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VORWORT 
 
 
Drohnen haben zu einer Revolution in einer Vielzahl von Bereichen geführt. Dazu gehören unter 
anderem die Kartografie und das grossflächige Monitoring. Sie stellen ein flexibles und 
kostengünstiges Mittel dar, um Beobachtungen aus der Vogelperspektive durchzuführen. Einerseits 
bleiben dabei die bewährten Prinzipien der Georeferenzierung von optischen Daten unverändert, da 
diese unabhängig vom Fahrzeug sind, auf dem die Instrumente installiert sind. Andererseits ist die 
Qualität der Messungen durch die reduzierte Instrumentengrösse begrenzt. Dies gilt sowohl für die 
optischen Sensoren als auch für die Navigationsinstrumente, wobei sich die Präzision der letzteren 
auf die Orientierung der ersteren auswirkt. Diese Dissertation stellt mehrere neuartige Methoden 
vor, um diese Einschränkungen anzugehen. Diese Methoden verbessern den Nutzen von Drohnen in 
der Präzisionskartografie qualitativ, sowohl in einer natürlichen als auch in einer bebauten 
Umgebung. 
 
Die hier vorgestellten Forschungsarbeiten bauen Brücken zwischen den 
mathematischen/theoretischen Aspekten der Photogrammmetrie und deren Anwendungen. Der 
Autor präsentiert zuerst die generellen Modelle für optische Sensoren (Kamera, LiDAR) und 
Navigationsinstrumente (GNSS, IMU) und deren rigorose Kombination durch eine generalisierte 
Optimierung. Diese Theorie wird später bei der Untersuchung verschiedener anspruchsvoller 
Orientierungs-, Kalibrierungs- und Kartierungsszenarien verfeinert. Zu den Szenarien gehören unter 
anderem die hochpräzise Korridor-Kartierung (Empfindlichkeit gegenüber der 
Kamerakalibrierung), die Nahbereichskartierung in einer gebirgigen Umgebung (Empfindlichkeit 
gegenüber einer reduzierten GNSS-Positionierungsgenauigkeit) und die kollaborative Kartierung 
mit terrestrischen Fahrzeugen und Drohnen (Empfindlichkeit gegenüber der Massstabsbestimmung 
bei einem kinematischen Objekt) oder mit einem Drohnentandem mit großem vertikalen Abstand, 
wobei die Position der unteren Drohne von der oberen mit optischen Mitteln bestimmt wird. 
 
Die Dissertation besteht aus konsolidierten wissenschaftlichen Publikationen, denen ein langes 
Einführungskapitel vorangestellt ist, das die Beobachtungsmodelle beschreibt, die im Rahmen des 
Optimierungsverfahrens implementiert wurden. Zwei Kapitel wurden in hochrangigen 
Fachzeitschriften veröffentlicht, die anderen in begutachteten Konferenzbeiträgen. Für das zweite 
dieser Kapitel wurde Herrn Cledat der "Best Young Author Award 2020" der ISPRS (International 
Society for Photogrammetry and Remote Sensing) verliehen. 
 
 
 
Prof. Dr. Jan Skaloud     Prof. Dr. Markus Rothacher 
EPF Lausanne       ETH Zürich 
Dissertationsleiter      Präsident der SGK 
 

 
 
 
 
 
 
 



 
 

PREFACE 
 
 
Les drones ont révolutionné de nombreux domaines, comme par exemple celui de la cartographie à 
grande échelle. Cette nouvelle technologie est une méthode flexible et abordable pour atteindre le 
point de vue des oiseaux. Les principes généraux du géoréférencement des images restent inchangés 
: le drone n’est qu’un moyen d’embarquer des capteurs. Cependant, il impose une limite de taille et 
de poids, et donc de qualité aux capteurs embarqués, que ce soient les capteurs imageurs, ou les 
capteurs de navigation qui participent à déterminer l’orientation des capteur imageurs. Cette thèse 
s’attaque à ce défi en proposant plusieurs méthodes innovantes permettant une amélioration 
qualitative pour l’utilisation de drone au service de la cartographie de haute précision dans des 
environnements naturels et construits. 
 
La recherche synthétisée ici jette des ponts entre les aspects théoriques/mathématiques de la 
photogrammétrie et ses applications. Les modèles généraux décrivant les capteurs imageurs 
(appareil photos et LIDAR) et les instruments de navigation (GNSS et centrales inertielles) 
permettent de combiner rigoureusement les données des uns avec les données des autres via une 
optimisation générale. Cette théorie est ensuite déclinée pour être adapté à différents cas pratiques, 
tels que la cartographie de haute précision de corridor (sensible à la calibration de l’appareil 
photographique), la cartographie proche du sol en environnent montagneux (sensible à la baisse de 
la qualité du positionnement GNSS), la cartographie collaborative d’un tandem terrestre/aérien 
(sensible à la détermination de l’échelle d’une cible mobile) et la cartographie collaborative entre un 
duo de drone ayant une forte différence d’altitude pour lequel la position du drone volant en bas est 
déterminé visuellement par le drone volant au-dessus. 
 
Cette thèse prend la forme de publications scientifiques étoffées, précédées par un long chapitre 
introductif décrivant les modèles d’observations implémentés et leur optimisation. Deux de ces 
chapitres sont publiés dans des journaux scientifiques de haut niveau, les autres dans des annales de 
conférences après examens par les pairs. Mr. Cledat a notamment reçu le prix du meilleur jeune 
auteur 2020 de la société de l’ISPRS (International Society for Photogrammetry and Remote 
Sensing) pour la publication basée sur le second chapitre de sa thèse. 
 
 
 
 
Prof. Dr. Jan Skaloud      Prof. Dr. Markus Rothacher 
EPF Lausanne       ETH Zürich 
Directeur de thèse      Président de la CGS 



 

FOREWORD 
 
 
Drones are disruptive in many domains, including in those of mapping and monitoring at large 
scales. They represent a new, flexible and cost-effective means to obtain a bird’s-eye view 
perspective for such purposes. On one side, using a drone as a payload platform does not change the 
well-established principles of geo-referencing optical data as they are principally independent of the 
vehicle holding the instruments; on the other hand, the quality of on-board devices is limited by the 
reduced size that is required for use with drones. This applies to both navigation and optical sensors 
which in turn affects the orientation of the later. This thesis addresses such handicaps by proposing 
several novel methodologies that qualitatively improve the utility of drones in the service of 
environmental observations and high-accuracy drone mapping in natural and built-up environments.  
 
The presented research bridges the gaps between the mathematical/theoretical aspects of 
photogrammetry and their applications. The author presents first the development of models for 
optical sensors (cameras, LiDAR) and navigation instruments (GNSS, IMU) and their rigorous 
combination via a general optimization framework. This theory is then refined when investigating 
different challenging orientation-calibration-mapping scenarios such as: high-precision corridor 
mapping (sensitivity to camera calibration), close-range mapping in mountain environments 
(sensitivity to suboptimal and temporal quality of GNSS positioning), collaborative mapping 
between terrestrial vehicles and drones (sensitivity to scale determination on kinematic target) and 
between a tandem of drones with important vertical separation where the position of the lower 
drone is determined optically from the upper one. 
 
The dissertation takes the form of consolidated scientific publications that are preceded by a long 
introductory chapter describing the observation models implemented within the optimization 
procedure. Two chapters are published in highly ranked journals, and others in peer-reviewed 
proceedings. Among them is the second chapter for which Mr. Cledat received Best Young Author 
Award 2020 from the International Society for Photogrammetry and Remote Sensing (ISPRS). 
  
 
 
 
 
 
Prof. Dr. Jan Skaloud      Prof. Dr. Markus Rothacher 
EPF Lausanne       ETH Zürich 
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Abstract

Centimetre level precision mapping is essential for many applications such as land-use, infras-

tructure inspection, cultural heritage preservation, and construction site monitoring. However,

the acquisition and its preparation (in particular the setting of a ground control point network

(GCPs)) are still expensive or even impossible in cluttered or dangerous areas. The recent

development of UAVs together with the miniaturization of the sensors is a promising evolution

for reducing costs and expand opportunities.

The sensors embedded on the drone: GNSS antenna, IMU, camera and (optional) LIDAR are

light and often low-cost. The low quality of their raw measurements must be counterbalanced

by their rigorous modeling in order to obtain accurate final results: if we cannot expect the

sensors to be error-free, one must model these in order to correct them. This is achieved by

in-situ calibration or on a dedicated calibration field, together with a rigorous fusion of the

raw data acquired by the different sensors with the so-called bundle-adjustment method.

This thesis proposes several models to describe the behavior of the sensors, in order to hy-

bridize them rigorously in the bundle-adjustment. Consistent datasets have been acquired on

the field specifically to assess the relevance of both the sensor models and their hybridizing in

complex photogrammetric processing.

The contribution of this thesis could be divided into two mains categories. On one hand,

this thesis suggests tools and recommendation to improve directly the procedures achieved

by end-users using current UAV-mapping commercial solutions (in particular for the GCPs

placement, for the choice of the camera calibration and model and for the flight-plan). On

the other hand, this thesis put forward exotic methods (methods considered as exotic at the

time of the writing of the thesis) such as Photo-LIDAR hybridizing and collaborative mapping

achieved by a terrestrial-aerial tandem (a terrestrial vehicle holding a LIDAR, GNSS, imaging

and inertial sensors followed by a drone conceived to proceed to airborne photogrammetry)

or an aerial-aerial tandem (two drones flying in formation to proceed to airborne photogram-

i



metry).

The contribution of this thesis will permit to reduce costs, to improve the quality of map-

ping products and to enlarge the possibilities of mapping: in particular, map cluttered or

inaccessible zones which are nowadays considered as difficult or even impossible to map.

Key words: Photogrammetry, computer-vision, data-fusion, optimization, Bundle-Adjustment,

UAV, GNSS, IMU, Camera, LIDAR
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Résumé

Une cartographie de précision centimétrique est un médium essentiel pour de nombreuses

applications tels que l’aménagement du territoire, l’inspection d’ouvrages d’arts, la préser-

vation des monument archéologiques ou historiques et le suivit de chantier. Cependant, la

préparation du relevé cartographique (en particulier, la mise en place de points d’appuis au

sol : GCPs) et l’acquisition des données est couteuse, voire impossible dans des zones encais-

sées ou dangereuses. Le développement récent des drones, accompagné de la miniaturisation

des capteurs est une évolution prometteuse pour réduire les coûts et élargir le champ des

possibilités.

Les capteurs embarqués sur les drones : antenne GNSS, centrale inertielle, appareil photo et

parfois LIDAR sont limité en poids et souvent peu-onéreux. La qualité limitée des mesures

brutes des capteurs doit être compensé par une modélisation rigoureuse de ceux-ci pour obte-

nir des résultats finaux précis : si on ne peut pas espérer que ces capteurs soient exempts de

défauts, il convient de les modéliser pour les corriger. Cela est réalisé grâce à des calibrations

sur site, ou sur un champ de calibration dédié, ainsi qu’une fusion rigoureuse des données

brutes acquises par les différents capteurs à l’aide d’une méthode appelée ajustement en bloc.

Cette thèse propose plusieurs modèles pour décrire les capteurs, afin de les hybrider de ma-

nière rigoureuse dans un ajustement en bloc. De nombreuses données ont été acquise sur

le terrain spécialement pour évaluer la pertinence des modèles choisit pour modéliser les

capteurs et la méthode d’hybridation dans leur processus photogrammétrique complexe.

Les contributions de cette thèse sont de deux ordres. D’une part, cette thèse propose des outils,

des recommandations et des méthodes utilisables directement par des géomètres utilisant une

solution commerciale de drone conçu pour les relevées photogrammétriques. En particulier

pour le placement des GCPs, pour le choix de la méthode de calibration de la caméra et de

son modèle, pour le choix du plan de vol, etc. D’autre parts, cette thèse étudie des concepts

de relevé considérés aujourd’hui comme exotiques tels que l’hybridation Photogrammétrie-
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Lasergrammétrie et la cartographie collaborative opérée par un tandem terrestre-aérien (une

voiture munie de capteurs LIDAR, GNSS, inertiels et d’appareil photo suivit d’un drone équipé

pour un relevé photogrammétrique) ou un tandem aérien-aérien (deux drones volant en

formation équipé pour un relevé photogrammétrique).

Les contributions de cette thèse permettront de réduire les coûts, d’améliorer la qualité

des produits cartographiques et d’ouvrir le champ des possibles, notamment à des zones

considérées aujourd’hui comme difficile ou impossible à cartographier de manière efficace

parce que trop encaissées ou trop difficilement accessibles.

Mots clef : Photogrammétrie, vision par ordinateur, fusion de données, optimisation, Ajuste-

ment en bloc, drone, GNSS, centrale inertielle, appareil photographique, LIDAR.
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Introduction

Context

Cartographic products such as maps and 3D models have shown countless successful ap-

plications for a tremendous number of industrial and civil applications. The (expressed or

implicit) needs of the final user must be studied in order to adapt the cartographic product

characteristics, and thus the method to produce it. The important product characteristics

are the map extents (size of the described area), the spatial resolution (Ground Sampling

Distance for a raster, sample interval for a point-cloud, level of detail for a CAD model), the

precision and accuracy (how close elements of the map coordinate are from the reality1), the

completeness (no element should be omitted), etc. Typical cartographic products are listed

below.

• Orthophotos: rectified photo free from deformation and possibly superimposed on a

map. [152].

• DEM (Digital Elevation Models) and DSM (Digital Surface Models). Differences between

DSM at two different epochs permit to monitor changes such as erosion, accretion or

snowpack thickness.

• Point-cloud, from which horizontal & vertical sections could be extracted.

• CAD textured 3D models [85].

Two dimensional products such as orthophoto could be a basis for the creation of maps

for whose elements are linked to a database that permits to proceed to combined seman-

tic/geographic processing. This link between 2D objects and elements of a database is the

fundamental of GIS (Geographic Information System). So as GIS, BIM (Building Information

Modelling) is a CAD 3D model whose elements are linked to a database.

1Rigorous definition of precision and accuracy could be found in [51]
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Ortho-photo textured CAD model

DTM Snow pack tickness

Point-cloud Point-cloud section

Figure 1. Examples of mapping products

This Thesis will focus on airborne mapping acquisition with light payload (< 5 kg ): several

sensors are mounted together on a flying platform (e.g. kite, fixed wing or multi-copter

Unmanned Aerial Vehicle [UAV]) and the acquired data from the sensors are fused together.
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Table 1. Combinations of LIDAR sensors (first row) or photogrammetry (second row) on different kind
of platforms

Such a method permits to cover an area of typically less than 1 km2, with a decimeter or

centimeter-level precision.

The sensors used for airborne mapping acquisition are cameras, Light Detection and Ranging

system (LIDAR), Global Navigation Satellite System (GNSS) antenna and Inertial Measurement

Unit (IMU). A camera is a passive sensor that acquires images at the pose exposition time.

A LIDAR is an active sensor that uses laser beams to measure the distance to the measured

points. GNSS permits the computation of the absolute coordinates of the GNSS antenna phase

center. An IMU is composed of 3 gyroscopes and 3 accelerometers measuring respectively

angular velocity and specific force. Such measurements are traditionally fused with GNSS

measurements (with methods such as forward Kalman filtering, and eventually backward

filtering and smoothing) to compute the IMU trajectory, i.e. its position and orientation

through time. Chapter 1 will present methods to fuse rigorously the raw data from these four

sensors, in order to create a base for correct mapping products.

Research objectives and thesis outline

The goal of this research is to reduce the cost of State Of The Art (SOTA) airborne mapping

acquisition while increasing its accuracy and its range of applications. This set of objectives

was considered through three parts. The first one describes, models and simulates the pho-
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togrammetry process in order to optimize the choices a surveyor may face while proceeding

to a classical aerial photogrammetric survey such as camera calibration, flight-plan and GCP

position. The aim of the second one is to improve the photogrammetric process by adding a

LIDAR sensor on the same platform and operate rigorous hybridisation between the embed-

ded sensors. Finally, the last part will split the observation acquisition to different platforms

in a collaborative mapping. This thesis is also followed by the implementation of a Bundle

Adjustment: a data-fusion algorithm to create 3D models out of the sensor observations, and

to assess its quality. Chapter 1 presents the goal and the underlying theory of this algorithm.

Chapter 2 tests this algorithm for real photogrammetry applications to assess the models

proposed in Chapter 1. Chapter 3 couples this algorithm with a simulator of photogrammetric

mapping to predict the precision of a planned survey in an environment where GNSS posi-

tionning quality varies temporally and spatially. Chapter 4 permits the algorithm to handle

LIDAR observations. Finally, Chapter 5 will use this algorithm together with the simulator

described in Chapter 3 to assess the feasibility and the potentiality of a new mapping concept:

cooperative mapping with a drone duo.

Detailed outline

Part I

Chapter 1 presents fundamentals of photogrammetry, as well as the fusion with other sensors:

GNSS, LIDAR, and IMU. It gives the needed theory for all the following chapters. Chapter 2

compares several camera calibration methods and models proposed in Chapter 1 through

their applications on a difficult scenario: a photogrammetric corridor mapping with UAV.

Such a study permits choosing the most appropriate camera model and more importantly the

most appropriate method to improve mapping precision. Chapter 3 presents a software that

permits to simulate photogrammetric, GNSS and IMU measurements in order to predict the

mapping precision. This software permits to optimize the position of GCPs, the flight-time,

and the Flight-plan to reduce costs while assessing the precision.

Part II

Some objects or areas may be occluded when mapped via photogrammetry or LIDAR. However,

the typology of the occlusion differs from one method to the other. For LIDAR, a necessary

condition for a point to be measured is to be in line-of-sight with the LIDAR sensor. In

photogrammetry, this condition is more difficult to reach since a point must be in line-of-sight

with at least two poses. The so called stereo-occlusion of photogrammetry are thus more

frequent than with LIDAR. In Figure 2.a for example, there is no overlap between the two

photo. The overlap could be improved by reducing the base-line i.e. bringing the two poses

4
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closer. However, close poses lead to a bad configuration for intersection calculation. The point

positioning in the bottom of a canyon or terrain depression (Figure 2.b will be less accurate

in altimetry due to a lower angle of intersection. In these conditions the observations with a

LIDAR (Figure 2.c) will be less affected. However, the accuracy of LIDAR is directly dependent

on the accuracy of external orientation provided by INS/GNSS integration. This motivates for

the hybridizing of these two methods as described in Chapter 4. In this chapter, LIDAR will be

fused with the three other sensors embedded (and rigidly fixed) on the platform: the GNSS

antenna, the IMU and the camera. The theory introduced in Chapter 1 is extended and the

described method of fusion is compared with the conventional approach when each optical

sensor is treated separately.

Figure 2. Mapping of a canyon with photogrammetry (a and b) and with LIDAR (c). Overlap between
two images (in a and b) is represented by diagonal stripes.

Part III

The previous parts consider mapping techniques performed by a single mapping system

(e.g. a single UAV). Here, the potential of collaborative mapping is studied in Chapter 5 in

aerial-aerial configuration and in Chapter 6 in terrestrial-aerial configuration. Chapter 5

describes the algorithms and mapping benefits when tandem of UAV is flying with vertical

separation while the position of the lower drone is determined from the upper drone via

optical means (Figure 3 right). Chapter 6 presents a solution for precise scale determination

in so called kinematic-ground control point used within a terrestrial-aerial tandem called

MapKite (Figure 3 left).

The graph on the next page presents the links between the different chapters of the thesis, as

well as other publications/presentations published/presented in the scope of the Ph.D. The

technical & scientific outcomes of this thesis contribute to various projects of the Geodetic

Engineering Laboratory (TOPO-EPFL) such as PEACE4UAV, mapKITE and DoDo.
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Figure 3. Illustration of terrestrial-aerial and aerial-aerial tandems
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1 Introduction to Photogrammetry with
Adjustment Methods and Lie-Groups

1.1 The photogrammetric Rosetta-Stone

The Rosetta-Stone is a ∼ 1m tall stone from 196BC on which is written a decree in three lan-

guages: Ancient Egyptian using hieroglyphic script, Egyptian using Demotic script and Ancient

Greek. It is famous for having permitted Jean-François Champollion to do a transliteration of

the Egyptian scripts.

The aim of the chapter is to be the Rosetta-Stone of Photogrammetry. It will do a comparison

of the notations and reasonings of traditional photogrammetry, modern photogrammetry,

and Computer Vision. This document is intended for both expert in one field which wants to

easily get into the other and for students which would like to learn photogrammetry using the

notation that suit them best.

Photogrammetry is a method which has its source in the mid X I X e century with cartographers

and geodesist such as Dominique François Jean Arago and Aimé Laussedat. The long history

of photogrammetry explains the evolution of the notation used in this field. Computer vision

has a more recent history since it began in the late 60s with the idea of giving robots the ability

to see. At that time, this problem was thought to be at the level of difficulty of a summer

student’s project [121]. The tools and discoveries done by Computer Vision experts are mainly

complementary with respect to photogrammetry since the expectations of Photogrammetry is

to achieve the best possible geometric precision and to assess its quality whereas Computer

Vision tends to automatize this task. These two fields are driven by two main communities,

where some scientists perceive this difference as a competition. Finally, the main outcomes

of research in this field were synthesized in a book with a provocative title: Photogrammetric

Computer Vision [51].
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Chapter 1. Introduction to Photogrammetry with Adjustment Methods and Lie-Groups

1.1.1 Literature review of photogrammetry notations

The presented synthesis stems from following work in Traditional photogrammetry: [6], [127],

[12] Modern Photogrammetry: [138] , [44], [18], [36] and Computer Vision: [110] [43] [164].

Photogrammetric Rosetta-Stone already exists. For example: [64] and [76] do a photogram-

metric review in which both Traditional photogrammetry and Computer Vision are presented.

However, this document will present the exact translation for the three notations.

1.1.2 The physics of a camera: the pinhole camera model

The most simple camera model is known as the pinhole camera model. This principle was

discovered in the 16th century under the appellation Camera obscura (see Figure 1.1). Let a

dark room whose only aperture is a single point (or at least small compared to the size of the

room). An image of the world outside the Camera obscura will form on the wall back to this

hole: the image plane. This Camera obscura is a large scale model of a pinhole camera model.

Figure 1.1. Camera Obscura Principle (left) and Perspective principle from an engraving by Albrecht
Dürer (right). (For concordance with next images, the engraving have been mirrored horizontally)

For a pinhole camera model (or a Camera obscura), the aperture, modeled by a point is denoted

as the perspective center. The distance between this perspective center and the image plane

is known as the principal distance c, and its orthogonal projection on the image plane is the

principal point pp (Figure 1.2).
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1.1. The photogrammetric Rosetta-Stone

Figure 1.2. Pinhole Camera Model

The coordinates of a projection of a point from the world permit to compute the coordinates

of its projection on the image plane thanks to the similar triangle theorem. Let a 2D Cartesian

frame x ′y ′ be associated to the image plane, and centered on the principal point. For conve-

nience, the x ′ and y ′ axes are parallel to the borders of the image plane (usually a rectangle).

Let a 3D Cartesian frame X ′Y ′Z ′ be associated to the camera and centered on the perspective

point. The X ′ and Y ′ axes are collinear respectively to the x ′ and y ′ axes of the image plane.

The Z ′ axes is perpendicular to the two others such that X ′Y ′Z ′ is a right-handed Cartesian

frame. The Z ′ axes defined a line called the ‘view axes’. A point P ′ from the world, whose

coordinate are X ′ Y ′ Z ′ will project on the image plane to a point1 p ′ whose coordinates are

x ′ y ′. The similar triangle theorem gives the following relationship –known as the collinearity

equations- between X ′ Y ′ Z ′ and x ′ y ′ (see column Traditional Photogrammetry of table 1.1.5).


x ′ = −c X ′

Z ′

y ′ = −c Y ′
Z ′

(1.1)

Note that the image is inverted with respect to the object (see Figure 1.1). This leads to a

minus (−) sign in the collinearity equations. Moreover, the unit of x ′ and y ′ are given by the

unit of c. Typically, c is expressed in mm so x ′ and y ′ are also expressed in mm. x ′ and y ′

could also be expressed in pi xel s if the image plane is a digital sensor (e.g. CCD or CMOS),

c should be thus express in pi xel s. For convenience, a virtual plane is defined front of the

perspective center, at a distance of 1. The formed image will first be upright (not inverted),

and the coordinates x̃ and ỹ of the projected points p̃ will be unit-less. Thus, points are first

1These points were used to be recognized and matched on analogic photos by experimented operators using
optico-mechanical stereo-comparators. The informatic revolution permits to automatize the process of recogniz-
ing the same object point in several images with algorithms detections and matching algorithms (SIFT, SURF, ORB,
KAZE, LDAHash, etc. see [106], [137], [120], [150], [88]).
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Chapter 1. Introduction to Photogrammetry with Adjustment Methods and Lie-Groups

projected on this virtual plane with a unitary principal distance before being scaled by the

actual principal distance. The projection of a point (from the world) to this virtual plane is

given by the following application (see column Modern Photogrammetry of tabular 1.1.5).

