitivity analysis tool and the

frequency domain framework, new conditions and models are derived for bounding

stationary Gauss-Markov processes with uncertain time-correlation constant and un-

certain variance. The new models are rigorously proved in the continuous-time and

discrete-time domain. Furthermore, it is proven that model parameters derived in the

continuous time can also be used in discrete-time to provide bounding conditions.

3. Rigorous derivation of non-stationary Gauss-Markov tight bounding model in con-

tinuous and discrete-time: The Gauss-Markov stationary bounding models are further

made tighter by the derivation of a non-stationary GMP model with a transient phase.

This can allow to avoid conservatism once a measurement is started to be used in an

estimator. Rigorous proofs are provided for both the continuous time and the discrete

time domain.

4. Robust design of dual-frequency, GPS-Galileo GNSS/INS integration and integrity

monitoring with uncertain GNSS time-correlated Errors: Under the presence of un-

certain parameters in time-correlated error models describing uncertainties in GNSS

satellite ephemeris and clocks, tropospheric delays, code and carrier-phase multipath, a

new GNSS/INS Kalman filter is designed that considers augmented states for every cor-

related process. The augmented states use the GMP model parameters that guarantee

bounding conditions. In parallel, a full integrity monitoring architecture is presented

based on a Multiple Hypothesis Solution Separation (MHSS) algorithm similar to ARAIM.

5. New methodology for the assessment of loss of continuity of GNSS and GNSS/INS

due to manoeuvres: A new method for procedure-based evaluation and simulation

is presented. It links certain aircraft trajectories with airports locations and runways
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directions. This allows for a more realistic evaluation of GNSS/INS and ARAIM perfor-

mance when satellites appear and disappear from receiver tracking due to orientation

and antenna mask.

This thesis partially stems from author’s contribution to many publications, list of which is

given on page 139.
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2 Aircraft-based Augmentation Systems

In order to achieve the navigation system requirements in terms of accuracy, integrity, avail-

ability and continuity, positioning based on GNSS must be augmented. According to the

International Civil Aviation Organization (ICAO) GNSS Standards and Recommended Prac-

tices (SARPs) [1], there are three different augmentation systems:

1. Satellite-based Augmentation System (SBAS) that guarantees signal integrity by broad-

casting from geostationary satellites pseudorange corrections and other information on

satellite health.

2. Ground-based Augmentation System (GBAS) is designed for CAT I and in the future CAT

II/III precision approaches and landing. GBAS relies on corrections sent to the aircraft

based on a network of ground stations at airport location.

3. The third type of augmentation is Aircraft-based Augmentation System (ABAS). Contrary

to SBAS and GBAS that relies on additional infrastructure, ABAS relies only on informa-

tion onboard the aircraft. In principle ABAS relies either on cross-checks between GNSS

observations (called Receiver Autonomous Integrity Monitoring) or on coherence with

additional aircraft sensor information such as barometric altimetry or Inertial Reference

System (IRS). The latter is called Aircraft Autonomous Integrity Monitoring (AAIM).

This chapter provides more insights about the important navigation operational requirements

for aircraft and then focuses on ABAS in relation to the topic of this thesis.

2.1 Navigation System Requirements

Each aircraft operation needs to satisfy a certain level of different navigation requirements.

The main important requirements are defined by ICAO as [1]:
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• Accuracy: The accuracy of an estimated or measured position of a craft (vehicle, aircraft,

or vessel) at a given time is the degree of conformance of that position with the true

position of the craft at that time. Since accuracy is a statistical measure of performance, a

statement of navigation system accuracy is meaningless unless it includes a statement of

the uncertainty in position that applies.

• Integrity: A measure of the trust that can be placed in the correctness of the information

supplied by the total system. Integrity includes the ability of a system to provide timely

and valid warnings to the user (alerts).

• Time-To-Alert (TTA): The maximum allowable time elapsed from the onset of the navi-

gation system being out of tolerance until the equipment enunciates the alert.

• Continuity: The continuity of a system is the ability of the total system (comprising all

elements necessary to maintain craft position within the defined area) to perform its func-

tion without interruption during the intended operation. More specifically, continuity is

the probability that the specified system performance will be maintained for the duration

of a phase of operation, presuming that the system was available at the beginning of that

phase of operation.

• Availability: The portion of time during which the system is simultaneously delivering

the required accuracy and integrity.

The necessary level of integrity that a navigation system must fulfill for each operation is

normally established by an horizontal or vertical position alert limit (HAL, VAL) and an associ-

ated integrity risk (IR) to overpass it. The integrity risk, also called probability of Hazardous

Misleading Information (PHMI) can be therefore defined as the following probability:

PHMI = P (|e| > AL), (2.1)

where AL is the alert limit and e is the position error in a given dimension. Since the actual

error of the navigation system is in principle unknown, navigation systems usually compute

a bound of it called protection level (PL). By comparing the computed PL with the AL, the

navigation system an integrity violation can be declared. Protection levels are separated

into horizontal and vertical domain in order to support specific operational requirements.

This situation is depicted in Fig. 2.1. Table 2.1 provides a summary of the main navigation

performance requirements for aircraft operations up to CAT I precision approach.
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Figure 2.1: Alert limits and Protection Levels illustration

2.2 Current ABAS Standards

ABAS systems are already considered in aircraft avionics standards to support some of the

operations in Table 2.1. Figure 2.2 shows an applicability map of existing GNSS ABAS and

inertial-related Minimum Operational Performance Standards (MOPS) depending on the level

of GNSS use (single-frequency, single constellation or dual-frequency, multi-constellation)

and the inertial system performance (navigation-grade IRS, Attitude and Heading Reference

System (AHRS) grade with gyrocompassing capability or AHRS with limited gyrocompassing

capability). In the following, more details are listed about the coverage of such technologies

in the US Radio Technical Commission for Aeronautics (RTCA) documents (DO) and the

European Organisation for Civil Aviation Equipment (EUROCAE) documents (ED) with respect

to where the research subject is positioned:

• RTCA DO-334, MOPS for Strapdown Attitude and Heading Reference Systems (AHRS) [5]:

The purposed of this MOPS is mainly related to the provision of AHRS functionality

in particular for pitch and roll outputs, but also heading. It also considers possible

GNSS aiding to augment the AHRS. Although this MOPS does not provide navigation

capability, other ABAS navigation systems using inertial systems must first comply with

it.

• RTCA DO-316, MOPS for Global Positioning System/Aircraft Based Augmentation Sys-

tem Airborne Equipment [6]: This is the main current GNSS ABAS standard. It covers the

use of RAIM and other Fault Detection and Exclusion (FDE) functions. In its Appendix

R, it provides guidance for the tight integration of single-frequency GPS/Inertial system.

Its intended use is to enhanced en-route operations.
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Table 2.1: Navigation Performance Requirements [1]–[4]

Operation

Accuracy
(Horizontal,
Vertical)
(Equiv. 1-σ)

Integrity
Risk

HAL,
VAL

Time
to
Alert Continuity Availability

Oceanic
en-route 3.7 km, N/A 10−7/h

7.4 km,
N/A 5 min

10−4/h to
10−8/h

0.99 to
0.99999

Continental
en-route

1.85 km,
N/A 10−7/h

3.7 km,
N/A 5 min

10−4/h to
10−8/h

0.99 to
0.99999

Terminal 370 m, N/A 10−7/h
1.85 km,
N/A 15 s

10−4/h to
10−8/h

0.99 to
0.99999

NPA 110 m, N/A 10−7/h
556 m,
N/A 10 s

10−4/h to
10−8/h

0.99 to
0.99999

APV-I 8 m, 10 m
1...2×10−7/
approach

40 m,
50 m 10 s

1...8×10−6/
15 s

0.99 to
0.99999

LPV-200

8 m, 2 m
(1.87 m
fault-free)

1...2×10−7/
150 s

40 m,
35 m 6 s

1...8×10−6/
15 s

0.99 to
0.99999

CAT I
Autoland 8 m, 2 m

1...2×10−7/
150 s

40 m,
10 m 6 s

1...8×10−6/
15 s

0.99 to
0.99999

• RTCA DO-229 Appendix R, Requirements and Test Procedures for Tightly Integrated

GPS/Inertial Systems [7]: Although RTCA DO-229 is an SBAS/WAAS standard, in its

Appendix R, it provides guidance for GPS/Inertial Systems when SBAS corrections are

not available. It complements or extends the information in RTCA DO-316.

• RTCA DO-384, MOPS for GNSS Aided Inertial Systems [8]: This is the first dedicated

standard for GPS/Inertial Systems. It extends the applicability of Appendix R in RTCA

DO-316 and RTCA DO-229 to AHRS-grade inertial units and other operation apart from

en-route. For the GNSS sensor it follows the GNSS standards and it considers only

single-frequency GPS signals.

• EUROCAE ED-259, MOPS for Galileo / Global Positioning Sytem / SBAS Airborne Equip-

ment [9]: It is an initial issue of a dual-frequency multi-constellation GNSS standard.

Since GNSS SBAS equipment will also be able to operate without SBAS corrections by

using ABAS, this standards also contains guidance for RAIM and H-ARAIM.

Thanks to the GNSS modernization plans, dual frequency multi-constellation ARAIM is be-

ing proposed for future LPV-200 (Localizer Performance with Vertical guidance) operations.

Extension of current single frequency Inertial-based ABAS standards to dual frequency, multi-
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Figure 2.2: Current ABAS and inertial systems related MOPS

constellation is also expected to be included in the future to guarantee continuity and possibly

achieve higher performance levels.

This thesis supports the design of Dual Frequency, Multi-Constellation GNSS/INS

Integrity monitoring by accounting for the impact of uncertainties in error modeling

(specifically time-correlation) in the design of an algorithm that guarantees integrity.

2.3 (Advanced) Receiver Autonomous Integrity Monitoring

2.3.1 GNSS Measurements

Nowadays, receivers of satellite-based navigation can rely in different constellations, signals

and services. Modernized Global Positioning System (GPS) transmits three signals: L1/L1C on

1575.42 MHz frequency, L2/L2C on 1227.6 MHz and L5 on 1176.45 MHz. The European Galileo

system provides with its Open Service (OS) signals on the E1 band centered on 1575.42 MHz,

E5a on 1176.45 MHz and E5b on 1207.14 MHz. Civil aviation uses only protected frequency

bands by the Aeronautical Radionavigation Service (ARNS) [10]. For the consideration on

this thesis dual-frequency multi-constellation GPS and Galileo are considered with their

interoperable frequencies L1/E1 and L5/E5a. At these frequencies GNSS receivers are able

to compute for each of the satellites by CDMA multiplexing a code-phase measurement

(also called pseudorange) and carrier-phase measurement. Due to the Signal-in-Space (SiS)

transmission and de-synchronization of receiver, satellite and system, the code ρ and carrier-
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phaseφmeasurements can be modelled for satellite i , constellation j at frequency f and time

t as:

ρ
i , j , f
t = ||xi

t−β−xu,t ||+ c
(
d t j

u,t −d t i
t−β

)
+dI i , f

t +dT i
t +B j , f

u,ρ−Bi , f
ρ +mp i , f

ρ,t +ϵi
ρ,t , (2.2)

φ
i , j , f
t = ||xi

t−β−xu,t ||+ c
(
d t j

u,t −d t i
t−β

)
−dI i , f

t +dT i
t +B j , f

u,φ−Bi , f
φ +N i

φ+mp i , f
φ,t +ϵi

φ,t .

(2.3)

where:

||xi −xu|| True range satellite-user [m],

xi Vector of satellite position in ECEF [m],

xu Vector of user position in ECEF [m],

c Speed of light [m/s],

d t i Satellite clock offset [s],

d tu Clock bias of the receiver [s],

dI Ionospheric delay [m],

dT Tropospheric delay [m],

Bu Receiver instrumental (hardware) delay [m],

Bi Satellite instrumental (hardware) delay [m],

Nφ Carrier-phase ambiguity term [m],

mp Multipath [m]

β Signal travel time (different for each satellite i ) [s],

ϵ residual Gaussian noise [m].

Satellite positions and clock offsets are computed based on the broadcast navigation message.

Tropospheric errors can be partially corrected by standard models [7]. For single-frequency

users, ionospheric errors can be partly compensated with atmospheric models and based

on parameters in the navigation message (e.g. Klobuchar [11] or NeQuick [12], [13] model).

The instrumental errors on the satellite can be considered when computing the satellite clock

offset and the receiver instrumental errors can be incorporated as part of the (unknown) user

clock bias. The residual error after correction of these errors and computation of satellite

position and clock as well as the rest of uncorrected residual errors must be accounted for as

error model uncertainty.

Because ionospheric errors are potentially large, the most difficult to predict and because these

errors are frequency dependent, multi-frequency users can compensate for them by creating

the so called ionospheric-free combination of two measurements from two frequencies f1 and
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f2 [14]:

ρ
f1

IF =
f 2

1

f 2
1 − f 2

2

ρ f1 − f 2
2

f 2
1 − f 2

2

ρ f2 , (2.4)

φ
f1

IF =
f 2

1

f 2
1 − f 2

2

φ f1 − f 2
2

f 2
1 − f 2

2

φ f2 . (2.5)

The resulting code and phase measurements contains however larger noise levels due to the

combination of the original measurement noises and the factors
f 2

1

f 2
1 − f 2

2
and

f 2
2

f 2
1 − f 2

2
. For instance,

for a E1/E5a ionospheric-free combination, these factors are approximately 2.26 and 1.26

respectively. In order to mitigate this additional level of noise ARAIM use the carrier-phase to

smooth the ionospheric-free code measurement with a carrier-smoothing filter, also known

as Hatch filter (named after R. Hatch) [15].

2.3.2 Multi-Constellation Positioning

In multi-constellation positioning, the GNSS receiver typically needs to solve for unknowns in

the 3D position as well as for receiver clock offsets for each of the employed GNSS constella-

tions. For positioning with Galileo and GPS, the parameter vector is:

x =
[

x y z bGal
u bGPS

u

]T
, (2.6)

where x, y, z are the position coordinates in the Earth-Centered, Earth-Fixed (ECEF) coordinate

frame and bGal
u , bGPS

u are the receiver clock bias in meters with respect to the Galileo and GPS

constellations respectively. The pseudorange (or carrier-smoothed pseudorange) is nonlinear

with respect to the user position and a linearization step is normally necessary. The linearized

measurement model can be described as:

z = H∆x+ϵϵϵ, (2.7)

where z is the vector of linearized pseudorange measurements for all satellites in view, H is

the geometry matrix containing the line-of-sight vectors for each of the satellites, ∆x is the

parameter difference with respect to the linearization point and ϵϵϵ contains all the errors which
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are not corrected. The geometric matrix can be expressed as:

H =



u1,Gal 1 0

u2,Gal 1 0
...

...
...

unGal,Gal 1 0

u1,GPS 0 1

u2,GPS 0 1
...

...
...

unGPS,GPS 0 1



, (2.8)

where ui , j is the unit line of sight vector pointing from the user to satellite i of constellation j

and here nGal and nGPS are the number of visible Galileo and GPS satellites respectively. The

linearized measurement equation is solved via least-squares as [16]:

∆x̂ = (HTH)−1HT ·z. (2.9)

The vector of corrected measurements follows a non standard Gaussian distribution with a

diagonal covariance R described by the residual error model uncertainties. This is typically

taken into account to weight the measurements in a weighted least-squares (WLS) [17]:

∆x̂ = (HTWH)−1HTW︸ ︷︷ ︸
SLS

z, (2.10)

where the weight matrix is obtained normally from the covariance matrix as W = R−1. For the

estimator SLS the expected error covariance PLS of the computed position and clock biases

can be obtained with:

PLS = SLSRST
LS = (HTR−1H)−1. (2.11)

2.3.3 Integrity Monitoring Fundamentals

The integrity of the GNSS system could be guaranteed in the absence of faults by evaluating the

expression in Equation (2.1) with the estimated covariance matrix in Equation (2.11). In this

situation, if the residual error models (i.e. variances) considered in the measurements covari-

ance R overbounds the underlying real error covariance, integrity can be properly quantified.

Unfortunately, in reality, the presence of faults breaks this previous error assessment assump-

tions. Moreover, error models might be difficult to be obtained precisely or be too conservative
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to be considered as constant for all situations. Because of these reasons, GNSS positioning

is augmented with Receiver Autonomous Integrity Monitoring (RAIM) or Advanced RAIM.

These algorithms consider possible faults and implement mechanisms for their detection

(and exclusion). The integrity risk expression in Equation (2.1) can be modified to take into

account the presence of monitors in the following general way:

PHMI = P
(|e| > AL, q < T

)
. (2.12)

where here q is the test statistic of a monitor and T its associated threshold. The probability

of hazardous misleading information is the probability of the error being larger than the

alert limit while the monitors have not detected a fault. In the case of a detected fault, if

the system is declared unavailable, this does not affect integrity. The design of GNSS ABAS

contains therefore two important aspects: a set of error model parameters and a fault detection

(and exclusion) mechanism. The legacy RAIM is widely used for predicted availability and

monitoring based on single frequency, GPS constellation. Because of the single frequency

operation, GPS error models consider a relatively large variance model to cover for ionospheric

residual error [18]. Moreover, since only one constellation is considered, larger errors are

expected due to limited geometric (dilution of precision) aspects. For fault detection and

exclusion, RAIM implements a χ2 test based on pseudorange residuals [19]:

r = z−Hx̂ = (I−HSLS)z. (2.13)

The test is built as a quadratic test on the residuals r:

qr = rTR−1r. (2.14)

In the fault-free case (H0 hypothesis), the test qr follows a central χ2 distribution with n −m

degrees of freedom qr,H0 ∼ χ2(n −m,0), where n is the number of visible satellites and m the

number of unknowns. In the case of fault, the test follows a non-central χ2 distribution with

λ2 non-central parameter qr,H1 ∼ χ2(n −m,λ2) [19]. A suitable threshold for the test can be

obtained from the continuity requirement imposing a certain probability of false alarm to the

test:

P(qr ≥ T|H0) ≤ Pfa. (2.15)

RAIM assumes fault in single satellite and supports non-precision approaches. The operation

of RAIM includes pre-flight availability prediction [20] and onboard fault monitoring.

ARAIM takes benefits of the GNSS modernisation programs that include the use of new

frequencies and new constellations for the use in aviation. ARAIM is designed as a first step to
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support en-route down to non-precision approaches including RNP 0.1 capability by means

of Horizontal ARAIM (H-ARAIM). As a next goal ARAIM targets LPV-200. This will be achieved

with Vertical ARAIM (V-ARAIM) [21]. In the case of ARAIM, contrary to RAIM, the error and

threat model is provided to the airborne receiver via the Integrity Support Message (ISM) [4].

This allows to achieve better performance and to adapt in case it is determined necessary.

The ISM parameters are computed by a ground infrastructure that monitors the constellation

performance and satellite signals [22]. In particular, ISM provides information about the

probability of satellite and constellation faults and the error model for the signal in space.

Based on those parameters, the integrity evaluation can be done by defining a set of fault

hypothesis, their probability and using the law of total probability [23]:

PHMI =
Nh∑
h=0

P(|eh | > AL, |qh | < Th |Hh)Ph ≤ IRreq −PNM, (2.16)

where Ph is the prior probability of a fault hypothesis, IRreq is the integrity requirement and

PNM is the total probability of non-monitored hypothesis (typically residually small). The

monitoring in ARAIM is based on a batch of solution separation (SS) test statistics, which

are specifically tailored to specific fault mode hypothesis h. The SS test is performed at the

position level in a desired dimension l (i.e. vertical, horizontal) by comparing a position

solution with the available satellites in view with one obtained with a subset of them:

qh
l = |x̂0

l − x̂h
l |, (2.17)

where x̂0 indicates the full-in-view solution. The threshold can be obtained from the signifi-

cance level of a cumulative Gaussian distribution for the assigned probability of false alarm

Pfa and the associated solution separation uncertainty:

Th
l = Q−1

(
Pfa

2Nh

)
σh

ss,l (2.18)

where σh2

ss,l =εεεT
l (Ph −P0)εεεl . The matrix Ph is the covariance matrix of each of the subset solu-

tions and εεεl is used to extract the variance in the desired dimension l . The multiple hypothesis

solution separation (MHSS) algorithm is the basis for the protection level computation used

in this thesis for the GNSS/INS integrity monitoring.

2.4 Aircraft Autonomous Integrity Monitoring

The second type of ABAS system makes use of additional sensors (other than GNSS) that

are available onboard an aircraft. Typical sensors include altimeters (barometric or radar),

magnetometer-compass and inertial systems. For instance, barometric altimeters are widely
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used to support flight level aircraft separation and to enable certain Baro-VNAV operations [24].

They are also typically coupled with an Inertial Reference System (IRS) in to the so called Air

Data Inertial Reference System (ADIRS). This section focuses on the inertial systems and its

use for navigation integrity.

2.4.1 Inertial Navigation System

An Inertial Navigation System (INS) is composed of an Inertial Measurement Unit (IMU) mea-

suring 3D specific forces and 3D angular velocities and a strapdown computer that integrates

those measurements to obtain attitude, velocity and position. Due to the imperfection of

initial attitude and the error processes in the IMU sensors, the integrated solution will expe-

rience an accumulated or growing error over time. The differential equations that drive the

strapdown inertial navigation system can be summarized for a local navigation frame n as:


ṗn

v̇n

Ċn
b

 =


D−1vn

Cn
b fb − (2ΩΩΩn

i e +ΩΩΩn
el )vn +gn

Cn
b (ΩΩΩb

i b −ΩΩΩb
i n)

 , (2.19)

where pn , vn and Cn
b stands for position, velocity and the rotation matrix between body and

local frame respectively. D converts from curvilinear (i.e., latitude, longitude, altitude) to

cartesian distances. Its inverse D−1 is used therefore to convert from cartesian to curvilinear

distances and is defined as:

D−1 =


1

RN+h 0 0

0 1
(RE+h)cos(ϕ) 0

0 0 −1

 , (2.20)

where RN is the meridian radius of curvature, RE the transverse radius of curvature at a given

latitude on the local ellipsoid, ϕ is the latitude and h is altitude. The vector fb contains the

measured specific force in the body frame andΩΩΩb
i b is the skew-symmetric matrix based on the

measured angular velocities from the gyroscope, i.e.,ΩΩΩb
i b = [wb

i b×]. The matrixΩΩΩn
i n =ΩΩΩn

i e +ΩΩΩn
en

accounts for Earth rotation and transport rate and gn is the gravity vector in the local-level

frame. The strapdown inertial navigation algorithm that implements Equation (2.19) to

compute attitude, velocity and position over time based on the discrete inertial measurements

is well known and can be found for instance in [25]–[27].

In civil aviation, aircraft are equipped with single or redundant Inertial Reference System (IRS).

IRS refers here to a aviation-grade INS together with the necessary packaging and interfaces

for the rest of the aircraft subsystems and able to provide a self-content solution. Thanks to
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the low noise levels of accelerometers and especially gyroscopes, the IRS can be initiated on

ground while the plane is not moving. The initialization process involves the estimation of

biases as well as the attitude and heading of the sensor. Attitude components can be partially

estimated using accelerometers by projecting the gravity vector, also known as leveling, while

the heading is estimated by sensing the Earth rotation signal in the gyroscopes, which is

known as gyrocompassing [28]. The IRS could be also updated with ranging sources or other

information during flight to correct the drift over time. The aircraft normally uses different

sources of information in its Flight Management System (FMS) and integrates them to finally

provide other subsystems and the pilots with the required navigation information. Air Data

System (ADS) or a compass magnetic heading are examples of aiding system that can help

stabilize the vertical channel and the heading drift.

2.4.2 GNSS/INS Integration

In order to reduce the accumulated error in the INS over time due to residual initialization and

sensor errors, the inertial navigation solution is typically combined with measurements from

radio-navigation signals. Examples of these are terrestrial signals like Distance Measurement

Equipment (DME) [29] or VHF Omnidirectional Range (VOR) [30] and satellite positioning

like GNSS.

The combination of INS with GNSS can be done at different integration levels with the follow-

ing architectures:

• Uncoupled: This is the simplest way to combine the INS solution and GNSS information.

The two systems are running in parallel and the position and velocity from a GNSS

receiver is used to reset or calibrate the position and velocity of the INS system [31]. This

option is especially suitable for strategical inertial sensors with stable gyroscopes and

low time varying biases since these are not estimated online. This integration level offers

very limited fault detection and integrity monitoring capability. The system mainly

relies on the stability of the INS and the correctness of the GNSS.

• Loosely-coupled: In this integration design the solution of the INS is coupled with the

position, velocity (and possibly attitude) solution computed by GNSS receivers. The

biases of the inertial sensor are estimated which improves the long-term performance of

the system. In this level of integration the complexity is relatively low. One disadvantage

is that this option offers limited fault-detection capabilities since the GNSS information

can only be cross-checked with the INS information at the position level and therefore

specific satellites faults cannot be detected within the integrated system.

• Tightly-coupled: In this design, the INS solution is integrated directly with raw GNSS
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Figure 2.3: GNSS/INS integration levels

observation such as pseudorange, carrier-phase (and eventually Doppler) measure-

ments. The complexity level is higher as compared to the loosely-coupled alternative

since GNSS satellite positions, clock corrections and error models for pseudoranges

must be taken into account. The main advantage is that, by having access to individual

satellite observations, fault detection (and exclusion) mechanisms as well as integrity

monitoring strategies can exploit the explicit redundancy between measurements from

individual satellites and INS solution.

• Ultra tightly or deeply-coupled: This integration level is the most complex one. In

this case, the INS solution is combined directly with the raw binary signals of the GNSS

receiver (such as I/Q samples). This increment in complexity is normally justified only

for high dynamic vehicles where GNSS tracking loops may have difficulties to follow

properly the signals or in situations with high level of multipath or interference, where

the combination of INS can increase the Carrier-To-Noise (CN0) ratio of the received

signals and provide guidance to their tracking. Integrity assessment is quite challenging

since it is more difficult to separate the error and risk contributions between systems

and signals.

Except for the uncoupled option, the integration is often performed by using an Extended

Kalman filter (EKF). The different integration levels are also depicted in Fig. 2.3 with respect to

the information obtained from the GNSS receiver for the navigation filter. In aircraft, this is

traditionally done by the FMS, but possibly also directly in the IRS system [32].

An EKF is a sequential estimator for nonlinear systems that propagates over time the desired

states of interest along with their estimated covariances. Let us take a general nonlinear
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discrete-time system:

xk = f (xk−1)+Gk wk , (2.21)

zk = h(xk )+ Jk vk , (2.22)

where x is the state vector, w the process noise, v measurement noise, f () is the nonlinear

propagation function, h() is the nonlinear measurement function and G and J projects the pro-

cess or measurement noise into the states or measurements, respectively. The EKF equations

are well known and are here presented for convenience [33]:

Prediction :

xk|k−1 = f (xk−1|k−1), (2.23)

Pk|k−1 = Fk Pk−1|k−1FT
k +Gk Qk GT

k , (2.24)

Update :

Kk = Pk|k−1HT
k

(
Hk Pk|k−1HT

k + Jk Rk JT
k

)−1
, (2.25)

xk|k = xk|k−1 +Kk
(
zk −h(xk|k−1)

)
, (2.26)

Pk|k = (I−Kk Hk )Pk|k−1, (2.27)

where xk|k−1,Pk|k−1 are the predicted mean and covariance of the states, Q is the process noise

covariance, R is the measurement noise covariance, K is the Kalman gain and xk|k ,Pk|k are the

aposteriori mean and covariance values of the states. The state transition and observation

matrices F and H respectively, are defined as the following Jacobians:

F =
∂ f (xk−1|k−1)

∂x
, and H =

∂h(xk|k−1)

∂x
. (2.28)

As it can be seen in the previous equations, the EKF is divided in two main steps, prediction,

where dynamic error models are applied to propagate the states in time and update, where

new observations are included into the estimation process.

From different Kalman filter implementations, the most common one employed in the

GNSS/INS integration is the so called error-state (also known as indirect) Kalman filter. Within

this scheme, instead of determining directly the absolute position, velocity and attitude of the

vehicle, the KF estimates the error contained in the INS system. The full integrated solution

is then extracted from the INS corrected by the KF states.This minimizes linearization errors

and achieves better estimation of state and covariance [34]. In fact, this design allows to work

mainly in the linear domain of the system. This is used to simplify the assessment of the

error propagation within the estimator in Chapter 4 and 5. Based on that, a general linear

dynamic system (LDS) is considered in Chapter 4 and Chapter 5 and the Kalman filter will be

mentioned instead of Extended Kalman filter.
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Within the error-state EKF approach, there are two possible choices for architecture design.

Since the EKF estimates the error of the INS, the final integrated solution must consider the

total magnitude corrected by the estimated error. Depending on the strategy to correct this

error, two alternatives exists:

• Open-loop: It is also known as feed-forward filter. The INS solution is corrected by

the error estimated by the EKF before providing the final integrated solution but is not

feed-back to the strapdown inertial navigator. This approach has the advantage that

INS, GNSS and EKF propagate information only in a forward direction, making the INS

system independent from the EKF. Since the EKF contains the accumlated errors of

the INS, this architecture is suitable only for inertial sensors of good quality and over a

certain operation time. If the error states in the EKF become too large, the linearization

errors are no longer negligible and can make the filter diverge.

• Close-loop: It is also known as feed-backwards filter. In this architecture design the

error states are used to calibrate the INS position, velocity and attitude periodically. The

main advantage is that the error states are always kept close to zero within the EKF, and

therefore in a linear domain. The disadvantage is that a connection from the EKF to the

INS is necessary, increasing potentially the complexity and interdependence within the

system.

In this research, the integration level and architecture design that is considered is the tightly-

coupled close-loop error state. From the different strategies, this configuration provides on one

hand best situation for error propagation assessment, fault-detection and integrity monitoring.

On the other hand, it guarantees good linearization performance and it can be applied over

a wider range of inertial sensors and operational times. The specific implementation for

GNSS/INS integration is revisited in detail in Chapter 6.

2.4.3 Kalman filter Fault Detection and Integrity Monitoring

The Kalman filter is minimum variance (unbiased) estimator and therefore, in the presence

of measurement faults it does not provide any integrity assurance by itself. Therefore, as it

was the case for (A)RAIM, KF must be accompanied by some monitors to protect against fault

modes. Appendix R in [6], [7] and [8] provide some typical algorithms that can achieve the

monitoring of faults in tightly-coupled GPS/INS systems. Most approaches are based on the

following main methods for KF fault detection:

• Innovation-based: The KF innovation sequence can be used to detect either sudden

changes in the measurements and possibly also slowly growing errors [35]–[38]. The
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innovation vector is obtained at each update step from the difference between real and

predicted measurement as in Equation (2.26):

γγγk = zk −Hk xk|k−1, (2.29)

with an associated covariance matrix:

Pγ = Hk Pk|k−1HT
k +Rk . (2.30)

This vector can be used to screen for possible large deviations of measurement with

respect to predictions before the actual update is performed. It can also be used as a

quadratic test, similar to RAIM to detect faults:

qγ =γγγTP−1
γ γγγ. (2.31)

The test follows a central or non-central χ2 distribution with n degrees of freedom in

the fault-free or faulty situation, respectively. This can be extended to consider multiple

epochs by summing the different tests over time. Although this provides sensitivity to

ramp-type faults, over time the detection capability also decreases if large time spans are

considered. Methods to evaluate integrity risk for the sum of innovation squared tests

has been proposed by the authors in [35], [36] which involve the parallel calculation of

worst-case fault profiles.

• KF aposteriori residuals: It is also possible to build a quadratic test with the aposteriori

residuals of the KF to evaluate integrity [39]:

rk = zk −Hk xk|k . (2.32)

However, the test statistics are more difficult to handle since they follow a generalized

χ2 distribution which does not have analytical solutions to evaluate its Cumulative

Density Function (CDF). In some situations it could nevertheless provide better fault

detectability for a GNSS/INS system [37].

• Solution Separation: By considering a bank of Kalman filters with different fault hypoth-

esis each of them, solution separation test can be performed similarly as in ARAIM. This

was introduced by [40], [41] and they are included in different practical solutions [32],

[42].

Table 2.2 summarizes the main fault detection approaches. Other approaches to perform

monitoring of the GNSS/INS exist, in same cases by modifying or combining some of the

previous ones or by extending them to perform exclusion [43]–[48].
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KF Innovation-based Residual-based Solution Separation

Domain Range Range Position

Base
Magnitude

Innovation vector: Residual vector: Position subsets:

γγγk = zk −Hk xk|k−1 rk = zk −Hk xk|k x̂h

Test Statistic qγ =γγγTP−1
γ γγγ qr = rTR−1r qh

ss = |x̂0 − x̂h |
Test Statistic
Distribution

Chi-Squared: Generalized Chi-Squared [49]: Gaussian:

qγ ∼ χ2
(
λ2,n

)
qr =

∑
i α

2
i χ

2
i qh

ss = N (µ,σh2

ss )

Table 2.2: Kalman Filter Fault Detection Approaches
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3 Stochastic Error Modeling and Bound-

ing

This chapter provides additional background on the time-correlated stochastic processes used

for modeling sensor noise in Linear Dynamic Systems (LDS) estimators and in particular the

Kalman filter. Then, it states the problematic of bounding estimation errors so that it can

account for uncertainties of stochastic parameters describing these models by reviewing the

current state of the art in this field.

3.1 Stochastic Error Identification and Modeling Techniques

Stochastic errors in navigation sensor measurements can be considered as a time series. Their

stochastic nature may be caused by different factors. Although different models exist that can

be associated to specific (and empirically observed) physical processes, the total error of a

certain measurement normally contains the additive contribution of multiple process models.

As an example, Fig. 3.1 shows time series realizations of stochastic observation errors modeled

as a different combination of Gaussian noise (WGN) and Gauss-Markov Processes (GMP).

Therefore, in order to model the stochastic behaviour of a certain observation, there are

typically 3 necessary steps: isolation, identification and model-parameter determination.

First, it is necessary to isolate the error signal (i.e., time series) from the information part of

the measurement (and possibly from other errors or factors). Then, it is important to identify

which type of stochastic processes might be present in the error signal (i.e., structure). Once

those processes are identified, model-parameters needs to be found.

The error isolation process highly depends on the sensor or technology under consideration.

For instance, in order to isolate GNSS local multipath, Code-minus-Carrier (CMC) technique

can be used [50]. Isolating satellite clock and ephemeris errors may require processing in-

formation from multiple ground stations [23], similarly to isolating tropospheric errors [51].

Isolating the error signals in inertial sensors can be done by recording measurements in a
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Figure 3.1: Example of different stochastic processes. WGN1 ∼N (0,1.52), GM1 ∼GM (1,100),
GM2 ∼GM (4,1000) and their combination.

controlled (e.g., static) scenario [52]. For the identification and modeling, different techniques

or domains exist that can be used to analyse the time series signals. The most used ones are

presented in the following.

3.1.1 Autocovariance Function

The autocovariance of a certain signal Ra is a function that provides the covariance of a process

with itself at two different time instants expressed as:

Ra(t1, t2) = Cov[at1 , at2 ] = E
[
(at1 −E[at1 ])(at2 −E[at2 )

]
, (3.1)

where E is the expectation operator and t1, t2 are arbitrary sampling times. If the process a

is stationary, its probability density function is invariant with time and the autocovariance

matrix only depends on the time differences ∆t = t2 − t1 [53]. Equation (3.1) can be thus
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written as:

Ra(t1, t2) = Ra(t1, t1 +∆t ) = Ra(0,∆t ) = Ra(∆t ) (3.2)

which results in:

Ra(∆t ) = E
[
a0a∆t

]−E[a]2 (3.3)

In some situations, a normalized version of the autocovariance is used to analyse purely the

correlation level of the signal. The normalized autocovariance function is called autocorrela-

tion function and it is defined for an stationary process as:

R̄a(∆t ) =
Ra(∆t )

σ2
a

=
E

[
a0a∆t

]−E[a]2

σ2
a

, (3.4)

where σ2
a is the variance of the signal. Please note that in some literature the nomenclature

autocorrelation and autocovariance are used interchangeably or the term autocorrelation

is used to refer to the autocovariance (without normalization). In this research, the term

autocovariance is preferred to keep explicitly in mind that the variance levels are included,

being an essential factor when talking about error bounding.

For a time series vector a, it is useful to define the autocovariance matrix (ACM), which is a

square matrix with the autocovariance function of the signal at the different time interval lags:

Ra = E
[
(a−E[a])(a−E[a])T]

. (3.5)

The ACM is a symmetric and positive semidefinite matrix. Illustratively, Fig. 3.2 provides the

theoretical autocovariance functions of the examples processes in Fig. 3.1.

3.1.2 Power Spectral Density

Instead of analysing a signal in the time domain with the autocovariance function, the fre-

quency behaviour of a process provides important information about its characteristics. In

fact, for stationary processes there is an important relationship between the autocovariance

function and its Fourier transform [53]:

Sa( jω) =
∫ ∞

−∞
Ra(τ)e− jωτdτ. (3.6)

Sa( jω) is known as the power spectral density (PSD) of the process. When a process is com-

posed of different types of noises, it may be difficult to identify them with their parameters

in the time domain or via the empirical autocovariance function. Instead, the noise com-
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Figure 3.2: Example of theoretical autocovariance functions for different stochastic processes.
WGN1 ∼N (0,1.52), GM1 ∼GM (1,100), GM2 ∼GM (4,1000)

ponents may have different frequency behaviour and the PSD can be used to identify them

easier [54]. In practice, PSD are represented by a discrete Fourier Transform (DFT) which is

estimated from discrete samples of signals with some type of fast Fourier Transform (FFT) like

periodograms, Barnett’s or Welch’s method for instance [55]. The frequency domain analysis

is exploited in Chapter 4 and 5 to derive new tight bounds for Gauss-Markov models with

uncertain parameters.

3.1.3 Allan Variance

The Allan Variance (AV) is a mathematical tool widely used for the identification and modelling

of stochastic error processes in different electrical systems like atomic clocks [56] or inertial

sensors [52], [54]. It is a two sample variance and provides information about the variance

level of the process at different averaged time intervals. It is very helpful for the identification

of different types of noises when the shape and slope each of them are distinct within AV plot.

Fig. 3.3 depicts the representation of different processes in the Allan deviation (squared-root

of Allan variance) as taken from IEEE standards [54]. The Allan variance is related to the PSD

by the integral:

σ2
AV(∆t ) = 2

∫ ∞

0
S( f )

sin4(π f ∆t )

(π f ∆t )2 d f . (3.7)
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Figure 3.3: Stochastic processes representation in Allan Variance domain. Source: IEEE [54]

Although the AV is quite useful for the identification of processes, inferring the model pa-

rameters from AV plots via regression is problematic for composed stochastic processes (i.e.,

processes with partially overlapping spectrum). This is because there is not in general an

unique solution for the inverse function of Equation (3.7), which leads to spectral ambigu-

ity [57].

3.1.4 Wavelet Variance

The Wavelet Variance (WV) can be interpreted as the variance of a process after it has been

subject to an approximate bandpass filter [58]. For a Haar wavelet, the WV is proportional

to the Allan variance up to a constant scale factor while much faster to evaluate [59]. The

identification of processes is therefore similar as with the AV but with additional advantage in

process parameter determination. Notably, a framework based on the Generalized Method of

Wavelet Moments (GMWM) has been developed that support an efficient, optimal and stable

parameter estimation for composed stochastic processes [58] and it has been used for the

identification of noise structure in inertial sensors [60]. The impact of parameter estimation

with GMWM on navigation has also been investigated [61]. Its open-source implementation is

freely available to the navigation community.

3.2 Uncertainty in Error Modeling

In the previous section different techniques to identify and determine model-parameters

of a certain process were presented. However, it is normally impossible to find models and

related parameters that would fit perfectly the real physical process at all times. There are
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many different reasons for the limitation on the use of models. In the following, the most

relevant ones related to this research are listed:

1. Models are incomplete: It might not be possible to find a model or combination of

models that represent the same behaviour as the empirical data. In some situations,

a simple model might be desirable for a certain application even if it does not follow

perfectly the physical data to maintain the complexity of the system low. For instance,

one might be interested in modelling an error as white Gaussian noise (WGN) although

the signal present some level of time-correlation.

2. Domain of validity: Models are typically derived from historical data, and therefore it is

assumed that the processes will behave similarly in the future, which might not be the

case. Other aspect is that the historical data may cover different environment or seasonal

conditions, recorded in different time series, which are not possible (or too complex)

to be parametrized. The data therefore is not completely stationary or cover different

statistical realizations. Moreover, the available data may not cover every single possible

future conditions of the data. In this situation, the model must be careful to provide a

proper generalization for the intended purpose. For instance, GNSS tropospheric error

depends on complex atmospheric conditions with yearly variation.

3. Data limitations: Models are obtained with finite number of sample data or time series.

This limits the statistical significance of the results depending on the sample size. Also,

one is normally interested in building probability densities functions which can only

be done based on independent samples, but data may contain partly unmodelled

correlation between samples because of the acquisition process. Finally, the error

analysis quality may also be limited by measuring equipment. For example, Fig. 3.4

shows the empirical autocovariance function of 50 time series realizations with 5.000

samples of a first-order Gauss-Markov process (GMP) as the one shown in Fig. 3.1, along

with its theoretical autocovariance function. In this figure, we can see that modeling

different realizations would result in a range of possible parameters associated with

GMP.

Independently of the technique that is used to identify suitable models and estimate

their parameters from data, it is expected to have some level of uncertainty associated

with the estimated parameters caused by incompleteness or fidelity of selected models,

range of environment of conditions, dynamics, etc. and limitation in data length and

number of realizations.
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Figure 3.4: Theoretical and 50 empirical autocovariance realizations with 5e3 samples of a
Gauss-Markov process. GM1 ∼GM (1,100).

3.3 Integrity Risk Bounding and Related Work

Safety-related applications like civil aviation require that navigation system accuracy and in-

tegrity risk level are properly quantified. However, as it was introduced in the previous section,

it is not possible to derive exact models for sensor errors, which makes the quantification of ac-

curacy and integrity risk also uncertain. Therefore, in navigation, the actual error models and

distributions are replaced by a (simplified) conservative error model. This process is known

as overbounding [62]. For this task, Gaussian distributions are typically chosen due to its

simplicity and its properties of being invariant over convolution. For overbounding Gaussian

distributions, guaranteeing both accuracy (95% of the error) or evaluating integrity risk (e.g.,

10−7 for LPV-200) can be done by satisfying bounding conditions of the equivalent standard

deviation. Since navigation output is normally provided for several dimensions (e.g., vertical

or horizontal), the estimated error joint PDF follows the PDF of a multidimensional Gaussian

distribution. Under fault-free conditions, the error covariance matrix of the multidimensional

Gaussian error distribution represents the full PDF under linear and unbiased estimators such

as the ones considered in this research.

The variance of the error in a certain dimension of interest l can be extracted from the error

covariance matrix P with σ2
l = εεεT

l Pεεεl , where εεε is a zero vector with ones only on the indexes

positions of interest. Defining σ̂2
l as the estimated variance of the error, the goal to guaranteed

that integrity risk is satisfied is that it is larger than the true error variance, that is, σ̂2
l ≥ σ2

l .
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Figure 3.5: Illustration of Covariance Bounding

When it is not practical to evaluate the bounding condition for every dimension separately,

the criteria can be generalized to the full covariance matrix, such that P̂ ≥ P. The inequality

of covariance matrix being greater or equal than other is understood as that the difference

P̂−P being positive semidefinite. Figure 3.5 illustrates the bounding/non-bounding criteria for

covariance matrices for an example in 2D. Notice that one of the covariances is not bounding

the error even though the variances in the main plotting axes (diagonal elements of the

covariance) are larger than the true error covariance.

In navigation systems, different concepts to overbound the error estimation with linear esti-

mators have been developed. In [63] an overbounding process to model non-Gaussian error

distributions was first proposed. Then, the concept of cumulative distribution function (CDF)

overbounding was proposed and revisited by [64], [65]. Further developments included the

consideration of asymmetric distributions and possible biases [66], [67]. In most cases, con-

servative error Gaussian distribution models have to be obtained from empirical distributions

with limited and possibly not fully independent sample data. New concepts are developed to

account for this aspect by increasing the estimated model variance by an inflation factor based

on the so called number of effective samples [23]. This has been used to derive conservative

models for residual GNSS orbit and clock errors as well as airborne multipath [68]. These

methods are however limited to snapshot estimators (like the least-square method used in

GNSS point positioning) since the final goal is to obtain a single overbounding probability

distribution.

The authors in [69], [70] extended the applicability of overbounding to linear dynamic systems

with the concept of spherically symmetric overbounding. This method could theoretically
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account for time correlated measurement errors, but its practical usage in Kalman filtering is

not clear. Other authors proposed to bound the empirical error time series in the Allan variance

domain [71] and the PSD domain [72]. However no proof was given that this process would

guarantee correct bounding result. Moreover, in case of spectral ambiguity within AV [57],

a general bound likely cannot be guaranteed. Bounding criteria in the frequency domain

was recently proven in [73] and [51], and it is also provided in Appendix B and discussed in

Chapter 4 and 5. Generally, obtaining conservative models from empirical data is still an

open field of research. Most of the error modeling techniques for time series introduced in

Section 3.1 are able to provide approximate confidence intervals of model parameters [74]–[76].

However, it is still unclear how a conservative model could be obtained taking into account the

limitations discussed in Section 3.2. Some recent research in this direction for PSD estimators

is [77], [78].

In overbounding approaches frequently used in GNSS, a more conservative model is typically

obtained with a larger or inflated variance of the empirical Gaussian distribution. However,

for other time correlated models, as it was shown in Section 1.2, a larger value of all the

parameters (e.g., time-correlation constant) do not a priori guarantee a conservative model.

Instead, a possible range of values in the form of a lower and upper bounds may allow for

the derivation of conservative models. This motivates the assumptions and derivations of

conservative models in Chapter 4 and 5. Parameter uncertainty has already been considered

as assumption in the literature.

In [79], [80] a full summation expression for the Kalman filter was derived as a function of

the autocovariance functions (ACF) of the error processes. Based on that the authors were

able to select the worst-case ACF value for each of the terms to obtain an estimation bound in

case of uncertain but bounded ACFs. The method requires, however, the evaluation of the full

time history and becomes unfeasible for real-time systems due to computational and memory

limitations. In [81] an approximate bound to the previous approach is proposed with less

computational requirements.

Outside the navigation community, the problem of risk/uncertainty quantification under large

unaccounted or unclear errors has been also addressed within the robust Kalman filtering

literature [82] and the guaranteed cost filtering approach [83]. One example of the last is [84],

that provided a solution for GMP with uncertain time correlation for continuous-time filtering.

This approach is considered a starting point for the derivation of new bounds in this thesis.
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3.4 Kalman filter with Time-Correlated Error Models

The different errors in the GNSS measurements (e.g., code-phase and carrier-phase) and in the

Inertial Measurement Unit (IMU) are correlated in time [51], [52], [54], [72], [85]. Navigation

computers that aim to estimate position, velocity and time (PVT) by leveraging multiple

epochs information at the same time need to account for this fact. Otherwise, the result of

neglecting the time-correlation and for instance modelling all the errors as White Gaussian

Noise (WGN) would result in wrong estimation [86]. Different type of estimators use multi-

epoch measurements, examples of them are state-space estimators like Kalman filters [87],

batch least-squares [88], dynamic networks [89] or bundle adjustments [90] also called factor

graphs [91]. Without a loss of generality this research focus primary on the use of time-

correlated error models within Kalman filter estimation, but this problematic, as well as the

solutions provided in this thesis in Chapter 4 and Chapter 5 are applicable to other estimators.

There exist different methods to account for the time-correlation nature of stochastic process

or measurement noise in Kalman filtering [92]. The most common approach is based on state

augmentation, where the state vector is expanded with the correlated time-varying compo-

nents of such noise, value of which is estimated together with other states. An important

pre-requisite for that is the existence of a differential equation (i.e., dynamic model) describ-

ing the noise evolution. Based on a state augmented dynamic model a Schmidt-Kalman

filter provides an alternative implementation that estimates the non-augmented states while

still accounting for the effect of the time-correlation (augmented states) [93]. Another ap-

proach applicable to correlated observations is to avoid the estimation of several augmented

states by measurement differencing. This is developed in [94] and revised with application

to GNSS in [86]. From the listed approaches, state augmentation provides the most intuitive

interpretation since the states are explicitly considered throughout the estimation process.

Because of that, this study uses this approach to understand the impact of parameter uncer-

tainties describing time-correlated noise and derives new bounding conditions accounting

for such uncertainty. The disadvantages of state augmentation comes when a large number

of augmented states are necessary to capture the time correlation, which increments the

computational requirements. Another possible problem appears when many of states become

totally observable, which can lead to ill-condition matrices used in computing the Kalman

gain. In such situation, regularization could be used.