Figure 1.3. Pinhole Camera Model with virtual plane front of the perspective point

π : R3 → R2X ′

Y ′

Z ′

 7→ 1
Z ′

[
X ′

Y ′

]
(1.2)

Computer Vision notation use homogeneous coordinates formalism. In homogeneous coordi-

nates, a vector (such as [X ′;Y ′; Z ′]) is intended to be normalized with the π function (to the

vector [X ′/Z ′;Y ′/Z ′], or to a vector with a last unitary coordinate: [X ′/Z ′;Y ′/Z ′; Z ′/Z ′] with a

variant π̃ of the projection function). To keep a third coordinate in the projected vector (and

thus to prevent a vector to be projected), a last unitary coordinate is added to the [X ′;Y ′; Z ′],
thus denoting a homogeneous coordinate: [X ′;Y ′; Z ′;1]. The next section will present how this

last unitary coordinate will be used to compute 3D transformation. When the vector needs to
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1.1. The photogrammetric Rosetta-Stone

be projected, the last unitary coordinate could be removed thanks to the projection matrix Π̃.

X ′/Z ′

Y ′/Z ′

1

= π̃


1 0 0 0

0 1 0 0

0 0 1 0


︸ ︷︷ ︸

Π̃


X ′

Y ′

Z ′

1



 (1.3)

In this section, we have seen three different notations to express the pinhole camera model.

Relationships between a 3D point expressed in a frame attached to the camera
[

X ′;Y ′; Z ′
]

and

its image on a virtual plane has been established. However, two important steps are missing for

characterizing the image formation model. In one hand, the camera axes are (in general) not

parallel to the ones of the mapping coordinate system which raise the need of determining the

so called exterior orientation (section 1.1.3). On the other hand, lens effect must be modeled,

together with the determination of the image formation model in an operation called the

interior orientation (sections 1.1.4 and 1.1.6).

1.1.3 Exterior Orientation

The aim of photogrammetry is to derive 3D coordinates of the observed object from measure-

ments in images taken of these objects. Determination of the so called pose (position and

orientation) of the camera is fundamental for this task. A world frame, or better a mapping

frame is defined for the object to be mapped, in which all the objects coordinates will be

expressed. This section will focus on the frame transformation between the mapping frame

and the sensor frame.

Consider a point whose 3D-coordinates in world frame are PW =
[

XP ;YP ; ZP

]
. The 3D-

coordinates of this same point in sensor frame are P c =
[

X ′;Y ′; Z ′
]

. The formulae to trans-

form the coordinates from sensor frame to world frame is simply: PW = T W +RW
c P c where

T W =
[

X0;Y0; Z0

]
is the 3D-position of the perspective center in world frame and RW

c is the

rotation matrix between sensor frame and world frame.
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Expanding the frame transformation PW = T W +RW
c P c leads to the following equation system.


XP = Xo + r11X ′ + r12Y ′ + r13Z ′

YP = Yo + r21X ′ + r22Y ′ + r23Z ′

ZP = Zo + r31X ′ + r32Y ′ + r33Z ′
(1.4)

We have seen in the previous section that the Computer Vision community uses homogeneous

coordinate which bears certain advantages. It consists in adding a fourth unitary coordinate

to 3D vectors (or a third unitary coordinate to 2D vectors). This unitary coordinate simplifies

handling rotations and translation. Indeed, the operation of the translation and the rotation

will be encapsulated to a single transformation matrix as below (where 0 represent the 1×3

null vector:
[

0 0 0
]

).

[
PW

1

]
=

[
RW

c P c +T W

1

]
=

[
RW

c T W

0 1

][
P c

1

]
(1.5)

Detailing 1.5 bellow helps understanding the homogeneous coordinate formalism used in

Computer Vision.


XP

YP

ZP

1

=


r11 r12 r13 Xo

r21 r22 r23 Yo

r31 r32 r33 Zo

0 0 0 1




X ′

Y ′

Z ′

1

 (1.6)

Note that after operation such translations and rotations, the fourth coordinate must remain

unitary. This implies the last row of the transformation matrix (containing the translation and

the rotation) to be
[

0 0 0 1
]

.

1.1.4 Interior Orientation: principal distance and principal point

The coordinates x ′ and y ′ are express in image unit ([mm] or [pi x]) in a frame centered around

the principal point pp. This principal point is not necessarily exactly at the center of the image,

and is not a convenient origin for image measurements. The goal of the internal orientation is

to convert the image measurements i.e. the coordinate of distinguishable points on the image
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1.1. The photogrammetric Rosetta-Stone

`x , `y to x ′ and y ′. For old metric argentic cameras, the frame origin for image observation

were defined to be on the center of the image. Since the position of argentic film or the argentic

glass could have been not exactly known with respect to the lens, the so called fiducial marker

were used as crosses on the camera corners that were impressed on the image while the photo

was taken. The origin and the axes of the frame were defined with respect to these fiducial

marker. The basic conversion of `x , `y to x ′, y ′ is a simple translation.

{
`x = x ′ + ppx

`y = y ′ + ppy
(1.7)

If the origin is the center of the image, the coordinates of the principal point: ppx and ppy are

usually very small (typically few pixels, or even fraction of pixels). However if the origin of the

image is defined to be on a corner (as in Computer Vision), ppx and ppy values are close to

half of the height and half of the width respectively.

With numeric photos, it is more convenient to define the origin of the picture as the center

of the upper-left pixel, the first axes going down and the second pointing right. This frame is

left-handed, leading to a second inversion of the image. Equation 1.7 turn to 1.8 by multiplying

the unitless values of x̃ and ỹ by the principal distance c.

{
`x = c · x̃ + ppx

`y = c · ỹ + ppy
(1.8)

This last equation could be expressed with homogeneous coordinate formalism by introducing

the so called calibration matrix K .

`x

`y

1

=

c 0 ppx

0 c ppy

0 0 1


︸ ︷︷ ︸

K

x̃

ỹ

1

 (1.9)

1.1.5 The Photogrammetric Rosetta-Stone: an Overview

The full collinearity equation is obtained by linking the external orientation (3D transforma-

tion) to the internal orientation (2D transformation) via the pin-hole projection function.
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If the calculation is exactly the same between traditional photogrammetry and modern pho-

togrammetry (the formalism is just slightly different) the ones of Computer Vision is different.

The pose determination defined in photogrammetry to describe the external orientation is

the position T W and the orientation RW
c of the camera with respect to the world, whereas the

Computer Vision formalism tends to use the position T c and the orientation Rc
W of the world

with respect to the camera. A possible explanation of this paradigm is the inheritance from

robotics were the robot is the studied object. The world in which the robot evolve is modeled

in the frame of the robot to plan its future actions. However, this is not suitable for precise

mapping purposes because this leads to artificial correlations between T c and Rc
W . Morever,

it leads to difficulties in the interpretation of the correlations between the T c and the Rc
W of

different camera poses.

The unitless image coordinates could be computed by projecting (with the projection matrix

Π̃ and the projection function π) the 3D point in camera frame. The computed unitless

coordinates could be translated to image observation by the K matrix as in equation 1.9.

x̃

ỹ

1

=

X ′/Z ′

Y ′/Z ′

1

= π̃


1 0 0 0

0 1 0 0

0 0 1 0


︸ ︷︷ ︸

Π̃

[
Rc

W T c

0 1

][
PW

1

]
 (1.10)

Equation 1.9 could be fused together with 1.10 because π and K are commutative2. In contrary

2The commutativity of the function π and the matrix K require to redefine π̃ as below in order to satisfy the
dimension of the studied vectors.

π̃ : R3 → R3X ′
Y ′
Z ′

 7→ 1
Z ′

X ′
Y ′
Z ′

 (1.11)

The null elements of the matrix K permit the commutation between π̃ and K .

a b c
d e f
0 0 1


︸ ︷︷ ︸

K

π̃

X ′
Y ′
Z ′

= π̃


a b c

d e f
0 0 1


︸ ︷︷ ︸

K

X ′
Y ′
Z ′


 (1.12)

Note that the only difference between the function π and the function π̃ is the last unitary coordinate outputted by
π̃
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1.1. The photogrammetric Rosetta-Stone

to the common use in homogeneous formalism, the K matrix is multiply by a vector whose

last coordinate is not unitary. The coordinates of the principal point ppx and ppy are thus

multiplied by Z ′, added to c · X ′ and c ·Y ′ before being divided again by Z ′. This complex

mathematical operation that is applied to the coordinates of the principal point does not

reflect any physical phenomena and will lead to complexification in the next section.

`x

`y

1

= π̃


c 0 ppx

0 c ppy

0 0 1


︸ ︷︷ ︸

K

1 0 0 0

0 1 0 0

0 0 1 0


︸ ︷︷ ︸

Π̃

[
Rc

W T c

0 1

][
PW

1

]
 (1.13)

Next table summarizes notations and reasoning of the three fields: Traditional Photogramme-

try, Modern Photogrammetry3 and Computer Vision

3The notations used in [18] correspond to the modern photogrammetry with the same willingness for clarity
and conciseness. The following Table retranscribes the notation of [18] and links them to the notations presented
in this document for the modern photogrammetry.

modern photogrammetry [18]

· · ·+pp T2
(· · · , pp

)

c · · · · S (c, · · · )

π (· · · ) H (· · · )

RT · · · L
(
RT , · · ·)

· · ·–T T3 (· · · ,−T )

f ·π(
RT (P −T )

)+pp T2
(
S

(
c, H

(
L

(
RT ,T3 (P,−T )

)))
, pp

)
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Traditionnal Photogrammetry Modern Photogrammetry Computer Vision

S
en

so
r
→

W
o
rl

d


XP

YP
ZP




︸ ︷︷ ︸
PW

=



Xo

Yo
Zo




︸ ︷︷ ︸
TW

+



r11 r12 r13
r21 r22 r23
r31 r32 r33




︸ ︷︷ ︸
RW

c



X ′

Y ′

Z ′




︸ ︷︷ ︸
P c

PW = TW +RW
c P c

[
PW

1

]
=

[
RW

c TW

0 1

] [
P c

1

]
W

or
ld
→

S
en

so
r




X ′ = r11(XP −Xo) + r21(YP − Yo) + r31(ZP − Zo)
Y ′ = r12(XP −Xo) + r22(YP − Yo) + r32(ZP − Zo)
Z ′ = r13(XP −Xo) + r23(YP − Yo) + r33(ZP − Zo)

P c = RW
c

T (
PW − TW

) [
P c

1

]
=

[
Rc

W T c

0 1

] [
PW

1

]

{
Rc

W = RW
c

T

T c = −RW
c

T
TW

P
in

-H
o
le

ca
m

er
a





X′

Z′

Y ′

Z′

π : R3 → R2

X ′

Y ′

Z ′


 7→ 1

Z′

[
X ′

Y ′

]

Id
ea

l
ca

m
er

a
W

or
ld
→

Im
a
g
e

{
`x = c r11(XP−Xo)+r21(YP−Yo)+r31(ZP−Zo)

r13(XP−Xo)+r23(YP−Yo)+r33(ZP−Zo)
+ ppx

`y = c r12(XP−Xo)+r22(YP−Yo)+r32(ZP−Zo)
r13(XP−Xo)+r23(YP−Yo)+r33(ZP−Zo)

+ ppy

[
`x
`y

]
= c · π

(
RW

c
T (
PW − TW

))
+ pp

[
`x
`y

]
= π

(
K Π̃

[
Rc

W T c

0 1

] [
PW

1

])

K =



c 0 ppx
0 c ppy
0 0 1



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1.1.6 Interior Orientation: Camera modeling and parametrization

Up to this point, the camera have been modeled by the pin-hole camera model. The pine-hole

of real cameras is realized by a (simple or compound) lens. A simple lens could define a

single piece of transparent material (usually glass) with cylindrical symmetry and different

curvature on each side. The axes of symmetry of the simple lens is simply called the axes.

However, in most optical devices, several lenses are assembled together on the same axes. The

concatenation of lenses could be modeled by a single lens (according to the characteristics of

the concatenated lenses) and is called a compound lens4

A lens is designed (accordingly to the Snell-Descartes law) such that a beam of light-rays

coming from infinity (i.e. parallel one with the other) converging to a single point. Light-rays

parallels to the lens axes converge to the focal point. The focal length f is the distance between

the focal point and the center of the lens. The focal plane is the plane normal to the lens axes

at a distance f from the center of the lens. Theoretically, a beam of parallel light rays (not

necessarily parallel to the lens axes) converges to a single point situated on the focal plane.

If a camera observes a distant object (typically, more than 5 m for a wide angle lens and more

than 20 m for a telephoto lens), it should be focused at infinity. This is achieved by making the

focal plane coincide with the image plane. Under this condition, the view axis coincides with

the optical axis of the lens and the focal length f and the principal distance c are equivalent.

We would like here to disambiguate a common mistake in the literature. The focal length and

the lens axes are intrinsic property of the lens whereas the principal distance and the camera

axes of view is defined by the mount of the lens and of the image plane inside the camera. In

particular, the focal length do not always correspond to the principal distance.

If the camera observes a close object, the focus could be done on the object to acquire a clear

image (without blur)5 6. It means that the lens will be translated along the camera axes toward

the image plane. The lens axes and the camera axes will still be collinear, but the principal

distance will be smaller than the focal length.

Important departures from collinearity must be modelled. For instance, the imperfection of the

lens itself, the possible misalignment of the lens axes with the camera axes, the possible default

of planarity of the sensor (argentic glass, argentic film, CCD or CMOS sensor) representing the

image plane, and the possible imperfections of the digitalisation of argentic images or of the

CCD or CMOS sensor. Two distortions models chosen from the literature are presented here:

the Brown model, and orthogonals polynomials such as Ebner functions.

4The French translation for simple lens is une lentille whereas a compound lens is called un objectif.
5In practice, in photogrammetry, the focus is very often at infinity for two mains reasons. First, the camera are

calibrated on this position and fixed on this position in order to have stable and well known calibration parameters.
Second, blur images could be exploited under certain conditions and could even leads to better results than
focused images (A rigorous definition of the blur based on the Shannon point-spread function is used in Chapter
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Brown model

These imperfections could be modeled by the Brown model6 The publication usually cited

when referring to the Brown model is a more recent one [24] focusing on the calibration of

these parameters. In equation 1.14, the − sign have been omitted as in [22, 23, 24] under the

assumption the image frame is left-handed. described below (we recall that x ′ and y ′ are

expressed in [mm] or in [pi x]).

{
`x = x ′ (1+K1r 2 +K2r 4 +K3r 6 +·· ·) + (

P1
(
r 2 +2x ′2)+2P2x ′y ′)(1+P3r 2 +·· ·) + ppx

`y = y ′ (1+K1r 2 +K2r 4 +K3r 6 +·· ·) + (
2P1x ′y ′+P2

(
r 2 +2y ′2))(1+P3r 2 +·· ·) + ppy

(1.14)

The (theoretic) cylindrical symmetry of the lens is represented by the polar coordinates with:

r 2 = x ′2 + y ′2.

In the modern photogrammetry formulation and in the Computer Vision formulation, points

are first projected on a virtual plane with a unitary principal distance before being scaled by

the actual principal distance. Recent adaptations of Brown model are applied on the unitless

coordinates x̃ and ỹ (the radius is redefined: r̃ 2 = x̃2 + ỹ2). Conceptually, it represents better

the image formation process since the lens distortions are first considered, and then the

projection on the camera image plane is considered.

{
`x = cx̃

(
1+ K̃1r̃ 2 + K̃2r̃ 4 + K̃3r̃ 6 +·· ·) + c

(
P1

(
r̃ 2 +2x̃2

)+2P2x̃ ỹ
)(

1+P3r̃ 2 +·· ·) + ppx

`y = c ỹ
(
1+ K̃1r̃ 2 + K̃2r̃ 4 + K̃3r̃ 6 +·· ·) + c

(
2P1x̃ ỹ +P2

(
r̃ 2 +2ỹ2

))(
1+P3r̃ 2 +·· ·) + ppy

(1.15)

The classical Brown model (equation 1.14) have a numerical drawback. If x ′ and y ′ are

expressed in [µm] or in [pi x], r 2, r 4, r 6 will be very large (order of magnitude 1012 for r 6 if the

order of magnitude of x ′ or y ′ is 103 (which is usual when using [pi x]). This lead to very small

values for the coefficients K1, K2, K3, P1, P2 · · · .

Moreover, the units of these coefficients are clumsy: if x ′ and y ′ are expressed in [pi x], P1 and

6In the first publication of Brown [22], the radial distortions were described as in equation 1.14, but the
tangential distortion, which are said to represent the decentering of the lens axes with respect to the camera axes
were described analytically, with decentering angles, leading to complex formalism. A second publication [23]
simplifies this expression by introducing the parameters P1, P2, P3 to get all the terms of equation 1.14. Note that
the terms P3 and beyond are the coefficients of a polynomial in r 2, but they scale the vector field of the tangential
distortions described by P1 and P2.
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1.1. The photogrammetric Rosetta-Stone

P2 are in [pi x−1], K1, P3 are in [pi x−2], K2, P4 are in [pi x−4] and so on. The unitless-based

Brown model solve this issue using unitless coefficients. Both sequences {K1,K2,K3, · · · } and

{K̃1, K̃2, K̃3, · · · } are decreasing, but the decrease rate of the second is less dramatic, leading to

fewer numerical issues.

The following conversion table 1.1 compares classical and unitless coefficients. The effect of

these different parameters are graphically represented by the quiver-plots on the next pages.

K̃1 = 1
c2 K1 P̃1 = 1

c2 P1

K̃2 = 1
c4 K2 P̃2 = 1

c2 P2

K̃3 = 1
c6 K3 P̃3 = 1

c2 P3

Table 1.1. Conversion of classical vs unitless coefficients

For the sake of clarity, the unitless distortion model is encapsulated in the function ξ1.

ξ1 : R2 → R2

p̃ =
[

x̃

ỹ

]
7→ (

1+ K̃1r̃ 2 + K̃2r̃ 4 + K̃3r̃ 6 +·· ·) p̃ +
[(

P̃1
(
r̃ 2 +2x̃2

)+2P̃2x̃ ỹ
)(

2P̃1x̃ ỹ + P̃2
(
r̃ 2 +2ỹ2

))](
1+ P̃3r̃ 2 +·· ·)

wher e r̃ 2 = x̃2 + ỹ2

(1.16)

The modern-photogrammetry expression for the image formation model could thus be ex-

tended by the distortions.

[
`x

`y

]
= c ·ξ1

(
π

(
RW

c
T (

PW −T W )))+pp (1.17)

However, this last model do not account for possible difference of scaling in x and y , nor

possible skewing (illustrated on Figure 1.4). The complete Interior-Orientation camera model
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could thus be represented by the function ξ= ξ2 ◦ ξ1 where ξ2 models the position of the lens

with respect to the image plane, and the possible deformation of the image plane. B1 accounts

for possible difference of scaling between x and y (i.e. non square pixel), and B2 accounts for

possible skewing of the image (i.e. non rectangular pixels).

ξ2 : R2 → R2[
x

y

]
7→

[
c +B1 B2

0 c

][
x

y

]
+

[
ppx

ppy

]
(1.18)

Figure 1.4. Illustration of the B1 scaling parameter and the B2 skewing parameter (special case where
the principal distance c corresponds exactly to half the height)

Finally, Equation 1.17 could simply be re-written as Equation 1.19.

[
`x

`y

]
= ξ

(
π

(
RW

c
T (

PW −T W )))
(1.19)

Orthogonal Polynomials

The Brown model is based on a physical modeling of the lens and the camera. [15] reasons for

employing models based on mathematical considerations rather than on a physical modelling

of the sensors. A basis of polynomials is built to be orthogonal to a given scalar product, in

order to avoid correlations. Each coordinate is independent from the other and computed
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with a second order degree polynomials from the coordinates given by the π function: x̃ and ỹ .



`x =

 1

x̃

x̃2


T a11 a12 a13

a21 a22 a23

a31 a32 a33


 1

ỹ

ỹ2


`y =

 1

x̃

x̃2


T b11 b12 b13

b21 b22 b23

b31 b32 b33


 1

ỹ

ỹ2


(1.20)

For numerical reasons, the quadratic terms x̃2 and ỹ2 could be balanced respectively with the

values bx and by which could be chosen as half the image width and half the image height in

unit-less coordinates (i.e. width and height divided by twice the nominal principal distance).



`x =

 1

x̃

x̃2 − 2
3 b2

x


T a11 a12 a13

a21 a22 a23

a31 a32 a33


 1

ỹ

ỹ2 − 2
3 b2

y


`y =

 1

x̃

x̃2 − 2
3 b2

x


T b11 b12 b13

b21 b22 b23

b31 b32 b33


 1

ỹ

ỹ2 − 2
3 b2

y


(1.21)

Some parameters of the full 18 parameters (of double second degree polynomial) are correlated

with external-orientation. For this reason, [15] suggests to introduce the following constraints

between the parameters in order to remove this correlation.


b13 + 2 ·a22 = 0

a31 + 2 ·b22 = 0

a12 − b21 = 0

(1.22)
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These constraints lead to the following modification in the orthogonal polynomial.



`x =

 1

x̃

x̃2 − 2
3 b2

x


T  a11 b21 a13

a21 a22 a23

−2 ·b22 a32 a33


 1

ỹ

ỹ2 − 2
3 b2

y


`y =

 1

x̃

x̃2 − 2
3 b2

x


T b11 b12 −2 ·a22

b21 b22 b23

b31 b32 b33


 1

ỹ

ỹ2 − 2
3 b2

y


(1.23)

[15] suggests as well to introduce constraints between a11, b11, a21 and b12 as in Equation 1.24,

however we propose to let these parameters free since they account for possible variation in

principal point and principal distance.

{
a11 = b11 = 0

a21 + b12 = 0
(1.24)

Rigorous relationship between parameters from Brown model and orthogonal polynomials

could not be achieved, since the polynomial order is different from the phisical model. The

only possible translation could occur in the special case when there is no distortions, thus,

most parameters (which are not in the following Table 1.2) are null.

Similarly to the Brown model, orthogonal polynomials (with or without constraints) could

be encapsulated in a function ξ and be used in Equation 1.19. These two camera calibration

models are studied and compared in Chapter 2 for a particular high-quality UAV camera.

The following quiver-plots represents the effect of each parameters of Brown and orthogonal

polynomials respectively.
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1.2. Other observation models

Brown Orthogonal polynomials

ppx a11

ppy b11

c +B1 a21

c b12

B2 b12

Table 1.2. Correspondences between Brown parameters and Orthogonal polynomials ones

1.2 Other observation models

1.2.1 Normal camera

A re-written Equation 1.19 below models both IO (Interior Orientation) and EO (External

orientation) of one camera A (embedded on the platform).

[
`x

`y

]
= ξA

(
π

(
RW

A
T (

PW −T W
A

)))
(1.25)

PW is the considered point on the ground, RW
A is the rotation matrix from the camera A to the

world frame, and T W
A is the position of the camera perspective center. ξA models the Internal

Orientation of camera A.

1.2.2 Camera rig

If several cameras are mounted jointly (i.e rigidly fixed with respect to each other’s), the com-

mon method is to consider the first camera (A) as the reference for the others. It means that

all others sensors embedded on the same platform are georeferenced with respect to this first

camera. For example, a second camera B is referenced with respect to the reference camera

A by its lever-arm T B
A (vector joining the perspective center of camera A to the perspective

center of camera B in the frame of camera A) and its boresight matrix RB
A from camera A frame

to camera B frame).

The lever-arm and boresight matrix definition 1.26 must be inputted in the camera B projection
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model 1.27 to create the camera model in the frame of the reference camera A 1.28.

{
TB = TA +RW

A T B
A

RW
B = RW

A R A
B

(1.26)

[
`x

`y

]
= ξB

(
π

(
RW

B
T (

PW −T W
B

)))
(1.27)

[
`x

`y

]
= ξB

(
π

(
RB

A

(
RW

A
T (

PW −T W
A

)−T B
A

)))
(1.28)

The method presented in equation 1.26 permits to convert reference frame from one sensor

to the other. Hence it can be applied to all other sensors embedded on the same platform

described in 1.2.3, 1.2.4, 1.2.7, etc.

1.2.3 LIDAR

Contrarily to image coordinates that represent a direction only, LIDAR measures both the

direction of the point (in sensor frame), and the distance. Thus, the observation vector `L of a

point7 measured by the LIDAR contains the three coordinates in the sensor frame. Note that

since the frequency of LIDAR acquisition is substantially higher than the camera acquisition

rate, the timestamp of the LIDAR point acquisition does not correspond to any photo taken by

the camera. Methods to express the position T W
L and the orientation RW

L of the LIDAR at the

time of measurement acquisition will be discuss in Chapter 4. The relation between LIDAR

observation after application of sensor IO reads:

PW = T W
L +RW

L `L (1.29)

1.2.4 Spherical photos

A spherical image is an image which represents all directions from the acquisition point of

view [164]. Usually, these images are visualized as if the observer was inside a bubble on which

7Center or pear of returned energy spread over a certain region called foot-print (usually few cm)
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the image is projected. The most famous spherical image bank is Google Street-view. Such

images could be acquired by a panoptic camera (set of multiple cameras rigidly fixed one to

the others). If the raw images are available, and if the Internal Orientation of each camera, as

well as the lever-arm and boresight matrix from each camera to a chosen master camera are

known (or could be calibrated), Equation 1.28 could be applied.