State augmentation can be formulated in the following way. Consider a continuous-time LDS

described by a differential equation:

ξ̇ξξ(t ) = F(t )ξξξ(t )+w(t ), (3.8)

where ξξξ is a physical magnitude, F is the time propagation (dynamic) matrix and w is a
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3.5 First-Order Gauss-Markov Process

time-correlated process such that:

w(t ) = Ewa(t )+ηηη(t ). (3.9)

The noise ηηη is a White Gaussian Noise (WGN), a(t) is a correlated noise and Ew projects the

correlated noise into the noise vector w. The time dynamics of a are assumed to follow the

structure:

ȧ(t ) = La(t )+u(t ), (3.10)

where L is the dynamic matrix and u is WGN. The state augmented model of the LDS in

Equation (3.8) is in this case: ξ̇ξξ(t )

ȧ(t )

 =

 F(t ) Ew

0 L

 ξξξ(t )

a(t )

+
 ηηη(t )

u(t )

 . (3.11)

3.5 First-Order Gauss-Markov Process

The error model structure from Equation (3.10) can be easily integrated in a state augmented

LDS model as shown in Equation (3.11). Similarly, it can be easily considered in a Kalman

filter estimator, making it quite suitable for practical applications. One error model that

responds to the same structure and is widely used in practice to model many different physical

error process is the first-order Gauss-Markov Process (GMP) [95].In fact, first-order GMP

are proposed to model residual errors in MOPS [8] and in other GNSS literature [72], [96].

The are also widely used to model inertial sensors accelerometers and gyroscope biases [97].

Furthermore, a combination of first-order Gauss-Markov processes can be used to model

more difficult error characteristics, such as bias instability in inertial sensors or rate random

walk processes [98]. In this sense, this model can be considered to characterize more complex

structures while still being able to include easily each of them as augmented states in a

Kalman filter estimator. In Chapter 6, the total residual pseudorange and carrier-phase time-

correlated error will be decomposed in several GMPs, each of them representing one of the

error contributions. For the rest of the thesis when referring to GMP, it will always be a

first-order GMP.

For snapshot GNSS estimator, overbounding pseudorange models are built based on Gaussian

distribution because of its simplicity and special properties. The first-order Gauss-Markov

model is therefore a natural choice when choosing conservative models bounding the em-

pirical error processes as it can be considered an extension of the Gaussian model for time-

correlated processes. It has a simple structure with only two parameters and it can be easily
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Figure 3.6: Autocovariance function (ACF) of different GMPs with σ2 ∈ {1,1.5} and τ ∈ {40,100}

incorporated in linear estimators like Kalman filters.

A continuous-time stationary GMP model, also known as Ornstein-Uhlenbeck process [53],

can be particularized from Equation (3.10) as:

ȧ(t ) =
1

τ
a(t )+u(t ) (3.12)

where u(t) is a WGN with variance Var(u) = 2σ2

τ . The GMP model is therefore a parametric

model with two parameters, a time-correlation constant τ and variance σ2. By considering

this model as a representation of the real process, the uncertain nature of a certain time-

correlated process can be captured by considering both parameters uncertain. The main

assumption in this thesis is that the GMP parameters are uncertain but bounded such that

τ ∈ [τmin,τmax] and σ2 ∈ [σ2
min,σ2

max] due to unavoidable uncertainty in the error modeling

process as discussed in Section 3.2.

Gauss-Markov processes are exponentially correlated with autocovariance function given by:

Ra(T) =σ2e−
∆t
τ . (3.13)

An autocovariance function example for the extreme parameters of an uncertain GMP with

bounded parameters is depicted in Fig. 3.6. For example, as a result of empirically autocovari-

ance functions from data as shown in Fig. 3.4. The autocorrelation function gives an intuitive

representation of the degree of correlation of the process over time. However, it is difficult

to interpret how the representation of an uncertain process in the autocorrelation domain

can be linked with the error estimation in Kalman filtering of states affected by this process.
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3.5 First-Order Gauss-Markov Process

Table 3.1: Continuous-time and Discrete-time GMP models

Continuous-time Discrete-time

Model ȧ(t ) = 1
τa(t )+u(t ) ak = e−

∆t
τ ak−1 +uk

Var(u) 2σ2

τ σ2(1−e−
2∆t
τ )

For instance, one may be misled by looking at Fig. 3.6 to think that a process with σ2 =σ2
max

and τ = τmax may provide an over bound in the error estimation of a Kalman filter estimation,

which was already proven wrong in Section 1.2.

A stationary discrete-time first-order GMP model can be obtained, for instance, from Equa-

tion (3.12) by using standard continuous to discrete transformations [53]. In discrete-time,

this GMP is also a first-order autoregressive model with Gaussian noise and exponential decay.

Table 3.1 provides a summary of the continuous-time and discrete-time first-order stationary

GMPs.
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4 Continuous-time Kalman Filter

Bounding Models

This chapter studies the impact of uncertain parameters of Gauss-Markov processes in Kalman

filtering and derives new stationary and non-stationary continuous-time GMP models that

ensure tight bounding conditions for KF error covariance.

4.1 Bound Derivation via Advanced Sensitivity Analysis

4.1.1 KF Sensitivity Analysis

Consider a general linear dynamic system (LDS) described in the continuous-time domain:

ẋ(t ) = F(t )x(t )+G(t )w(t ), (4.1)

z(t ) = H(t )x(t )+ J(t )v(t ), (4.2)

where x ∈ Rs is the state vector, F ∈ Rs×s is the state dynamic matrix, G ∈ Rs×p is the process

noise projection matrix, z ∈ Rm is the observation or measurement vector, J ∈ Rm×l is the

measurement noise projection matrix and w ∈Rp and v ∈Rl are the process and measurement

noises with associated covariances matrix Q(t ) = E[w(t )w(t )T] ∈Rp×p and R(t ) = E[v(t )v(t )T] ∈
Rl×l respectively. A Kalman filter (KF) estimator for Equation (4.1) and Equation (4.2) can be

written as:

˙̂x = Fx̂+K (z−Hx̂) , (4.3)

with an associated error covariance P ∈Rs×s in the form of a Riccati equation:

Ṗ = FP+PFT −KJR−1JTKT +GQGT, (4.4)
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Chapter 4 Continuous-time Kalman Filter Bounding Models

where the time arguments have been removed for clarity and K ∈ Rs×m is the Kalman gain.

If the filter is designed with the true values of F,H,G,J,Q,R, Equation (4.4) represents both

the estimated covariance of the KF and the covariance of the error in x̂. In general, the matrix

used to design the KF are imperfectly modeled F̂,Ĥ,Ĝ, Ĵ,Q̂, R̂. The KF estimator will produce

in this situation a covariance matrix P̂ ∈ Rs×s that is in general different from the true error

covariance P̂ ̸= P.

In [33] a methodology is presented to study the sensitivity of the imperfect design of F̂ and Ĥ on

the Kalman filter estimator. Define the estimation error vector e≜ x̂−x. Using Equation (4.3)

with F̂ and Ĥ, Equation (4.1) and Equation (4.2), it can be shown that the error propagation

satisfies the following differential equation:

ė =
(
F̂− K̂Ĥ

)
e+ (

∆F− K̂∆H
)

x−Gw+ K̂Jv, (4.5)

where ∆F ≜ F̂−F, and ∆H ≜ Ĥ−H. The Kalman gain is computed from the Kalman filter

processing as K̂ = P̂ĤTJR̂−1 where P̂ satisfies the Riccati Equation (4.4) with the designed

matrices:

˙̂P = F̂P̂+ P̂F̂T − P̂ĤTJTR−1JĤP̂+GQGT. (4.6)

Since ė also depends on the true state x, Equation (4.5) can be translated to a matrix expression

by considering the augmented vector ζζζ =
[

eT xT
]T

:

 ė

ẋ

 =

 F̂− K̂Ĥ ∆F− K̂∆H

0 F

 e

x

+
 K̂Jv

0

+
 −Gw

Gw

 . (4.7)

The associated covariance matrix of Equation (4.7) is:

Ṗζ =

 F̂− K̂Ĥ ∆F− K̂∆H

0 F

Pζ+Pζ

 F̂− K̂Ĥ ∆F− K̂∆H

0 F

T

+
 K̂JRJTK̂T 0

0 0

+
 GQGT −GQGT

−GQGT GQGT

 . (4.8)

Since the covariance of the augmented vector ζζζ can be expressed in four different blocks:

Pζ =

 Pe Pex

PT
ex Px

 , (4.9)

Equation (4.8) provides a general expression to obtain the true error estimation covariance
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4.1 Bound Derivation via Advanced Sensitivity Analysis

P = Pe, when designing the KF with imperfect F̂ and Ĥ (provided that we know the actual

matrix). A similar analysis can be done for discrete-time KF as shown in Appendix A.1 or

hybrid Kalman filter [99].

4.1.2 Conditions for Uncertain Gauss-Markov Processes

If the original noise processes considered in the linear dynamic system of Equation (4.1) and

Equation (4.2) have time-correlated processes with Gauss-Markov structure, the common

approach to decorrelate them consist of augmenting the KF state vector with the correlated

processes as introduced in Section 3.4. The new augmented KF state vector can be therefore

split into the main states of interest and the augmented states as:

x =

 ξξξ

a

 , (4.10)

where the different GMP in a ∈Rn×1 can be expressed as:

ȧi (t ) = − 1

τi
ai (t )+

√
2σ2

i

τi
ηi (t ), with ηi (t ) ∼N (0,1), ∀i ∈ [1,2, ...,n], (4.11)

where τ ∈R> 0 is the GMP correlation time constant and σ2
i ∈R≥ 0 is the stationary process

variance. The augmented state dynamics system is now [100]: ξ̇ξξ

ȧ

 =

 F Fξa

0 Fa

 ξξξ

a

+
 G 0

0 I

 w
p

qηηη

 , (4.12)

where

Fa =


− 1
τ1

0 · · · 0

0 − 1
τ2

· · · 0
...

...
. . .

...

0 · · · · · · − 1
τn

 , and q =



2σ2
1

τ1

2σ2
2

τ2

...
2σ2

n
τn

 . (4.13)

The design of the KF is done with a F̂a (i.e. τ̂i ,∀i ∈ [1,n]) that in general would not match the

true one due to the limitations that are described in Chapter 3. The error due to the imperfect

design of Fa can be obtained from Equation (4.8), where in this case some simplifications can

be done: First, the imperfect design of the augmented states does not affect the measurement

matrix nor the measurement noise and therefore ∆H = 0 and R̂ = R. Second, since the imper-

fect design only affects the augmented states, it is only needed to consider with the extended
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Chapter 4 Continuous-time Kalman Filter Bounding Models

vector for sensitivity analysis these states within the vector ζζζ, such that now ζζζ =
[
eT aT

]T
, in for

instance Equation (4.7). Equation (4.8) can be then rewritten to:

Ṗζ =

 F̂− K̂H ∆F

0 Fa

Pζ+Pζ

 F̂− K̂H ∆F

0 Fa

T

+
 K̂JRJTK̂T 0

0 0



+


GQξGT 0 0

0 Qa −Qa

0 −Qa Qa

 , (4.14)

where

∆F =

 0

∆Fa

 , ∆Fa ≜ F̂a −Fa, and Qa = E[qqT]. (4.15)

Equation (4.14) provides the true error covariance matrix under the wrongly designed KF

matrices (i.e., F and Q). The main goal is to design the filter in such a way so that the KF

estimated covariance is greater than the true error covariance, that is P̂ ≥ P. However, it is not

clear how to use Equation (4.14) to derive suitable conditions, since it depends on the true

noise errors and matrices which are unknown. For this purpose the use of an auxiliary Riccati

equation is introduced:

Σ̇ΣΣ =

 F̂− K̂H 0

0 Fa

ΣΣΣ+ΣΣΣ

 F̂− K̂H 0

0 Fa

T

+
 K̂JRJTK̂T 0

0 0

+
 GQ̂xGT 0

0 Q̄a

 .

(4.16)

where an auxiliary process with covariance Q̄a is introduced and will be designed later. The

matrixΣΣΣ is a block diagonal matrix:

ΣΣΣ =

 ΣΣΣx 0

0 ΣΣΣa

 (4.17)

In Equation (4.16) the reader can find a Riccati expression of a designed KF, similarly to

Equation (4.6) that is therefore propagated independently from the introduced auxiliary

processΣΣΣa. The auxiliary processΣΣΣa is chosen to share the propagation matrix Fa of the true

process and a process covariance matrix Q̄a that only needs to satisfy Q̄a ≥ Qa as it will be

shown later. The covariance of the designed KF will bound the true error covariance if and
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only ifΣΣΣ−Pζ ≥ 0, which is equivalent to guaranteeing that the two inequalities:

Σ̇ΣΣ− Ṗζ ≥ 0, and ΣΣΣ(0)−Pζ(0) ≥ 0. (4.18)

In order to find suitable values for F̂ and Q̂x that guarantee bounding conditions, Equa-

tion (4.16) must be therefore compared with Equation (4.14). However, these do not share

completely the same elements of the propagation matrices yet. Equation (4.16) is then rewrit-

ten to include the terms ∆F by summing and substracting them as:

Σ̇ΣΣ =

 F̂− K̂H ∆F

0 Fa

ΣΣΣ+ΣΣΣ

 F̂− K̂H ∆F

0 Fa

T

+
 K̂JRJTK̂T 0

0 0


+

 GQ̂xGT −∆FΣΣΣa

−∆FΣΣΣa Q̄a

 . (4.19)

The difference between true error covariance in Equation (4.14) and designed KF error covari-

ance can be now evaluated using the transformation ∆ =ΣΣΣ−Pζ:

∆̇∆∆ =

 F̂− K̂H ∆F

0 Fa

∆∆∆+∆∆∆

 F̂− K̂H ∆F

0 Fa

T

+


Q̂ξ−Qξ 0 0

0 Q̂a −Qa −∆FaΣΣΣa +Qa

0 −ΣΣΣa∆FT
a +Qa Q̄a −Qa

 .

(4.20)

The conditions in Equation (4.18) are satisfied if ∆(0) ≥ 0 and the last matrix term in Equa-

tion (4.20) is positive semidefinite. The process noise of the unaugmented states can be

assumed to be properly designed so that Q̂ξ−Qξ ≥ 0. Therefore, ensuring semidefiniteness in

Equation (4.20) reduces to the lower right 2x2 block elements to satisfy: Q̂a −Qa −∆FaΣΣΣa +Qa

−ΣΣΣa∆FT
a +Qa Q̄a −Qa

≥ 0. (4.21)

The condition in Equation (4.21) will be exploited to derive GMP model parameters that

guarantee KF covariance bounding condition in the next section. On the other side, the
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second condition in Equation (4.18) is:
ΣΣΣξ(0) 0 0

0 Σ̂ΣΣa(0) 0

0 0 Σ̄ΣΣa(0)

−


P(0) 0 0

0 Pa(0) −Pa(0)

0 −Pa(0) Pa(0)

≥ 0, (4.22)

Since we recall that the auxiliary matrix ΣΣΣ is block diagonal. For stationary processes, this

condition is satisfied if Equation (4.21) is satisfied [73]. Equation (4.22) will be used later to

derive conditions for non-stationary models.

4.1.3 Conservative Stationary Bound

In general, one is free to design the process ΣΣΣa as far as the condition in Equation (4.21) is

satisfied. A way to derive simplified conditions for Q̂a and F̂a is to impose:

−∆FaΣΣΣa +Qa = 0. (4.23)

In this case, the matrix in Equation (4.21) is a diagonal matrix leading to the simplified con-

ditions Q̂a ≥ Qa and Q̄a ≥ Qa. Since all the matrices in Equation (4.21) are diagonal matrices

representing the individual correlated processes that are assumed to be independent among

each other, it is sufficient to work with one arbitrary process in a scalar fashion. Under that,

using Equation (4.13) and Equation (4.15), Equation (4.23) simplifies for a single diagonal

element to:(
1

τ
− 1

τ̂

)
σ2

a −
2σ2

τ
= 0 −→σ2

a = 2σ2
(
1− τ

τ̂

)−1
. (4.24)

For a single GMP process, Q̄a is:

q̄a =
2σ2

a

τ
=

4σ2

τ

(
τ̂

τ̂−τ
)

. (4.25)

Since q̄a is a variance element and therefore non-negative and it must be greater than qa , the

only way to satisfy it is by making Equation (4.25) non-negative. This can only happen if τ̂≥ τ
and therefore it must be chosen from the possible range of τ to be τ̂ = τmax.

The other condition that must be satisfied is Q̂a ≥ Qa, which for a specific noise component

translates to:

q̂a ≥ qa, (4.26)

2σ̂2

τ̂
≥ 2σ2

τ
−→ σ̂2 ≥ σ2τ̂

τ
. (4.27)
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Since τ̂ has been already selected to be τmax, it is obvious that the inequality is more restrictive

when σ2 =σ2
max and when τ = τmin, giving finally the condition for σ̂2:

σ̂2 ≥σ2
max

τmax

τmin
, (4.28)

which would be typically chosen at the equality point to avoid extra conservatism. It can be

shown that the GMP with τ = τmax and σ̂2 in Equation (4.28) produces the same bound as in

[84]. However, the formulation presented here preserves the structure of a GMP and offers

clear interpretation.

Theorem 4.1.1 (Gauss-Markov Conservative Model).

The estimation of error covariance by a Kalman filter estimator with uncertain time-

correlated Gauss-Markov parameters in the range σ2 ∈ [σ2
min,σ2

max] and τ ∈ [τmin,τmax]

can be bounded if the filter is designed with augmented stationary Gauss-Markov states

and following parameters:

τ̂ = τmax and σ̂2 =σ2
max

τmax

τmin
. (4.29)

4.2 Derivation via Spectral Density Bounding

Frequency domain analysis has been widely used to model signals and error processes [55]

and they are considered when designing Kalman filter covariance matrices [28]. More re-

cently, Power Spectral Densities (PSD) can be also considered when designing safety related

estimators when considering Theorem 4.2.1.

Theorem 4.2.1 (Frequency Domain Bounding in Continuous-time).

The covariance matrix of the error of a Kalman filter estimation P can be upper bounded

with the estimated KF covariance P̂, i.e., P̂ ≥ P, when designing each of the measure-

ment and process noises i with Power Spectral Densities (PSD) Ŝi (ω) such that they

bound the actual error PSD Si (ω), i.e., Ŝi (ω) ≥ Si (ω),∀ω ∈ [0,∞].

Proof of Theorem 4.2.1 can be found in Appendix B.1, which is here adapted from [51].

Frequency domain analysis with Power Spectral Density (PSD) is in the following then used to

find new conditions for uncertain GMP in order to bound linear dynamic system estimators.
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4.2.1 Stationary Continuous-Time GMP Model

Problem Formulation

In order to derive GMP model conditions for the KF process and measurement noise, bounding

conditions on the PSDs of the uncertain GMPs are investigated. The spectral density of a GMP

in the continuous-time domain Sc can be expressed as [53]:

Sc(ω) =
2σ2/τ

ω2 + (1/τ)2 , (4.30)

where ω = 2π f is the angular frequency in radians per seconds, with f being the linear fre-

quency in Herz and the subscript c is used to refer to the continuous-time domain. Exemplary,

Figure (4.1) shows different PSD curves for GMPs with time constants ranging from 10 to 100

seconds. In Figure (4.1), the lines corresponding to GMPs with different time constants cross

with the others at different frequencies. As explained in Section 5.3, this illustrates the fact

that a KF designed by taking the maximum value of GMP time correlation constant does not

necessarily bound the actual true covariance at any time (or at any frequency).

Since the spectrum of a real process is an even function, it is only needed to bound the PSD

over [0,∞) following Theorem 4.2.1:

Ŝc(ω) ≥ Sc(ω),∀ω ∈ [0,∞), (4.31)

where Ŝc is the bounding PSD of the continuous-time GMP model to be determined. Further-

more, in order to find the tightest possible bound, the total net power of each of the process

models must be minimized. This can be expressed therefore as the following minimization

problem:

min
σ̂c,τ̂c

1

π

∫ ∞

0
Ŝc(ω)dω = min

σ̂c,τ̂c

σ̂2
c,

such that Ŝc(ω) ≥ Sc(ω),

∀ω ∈ [0,∞),∀τ ∈ [τmin,τmax] and ∀σ2 ∈ [σ2
min,σ2

max].

(4.32)

where σ̂c and τ̂c are, respectively, the variance and time-correlation constant parameters of

the continuous-time GMP model that guarantees bounding conditions.
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4.2 Derivation via Spectral Density Bounding

Continuous-Time Model Derivation

The derivation of a GMP model solution starts by using Equation (4.30) to express Equa-

tion (4.31) as:

2σ̂2
c/τ̂c

ω2 +1/τ̂2
c
≥ 2σ2/τ

ω2 +1/τ2 , ∀ω ∈ [0,∞). (4.33)

Subtracting the right-hand-side term from both sides of the inequality, writing the resulting

fraction with a common denominator, and factoring out ω2 in the terms where it appears in

the numerator, Equation (4.33) becomes:

ω2(2σ̂2
cτ−2σ2τ̂c)+ 2σ̂2

c τ̂c−2σ2τ

ττ̂c

ττ̂c(ω2 +1/τ̂2
c)(ω2 +1/τ2)

≥ 0,∀ω ∈ [0,∞). (4.34)

Sinceω, τ and τ̂c are positive, the denominator in Equation (4.34) is always positive. Therefore,

the numerator must also be non-negative:

ω2(σ̂2
cτ−σ2τ̂c)+ σ̂2

cτ̂c −σ2τ

ττ̂c
≥ 0,∀ω ∈ [0,∞). (4.35)

Equation (4.35) is linear in ω2, i.e., monotonically increasing or decreasing with ω≥ 0. Thus,

a necessary and sufficient condition for Equation (4.35) to be satisfied ∀ω ∈ [0,∞) is that it

must hold true for the two limit values of ω. At the limit when ω→∞ and ω = 0, the following

two conditions are derived:

σ̂2
cτ−σ2τ̂c ≥ 0, (4.36)

σ̂2
cτ̂c −σ2τ≥ 0, (4.37)

which can be rewritten as:

σ̂2
c ≥

σ2τ

τ̂c
, σ̂2

c ≥
σ2τ̂c

τ
. (4.38)

These expressions must be satisfied ∀τ ∈ [τmin,τmax] and ∀σ2 ∈ [σ2
min,σ2

max]. Both conditions

are clearly more restrictive when σ2 =σ2
max. The first one is also more restrictive when τ = τmax,

whereas the second one is more restrictive when τ = τmin. Thus, when considering the entire

range of possible GMP model parameter values, Equation (4.38) becomes:

σ̂2
c ≥

σ2
maxτmax

τ̂c
, σ̂2

c ≥
σ2

maxτ̂c

τmin
. (4.39)

53



Chapter 4 Continuous-time Kalman Filter Bounding Models
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Figure 4.1: Power Spectral Density (PSD) of GM processes with with σ2 = 1 and different values
of τ ∈ [10,100]s.

The tightest GMP bound is the one that minimizes σ̂2
c according to Equation (4.32). In Equa-

tion (4.39), this is achieved at equality, i.e., for the following equations:

σ̂2
c =

σ2
maxτmax

τ̂c
, σ̂2

c =
σ2

maxτ̂c

τmin
. (4.40)

Solving Equation (4.40) for σ̂2
c and τ̂c gives the solution in Equation (4.41).

Theorem 4.2.2 (Continuous-time Gauss-Markov Tight Model).

The stationary continuous-time GMP model that provides the tightest bound on an

actual GMP with uncertain but bounded variance σ2 ∈ [σ2
min,σ2

max] and time constant

τ ∈ [τmin,τmax] is determined by the following time correlation constant and variance:

τ̂c =
p
τminτmax, σ̂2

c =σ2
max

√
τmax

τmin
. (4.41)

The solution in Equation (4.41) provides not only a tight bound at the PSD domain, but it

also ensures the choice of parameters for uncertain augmented states noises as a bounding

condition for Kalman filter or other LDS estimator in continuous-time domain.

Stationary Bounds Evaluation

Figure (4.2) presents the tight stationary GMP bound derived in the continuous-time domain,

the stationary conservative bound derived in Section 4.1.3 and possible realizations of the

actual GMP with unit variance and time constants varying from 10 to 100 seconds (differently
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Figure 4.2: Power Spectral Density (PSD) of GMP with σ2 = 1 and different values of τ ∈
[10,100]s; Conservative bound in Theorem 4.1.1 and tight bound in Theorem 4.2.2.

color-coded). Figure (4.2) illustrates the fact that the bound in Section 4.1.3 is looser at low

frequencies than the one obtained via spectral bounding, and that this bound is the tightest

possible stationary bound with a GMP structure.