However, the raw images from panoptic cameras are often transformed to spherical images

for practical reason e.g., simplification of photogrammetric problem, diffusion to end-users.

In particular, the images from Google Street-view are only available as spherical images.

The observed longitude λ and latitude ϕ of a point on the photo could be represented on the

unit-sphere.

`=

cos(λ) cos(ϕ)

si n(λ) cos(ϕ)

si n(ϕ)

 (1.30)

The projection function π defined by equation 1.2 was adapted to classical cameras since it

projects a 3D point on a theoretic plane whose distance from the perspective center is unitary.

modeling spherical cameras require re-defining a projection function π̃s to project 3D point

on a theoretic unit-sphere (‖•‖ is the Euclidian norm for 3d vectors).

π̃s : R3 → R3X ′

Y ′

Z ′

 7→

∥∥∥∥∥∥∥
X ′

Y ′

Z ′


∥∥∥∥∥∥∥
−1

·

X ′

Y ′

Z ′

 (1.31)

The spherical camera model whose perspective center is T and orientation is R project the 3D

point PW on the observation point on the unit-sphere. This formulation permits to handle

easily spherical images in a rigorous way since all points will be considered equally (with the

same weight, see 1.3) independently to their latitude ϕ.

`= π̃(
RT (

PW −T
))

(1.32)
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1.2.5 GCP

Ground Control Points (GCPs) are points on the object to be surveyed (e.g. the field, or the

ground) which are signalized to be well visible and recognizable on the photos and which have

been measured with external method (e.g. theodolite, terrestrial GNSS, etc.). These points

could be considered as special tie-points since they are seen (and recognized) in the images

taken by the cameras. The observation model of a direct measurement of the GCP is trivial

since the observation `GC P of the point must be equal (up to instrument imprecision) to the

coordinate of the point in world frame PW
GC P .

`GC P = PW
GC P (1.33)

Check Points (CPs) are well recognizable points on the objects, however, Contrarily to GCPs,

the direct measurement in world frame is NOT used as input to photogrammetric computation,

but ONLY at the end of the photogrammetric process to compare their position measured on

the field `C P to the position computed8 via photogrammetry PW
C P .

`C P
?= PW

C P (1.34)

The difference between `C P and PW
C P is called the Check Point missclosure (the appellation

Check Point residual could also be found in the literature). It is an indicator of the local

accuracy assessed at these specific points.

1.2.6 GNSS antenna

The embedded GNSS receiver measures the absolute position of the antenna phase center

thanks to measurements from GNSS satellites signals. Complete description of GNSS mea-

surement system can be found in [20], [19] and [77]. The given position of the antenna phase

8There are two approaches to compute the Check Point position via photogrammetry. The first approach is
to consider it in the computation as a Tie-Point. However, the signalization of these special tie-points (target,
chess-board) often permits to reach a better precision than the other tie-points. The use of Check Point to measure
the accuracy leads to a modification of this accuracy (a better accuracy). Therefore, a second approach (used in
this thesis) consists in removing the Check Point image observation from Bundle Adjustment (to prevent them
helping too much 3D reconstruction), compute the camera IO and EO with the other measurements, and compute
the Check Point positions only at the end through light-ray intersection.
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center is related to the reference camera perspective center thanks to the lever-arm T GN SS
A .

`GN SS = T +R T GN SS
A (1.35)

The benefit of GNSS measurements to close-range airborne photogrammetry were for instance

studied in [145], [132] and [130]. The lever-arm could be determined either by calibration

(considering it to be unknown during Bundle Adjustment), or by theodolites measurement

with the method described in [130].

1.2.7 Orientation measurements

The use of GNSS/IMU observations permit to derive orientations as described in [145]. These

orientations could be inputted in absolute or relative terms to best describe the behavior of

the sensors and the measurement process.

Absolute orientation

IMU measurements permit to derive the trajectory of the IMU9 sensor when coupled with

GNSS or other sensors via Kalman filtering and smoothing. At the time of the pose, the given

orientation of the IMU RW
I MU is related to the orientation of the principal camera RW

A by the

boresight matrix R I MU
A , as described and assessed in [131].

RW
A = RW

I MU R I MU
A (1.36)

Relative orientation

The use of low-cost small IMUs may lead to large systematic orientation biases. This leads

to time-dependent errors in the trajectory. Figure 1.5 presents the difference in orientation

between the trajectory computed from a consumer-grade IMU and a navigation grade IMU10,

thus, the presented values could be considered as true-errors. The error at a given moment

is highly correlated with the error just before or after, and the correlation between two error

decreases with the time difference separating these.

9IMU position center may be used also as position observation in similar manner as Equation 1.35 while the
advantage of smoothing GNSS positions is to follow better high dynamic

10The navigation grade IMU is a IXblue AIRINS described in [72] and the consumer grade IMU is a NavChip
ISNC01 described in [31]. These sensors are used in the experimental part of Chapter 4.
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Figure 1.5. True error of a trajectory sample computed from a consumer-grade IMU

This motivate the computation of relative orientations between one pose (index 1) and the

next one (index 2). Two relatives orientations computations could be found in the literature.

[14], [16] and [131] propose the relatives orientations 1.37 while [95] proposes the relative 1.38.

∆= RW
I MU1

RW
I MU2

T
(1.37)

∆= RW
I MU1

T
RW

I MU2
(1.38)

Appart eliminating the same orientation bias between two camera poses captured few second

appart, the asset of 1.37 relative orientation is to simplify the system calibration, i.e. the

boresight-matrix do not need to be inputted nor need to be determined explicitly.

∆= RW
I MU1

RW
I MU2

T = RW
A1

R I MU
A

T
R I MU

A︸ ︷︷ ︸
I3

RW
A2

T
(1.39)

To compare the efficiency of the approaches described by equation 1.37 and 1.38, both ap-

proaches have been implemented. However, the comparison is unfair since 1.38 needs explicit

computation of the boresight-matrix R I MU
A whereas 1.37 do not need it. This is why, a sec-

ond mis-alignment matrix have been introduced to permit to compute the same number of

parameters using equation 1.37 or 1.38. This matrix was chosen to be the rotation matrix
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between world frame and auxiliary navigation frame. In practice, it is a non-sense to consider

this matrix to be unknown, but it permits to proceed to a more fair comparison between both

approaches.

R i
A = R i

W RW
I MU R I MU

A (1.40)

With this new miss-alignment matrix R i
W , the relatives orientations 1.37 and 1.38 became

respectively 1.41 and 1.42.

∆= RW
I MU1

RW
I MU2

T = R i
W

T
R i

A1
R I MU

A
T

R I MU
A︸ ︷︷ ︸

I3

R i
A2

T
R i

W (1.41)

∆= RW
I MU1

T
RW

I MU2
= R I MU

A R i
A1

T
R i

W R i
W

T︸ ︷︷ ︸
I3

R i
A2

R I MU
A

T
(1.42)

The comparison of the implementation of 1.41 (which need to compute R i
W explicitly) with

the implementation of 1.42 (which need to compute R I MU
A explicitly) have been done on

a corridor mapping scenario with 3 GCPs and 18 Check Points, without GNSS inputs. No

significant performances difference have been observed (Check Point residuals given by the

implementation using 1.41 are few percent smaller than the one given by the implementation

using 1.42). This experiment motivate the choice for the approach represented by equation

1.37 since the simplification of the boresight-matrix R I MU
A makes it simpler to implement.

1.2.8 Time-synchronisation between the sensors

The assembly of several sensors requires stable rigid mounting as well as common and stable

time frame for all observations. Thus, the timestamp of the camera exposure needs to be

recorded for each photo (in practice, an electric pulse is emitted in relation of the exposure

that is time-stamped by navigation sensor such as GNSS receiver). However, some delay may

exist between the timestamp (electric pulse arrival) and the actual time of the measurement.

This delay could be considered as the sum of a constant time (deterministic) and a random

noise (stochastic). The deterministic part of this delay could be either measured with high

precision clock or estimated (i.e. considered as unknown) in the Bundle Adjustment [128].
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1.2.9 Concatenation of observation and parameters

The set of all inputs observations described in this section (acquired by the sensors: camera,

LIDAR, embedded IMU, embedded GNSS, ground GNSS) are concatenated together11 in a

single vector ` called observation vector. The size of a single observation taken separately from

the other is generally 2 or 3 (e.g. an image point observation
[
`x ;`y

]
have length 2, and a GNSS

positioning
[
`X ;`Y ;`Z

]
have length 3), however, the size of the full vector of observation ` is

denoted n (number of observation) and could have an order of magnitude of 106.

Similarly to the input observations, the unknown parameters that permit to compute such

observations (i.e. the position of the tie-points PW , position of the camera T W , orientation of

the camera RW , lever-arms, boresight matrix, etc.) are concatenated in a single vector x called

parameter vector. The size of a single parameter taken separately from the other is generally 3

(e.g. a point position, a camera position or a lever-arm vector), however, the size of the full

vector of parameters x is denoted u (number of parameters) and is generally 2 or 3 times lower

than the one of `. Formally, the rotation matrices cannot be concatenated into the x vector.

Section 1.5 provides the mathematical theory to handle the rotations properly in a Bundle

Adjustment.

The observation models (equations from 1.25 to 1.33) for each measurements are themselves

concatenated in a single function f :Ru →Rn . Such a function takes as argument the param-

eters x , and output a simulation of the observation `. More rigorously, the function f must

be build such that if f is applied to the perfect theoretic parameters x̌ , it must output perfect

theoretic measurements ˇ̀.

f (x̌) = ˇ̀ (1.43)

Adjustment algorithms usually starts from an approximated value of the parameters denoted
◦
x , which leads to the approximated values of the observations thanks to the function f .

f
( ◦

x
)
=

◦
` (1.44)

The goal of the adjustment will be to choose the so called compensated parameters x̂ such that

11The notation ` and x refers to large size (order of magnitude of 106) vectors issued from concatenation of low
size vectors ` (usually 2 or 3 elements).
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the corresponding compensated observations ˆ̀ are as close as possible to ˇ̀.

f (x̂) = ˆ̀ (1.45)

The goal of Section 1.3 is to define rigorously the notion of as close as possible, while that of

Section 1.4 deals with the computation of x̂ . There, we will need to compute the Jacobian

matrix A of f with respect to x .

A = ∂ f (x)

∂x
(1.46)

1.2.10 Covariance matrix of the parameters

Once the values of parameters x̂ is determined, one has to determine the variance of these

parameters. If the observations ` follow a multivariate normal distribution, their precision

could be fully represented by their covariance matrix Σ``. Error propagation permits to

compute the covariance matrix of the compensated parameters x̂ .

Σx̂ x̂ = (
ATΣ−1

``A
)−1

(1.47)

The computation of the full inverse of ATΣ−1
``

A can be time and memory consuming. Moreover,

the full Σx̂ x̂ is not necessary useful: usually, only some block of the full matrix are useful for

practical applications (Figure 1.6). Thus, [136] and [84] propose a method to compute only the

needed parts Σsub of Σx̂ x̂ without compute the full inverse.

Figure 1.6. Computation of a sub-block of Σxx
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1.3 Expressing optimization problem

Sections 1.1 and 1.2 describe the so called observation model. They relate the parameters

describing the model (mapped points on the ground coordinates, position and orientation

of the camera, interior orientation of the camera, lever-arm and boresight-matrix, etc.) to

the theoretic values of the observations acquired by the sensors, which will be considered as

input-data in an adjustment software. An adjustment software solves an inverse-problem i.e.

tries to recover the parameters values x (concatenation of all necessary parameters) from the

observation vector ` (concatenation of all sensors measurements). However, due to inherent

imperfection of the sensors and measuring process, the observations are not perfect. We define

the effective observations ` as the direct output of the sensors, and the adjusted observation ˆ̀

as the best possible choice of modified observation that fit the model described in Sections 1.1

and 1.2. The residuals are defined as the difference between the effective observations and

the adjusted observation: equation 1.48. Another appellation for v is OMC (Observed Minus

Calculed).

v =`− ˆ̀ (1.48)

The above mentioned best possible choice of parameters corresponds to reducing the residuals

vi to be as small as their probability let them to be. More rigorously, it translates in finding the

parameters x̂ maximizing the probability density of vi depending of x .

x̂ = ar g max
x

p(v |x )

sub j ect to v =`− f (x)
(1.49)

The full probability density of the whole set of vi is obtained by computing the probability of

the intersection of the set of assertion vi ≈ 0, where ≈ could be defined rigorously as equal, up

to a given tolerance. The intersection of set translates as product for probability.

P

(⋂
i

vi ≈ 0

)
=∏

i
P (vi ≈ 0) (1.50)

By choosing different tolerances for the definition of ≈, the equation for probability 1.50 could
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be translated to density of probability 1.51.

p

(⋂
i

vi |x
)
=∏

i
p (vi |x ) (1.51)

The most commonly used probability distribution is the normal distribution 1.52, represented

by the ’least square’ curve of Figure 1.7. It follows the hypothesis that the error is the sum

of infinitesimal errors that could occur either positively or negatively. The distribution of an

unbiased residual vi is characterized by it standard deviation σi expressing the dispersion of

the values.

p(vi ) = 1p
2π σi

e−v2
i /2σ2

i (1.52)

-10 -5 0 5 10

x

0

0.2

0.4

0.6

0.8

1

e-
(x

2 ) 
/2

Least square
Whelsch
Huber
atan

Figure 1.7. Pseudo-distributions constructed by the ρ function

Equation 1.51 could be re-written with normal distribution.

p (v ) = p

(⋂
i

vi |x
)
=∏

i

1p
2π σi

e−v2
i /2σ2

i = 1

(2π)
n
2
∏

i σi

exp

(
−1

2

∑
i

v2
i

σ2
i

)
(1.53)
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For each observation, its weight pi is defined as the inverse of its squared sigma12.

pi = 1

σ2
i

(1.54)

Equation 1.53 could be simplified by introducing the cost functionΩ.

Ω=∑
i

pi v2
i (1.55)

The goal of the adjustment is to maximize the probability density 1.56 that the chosen parame-

ters satisfies the given observations. This could be achieved by minimizing the cost functionΩ.

Indeed, 1.53 is a decreasing function which depends onΩ only (all other terms are constants

i.e. have a priori known values).

p (v ) = 1

(2π)
n
2
∏

i σi

exp

(
−1

2
Ω

)
(1.56)

The above defined cost function Ω is known as the uncorrelated weighted least-square cri-

terion, and its minimisation is known as uncorrelated weighted least-square. It is the most

simple of the ones described on Table 1.3 and yet the most commonly used. However, such

definition of the objective function Ω is not robust: a blunder on one observation will lead

to a high squared residual inΩ. A minimization algorithm whose aim would be to minimize

Ωwill tends to underestimate the residuals associated to the blunders i.e. to not discard the

blunders.

The goal of employing robust estimators is to take into account possible blunders and to

minimize their impact on parameters. This could be achieved by modifying the hypothesis of

normal distribution 1.52 followed by the residuals vi . One method to take account blunders

in normal distribution is to consider the possibility of a blunder with a probability ε. The

probability that the residual of an observation follows a normal distribution is thus 1−ε, as in

12For numerical and practical reasons, it is also recommended to scale all the weight with a common factor, as
described in [104].
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equation 1.57.

p(vi ) = (1−εi )
1p

2π σi
e−v2

i /2σ2
i +εi U(vi ) (1.57)

εi is the probability that the observation i whose residual is vi is a blunder. U is the uniform

distribution followed by the residual in case of blunder (the range of this uniform distribution

should be chosen accordingly to the context of the measurement, e.g. the maximum size of

measurement error that could occur).

U(vi ) =
{

1
2 vmax

i f vi ∈ [−vmax , vmax ]

0 el se
(1.58)

The ρ function is defined such that the probability distribution could be expressed as equation

1.59.

p(vi ) = 1p
2π σi

e−
1
2ρi (v2

i /σ2
i ) (1.59)

Equation 1.57 leads to the ρ function defined as 1.60. In the particular case of a normal

distribution (εi = 0), this function ρi is the identity.

ρi : x 7→ −2 log
(
(1−εi )e−

1
2 x +εi

p
2π σi U(vi )

)
(1.60)

Applying the same reasoning as 1.53 leads to a modified version of the cost functionΩ. Again,

an identity ρ function leads to the classical uncorrelated weighted least square cost function.

Ω=∑
i
ρi (pi v2

i ) (1.61)

Such a ρ function defines the Whelsch minimization function. The definition of other ρ

functions (e.g. Huber, or atan as on Figure 1.8) generates other robust estimators. The ρ
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function must be increasing (usually concave) function such that ρ(0) = 0. For the sake of

consistency, the presented ρ function are also normalized13 such that ρ(x) ≈
0

x.
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Figure 1.8. Typical examples for the ρ function
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Figure 1.9. ρ(v2)

The increase of Whelsch, Huber and atan ρ function is less important than the identity (repre-

senting Least square) cost function, leading to a robust estimator. Figure 1.9 shows a single

term inputted in the sum the function inputted in the global cost function 1.61. Quadratic

terms (constituting least square estimators) give an over-ratted importance to blunders,

whereas robust estimators (e.g. Whelsch, Huber, atan) reduce the weight of blunders.

The introduction of the ρ function permits to robustify least square method with respect to

13In particular, the function represented on Figure 1.7, 1.8 and 1.9 is not the ρ function defined by equation 1.60
but ρ̃(x) =α(

ρ(x)−ρ(0)
)

where α have been chosen such that ρ̃(x) ≈
0

x.
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Ω non robust robust

non correlated
∑

i pi v2
i

∑
i ρi (pi v2

i )

correlated v T P v
∑

i ρi (v T
i Pi vi )

Table 1.3. Cost function definition

Blunders (second column of table 1.3). However, this do not take into account for possible

correlations between the inputs.

The following input observation vector ` is described by its covariance matrix Σ (the notion

of is described by is denoted by the symbol ∼). The diagonal element of this matrix are the

variances of the elements of `. This matrix must be symetric and semi-definite to be a co-

variance matrix, i.e. it satisfies Σ= ΣT , and all its eigenvalues are strictly positives. Thus, it

define a scalar product on Rn .



`1

`2

`3

...

`n



∼



σ2
1 σ2

21 σ2
31 · · · σ2

n1

σ2
21 σ2

2 σ2
32 · · · σ2

n2

σ2
31 σ2

32 σ2
3 · · · σ2

n3

...
...

...
. . .

...

σ2
n1 σ2

2n σ2
3n · · · σ2

n


︸ ︷︷ ︸

Σ

(1.62)

The coefficient of correlation between two terms could be computed as
σi j

σiσ j
. It could be

shown that if the matrix Σ is symmetric positive definite, the correlation coefficients belongs

to the interval [−1,1]. Note that the reciprocal is not true: not all set of coefficients between -1

and 1 permits to build a proper positive definite covariance matrix. The correlations between
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inputs leads to the following modification to the normal density function 1.52.

p(v ) = 1p
2π

n p|Σ|
e−

1
2 v TΣ−1v (1.63)

Similarly to equation 1.54, the weight matrix P is defined as the inverse of the covariance

matrix Σ.

P =Σ−1 (1.64)

Maximising the probability density 1.63 leads to minimising the following cost function ac-

counting for the possible correlations between the inputs: Ω= vT P v (see Table 1.3).

Figure 1.10. Block covariance matrix

This last cost function considers for correlation between observations but is not robust. There

are several ways to robustify this expression [33]. The one presented here is adapted if the

observation vector could be sliced into several independent sub-vectors v1, v2, · · · , vn . The

covariance matrix of such observation vector is thus block-diagonal (Figure 1.10). If there is

a blunder on a vector, it does not have implication on possible blunders on another vector.

However, a blunder on a component on one vector leads to a very high probability that every

component of this same vector is wrong as well. These hypothesis leads to the following cost

function.

Ω=∑
i
ρi (v T

i Pi vi ) (1.65)
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Table 1.3 summarizes the proposed cost functions for robust and non-robust estimation of

correlated and non-correlated inputs. The cost-function of the right column are a generaliza-

tion of the one on the left column, and the cost function of the second line is a generalization

of the one of the first line.

•
∑

i pi v2
i is a particular case of

∑
i ρi (pi v2

i ) when the ρ function is taken as identity, i.e.

when considering independent normal distribution.

•
∑

i pi v2
i is a particular case of v T P v when the input variables are independent, or

decorrelated. Their covariance matrix Σ is diagonal, and thus the weight matrix P is

diagonal as well.

•
∑

i ρi (pi v2
i ) is a particular case of

∑
i ρi (v T

i Pi vi ) when the observation vector, and thus

the residuals are sliced in vector with only one component each.

• At the opposite of the previous generalization, v T P v is a particular case of
∑

i ρi (v T
i Pi vi )

when the vector v is sliced into only one vector. Thus, minimizing v T P v is the same as

minimizing ρ(v T P v ) because ρ is an increasing function.

1.4 Solving the optimization problem

In the previous section, we have seen how to express an over-determined problem as an

optimization problem. In this section, we will present different methods to solve such problem.

For the sake of illustration, all presented methods will be applied on a very simple geodetic

problem: the multilateration.

The principle of the multilateration has been known since antiquity (see the Hipparque map

[70]). The rigorous theory to solve the problem were given simultaneously by Gauss and

Legendre at the end of X V I I I e century. The simplicity of this method makes it still up to date

[47]. The goal of this chapter is to provide illustrative example of optimizations methods that

could be applied to a complex problem such as photogrammetry.

The principle of multilateration is quite simple. The goal is to determine the 2D planimetric

coordinates of an unknown point on a planimetric surface e.g. on the ground. This could be

done by using points on this plane which 2d coordinates are well known, called survey mark,

or beacon points. The distances between such known points and the unknown point permit to

determine the coordinates of the unknown point. A distance measurement between a single

beacon point and the unknown point is not sufficient to compute the position of the unknown

point which could be at any point on the circle centered on the known beacon point and with

a radius of the measured distance. In the general cases (not in a singular case), two distances
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permit to determine the position of the unknown point, up to an ambiguity: since there is

(generally) two intersection between two circles, the unknown point as an equal probability

to be at any of these intersections. Usually, several (three or more) distances are measured

to determine the coordinates of the unknown points. Figure 1.11 presents an example of

multilateration problem.

Figure 1.11. An example of Multilateration problem: the triangles are the beacon-points, the lines are
the distance measurements, and the circle represent fix distances to the beacon points. The red

measurement from the blue beacon-point is probably a blunder

If X̂M , ŶM are the compensated 2D coordinates of the unknown point, the distance from the

first beacon point could be calculated with Euclidian norm.

d̂1 =
√

(X̂M −X1)2 + (ŶM −Y1)2 (1.66)

The observation of this distance is `d1 or simply d1.

d1 − v1 =
√

(X̂M −X1)2 + (ŶM −Y1)2 (1.67)

The residual of such observation could thus be computed as the difference between the actual
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measurement, and the computed one.

v1 = d1 −
√

(X̂M −X1)2 + (ŶM −Y1)2 (1.68)

The goal is to minimize a cost function built from the residuals which will permit to share the

error between the different residuals, i.e. do some compromises.

Ω=∑
ρ(v2

i ) (1.69)

The presented plots show the cost function when the ρ function is identity. The X Y coordi-

nates represent the possible position of the point, and the Z represents the costΩ associated

to different X Y couples of coordinate.

Figure 1.12. Traduction of the multilateration problem into an optimisation problem

The solution of the compensation is given by finding the X Y coordinates corresponding to

the lowest point of the curved surface. Finding the minimum by computingΩ for all possible

coordinate couple X Y is nicknamed Brute-Force algorithm. In practice, it is intractable to

compute Ω for all possible coordinate couples X Y , and thus, it is impossible to plot nor

visualize the curved surface (in n dimensions). In order to find the minimum of the cost

functionΩ, countless minimization algorithms have been proposed in the literature, for which

the complexity (number of necessary operation) is neglectable compare to a brute-force
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algorithm. The most common and powerful of these minimization algorithms are described in

[96]. The methods, the principles and the limits are presented in a didactic way. This section

will illustrate these methods on this simple example of the multilateration.

1.4.1 Gradient descent with small steps

The most intuitive method to find the minimum point of such a curve is the gradient descent

with small steps. It is an iterative algorithm which starts from an initial value. At each iteration,

the direction of the highest slope is determined by gradient calculation of the cost functionΩ.

Then a small step is performed in the direction: the next value is given by the translation of

the previous position by the direction of the highest slope. Intuitively, it corresponds to the

way of a drop of water without inertia on the slope. Its trajectory will follow at each time the

highest slope.

Figure 1.13. Gradient descent with small steps. The iterative process on the left of the figure converges
to the global minima (in blue), whereas the iterative process on the right converges to a local minima

Note that the choice of the initial value is important for success of the algorithm to converge

to the global minimum. Figure 1.13 presents two runs of the gradient-descent algorithm with

small steps. The first one (left) starts from a high point and converges to the global minimum.

The second one (right) starts from another point and converges to a local minima. This shows

the importance of choosing an initial guess in the pull-in region of the global minimum i.e.

close enough from the final solution.
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1.4.2 Gradient descent with exact search

The first presented gradient descent need to compute the gradient of the function ω at each

iteration (typically several hundred/thousand are needed). The goal of the other methods is to

reduce the number of iterations, and thus to improve the efficiency of each of them.

Figure 1.14. One step of the gradient descent with exact search

In the gradient descent method with exact search, each iteration begins with the gradient

calculation ofΩ at the current point. This permits to determine the direction of the steepest

slope (given by the arrow on Figure 1.14). The exact search refers to the minimum calculation of

the minimum on the half line starting to the current point and in the direction of the steepest

slope. This minimum search is performed by dichotomy algorithm. Thus, at each iteration,

the gradient is computed once, and theΩ function is computed several times in order to find

the minimum along the search-line. The next iteration starts on this minimum.
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Figure 1.15. Gradient descent with an exact search. The iterative process on the left of the figure
converges to the global minima (in blue), whereas the iterative process on the right converges to a local

minima

Similarly to the previous method, the convergence success depends on the initial value. Fig-

ure 1.15 presents two runs of the Gradient descent with exact search algorithm. One (left)

converges to the global minimum while the other (right) converges to a local minimum. The

number of iterations required is lower than the previous method (around 10), but the time

needed for each iteration is higher (around 10× more).

1.4.3 Gauss-Newton Algorithm

The gradient descent with exact search requires less iteration than the gradient descent with

small steps. However, each iteration needs several computations of theΩ function to find the

minimum along the studied line. The goal of Gauss-Newton algorithm is to perform fast and

efficient iterations to reach the minimum of the function in a small number of iterations, in a

limited time.
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Figure 1.16. One step of the Gauss-Newton algorithm. The paraboloid is tangent on the initial guess
(right part of the picture). The minimum of this paraboloid is represented by a little ball (bottom of the
picture). The ’planimetric’ position of this ball will be used as start for the next iteration (second ball

above the first one)

Each iteration starts from an initial value. Not only the gradient but also the Hessian (second

derivatives) matrix ofΩ are computed on the studied point. This permits to approximate the

Ω function by a quadratic function whose representation is a paraboloid (a bowl). Figure 1.16

represents theΩ function, approximated by a paraboloid on the initial point: both curves are

tangent to this point14. The minimum of the paraboloid (lowest ball on Figure 1.16) gives the

result of the iteration.

14The approximation of the surface representingΩmust be a paraboloid with a single minimum (an upright
bowl). This is achieved if the Hessian ofΩ is symmetric and definite semi-positive. A default of this property could
lead to the failure of the Gauss-Newton algorithm.
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Figure 1.17. Gauss-Newton algorithm. The iterative process on the front of the figure converges to the
local minima (in blue), whereas the iterative process on the back of the picture converges to a local

minima

The number of iterations needed to reach the minimum of theΩ function is even less than with

the other methods. However, the choice of the initial point is even more important than with

previous methods. Figure 1.17 show two solutions, one starting from an unsatisfactory initial

guess and converging to a local minimum (in the back (upper part) of the figure), the second

starting from a satisfactory initial value and leads to a convergence to the global minimum.

Gauss-Newton approach is very fast compared to gradient-descent algorithm. However, its

pull-in region for success is usually smaller than the one of gradient-descent. [96] describes

several SOTA algorithms (Levenberg Marquardt, trust region DogLeg) whose principle is to

mix the two approaches to improve the robustness of Gauss-Newton algorithm to bad initial

values while limiting the needed computation time.

Gradient-descent algorithm, Gauss-Newton algorithm, Levenberg Marquardt algorithm and

trust region DogLeg algorithm needs computation of the derivatives (gradient and Hessian) of

the cost-functionΩwith respect to the parameters. These derivatives needs the calculation of

the derivatives of the observation models with respect to the parameters.
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1.5 Lie-Group tutorial

1.5.1 Motivation

The goal of this tutorial is to handle the rotations correctly in Bundle Adjustment via the Lie-

Groups theory. The intention is not to do a mathematical course about Lie-Groups (see [55] for

the theoretic basis or [45] and [149] for an application to Bundle Adjustment), but to present a

strict basis to build the theory from which Bundle Adjustment benefits. For the purposes of

optimisation in Bundle Adjustment, derivatives of the observations equations with respect

to the parameters must be computed. For example, the derivatives of collinearity equation

1.70 (see section 1.1) must be expressed with respect to PW
t p , PW

c and Rc
W . The derivation with

respect to the ground coordinate PW
t p and PW

c are direct, since they belong in an Euclidian

space. However, the derivation with respect to Rc
W needs special mathematic concept.

`c = ξ
(
π

(
Rc

W

(
PW

t p −PW
c

)))
(1.70)

At each iteration of the process, the minimization algorithm (e.g. Gauss-Newton algorithm,

Levenberg-Marquardt algorithm or Dog-Leg algorithm) gives a vector of the increments of

the parameters δx. Each component of δx represent a correction for a single parameter.

For example, the correction of the 3D vector PW
t p is the 3D incremental vector δPW

t p . At each

iteration, each approximated value
◦
x is updated to a value x̂ of the parameter that is closer to

the final solution. The resulting value after an iteration will became the approximated value
◦
x

of the next iteration. If x belongs to an Euclidian space (like PW
t p and PW

c ), the update step is

given as 1.71.

ˆPW
t p =

◦
PW

t p +δPW
t p (1.71)

Thus, such set of 3D coordinate PW
t p is said to be parametrized by PW

t p because this PW
t p is a

sub-part of the long parameters vector x described in 1.4, and used in the following equation

1.72. The equation 1.71 is a sub-part of equation 1.72.

x̂ = ◦
x +δx (1.72)

The most famous representation for rotation is the set of Euler angles:
{
ω,ϕ,χ

}
. The rotation

is said to be parametrized by these three angles because these angles are included in the

full parameter vector x . The translation from Euler angle to rotation matrix is given by the
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formulae 1.73 (other rotation sequences are possible to define, but the following reasoning

hold for each of them).

R =

1 0 0

0 cos(ω) −si n(ω)

0 si n(ω) cos(ω)


 cos(ϕ) 0 si n(ϕ)

0 1 0

−si n(ϕ) 0 cos(ϕ)


cos(χ) −si n(χ) 0

si n(χ) cos(χ) 0

0 0 1

 (1.73)

Naturally the update step for these Euler angles seems to be as follow.


ω̂= ◦

ω+δω
φ̂= ◦

φ+δφ
χ̂= ◦

χ+δχ
(1.74)

This parameterization has three main drawbacks. First, these three parameters are not orthog-

onal, leading to artificial correlations between these angles. This parameterization became

even singular when ϕ ≈ π
2 . This phenomenon is well known as Gimbal-lock and leads to

singularity since ω became inseparable from χ. Finally, this parameterization leads to highly

complex derivatives for handling orientation observations.

Other parameterization do exist i.e. different sequences of Euler angles, quaternions, or the

full rotation matrix parameterization. If the rotation is over-parametrized (i.e., if there is more

than 3 parameters to describe a single rotation) constraints must be added to the parameters.

For example, for quaternions, the norm must be unitary, and if the rotation is described by the

nine elements of the matrix, 6 constraints must be added (the vectors composing the matrix

must be unitary and their scalar product must be null. Moreover, the determinant of such

matrix must be positive, and thus unitary).

An usual method consists in doing the derivation with respect to these parameters. Count-

less publications do a comparison of these rotation parameterization. However, up to the

knowledge of the authors, only one ([5]) do a rigorous comparison of these behavior when

used in the Bundle Adjustment. This publication do not show a significant difference of one

parameterization with respect to the others.

Regardless the choice of rotational parameters, these do not belong to an Euclidian space. The

Lie-Group theory permits to avoid the parametrisation of the rotation matrix: the parameter

vector x is no longer explicitly built since it is not possible to include a rotation matrix directly

in the vector x but the theory permits proceeding with defining rigorous derivatives. The
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increment vector δx is the only vector of equation 1.72 that will be explicitly built. The

corresponding increments in δx of the rotations will be the ω values described in equation

1.75 and 1.76. When the Lie-Group theory is applied to Bundle Adjustment, the update-step

1.74 is substituted either by the one described by the formula 1.75 (called left multiplication

update-step) or the one described by the formula 1.76 (called right multiplication update-

step). The goal of this document is to motivate such a choice, and to describe how the Bundle

Adjustment is modified accordingly.

R̂ = exp ( [ω]×)
◦
R (1.75)

R̂ = ◦
Rexp ( [ω]×) (1.76)

1.5.2 The Lie-Group of 2D rotations

Lie-group

The concepts will be introduced in 2D and will be generalised in 3D in the section 1.5.4. The

section 1.5.5 summarizes the essential reasonning via a comparison between 2D and 3D. First,

we motivate the appellation Lie-Group, and particularly, the appellation Group.

Rotations in 2D could be represented via the set of complex numbers with a unitary norm.

Such a complex number is represented by an arrow in Figure 1.18. The action of such complex

number z on the object ♣ is the rotation around the origin by the angle that is the argument of

this complex number. The result of such operation could be noted z ·♣.

♣

Figure 1.18. Rotation z applied to ♣
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The set of 2D rotation is noted SO2. In the following, a group structure will be associated to

this set.

Figure 1.19. Composition of rotations

If z1 and z2 represent rotations, the rotation z2 could be applied to an object ♣, then the

rotation z1 could be applied to the result of this previous rotation. The two rotations z1 and

z2 applied successively to ♣ could be described as a single rotation. Combining these two

rotations z1 and z2 in one is called a composition: z1 ◦ z2. This operation turns for complex

numbers to multiplication: z1 ◦ z2 = z1 · z2. See Equation 1.77, and Figure 1.19.

z1 · (z2 ·♣) = (z1 · z2) ·♣ (1.77)

The rules of operation are called the group law of the set. The following equations show that

the set SO2 with the operation composition follows the four axioms defining a group: Closure,

Associativity, Existence of Identity element and Inverse transformation for each element of the

group.

Closure:

∀z1, z2 ∈SO2, z1 · z2 ∈SO2

Associativity:

∀z1, z2, z3 ∈SO2, (z1 · z2) · z3 = z1 · (z2 · z3)

Existence of Identity element: for the set SO2: 1.

∀z ∈SO2, 1 · z = z ·1 = z
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Each element of the group is invertible

∀z ∈SO2, z · z̄ = 1

Note that in the 2D case, the composition is also Commutative (This property will not hold in

the 3D case).

Commutativity (only in 2D)

∀z1, z2 ∈SO2, z1 · z2 = z2 · z1

These axioms permit to apply rotations to objects, but not to compute the derivatives. In

other terms, they could permit to be used in the collinearity equation 1.70, but not to compute

any derivatives of such equation. For a given rotation represented by z, an Euclidean space,

tangent to the rotation group could be build. This space is called the tangent space of the

group at the point z. In the case of SO2, this tangent space is a line in the 2D space tangent to

the unitary circle. The following derivation permits to reach this property.

The differentiation d(•) of the fourth axiom of a group: z · z̄ = 1 leads to the following property

d(zz̄) = d z z̄ + z d̄ z = 0.

d z z̄ =−d z z̄ (1.78)

The complex number d z z̄ is equal to the opposite of it’s conjugate. Its real part is thus null,

and therefore, it is a purely imaginary number.

∃ dθ ∈R, dθ i = d z z̄ (1.79)

Finally, it leads to Equation 1.80.

dθ i z = d z (1.80)

The differential of z is d z. Figure 1.20 presents z and d z. Since z lies on a circle, its differential

is given by a vector directed by the direction of the tangent of the circle at z (Figure 1.20). This

direction is perpendicular to z, which is i z. The norm is dθ.
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Figure 1.20. Tangent space of SO2

Differentiation in the scope of Bundle Adjustment

From Equation 1.80 could be computed the derivative of the 2D rotation represented by z.

d z

dθ
= i z (1.81)

Note that this equation gives a very straightforward way to show that the derivative of the

function si n is the function cos, and that the derivative of cos is −si n.

Since a rotation is meaningless without an object to rotate (such as ♣), we provide the deriva-

tive of this rotated object.

d(z♣)

dθ
= i z ♣ (1.82)

For the particular case of 2D rotation, it was possible to compute the derivative of z indepen-

dently from the rotated object ♣. The section 1.5.4 will show that in the scope of 3D rotation,

it is not longer possible to differentiate the rotation independently from the object rotated by

this rotation.

Update-step in the scope of Bundle Adjustment

Equation (1.80) which describes the tangent space of 2D rotations could be seen as a differ-

ential equation whose solution is given by (1.83) were the exponential function is defined as

ex = ∑∞
n=0

xn

n! . This series converges to a function that is equal to its own derivative, with a
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value of 1 at 0.

z̃ = z e iθ (1.83)

In this equation, z is constant, and is the tangent point. z̃ is the solution of the differential

equation, function of θ. The constant was chosen such that z̃ coincides with z when θ = 0.

The interpretation of the meaning of z̃ will be enlighted by the study of the properties of the

exponential of a Purely Imaginary Number e iθ.

• e0 = 1

• ∀θ ∈R,
∣∣e iθ

∣∣= 1

• ∀θ1,θ2 ∈R,e i (θ1+θ2) = e iθ1 ·e iθ2

• θ 7→ e iθ is 2π periodic.

These properties are considered as basics properties, and leads to the following important

property: e iθ is the complex number representing the rotation around the origin of the angle

θ expressed in radian. This property is equivalent to the Euler’s formula.

e iθ = cos(θ)+ i si n(θ) (1.84)

The cos and si n function are defined thanks to this formula, as respectively the real and

imaginary part of e iθ. (Note that the proof of these basics properties from the definition of the

exponential function are not straightforward, and are often under-estimated in textbooks).

If a 2D rotation is to be used in a Bundle Adjustment, the update-step would be an adaptation

of the formula 1.83 re-written below, where
◦
z is the approximate value of the rotation, around

which the derivation is computed (as in equation 1.82), ẑ is the updated value, and θ is the

value found in the increment vector given by the optimization algorithm e.g. Gauss-Newton

algorithm.

ẑ = exp (iθ)
◦
z (1.85)
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1.5.3 Skew-Symmetric matrix definition and exponential

Skew-Symmetric matrix definition

Section 1.5.2, provided basic theory about the structure of the Lie-group of the rotation in a 2D

plane. Before generalizing to 3D, we need to introduce additional mathematical background,

starting with the cross product × between two vectors ω and v .

ωx

ωy

ωz

×

vx

vy

vz

=

ωy vz −ωz vy

ωz vx −ωx vz

ωx vy −ωy vx

 (1.86)

Let [ω]× be the matrix satisfying [ω]× v =ω×v . This matrix [ω]× belongs to the set of 3×3 skew

symmetric matrix denoted so3 (so3 is the tangent-space of the set of the rotations SO3 [55]).

[ω]× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (1.87)

Skew-Symmetric matrix exponential

In the following, we will compute the exponential of such matrix. By definition, the exponential

of a square matrix M is defined by exp (M) =∑∞
n=0

1
n! M n where M 0 = I.

Computing the exponential of the matrix [ω]× is equivalent to compute the exponential of the

linear application 1.88 it represents.

R3 → R3

v 7→ ω× v
(1.88)

The exponential of the function 1.88 is 1.89.

v 7→ 1

0!
I3 v + 1

1!
ω×v+ 1

2!
ω×(ω× v)+ 1

3!
ω×(ω× (ω× v))+ 1

4!
ω×(ω× (ω× (ω× v)))+·· · (1.89)
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If ω is null, the exponential is the identity. For handling the general case, let~e3 = ω
‖ω‖ , and~e1

be a unitary vector perpendicular to~e3 such that v belongs to the plane generated by~e1 ~e3,

and~e2 a unitary vector such that~e1 ,~e2 ,~e3 form a right handed orthonormal basis.

Let v1, v2 and v3 be the coordinates of v in this base, as expressed by the definition in equation

1.90 and Figure 1.21. v2 is thus null.


v1 = v ·~e1

v2 = v ·~e2 = 0

v3 = v ·~e3

(1.90)

Figure 1.21. axes adapted to compute exponential of the skew symmetric matrix

This basis permits to express the elements of equation 1.89 as below.



v = v1 ~e1 + v3 ~e3

ω× v = ‖ω‖v1
−→e2

ω× (ω× v) = −‖ω‖2 v1
−→e1

ω× (ω× (ω× v)) = −‖ω‖3 v1
−→e2

ω× (ω× (ω× (ω× v))) = ‖ω‖4 v1
−→e1

· · · = · · ·

(1.91)

The function described by equation 1.89 could thus be written as below.

v 7→ v3
−→e3 + v1

−→e1 +‖ω‖v1
−→e2 − 1

2!
‖ω‖2 v1

−→e1 − 1

3!
‖ω‖3 v1

−→e2 + 1

4!
‖ω‖4 v1

−→e1 +·· · (1.92)
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Using the definition of si n and cos function given by the Equation 1.84, it is possible to show

that the exponential of the linear function 1.88 is a right-hand rotation around the axes ω by

an angle ‖ω‖ expressed in radians.

v1

v2

v3

 7→ v3
−→e3 + v1 cos(‖ω‖) −→e1 + v1 si n(‖ω‖) −→e2 (1.93)

The definition 1.87 and its exponential 1.93 will be used in the following section.

Skew-Symmetric matrix deconstruction

The equation 1.87 defines the construction of a skew-symmetric matrix [ω]× from a 3D vector

ω. The operator [•]× is a function from R3 to so3. Naturally, it is possible to deconstruct a skew

symmetric matrix to get back to the 3D vector via the operator [•]∨.

[•]∨ : so3 → R3

M 7→

M3,2

M1,3

M2,1

 (1.94)

In practice, the implementation of this function requires to check the skew-symmetry of the

input matrix, and to handle the possible small variations of the input matrix from a perfect

skew-symmetric matrix. A 3×3 matrix M could be considered to be skew-symmetric if the

Frobenius norm of M +M T is smaller than a given tolerance.

[•]∨ : R3×3 → R3

M 7→ er r or i f M ∉ so3

M 7→ 1
2

M3,2 −M2,3

M1,3 −M3,1

M2,1 −M1,2

 el se

(1.95)
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Logarithm of Lie-Groups elements

The exponential of a skew symmetric matrix have been proven in 1.5.3 to be a rotation matrix.

More precisely, the exponential of the skew symmetric matrix [ω]× is the right-hand rotation

around the axes ω by an angle ‖ω‖ expressed in radians. The goal of this paragraph is to define

the reverse function. First, we assume the existence of such inverse function as below.

∀R ∈SO3,∃v ∈R3,R = exp ([v]×) (1.96)

Note that this v is not unique. For a given unitary v̂ vector (whose norm is 1), the following

function is 2π periodic.

R → SO3

t 7→ exp([t v̂]×)
(1.97)

It follows that for a given rotation matrix R, there is multiple candidate for v such that R =
exp([v]×). For a given candidate v , we define v̂ to be a unitary vector collinear to v (this vector

could be any vector if v is null). For any relative integer k, v +2kπv̂ is also a candidate i.e.

R = exp([v]×) ⇒ ∀k ∈Z,R = exp([v +2kπv̂]×) (1.98)
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Figure 1.22. A rotation (represented by the curved arrow) have several logarithms (black dots)

This set of possible solution is represented by Figure 1.22.

We call l og the inverse function of the exponential of the skew symmetric matrix. This function

is a multivalued function defined as below.

∀R ∈SO3,R = exp
([

l og (R)
]
×
)

(1.99)

Two analytical expression of this log function have been found in the literature. The goal of the

following is to describe them, study their drawbacks, and propose another expression. The

expression given in [68] is reproduced below.

log (R) = ṽ
ar csi n (‖ṽ‖)

‖ṽ‖ where ṽ = 1

2

[
R −RT ]∨

(1.100)

This expression presents a singularity when ṽ is small, i.e. for small rotation.
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A second expression, given in [45], [149] and [107] is reproduced below.

log (R) =
{

1
2

[
R −RT

]∨
for d → ±1

ar ccos(d)
2
p

1−d 2

[
R −RT

]∨
for d ∈ ]−1,1[

where d = 1

2
(tr ace (R)−1) (1.101)

The two different cases permit to avoid the singularity, but it needs to define a threshold to

distinguish when does d belongs to ]−1;1[, and when does it belongs to ±1.

To avoid any singularities, we suggest to come back to the definition of the inverse function

of a skew-symmetric matrix. The first step is to compute the eigenvalue of R. Since R is a

rotation matrix, at least one eigenvalue is unitary. Without loss of generality, we assume it

to be the first one (we define the first eigenvalue λ1 as the one closer to 1). Let V1 be the

eigenvector associated to this eigenvalue. R is a rotation matrix around the axes V1. We

assume that the norm of V1 is unitary (most implementation of eigenvector decomposition

output normalized eigenvectors). The norm of log (R) must be equal to the angle of rotation,

which is the argument ar g of one of the complex eigenvalue λ2 or λ3. Our method consists

in computing ar g (λ2)V 1 and ar g (λ3)V 1 and taking the result V such that exp ([V ]×) is the

closest from R. Even if it seems to be brute-force from an algorithmic point of view, it is free

from numerical singularities.

Logarithm of matrix product

The logarithm of the product of two rotation matrices is not necessarily the sum of their

logarithms. This property is true when these two matrices commute, which is the case when

one of them is the identity, or when they share the same axes of rotation. In practice, we

consider the property to be valid when the two matrices are close to the identity, or when their

axes of rotation are close.

∀R1,R2 ∈SO3, R1 ·R2 = R2 ·R1 ⇒ log (R1 ·R2) = l og (R1)+ log (R2) (1.102)

1.5.4 TheSO3 Lie-Group of 3D rotations

The additional theory of 1.5.3 will permit to transfer the results about the SO2 lie-group of

section 1.5.2 to the SO3 lie-group in order to compute derivatives of 3D rotation.
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SO3 Lie-group

The set of matrices, with the multiplication law, form a group because they satisfy the axioms of

a group. We focus on the group of 3D rotation matrices, which are the 3×3 matrices satisfying

RRT = RT R = I3 and det (R) = 1. The proof that SO3 is a group could be done by showing that

SO3 is a sub-group of the matrix group.

Similarly to the section 1.5.2, the differentiation of the fundamental property of rotation matrix

RRT = I permits to differentiate a rotation matrix.

d
(
RRT )= dR RT +R dRT = 0 (1.103)

Similarly to equation 1.78, we get a relation between dR RT and its transpose.

dR RT =−R dRT =−(
dR RT )T

(1.104)

The matrix dR RT is equal to the opposite of its transpose. dR RT is thus an (infinitesimal)

skew symmetric matrix. The section 1.5.3 showed how to build such a skew symmetric matrix.

∃ ω ∈R3, [ω]× = dR RT (1.105)

Differentiation in the scope of Bundle Adjustment

We have introduced sufficient amount of theory to compute the derivative of equation 1.70

with respect to the rotation matrix. Indeed, we need to compute the derivative of R v , where v

is a constant 3×1 vector (i.e. the vector v does not depend on the rotation matrix itself, as the

derivation with respect to this vector is done independently from the derivation with respect

to the rotation matrix). For convenience, we note v̄ = R v .
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First, we compute the differential d(R v) of the product R v .

d(R v) = dR v = [dω]× R v =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 v̄ (1.106)

d(R v) =ωx

0 0 0

0 0 −1

0 1 0

 v̄ +ωy

 0 0 1

0 0 0

−1 0 0

 v̄ +ωz

0 −1 0

1 0 0

0 0 0

 v̄ (1.107)

d(R v) =ωx

 0

−v̄z

v̄y

+ωy

 v̄z

0

−v̄x

+ωz

−v̄y

v̄x

0

=− [v̄]×

ωx

ωy

ωz

 (1.108)

The vector ω is composed by infinitesimal values. The notation d(Rv)
ω stands for the Jacobian

matrix of Rv with respect to the rotation matrix. The result is − [v̄]×.

In some case, we need to compute the derivative of RT v . First, we compute the differential of

RT v .

d(RT v) = d(RT ) v = RT [−dω]× v =−RT

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

v (1.109)

d(RT v) =−RT

ωx

0 0 0

0 0 −1

0 1 0

v +ωy

 0 0 1

0 0 0

−1 0 0

v +ωz

0 −1 0

1 0 0

0 0 0

v

 (1.110)
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d(RT v) =−RT

ωx

 0

−vz

vy

+ωy

 vz

0

−vx

+ωz

−vy

vx

0


= RT [v]×

ωx

ωy

ωz

 (1.111)

The vector ω is composed by infinitesimal values. The notation d(RT v)
ω stands for the Jacobian

matrix of RT v with respect to the rotation matrix. The result is RT [v]×.