4.3 Non-Stationary Bounds

Previous sections derived stationary models to bound uncertain GMP in continuous-time

domain. As a consequence of accounting for the range of possible time correlation constant

values within the GMP parameter uncertainty, one interpretation indicates that the variance

of the bounding process model need to consider the maximum possible variance inflated by

factor depending on the ratio between the maximum and minimum time correlation constant

as seen in Equation (4.29) and Equation (4.41). This can become unnecessary conservative at

the start of operation when the process has not experience any time propagation yet. A way

to make the GMP model tighter is by considering a non-stationary GMP model that presents

a transient phase at the beginning of its inclusion in the linear dynamic estimator. The new

model will match the stationary one at steady state, but will provide a tighter estimation error

variance bound during the transient period.

4.3.1 Derivation using Sensitivity Analysis

Section 4.1 detailed a methodology to derive conditions on the GMP model uncertainty as

such these are reflected in the KF error covariance. One of the conditions in Equation (4.22)
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Chapter 4 Continuous-time Kalman Filter Bounding Models

was that the initial covariance of the auxiliary matrix ΣΣΣ(0) had to be greater or equal to the

initial true error covariance Pζ(0). Equation (4.22) can be rewriting recalling Equation (4.10) in

the following way:


ΣΣΣξ(0)−Pξ(0) 0 0

0 Σ̂ΣΣa(0)−Pa(0) Pa(0)

0 Pa(0) Σ̄ΣΣa(0)−Pa(0)

≥ 0, (4.42)

The true GMP processes are assumed to be stationary and therefore Pa(0) = Pa. This was also

considered for the auxiliary process introduced in Equation (4.16) which simplifies Σ̄ΣΣa(0) = Σ̄ΣΣa.

The initialization of the states of interest is assumed to be done in such a way thatΣΣΣξ(0) ≥ P(0).

Therefore it is only necessary to further consider the condition: Σ̂ΣΣa(0)−Pa Pa

Pa Σ̄ΣΣa −Pa

≥ 0. (4.43)

Notice that all the matrices in Equation (4.43) are diagonal since they contain parameters

of the different independent time-correlated GMP processes. Therefore, the condition in

Equation (4.43) can be ensured by ensuring it is true for each of the process parameters.

Consider the 2x2 submatrix of an arbitrary process: σ̂2
c,0 −σ2 −σ2

−σ2 σ̄2 −σ2

≥ 0, (4.44)

which leads finally to the following important condition on σ̂2
c,0 [99]:

σ̂2
c,0 ≥σ2 + σ4

σ̄2 −σ2 . (4.45)

Initial Variance for conservative bound

For the situation of the conservative bound shown in Section 4.1.3, and using Equation (4.25),

the value of σ̄2 can be shown to be [73]:

σ̄2 = 2σ2
(

τmax

τmax −τ
)

. (4.46)

Equation (4.45) is then equal to:

σ̂2
c,0 ≥σ2 2

1+ τ
τmax

, (4.47)
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4.3 Non-Stationary Bounds

which is more restrictive when τ = τmin and σ2 = σ2
max. Finally and in order to avoid extra

conservatism, σ̂2
c,0 can be chosen at the equality to build the conservative non-stationary

model with:

σ̂2
c,0 =σ2

max
2

1+ τmin
τmax

. (4.48)

Theorem 4.3.1 (Non-stationary Gauss-Markov Conservative Model).

The estimation of error covariance by a Kalman filter estimator with uncertain time-

correlated Gauss-Markov parameters in the range σ2 ∈ [σ2
min,σ2

max] and τ ∈ [τmin,τmax]

can be bounded if the filter is designed with augmented states modeled with a non-

stationary GMP model with parameters:

τ̂ = τmax and σ̂2 =σ2
max

τmax

τmin
. (4.49)

and initial variance given by:

σ̂2
c,0 =σ2

max
2

1+ τmin
τmax

. (4.50)

Tight Initial Variance derivation

In the next, instead of using the conservative stationary bound of Section 4.1.3, let us consider

the tight stationary bound obtained via frequency domain analysis of Section 4.2.1 in order

to find the initial variance of a new tight non-stationary GMP. The initial condition can be

obtained from Equation (4.45) when the value of σ̄2 related to the use of the tight bound

parameters in Equation (4.41). In order to find the expression for σ̄2, it is necessary to revisit

the general condition on the advanced sensitivity approach in Equation (4.21), that is here

rewritten for convenience: Q̂a −Qa −∆FaΣΣΣa +Qa

−ΣΣΣa∆FT
a +Qa Q̄a −Qa

≥ 0. (4.51)

Since the noise elements are uncorrelated and therefore the matrices are diagonal matrices,

the condition for each noise component can be written as: q̂ −q −δl σ̄2 +q

−δl σ̄2 +q q̄ −q

≥ 0, (4.52)
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Chapter 4 Continuous-time Kalman Filter Bounding Models

Using Schur complements to force the cross-term to be zero, Equation (4.52) becomes: q̂ −q − (q −δl σ̄2)2(q̄ −q)−1 0

0 q̄ −q

≥ 0. (4.53)

Since Equation (4.53) is diagonal, it will be positive semidefinite if the diagonal elements are

non-negative. The first diagonal element can be expressed as:

q̂ −q −
(

q + τ

2

(
1

τ̂
− 1

τ

)
q̄

)2

(q̄ −q)−1 ≥ 0. (4.54)

where the following substitutions are applied:

δl =
1

τ
− 1

τ̂
, and, q̄ =

2σ̄2

τ
. (4.55)

Since q̄ − q ≥ 0 must also be non-negative, the inequality direction does not change after

multiplying by it. This leads to:

q̂ q̄ − q̂q − q̄q −τ
(

1

τ̂
− 1

τ

)
qq̄ − τ2

4

(
1

τ̂
− 1

τ

)2

q̄2 ≥ 0. (4.56)

Grouping the factors of q̄ leads to the following quadratic inequation:

−τ
2

4

(
1

τ̂
− 1

τ

)2

q̄2 +
(
q̂ − τ

τ̂
q
)

q̄ − q̂q ≥ 0. (4.57)

Now substituting q = 2σ2

τ , q̄ = 2σ̄2

τ and q̂ = 2σ̂2

τ̂ , simplifies to:

−
(

1

τ̂
− 1

τ

)2

σ̄4 +
(
σ̂2 −σ2

)
τ̂

4

τ
σ̄2 − 4σ̂2σ2

τ̂τ
≥ 0. (4.58)

From the possible solutions of σ̄2, the maximum and minimum values that satisfy Equa-

tion (4.58) can be found at the roots of the equality since Equation (4.58) is a downwards

parabola function for a given value of σ2 and τ. We have the freedom to choose either of the

two possible solutions. However, the maximum one allows to be tighter in the determination

of σ2
c,0 in Equation (4.45) and it is therefore selected. On the other hand, Equation (4.58) must

be satisfied for any value of σ2 and τ within the possible range. Therefore, we seek to find the

minimum value of σ̄2 for any value of the true unknown parameters. The determination of

the necessary and most suitable σ̄2 can therefore be summarised as:

σ̄2
min = min

(
max
σ2,τ

σ̄2
)

. (4.59)

58



4.3 Non-Stationary Bounds

Solving the quadratic equation for σ̄2 gives the following solutions:

σ̄2 =
−4(σ̂2−σ2)

τ̂τ ±
√(

4(σ̂2−σ2)
τ̂τ

)2 −16
( 1
τ̂ − 1

τ

)2 σ̂2σ2

τ̂τ

−2
( 1
τ̂ − 1

τ

)2 , (4.60)

which can be simplified to:

σ̄2 = 2τ̂τ
σ̂2 −σ2 ±

√
σ̂4 +σ4 − σ̂2σ2 τ2+τ̂2

τ̂τ

(τ− τ̂)2 . (4.61)

From the range values of τ, the minimum value of σ̄2 that satisfies Equation (4.58) is achieved

for both limiting cases τ = τmin and τ = τmax when choosing σ2 =σ2
max. Under these circum-

stances the argument of the square root term is zero and minimum σ̄2 writes:

σ̄2
min = 2σ2

max
(τmax − τ̂)τ

(τ̂−τ)2 , ∀τ = {τmin,τmax}. (4.62)

It can be shown that this expressions achieves the same value for τmin and τmax, for instance

for τmax it reads:

σ̄2
min = 2σ2

max
τmax

τmax − τ̂
. (4.63)

Coming now back to the condition for the non-stationary bound and substituting Equa-

tion (4.63) in Equation (4.45) leads to:

σ̂2
c,0 ≥σ2

max +
σ4

max(τmax − τ̂)

2σ2
maxτmax −σ2

max(τmax − τ̂)
. (4.64)

Substituting τ̂ =
p
τminτmax, from Equation (4.41), and rearranging, the tightest bound on σ̂2

c,0

is found at equality, which is:

σ̂2
c,0 =σ2

max
2

1+
√

τmin
τmax

. (4.65)
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Chapter 4 Continuous-time Kalman Filter Bounding Models

Theorem 4.3.2 (Non-stationary continuous-Time GMP Tight Bounding Model).

A non-stationary GMP with τ̂ =
p
τminτmax and σ̂2 =σ2

max

√
τmax
τmin

and initial variance:

σ̂c,0 =σ2
max

2

1+
√

τmin
τmax

(4.66)

guarantees bounding conditions at the steady state of the GMP uncertain process as

well as provides tight error bounding conditions during the transient phase.
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5 Discrete-Time Kalman Filter Bound-

ing Models

This chapter derives the main conditions of choosing GMP model parameters that guaran-

tee tight bounding of error covariance in estimation for the discrete version of state-space

estimators such as KF. The bounds are obtained by frequency and time domain analysis. Be-

sides, proofs of the validity of parameter models derived in Chapter 4 in continuous-time are

provided for its use in discrete-time.

5.1 Bound Derivation via Spectral Density Bounding

This section presents the analysis in the power spectral density domain of the error processes

to derive the tightest GMP model bounds for noises with Gauss-Markov structure in discrete-

time domain.

5.1.1 Frequency Domain Bounding Introduction

A general discrete or sampled linear system can be expressed by :

xk =ΦΦΦk xk−1 +Gk wk , (5.1)

zk = Hk xk + Jk vk , (5.2)

where the state vector x ∈Rs , process noise w ∈Rp , v ∈Rl and transition matrixΦΦΦ ∈Rs×s are

discrete-time vectors and matrices. Equivalently, the measurement and system model can be
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Chapter 5 Discrete-Time Kalman Filter Bounding Models

expressed in a batch formulation as [39]:

x̃0

0

z1

0
...

zk


=



I 0 · · · · · · 0

ΦΦΦ1 −I 0 · · · 0

0 H1 0 · · · 0

0 ΦΦΦ2 −I · · · 0
...

...
...

. . .
...

0 0 · · · · · · Hk





x0

x1

x2

...

xk


+



ννν0

G1w1

J1v1

...

Gk wk

Jk vk


, (5.3)

where x̃0 ∈Rs is a pseudo-measurement representing an initialization of the estimation process

and ν0 is its associated noise. Equation (5.3) can be rewritten as a compact measurement

equation:

zK = CKxK +DKTKνννK, (5.4)

where K is used to denote that times 0 to k are included in the vector or matrix (or equivalently

expressed as K = 0 : k), and DK ∈Rs(k+1)+kl×s+k(p+l ) is the block diagonal matrix

DK = diag{I,G1,J1, · · · ,Gk ,Jk } . (5.5)

The matrix TK ∈Rs+k(p+l )×s+k(p+l ) has been introduced to reorder the noise components in

w and v such that νννK contains now the grouped time-series of the individual noises ordered

within one vector:

νννK =
[
ν0,1, · · · ,ν0,s , w1,1, · · · , w1,k , v1,1, · · · , v1,k , · · · , wp,1, · · · , wp,k , vl ,1, · · · , vl ,k

]T . (5.6)

As νννK regroups a zero-mean Gaussian noise, a least-square (LS) estimator of Equation (5.4) is:

x̂K =
(
CT

KWCK
)−1

CT
KW︸ ︷︷ ︸

SK

zK, (5.7)

with weighting matrix W chosen as W =
(
DKTKNKTT

KDT
K

)−1
, where NK = E[νννKννν

T
K] is the covari-

ance of the full noise vector. Note that the the batch estimator SK will produce the same

estimate x̂K at the instant k as a Kalman filter, such that x̂k = xk|k . It is also possible to obtain

the Kalman filter estimator from SK for all time epochs by making the elements of the upper
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5.1 Bound Derivation via Spectral Density Bounding

triangular part of SK zeros. That is, if the batch least-square estimator is:

SK =


s11 s12 · · · s1k

s21 s22 · · · s2k

...
...

. . .
...

sk1 sk2 · · · skk

 , (5.8)

the Kalman filter estimator for all times up to time k is:

SKF,K =


s11 0 · · · 0

s21 s22 · · · 0
...

...
. . .

...

sk1 sk2 · · · skk

 , (5.9)

and therefore x̂KF,K = SKF,KzK is the Kalman filter estimate for all time epochs.

The transformation of estimator matrix to the all-times Kalman filter is not critical since

Equation (5.8) and Equation (5.9) show that both estimators are the same for the current time

k and one could select k arbitrary. In fact, the conclusions of this section and chapter are

equally valid for both batch least-squares, Kalman filter or any other linear estimator.

The covariance of the estimation error of x̂KF,K can be now computed for a given estimator (KF

in this case) as:

Cov[x̂KF,K] = PK = SKF,KNKST
KF,K. (5.10)

The noise components in ννν can be considered independent in most applications (e.g., coming

from different GNSS pseudorange errors). Therefore, the covariance matrix N is a block

diagonal matrix containing the initial filter covariance and the autocovariance matrix of each

of the noise components:

NK = diag
{

P0, R1, R2, · · · , RnK

}
, (5.11)

where Ri is the autocovariance matrix of the i th noise component in ννν which can be either

one of the noise process of w or v, depending on their specific position.

In order to overbound the variance of the KF estimated error so it reflects the uncertainty of

noise parameters, the designed KF must produce a covariance matrix P̂ that overbounds the

true covariance matrix P. The overbounding of covariance matrix is defined such that the

difference P̂−P ≥ 0 is positive semidefinite.

63



Chapter 5 Discrete-Time Kalman Filter Bounding Models

For a fixed estimator and according to Equation (5.10), this implies directly that the designed

covariance matrix N̂ must be greater than the true one N̂ ≥ N. And equivalently, P̂(0) ≥ P(0)

and R̂i ≥ Ri , ∀i must be guaranteed.

Since the individual autocovariance matrix of each of the noise process are Toeplitz matrix, the

latter condition reduces to guaranteeing that the difference of the autocovariance sequences is

a positive sequence [73]. For stationary processes, Einstein-Wiener-Khinchin theorem states

that the autocovariance function and the Power Spectral Density (PSD) are Fourier pairs [55].

In discrete domain, the spectral density can be obtained from the autocovariance sequence as

an infinity sum:

Sd(ω) =
∞∑

n=−∞
r [n]e− jωn , (5.12)

whereω is defined only in [0,π] due to Nyquist limit. Conversely, the autocovariance sequence

can be obtained from the discrete spectral density from the inverse discrete Fourier transform

as:

r [n] =
∫ π

−π
e jωnSd(ω)dω, (5.13)

since the process noises in our case are all related to real time valued signals and Sd (ω) is

an even function, it is enough to integrate over ω ∈ [0,π]. Under some regularity conditions,

the condition R̂ ≥ R is therefore satisfied when Ŝd(ω) ≥ Sd(ω), ∀ω ∈ [0,π] [99]. The proof is

provided in Appendix B.2.

Note that assuming that the discrete PSD is known, this condition is sufficient to produce an

upper bound on the KF variance independently on the time a measurement is used in the

KF or similarly, the equivalent length of the autocovariance sequence needed for the filter

when considering the batch KF formulation. Theorem 5.1.1 summarizes the criteria for KF

bounding based on frequency domain bounding.

Theorem 5.1.1 (Frequency Domain Bounding in Discrete-time).

A Kalman filter estimated error covariance in discrete-time P̂ that upper bounds the

true error covariance P can be obtained when designing the filter autocovariances R̂i

for all noise processes i such that its equivalent Power Spectral Density (PSD) Ŝd(ω)

bounds the true PSD Sd(ω).

Ŝd(ω) ≥ Sd(ω), ∀ω ∈ [0,π] −→ R̂ ≥ R −→ P̂ ≥ P (5.14)

In the next section, the condition in Equation (5.14) is used to derive tight bounds for the case

of Gauss-Markov process with uncertain parameters.
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5.1.2 Stationary Discrete-Time GMP Model

Problem formulation

A discrete-time GMP model with τ̂d time constant and variance σ̂2
d that ensures bounding

condition on the estimation error can be written at any time epoch n ∈Z≥ 0 as:

an = α̂dan−1 +
√
σ̂2

d

(
1− α̂2

d

)
wn , (5.15)

where α̂ = e
−∆t
τ̂d , wn ∼N (0,1) ∆t ∈R>0 is the sampling time interval.

As shown in Section 5.1.1, in order to bound estimation error in sequential or batch type

estimators, the spectral density of the model must be greater than or equal to the spectral

density of the actual noise components Sd:

Ŝd(ω) ≥ Sd(ω), ∀ω ∈ [0,
π

∆t
] (5.16)

In the case that the model and underlying noise are Gauss-Markov processes, Equation (5.16)

is a starting point to determine the values of τ̂d and kd that produce the tightest estimation

error variance bound. This is achieved by seeking to minimize the total net power of the

process which is its variance σ̂2
d.

Discrete-time Model Derivation

The spectral density of a generic discrete-time first-order GMP can be expressed as [101]:

Sd(ω) =
σ2∆t

(
1−α2

)
1+α2 −2αcos(ω∆t )

, (5.17)

where α = e
−∆t
τ . Based on the definition in Eq. (5.17), the condition in Equation (5.16) for all

ω ∈ [0, π

∆t
] must satisfy the inequality:

σ̂2
d∆t

(
1− α̂2

d

)
1+ α̂2

d −2α̂d cos(ω∆t )
≥ σ2∆t

(
1−α2

)
1+α2 −2αcos(ω∆t )

. (5.18)
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After bringing the right-hand-side term to the left, expressing the two fractions with a common

denominator, and dividing both sides by ∆t , Equation (5.18) becomes:

σ̂2
d

(
1− α̂2

d

)(
1+α2 −2αcos(ω∆t )

)(
1+ α̂2

d −2α̂d cos(ω∆t )
)(

1+α2 −2αcos(ω∆t )
)

− σ2
(
1−α2

)(
1+ α̂2

d −2α̂d cos(ω∆t )
)(

1+ α̂2
d −2α̂d cos(ω∆t )

)(
1+α2 −2αcos(ω∆t )

) ≥ 0,

∀ω ∈ [0,
π

∆t
].

(5.19)

The second order polynomials appearing in the denominators are of the form x2−2x cos(ω∆t )+
1. That is, they are parabolas that open up with a minimum value of 1−cos2ω∆t occurring at

x∗ = cosω∆t . Given that cos(ω∆t ) ∈ [−1,1], the minimum value is always positive, and since

the parabolas open up, it must be that the denominators in Equation (5.19) are also positive.

Therefore, Equation (5.19) is satisfied if and only if the numerator is non-negative, which, after

factoring out cos(ω∆t ), can be written as:

cos(ω∆t )
(
σ2(1−α2)2α̂d − σ̂2

d(1− α̂2
d)2α

)+ σ̂2
d(1− α̂2

d)(1+α2)−σ2(1−α2)(1+ α̂2
d) ≥ 0, (5.20)

Equation (5.20) is linear in cos(ω∆t), which can be written independently of ∆t as cos(Ω)

where Ω = ω∆t , ∀Ω ∈ [0,π]. The term cos(ω∆t) is a monotonically decreasing function

of ω∆t for ω ∈ [0,π/∆t ]. Thus, showing that the inequality in Equation (5.20) is satisfied

∀ω ∈ [0, π

∆t
] is equivalent to showing that it is satisfied for the limit values of cos(ω∆t). For

cos(ω∆t ) = 1, Equation (5.20) becomes:

σ̂2
d ≥σ2 (1+α)(1− α̂d)

(1−α)(1+ α̂d)
. (5.21)

For cos(ω∆t ) = −1, Equation (5.20) becomes:

σ̂2
d ≥σ2 (1−α)(1+ α̂d)

(1+α)(1− α̂d)
. (5.22)

Equation (5.21) and Equation (5.22) must be satisfied ∀σ2 ∈ [σ2
min,σ2

max]. Choosing σ2 =σ2
max

ensures that Equation (5.21) and Equation (5.22) are satisfied for any other value of σ2 within

the admissible range.

In addition, Equation (5.21) and Equation (5.22) must hold for all values of α, i.e., ∀τ ∈
[τmin,τmax]. In Equation (5.21), the maximum value of the right-hand-side is for α = αmax,

which maximizes the numerator while minimizing the denominator because 0 < α< 1. Simi-

larly, in Equation (5.22), the maximum value of the right-hand-side is for α = αmin. Further-

more, the tightest PSD bound is found when σ̂2
d is minimized, which is achieved at equality in
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5.1 Bound Derivation via Spectral Density Bounding

Equation (5.21) and Equation (5.22). The following two equations are derived:

σ̂2
d =σ2

max
(1+αmax)(1− α̂d)

(1−αmax)(1+ α̂d)
, (5.23)

σ̂2
d =σ2

max
(1−αmin)(1+ α̂d)

(1+αmin)(1− α̂d)
. (5.24)

Solving for α̂d and σ̂2
d in Equation (5.23) and Equation (5.24), a discrete-time, stationary, first-

order GMP model that bounds the PSD of the uncertain GMP is found with the parameters in

Equation (5.25) and Equation (5.26).

Theorem 5.1.2 (Discrete-time stationary GMP Tight Bounding Model).

The stationary discrete-time GMP model that provides the tightest bound on an actual

GMP with uncertain but bounded variance σ2 ∈ [σ2
min,σ2

max] and time constant τ ∈
[τmin,τmax] is determined by the following time correlation constant and variance:

σ̂2
d =σ2

max

√
(1−αmin)(1+αmax)

(1+αmin)(1−αmax)
, and (5.25)

τ̂d = −∆t

[
ln

(
1−p

Γ

1+p
Γ

)]−1

, (5.26)

where

αmin = e
−∆t
τmin , αmax = e−

∆t
τmax , and (5.27)

Γ =
(1−αmin) (1−αmax)

(1+αmin) (1+αmax)
. (5.28)

Figure 5.1 shows the PSD of different GMPs with the limit values of time-correlation constant

and variance within its range along with the new GMP model parameters.

5.1.3 Using Discrete-Time Models with Parameters values derived in continuous

time

In Section 5.1.2 and Section 4.2.1 two different expressions were derived using frequency

domain overbounding in the discrete and continuous domain, respectively.

It can be shown that the expressions for τ̂d and σ̂2
d in Equation (5.26) and Equation (5.25) tend
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Figure 5.1: Discrete-time Power Spectral Density (PSD) of stationary GMP with σ2 ∈ [1,10] and
τ ∈ [10,100]s, and New Tight Bound.

to their continuous counter part when ∆t → 0, and already in particular when ∆t << τmin:

lim
∆t→0

σ̂d = σ̂c, (5.29)

lim
∆t→0

τ̂d = τ̂c. (5.30)

Therefore, for some practical applications the model parameters in Equation (4.41) derived in

the continuous time domain might be more attractive to use given their compact expressions.

This section proofs that using the model parameters derived for continuous-time in a discrete-

time model also produces bounding conditions independently of the sampling interval ∆t .

The proof reduces to show that the spectral density of a GMP using σ̂c, τ̂c upper bounds the

PSD of the GMP using σ̂d, τ̂d for all ∆t . This can be expressed mathematically as:

σ̂2
c∆t

(
1− α̂2

c

)
1+ α̂2

c −2α̂c cos(ω∆t )
≥ σ̂2

d∆t
(
1− α̂2

d

)
1+ α̂2

d −2α̂d cos(ω∆t )
,∀∆t ≥ 0 (5.31)

The inequality in Equation (5.31) is of the same form as that in Equation (5.18). Thus, following

the same steps as in Equation (5.18) to Equation (5.22), it can be shown that Equation (5.31) is

true if and only if the following two inequalities are satisfied for all ∆t ≥ 0:

σ̂2
c

(1+ α̂c)

(1− α̂c)
≥ σ̂2

d

(1+ α̂d)

(1− α̂d)
, (5.32)

σ̂2
c

(1− α̂c)

(1+ α̂c)
≥ σ̂2

d

(1− α̂d)

(1+ α̂d)
. (5.33)

Substituting the expressions of σ̂2
d in Equation (5.23) and Equation (5.24) into Equation (5.32)
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5.1 Bound Derivation via Spectral Density Bounding

and Equation (5.33), respectively, using the definition of σ̂2
c in Equation (4.41) and dividing

both sides by σ2
max, the last two inequalities become:√

τmax

τmin

(1+ α̂c)

(1− α̂c)
≥ (1+αmax)

(1−αmax)
, (5.34)√

τmax

τmin

(1− α̂c)

(1+ α̂c)
≥ (1−αmin)

(1+αmin)
. (5.35)

Multiplying both sides of these inequalities by
p
τmaxτmin = τ̂c, bringing all terms to the left-

hand side, expanding, factoring out (τmax − τ̂c) and (τmax + τ̂c), and rearranging, lead to the

following expressions:

f1(∆t ) =(τmax − τ̂c) (1−αmaxα̂c)+ (τmax + τ̂c) (α̂c −αmax) , (5.36)

f2(∆t ) =(τmax − τ̂c) (1−αminα̂c)+ (τmax + τ̂c) (αmin − α̂c) . (5.37)

Substituting the definitions of α̂c, αmin and αmax into the above two expressions, the following

limits are found:

lim
∆t→0

f1(∆t ) = 0, lim
∆t→0

f2(∆t ) = 0. (5.38)

Equation (5.31) is satisfied if and only if f1(∆t) ≥ 0 and f2(∆t) ≥ 0,∀∆t ≥ 0. Given Equa-

tion (5.38), this is equivalent to showing that f1(∆t ) and f2(∆t ) are monotonically increasing,

i.e., that their derivatives are non-negative for all ∆t ≥ 0.

First, the derivative of f1(∆t ) can be written as:

f ′
1(∆t ) =

(τmax − τ̂c)(τmax + τ̂c)

τmaxτ̂c
e−

∆t
τmax e−

∆t
τ̂c + (τmax + τ̂c)

τmaxτ̂c

(
τ̂ce−

∆t
τmax −τmaxe−

∆t
τ̂c

)
≥ 0.

(5.39)

Dividing both sides of the inequality by the non-negative factor e−
∆t
τmax e−

∆t
τ̂c

τmax+τ̂c
τmaxτ̂c

and rear-

ranging, the left-hand side in Equation (5.39) becomes:

f1,1(∆t ) = τ̂c

(
e
∆t
τ̂c −1

)
−τmax

(
e
∆t
τmax −1

)
. (5.40)

To show that f1,1 is non-negative, consider the facts that:

lim
∆t→0

f1,1(∆t ) = 0 (5.41)
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and that the derivative of f1,1 is positive, i.e.:

f ′
1,1(∆t ) = e

∆t
τ̂c −e

∆t
τmax ≥ 0, ∀∆t ≥ 0, (5.42)

because τmax ≥ τ̂c. This proves that f ′
1(∆t ) is non-negative.

Second, the derivative of f2(∆t ) is:

f ′
2(∆t ) =

(τmax − τ̂c)(τmin + τ̂c)

τminτ̂c
e
−∆t
τmin e−

∆t
τ̂c + (τmax + τ̂c)

τminτ̂c

(
τmine−

∆t
τ̂c − τ̂ce

−∆t
τmin

)
≥ 0.

(5.43)

Dividing both sides of the inequality by the non-negative factor

(
e
−∆t
τmin e−

∆t
τ̂c 1

τmaxτ̂c

)
and rear-

ranging, the left-hand side in Equation (5.43) becomes:

f2,1(∆t ) =τmaxτmin

(
e
∆t
τmin +1

)
−τmaxτ̂c

(
e
∆t
τ̂c −1

)
+ τ̂cτmin

(
e
∆t
τmin −1

)
− τ̂2

c

(
e
∆t
τ̂c +1

)
≥ 0.

(5.44)

To show that f2,1 is non-negative, consider similarly the fact that:

lim
∆t→0

f2,1(∆t ) = 2τmaxτmin −2τ̂2
c = 0, (5.45)

and that the derivative of f2,1(∆t ) is:

f ′
2,1(∆t ) = (τmax + τ̂c)

(
e
∆t
τmin −e

∆t
τ̂c

)
≥ 0 (5.46)

because τmin ≤ τ̂c. This proves that f ′
2(∆t ) is non-negative.

The facts that f ′
1(∆t) and f ′

2(∆t) are also non-negative for all ∆t ≥ 0 and that the limits of

f1(∆t) and f2(∆t) as ∆t → 0 are non-negative prove that f1(∆t) ≥ 0 and f2(∆t) ≥ 0,∀∆t ≥
0, which ultimately proves Equation (5.31). The GMP model with parameters derived in

continous-time provide similar bounding behaviour as the discrete-time ones. Only in situa-

tions where ∆t approached or exceeded τmin, did the continuous-time GMP model become

more conservative than the discrete-time model. Nevertheless, in most practical problems,

where∆t is smaller than τmin, the process would be better modeled as a white noise and not as

a time-correlated GMP. Figure (5.2) shows the difference in total net power between the bound

derived using the continuous-time PSD (Equation (4.41) and the bound derived using the

discrete-time PSD expressions (Equation (5.25) and Equation (5.26)) when used in a discrete

KF with different interval sampling. Figure (5.2) shows that for sampling intervals which are

smaller than the minimum GM time constant ∆t << τmin, both bounds offer similar results.
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Figure 5.2: Difference in Power of Continuous and Discrete Derived Stationary Bounds for
different sampling interval

For this reason it is therefore suggested to use the continuous expressions because of their

simplicity. Only in cases when the sampling interval ∆t approaches τmin the continuous-time

derived bound becomes extremely conservative.

Remark (when τmin = 0)

An interesting situation when the more complex expression of the discrete-time PSD

bound are necessary to be used is in the case that τmin = 0. In this case, note that the

stationary bound obtained in the continuous-time cannot be used. That is:

lim
τmin→0

σ̂2
c =σ2

max

√
τmax

τmin
= ∞. (5.47)

Therefore, when τ ∈ [0,τmax], the discrete-time form can be used to properly define a

suitable bound. In this case note that:

σ̂2
d =σ2

max

√
(1+αmax)

(1−αmax)
=σ2

max

√√√√√ (1+e−
∆t
τmax )

(1−e−
∆t
τmax )︸ ︷︷ ︸

kd(τmin=0)

, and (5.48)

τ̂d = −∆t

[
ln

(
1−k−1

d

1+k−1
d

)]−1

. (5.49)
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5.2 Non-Stationary GMP Model

In this section, two approaches are presented to obtain the minimum initial variance σ2
0

of a non-stationary GMP that still satisfies bounding condition on the estimation error in

discrete-time while providing tighter error bounding during a first transient phase. The first

is derived analytically following a similar approach as in Section 4.3. The second one is a

numerical solution that yields even tighter bounding in certain practical situations.

5.2.1 Analytical Solution

Following a similar approach as in the continuous-time case of Sec. 4.3 and based on Ap-

pendix A.1 and A.2, KF bounding conditions in discrete-time domain can be obtained via

sensitivity analysis:

ΣΣΣk|k−1 −Pk|k−1 ≥ 0,∀k ∈ [1,∞),

ΣΣΣ0 −P0 ≥ 0.
(5.50)

The conditions in Equation (5.50) are the discrete-time version of Equation (4.18). While still

satisfying bounding conditions at steady state, it is possible to design the KF filter augmented

states with non-stationary time-correlated GMP models that are tighter at the initial transient

phase. This is imposed by the second condition in Equation (5.50), which can be written in a

similar manner to Equation (4.42) as:
ΣΣΣξ,0 −Pξ,0 0 0

0 Σ̂ΣΣa,0 −Pa,0 Pa,0

0 Pa,0 Σ̄ΣΣa,0 −Pa,0

≥ 0. (5.51)

Following the same reasoning as in Section 4.3, the above relation reduces to:

σ̂2
d,0 ≥σ2 + σ4

σ̄2
d −σ2

, (5.52)

for each of the GMP time correlated processes under consideration. Appendix A.2 shows

that for the GMP parameters in Equation (5.25) and Equation (5.26), the minimum of the

stationary variance σ̄2
d (with respect to the unknown parameters σ2 and τ) can be expressed

in the discrete case as:

σ̄2
d,min =

(1− α̂2
d)(1−α2

max)

2(α̂d −αmax)2 (σ̂2
d −σ2

max). (5.53)
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Using the expressions of σ̂2
d and τ̂d in Equation (5.25) and Equation (5.26), respectively, and

substituting Equation (5.53) in Equation (5.52) leads to:

σ̂2
d,0 =σ2

max
1

1− 2(α̂d−αmax)2

(1−α̂2
d)(1−α2

max)(kd−1)

, (5.54)

where

kd =

√
(1−αmin)(1+αmax)

(1+αmin)(1−αmax)
. (5.55)

and where σ2 =σ2
max has been chosen to satisfy Equation (5.52) for any value of σ2 within the

possible range.

Theorem 5.2.1 (Non-stationary Discrete-Time GMP Tight Bounding Model).

A non-stationary GMP with and initial variance:

σ̂2
d,0 =σ2

max
1

1− 2(α̂d−αmax)2

(1−α̂2
d)(1−α2

max)(kd−1)

, (5.56)

where

kd =

√
(1−αmin)(1+αmax)

(1+αmin)(1−αmax)
(5.57)

guarantees bounding conditions at the steady state of the GMP uncertain process as

well as provides tight error bounding conditions during the transient phase.

Figure 5.3 shows the different values of σ̂2
0 for different ranges of τ-values where we can see

the impact of ∆t in the initial variance of the tight non-stationary GMP model.

5.2.2 Discrete Non-stationary Model using Parameters Derived in Continuous-

time

In Section 5.1.3 it was proven that at stationary regime the GMP parameters derived in

continuous-time would provide also a bound when used in discrete-time GMP models. For

completeness, this section extend the use of parameters derived in the continuous-time do-

main to also non-stationary discrete-time GMP models. The proof reduces to showing that

the second condition in Equation (5.50) holds when the initial variance in Equation (4.65) is

used. This is equivalent to showing that σ̂2
c,0 in Equation (4.65) is larger or equal to σ̂2

d,0 when
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Figure 5.3: Initial variance of non-stationary GMP bounding model for different τ-ranges and
σ2

max = 1.

the parameters derived in the continuous-time domain (Equation (4.41)) are used, i.e.:

σ̂2
c,0 ≥ σ̂2

d,0(σ̂2
c, τ̂c),∀∆t > 0. (5.58)

Comparing the original expressions of σ̂2
c,0 and σ̂2

d,0 from Equation (4.45) and Equation (5.52),

Equation (5.58) is ensured if and only if the minimum values on the σ̄2 satisfy:

σ̄2
c,min ≤ σ̄2

d,min(σ̂2
c, τ̂c),∀∆t > 0. (5.59)

The reader can find the proof of Equation (5.59) in Appendix A.3, which ultimately proofs

Equation (5.58) and therefore the claim of this section.

5.2.3 Numerical Solution for Time-limited GMP

Section 5.2.3 provided an expression for the initial variance of a non-stationary discrete-time

GMP bounding process. That non-stationary GMP model is valid for any duration of a certain

measurement or system process used within the KF filtering. However, in some applications,

time-correlated measurements are only possible to be used within a certain time duration

(e.g., GPS satellites are typically only visible for a maximum of 12 hours from a static observer).

In this section, an additional approach is provided to compute the initial variance of a discrete-

time non-stationary GMP bound use of which is expected to be limited in time. The new

numerically computed initial variance will provide an even tighter bound at a certain cost of

the necessary numerical solver. This new model will still match the stationary one at steady

state, but will provide a tighter estimation for error variance bound during the transient period.
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5.2 Non-Stationary GMP Model

Consider the autocovariance rnp of a non-stationary discrete-time GMP model between any

two time steps n and p where n ∈Z≥ 0, p ∈Z≥ 0 and p ≥ n. rnp is defined as:

rnp = E[an aT
p ] = α̂n+pσ2

0 + σ̂2(1− α̂2n)α̂p−n , (5.60)

where α̂ = e
−∆t
τ̂ , a0 ∼ N (0,σ2

0) , and wn ∼ N (0,1). The derivation of this expression for a

general non-stationary GMP can be found in Appendix A.4. Without loss of generality the

values of α̂ and σ̂2 can be either the ones derived in the continuous or in the discrete time

domain.

A numerical approach is used to find the minimum value of σ2
0 that still guarantees an upper

bound on the estimation error variance. The value of σ2
0 only needs to be determined once

for each noise component, i.e., for each range of σ2 ∈ [σ2
min,σ2

max] and τ ∈ [τmin,τmax]. This

process can be performed offline, so prior to KF initialization or implementation and therefore

does not require extra computational load when running the KF.

The autocovariance matrix (ACM) of size N (maximum epoch duration of the time-correlated

process in the filter) of the bounding non-stationary GMP model is:

R̂(N) =


r00 r01 · · · r0N

r01 r11 · · · r1N

...
...

. . .
...

r0N r1N · · · rNN

 , (5.61)

The actual, unknown stationary GMP ACM is expressed as:

R(N) =


σ2 ασ2 · · · αNσ2

ασ2 σ2 · · · αN−1σ2

...
...

. . .
...

αNσ2 αN−1σ2 · · · σ2

 . (5.62)

Equation (5.62) is obtained by setting σ2
0 =σ2 and by replacing σ̂2 =σ2 and α̂ with α = e

−∆t
τ in

Equation (5.60), and substituting the result into Equation (5.61).

As shown in Section 5.1.1, error estimation bounding conditions can be established at the

noises covariance level, therefore it must be ensured that:

∆R = R̂−R = R̂−σ2R̄ ≥ 0, (5.63)
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where σ2 has been extracted from Equation (5.62) as common factor and R̄ is the autocorre-

lation matrix. The matrix ∆R in Equation (5.63) must be positive semidefinite for all values

of σ2 ∈ [σ2
min,σ2

max] and τ ∈ [τmin,τmax]. If matrix ∆R is positive semidefinite when choosing

σ2 =σ2
max, it is ensured that it will also be positive semidefinite for all the possible values of σ2.

Using σ2 =σ2
max and the notation σ̂2 =σ2

maxk, where k can be extracted from Equation (4.41)

or Equation (5.25) and σ2
0 =σ2

maxk0, Equation (5.63) can be expressed over a time span N as:

∆R(N,k0) =σ2
max


k0 −1 · · · α̂n−1k0 −αN−1

...
. . .

...

· · · · · · α̂2Nk0 +k
(
1− α̂2N

)−1

 . (5.64)

The minimum acceptable value of k0 is the smallest one guaranteeing that ∆R is positive

semidefinite [73]. In order to find k0, we use the fact that the eigenvalues of a real symmetric

matrix are real, and that the matrix is positive semidefinite if and only if its minimum eigen-

value is nonnegative. For the symmetric matrix ∆R(N) with minimum eigenvalue λmin, we

must ensure that λmin(N) ≥ 0,∀N ∈Z≥0. The numerical search for σ2
0 can be expressed as:

σ2
0 =σ2

max ·argmin
kx

{λmin(∆R(N,kx )) ≥ 0} . (5.65)

A good initialization point for the numerical search is provided in Appendix A.5. It ensures

that the first 2x2 leading principal sub-matrix of ∆R is positive semidefinite.

5.3 Evaluation in Kalman Filter Implementation

In this section the behaviour of the conservative and tight bounds in Chapter 4 and Chapter 5

are analysed for a simple discrete-time example. The example in Section 1.2 is used as a simple

system for comparing the selection of different bounds. Figure (5.4) shows first the difference

between the standard deviation of the position estimated using a KF with different choice

of GMP model parameters and the standard deviation of the error of the KF estimation. For

computation of the true estimated error standard deviation of a discrete-time KF, the reader is

recall to consult the Appendix A.1. Figure (5.4) displays the stationary and non-stationary GMP

models conservative and tight bounds derived via frequency domain and sensitivity analysis.

Positive values of the curves mean that the GMP models all produce upper bounds on the

positioning variance. If the simulation time were long enough, we would see the positioning

uncertainty based on the non-stationary GMP models converge towards their corresponding

stationary GMP models.

Let us turn the attention to the transient period. It can be seen that over the first 300s of
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Figure 5.4: KF estimated std vs true error std (Position) (τmax = 100, τmin = 10, τtrue = 50 and
∆t = 1s).

simulation time, the non-stationary GMP model using sensitivity analysis provides a tighter

positioning deviation bound than the model in Section 4.2.1. But, as filtering approaches

steady-state, the proposed stationary model in Section 4.2.1 provides a tighter bound on

the underlying error. The non-stationary GMP model in Section 5.2.3 achieves the tightest

positioning error bound under the given conditions.

In addition, Figure (5.5), shows the KF positioning standard deviations for the different GMP

models , and the KF standard deviation obtained if we knew the true value of correlation time

constant. This figure illustrates the inflation in standard deviation that we endure for lack of

knowledge of the actual error correlation time constant, and the tightness of the positioning

variance bounds obtained using the proposed GMP models.

5.4 Conclusions

In this Chapter, different mechanism for selecting parameters of stationary GMP models were

derived that guarantee upper bounds on linear estimation error variance in the presence of

uncertain models employing Gauss-Markov structure. The stationary models are obtained

via a modified sensitivity analysis of KF and with frequency domain analysis in both the

continuous-time and discrete-time domains. Although the selection of model parameters de-
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Figure 5.5: KF estimated standard deviation (Position) (τmax = 100, τmin = 10, τtrue = 50 and
∆t = 1s).

vised in the continuous-time are less complex, those based on discrete case have a wider field

of application. The stationary models were improved upon using non-stationary GMP which

provides a tighter variance and error bound during the transient period. It was shown that

the parameter selection for such GMP models can easily be implemented in linear dynamic

estimators such as Kalman filters.
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Summary of Main Results

Under the presence of Gauss-Markov error processes with uncertain but bounded time-

correlation constant within an interval τ ∈ [τmin,τmax] and variance σ2 ∈ [σ2
min,σ2

max],

a tight upper bound on the estimated variance-covariance of any linear estimator like

a Kalman filter can be obtained when choosing the individual stationary GMP models

with parameters in Table 5.1:

Table 5.1: Summary Gauss-Markov Process Bounding Models Parameters

Continuous-time Domain∗ Discrete-time Domain

(for τmax ≥ τmin > 0) (for τmax ≥ τmin ≥ 0)

Stationary

Model

σ̂2
c =

√
τmax

τmin
σ2

max,

τ̂c =
p
τminτmax.

σ̂2
d =σ2

max

√
(1−αmin)(1+αmax)

(1+αmin)(1−αmax)
,

τ̂d = −∆t

[
ln

(
1−p

Γ

1+p
Γ

)]−1

,

where

αmin = e
−∆t
τmin , αmax = e

∆t
τmax ,

Γ =
(1−αmin) (1−αmax)

(1+αmin) (1+αmax)
.

Non-

Stationary

Model (Ini-

tial variance)

σ̂2
c,0 =σ2

max
2

1+
√

τmin
τmax

.

σ̂d,0 =σ2
max

1

1− 2(α̂−αmax)2

(1−α̂2)(1−α2
max)(kd−1)

,

where

kd =

√
(1−αmin)(1+αmax)

(1+αmin)(1−αmax)
.

∗Continuous-time model parameters can also be used in discrete-time models
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6 Overbounding GNSS/INS Integration

for Aviation Users

Chapter 5 provided new selection of Gauss-Markov Error Models that guarantee covariance

bounding condition on KF integration when the error processes contain uncertain parameters.

This chapter shows how the new GMP models can be applied for safe GNSS/INS integration in

terms of integrity as discussed in Chapter 3. In particular, uncertain GNSS error models for

the different error sources as reported in literature are adapted to a GNSS/INS filter design.

Finally a complete algorithm is proposed based on a bank of KFs and a multiple hypothesis

solution separation architecture that determines protection levels and ensure integrity over

larger span of possible situations.

6.1 Error Model Implementation

This section describes the error models for the GNSS and IMU measurements. Particularly

relevant in this work is the consideration of uncertain parameters for the time correlated errors

in GNSS, which are assumed to reside within a known range of values.

6.1.1 GNSS

The linearized ionospheric-free code and carrier measurements can be expressed as:

ρ
i , j
IF,k − ρ̃

i , j
k (x0,k ) = ui , j T

k ∆xk +b j
k +∆Si , j

k +dT i , j
k +mp i , j

ρ,k +ϵ
i , j
ρ,k , (6.1)

φ
i , j
IF,k − φ̃

i , j
k (x0,k ) = ui , j T

k ∆xk +b j
k +∆Si , j

k +dT i , j
k +N i , j

φ +mp i , j
φ,k +ϵ

i , j
φ,k , (6.2)

where ρi , j
IF,k is the code measurement of satellite i of constellation j at time epoch k. ui , j T

k is a

unit line of sight vector user to satellite, ∆xk is the user position with respect to the lineariza-

tion point. The receiver clock offset with respect to constellation j is b j
k . ∆Si , j

k is the residual

satellite clock and ephemeris error after correction based on broadcast ephemeris, dT i , j
k is
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the tropospheric error, mp i , j
ρ,k and mp i , j

φ,k the multipath error in code and carrier respectively,

ϵ
i , j
k the receiver noise and N i , j

φ is the float ionospheric-free carrier-phase ambiguity term.

Satellite Clock and Orbit Errors

According to [85], residual satellite clock and ephemeris error for a satellite i can be expressed

as Gauss-Markov processes with uncertain time constant in a given range:

∆Si ,GPS ∼GM (σ2
URA ,τ ∈ [4,50] hours), (6.3)

∆Si ,GAL ∼GM (σ2
SISA ,τ ∈ [2,38] hours). (6.4)

The user range accuracy (URA) is nominally chosen to be σURA =σSISA = 1m for both GPS and

Galileo [21].

Tropospheric Errors

The largest part of the tropospheric error caused by the dry component can be removed by

applying standard models [18]. The remaining wet component of the troposphere is more

unpredictable and it is typically modeled as:

∆T i , j
k = mtropo(θi , j ) ·ηtropo,k , (6.5)

where mtropo(θi , j ) is a mapping function that depends on the satellite elevation θi , j [18]:

mtropo(θi , j ) =
1.001√

0.002001+ sin(θi , j )2
. (6.6)

The uncertain component ηtropo,k at the zenit is specified in [18] to be overbounded by a zero

mean Gaussian distribution with variance σ2
tropo = (0.12)2m2. The random component ηtropo,k

is a first-order Gauss-Markov process with the range of parameters specified in Table 6.1.

Multipath and antenna group delay

For 100 seconds carrier-smoothed code, the following expression is given for the multipath

error standard deviation [21]:

σ
i , j
mp,ρ,sm =

√√√√ ( f 2
L1 − f 2

L5)2

f 4
L1 + f 4

L5

(
0.13+0.53e−θ

i , j
deg/10

)
, (6.7)
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where fL1 and fL5 are the GNSS carrier frequencies for L1 and L5 signals respectively and θi , j
deg

is the satellite elevation in degrees from the user standpoint.

Considering unsmoothed measurements in the filter has several advantages. First it avoids the

artificial correlation that the smoothing would cause between the measurements in the filter.

Second, the need for the smoothing-filter initialization time is removed. It is found in [102],

[103], that the unsmoothed code and carrier phase standard deviation due to multipath can

be obtained with the following scaling of the smoothed observations:

σmp,ρ = 1.5 ·σmp,ρ,sm,

σmp,φ = 0.015 ·σmp,ρ,sm.
(6.8)

The total multipath for code and carrier is in this case expressed as:

mp i , j
ρ,k =σmp,ρ(θi , j

k ) ·ηi , j
mpρ,k , (6.9)

mp i , j
φ,k =σmp,φ(θi , j

k ) ·ηi , j
mpφ,k . (6.10)

The first term will follow Equation (6.8) and Equation (6.7) and it is used as a mapping or scaled

parameter. The stochastic process ηi , j
mpρ,k and ηi , j

mpφ,k are modeled as first-order Gauss-Markov

processes with unit variance and time-correlations in the ranges specified in Table 6.1.

Receiver Noise

The receiver noise component in the code and carrier measurement is modeled as a zero mean

white Gaussian noise. Receiver code and carrier phase standard deviations can be expressed

as [103]:

σ
i , j
ϵρ = 19.6 ·σi . j

ϵρ,sm,

σ
i , j
ϵφ = 0.196 ·σi . j

ϵρ,sm,
(6.11)

where σi . j
ϵρ,sm is the iono-free scaled carrier smoothed code noise standard deviation which is

dependent on elevation [21]:

σ
i . j
ϵρ,sm =

√√√√ ( f 2
L1 − f 2

L5)2

f 4
L1 + f 4

L5

(
0.15+0.43e−θ

i , j
deg/6.9

)
. (6.12)

where the elevation dependent model for class A receivers from [104] has been used.
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Table 6.1: GNSS Error Model Parameters.