Since the Jacobian matrix of R v or RT v is computed with respect to the tangent space of

the space of the rotation in which belongs the vector ω. Such Jacobian is a sub-part of the

Jacobian A defined by equation 1.46. The optimizition algorithm described in 1.4 output at

each iteration an increment. This increment must be added to the approximate value if it

belongs to an Euclidian space. The next section describes how to use this increment ω to

correct an approximate rotation matrix
◦
R in order to get a compensated matrix R̂.

Update-step in the scope of Bundle Adjustment

This differential equation [dω]× ·R = dR could be solved as follows.

R̃ = exp ( [ω]×)R (1.112)

As in the equation 1.83, R is constant, and is the tangent point. R̃ is the solution of the

differential equation, function of ω. The constant was chosen such that R̃ coincide with R

when ω is the null vector. Since exp ( [ω]×) is a rotation matrix (as shown in 1.5.3), R̃ is a

rotation matrix as well.

This equation is used as an update step for Bundle Adjustment where
◦
R is the approximated

rotation (around which derivatives are taken), R̂ is the updated rotation, and ω is given by the

increment vector given by the optimization program (Gauss-Newton for example).

R̂ = exp ( [ω]×)
◦
R (1.113)
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Update-step by right multiplication

In the previous paragraphs, we have defined the update-step process with a left multiplication.

R̂ = exp ( [ω]×)
◦
R (1.114)

This flows from the differential of the property: RRT = I in equation 1.103. However, the

reasoning from 1.103 to 1.113 could be applied on the fundamental property: RT R = I .

This leads to another update step characterised by a right multiplication 1.115 as used in [68].

R̂ = ◦
R exp ( [ω]×) (1.115)

From the choice of the update step follows a different result for the calculus of the rotation

derivative.

d(R v) = dR v = R [ω]× v = R

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

v (1.116)

d(R v) = R

ωx

0 0 0

0 0 −1

0 1 0

v +ωy

 0 0 1

0 0 0

−1 0 0

v +ωz

0 −1 0

1 0 0

0 0 0

v

 (1.117)

d(R v) = R

ωx

 0

−vz

vy

+ωy

 vz

0

−vx

+ωz

−vy

vx

0


=−R [v]×

ωx

ωy

ωz

 (1.118)

The vector ω is composed by infinitesimal values. The notation d(Rv)
ω stands for the Jacobian

matrix of Rv with respect to the rotation matrix. The result is −R [v]×.
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The derivative of RT v could be computed with the same method. As an important result of

this chapter, the following table presents the derivation of 3D rotation as a function of the

definition of the update-step.

R̂ = exp ( [ω]×)
◦
R R̂ = ◦

R exp ( [ω]×)

∂Rv
∂ω − [Rv]× −R [v]×

∂RT v
∂ω RT [v]×

[
RT v

]
×

Table 1.4. Derivation of left and right multiplication update-step

1.5.5 Comparison of theSO2 and theSO3 Lie-Group

The aim of the following table is to give an overview of the construction and the usage of SO3

Lie-Group described in the previous section via a comparison with the SO2 Lie-Group.
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2D: SO2 3D: SO3

rotation z R

operator

Constraint of

rotation

z · z̄ = 1 RRT = RT R = I3 & det (R) = 1

Differentiation d z z̄ =−d z z̄ dR RT =−(
dR RT

)T
RT dR =−(

RT dR
)T

Element of

the tangent

space

i dθ

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



Derivation of

the rotation

d(z♣)
dθ = i z ♣ d(Rv)

ω =− [Rv]× d(Rv)
ω =−R [v]×

Exponential

function

ez =∑∞
n=0

zn

n! where

z0 = 1

exp (M) =∑∞
n=0

1
n! M n where M 0 = I

Signification e iθ: rotation around the exp([ω]×): rotation around

of the origin of the angle θ in the axes ω of the angle ‖ω‖
exponential anti-clockwise direction right hand directed.

function

Update-step

of Bundle

Adjustment

ẑ = exp (iθ)
◦
z R̂ = exp ( [ω]×)

◦
R R̂ = ◦

R exp ( [ω]×)
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1.5.6 Derivatives of rotation matrix logarithms

Motivation and theory

The theory presented until this point permits to compute derivatives for observations models

such as image observation and GNSS observation. However, it does not permit to introduce

observation from GNSS/IMU integration data which act as direct or indirect observation of

attitude.

The following section is an introduction to the direct observation of rotation via the most

simple rotation adjustment problem: the rotation averaging [68]. This rotation averaging will

be itself introduced by the most simple adjustment problem: real values averaging.

The average of the n input observation `1,`2, · · · , `n is x = (`1 +`2 +·· ·+`n)/n. This result

results from searching a value x which is as close as possible to each `i .


`1 ≈ x

`2 ≈ x
...

...
...

`n ≈ x

(1.119)

The lack of rigor in the choice of the ≈ symbol in the previous equation in on purpose. The

aim of the following is to add this missing rigor. Let vi be the residual of the observation `i

such that `i − vi is the corrected value of `i .


`1

`2
...

`n


︸ ︷︷ ︸
`

−


v1

v2
...

vn


︸ ︷︷ ︸

v

=


1

1
...

1


︸︷︷︸

A

x (1.120)

The assumption that the observations `i are unbiased, uncorrelated, have the same precision

and follows a normal distribution leads to minimize the quadratic form v T v where v is the

aggregated vector of the vi . This minimization leads to the following formulation, which is
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equivalent to the classical expression of the average.

x = (
AT A

)−1
AT` (1.121)

The matrix rotation averaging will be built with the same logic. The aim of rotation averaging

is to find the rotation R that is the closest to all the input observations `R1 , `R2 , · · · , `Rn .


`R1 ≈ R

`R2 ≈ R
...

...
...

`Rn ≈ R

(1.122)

The definition of the symbol ≈ for rotation matrices is not as straightforward as for reals

numbers. It could be assumed that two rotation matrices are approximately equal if the angle

of difference between the two is small, and follows a normal distribution (other definitions of

≈ could be found in [68]). The angle θi between R and `Ri is given by the following expression

(see Section 1.5.3).

θi =
∥∥log

(
RT`Ri

)∥∥ (1.123)

The angles θi between the input matrix observations `Ri and R could be assumed to be

uncorrelated, and follow a Gaussian noise with the same (small) standard deviation. This leads

to the minimization of the quadratic function
∑
θ2

i . The concatenation of the lie-logarithms of

the matrices difference forms the misclosure vector v .

v =


log

(
RT`R1

)
log

(
RT`R2

)
...

log
(
RT`Rn

)

 (1.124)

The above-mentionned quadratic function
∑
θ2

i is equal to the squared norm of the misclosure
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vector v .

∑
θ2

i = ‖v‖2 (1.125)

This v is defined with the final value of R: R̂. The rotation averaging problem is non-linear

and could be solved via an iterative process such as Gauss-Newton. At a given iteration, an

approximated value
◦
R is available. To be compatible to the algorithm provided in [68], we use

the right multiplication update step.

R̂ = ◦
R exp ( [ω]×) (1.126)

Since both exp ( [ω]×) and RT`Ri should be close to the identity, they commute (see section

1.5.3), and could be expressed as a sum of their logarithms.

log (R̂T`Ri ) =−ω+ log (
◦

RT`Ri ) (1.127)

The aggregation of the input from all rotation matrices could be expressed in matrix form.


log (

◦
RT`R1 )

log (
◦

RT`R2 )
...

log (
◦

RT`Rn )


︸ ︷︷ ︸

◦
v

−


l og (R̂T`R1 )

l og (R̂T`R2 )
...

log (R̂T`Rn )


︸ ︷︷ ︸

v

=


I3

I3
...

I3


︸ ︷︷ ︸

A

ω (1.128)

Minimizing the squared norm of the residuals vector v via Gauss-Newton algorithm leads at

each step to compute ω via the following formula.

ω= (
AT A

)−1
AT ◦

v (1.129)
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Then, the update step is performed thanks to the right multiplication update formulae: 1.126.

This rotation averaging algorithm was taken from [68]. This same reasoning could be applied

starting from the left multiplication update step, and will leads to a different algorithm which

will provide exactly the same result.

Practical application

In practice, an orientation observation could be written in the form `T
R R = I3 where R is a

unknown matrix to be adjusted in the Bundle Adjustment, and `T
R is another rotation matrix

containing input observation.

The right multiplication update step leads to replace R̂ by
◦
R exp ( [ω]×).

`T
R

◦
R exp ( [ω]×) = I3 (1.130)

Knowing that the exponential of the opposite is equal to the inverse of the exponential, we

could have an expression for ω.

ω=−log (`T
R

◦
R) (1.131)

This leads to the following derivative that could be used in the Jacobian matrix.

∂ l og (`T
R

◦
R)

∂ω
=−I3 (1.132)

This same reasoning could be applied with RT and with the left multiplication update. The

rotation observation that we need to apply (R `T
R = I3, `T

R R = I3, `R RT = I3 or RT `R = I3)

leads the choice of update-step used in the Bundle Adjustment (right multiplication or left

multiplication). Note that in the same Bundle Adjustment, both type of update-step could be

used, the derivatives must be adapted accordingly, as summarized in Table 1.5.

This same method could also be applied to add relatives orientation observation `Ri j such

that Ri `Ri j = R j or `Ri j Ri = R j (where Ri and R j are rotation matrices to be determined) as it

is presented in [29].
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R̂ = exp ( [ω]×)
◦
R R̂ = ◦

R exp ( [ω]×)

A
b

so
lu

te
o

ri
en

ta
ti

o
n

R `T
R = I3 `T

R R = I3

∂ log (
◦
R `T

R )
∂ω =−I3

∂ log (`T
R

◦
R)

∂ω =−I3

`R RT = I3 RT `R = I3

∂ log (`R

◦
RT )

∂ω = I3
∂ log (

◦
RT `R )
∂ω = I3

R
el

at
iv

e
o

ri
en

ta
ti

o
n

Ri `Ri j RT
j = I3 RT

j `Ri j Ri = I3

∂ log (
◦

Ri `Ri j

◦
RT

j )

∂ωi
=−I3

∂ log (
◦

RT
j `Ri j

◦
Ri )

∂ωi
=−I3

∂ log (
◦

Ri `Ri j

◦
RT

j )

∂ω j
= I3

∂ log (
◦

RT
j `Ri j

◦
Ri )

∂ω j
= I3

Table 1.5. Derivatives of absolute and relative orientation

1.6 Benchmarking Euler-Angles vs Lie-Groups

The previous sections presents the Lie-group theory for rotation handling, and its application

in Bundle Adjustment. The use of Lie-groups in Bundle Adjustment is more rigorous and leads

to simpler derivatives than Euler-Angles. The aim of this section is to assess the performances

of Lie-groups compared to the ones of Euler-Angles.

The performances of these two methods were tested on two simulated data-sets. The first-one

is a classic small block of aerial photogrammetry (Figure 1.23) while the second one is a close

range survey of a 3D grid (Figure 1.24) with various orientations that could leads to gimbal

lock of Euler-Angles. Table 1.6 summarizes the characteristics of both data-sets15. The two

15In the Aerial photogrammetry block, the tie-points observations are uniformly distributed on the images. In the
close-range photogrammetry scenario, the images observations span the whole image (i.e. the width and height of
the close-range photogrammetry scenario corresponds to the area of the images where images observations are
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Figure 1.23. Simulated data-set 1: Classical Aerial photogrammetry block

methods are tested on three criterions: the resistance to bad initial values, the convergence

rate, and the singularity of outputted covariance matrices.

1.6.1 Resistance to bad initialization

The most important feature expected from a Bundle Adjustment algorithm is to converge to

the correct solution i.e. to the global minima. This requires to start from relatively good initial

values, or that the algorithm is robust to bad initial values. The goal of this study is to assess

the robustness of the algorithm to bad initial values.

Two Bundle Adjustment algorithms were implemented with the Gauss-Newton algorithm: one

using Euler angles and the other using Lie-Group. Both algorithms were tested with different

level of noise on the initial values added on position and orientation. For each noise level

(represented on the abscissa for the noise on position and on ordinate for the noise on the

orientation, table 1.7), ten set of initial values were generated. Both algorithm were tested with

the inputted noisy initial guess. The results were compared to the ground truth to determine if

the algorithm converges to the right global minima. On total, 48 002 runs of the algorithms

located.)
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Figure 1.24. Simulated data-set 2: Close range photogrammetry inspired from [91] and [162]

were performed (30 position noise levels × 40 orientation noise levels × 10 simulations at a

given level of noise × 2 data-set × 2 algorithms + two runs to determine the ground-truth).

The success rate is represented in gray-scale on the map of the first two lines of Table 1.7.

For the first data-set considering a classical photogrammetric project (first column of table

1.7) both algorithms performs with the same performances. The success rate is 20% for

both algorithms (this number needs to be considered with precautions since it is completely

dependent on the chosen level of noise on the initial value). The case where one algorithm

succeed while the other fails are very rare (less than 2% of the cases of at least one algorithm

success).

The second data-set offers a way more difficult situation (second column of table 1.7), espe-

cially for the Euler-Angle based algorithm. The success rate is 25% for the Lie-Group based

algorithm while only 6.8% for the Euler-Angle one. We do not reported a single case where the

Euler-angle algorithm success while the Lie-group one fails.

1.6.2 Convergence rate

The previous paragraph studied if an algorithm converges or not. The goal of this paragraph is

to study the convergence of an algorithm when this-one converges to a global minima.
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Data-Set 1 Data-Set 2
Aerial photogrammetry block Close range photogrammetry

nb images 8 37
nb of strips 2 3

longitudinal overlap 60% 100%
lateral overlap 40% 100%

nb GCPs 5 5
nb Tie-Points 200 26

mean image observation 75 26
(i.e. nb of points per images)

mean dist. to object 100 m 10 m
Principal Distance [pi x] 5000 5000

Width [pi x] 5000 1400
Height [pi x] 5000 1150

GSD 2 cm 2 mm
noise on image observation 0.5 pi x 0.5 pi x

Internal Orientation Fix Fix
Aerial control No No
Other sensors No No

Table 1.6. Simulated data-set characteristics

Gauss-Newton algorithm is iterative. The convergence rate of iterative algorithms could be

visualized on semi-logarithmic plots (third line of table 1.7). The curves display for each

iteration the distance to the final value given by the last iteration. The evolution of the position

is the mean value of the distance between the current and the final camera positions, and the

evolution of the orientation is the mean angle between the final camera orientations and the

one at the current iteration16.

For the first data-set (the classical photogrammetric block), the convergence rate is very similar

between the two algorithms, both for the position and the orientation. However, for the second

data-set (close range 3D grid survey), the Lie-group based algorithm converges faster to the

solution. More than two iteration are needed to the Euler-angle algorithm to outperform the

Lie-group one.

16The reference value at the end of the convergence were chosen to be the one given by the Euler-Angles based
algorithm to ensure not to underestimate its performances. The difference at the last iteration is thus 0 for the
Euler-Angles based algorithm, which is not representable on a logarithmic plot.
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Data-Set 1 Data-Set 2
Aerial photogrammetry block Close range photogrammetry
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Table 1.7. Benchmarking of Euler and Lie-Groups based Algorithms on two simulated data-set
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1.6.3 Pose covariance matrix

At the end of the iterative process, if both algorithms converges to the global minima, they

give exactly the same values for the position and orientation of the camera poses, and for the

position of the points on the ground17. However, the way they express the precision of the

outputted results is different.

The following a posteriori σ and correlation matrices represents the expected precision on a

given camera pose of the second data-set (close range 3D grid survey).

x y z ω ψ χ x y z

x 3.9 mm 100 3 -2 -4 6 4 x 3.9 mm 100 3 -2 -1 6 4
y 5.3 mm 3 100 -22 -99 27 99 y 5.3 mm 3 100 -22 -24 22 99
z 5.0 mm -2 -22 100 17 -99 -17 z 5.0 mm -2 -22 100 11 -99 -21
ω 227 ° -4 -99 17 100 -22 -100 0.46 ° -1 -24 11 100 -13 -19
ψ 0.03 ° 6 27 -99 -22 100 22 0.48 ° 6 22 -99 -13 100 22
χ 227 ° 4 99 -17 -100 22 100 0.50 ° 4 99 -21 -19 22 100

Euler Angle Lie-Group
standard deviation and correlation matrix standard deviation and correlation matrix

ρσ σ ρ

𝜔௫
𝜔௬
𝜔௭

𝜔௫ 𝜔௬ 𝜔௭

Table 1.8. Standard deviation and correlation matrices outputted by Euler-Angles and Lie-Groups
based algorithm in a situation of gimbal lock

The covariance matrices (Table 1.8) are the same for the position of the image, however, they

are different for the orientation. The covariance matrix of the Euler angles representing the

orientation of the camera is singular, whereas the covariance matrix of the values on the

tangent space around the rotation is not. The standard deviation of the angles ω and χ are not

meaningful since there are more than 180◦ i.e. the angles are not determined. The covariance

matrix outputted by the Lie-Group based algorithm is not singular. TheωX ,ωY andωZ denote

here the components of the rotation increment value used in the update step 1.114. Thus, ωX ,

ωY and ωZ represent small rotations around axis respectively X , Y and Z of the local frame,

which makes the covariance matrix easier to interpret than with Euler-Angles.

1.6.4 Conclusion for the comparison of the use of Euler-Angle and Lie-Groups in
Bundle Adjustment

This study shows that for classical photogrammetry scenario such as a block of aerial photos,

both Euler-Angle and Lie-Groups based algorithms performs similarly. However, in difficult

scenarios that could lead to gimbal lock of the Euler-Angles sequence, the Lie-Group ap-

proach outperforms the parametrisation via Euler-Angles significantly in terms of i) larger

convergence region, ii) faster convergence iii) stability - absence of singularity.

17Up to numerical rounding errors, here 10−13m for the position and 10−12deg for the orientation
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Conclusion

This chapter gave the needed theory for the implementation of sensor-fusion algorithms that

will be proposed and evaluated in the subsequent chapters.

It also has compared several propositions of sensor models. E.g. 1.2.7 described different

possibilities to input orientation, and 1.6 evaluated two approaches when handling rotation in

the Bundle Adjustment.

The comparison of the different camera models deserves a separate complete section 1.1.6

would go beyond the scope of this first chapter, and thus deserve a full chapter: Chapter 2.
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2 Toward Camera Calibration models
and methods

In Chapter 1, several camera models have been proposed. This chapter compares these camera

models together with the calibration procedure to determine the parameters and the method

to best use these parameters in application for difficult scenario such as corridor mapping.

This chapter is originated from the following preprint.

E. Cledat, D. A. Cucci and J. Skaloud. Camera calibration models and methods in corridor

mapping with UAVs ISPRS Conference Nice, 2020

The idea was first suggested by J. Skaloud, the hardware assembling and the data acquisition

involved all three authors, the programming of the software and the experimental procedure

were achieved by E. Cledat and for this specific chapter, the redaction was mainly conducted

by D. A. Cucci.

Abstract

Camera calibration refers to the modeling of the relationship between the coordinates of

object points and their projections on the image plane. This is usually done by parametric

models that describe the physical properties of the lens systems and camera assemblies, such

as the camera principal distance, the principal point, and various types of optical distortions.

In photogrammetry, accurate knowledge of the parameters of such models, often referred to as

Interior Orientation (IO), is of ultimate importance. In this work, we target advanced corridor

mapping applications with UAVs. In this scenario, the camera calibration is not completely

observable due to the unfavorable geometry of the flight trajectory (e.g., no cross flight lines

available and a single altitude) and needs to be determined beforehand. Further challenges

are introduced by the limited mechanical stability of UAV-grade cameras. This may cause

slight variations in the IO that need to be recovered while processing production flights. We

review and compare two well known camera models, the Brown-Conrady and the Ebner’s
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self-calibration functions, in 36 calibration setups and provide a discussion of the results,

where sub ground sampling distance accuracy in the checkpoints was achieved for some, but

not all, configurations.

2.1 Introduction

Camera calibration, or the camera Interior Orientation (IO), is an essential prerequisite to

determine precise and accurate three dimensional, metric, information from images. It models

the relationship between the coordinates of object points in the camera reference frame and

the corresponding image coordinates. The knowledge of such relationship allows, among

others, to recover three dimensional object coordinates from multiple views by means of a

bundle adjustment algorithm [158]. The IO is specific to each particular assembly of camera

and lenses and may change in time [86].

A wide range of digital cameras commonly employed in photogrammetry are equipped with

lenses designed to obey the perspective projection law (i.e., the collinearity equations). How-

ever, this is seldom true in reality because of at least four effects related to imperfections in

their construction [52]: i) symmetric radial distortion, ii) decentering distortion, iii) image

plane unflatness and iv) in-plane image distortion. These can cause non negligible devia-

tions from collinearity. At least two families of models have been proposed to account for

this: Brown-Conrady [24] (abbreviated to Brown in the following) and Ebner’s self calibration

functions [46]. These models are characterized by a variable number of parameters that need

to be determined, through a process called camera calibration [133]. An important issue is

the quality of the determination of these variables which describe the behavior of the camera,

and especially, their correlations. The two sources of these correlations could be classified

into to categories. 1) Structural through model definition, e.g. the radial parameters of the

Brown model are naturally correlated. 2) Through the calibration process, e.g. the lack of scale

variation due to the use of a 2D target field leads to correlations between the principal distance

and the principal point.

Camera calibration is typically approached by acquiring a large set of images (typically more

than 50) of an object (such as a chessboard or a calibration field composed of several Ground

Controls Points: GCPs) in order to describe accurately the camera behavior. The parameters of

the chosen camera model (e.g., Brown) are then estimated to best fit the observations. A very

well known approach in computer vision relies on the use of easily recognisable targets (e.g.,

checkerboards) whose metric dimensions are known. Several established tools are available to

determine Brown’s distortion coefficients in this setup, e.g., [21], however, these often yield

correlated estimates for the calibration parameters. One reason is that all the known points

lie on the same plane. In laboratory calibration setups, the stand-off distance is typically

much smaller with respect to target applications, which leads to different values of distortion
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coefficients [92]. Therefore, photogrammetrists typically prefer to perform camera calibration

in conditions that are similar with respect to the target application. For example, in aerial

photogrammetry, dedicated flights are performed over a field equipped with several GCPs: the

orientation of the camera, along with the IO, are recovered during the bundle adjustment. This

approach also relies on additional points identified automatically (tie-points) whose object

space coordinates are not known.

Further issues related to camera calibration arise in the emerging field of aerial photogram-

metry based on Unmanned Aerial Vehicles (UAVs), which are becoming an essential tool

for surveyors, engineers and scientists [39]. Here, consumer-grade cameras and lenses are

employed due to payload size, weight and cost limitations of UAVs. The mechanical stability

of such sensors is uncertain: for example, the µm level positioning and alignment of the lens

might change when vibrations, bumps during landing, temperature variations, etc. occur

during the operation of a UAV. This implies that the IO determined from one calibration flight

may not be directly applicable, as it is, in subsequent production flights [41]. However, in

general it is not possible to determine the IO from scratch in production flights as i) the geom-

etry of certain mapping missions, e.g., for corridor mapping, is such that the IO is not fully

observable, ii) practitioners strive to reduce the number of GCPs since they are time and cost

intensive. This calls for sound methods to exploit the IO from dedicated calibration flights but

at the same time recover minor variations due to the mechanical instability of consumer-grade

cameras.

In this work we focus on long corridor mapping missions with UAVs where no GCPs are avail-

able. Here, a good a priori knowledge of IO is essential since the difficult configuration (long

corridor with small height variations: the maximum height difference of the terrain is around

10m) does not permit a satisfactory self-calibration of the camera. We consider five instances

of models from the Brown’s and Ebner’s families, differing by the number of IO parameters,

which we determine using two different calibration setups. Next, we employ these IOs in a 2

km long corridor mapping flight, first using only values determined during calibration, and

then using three different strategies to estimate corrections for camera mechanical instabilities

during the bundle adjustment. Practically unbiased Check Points (CPs) errors and sub-Ground

Sampling Distance (GSD) root mean squared error (RMS) were achieved, in certain cases,

approaching the accuracy to which CPs are known. We’ve also found combinations of models

and calibration strategies which do not provide satisfactory results, for which we investigate

the causes and provide an extensive discussion.

This work is organised as follows: in Section 2.2 we review the Brown and Ebner’s calibration

models in a unified formulation. In Section 2.3 and 2.4 we review the calibration state of the

art in Integrated Sensor Orientation (ISO) and we present three strategies to re-calibrate the IO

during production flights. In the last sections we present the results of a rigorous experimental
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evaluation of the different models and strategies presented in a real-world corridor mapping

application.

2.2 Camera Models

In this section we review two approaches to model the departures from collinearity typical of

many narrow angle cameras and lenses. The first is the physical oriented approach, the Brown

function, while the second, more numerically oriented, is given by the Ebner self-calibration

functions, and later extensions. Whereas the principles behind those are well known, several

slightly different formulations have been presented in the literature. Thus, we report those

used in this study in the following analysis.

We define the projection function π :R3 →R2 as:[
x

y

]
= 1

Z

[
X

Y

]
, (2.1)

where [X ,Y , Z ]T are the object coordinates of a point with respect to the camera reference

frame (in meters) and [x, y]T is the corresponding (unit-less) projection on a plane at unitary

distance from the optical center of the camera. The well known pinhole camera model is found

by multiplying π by the principal distance of the camera, e.g., in pixels. Many lens systems are

designed to best follow this relation.

More complex camera models, able to account for different kinds of distortion effects intro-

duced by real lens systems, build on π as follows:[
x ′

y ′

]
= ξ

(
π
(
[X ,Y , Z ]T ))

, (2.2)

with ξ :R2 →R2. Image coordinates [x ′, y ′]T are typically expressed in pixels. The function ξ

involves a set of parameters which are generally referred to as Additional Parameters (APs), or

camera Interior Orientation (IO).
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2.2.1 Brown distortion model

In Brown’s distortion model [24], the function ξ(·) is defined as the composition of two other

functions ξ= ξ2 ◦ξ1: the output of the function ξ1 is used as input of the function ξ2.

ξ2 :

[
x ′

y ′

]
=

[
f +B1 B2

0 f

][
x ′′

y ′′

]
+

[
ppx

ppy

]
, (2.3)

ξ1 :

[
x ′′

y ′′

]
= (

1+K1r 2 +K2r 4 +K3r 6 + . . .
)[x

y

]
+

+
[(

P1
(
r 2 +2x2

)+2P2x y
)(

2P1x y +P2
(
r 2 +2y2

))](
1+P3r 2 + . . .

)
. (2.4)

where:

1. f and [ppx , ppy ]T are the principal distance and the principal point (in pixels),

2. B1 accounts for non-uniform scaling and B2 for skewing along the axis of the imaging

sensor,

3. Ki and Pi are the radial and tangential distortion coefficients,

4. “. . .” stands for an arbitrary number of additional terms in the polynomial expansion in

r 2,

5. r 2 = x2 + y2.

This formulation is very well known and corresponds to the one implemented in established

photogrammetry software, such as Agisoft Metashape, or open-source computer vision li-

braries, such as OpenCV.

In this work we consider three specific instances of the Brown model, referred to as Brown10,

Brown15 and Brown18 in the following, which differ in the total number of parameters em-

ployed. Whereas f , ppx , ppy , B1 and B2 are always considered, the models differ in the order

of the polynomial expansions for the radial and tangential distortion (with respect to r 2):

1. Brown10: Ki , i ∈ [1, . . . ,3], P j , j ∈ [1, . . . ,2],

2. Brown15: Ki , i ∈ [1, . . . ,6], P j , j ∈ [1, . . . ,4],

3. Brown18: Ki , i ∈ [1, . . . ,8], P j , j ∈ [1, . . . ,5].

The number of coefficients in 2.(Brown15) and 3.(Brown18) exceeds the numbers of coeffi-

cients that are commonly used by photogrammetrists. The number of coefficients has been
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chosen to match the one of orthogonal polynomial model in order to proceed to a fair compar-

ison in the experimental evaluation. The state-of-the-art approach would consist in keeping

only the coefficients which values surpasses its confidence level. However, in this study, the

goal is to keep all the parameters, and use them in the direct application in the test flight

together with their full covariance matrix.

2.2.2 Orthogonal polynomials

A second family of models for camera distortions was introduced in [15] building on a typical

example of Orthogonal polynomials: the Ebner’s self-calibration functions [46] (extensions of

Ebner’s Orthogonal polynomials such as Grün polynomials:[65] are also referred in [15] but

increase the number of parameters). We refer the reader to the original publications for the

derivations. The function ξ reads as follows:

ξ :

x ′ =

 1

x

x2 − 2
3 b2

x


T a11 a12 a13

a21 a22 a23

a31 a32 a33


 1

y

y2 − 2
3 b2

y


y ′ =

 1

x

x2 − 2
3 b2

x


T b11 b12 b13

b21 b22 b23

b31 b32 b33


 1

y

y2 − 2
3 b2

y


, (2.5)

where bx and by are the width and the height of the image (in pixels) divided by twice the

nominal focal length (in pixels). This model is fully defined by the set of 18 parameters ai j and

bi j and will be referred to as OrthoPoly18 in the following.

Brown’s and Orthogonal Polynomial models are intrinsically different and it is not possible to

give a closed form expression that would map parameters from one model to the other, except

for the following:

1. a11 → ppx ,

2. b11 → ppy ,

3. a21 → f +B1,

4. b12 → f .

2.3 Camera Calibration

In order to properly compensate for the distortions introduced by the lens system, one has

to first choose which model is best suited for the camera in use, and second determine the
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values for the parameters defining the model (the IO, or the APs). The first step is often left

to user experience, even though modern photogrammetry software is able to automatically

select the most significant parameters to be considered within a model family (e.g., choose

between Brown10 and Brown15). The second step is called calibration. If the calibration is

performed without the use of an external instrument to characterize the sensor, we speak of

self-calibration. The methods are well known, and we are going to summarize them in the

following.

Camera calibration via aerial photogrammetry is commonly achieved by establishing a dense

network of accurately geo-referenced ground control points (GCPs) over a calibration field.

Dedicated flights are executed to collect several images in a favourable geometrical config-

uration (e.g., cross flight lines, different elevations and a mix of nadir/oblique views). The

images are then oriented by means of the bundle adjustment algorithm, which determines

the camera exterior orientation (EO), the parameters of the distortion model (IO), and possi-

bly their precision and reliability. This approach is commonly referred to as Indirect Sensor

Orientation (InSO).

In InSO, it is sometimes difficult to achieve optimal de-correlation between the camera EO

and IO, and within the IO itself, even when the calibration have been performed with several

camera orientations and flight heights. This is the case when the GCPs lie on the same plane,

such as when the computer vision approach to camera calibration, based on checkerboards,

is employed. In this case the parameters corresponding to the focal length ( f in BrownXX and

a21, b12 in OrthoPolyXX) remain correlated with the camera position.

If the aerial mapping platform is equipped with a survey grade GNSS receiver, and (optionally)

an IMU, the additional information made available by these sensors can be introduced in

the bundle adjustment. This approach is called Integrated Sensor Orientation (ISO), see for

example see [127] for a comprehensive description focused on UAVs.

In ISO, GNSS and inertial observations are fused together by means of a Kalman filter/smoother

in a pre-processing step. This calculates positions and orientations for the camera that can be

used as prior information in the bundle adjustment (aerial control, in photogrammetry jargon).

More modern approaches consider a single step where both image and raw inertial/GNSS

observation are adjusted together [43]. The availability of the extra information from GNSS

and inertial sensors helps to de-correlate the camera model parameters from the camera

exterior orientation.

In UAVs, only MEMS IMUs can be employed due to space and take-off weight limitations.

These are substantially less accurate with respect to tactical or navigation grade IMUs com-

monly employed in airborne photogrammetry. Thus, the GNSS/inertial solution might be

biased, or not sufficiently accurate. In this case, a very effective approach is to use relative,
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instead of absolute, position/orientation control in the bundle adjustment, as proposed in [16]

and further investigated for the UAV scenario in [131]. This technique exploits the fact that

the GNSS/inertial solution may not be sufficiently accurate, but is locally precise, and thus

it can be effectively employed to constrain the relative change between subsequent image

orientations. Furthermore, relative orientation control eliminates the need to determine the

camera boresight with respect to the IMU. We refer the reader to the original publications for

the details.

2.3.1 Orthogonal Polynomials over-parameterization

In InSO, OrthoPoly18 suffers from over-parameterization: some of the parameters defining

the model fully correlate with the exterior orientation of the camera. This means that if

no absolute aerial orientation control is available, unreliable estimates or worse, numerical

instabilities and singularities will be obtained during the bundle adjustment.

To address this issue, in [15], the authors introduced six constraints on the parameters ai j , bi j :



a11 = b11

a21 =−b12

b13 =−2a22

a31 =−2b22

a12 = b21

. (2.6)

If these are used to simplify Equation 2.5, the original 12 parameter Ebner’s self-calibration

functions are obtained.

In this work we’ve chosen to omit the first two constraints in Equation 2.6, since they corre-

spond to f and pp in BrownXX. These are important for modeling consumer-grade cameras

where the lens system can not be considered fully geometrically stable in time, or in large

camera systems where they depend on environmental factors such as temperature and air

pressure. Simplifying Equation 2.5 with the remaining three constraints gives OrthoPoly15,

which requires at least absolute aerial position control during calibration.

2.3.2 Parameters significance

The state of the art method to select the appropriate number of parameters, and thus to prevent

over-parametrisation is to compute the significance of each parameters. The significance of

the parameter x is quantified by the ratio |x|/σx . By convention we consider a parameter to

be significant when this ratio is above 1. Therefore, the probability that its sign is wrong (+
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instead of − or conversely) is lower than 16%.

Table 2.3 presents the significance of the IO parameters calibrated in the section 2.5. Surpris-

ingly, the significance of the parameters, and especially of the radial and tangential polyno-

mials coefficients do not decrease with the degree of the monomials which constitute the

polynomial. The goal of this study is to assess the quality of IO parameters in use in application.

The difference of parameters significance showed in Table 2.3 are not reflected on the quality

of the use of these parameters for another flight: Table 2.2.

2.4 Re-estimating the Interior Orientation

In UAVs, consumer grade digital cameras are commonly employed. These are not built for

photogrammetry applications and can not be considered mechanically and geometrically

stable. In particular, the alignment of the lens with the imaging sensor is subject to change due

to external stresses such as vibration or temperature change. The lens radial distortions are

in general considered to be more stable, but can still depend on environmental factors. This

means that the IO may slightly change with time and thus be different between calibration

and production flights.

To account for this, IO is often re-calibrated during production flights. This means that the

bundle adjustment algorithm is initialized with the IO determined from calibration flights,

and estimated corrections which account for camera instabilities are applied while processing

subsequent production flights. Indeed, particular care needs to be taken as the geometry of

production flights may not guarantee the observability of the full IO (e.g., in corridor mapping).

In this work we consider three strategies which are discussed in the following.

2.4.1 Leading Lead

The leading option consists in estimating the leading parameters f , ppx and ppy in BrownXX
or the corresponding parameters a11, a21, b11 and b12 in OrthoPolyXX, while the remaining

parameters are kept fixed. This option and naming is inspired by the drone mapping software

such as Pix4D Mapper or Agisoft Metashape.

2.4.2 a posteriori covariance APC

LetΘ be the vector of the interior orientation parameters, e.g., for BrownXX:

Θ= [ f , ppx , ppy ,B1,B2, . . .] (2.7)
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The a posteriori covariance matrix of this vector, ΣΘ, is available as an additional output from

the bundle adjustment run on the dedicated calibration datasets. The square root of the

diagonal of ΣΘ is typically reported as the error bound for the IO vector. On the off-diagonal

terms, often neglected yet significant to experienced practitioners, we find the covariance

between two parameters. Non-complete observability of some parameters is spotted by

computing the correlation matrix from ΣΘ and looking for off-diagonal terms which are close

to one in absolute value.

We can exploit the prior information on the IO available from the calibration flight, including

the residual correlations between the single parameters, for the re-estimation of the IO. During

the bundle adjustment for the production flight we re-estimate the entire IO vector, where

we include an extra observation equation as follows, where Θ0 have been determined in a

calibration flight.

Θ−Θ0 = 0, (2.8)

Σ−1
Θ weights the pseudo-observationsΘ0.

2.4.3 a posteriori covariance inflated APCI

While ΣΘ is the best estimate of uncertainty for the camera IO just after the calibration flight,

the use of this information in production flights does not account for possible changes in IO

due to camera instability.

We thus propose to scale up the diagonal elements corresponding to the leading parameters

defined in Section 2.4.1. The degree to which each parameter is up-scaled is determined by

the amount that they are expected to change with time.

2.5 Experimental evaluation

In this work we address challenging corridor mapping applications (Figure 2.3) where we seek

to achieve a ground accuracy that is better than the GSD using no ground control points. In

these cases, it is essential to determine a reliable IO beforehand since the geometry of such

production flights does not allow for self-calibration. Indeed, in corridor mapping missions

we typically do not observe at multiple elevations and/or orthogonal flight-lines. Furthermore,

in our case no ground control point is available. Another important element is the correct

choice of the camera model, which needs to be able to compensate for lens distortion while

minimizing the number of parameters employed.

For all the flights, we have employed an aerial photogrammetry payload tailored for a small
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CF1 CF2 PF

UAV type Copter Fixed wing Fixed wing

Aerial control No Yes Yes

Embedded GNSS antenna
receiver precision (X,Y,Z) [mm]

4,4,11 4,4,11

Relative orientation precision 0.015◦/
p

s 0.015◦/
p

s

Geometry Close
range

Block Corridor

Images 75 440 290

Flight lines 26 4

Flight levels 2 2 2

Long. overlap [%] ≈ 100 65 70

Lat. overlap [%] ≈ 100 45 70

Mean depth [m] 16.3 157 117

Min depth [m] 6.9 111 84

Max depth [m] 22.7 546 186

mean GSD [mm] 3 30 20

Tie-points 2,565 22,955 23,813

# GCPs 17 21 0

# CPs 1 4 24

GCPs accuracy
(XYZ) [mm]

2, 2, 2 10, 10, 15 10, 10, 15

GCPs accuracy
(xy) [pixels]

0.1 0.2 0.2

Table 2.1. Calibration and production flights details.
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CF1 CF2
E N h E N h

B
ro
w
n
10

F
ix

mean 56 -8 185 22 -5 1

max 95 38 243 58 28 46

RMS 60 21 186 29 12 17

L
ea
d mean 2 1 48 4 -1 15

max 40 28 96 38 23 60

RMS 22 15 52 20 11 23

A
P
C

mean 0 1 46 15 -3 3

max 37 24 92 51 26 48

RMS 20 12 49 25 12 17

A
P
C
I mean 2 0 31 7 -1 9

max 36 24 77 42 23 53

RMS 20 12 36 21 11 19

B
ro
w
n
15

F
ix

mean 55 -9 173 23 -6 2

max 94 37 229 60 28 46

RMS 59 20 174 31 12 17

L
ea
d mean 3 0 43 5 -1 14

max 41 25 90 40 22 57

RMS 22 14 47 20 11 22

A
P
C

mean 1 0 45 17 -4 3

max 36 24 90 53 26 47

RMS 20 12 48 26 12 17

A
P
C
I mean 3 0 29 8 -2 10

max 38 23 74 43 23 53

RMS 20 12 34 21 11 20

B
ro
w
n
18

F
ix

mean 55 -9 172 23 -6 2

max 94 37 229 60 28 46

RMS 59 20 173 30 12 17

L
ea
d mean 3 0 42 5 -1 14

max 41 26 90 40 22 57

RMS 22 15 47 20 11 22

A
P
C

mean 1 0 44 17 -4 3

max 36 24 90 53 26 47

RMS 20 12 48 26 12 17

A
P
C
I mean 3 0 28 8 -2 11

max 37 23 74 43 23 54

RMS 20 12 34 21 11 20

O
rt
h
oP

ol
y
15

F
ix

mean -274 41 -850 32 -8 -6

max 388 136 924 65 50 49

RMS 284 80 852 36 24 24

L
ea
d mean -6 -4 -114 13 -6 -115

max 78 98 182 48 54 158

RMS 40 39 119 23 25 117

A
P
C

mean 11 -11 -255 23 -7 -12

max 45 78 308 55 49 54

RMS 24 33 256 28 24 25

A
P
C
I mean 3 -5 -138 10 -4 -21

max 34 70 189 41 49 63

RMS 20 30 141 19 24 30

O
rt
h
oP

ol
y
18

F
ix

mean

Not applicable

32 -8 -6

max 65 50 49

RMS 36 24 24

L
ea
d mean 15 -9 -145

max 54 61 186

RMS 26 29 146

A
P
C

mean 23 -7 -11

max 56 49 53

RMS 29 24 25

A
P
C
I mean 10 -4 -20

max 41 48 62

RMS 19 24 30

Table 2.2. Statistics of the checkpoints error for PF. Units are mm.
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2.5. Experimental evaluation

Figure 2.1. Calibration flight CF1

fixed wing UAV [130]. This payload is composed of: i) a custom, 20 Mpx camera for aerial

photogrammetry developed by IGN, France [99] with Zeiss Biogon 35 mm lens, ii) a Gecko4Nav

redundant IMU board with two Intersense NavChip MEMs IMUs [31], iii) a Topcon B110

GPS/GLONASS L1/L2 receiver.

We determine the IO of the camera during the bundle adjustment as described in Section 2.3.

Two different strategies are considered:

1. CF1. A set of close-range images of a calibration field densely covered with mm-accurate

GCPs (surveyed with theodolites) is oriented without the use of any aerial control (In-

direct Sensor Orientation: InSO). The images are taken with converging geometry and

from distances between 8 and 12 m. (Figure 2.1)

2. CF2. A block mapping mission is flown over a large area equipped with several cm-

accurate GCPs (surveyed by post-processed GNSS). The images are oriented with aerial

control (Integrated Sensor orientation: ISO with absolute position and relative orienta-

tion control). Two flight altitudes are considered, i.e., 120 and 150 m AGL. (Figure 2.2)

See Table 2.1 for a detailed description of the considered flights.

For both CF1 and CF2, we consider five choices for the camera models: i) Brown10, ii) Brown15,

iii) Brown18, iv) OrthoPoly15 and v) OrthoPoly18. See Section 2.2 and Section 2.3.1.

We test the IO determined with each combination of calibration strategy and camera model
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Figure 2.2. Calibration flight CF2

on a challenging 2 km N-S oriented corridor mapping mission (Figure 2.3), referred to as the

Production Flight (PF) in the following, see again Table 2.1. This can be done by either keeping

the IO fixed as it has been determined from the calibration flights (Fix, in the following), or

by correcting for estimated camera instabilities in the bundle adjustment starting from the

known initial values, according to any of the strategies presented in Section 2.4, i.e., Lead, APC,

APCI.

For each of the 5 (camera models) ×4 (re-calibration strategies) ×2 (calibration setups) −4

(because OrthoPoly18 cannot be applied in CF1 where no aerial control is available) = 36

experiments, we compute the statistics of the CPs error, in terms of mean, maximum and root

mean squared error (RMS). See Table 2.2. To ease the interpretation, the cells are color coded

according to the RMS, where white and red are associated with the lowest and highest values,

respectively.

2.6 Discussion

2.6.1 Camera calibration strategy

The IO parameters determined in CF2 perform better than those determined in CF1. In fact,

when the first ones are directly applied in PF with no correction, (Fix), they always yield better

results.
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2.6. Discussion

Figure 2.3. Test Flight PF

The Figures from 2.4 to 2.13 report the correlation matrix for the IO parameters as determined

from CF1 and CF21. The matrix for CF1 shows substantially higher correlations between param-

eters as compared to that of CF2, notably for the lead parameters. Note that almost complete

correlation exists between the principal distance and the y component of the principal point

(ρ f ,ppy =−0.97). This means that the values for the IO parameters could not be fully resolved,

and that one could manipulate those to a relatively large extent (e.g., along the direction of the

first eigenvector of the covariance matrix) and obtain similar values for the image observation

residuals.

1The correlation matrices of the parameters given by the differents IO model with the two calibration flight are
organised as follow.

CF1 CF2

Brown10 Figure 2.4 Figure 2.9

Brown15 Figure 2.5 Figure 2.10

Brown18 Figure 2.6 Figure 2.11

Poly15 Figure 2.7 Figure 2.12

Poly18 Figure 2.8 Figure 2.13
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Page 1 of 1

5/25/2020file:///C:/Users/cledat/Documents/MATLAB/TopoBundle_final_experiment_brown_18_1...

Figure 2.4. IO correlation matrix for Brown10 in CF1. Black to white colors highlight low and high
correlation coefficients, respectively.

We argue that the reason for this is that aerial control in CF2 brings extremely valuable in-

formation to de-correlate IO parameters. This is an argument for the use of aerial control in

camera calibration flights.
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Figure 2.5. IO correlation matrix for Brown15 in CF1. Black to white colors highlight low and high
correlation coefficients, respectively.
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Page 1 of 1
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Figure 2.6. IO correlation matrix for Brown18 in CF1. Black to white colors highlight low and high
correlation coefficients, respectively.
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Figure 2.7. IO correlation matrix for Poly15 in CF1. Black to white colors highlight low and high
correlation coefficients, respectively.
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Page 1 of 1
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Figure 2.8. IO correlation matrix for Poly18 in CF1. Black to white colors highlight low and high
correlation coefficients, respectively.
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Figure 2.9. IO correlation matrix for Brown10 in CF2. Black to white colors highlight low and high
correlation coefficients, respectively.
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Page 1 of 1
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Figure 2.10. IO correlation matrix for Brown15 in CF2. Black to white colors highlight low and high
correlation coefficients, respectively.
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Figure 2.11. IO correlation matrix for Brown18 in CF2. Black to white colors highlight low and high
correlation coefficients, respectively.
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Page 1 of 1
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Figure 2.12. IO correlation matrix for Poly15 in CF2. Black to white colors highlight low and high
correlation coefficients, respectively.
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Figure 2.13. IO correlation matrix for Poly18 in CF2. Black to white colors highlight low and high
correlation coefficients, respectively.

2.6.2 Camera models

We observe that the physical models BrownXX outperform OrthoPolyXX in the considered

case. Indeed, some aspects of the distortions specific to the considered lens system could not

be compensated using any of the OrthoPolyXX models.
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To show this, we attempt to compare the departures from collinearity as observed from tie-

points and as implied by the estimated IO model. For each tie-point Pi we define a vector ~vPi

as the difference between its image projection implied by the pinhole camera model and the

actual tie-point image coordinates:

~vPi = f π(Pi )+
ppx

ppy

− zPi , (2.9)

where Pi , f , ppx and ppy are taken from the output of the bundle adjustment for PF with

OrthoPoly18. A vector ~vM , i.e., the corrections implied by a given IO model, can be defined

analogously for any point of the image plane.

~v can be decomposed in two components, radial, in the direction of the principal point,

and orthoradial2 The orthoradial direction (green vector of Figure 2.14) is different from the

tangential distortion (see the vector field of tangential coefficients displayed on the two first

lines of page 28)., i.e., orthogonal to the first, see Figure 2.14.

Figure 2.14. Decomposition of the departure from collinearity vector, ~vPi into its radial (vρ) and
orthoradial (vθ) components for a tie-point observed at image coordinates zPi .

The OrthoPolyXX are not designed along a radial structure. For representing the radial distor-

tions the same way for BrownXX and OrthoPolyXX, we have chosen to plot the component of

~v along the diagonal for the tie-point observation close to such diagonal (Figure 2.15), for all

the considered IO models. Thus, Figure 2.16 presents the distortions all along the diagonal.

The middle of the plot (of abscissa 0) corresponds to the principal point. It is evident that

BrownXX fits the observations better than OrthoPolyXX. Note the overfit in Brown18 in the

extremities of Figure 2.16. In Figure 2.17 and Figure 2.18 we have plotted the radial and the

orthoradial components of ~vM , respectively, as a function of the image coordinates. We can

observe that no clear radially symmetric correction is implied by OrthoPolyXX, see especially

Figure 2.17 and 2.18.

These results may hold for the specific lens at hand, a high quality Zeiss Biogon, and may not

2The orthoradial direction is defined for a given 2D point as perpendicular to the radial direction, and pointing
in the counter-clockwise direction with respect to the origin (here the principal point).
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Figure 2.15. Distortions of Figure 2.16 corresponds to points close to the diagonal (inside a tolerance)
whose distortion ~v have been projected into ~v∥ on the diagonal.

be generally applicable. However, the numerical models based on Ebner’s self-calibration

functions were developed in the seventies when aerial photogrammetry was performed by

means of film cameras and additional corrections due to film out of plane deformations were

important. This is why numerically inspired models were developed. We suggest that this

may no longer be appropriate with modern digital cameras. In fact, with digital cameras,

even consumer grade, the distortion effects are dominated by a component that is radially

symmetrical. For this, no explicit term is present in Ebner’s functions.

2.6.3 Re-calibration

With respect to the re-calibration strategy, we argue the following:

1. In general, it is not optimal to directly employ the IO as determined in calibration

flights (Fix), at least with consumer grade cameras, since it is well known that the

leading IO parameters may slightly but significantly change due to camera mechanical

instability.

2. The well known strategy of re-estimating the leading IO parameters (Lead) improves

results with respect to Fix in all the considered experiments and yields some of the best

results.

3. APC and APCI further improve upon Lead and such improvement is more marked when

the available IO parameters from calibration are correlated, as in CF1. Unfortunately,

these strategies are not implemented in commercial aerial photogrammetry software.