Error Parameters

Error source Mapping Variance τmin τmax

Clock and Eph. (GPS) - σ2
URA,σ2

URE 4 h. 50 h.

Clock and Eph. (Gal) - σ2
SISA,σ2

SISRE 2 h. 38 h.

Tropospheric Eq.(6.6) (0.12 m)2 900 s 2700 s

Raw Code Multipath Eqs.(6.7,6.8) 1m2 10 s 900 s

Raw Carrier Multipath Eqs.(6.7,6.8) 1m2 10 s 900 s

Receiver Code Noise - Eqs.(6.11,6.12) - -

Receiver Carrier Noise - Eqs.(6.11,6.12) - -

Table 6.2: GNSS GMP Bound Error Model

GMP Bound Parameters

Error source σ̂2 τ̂ σ2
0

Clock and Eph. (GPS) {σ2
URA,σ2

URE} ·3.54 14.14 h. {σ2
URA,σ2

URE} ·1.56

Clock and Eph. (Gal) {σ2
SISA,σ2

SISRE} ·4.36 8.72 h. {σ2
SISA,σ2

SISRE} ·1.63

Tropospheric 0.025 1558.85 s. 0.018

Raw Code Multipath 9.49 94.87 s. 1.81

Raw Carrier Multipath 9.49 94.87 s. 1.81

Receiver Clock

GNSS receiver clocks are typically quartz oscillators; their offset with respect to GPS time is

often treated as a parameter to be estimated. In this work, it is conservatively assumed that at

any particular time, we do not have any prior knowledge of the clock bias from previous time

instants. This is modeled as an KF state parameter following a random walk with infinite (very

high) variance.

6.1.2 Inertial Measurement Unit (IMU)

The inertial measurements coming from gyroscopes and accelerometers are typically modeled

as a combination of error sources and processes. First, deterministic errors include misalign-

ment of the sensor axis, scaling factors and constant biases. In this work, these errors are

assumed to be estimated and compensated for using an offline calibration procedure by the

manufacturer. Second, stochastic errors that cannot be apriori compensated for need to be

considered in the estimation algorithm. A widely-used approach for navigation and high

tactical grade IMUs is to model stochastic errors of the IMU as the sum of a random constant

turn-on bias, a time-correlated process and a white-Gaussian noise. In this case, turn rate and
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Table 6.3: IMU Accelerometer Error Parameters.

Grade Noise Bias Noise τ

[µg/
p

Hz] [µg] [s]

Navigation 15 20 3000

Tactical 50 160 3000

Table 6.4: IMU Gyroscope Error Parameters.

Grade Noise Bias Noise τ

[°/h/
p

Hz] [◦ h−1] [s]

Navigation 0.01 0.005 12000

Tactical 2 0.5 10000

specific force measurements can be expressed as:

w̃b = wb +bw,0 +bw +ηηηw , (6.13)

f̃b = fb +b f ,0 +b f +ηηη f , (6.14)

where w̃b and f̃b are the 3-axis measured turn rates and specific forces in a body frame b,

respectively; similar, wb and fb are their true values, b⋆,0 is the turn-on random constant bias

with ⋆ referring either to the angular rates w or to the specific forces f. Last, b⋆ is the time-

correlated bias and ηηη⋆ are the white Gaussian noise vectors of the associated measurements.

The turn-on biases are initially roughly estimated by initial alignment process and further

improved during navigation process [28]. For low cost sensors in particular, final estimation

of these random constant biases is often performed while in operation and thanks to the

dynamics of the vehicle.

The most widely used model for the time-correlated bias of IMU measurements is based on a

GM approximation, in part because it can easily by incorporated in a Kalman filter by state

augmentation. This model is also adopted here. Typical GM model parameter values for two

sensor grades are listed in Table 6.3 and Table 6.4 for the GM bias over time (including a time

constant and driving noise specifications) and for the measurement white noise.

Contrary to GNSS system, each aircraft will contain its own particular IMU system. Therefore

only general claims about grades or categories of sensors are here considered. The specific

IMU error parameters are assumed to be known and relatively stable.
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Figure 6.1: GNSS/INS Kalman filter Architecture.

6.2 GNSS/INS Kalman Filter Design

This research considers a tightly coupled integration between GNSS and Inertial Navigation

System (INS) with an error-state Kalman Filter. A general architecture of the system design is

depicted in Figure 6.1 [105]. Note that the inertial navigation system is run outside the KF and

in the architecture scheme it is calibrated with parameters estimated using the KF.

6.2.1 State Selection

Kalman filter state parameters include position, velocity and attitude errors in a local naviga-

tion frame. In order to account for the time correlated errors present in IMU measurements

we include the augmented states b f and bw . The total number of error states related to the

INS system is therefore NINS = 15:

xINS =
(
δψψψT δvT δpT bT

f bT
w

)T
(6.15)

where δψψψ, δv and δp are the 3D errors in attitude, velocity and position of the INS, respectively.

The filter states specific to GNSS first include the receiver clock biases with respect to each

constellation in use. In order to account for the time correlated errors, additional augmented

states are added to the state vector to capture the satellite clock and ephemeris, tropospheric

and multipath error of each satellite. Finally, we add the integer ambiguities to each of the

satellites in view. The GNSS-specific state vector component is therefore:

xGNSS =
(

bclk
T ∆ST mtropo

T mpT
ρ mpT

φ Nφ
T

)T
(6.16)

where bclk are the user clock biases for each GNSS constellation, ∆S the satellite ephemeris

and clock error, mtropo the tropospheric error at zenith, mpρ and mpφ the code and carrier
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multipath respectively and Nφ the float iono-free integer ambiguities. The KF state vector

therefore contains NKF = 15+N j +5Ni parameters, where N j is the number of constellations

and Ni the number of satellites in view:

xKF =
(

xT
INS

xT
GNSS

)T
. (6.17)

6.2.2 KF Prediction

The KF time-update or prediction step propagates the mean and covariance of the state

estimates as follows:

x̂k|k−1 = Φ̂ΦΦk x̂k−1|k−1, (6.18)

P̂k|k−1 = Φ̂ΦΦk P̂k−1|k−1Φ̂ΦΦ
T
k +Gk Q̂k GT

k , (6.19)

where x̂k|k−1 and P̂k|k−1 are the predicted states and covariance respectively, Φ̂ΦΦk is the time

propagation matrix, Q̂k is the covariance of the process noise and Gk maps the process noise

vector to the relevant states. The (ˆ) notation on Φ̂ΦΦk and Q̂k indicates that a filter design choice

is made: we want to set Φ̂ΦΦk and Q̂k guaranteeing that the computed estimate error covariance

P̂k|k−1 overbounds the actual estimation uncertainty. The discrete propagation matrix Φ̂ΦΦk for

the GNSS/INS design can be expressed as:

Φ̂ΦΦk =

 ΦΦΦk,INS 0

0 Φ̂ΦΦk,GNSS

 , (6.20)

where

ΦΦΦk,INS = eFk,INS∆t ≈ I+Fk,INS∆t . (6.21)

The Jacobian matrix Fk,INS can be obtained by differentiating the strapdown inertial differential

Equations 2.19 at time k to which the bias b f and bw terms are added. This matrix is well

known and can be found in Appendix C.2. It is worth noticing that ΦΦΦINS and FINS do not

have the (ˆ) notation because, in this work, the IMU error process parameters are assumed to

be determined with enough accuracy. The propagation design matrix Φ̂ΦΦk,GNSS is a diagonal

matrix expressed as:
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Φ̂ΦΦk,GNSS =



IN j×N j

e
− ∆t
τ̂∆S INi×Ni

e
− ∆t
τ̂tropo INi×Ni

e
− ∆t
τ̂mp,ρ INi×Ni

e
− ∆t
τ̂mp,φ INi×Ni

INi×Ni


.

(6.22)

In Equation (6.19), the Q̂k matrix can also be split into contributions from the IMU and GNSS

error processes using the following definitions:

Q̂k =

 QIMU 0

0 Q̂k,GNSS

 . (6.23)

The covariance QIMU contains the IMU noise and GM variances which are not changing at

different epochs.

The matrix Q̂k,GNSS is a diagonal matrix expressed as:

Q̂k,GNSS = diag



σ2
clk∆t1N j×1

σ̂2
∆S

(
1−e

− 2∆t
τ̂∆S

)
1Ni×1

σ̂2
tropo

(
1−e

− 2∆t
τ̂tropo

)
1Ni×1

σ̂2
mp,ρ

(
1−e

− 2∆t
τ̂mp,ρ

)
1Ni×1

σ̂2
mp,φ

(
1−e

− 2∆t
τ̂mp,φ

)
1Ni×1

0Ni×1



. (6.24)

The notation 1a×b and 0a×b indicates a matrix (or vector) of size a ×b filled with ones or

zeros respectively. The values of the σ̂2 and τ̂ parameters are computed using Equation (4.41)

and parameter range limits in Table 6.1 to ensure that the KF estimation error covariance is
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overbounded. Finally, matrix Gk can be written as:

Gk =

 Gk,IMU 0NINS×NGNSS

0NGNSS×NINS INGNSS×NGNSS

 , (6.25)

where NINS = 15 and NGNSS = N j +5Ni . Matrix Gk,IMU is given in Appendix in [106].

6.2.3 KF Update

The Kalman filter measurement update is performed using the following equations:

x̂k|k = x̂k|k−1 + K̂k
(
zk −Hk x̂k|k−1

)
, (6.26)

P̂k|k =
(
I− K̂k Hk

)
P̂k|k−1, (6.27)

where K̂ is the Kalman filter gain obtained using:

K̂k = P̂k|k−1HT
k

(
Hk P̂k|k−1HT

k +Rk
)−1

. (6.28)

The linearized KF measurement vector z is made of the differences between the ionospheric-

free code and carrier phase measurements and their predicted values computed using the INS

current position projected via the non-linear relations h(x):

zk =



ρ1
IF,k −ρ1

k,INS
...

ρ
Ni

IF,k −ρ
Ni

k,INS

φ1
IF,k −φ1

k,INS
...

φ
Ni

IF,k −φ
Ni

k,INS


. (6.29)
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The measurement matrix H is a linearized version of h(x) that projects the states into mea-

surement space and is expressed as:

Hk =



06×Ni 06×Ni

UT
k UT

k

06×Ni 06×Ni

1
N j×Ni

{si∈c j }
1

N j×Ni

{si∈c j }

INi×Ni INi×Ni

Mtropo Mtropo

Mmp,ρ 0Ni×Ni

0Ni×Ni Mmp,φ

0Ni×Ni INi×Ni



T

, (6.30)

where Uk ∈ RNi×3 contains the line-of-sight vectors related to each of the satellites in view.

The diagonal matrix Mtropo ∈ RNi×Ni contains the tropospheric mapping function for each

of the satellites depending on their elevation as in Equation (6.6). And the diagonal matrix

Mmp,ρ,Mmp,φ ∈RNi×Ni contains the scaling of the multipath time-correlated errors according

to their elevation as in Equation (6.8) for the code and carrier phase measurement respectively.

Each element ( j , i ) of the matrix 1
N j×Ni

{si∈c j }
is one if the satellite si belongs to constellation c j and

zero otherwise. Finally, Rk is a diagonal matrix containing the code and carrier receiver noise

variances (Equation (6.11)):

Rk =

 σ2
ϵρ

INi×Ni 0

0 σ2
ϵφ

INi×Ni

 . (6.31)

Note that in the case of loss of satellites tracking, the size of state vector and covariance matrix

must be reduced accordingly. Similarly, new states must be created and initialized if new

satellites are available during the filter runtime. The change of satellites in view also affects

the size of Φ̂ΦΦk,GNSS, Q̂k,GNSS, Gk , Hk and Rk .

6.3 GNSS/INS Multiple Hypothesis Solution Separation

This chapter has provided so far with the necessary design elements to guarantee a safe

GNSS/INS estimation under the presence of uncertain nominal GNSS errors. In fault-free

conditions (hypothesis H0), the estimated KF covarianceΣΣΣ = P̂ is sufficient to determine the
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associated integrity risk in a dimension l for a given alert limit as:

IRl ,H0 = Q

 ALl√
εεεT

l P̂εεεl

 , (6.32)

where Q is the complementary error function and εεεl is a vector with one in the selected state

l and zero otherwise. In the presence of faults, estimators are accompanied by some type

of monitor or fault detection that protects the computed solution. Two main fault detection

algorithms are normally used in the context of Kalman filtering. One of them is based on

the innovation sequence and would typically compute a χ2 test statistic, either in a snapshot

or accumulated over time. The other type of fault detection strategy is based on solution

separation. It has been shown that solution separation test statistics are more powerful than

residual-based tests [102] since they are tailored to specific fault modes. Moreover, innovation-

based tests tend to lose detectability if employed over too long periods [36]. In this work, the

Multiple Hypothesis Solution Separation (MHSS) algorithm is adopted by considering a bank

of Kalman filters, each of them running a specific subset of measurements. This strategy is

not new and it has been considered over many years for GNSS/INS integration [40], [107].

However, over the last decade a lot of effort has been put in formalizing MHSS in ARAIM. Fully

adapting the well known bank of KF to the ARAIM definitions, errors and threat models as

well as protection level computation still requires additional considerations. In particular,

this section presents a strategy to consider the impact of the worst-case nominal bias and the

propagation of separate error models in relation to continuity and integrity.

6.3.1 MHSS Architecture and Protection Level Computation

The main processing architecture of the GNSS/INS KF MHSS algorithm is depicted in Fig. 6.2.

The determination of the necessary fault modes hypothesis (and therefore number of parallel

filters) is determined similarly as in ARAIM ADD based on the probability of fault of the

individual satellites, probability of constellation fault, the integrity risk requirement and a

certain tolerance [21]. Each hypothesis subset must provide a state vector estimation x̂, an

associated covariance for integrity P̂int (based on the integrity error model), an associated

covariance for accuracy and continuity P̂acc. The latter is used for accuracy checking and

fault detection as well as for the projection of worst-case nominal biases b in the vertical and

horizontal domains. Fault detection is based on solution separation test statistic:

qh
ss = |x̂0 − x̂h |, (6.33)
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Figure 6.2: GNSS/INS MHSS Processing

and compared to a threshold:

Tss = Q−1
(

Pfa

2Nh

)
(σ2

h −σ2
0), (6.34)

where notice that σ2
h =εεεTP̂h

accεεε is extracted from the covariance with the accuracy-continuity

model. The Vertical Protection Level (VPL) can be obtained by solving the following implicit

equation [21]:

2Q

(
VPL−b0

3

σ0
3

)
+

Nfault-mode∑
h=1

Pfault,hQ

(
VPL−Th

3 −bh
3

σh
3

)
=

PHMI,v

(
1− Psat,notMon +Pconst, notMon

PHMI, v +PHMI, H

)
.

(6.35)

For horizontal, we compute east and north HPL separatelly following:

2Q

(
HPLl −b0

l

σ0
l

)
+

Nfault-mode∑
h=1

Pfault,hQ

(
HPLl −Th

l −bh
l

σh
l

)
=

PHMI,H

(
1− Psat,notMon +Pconst, notMon

PHMI, v +PHMI, H

)
.

(6.36)

Then we HPL is obtained with:

HPL =
√

HPL2
1 +HPL2

2. (6.37)

In Equation (6.34), Equation (6.35) and Equation (6.36) we recognized the use of different

error models for accuracy-continuity and integrity and the use of the worst-case propagated

nominal bias to the dimension of interest. The next sections provide some details how to

handle this multiple propagation over time in each of the subset filters.
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6.3.2 Propagation of Accuracy and Integrity Models

Although the assessment of the accuracy-continuity and integrity error covariance must be

considered for the fault detection and for the protection level calculation, these covariances are

propagated through the same Kalman filter estimator. The Kalman filter estimator is ultimately

characterized by the Kalman gain K in Equation (6.28) and computed with the integrity error

model. With this in mind, the covariance with the integrity model is just obtained from a

normal KF with the integrity model, whereas the accuracy-continuity model is propagated as:

P̂acc,k|k−1 = Φ̂ΦΦk P̂acc,k−1|k−1Φ̂ΦΦ
T
k +Gk Q̂acc,k GT

k , (6.38)

P̂acc,k|k =
(
I− K̂k Hk

)
P̂acc,k|k−1

(
I− K̂k Hk

)T + K̂k Rk K̂T
k . (6.39)

Notice that the expression in Equation (6.39) is used in the update step instead of the compact

expression Pk|k = (I−KH)Pk|k−1 since in this situation the projected predicted covariance

and the covariance matrix used to compute the Kalman gain are different. Notice also that

in Equation (6.39) the Kalman gain from the integrity-modeled filter is used. One can also

notice that since both covariances will share the same number of states, some of the matrices

in Equation (6.39) can be reused for both models and only need to be computed once. Finally,

the main purpose of the propagation of the accuracy-continuity model is to derive the solution

separation thresholds and to perform an assessment of required accuracy. For this reasons

only the covariance is necessary to be propagated.

6.3.3 Nominal Bias Determination

We are interested in determining the worst-case impact of the nominal biases on the desired

coordinate of interest. The expected value of the estimated KF error under the presence of

nominal biases b in the measurements can be expressed for one time epoch as:

E[xk|k ] = (I−Kk Hk )Φ̂ΦΦk E[xk−1|k−1]+Kk bk . (6.40)

The impact in any time epoch on the expected value of the aposteriori estimation can be

written by using a similar formulation as in [35] as:

E[xk ] =
[

A1k · · · Akk

]
︸ ︷︷ ︸

AK


b1

...

bk


︸ ︷︷ ︸

bK

, (6.41)
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where

Ai j =


(∏i+1

t= j (I−Kt Ht )Φ̂ΦΦt

)
Ki , if i < j ,

Ki , if i = j .
(6.42)

In Equation (6.41), the nominal bias at each epoch for each measurement is explicitly con-

sidered. The square of the expected error due to the nominal biases in a certain state or

coordinate l as:

b2
l = bT

KAT
Kεεε

T
l εεεl AKbK, (6.43)

where εεεl is used to extract the desired coordinate of interest. In principle we only know

the possible maximum value of the unmodelled bias (i.e., bnom from ISM message) for each

satellite. However, the impact on coordinate l can be bounded by assuming the maximum

nominal bias bnom in each satellite for each epoch and the worst-case sign by taking the

absolute value of the projection through the estimator:

b̂l ≤ |εεεT
l AK|1Nk×1bnom, (6.44)

which is a similar expression as the one used for batch sequential ARAIM in [103]. Notice

that this expression can be very conservative in the sense that the worst case sign of the bias

is used for every epoch for every satellite. It is also not a practical solution since it implies

the storage in memory of the growing size matrix AK. The evolution of the effects that are

condensed in the nominal bias are however not likely to jump from worst case positive to

worst case negative or viceversa from epoch to epoch. In order to relaxed this conservatism,

it is assumed that the worst case bias is stable over long periods and does not change sign

during one approach. This is justified since it has been observed in previous studies that these

biases show a constant behaviour for each satellite [108]. Nevertheless, so that the worst case

sign that could impact the current estimation is still considered, this sign is assumed for each

bias by using the absolution value on each coefficient of the estimator. Then, the matrices in

AK can be summed by taking a common factor of bias for a single epoch. In this situation, the

worst case impact of the nominal bias from Equation (6.44) can be written as:

b̂l ,k ≤εεεT
l

∣∣∣∣∣∣∣∣∣∣∣
k∑

i =0

[
k∏

j =1+i

(
I−K j H j

)
Φ̂ΦΦ j

]
Ki︸ ︷︷ ︸

Sk

∣∣∣∣∣∣∣∣∣∣∣
1Ns×1bnom. (6.45)

96



6.3 GNSS/INS Multiple Hypothesis Solution Separation

Notice that the estimator matrix Sk can be written and computed in a recursive fashion as:

Sk = (I−Kk Hk )Φ̂ΦΦk Sk−1 +Kk . (6.46)

This approach is therefore a more practical as compared to Equation (6.44). Up to now,

Equation (6.45) assumes a constant number of satellites Ns over time. This is in practice not

realistic but can be easily handled by slightly modifying the propagation of the estimator

matrix Sk in Equation (6.46) as:

Sk = (I−Kk Hk )Φ̂ΦΦk Sk−1Ts +Kk Tk , (6.47)

with Ts the past time estimator can be adapted to new appearing satellite measurements by

including zero columns in Sk−1. On the other hand, Tk can adapt the Kalman gain to previous

number of available satellites. Notice that in this way, the number of columns in Sk will

always increase. This is important since past time measurements still have an impact in the

projection of nominal biases even if the satellite is not visible anymore at current epoch. This

impact of course reduces with time and for operations of longer duration one could consider

removing the corresponding column of a disappeared satellite after a certain time has passed.

The nominal bias is mainly considered to capture signal deformation and therefore it affects

only code measurements. Since the measurement vector considers both code and phase

measurements in Equation (6.29), to respect the natural size of Sk , Kk and Hk , Equation (6.45)

can be refined as:

b̂l ,k ≤εεεT
l |Sk |

 1Ns×1

0Ns×1

bnom (6.48)

The impact of the GNSS/INS designed in this chapter with the overbounding error models as

well as the performance of protection levels with the bank of Kalman filters and nominal bias

determination will be demonstrated in Chapter 7.
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tion

Current ARAIM algorithm analysis consists of estimating the availability coverage maps like

the one depicted in Fig. 7.1. For each grid point in the map, availability is computed based

on the percentage of time that the system satisfies the integrity, accuracy and continuity

requirements over 24 hours time period divided in certain time steps. For an aircraft, the

visibility of satellites is determined with respect to horizon and a certain elevation mask

(typically 5 degrees). The location of satellites in space are obtained for each time step from

a reference GPS and Galileo almanac. This availability analysis gives a good overview of the

impact of satellite geometry in ARAIM performance for different locations in the world. It is,

however, disconnected from the actual procedures and operations an aircraft might need to

follow. In particular, the following aspects are not considered:

• Grid points in space and time are considered disconnected. However, there is a correla-

tion of location and time for particular aircraft operations when obtaining probability of

loss of service and thus continuity.

• Satellite visibility is based on horizon visibility with respect to the local-level navigation

frame. However, actual tracking is dependent on the visible satellites from the antenna

gain pattern and therefore more related to the aircraft body frame. During manoeuvres

in airport vicinity, the attitude of the aircraft changes and the horizon visibility is not

realistic anymore.

• ARAIM algorithm is based on carrier-smoothed code measurements with typically

100 seconds smoothing time. In the case of the lost and reacquisition of a satellite,

the algorithm waits 100 seconds until it can use again the previously lost satellite for

position computation.

In the case of evaluating the performance of a GNSS/INS system it is not possible to perform

availability in a snapshot way as for ARAIM. The actual accuracy and integrity of a GNSS/INS
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Figure 7.1: ARAIM availability as function of user location [109]

solution is dependent on past conditions and errors. Changing number of visible satellites

and encountered dynamics change the filter capacity to estimate/calibrate the INS errors. In

this respect, a procedure-based approach is more appropriate and is proposed here to:

1. Assess the performance of the developed GNSS/INS algorithm in Chapter 6 that includes

the error overbounding methodology developed in Chapters 4 and 5.

2. Provide new insights about the impact of procedures in the performance of ARAIM

algorithm.

3. Being able to assess the expected availability and continuity loss of a GNSS/INS system

in a certain relevant scenario or operation.

4. Being able to compare the performance of ARAIM and the GNSS/INS system.

7.1 Procedure-based Simulation

In order to evaluate the behavior of the GNSS/INS system designed in Chapter 6 in a realistic

operational scenario, a simulated precision approach landing procedure as shown in Figure 7.2

is created with the DLR multisensor navigation simulator [110]. This approach is a half race-

track procedure starting from a holding position at 7000ft (around 2.1 km) Above Ground

Level (AGL) with 200 knots (around 100 m/s) speed. For the turn, the bank angle is at its

maximum of 25 degrees as specified in [111], which is a worst case trajectory (i.e., highest

likelihood of losing visible low-elevation satellites due to banking). More realistic dynamics

for the procedures could be additionally considered based on true airspeed and tailwind,
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Figure 7.2: Simulated half race-track procedure

but these are beyond the scope of this work. From the generated trajectory in Fig. 7.2, IMU

measurements are simulated at 100Hz. GNSS measurements are assumed to be present at 1

Hz at the receiver from satellites at locations based on GPS and Galileo almanac data.