4. It is not clear whether APCI is better than APC. We note that APCI has one tuning pa-

rameter which affects how much the diagonal components of ΣΘ corresponding to the

leading IO parameters are inflated. This is related to how much those are expected to

change with time and is an empirical parameter that relies upon user experience and

the specific camera being utilized.
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Brown10 Brown15 Brown18

OrthoPoly15 OrthoPoly18

Figure 2.16. Radial component of the observed departures from collinearity, ~vPi (red dots), and as
implied by the estimated IO model, ~vM (blue curve), for points on the diagonal of the image plane.

Finally, we note that no matter what re-calibration strategy we employ, better results are

obtained when IO from CF2 are employed. This is related to the fact that the geometry of

corridor mapping missions enables correction for imperfect IO, even when the full a priori

uncertainty ΣΘ is employed.

2.7 Conclusions

In this work we have investigated different calibration strategies and IO models targeting

corridor mapping applications. In this scenario, a priori knowledge of the IO is essential. We’ve

seen that certain choices may lead to poor results and should be avoided, while others allowed

us to obtain sub-GSD residuals at checkpoints using no GCP.

Our results can be summarized in the following guidelines useful to UAV practitioners who are

targeting delicate mapping missions in which redundancy and ground control are limited:

1. prefer calibration flights in similar configurations (e.g., altitude) with respect to produc-
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Figure 2.17. Radial component of ~vM as a function of image coordinates. Black corresponds to +10
pixels and red to −10 pixels. Note the negative distortions for the lower-right corner of the images while

the distortion on the other corners is positive. This leads to relatively high values for the tangential
distortions.

tion flights,

2. use calibration at scale where addition of aerial control (in terms of precision) is signifi-

cant3,

3. allow some form of re-estimation of the camera calibration during the bundle adjust-

ment of production flights (unfortunately only Lead is available in commercial bundle

adjustment software),

4. strive to reduce the number of calibration parameters, as long as they are sufficient for

modeling the lens at hand,

5. prefer the Brown family model over Ebner’s when the effect of the radial and tangen-

tial distortions induced by the lens characteristics are predominant over the potential

sensors deformations.

3integrated sensor orientation implies using aerial control
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Figure 2.18. Orthoradial component of ~vM as a function of image coordinates. Black corresponds to
+2.5 pixels and red to −2.5 pixels
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10 15 18 10 15 18
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Table 2.3. Significance of the IO parameters i.e. absolute value of the parameter divided by its standard
deviation.
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3 Mapping quality prediction for RTK
micro-drones operating in complex
environment

The Bundle-Adjustment algorithm based on the theory presented in Chapter 1, and applied

to real application in chapter 2 is here coupled to a custom photogrammetric simulator to

predict the precision of a mapping procedure. This chapter is originated from the following

preprint.

E. Cledat, L. V. Jospin, D. A. Cucci and J. Skaloud. Mapping Quality Prediction for RTK Micro-

Drones Operating in Complex Environment ISPRS journal, 2020

The idea originated from D. A. Cucci and J. Skaloud was first implemented in M atl ab by E.

Cledat and then ported in C ++ by L. V. Jospin who also suggested the use of log interpolation

and LERM. The data acquisition was achieved by E. Cledat, D. A. Cucci and J. Skaloud, and the

validation procedure was mainly achieved by E. Cledat.

Abstract

Drone mapping with GNSS-assisted photogrammetry is a highly efficient method for surveying

small- or medium-sized areas. However, the mapping quality is not intuitively predictable,

particularly in complex environments (with steep and cluttered terrain), in which the quality

of the real-time kinematic (RTK) or post-processed kinematic (PPK) positioning varies. We

present a method to predict the mapping quality from the information that is available prior

to the flight, such as the flight plan, expected flight time, approximate digital terrain model,

prevailing surface texture, and embedded sensor characteristics. After detailing the important

considerations, we also present the concept of global precision within the context of minimal

and efficient ground control point placement in a complex terrain. Finally, we validate the

proposed methodology by means of rigorous statistical testing against numerous experiments

conducted under different mapping conditions.
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3.1 Introduction

3.1.1 Motivation

Unmanned aerial vehicles (UAVs) are becoming an important tool for surveyors, engineers, and

scientists as the number of available cost-effective and easy-to-use systems is rapidly increas-

ing. These platforms offer an attractive alternative to mapping small areas with centimeter-

level resolution. Numerous successful applications have been reported: repetitive surveys of

buildings, civil engineering structures or construction sites, as well as land monitoring and

precision farming [39].

Figure 3.1. Drone mapping in mountainous environment with prediction of satellite visibility and
tie-point uncertainty.

The aerial images that are acquired in this manner need to be geo-referenced accurately

and precisely, either to localize specific features of interest in the images, such as cracks or

corrosion spots in concrete structures, or for three-dimensional (3D) modeling. The typical

airborne photogrammetric acquisition of a drone is depicted in Fig. 3.1, in which the flight

plan is conceived to follow the terrain contours. Aerial triangulation, in which photographs

are linked through image observations of so-called tie-points, is a common method. The 3D

model data in object space are obtained using multiple ground control points (GCPs) [158].

These points limit model distortions owing to error accumulation and are also used for quality
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control.

The process of initializing a dense and uniform ground control network is notoriously time

and cost intensive (as physical signalization and separate surveying are required). Moreover,

the process is sometimes complicated by the terrain, severely limiting the response time and

the application of UAVs in difficult environments and/or under strict accuracy requirements

(Fig. 3.1 - variation in ground precision). This is why initially research [129] and later indus-

try [141] and [102] focused on using airborne photogrammetry methods for UAVs, with the aim

of removing or mitigating the need for GCPs. In assisted aerial triangulation, ground control

is replaced with aerial control: a survey-grade GNSS receiver can provide centimeter-level

accuracy positions for each camera station, provided that the reference and rover receivers

share sufficient satellites (Fig. 3.1 - signal obstruction) in an appropriate geometric configu-

ration (as in the right part of Fig. 3.2) and that the carrier-phase signal is of sufficient quality.

This remains challenging onboard small UAVs [153]. This technique is very popular at present

in real-time kinematic (RTK) and post-processed kinematic (PPK)-enabled UAVs. Moreover,

survey-grade GNSS receivers are now available on the market [142] and [102]. If an inertial

measurement unit of sufficient quality is also available; for example, as in [105], orientation

control can be employed, which may be required in difficult mapping scenarios such as cor-

ridor mapping [130]. In recent years, variations of such techniques have been developed

to deal with specific peculiarities of UAV-based aerial photogrammetry, including that of

relative position/orientation control [16] and [131] and raw observation, and multi-sensor

adjustment [43].

0° 45° 90° 0° 45° 90° 0° 45° 90°

N

S

E W

Visible satellite

Non visible satellite

b. Cluttered Environment: Bad satellite visibility c. Cluttered Environment: Satisfactory satellite visibilitya. Cleared Environment: Good satellite visibility

Figure 3.2. Sky-view (azimuth - zenith coordinates) showing satellite geometry.
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3.1.2 Challenges

Despite the extensive range of recent possibilities offered by both hardware and post-processing

methodologies, the survey design remains crucial for the efficient deployment of UAVs: the

operator needs to select factors such as suitable sensors, the configuration and number of

GCPs, and the flight plan and its time schedule so that the accuracy requirements are fulfilled,

while minimizing the survey time and cost as well as the chances of repeating all or part of the

survey owing to unsatisfactory results.

In difficult mapping scenarios, such as corridor mapping or cluttered environments, in which

high variations in the topography cause the image overlap and sampling distance to vary

substantially, it becomes difficult, even for expert operators, to predict the quality of the

final mapping products. For example, Fig. 3.1 shows how the 3D object point precision

varies depending on the individual performance of directly observed trajectory information ,

individual image overlap and terrain texture. A direct consequence thereof is that either too

many or too few GCPs are installed, leading in the first case to an unnecessary cost increase,

or in the second case, requiring a repeat of all or part of the mission.

Another source of uncertainty in the survey outcomes arises from the quality of the aerial

position control, which in the first instance affects drone guidance and in the second instance

influences the image orientation quality. The latter aspect is partly driven by the signal-to-

noise ratio (SNR) of the carrier-phase GNSS signal on two or more frequencies, which is

determined by the drone hardware components and their assembly. Furthermore, the satellite

constellation available at the time of the flight affects both the capability of obtaining a fixed

GNSS position throughout the entire trajectory (operational safety), and the ability to resolve

and maintain the double-difference carrier-phase ambiguities that are essential for observing

the camera-coordinates with centimeter-level precision correctly.

The importance of GNSS constellation planning is well recognized among surveyors. However,

it is typically performed for representative positions with arbitrary elevation masks, and the

terrain is not necessarily taken into account (Figs. 3.1 and 3.2). Furthermore, the fact that

the satellite occlusions vary along the drone trajectory and as a function of time is neglected.

Figure 3.9 presents a situation in a cluttered environment in which the GNSS signal quality

varies with time within the same flight.

3.1.3 Conventional approach

The commonly used method for UAV photogrammetry is to fly according to a flight plan and

to post-process the recorded data to produce surface-related products such as 3D models

and ortho-images. The images are first oriented either approximately by using navigation

sensors or accurately using the computationally intensive process of tie-point identification
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and matching. All inputs, namely the image coordinates, object coordinates, and possibly

the camera position/attitude (GNSS + INS) are combined with appropriate weights within a

bundle adjustment (BA), from which the mapping quality factors are derived. If the quality

is unsatisfactory, the process needs to be restarted to acquire additional images, improve

the aerial control or add more GCPs (a new target if new photographs are acquired or the

measurement of existing identifiable targets).

The simulation of the geometry for the 3D reconstruction problem has already been explored,

although it is not necessarily part of drone mission planning. For example, in [124], a method

was described to simulate the geometry of a photogrammetric survey. In [25], noise was added

to the simulated image measurements, and 3D reconstruction was executed and compared

with the ground truth to quantify the expected survey precision. In this work, the recon-

struction was executed only once, while in [94] and [160], a Monte Carlo approach was used,

exploiting several runs of the reconstruction step to enable estimation of the covariance matrix

of the expected precision. In [116] and [118], the expected precision covariance matrices were

obtained via linear covariance propagation. However, the inclusion of aerial control adds

another level of complexity to this process, especially if the spatio-temporal variations in the

expected aerial control quality in obstructed environments are considered.

Flight-Plan

Flight

Data Processing

Quality assessment

User 

decision Modification

Satisfying results

Flight-Plan

Simulation

Quality assessment

User 

decision Modification

Flight & Post-Flight analysis

Figure 3.3. Conventional (left) and proposed (right) workflow from flight planning to survey execution
with quality assessment.

3.1.4 Proposition

In this study, we consider the fact that satellite visibility changes while the drone is moving

during the mission planning phase (that is, both the satellites and the portion of visible sky are

moving), and predict the capability of the drone guidance (sustaining the minimum number
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of visible satellites) as well as the success of the kinematic ambiguity resolution in real-time

(RTK) or post-processing (PPK). Thereafter, we combine this information with either planned

or realized (immediately after landing) image overlap, the prevailing texture of the scene,

and the distribution of the GCPs to predict an accuracy map over the surveyed area that

may be inspected by the operator via interactive visualization. The mission parameters can

subsequently be altered to improve the estimated accuracy. If the predicted accuracy does not

meet the operator requirements, stability analysis of the entire BA network is performed to

determine the lowest-accuracy locations and to propose the optimal placement of additional

GCP(s). Similar analyses are performed following the flight to display the predicted accuracy

map with the actual camera perspective center position/attitude and its quality prior to

processing the actual images.

The remainder of this paper is organized as follows: In Section 3.2, we present the methodology

for simulating the required inputs. We detail the relationship between the geometry of visible

satellites and the probability of successful ambiguity resolution, which is used to derive the

aerial position uncertainties for each camera station and time. These are encapsulated into

one parameter that serves as guidance for proposing the optimal mission time of the day.

Moreover, we describe the additional inputs related to the probabilistic tie-point distribution

based on the scene texture. Thereafter, we present the local and global quality factors that

are useful for precision evaluation. Subsequently, in Section 3.3, we present an analysis of

the network for its principal weaknesses and demonstrate the most efficient improvement in

the mapping precision by placing additional GCP(s) within the indicated area(s). Finally, in

Section 3.4, we present experiments conducted in mountainous environments to validate the

proposed methodology.

3.2 Methodology

3.2.1 Concept

As indicated in the left part of Fig. 3.3, the conventional loop of data acquisition, post-flight

processing, and derivation of the quality control at the end of the survey process is not ideal,

particularly in complex scenarios in which the aerial position control quality is likely to vary

with time. Therefore, we aim to extend such tools with the spatio-temporal elements of the

aerial control in an obstructed environment in combination with probabilistic measures for

tie-point placement to simulate the acquisition process realistically and derive the expected

quality prior to the flight. Overall, we aim to shorten the interaction loop before obtaining

acceptable results regarding the conventional approach, in which the quality estimators are

based on real data, possibly leading to repeated missions (left vs. right organogram of Fig. 3.3).

As schematically depicted in Fig. 3.4, the proposed method is based on the following inputs:
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Figure 3.4. Workflow for predicting mapping precision.

i) the flight plan covering the area with the aimed overlap and resolution represented by the

mean ground sampling distance; ii) the foreseen flight date and time; iii) a coarse digital terrain

model (DTM)1; and iv) the nominal camera interior orientation and whether this needs to be

re-calibrated [52]. Based on these elements, simulated image and aerial control observations

are generated, along with their expected precision (which varies temporally and spatially

for aerial position control), and a full adjustment is run. This forms a basis for formulating

realistic predictions of the mapping quality that can be expected from the actual survey at a

specific date and time of the day, with details over the entire area. On this basis, the user can

interactively modify the flight plan (for example, by selecting a different time, payload, flight

line, and overlap) and ground control network (for example, by adding GCPs or changing their

placements) until the quality requirements are fulfilled, thereby maximizing the probability of

a successful data collection campaign and minimizing the costs thereof.

If the predicted quality is higher than the requirements, the operating procedure could be

simplified, thereby enabling a reduction in the cost, prior to executing the flight and related

survey. If the quality is unsatisfactory and improvement is sought through additional GCPs,

further analysis of the network is performed to identify its weakest characteristics and areas in

1Coarse resolution DTMs are available globally; for example, see [111]. In most developed countries, higher-
resolution DTMs are provided by the respective topographic agencies

125



Chapter 3. Mapping quality prediction for RTK micro-drones operating in complex
environment

which the placement of GCPs would be the most effective.

3.2.2 Basic relation

The basic relation for 3D object restitution in photogrammetry is the collinearity in Eq. 3.1,

which is in its most simple form based on the pinhole camera model. It relates the 3D

coordinates of a tie-point P m
t in a mapping frame (m) to its image coordinates xc , yc (measured

from the principal point on a theoretical focal plane, the distance of which to the camera

perspective center Pc is 1) via a scale factor λ, rotation matrix Rm
c , and the 3D position of the

camera perspective center in the mapping frame P m
c :

∃λ ∈R, P m
t = P m

c +λ Rm
c


xc

yc

1.

 (3.1)

Additional parameters modeling departures from collinearity need to be assumed for real

cameras, as in Section 3.2.4. The observations in relation to different elements of Eq. 3.1 are

described in the following Sections 3.2.3 and 3.2.8.

3.2.3 Flight plan

The flight preparation is achieved by a mission planner such as [117] and [56]. The principle

of such software is to assist the user in designing the trajectory that the drone is supposed to

fly according to certain criteria. It requires an approximate DTM such as [111] to achieve the

desired parameters; for example, the scale (ground sampling distance) and lateral overlap,

while ensuring that the drone remains below the maximum height fixed by the regulations.

Apart from providing the input for the drone guidance, the mission planner supplies the

rough values of the camera poses for the simulation (Fig. 3.4). The positioning precision of

the RTK/PPK is assumed to exhibit time-varying characteristics and is further detailed in

Section 3.2.7.
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3.2.4 Camera model

`x + vx

`y + vy

=
px

py

+pd ·

(
1+K1r 2 +K2r 4 +K3r 6)xc

yc


︸ ︷︷ ︸

r adi al di stor t i ons

+
P1

(
r 2 +2xc 2)+2P2xc yc

2P1xc yc +P2
(
r 2 +2yc 2)


︸ ︷︷ ︸

t ang enti al di stor t i ons

 (3.2)

The camera model relates the coordinates
(
xc , yc

)
in Eq. 3.1 to the observed pixels

(
`x ,`y

)
in

a real image. It includes the sensor position in the camera frame and additional parameters

related to departure from collinearity. A commonly used physical model is that of Brown [51],

which is defined in Eq. 3.2.

where
(
px , py

)
is the position of the principal point, pd is the principal distance,

(
K1,2,3

)
and(

P1,2
)

are the radial and tangential distortions parameters and r 2 = xc 2 + yc 2. The camera

parameter values can be obtained from a previous project; alternatively, the approximate

magnitude of pd from the sensor datasheet can be used. The parameter uncertainty and need

for re-calibration will influence the mapping precision. A reasonable selection considers the

extreme cases (in which all parameters are either free or fixed: Fig. 3.4, steps 3/5), as well as an

intermediate scenario (Fig. 3.4, step 4). The latter reflects the case in which the lens-related

parameters may be temporarily stable (particularly on a rigidly mounted prime lens used at a

similar temperature), while the values of px , py , and pd may vary slightly among flights on

different days and need to be readjusted.

3.2.5 Ground control

In the absence of aerial control, at least three GCPs are required for absolute orientation in

the mapping frame, whereas more may be necessary to improve the mapping quality. Their

position and placement are typically part of the project design, for the purpose of which their

approximate locations can be obtained by clicking on the digital map employed in the flight

planning (Fig. 3.4, step 6). Alternatively, existing coordinates can be loaded in a file together

with their accuracy values, which is dependent on surveying technology (such as GNSS and

leveling) to be considered as the observations:

`GC P + vGC P = P m
GC P

. (3.3)
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The answer to the influence of the GCPs on the mapping accuracy in terms of the number,

quality, and distribution is part of the analysis presented in Section 3.3.2.

3.2.6 Tie-points

We consider the tie-point as a general term for an image feature, the center of which is

observed in at least two images by tie-point detection and a matching algorithm. Although the

quality and quantity of the automated tie-point detection and matching vary slightly with the

employed algorithms [106] and [137], the surface texture is the most important factor. Indeed,

the tie-point density on surfaces with a homogeneous texture (for example, water, fresh snow,

and certain types of vegetation) may be low or even zero, whereas it may be extremely high in

texture-rich environments (such as built-up areas).

On a textured surface, the tie-point matching could be inadequate for two reasons. Duplication

is when a same object-point is recognized as two distinct, but very close image point in a photo,

resulting to two distinct matching (blue and red in 3.5) with different other photos. Tie-points

duplication could reduce the quality of the final results. First, the point cloud will be noisier,

because there will be two distinct points instead of only one. Second, it reduces the redundancy,

since there is more unknown tie-points to compute, and the quality of the intersections is

degraded. Wrong matches corresponds to a matching of two distinct points in the real world

(see Figure 3.5). They are usually detected to be blunders by photogrammetric software. The

corresponding tie-points observations are thus removed from the functional model. However,

if this observation remains, it could propagate onto the whole photogrammetric network,

leading to inaccurate results.

Good match Duplication Wrong match

Figure 3.5. Optimal and non-optimal tie-point matching

As the real texture is unknown at the prediction stage, the outcome of such a process can only
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be probabilistic. To determine such a probabilistic measure, we evaluated several flights at a

100−200 m height above ground level, in which we considered several texture categories and

calculated their mean tie-point densities, as displayed in Table 3.1. Thereafter, we used the

image residuals in these categories to estimate the mean variance of the image observations

empirically.

#tie-points σ tie-point
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Table 3.1. Texture categories with mean tie-points density and precision.
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It is reasonable to assume that the selection of the prevailing texture is guided by a priori

knowledge regarding the terrain. Thereafter, the corresponding empirical values of the image

tie-point density in Table 3.1 are converted into the tie-point density on the ground via flight

parameters to generate tie-points on the approximate digital surface (Fig. 3.4, step 8) using a

stochastic process (Fig. 3.4, step 9). These tie-points are subsequently merged with the other

points (GCPs; check-points) that are manually entered by the user (Fig. 3.4, step 6) to generate

image observations. The influence of the tie-point distribution and quality is discussed in

Section 3.4.3.

3.2.7 Aerial position control

The relation between the GNSS-derived position and camera position is given by the following

equation, where `A is the 3D position given by the GNSS antenna, P m
c is the camera position

in the mapping frame, Rm
c is the camera orientation, and −→a c is the lever arm between the

center of the GNSS antenna phase and the camera perspective center.

`A + v A = P m
c +Rm

c
−→a c (3.4)

In manned airborne missions, shift parameters (or drift parameters) could be added to the

above equation to absorb effects due to incorrect determination of ambiguities within a block

or per flight-line. In drone mapping the shorter distance to the base improves the reliability

of ambiguity determination due to differential atmosphere, and thus improve greatly the

accuracy. However, wrongly determined ambiguities could still happen if the geometric

configuration is weak, and that — due to proximity of obstacles — could happen anytime

within a flight-line. For these reasons, the modelling by shift (drift) parameters is no longer

appropriate and it is better to plan the flight execution so that acceptable observation condi-

tions are maintained throughout the whole trajectory. As mentioned previously, apart from

the signal strength (SNR) in the code and carrier-phase observations, the precision of the

GNSS positioning is mainly dependent on (i) the number of observed satellites and (ii) the

satellite-to-receiver geometry. These geometrical factors can be analyzed in advance from

the mission plan and coarse digital elevation model (DEM) over a time-span that is specified

by the user (Fig. 3.4, step 10). For this purpose, the most recent information regarding the

GNSS approximate satellite position is obtained from the almanac [66] or emphemerides.

The time of each photo is predicted by the mission plan with respect to the specified mission

start, considering its planned position and the nominal UAV speed. The positions of the GNSS

satellites are computed from the almanac at each planned camera location and time (Fig. 3.4,

step 11), while a ray-tracing algorithm allows for determining whether this satellite is in the
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line of sight; that is, not obstructed by the terrain [115].

Figure 3.6. Empirical GNSS precision positioning as function of number of visible satellites and
co-factor elements.

Once the visible satellite configuration is determined, the positioning covariance matrix is

predicted by the calculation of the co-factor matrix scaled by the ranging precision (Fig. 3.4,

step 12). The latter depends on the foreseen positioning mode used in Eq. 3.4: with carrier-

phase differential corrections or without; that is, standalone positioning. The former can be

achieved either during the flight (RTK) or thereafter (PPK). Although the noise level of the PPK

is generally lower than that of the RTK, as discussed later (Section 3.4.5), the crucial aspect

affecting the ranging is the capacity of resolving the carrier-phase ambiguities. This is related

to the size of the ambiguity search space and its geometrical shape, which is proportional to

the principal elements of the GNSS covariance matrix or its compound metric, known as the

position dilution of precision (PDOP) [156]. We suggest employing the empirical probabilistic

function proposed by [139], based on experience with many helicopter flights close to the

terrain in a mountainous environment, to inflate the previously derived covariance matrix by

means of such a function. This is illustrated in Fig. 3.6 as a function of the PDOP and number

of observed satellites.

The color scheme of the probable positioning quality in each photograph is displayed in the

flight plan, as illustrated in Fig. 3.9, to guide the feasibility of the foreseen flying time intuitively.

If the result is not satisfactory (more red than green over a specific area), the flight time can

be modified (by means of back-looping from Fig. 3.4, step 12 to Fig. 3.4, step 10) to analyze

another interval.
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3.2.8 Precision map

The precision map is based on the predicted covariances of the individual tie-points in the

object space. These are obtained by co-variance propagation of the previously described

observation equations with the simulated measurements. This problem is part of the simulta-

neous optimization of the camera orientation and 3D location of the ground points from the

image observations and aerial ground control; that is, the BA. In BA, the residuals associated

with each observation are minimized as a function of the parameters by means of weighted

nonlinear least-squares methods; for example, as described in [158] and [51] or for specific

aerial control of UAVs in [131].

Firstly, a ray-tracing algorithm is applied to construct an adjacency list that links the camera

orientations and tie-points in view in its image.

This set of observations, together with the terrestrial position (Section 3.2.5) and aerial position

(Section 3.2.7) permits the photogrammetric network to be simulated (Fig. 3.4, step 13), with

the weight matrix defined as the inverse of the covariance matrix of the observation vectorΣ``.

Assuming that the observation errors are zero mean, Gaussian distributed, and independent,

a single standard deviation for each observation or class of observations can be specified. The

parameters are the camera poses (position and attitude), tie-point positions, and intrinsic

camera parameters (for example, principal distance, principal point, and/or lens distortion

parameters).