Figure 7.3 shows an example of the evolution of visible satellites over the trajectory in Fig. 7.2

at Munich Airpot (EDDM). It can be seen that due to the banking of the aircraft, the number

of visible satellites drops during the turn. This will have several implications in the expected

performance and behaviour of GNSS PVT algorithms and the GNSS/INS integrated system.
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Figure 7.3: Evolution of number of visible satellites during half race-track procedure
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7.2 Covariance Bounding Analysis

The new error models derived in Chapter 4 and 5 guarantee bounding conditions under uncer-

tain GMP error models. Based on the uncertain GNSS error models presented in Table 6.1, the

estimation with error bounding can be verified for a given set of true underlying parameters;

for instance by sensitivity analysis as shown in Appendix A.1. There are however multiple

possible combinations of true GNSS error parameters for a given situation. In order to validate

that the GNSS/INS system provides error estimation that overbounds the uncertain errors,

covariance analysis are performed over the trajectory and conditions described in Section 7.1.

For the simulation and analysis the filter has been initiated one hour before starting the final

approach procedure. This initialization consists of replicating the available satellite measure-

ments at the beginning of the trajectory for this period of time. This is a standard procedure

to reflect better the status of the filter in real operations, avoiding the effect of a convergence

and/or transition phase [8] (e.g., large mis-alignments, unknown biases of inertial sensors,

etc.). A navigation grade inertial sensor is considered for this first analysis with the parameters

shown in Table 6.4. In Fig. 7.4, the difference between estimated and true error variance is

presented for some extreme cases of true error model parameters: when all time correlation

constants of the GNSS GMP errors are i) at their possible minimum, ii) at their possible max-

imum and iii) in the middle of their possible range. The analysis completes by considering

both stationary and non-stationary GMP bounding models when using the integrity error

model over the trajectory in Fig. 7.2 consistent with the visible satellites in Fig. 7.3.

Figure 7.4 first shows that all the curves are in the positive region. This means that the designed

GNSS/INS KF correctly overbounds the uncertain underlying error under all situations. Up

to around half a meter difference can be observed in these situations. This conservatism is

the price to pay for the lack of knowledge of the exact value of error model parameters and

thus possible process realization in a given moment. The results in Fig. 7.4 also show that

the non-stationary models are less conservative when new satellites appear, which mainly

happens when the aircraft starts banking just before t = 200 s.
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Figure 7.4: Difference of estimated KF standard deviation with error bounding (σKF) and true
KF error standard deviation for different cases of GMP true parameters

7.3 Algorithm Performance Results

7.3.1 Fault-Free Accuracy

The first important requirement for approach operations is the accuracy. For the simulated

scenario described previously, Fig. 7.5 depicts the standard deviation extracted from the

GNSS/INS covariances for the following error model configurations:

• Stationary GMP: The filter is configured with the GNSS errors modelled with the GMP

stationary bounding model.
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Figure 7.5: Fault-free accuracy results

• Non-Stationary GMP: The filter is configured with the GNSS errors modelled with the

GMP non-stationary bounding model.

• MOPS parameters: The filter is configured with the same augmented states as described

in Chapter 6 but using as time-correlation constants for satellite clock-ephemeris, tro-

posphere and multipath as proposed in avionic standards (e.g., [8]). Note that since

specific models are not currently available for Galileo in MOPS, the GPS time constants

are also for Galileo.

In Fig. 7.5, the most restrictive accuracy requirement for LPV-200 is also shown as a reference.

The new GMP bounding models with the proposed parameters in Chapter 6 are significantly

more conservative than the GNSS/INS with the DO-384 time correlation constants. However,

from what it has been observed in the literature, it might be that the parameters proposed in

MOPS do not capture completely all the range of possible time-correlation error behaviour

(e.g., in satellite orbit and clock errors), which could lead to misleading information in some

situations. Even though more conservative, during the whole procedure the GNSS/INS system

with both fully stationary or non-stationary models still satisfy (with good margin) the LPV-200

accuracy requirement while accounting for the range of variations in time-correlated errors.

7.3.2 Protection Level Evolution

Vertical ARAIM targets to support LPV-200 operations. However, during certain maneuvers,

the possible loss of visible satellites can compromise the availability and continuity of the ap-

proach. In this sense, it is relevant to study the possible gain when using a coupled GNSS/INS

system that still respects most of the algorithm description and parameters that are already
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Table 7.1: ARAIM-GNSS/INS MHSS Simulation Parameters

Parameter Description Value

PHMI Total Integrity budget per approach 10−7

PFA Probability of false alarm (Continuity risk) 4 ·10−6

VAL Vertical Alert Limit 35 m.

bnom Maximum nominal bias for integrity 0.75 m.

Psat Prior probability of satellite fault per approach 10−5

Pconst, GPS Probability of GPS constellation fault per approach 10−8

Pconst, GAL Probability of Galileo constellation fault per approach 10−4

set for VARAIM. One of the key parameters is the accuracy, as shown in the previous section.

The other main indicator to determine whether the system is available for the user is the

comparison of the computed protection level with respect to the alert limit (AL).

Table 7.1 summaries the parameters that are used for the ARAIM and GNSS/INS protection

level (PL) simulations. The values are based on typical values set in the ARAIM ADD [112] and

are the same for both estimators. Figure 7.6 presents the vertical PLs (VPL) obtained under

the following algorithms. First and as a reference, the ARAIM VPL assuming that satellites

could be incorporated immediately into the snapshot PVT algorithm once they become visible

(ARAIM snapshot visibility). This is not a realistic situation due to the typical 100 second

smoothing time the carrier-smoothing (CS) filters need to reinitialize. It is, however, here

shown as a reference since this assumption is the one taken for current ARAIM availability

and coverage analysis world-wide. The VPL performance assuming the reinitialization of the

smoothing filters is also considered (ARAIM CS reinit). Finally, the VPL obtained with the

GNSS/INS algorithm under the different error models as before, that is, assuming the time

correlation constant from avionics MOPS, with the stationary GMP model and with the non-

stationary GMP model. Figure 7.6b provides a zoomed version of the latter cases. In Fig. 7.6,

the impact of carrier-smoothing filter reinitialization can be observed. This reinitialization

may expand significantly the period of time when VPL exceeds VAL, which is considered as

a loss of continuity. In this sense the GNSS/INS integrity monitoring algorithm is able to

maintain almost a constant (and lower) VPL over the whole operation and thus bridge the

possible ARAIM gaps during aircraft manoeuvres. It is, however, worth mentioning that for

more stringent operations, where for instance a VAL of 10 m. would be necessary, the current

setup with the selected sensor (e.g. lack of a barometer) and error models might still find

difficult to satisfy. In the next section a more complete study on the probability of loss of

continuity is presented.
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Figure 7.6: Impact of aircraft dynamic and smoothing on VPL (Racetrack Trajectory, EDDM
airport, runway 08L for operation starting at 17:20)

7.3.3 Impact of Sensor Quality

In this section, the GNSS/INS MHSS algorithm is evaluated considering a tactical-grade inertial

sensor instead of the navigation grade one used in the previous results. The characteristics of

the model are as presented in Table 6.3 and 6.4. Fig. 7.7 depicts the achieved accuracy and

VPL with the two different quality of inertial sensors.

Under the simulation conditions of this research, the difference in performance is small (or

even negligible) in relation to the operational requirements of LPV-200. The reason is that

the expected performance with different sensors deviates when few or none satellites are

visible and the solution is mainly driven by the inertial coasting. In the case of a sufficient high

number of available satellite measurements and their respective geometry, the filter is able
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Figure 7.7: Performance with different inertial sensor grades

to maintain a good estimation of the INS errors. In the case of reduced number of satellites,

the impact of inertial quality would become more observable after a larger time interval. This

can be seen in Fig. 7.7 after second 250 when some satellites are not longer tracked. Recall

that one hour of stable conditions with all available satellite measurements were considered

before starting the simulated procedure. This is why both filters with different IMU sensors

have very similar performance at the first 200 seconds on the plot.
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7.3.4 Loss of Continuity Analysis

In general sense the continuity risk or probability of loss of continuity (LOC) is defined as the

probability of a detected but unscheduled navigation function interruption after an operation

has been initiated [113]. The authors in [114] expressed the total continuity risk as:

PLOC = PLOC,alert +PLOC,PL>AL +PLOC,other, (7.1)

where PLOC,alert is primary linked with fault detection alerts at the receiver, PLOC,other are

cases of loss of service due to other reasons like presence of RF interference or ionospheric

scintillation, and PLOC,PL>AL is a loss of continuity due to violation of integrity risk or alert limit.

Alert limit violation can happen for several reasons, for instance due to a very unfavorable

nominal geometry, an unusually high user range accuracy (URA) or due to unscheduled

satellite outages [114]. However, a bad geometry situation can arise, as it was shown in the

previous section, due to aircraft manoeuvres during an approach. Another source of satellite

measurement outage that can lead to geometry degradation is due to carrier-phase cycle slips,

which are initially not considered in the fault detection continuity budget while are likely

to happen in real operation. In this section, the impact of manoeuvres in loss of continuity

is further evaluated via simulations. If ARAIM is not performing availability predictions

based on real type of operations and assuming that at least some type of banking is always

necessary during an approach, loss of visible satellites during manoeuvres and smoothing

filter reinitialization has to be considered as an unscheduled event.

Each airport has in principle their specific approach procedures, so it is difficult to make

general statements about the expected type of manoeuvres. However, some common patterns

can be found in many of them and can be considered as general templates for the availability

and continuity analysis during operation. One of them is the half race track shape presented

in Fig. 7.2 which is a typical pattern use to reduce altitude during the intial approach segment

and it is also part of a holding pattern, where ATM could send an aircraft to if necessary

(e.g., due to airport congestion). Furthermore, this pattern contains a turn with a worst-case

banking angle, and therefore could be considered an extreme situation for ARAIM.

In order to perform simulations that are closer to the actual operational scenarios, the method-

ology in Fig. 7.8 is considered. From public databases, a list of airports and information about

their runways can be extracted. In this work the data from [115] has been used for such

purpose. For each runway the geographical location of the start as well as the heading angle of

the runway is known. Whether the runway is a left or right side approach entry is also provided

when applicable. With this information, a template procedure can be translated and rotated

so that it is aligned to a Final Approach Fix (FAF). In order to capture the temporal dynamics

of the GNSS constellations the operation can be initiated based on a time grid similar as for
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Figure 7.8: Availability Study Methodology

Table 7.2: V-ARAIM Probability of loss of availability and continuity due to racetrack procedure
in EDDM airport, considering four runways.

(1 - Prob. loss Avail.)x100 (1 - Prob. loss Cont.)x100

V-ARAIM (Snapshot) 99.77 87.63

V-ARAIM (smoothing reinit) 87.6 61.19

GNSS/INS KF ARAIM 100 100

ARAIM availability studies and then narrowed down to the visible satellites at aircraft attitude

i.e., the visible satellites at the antenna level.

Based on the methodology in Fig. 7.8 and approaches every 5 minutes, Table 7.2 shows the

average over 4 runways in Munich airport (EDDM) in terms of availability and continuity for:

ARAIM assuming snapshot satellite visibility, ARAIM with smoothing filter reinitialization

and the GNSS/INS system presented in Chapter 6 with the non-stationary GMP model. The

probability of loss of availability is computed epoch-based irrespective of the operation.

Probability of loss of continuity is based on each of the initiated operations, that is, if the

protection level exceeds the alert limit at least at one epoch during an operation, that operation

is counted as a loss of continuity event. As it is shown in Table 7.2, the maneuver procedure

has a big impact on ARAIM continuity. The results suggests that the integration of inertial

with GNSS with ensured error bounding and integrity monitoring presented in this work can

mantain 100% continuity during the ARAIM gaps for LPV-200.

Finally, Fig. 7.9 shows the obtained V-ARAIM loss of continuity for different airports around

the world averaged over their specific number of runways. The GNSS/INS ARAIM algorithm

simulated here is able to guarantee the 100% continuity in all of them. Due to the simulated

pattern of trajectory, it appears that the loss of continuity is similar in all of them. It should be

noted, however, that such trajectory might be possible yet rare to be used at some airports.
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Figure 7.9: (1 - Prob. loss of Continuity)x100 at different airports due to approach procedure
with banking angle of 25 degrees

Moreover, the probability of having a specific type of operation should be also considered for a

final statement of loss of continuity. In any case, the simulations performed here may provide

a guidance to a first worst-case assessment on this matter.
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8 Concluding Remarks

8.1 Summary

This work has provided new tools, methods and models to handle uncertainty in model

parameters of time-correlated error processes in their subsequent use in estimation. This

topic and results can be of great importance for several emerging applications that are now

considering integrated navigation with state-space estimators like Kalman filtering for safety-

critical operation. The new models to handle Gauss-Markov model parameter uncertainty

have been applied to GNSS/INS estimation by leveraging and creating links between current

MOPS standards, ARAIM and recent literature.

The main achievements based on this work can be summarized as:

1. Uncertainty in study time-correlated processes. Model-parameter uncertainty is quite

common in real physical systems. This work has provided new leads how to handle such

uncertainty in time-correlated processes employed within safety-related applications,

by creating a link between model behaviour in time to guarantee correct estimation

uncertainty of impacted parameters with sequential estimators.

2. Gauss-Markov Process Bounding. Gauss-Markov processes are of widespread used

in different communities due to their facility to be incorporated in linear estimators.

This work has provided rigorous derivation of new bounding model parameters with

theoretical proofs. These can be used to select the parameters of uncertain GMP to

ensure covariance bounding conditions of linear estimators.

3. GNSS/INS MHSS Architecture with Uncertain Time Correlated Models. While leverag-

ing on previously derived GMP bounding, a complete GNSS/INS integrity monitoring

design has been presented based on a multiple hypothesis solution separation algorithm

that allows for a closer comparison with current ARAIM and can facilitate the use of
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Dual Frequency, Multi-constellation GNSS/INS for safety critical purposes.

4. Impact of trajectory on loss of continuity. Inertial systems are always mentioned as

the possible main contributor to improve continuity of the navigation system. In this

work, a direct study has been provided that shows its potential to guarantee continuity

independently on the actual trajectory and banking of the aircraft.

8.2 Conclusions

Future updates to avionics standards dealing with GNSS/INS integration will consider dual

frequency, multi-constellation GNSS as the main driver to increase performance. In order to

ensure correct integrity risk quantification, the potential uncertain nature of time-correlated

GNSS (or inertial) errors and related models must be taken into account. This research has

provided theoretical bounding criteria that can support this objective and its impact on the

final estimation result. The derivation of new parameters for Gauss-Markov model ensuring

bounding conditions provides a rigorous insights that can be easily implemented by designers.

Furthermore, with the increment of emerging applications that require navigation safety

assurance, the results of this research work can support certain aspect for the certification of

navigation algorithms using state-space estimators.

8.3 Future Work

• Inclusion of uncertain IMU error models. This thesis focused on the impact of un-

certain GNSS error sources on the GNSS/INS Integrity Monitoring results. IMU errors

are also expected to have some level of uncertainty, in particular for lower-cost IMUs.

Further work could tackle the uncertainty in IMU model parameters.

• Optimization of Kalman Filter MHSS with augmented states. The state vector of the

designed GNSS/INS KF in this work was very large. In fact, most of the augmented

states for the uncertain GNSS errors had only the role of properly accounting for the

necessary uncertainty, but their observability might not be possible. On one side, some

optimization could be applied to reduce complexity of the bank of KFs by exploiting

similarities between subsets. On the other side, some other methodologies could be

used to avoid the use of many augmented states, for instance measurement differencing.

• Impact of non-linearities in EKF. The analysis performed in Chapter 7 were done

considering a linearized Kalman filter. The possible impact of non-linearities in the

overbounding capability of the filter, in particular during strong manoeuvres, should be

addressed in the future. In the case of navigation grade IMUs, the impact is expected to

be small and it does not seem to pose a big concern in the aviation community. When
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using tactical grade or low-cost IMUs, this impact could reach some importance due to

the significantly higher drift in heading and higher amplitude of sensor errors in general.

• Evaluation of GNSS Multipath based on Real Data. One of the most challenging error

sources to model is multipath. In this work a wide range for the time correlation of mul-

tipath was used. Further studies could address a dedicated evaluation of real multipath

in aircraft or for other vehicles so that the time-correlation range can be reduced and to

avoid possible extra conservatism in the estimation.

• Non-Gaussian Error Processes. In this work, the new derived bounding models are

assumed to be Gaussian, or in the application GNSS/INS case, it was assumed that the

provided variances for each error were bounding the underlying empirical distribution.

Further work could study new methods to account for non-Gaussian error processes

and their impact on the final estimation [116].
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A KF Sensitivity Analysis and Bounding

A.1 Discrete KF True error Covariance

Consider a general discrete-time linear dynamic system described as follows:

xk =ΦΦΦxk−1 +Gk wk , (A.1)

zk = Hk xk +vk . (A.2)

where x is the state vector,ΦΦΦ the transition matrix and w the process noise with E[wwT] = Q.

Additionally, G is the process noise projection matrix, z is the measurement vector, H the

measurement matrix and v the measurement noise. A Kalman filter estimator that designs

imperfectlyΦΦΦ and Q with Φ̂ΦΦ, and Q̂ respectively, can be written as:

x̂k|k−1 = Φ̂ΦΦx̂k−1|k−1, (A.3)

P̂k|k−1 = Φ̂ΦΦk P̂k−1|k−1Φ̂ΦΦ
T
k +Gk Q̂k GT

k , (A.4)

K̂k = P̂k|k−1HT
k

(
Hk P̂k|k−1HT

k +Rk
)−1

, (A.5)

x̂k|k = x̂k|k−1 + K̂k
(
zk −Hk x̂k|k−1

)
, (A.6)

P̂k|k =
(
I− K̂k Hk

)
P̂k|k−1. (A.7)

where R is the measurement noise covariance matrix.Notice that because the filter is im-

perfectly designed, the state covariance matrix P̂k|k is not guaranteed to bound the actual

true error in x̂k|k . In [33] a methodology is proposed to study the sensitivity of the imperfect

modeling for a continuous Kalman filter. In [73] similar expressions can be found for the

hybrid Kalman filter. This appendix follows the same approach to derive the true covariance

error for the complete discrete-time Kalman filter.
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Let us define the error vector e =̂ x̂−x. The KF prediction step can be then written as:

ek|k−1 = x̂k|k−1 −xk

= Φ̂ΦΦx̂k−1|k−1 −ΦΦΦxk−1 −Gk wk . (A.8)

where Equation (A.1) has been used to substitute the true state vector. Defining now ∆ΦΦΦ =̂Φ̂ΦΦ−
ΦΦΦ, Equation (A.8) leads to:

ek|k−1 = Φ̂ΦΦek−1|k−1 +∆ΦΦΦxk−1 −Gwk . (A.9)

In order to propagate this error over time, we can consider the time propagation of the

extended vector ζζζ =
[

eT xT
]T

as:

 ek|k−1

xk

 =

 Φ̂ΦΦ ∆ΦΦΦ

0 ΦΦΦ

 ek−1|k−1

xk−1

+
 −Gk wk

Gk wk

 , (A.10)

whose associated covariance is:

Pζ,k|k−1 =

 Φ̂ΦΦ ∆ΦΦΦ

0 ΦΦΦ

Pζ,k−1|k−1

 Φ̂ΦΦ ∆ΦΦΦ

0 ΦΦΦ

T

+
 Gk Qk GT

k −Gk Qk GT
k

−Gk Qk GT
k Gk Qk GT

k

 . (A.11)

For the update step we proceed in a similar way:

ek|k = x̂k|k −xk =
(
I− K̂k Hk

)
x̂k|k−1 + K̂k zk −xk

=
(
I− K̂k Hk

)
ek|k−1 − K̂k vk , (A.12)

which leads to the extended update expression: ek|k

xk

 =

 (
I− K̂k Hk

)
0

0 I

 ek|k−1

xk

+
 −K̂k vk

0

 (A.13)

and whose associated covariance is now:

Pζ,k|k =

 (
I− K̂k Hk

)
0

0 I

Pζ,k|k−1

 (
I− K̂k Hk

)
0

0 I

T

+
 K̂k Rk K̂T

k 0

0 0

 . (A.14)

The true error covariance of the states of interest, i.e., P = E[eeT] can be extracted from the

upper block of the covariance matrix Pζ.

Notice also that Equation (A.14) cannot be written in a simplified fashion as in Equation (A.7)
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because the covariance of the prediction of ek|k−1 is different from the one that is used to

compute the Kalman gain, which is based on the imperfectly designed Kalman filter estimator.

Finally, the initial state covariance P̂0 must also be set according to the design. Assuming

an error state implementation of the filter where E[x0] = 0, the initialization of the extended

matrix used for the sensitivity analysis is described as:

Pζ,0 =

 P0 −P0

−P0 P

 . (A.15)

Using Equation (A.15), Equation (A.11) and Equation (A.14) it is possible to obtain recursively

the true error KF covariance matrix over time.

A.2 Derivation of Auxiliary Process Covariance in Discrete-Time

This appendix derives the variance of the individual auxiliary processes used for the derivation

of non-stationary GMP bound parameters in Section 5.2.

The expression of discrete-time LDS where the error due to misdesigned time-correlated GMP

is isolated by augmenting the state vector is [73]: ek

ak

 =

 F̂ ∆F

0 L

 ek−1

ak−1

+
 −wk

wk

 , (A.16)

with associated predicted covariance matrix:

Pζ,k|k−1 =

 F̂ ∆F

0 L

Pζ,k−1|k−1

 F̂ ∆F

0 L

T

+Qk . (A.17)

On the other side, the KF estimated covariance matrix can also be augmented with an auxiliary

process to a similar shape as Equation (A.17):

ΣΣΣk|k−1 =

 F̂ 0

0 L

ΣΣΣk−1|k−1

 F̂ 0

0 L

T

+
 Q̂k 0

0 Q̄k

, (A.18)

where Σ is a block diagonal matrix. In order to be able to compare Equation (A.17) and

Equation (A.18), we can introduce the block cross matrices in the propagation matrices in
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Equation (A.18) by rewriting it as:

ΣΣΣk|k−1 =

 F̂ ∆F

0 L

ΣΣΣk−1|k−1

 F̂ ∆F

0 L

T  Q̂k −∆FΣΣΣa∆FT −∆FΣΣΣaLT

−LΣΣΣa∆FT Q̄k

 . (A.19)

The value of Q̄k can be derived by considering the first condition in Equation (5.50). Using the

transformation∆∆∆ =ΣΣΣ−P, the difference between Equation (A.17) and Equation (A.19) is:

∆∆∆k|k−1 =

 F̂ ∆F

0 L

∆∆∆k−1|k−1

 F̂ ∆F

0 L

T

+


Q̂ξ,k −Qξ,k 0 0

0 Q̂a −∆LΣΣΣa∆LT −Qa −∆LΣΣΣaLT +Qa

0 −LΣΣΣa∆LT +Qa Q̄k −Qa

 .

(A.20)

where ∆L ≜ L̂−L. Since ∆∆∆0 ≥ 0 (as it is ensured in Sec. 5.2.3), ∆∆∆k|k−1 ≥ 0,∀k ≥ 1 if the last

matrix in Equation (A.20) is positive semidefinite. For the states of interest ξξξ we can assume

that the process noise are designed such that Q̂ξ,k−Qξ,k ≥ 0. Therefore, the desired condition is

satisfied if the 2x2 lower-right block diagonal matrix in Equation (A.20) is positive semidefinite.

Since the GMP are considered to be independent among each others, this is equivalent to

satisfy for each GMP the following inequality: q̂ − (α̂−α)2σ̄2 −q −(α̂−α)ασ̄+q

−(α̂−α)ασ̄+q q̄ −q

≥ 0. (A.21)

where q̂ ,α̂,α and σ̄2 are one of the diagonal elements of Q̂a,L̂,L and ΣΣΣa respectively. Equa-

tion (A.21) can be satisfied by ensuring the determinant is non-negative. Using q̄ = σ̄2(1−α2),

q =σ2(1−α2) and q̂ = σ̂2(1− α̂2), we lead to:

−(α− α̂)2σ̄4 + (1−α2)(1− α̂2)(σ̂2 −σ2)σ̄2 − σ̂2σ2(1−α2)(1− α̂2) ≥ 0. (A.22)

Similar as in the continuous-time case (Section 4.3), we solve the quadratic expression in

Equation (A.22) for σ̄2. The minimum imposed solution of σ̄2 that satisfies Equation (A.22)

for the stationary model parameters in Equation (5.25) and Equation (5.26) is the one that

provides only one root, which is achieved when σ2 =σ2
max is chosen and we use either α = αmin

or α = αmax. For α = αmax, the minimum solution of σ̄2 (in discrete-time) is:

σ̄2
d,min =

(1− α̂2
d)(1−α2

max)

2(α̂d −αmax)2 (σ̂2
d −σ2

max). (A.23)
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A.3 Proof of Continuous-time Parameters in Discrete-time Non-

stationary Models

This appendix supports the proof that parameters derived in continuous-time can be used

in non-stationary discrete-time models while still ensuring bounding conditions. This is

achieved providing the proofs to Equation (5.59), which is here rewritten for convenience as:

σ̄2
d,min(σ̂2

c, τ̂c)− σ̄2
c,min ≥ 0,∀∆t > 0. (A.24)

On one side, σ̄2
c,min was found in Section 4.3 to be:

σ̄2
c,min = 2σ2

max
τmax

τmax − τ̂c
. (A.25)

In order to obtain σ̄2
d,min(σ̂2

c, τ̂c), we consider the main quadratic condition on σ̄2 in the

discrete-time domain from Equation (A.22). As explained in Section 4.3 we are interested in

the maximum of the quadratic Equation (A.22), which is:

σ̄2 =
(1−α)(1− α̂2)(σ̂2 −σ2)

2(α− α̂)2 +{
(1−α2)(1− α̂2)2(σ̂2 −σ2)2 −4(α− α̂)2σ̂2σ2(1−α2)(1− α̂2)

}1/2

2(α− α̂)2 .

(A.26)

In the case that α̂ = α̂c (i.e., τ̂ = τ̂c) and σ̂2 = σ̂2
c, the term with the square root in Equation (A.26)

is not zero in general, but it must be a positive value ϵ≥ 0. Therefore σ̄2
d(σ̂2

c, τ̂c) can be written:

σ̄2
d(σ̂2

c, τ̂c) =
(1−α)(1− α̂2

c)(σ̂2
c −σ2)

2(α− α̂c)2 +ϵ, (A.27)

which is on one side clearly minimum for σ2 =σ2
max and it must be minimum at either α = αmin

or α = αmax. Substituting Equation (A.27) and Equation (A.25) into Equation (A.24) we lead to:

(1−α)(1− α̂2
c)(σ̂2

c −σ2
max)

2(α− α̂c)2 +ϵ−2σ2
max

τmax

τmax − τ̂
≥ 0. (A.28)

Substituting σ̂2
c from Equation (4.41), taking σ2

max as common factor and operating the two

fractions in Equation (A.28) we lead to:

σ2
max

 (τmax − τ̂c)(1−α)(1− α̂2
c)(

√
τmax
τmin

−1)

2(α− α̂c)2(τmax − τ̂c)
− 4τmax(α− α̂c)2

2(α− α̂c)2(τmax − τ̂c)

+ϵ≥ 0. (A.29)

Since τmax ≥ τ̂c, the denominator is larger than zero and the condition in Equation (A.29)

reduces to ensuring the numerator is larger or equal to zero. This is the case since 1. the
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limit of the numerator for ∆t → 0 = 0 and 2. it is a monotonically increasing function of ∆t

independent on the actual value of τ. We can check that by checking the derivative of the

numerator, which is:

(τmax − τ̂c)(kc −1)

2(1−e
−∆t
τ )e

−2∆t
τ̂c

τ̂c
+ e

−∆t
τ (1−e

−2∆t
τ̂c )

τ


−8τmax

(
e

−∆t
τ −e

−∆t
τ̂c

)e
−∆t
τ̂c

τ̂c
− e

−∆t
τ

τ

≥ 0.

(A.30)

where kc =
√

τmax
τmin

is used. Since kc ≥ 1 and all the negative exponentials exists between 0 and 1,

the first argument in Equation (A.30) is always positive. The second argument led by a negative

sign can be rewritten as:

−8
τmax

τ̂cτ

(
e

−∆t
τ −e

−∆t
τ̂c

)
e

−∆t
τ̂c e

−∆t
τ

(
τe

∆t
τ − τ̂ce

−∆t
τ̂c

)
≥ 0. (A.31)

If τ < τ̂c,

(
e

−∆t
τ −e

−∆t
τ̂c

)
< 0 and

(
τe

∆t
τ − τ̂ce

−∆t
τ̂c

)
> 0, makes Equation (A.31) positive. If

τ> τ̂c,

(
e

−∆t
τ −e

−∆t
τ̂c

)
> 0 and

(
τe

∆t
τ − τ̂ce

−∆t
τ̂c

)
< 0, makes Equation (A.31) also positive. In

the case that τ = τ̂c, Equation (A.31) is zero. This proofs that Equation (A.30) is non-negative,

ultimately proving Equation (A.24).

A.4 Non-Stationary GMP Covariance over Time

This Appendix provides an expression for the autocovariance of a general non-stationary

discrete-time GMP between two time steps. The first three samples of the discrete-time GMP

sequence can be expressed with respect to the initial GMP sample a0 as:

a1 = αa0 +
√
σ2(1−α2)w1,

a2 = α2a0 +α
√
σ2(1−α2)w1 +

√
σ2(1−α2)w2,

a3 = α3a0 +α2
√
σ2(1−α2)w1 +α

√
σ2(1−α2)w2 +

√
σ2(1−α2)w3,

...

(A.32)

where

α = e
−∆t
τ , and wi ∼N (0,1), ∀i ∈Z> 0. (A.33)
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A general, compact form of these equations can be written for any time step n as:

an = αn a0 +
√
σ2(1−α2)

n−1∑
i =0

αi wn−i . (A.34)

Since the expected value of a GMP is zero for any time step (E[an] = 0, ∀n ≥ 0), the autocovari-

ance of this non-stationary process between any integer n ∈Z and p ∈Z time step with p ≥ n

is:

E[an ap ] = E

[(
αn a0 +

√
σ2(1−α2)

n−1∑
i =0

αi wn−i

) (
αp a0 +

√
σ2(1−α2)

p−1∑
j =0

α j wp− j

)]
. (A.35)

Using E[a2
0] =σ2

0 and E[a0wi ] = 0, ∀i ∈Z> 0, and rearranging, Equation (A.35) becomes:

E[an ap ] = αnαpσ2
0 +σ2(1−α2)

n−1∑
i =0

p−1∑
j =0

αiα j E[wn−i wp− j ]. (A.36)

Because the driving noise wi is a white sequence, the expectation function under the double

summation in Equation (A.36) is non-zero only if n − i = p − j , which is expressed as:

E[wi wi ] = 1, ∀i > 0,

E[wi w j ] = 0, for i ̸= j .
(A.37)

Therefore we can make the change of variable: j = p −n + i to get rid of one of the two

summations:

E[an ap ] = αnαpσ2
0 +σ2(1−α2)

n−1∑
i =0

α2i+p−n . (A.38)

Recognizing a geometric series, Equation (A.38) becomes:

E[an ap ] = αnαpσ2
0 +σ2(1−α2)

(α2n −1)αp−n

α2 −1
, (A.39)

which finally leads to:

E[an ap ] = αn+pσ2
0 +σ2(1−α2n)αp−n , ∀p ≥ n. (A.40)

It is worth noting that if the process is stationary (i.e., σ2
0 =σ2), then Equation (A.40) expectedly

reduces to:

E[an ap ] =σ2αp−n , ∀p ≥ n. (A.41)
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The correlation between two time steps is the same regardless of the order of indices, that is:

E[an ap ] = E[ap an]. With this in mind, we can give an expression that does not specify which

of n or p is larger:

E[an ap ] = αn+pσ2
0 +σ2(1−α2min(n,p))α|p−n|. (A.42)

A.5 Approximate Non-Stationary Initial Variance Inflation Factor

In order to support the numerical search of k0 in Equation (5.64), we can use the fact that the

impact of k0 on the positive semidefiniteness of ∆R is most significant on the first leading

principal minors. A first good approximation of k̃0 can therefore be obtained by considering

the first 2x2 leading principal submatrix. This is obtained by considering N = 2, n = 0 and p = 1

in Equation (5.64), which reduces to [117]:

σ2
max

 k0 −1 α̂k0 −α
α̂k0 −α α̂2k0 +k

(
1− α̂2

)−1

⪰ 0, (A.43)

This inequality leads to the following condition on k̃0:

k̃0 ≥
k

(
1− α̂2

)−1+α2

k
(
1− α̂2

)−1− α̂2 +2αα̂
. (A.44)

The right-hand side of Equation (A.44) is larger when τ = τmin and therefore the most restrictive

condition on k̃0 is:

k̃0 ≥
k

(
1−e−

2∆t
τ̂

)
−1+e

− 2∆t
τmin

k

(
1−e−

2∆t
τ̂

)
−1−e−

2∆t
τ̂ +2e

−∆t
(

1
τ̂
+ 1
τmin

) . (A.45)

The value in Equation (A.45) has been observed to be very close to the minimum condition

on k0 and it is therefore a good initialization value for the search of k0. It is noteworthy in

this discrete time expression that the minimum value of k0 is dependent on the values and

range of τ and on the sample interval ∆t . The impact of ∆t becomes significant when ∆t

approaches τmin.
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B.1 Proof Frequency Domain Bounding in Continuous-Time

This appendix provides a proof to Theorem 4.2.1 for Kalman filter covariance bounding criteria

based on frequency domain bounding in continuous-time domain. This proof follows the one

provided in [51] and the reader is recommended to consult it for more details.

In general, since a Kalman filter is a linear estimator, any estimated state of interest can be

expressed as a linear combination of the filter response to the independent inputs, which can

be process, measurements or control inputs in general:

x(t ) = x1(t )+x2(t )+·· ·+xn(t ). (B.1)

where xi (t ) is the filter response to process or measurement i ∈ [1,n]. Since the inputs to the KF

are independent, the total variance of the error is also the sum of the individual error variances

for each of the response to each input, assuming that errors in the inputs are zero-mean:

σ2
x (t ) =σ2

x,1(t )+σ2
x,2(t )+·· ·+σ2

x,n(t ). (B.2)

We can then focus on the variance of each of the responses to each individual error component.

The KF is in general a linear time varying (LTV) filter characterized with the impulse response

gi (u, t). The response to a given error zi (t) can be expressed as the following convolution

operation:

ϵx,i (t ) =
∫ ∞

−∞
gi (u, t )zi (u)du. (B.3)

This expression is a generalization to the well known convolution of linear time invariant

systems. In here, it is important to interpret that for a given time moment, the frequency

response of the filter would be different. The variance associated with an arbitrary ϵx,i (t ) can
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be computed as [53]:

σ2
x (t ) = E[ϵx (t )2] = E

[∫ ∞

−∞
g (u, t )z(u)du

∫ ∞

−∞
g (v, t )z(v)d v

]
=∫ ∞

−∞

∫ ∞

−∞
g (u, t )g (v, t )E[z(u)z(v)]dud v =∫ ∞

−∞

∫ ∞

−∞
g (u, t )g (v, t )Ri (u − v)dud v,

(B.4)

where the subscripts i are removed for clarity from this point on. R is the autocovariance of

z(t). The autocovariance is a Fourier pair with the Power Spectral Density (PSD), so we can

write:

R(u − v) =
∫ ∞

−∞
S( jω)e− jω(u−v)dω (B.5)

where S( jω) is the PSD of the error z(t ). Rewriting Equation (B.4) depending on the PSD leads

to:

σ2
x (t ) =

∫ ∞

−∞
S( jω)

∫ ∞

−∞
g (u, t )e− jωudu

∫ ∞

−∞
g (v, t )e jωv d vd f =∫ ∞

−∞
G( jω, t )G(− jω, t )S( jω)dω =

∫ ∞

−∞
|G( jω, t )|2S( jω)dω

(B.6)

where G( jω, t) is the time dependent frequency response associated to the KF. Let us now

make the distinction between true KF error variance σ2
x (t ) and the KF estimated error variance

σ̂2
x (t ), where we want to satisfy the following bounding criteria:

σ̂2
x (t ) ≥σ2

x (t ). (B.7)

Substituting Equation (B.6) into Equation (B.7) results in:∫ ∞

−∞
|G( jω, t )|2Ŝ( jω)dω≥

∫ ∞

−∞
|G( jω, t )|2S( jω)dω, (B.8)

where Ŝ(ω) is the modeled PSD associated with σ̂x (t )2 and S(ω) is the actual PSD that would

produce σx (t)2. Since the transfer function is the same on both sides of Equation (B.8), it is

clear that σ̂2
x (t ) ≥σ2

x (t ) if Ŝ(ω) ≥ S(ω), ∀ω ∈ [−∞,∞].

B.2 Proof Frequency Domain Bounding in Discrete-Time

Section 5.1.1 established that in discrete-time the actual KF error can be bounded when

designing each of the process and measurement error such their modeled autocovariance

matrices bound in a positive semidefinite sense the actual process autocovariance matrix, i.e.,

R̂ ≥ R. This appendix provides the proof in discrete time that the R̂ ≥ R criteria can be satisfied
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for discrete-time systems if a similar criteria in the power spectral density domain is satisfied,

i.e., Ŝ(ω) ≥ S(ω) as introduced in Theorem 5.1.1.

The autocovariance matrix (ACM) of a stationary random process is a symmetric positive

semidefinite matrix with Toeplitz structure of the form [99]:

R =



r [0] r [1] · · · r [i ] · · ·
r [1] r [0] r [1] · · · r [i ]

· · · r [1] r [0] r [1] · · ·
r [i ] · · · r [1] r [0] r [1]

· · · r [i ] · · · r [1] r [0]


, (B.9)

where here i is a certain time lag. The information in a autocovariance matrix like Equa-

tion (B.9) can be therefore also summarized by a positive sequence {rl } of size l , generating an

ACM of size l × l . The condition R̂ ≥ R, which can be alternatively written as the difference

of both matrices being positive semidefinite (i.e., R̂−R ≥ 0), can be therefore equivalently

expressed as {r̂l }−{rl } = {r̂l −rl } being a positive sequence [118]. On the other hand, a sequence

that is absolute summable (i.e.,:
∑

l |rl | ≤ ∞) is said to be positive if and only if its Fourier

transform is a non-negative function [118]. The Fourier transform of the autocovariance

sequence of a noise is its power spectral density, which can be obtained from the sequence as:

S(ω) =
∞∑

l =−∞
rl e− jωl ≥ 0, ∀ω ∈ [0,π] (B.10)

If {r̂l }− {rl } = {r̂l − rl } is a positive sequence, then its Fourier transform must satisfy:

∞∑
l=−∞

(r̂l − rl )e− jωl ≥ 0, ∀ω ∈ [0,π], (B.11)

which can be developed as:

∞∑
l=−∞

r̂l e− jωl −
∞∑

l=−∞
rl e− jωl ≥ 0, ∀ω ∈ [0,π], (B.12)

Ŝ(ω)−S(ω) ≥ 0, ∀ω ∈ [0,π]. (B.13)

This suggests that overbounding the power spectral density of the true process for all frequen-

cies guarantees bounding conditions (positive semidefinite) at the autocovariance level. For

the discussion of the effect of windowing on the autocovariance sequence the reader can

consult [99].

129





C GNSS/INS Kalman Filter

C.1 Strapdown INS Algorithm

In order to compute attitude, velocity and position the mechanization differential expressions

in Equation (2.19) must be implemented based on sampled inertial measurements (i.e., an-

gular velocities and specific forces) over time. This implementation is known as strapdown

algorithm.

Inertial Navigation Systems (INS) or Inertial Reference Systems (IRS) provide attitude, velocity

and position over time with respect to an reference initial value of those magnitudes. The

first step is therefore to initialize it. Avionics systems perform this initialization typically at

the gate when the aircraft is static (or semi-static) [5]. This is done on one side by sensing

the gravity vector in the accelerometers to determine roll and pitch angles. On the other side,

the gyroscope can sense the Earth rotation to estimate the heading. Velocity can be easily

initialized to zero in static conditions and position is typically obtained from other sensors, like

GNSS [28]. Other types of initialization, for example, by transfer alignment are possible and

are described in the literature. For lower grade sensors this initialization is normally followed

by a fine alignment process with Kalman filtering while the vehicle is still static [28]. Based

on an initialization of the INS system, the algorithm updates with new IMU measurements

the attitude, velocity and position over time. The next sections provides the details of one

strapdown reference algorithm.

C.1.1 Attitude

The attitude computer updates the direction cosine matrix (DCM) representing the rotation

from the body to the navigation frame Cn
b by applying rotations representing the changes
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suffered of each frames from time k −1 to time k:

Cn,k
b,k = Cn,k

n,k−1Cn,k−1
b,k−1 Cb,k

b,k−1, (C.1)

where the navigation and body time update rotations can be analytically computed with:

Cb,k
b,k−1 = I+ sin(∥ooo∥)

∥ooo∥ [ooo×]+ 1−cos(∥ooo∥)

∥ooo∥2 [∥ooo∥×]2, (C.2)

Cn,k
n,k−1 = I+ sin(∥ϑϑϑ∥)

∥ϑϑϑ∥ [ϑϑϑ×]+ 1−cos(∥ϑϑϑ∥)

∥ϑϑϑ∥2 [∥ϑϑϑ∥×]2. (C.3)

The sampled angular velocity ooo = ωb
i b∆t is taken from the gyroscope measurement and

ϑϑϑ =ωn
i n∆t contains the sampled angular velocity due to Earth rotation and transport rate in

the local navigation frameωωωn
i n =ωωωn

i e +ωωωn
en . The angular velocity in the local frame due to Earth

rotation is:

ωωωn
i e =


ωi e cos(ϕ)

0

−ωi e sin(ϕ)

 . (C.4)

The transport rate in the local navigation frame is:

ωωωn
en =


vE

(RE+h)
−vN

(RN+h)
−vE tan(ϕ)

(RE+h)

 . (C.5)

C.1.2 Velocity

Velocity is updated at every time epoch is applied with:

vn
k ≈ vn

k−1 +
[

Cn,k
b,k fb

k +gn
k−1 + (2ΩΩΩn

i e,k−1 +ΩΩΩn
en,k−1)vn

k−1

]
∆t , (C.6)

where fb is the specific force measurement in the body frame, and gn
k−1 ≈

[
0 0 g (ϕ,h)

]T

removes the gravity acceleration in the local frame from the specific forces. Widely used gravity

models for g (ϕ,h) depending on latitude and altitude can be found in [27], [28]. For instance

[27] models the gravity magnitude with:

g (ϕ,h) = g (0)+ d g (0)

dh
h, (C.7)
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where the gravity magnitude at the surface g (0) in [ms−2] is:

g (0) = 9.780318(1+5.3024E−3sin2(ϕ)−5.9E−6sin2(2ϕ)), (C.8)

and the variation with altitude in [m/s2/m] is given by:

d g (0)

dh
= −0.0000030877(1−1.39E−3sin2(ϕ)). (C.9)

The last term in the parentheses in Equation (C.6) accounts fro the Earth rotation and the

change of local frame with velocity (known as transport rate). The matrix ΩΩΩn
i e,k−1 = [ωωωn

i e×]

is the skewsymmetric matrix of the Earth rotation in the local navigation frame. And the

transport rate term isΩΩΩn
en,k−1 = [ωωωn

en×].

C.1.3 Position

The latitude (ϕ), longitude (λ) and altitude (h) curvilinear position can be updated in three

steps in the following order:

hk = hk−1 −
vD,k + vD,k−1

2
∆t (C.10)

ϕk =ϕk−1 +
(

vN,k

RN,k +hk
+ vN,k−1

RN,k−1 +hk−1

)
∆t

2
(C.11)

λk = λk−1 +
(

vE,k(
RE,k +hk

)
cos(ϕk )

+ vE,k−1(
RE,k−1 +hk−1

)
cos(ϕk−1)

)
∆t

2
(C.12)

A more precise integration can be achieved via Runge-kutta integration. For the purpose of

this research and the simulations in Chapter 7 the trapezoidal rule here applied was sufficient.

C.2 Inertial-related KF matrices

This Appendix details the relevant inertial-related matrices in the GNSS/INS Kalman filter

used in the design of Chapter 6. The prediction matrix FINS is modeled in the following way

for a local level navigation frame:

Fn
INS =



Fn
ψψ Fn

ψv Fn
ψp 0 Ĉn

b

Fn
vψ Fn

v v Fn
v p Ĉn

b 0

0 Fn
pv Fn

pp 0 0

0 0 0 0 0

0 0 0 0 0


. (C.13)
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For linearized KF and Extended Kalman filter, the discrete transition matrix is:

ΦΦΦn
INS ≈



I+Fn
ψψ∆t Fn

ψv∆t Fn
ψp∆t 0 Ĉn

b∆t

Fn
vψ∆t I3 +Fn

v v∆t Fn
v p∆t Ĉn

b∆t 0

0 Fn
pv∆t I+Fn

pp∆t 0 0

0 0 0 Ie
−∆t

τ f 0

0 0 0 0 Ie−
∆t
τω


. (C.14)

The process noise projection matrix G is:

G =



0 Ĉn
b 0 0

Ĉn
b 0 0 0

0 0 0 0

0 0 I 0

0 0 0 I


(C.15)

Each of the block matrices in Equation (C.13) are detailed in the following. Each of these

matrices, named by Fn
i j , represents how the error j propagates into the i one. These subscripts

can be ψ (attitude error), v (velocity error) or p (position error).

Fn
ψψ = −[

ωn
i n×

]
(C.16)

Fn
ψv =


0

−1

RE +h
0

1

RN +h
0 0

0
tanϕ

RE +h
0

 (C.17)

Fn
ψp =


ωi e sinϕ 0

vE

(RE +h)2

0 0
−vN

(RN +h)2

ωi e cosϕ+ vE

(RE +h)cos2ϕ
0

−vE tanϕ

(RN +h)2

 (C.18)
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Fn
vψ = −

[(
Cn

b fb
)
×

]
(C.19)

Fn
v v =


vD

RN +h
−2vE tanϕ

RE +h
−2ωi e sinϕ

vN

RN +h
vE tanϕ

RE +h
+2ωi e sinϕ

vN tanϕ+ vD

RE +h

vE

RE +h
+2ωi e cosϕ

− 2vN

RN +h
− 2vE

RE +h
−2ωi e cosϕ 0

 (C.20)

Fn
v p =



−
(
vE secϕ

)2

RE +h
−2vEωi e cosϕ 0

(vE)2 tanϕ

(RE +h)2 − vNvD

(RN +h)2 vNvE sec2ϕ

RE +h
+2vNωi e cosϕ

−2vDωi e sinϕ

 0 −vNvE tanϕ+ vEvD

(RE +h)2

2vDωi e sinϕ 0
(vE)2

(RE +h)2 + (vN)2

(RN +h)2 − 2g0

r e
eS


(C.21)

where r e
eS is the geocentric radius at the surface, given by:

r e
eS(ϕ) = RE

√
cos2ϕ+ (

1−e2
)2 sin2ϕ (C.22)

Fn
pv = D (See Equation (2.20)) (C.23)

Fn
pp =


0 0 − vN

(RN +h)2

vE sinϕ

(RE +h)cos2ϕ
0 − vE

(RE +h)2 cosϕ

0 0 0

 (C.24)

(C.25)
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tion Algorithm

This appendix details some aspects of the Multiple Hypothesis Solution Separation (MHSS)

algorithm used for the ARAIM and GNSS/INS integrity monitoring design and evaluation in

Chapter 6 and 7.

D.1 Determination of Monitored Fault Modes

The faults that need to be monitored have to be computed based on the information of the

ISM message, in terms of the prior probabilities of satellites and constellation faults. This

determination is performed such that the sum of the probabilities of the fault modes that

are not monitored do not exceed a certain probability threshold (PTHRES), which is typically a

residual portion of the total integrity budget. This can be expressed in terms of the probabilities

of the monitored faults as [112]:

∑
h monitored

Pfault,h ≥ 1−PTHRES , (D.1)

where Pfault,h is the probability of a certain fault hypothesis h. The fault modes subsets

that need to be considered are determined by first calculating the maximum number of

simultaneous faults (either satellite or constellation) that need to be monitored, this can be

defined as:

Nfault,max = argmax
r∈1,...,Nsat

Pmul ti pl e
(
r +1,Pevent ,1, ...,Pevent ,Nsat+Nconst

)
. (D.2)

Based on Nfault,max the different subsets with different indexes can be formed for each of the

fault hypothesis that need to be monitored.
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D.2 Simulation Environment

The evaluations related to the baseline ARAIM MHSS algorithm has been carried out based

on the MATLAB Algorithm Availability Simulation Tool (MAAST), developed by the Stanford

University GPS Lab [109]. This tool has been adapted to accept specific trajectories that have

been generated by the DLR multisensor simulator [110].

For the GNSS/INS and MHSS algorithm based on a bank of Kalman filters new code has

been created for this research. In order to create comparative results with ARAIM, the same

parameters configuration has been used as the baseline ARAIM algorithm. Some features

and functions from MAAST have also been used or adapted. In particular for the computa-

tion of fault modes (determine_subsets_v4.m), and protection level calculation (compute_

protection_level_v4.m).
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