These parameters are concatenated in the state vector x . Let f be the function describing the

observation model; that is, the function such that `= f (x). All of the collinearity equations of

all tie-point measurements (Section 3.2.4), aerial position observations (Section 3.2.7), and

terrestrial observations Sec. 3.2.5) are enclosed in this f function. Algorithms that are used to

solve least-squares problems (such as Gauss–Newton, Levenberg–Marquardt or the dog-leg

algorithm) require the Jacobian matrix of f with respect to x . This matrix, which is known

as the design matrix, is denoted by A in the following. The Lie group theory [149] is used to

handle the derivations of the rotation matrices describing the camera orientation.

In the scope of covariance propagation, the values of the parameters that are known a priori

are used to construct A. Then, the covariance matrices of the parameters Σx x (Fig. 3.4, step

14), including those of the tie-points, are obtained by inverting the approximated Hessian

matrix H :

Σx x = H−1 = (
AT Σ−1

`` A
)−1

. (3.5)
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The inversion of the Hessian matrix is computationally demanding in terms of both memory

and time, and it is therefore generally avoided in BA. As we are interested only in certain blocks

close to the diagonal, the methods described in [136] or [84] are preferable, as they allow for

computation of only the required elements.

Figure 3.7. Visualization of predicted mapping precision for bad (left) and good (right) distribution of
GCPs.

The extracted covariance matrices of the tie-points can be used to depict the 3D uncertainty,

as illustrated in Fig. 3.1, but such a representation is less suitable for visualizing a point-

cloud containing all tie-points. Therefore, we propose propagating the uncertainty from

the tie-points (which can be represented by ellipsoids) to a mesh surface (Fig. 3.4, step 16),

as illustrated in Fig. 3.7. The rigorous projection of 3D precision onto a surface is a non-

trivial mathematical operation. Indeed, a simple approach using (for example, bilinear)

interpolation of the covariance matrix elements could lead to values that differ from the truth

by a factor of three, as indicated in Table 3.5 of 3.6. A preferable approach is to perform error

propagation from the tie-points used as vertices in the digital surface model, as pursued in

[146]. However, this strategy possibly underestimates the error in the face centers, and is

therefore dependent on the DTM resolution. A numerical comparison employing this method

indicated that the possible inaccuracy was still considerable (refer to Table 3.5). Although

a certain degree of imprecision owing to projection in the visualization is inevitable, using

a method that considers the correct manifold of the covariance matrices, such as the log-

Euclidean Riemannian metric (LERM) [8], can maintain it at a tolerable level (for example,

∼ 5%). The details of such methodology are presented in 3.6, while the visualization results are

depicted in Fig. 3.7.
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3.3 Precision analysis

The influences on the mapping precision are multiple. One aspect is related to errors in the

observations (image, terrestrial, and aerial); another aspect is related to the prior knowledge

(camera intrinsic incertitude) and global geometry (such as the number of parameters, ob-

servation redundancy, and corridor/block configuration). To detect the principal weaknesses

and suggest an improvement, we propose first analyzing the situation locally at the scale of

individual tie-points, and later at the level of the entire network.

3.3.1 Local

The predicted precision of a tie-point is provided by the covariance matrix of this tie-point,

which corresponds to the appropriate lines and columns extracted from Σx x . This covariance

is influenced by numerous factors, including the precision of the image observations, number

of images in which this tie-point is observed and the precision of their aerial control, the

precision of the camera intrinsic parameters, and the location of the tie-points in the images.

The local analysis does not consider the relationship between tie-points, and in its simplest

form only inspects the block diagonals of Σx x , as employed in the precision map creation

(Section 3.2.8). However, the values of the off-diagonal may be significant; for example, in a

steep terrain mapped with a nadir-oriented camera. In such a situation, it is recommended

either to i) perform principal component analysis of the covariance matrix and display its

most significant component(s), or ii) rotate the covariance matrix to align it with the terrain

principal slope and aspect when displaying the diagonal terms.

3.3.2 Global

Larger-scale analysis is useful for identifying the principal geometrical weaknesses of the

entire photogrammetric network and when searching for their effective mitigation. We first

review its derivation from the estimated uncertainty.

LetΣx x be a covariance matrix of the vector x of n random variables, and V be an n-dimensional

unitary vector. The variance of V T x is V T Σx xV (this theorem is trivial when V is one vector

of the canonical base). If Σx x is the covariance matrix of the parameters in our system, the

maximum weakness of this system is in the direction V , where V T x has its maximum variance;

thus, when V is the eigenvector associated with the maximum eigenvalue of Σx x .

Σx xV =λV (3.6)
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Analogously to the analysis of structural stiffness in civil engineering 2, this V is associated

with the first vibration mode of a beam structure; that is, the vibration mode for which the

structure is the most likely to oscillate.

Note that a similar analysis is used in geodetic networks [10] and [13] and forms part of modern

adjustment software [93] and [28], including the registration of dense networks of terrestrial

laser scanning [71].

Let λmax be the largest eigenvalue of Σx x and Vmax be its associated eigenvector. Thus, Vmax

is also the eigenvector associated with the minimum eigenvalue of the Hessian H , which is

the inverse of λmax .

HV = 1

λ
V (3.7)

The eigenvalues ofΣx x are sorted in descending order from largest to smallest: λ1>λ2> · · ·>
λi > · · ·>λu . Thereafter, a weakness mode mi can be defined as mi =±

√
λi Vi for i = 1, . . . ,u.

The application of such analysis to a simulated photogrammetric network over a flat and

rectangular area with sub-optimally placed GCPs (close to one corner) is depicted in Fig. 3.8

for the first four modes. The middle part of each sub-plot presents the undistorted situation,

whereas the other two parts depict the case with ±
√
λi Vi . The modes 5 and beyond are

insignificant.

2One could make an analogy between Geodetic or Photogrammetric Networks and Beam Structures in civil
engineering. See [82] and [103] (page 104). In a beam-structure, a beam act as a spring, and tries to reach it’s
relaxed position, while in a geodetic or a photogrammetric network, the compensated lectures tries to be as
close as possible from their actual lectures, to keep the residuals as low as possible. The stiffness of the springs
is comparable to the observations weight. The degree of freedom of the structure (as it is defined in [26] 4.2.8,
4.2.9) corresponds to the opposite of the total redundancy of the geodetic or the photogrammetric network. In
civil engineering, a major problem are resonance effects, as it is shown by the very well-known collapsing of the
Tacoma Narrows Bridge [11]. These resonances are due to global weakness of the whole structure. Spectral analysis
is a powerful tool for the analysis of both behavior of civil engineering structures face to excitation and Geodetic or
Photogrammetric Networks.
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Figure 3.8. First four modes of simulated network with sub-optimally placed GCPs (in red). Each
weakness is up-scaled by a factor of 100 for visualization.
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3.3.3 Placement of ground control

The previously described analysis may be used as guidance for improving the mapping preci-

sion. This can be achieved in several manners; for example, by employing sensors of higher

quality, pre-calibrating several intrinsic camera parameters, adding certain GCPs or modifying

the flight plan (such as increasing the lateral and inline overlap, and adding flight lines with

different orientations and heights).

Whereas modifying the flight plan is a relatively rapid operation, the addition of new GCPs

may be considerably more demanding in terms of time and resources. For this reason, the

subsequent discussion focuses on the optimization of the GCP locations.

Intuitively, new GCPs are placed at the weakest points of the network. Thus, the local analysis

is not an ideal indicator, as the precision of the tie-points may vary significantly within a

neighborhood. Moreover, the tie-points close to the mapping area border are usually visible

only in certain images, which is one factor that makes them less precise. In such a situation,

the errors committed in the (few) observations of the GCP image coordinates may cause larger

systematic deformation.

Therefore, the selection of the GCP locations is based on global analysis. In the previously

mentioned analogy with a beam structure, in which the nodes represent the camera poses

and the beams represent the connections between tie-points in the object and image space,

the placement of a new node (GCP) should have a maximum effect on increasing the structure

resistance. In our case, it should minimize its deformation owing to the accumulation of

random errors.

Therefore, the suggested method consists of studying the eigenvector V1 associated with the

highest eigenvalue of Σxx . The tie-point with the highest displacement by this eigenvector is

detected and is selected as the optimal location to add a new GCP. In Fig. 3.8, this corresponds

to adding a GCP at the point for which the deformation from the first excitation mode is

maximal, yet avoiding the areas close to the border of the area of interest, and selecting only

points that are visible in at least three to four images. The details are explained as part of the

experimental validation (Section 3.4.6).

3.3.4 Evaluation of check-point misclosures

Check-points are often used for the assessment of 3D models. However, when the check-

points exhibit varying precision in different directions, which may be the case for coordinates

determined by static carrier-phase GNSS on mountain slopes, their correct employment

requires new considerations.
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Figure 3.9. Prediction of GNSS positioning precision in each image for two different mission start times
at Z1. Color legend as in Fig. 3.6.

Let v be the check-point misclosure; that is, the difference between the GNSS-determined and

photogrammetry-determined coordinates. This misclosure is represented by the vector on

Fig. 3.10.

Figure 3.10. Comparison of true missclosure with accuracy prediction

However, the previously presented method only predicts the covariance matrix Σcp of such a

check-point for which the misclosure is v . Therefore, it is challenging to compare meaningfully

the predicted covariance Σcp , representing the probability density, with punctual realization

of the check-point misclosures v .

Let Σdm be the covariance matrix of the direct measurement (likely obtained by static carrier-

phase differential GNSS3).

The misclosure is a simple vector difference with compound covariance Σdi f =Σdm +Σcp .

The combination of the misclosures with their covariances in the square of the Mahalanobis

norm vT Σ−1
di f v theoretically follows the χ2 distribution when the predicted precisions agree

3The positions of the GCPs were measured by terrestrial GNSS with particular care: each point was measured for
at least 10 mi n, leading to a standard deviation of ∼ 2 cm in planimetry and ∼ 3 cm in altimetry. The covariance

matrix of the ground measurement is Σdm = di ag
(
(2 cm)2 (2 cm)2 (3 cm)2

)
.
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with the observed residuals.

However, if Σcp is underestimated (the prediction is too optimistic), the square Mahalanobis

norm will be high, and if Σcp is overestimated (the prediction is too pessimistic), the square

Mahalanobis norm will be low.

Let Λ be the diagonal matrix containing the eigenvalues of Σ−1
di f and V be the matrix of the

associated eigenvectors, which is an orthonormal basis.

Σ−1
di f =V Λ V T (3.8)

The standardized misclosures, which are defined as ṽ =p
ΛV T v , are constructed. These are

unitless, with unitary standard deviation and uncorrelated coordinates. Note that the squared

Mahalanobis norm of v is equal to the squared Euclidian norm of ṽ . Thereafter, it is possible

to aggregate these ṽ , either for creating a histogram (for example, bottom plot of Fig. 3.15) or

for proceeding with χ2 tests.

For the latter, we formulated the hypothesis that the aggregated normalized misclosures

follow a standard normal distribution. This hypothesis was not rejected by the one-sample

Kolmogorov–Smirnov test [100] at the 5% significance level for 19 of the 26 studied cases. The

majority of the problematic (rejected) cases were related to scenarios employing RTK-derived

aerial control, indicating possible position biases owing to incorrect determination of (several)

double-difference carrier-phase ambiguities in several flight lines.

To proceed with the paradigm of global analysis, as presented in Section 3.3.2, we need to

define a new check-point misclosure vector v as the concatenation of all individual check-

point misclosures within one experiment. The notation v denotes the (3·n)×1 vector of the set

of n check-points. Let Σcp be the theoretical covariance matrix of this v , which corresponds

to the proper subset of rows and columns of the matrix Σx x . The principle of the subsequent

analysis is to compare v to the spectral decomposition of its theoretical covariance matrix Σcp .

Let λi be the i th eigenvalue of Σcp when the eigenvalues are sorted in descending order and

Vi be the associated (normalized) eigenvector. The eigenvalue can be recovered from Σcp as a

result of the following relation:

V T
i Σcp Vi =λi . (3.9)

Subsequently, we firstly have λi , namely the predicted variance along the eigenvector Vi ,
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and secondly, the projection of the misclosures v on this eigenvector is v ·Vi . Note that the

square of this projection could be interpreted as an a posteriori variance λ̂i , which is evaluated

by substituting Σcp with the a posteriori variance of v : ˆΣcp = v vT . Figure 3.11 depicts this

principle in two dimensions. The true residual v (in red) is projected onto the eigenvectors V1

and V2 of its theoretical covariance matrix Σcp . The use of spectral analysis in the different

experimental cases (Section 3.4) compares the actual realization of the error along an axis

(v ·V1 or v ·V2) to the error prediction (
√
λ1 or

√
λ2).

Figure 3.11. Projection of misclosure vector on principal axis of covariance matrix in two dimensions.

3.4 Experimental validation

The previously described methodology enables the prediction of the precision of the 3D model

generated by the photogrammetric method with GNSS aerial position control under different

spatial and temporal scenarios. The purpose of this section is to study the method with real

data and validate it in various use cases so that the prediction corresponds to reality.

Figure 3.12. Actual GNSS positioning quality status obtained in post-processing (PPK) for two flights
realized according to plan depicted in Fig. 3.9.
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3.4.1 Test sites and equipment

For the experimental validation, we used small, lightweight (∼ 1.2 kg) fixed-wing drones

equipped with dual-frequency, dual-constellation (GPS & GLONASS) receivers, and small

cameras with a ∼ 28−35 mm equivalent focal length. Two zones of mountainous terrain,

located in the western part of Switzerland, were used for the evaluation:

• Z1: A narrow valley that is surrounded by high mountain ridges in all directions but East.

Numerous houses are located along the bottom of the valley. During winter 2015 to 2016

an exceptionally large avalanche fell down from the South ridge and destroyed part of

the forest, the road, and several buildings. This zone first had to be mapped without

GCPs (owing to the remaining risk), but repeated mapping later in summer allowed for

the placement of 13 GCPs over a large part of the mapped area. The employed planes

were an eBee RTK and an eBee+ from senseFly. The former carried a Cannon Power Shot

S110 camera (CMOS sensor, 4000×3000 pixels) configured for the raw image format.

• Z2: A valley with a SE–NE fall line, where the geometry of the GNSS constellation (the

number and positions of visible satellites) also varies considerably during the day. The

terrain surface is mainly composed of grass and stones. The signalization and surveying

of 20 GCPs with the determination of their coordinates by static carrier-phase differential

positioning was possible. The employed plane was an eBee+ carrying a S.O.D.A. camera

with an integrated lens.

The altitude variations of both areas were approximately 150 to 200 m for both terrains. More

than five flights were conducted in each zone with different geometrical configurations and

GNSS positioning qualities. These variations are explained in the following comparisons.

3.4.2 Aerial position accuracy

The precision of the GNSS quality was predicted for the camera positions in Z1 using a flight

plan evaluated at two different takeoff times, corresponding to “sub-optimal” and “close-to-

optimal” satellite visibility conditions. This evaluation employed the satellite almanac and

coarse DEM, the results of which are displayed in Fig. 3.9 using the color code of Fig. 3.6.

The actual 3D positioning quality obtained in PPK is illustrated in Fig. 3.12 in terms of an

internal characteristic factor varying from 1 to 5 (best to worst). In agreement with the

prediction, this indicates the decimeter level and centimeter level for the “sub-optimal” and

“optimal” flight times, respectively. Note that, although the 2nd flight exhibited better satellite

configuration over most of the zone, it was shortened towards the South to maintain aircraft

navigation safety, as critical satellite visibility was predicted at the final line.
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Figure 3.13. Comparison of GNSS positioning with the reference computed via indirect orientation
with all GCPs. Black & red dashed-lines correspond respectively to 1σ & 2.57σ.

Further analysis involving other flights in the same zone compared the differences between
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the photograph positions obtained by GNSS (RTK/PPK) with those of the indirect orientation

using all GCPs. These airborne position misclosures are presented in the plots of Fig. 3.13. Note

that the vertical component was generally worse than the horizontal one, as GNSS positioning

is better in planimetry than in altimetry.

The correspondences between the residuals and posterior precision were quite strong for

PPK, considering that the quality of the camera position derived via indirect positioning (the

given precision of the camera pose center from the indirect orientation was considered in this

statistical analysis) was not necessarily superior to that of GNSS and remained correlated with

the other parameters (such as the attitude & interior orientation). This may explain certain

residuals exceeding the normal probability levels.

Although such excess seems to be less present for the RTK positioning in the upper left part

of Figure 3.13, note that the precision of this positioning mode was lower than that of PPK

by a factor of more than 10 in numerous photographs. Indeed the RTK excess is very similar

to that of PPK for a posteriori σ < 0.1 m as shown in the magnified plot. This suggests that

caution should be exercised when employing RTK technology for achieving centimeter-level

positioning in the airborne environment with frequent discontinuities in satellite tracking.

Indeed, using PPK increases the time span for which the ambiguities are fixed as well as the

likelihood of their correctness.

3.4.3 Tie-point density

It is interesting to note that, with the exception of (close to) uniform texture (for example,

dense and high vegetation; water), the predicted mapping precision appeared not to be very

sensitive with respect to the number of tie-points, as observed empirically together with its

expected precision. For example, an increase or reduction by a factor of two of the tie-point

density led to a difference of several percent in the predicted mapping precision. This follows

from Gruber’s rule, which states that only five points are sufficient for the relative orientation

of two poses of a calibrated camera [113]. The number of points is higher for small, non-metric

cameras, but several tens of well-distributed points are sufficient. Thus, the benefit of the

added points exhibits asymptotic behavior4. Although the selected inter-alpine environment

of zones Z1 and Z2 included textural changes, from scree and grass to low and high vegetation,

the observed variations in the point densities did not affect the orientation process. However,

in certain areas with high vegetation, surface restitution was not possible (for example, the

black areas within the internal part of Fig. 3.14).

4The paragraph 2.4.4.3.2. of [78] states that there is no improvement of the aerotriangulation results with the
number of tie-points if this number have reached 20.
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Figure 3.14. 3D model of Z2 created using commercial software (Pix4D). Approximated scale added
manually.

3.4.4 Local analysis

This subsection studies the mapping prediction of different flight configurations in both

zones, namely Z1 and Z2. In total, 26 scenarios, as described in Table 3.2, were derived from

flights conducted above these two areas. In the corridor configuration, only two parallel flight

lines were considered, where the so-called mono-block represents the “lawnmower sweeping”

pattern with flying height adaptation per flight line, as illustrated in Fig. 3.14. A stair plan is a

particular flight plan that staggers several smaller blocks. While the flying altitude remains

constant within each block, it changes in a step among them. This plan is useful when mapping

a complicated terrain shape, such as that of Z2 (that is, a narrow and steeply climbing valley).

In total, 13 control points were determined in Z1 and 20 were determined in Z2, which

enabled different GCP/CP ratios and configurations to be considered. In the case of no GCP,

all signalized points were considered as CPs. In the so-called bad GCP configuration, the

barycenter of the GCPs differed substantially from the barycenter of the mapped area, while

the remaining points were considered as CPs. However, the good GCP configuration considered
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the spread of GCPs over the entire terrain. To ensure that the evaluation was meaningful, the

number of CPs was at least ≥ 5.

For the aerial control, standard GNSS positioning (∼ meter-level accuracy) was considered in

the standalone case, whereas carrier-phase corrections were employed in the RTK and PPK,

with the aim of obtaining centimeter-level precision.

Zone 1 (Z1 ) 1 2 3 4 5 6 7 8

Flight

plan

corridor

mono  block

Stair plan

GCP
Bad config

control

No

configuration
Good config

PPK

Aerial
RTK

Standalone

Zone 2 (Z2 ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Standalone
Aerial

RTK
control

PPK

No
GCP

Bad config
configuration

Good config

corridor
Flight

mono  block
plan

Stair plan

Table 3.2. Tested scenarios in Z1 (top) and Z2 (bottom).

In each of these 26 scenarios, at every check-point, we compared the predicted accuracy

of x, y , and z with the actual values of |vx |,
∣∣vy

∣∣, and |vz |. The precision prediction could

be represented in a color scale, as in in Fig. 3.7 for cases 5 and 7 of the bad and good GCP

configurations, respectively. The plots on the first column of Fig. 3.15 present the results of a

single experiment, namely case 13 of Z2, whereas the second column aggregates the values

from every studied case. In the top plot of each of these figures, the predicted precision is

represented by the abscissa axis, while the actual values of |vx |,
∣∣vy

∣∣, and |vz | are represented

by the ordinate axis for the three coordinates. The solid lines represent the 1 σ and 2.57 σ

bounds.

In the specific case 13 (Fig. 3.15 first column) as well as in all aggregated cases (Fig. 3.15 second

column), 64% of the check-point misclosure coordinates belongs to [−σ,+σ] (where σ is the

prediction precision of the check-points, represented by the black dotted line), 35% belongs to
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[−2.57 σ,−σ[∪ ]σ,2.57 σ], and 0.76% belongs to ]−∞,−2.57σ[∪ ]2.57 σ,∞[.

This demonstrates that the conducted experiments respected the basic properties of a normal

distribution. However, global analysis needed to be performed to confirm such an assumption

by means of additional statistical testing.
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Figure 3.15. Comparison of GNSS positioning with the reference computed via indirect orientation
with all GCPs. Black & red dashed-lines correspond respectively to 1σ & 2.57σ.

3.4.5 Global analysis

The comparison for case 1 performed in Z1 is detailed in Fig. 3.16. The prediction (indicated

by the blue line) is the standard deviation evaluated along the eigenvector of the covariance

matrix Σcp , computed as the square root of Σcp eigenvalues. The realization (indicated by the

red line) is the projection of v onto the eigenvectors: v ·Vi .
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Figure 3.16. Global spectral analysis of mapping precision: predicted (blue) and actual (red) misclosure
as a function of the Eigen-Value index of

Σcp

The predicted trend of decreasing the eigenvalues of Σcp was followed by the projection of the

observed misclosures onto the corresponding eigenvectors. In terms of the deformation theory

presented in Section 3.3.2, the misclosures were a linear combination of different deformation

modes (schematically represented in Fig. 3.8), and in the studied case, the obtained coefficients

were of the same order of magnitude as those calculated by means of the prediction.

As a similar agreement was observed in the other studied configurations, the observations

were coherent with the predicted precision.

3.4.6 New GCP placement

For the practical demonstration of the method relating to the optimal placement of the next

GCPs (as presented in Section3.3.3), case 5 in Z1 was used, where images of an inclined terrain

in block configuration were oriented via three (sub-optimally placed) GCPs (Fig. 3.17).

In this case, we were searching for the best place to situate an additional GCP. For this pur-

pose, we employed the following quality indicators (a, b, c, and d) and investigated different

methods for the tie-point precision aggregation. a assess the tie-point with maximum 3D

standard-deviation. b is the root mean squared (RMS) of all tie-points standard-deviation,

c is the mean of tie-points 3D standard-deviation and d is the largest eigen-value of the full

covariance matrix of the tie-points (and thus the highest mode).

a = max
T Pi

√
σ2

x +σ2
y +σ2

z (3.10)
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Figure 3.17. New GCP placement proposal (green point) with respect to other GCPs (red points).

b =
√

1

nT P

∑
T Pi

(
σ2

x +σ2
y +σ2

z
)

(3.11)

c = 1

nT P

∑
T Pi

√
σ2

x +σ2
y +σ2

z (3.12)

d =
√

max λΣxx (3.13)

We evaluated the quality indicators a, b, c, and d (3.10) to (3.13) with the three GCPs and

placed them in the 1st column of Table 3.3.

Firstly, we searched for a tie-point with the maximum incertitude (indicator a) and added the

4th GCP exactly at this location. The coordinates (with respect to the tie-point centroid) of this

new GCP are indicated in the first two lines of Table 3.3 and the updated quality indicators are

displayed in the column “4 GCP ←− f (a)”. As we will observe later, this strategy of selecting an

adequate position for the 4th GCP was not appropriate. Secondly, we found a tie-point with
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3 GCP 4 GCP ←− f (a) 4 GCP ←− f (d)

XGC P (4) (m) ∅ 130 -56

YGPC (4) (m) ∅ -32 -103

a (mm) 292 312 334

b (mm) 139 103 67

c (mm) 123 93 60

d (mm) 4179 2898 1241

Table 3.3. Improvement in mapping quality with new GCP placement.

a → mi n b → mi n c → mi n d → mi n

XGC P (4) (m) -16 -88 -88 -76

YGPC (4) (m) -68 -148 -152 -120

a (mm) 251 313 324 325

b (mm) 80 63 64 69

c (mm) 74 58 57 60

d (mm) 1701 1160 1104 1096

Table 3.4. Benchmarking of improvement in mapping quality with new GCP placement via exhaustive
search.

the maximum value in the eigenvector associated with the maximum eigenvalue of the global

Σxx , and we placed the 4th GCP at this point. The coordinates of this point and the quality

indicators computed using this new GCP are presented in the final column of Table 3.3.

Thereafter, we performed a type of benchmarking to validate the suggested methods. We

created a 4×4 m grid over the mapped surface and placed the 4th GCP at each node of this

grid, evaluating the abovementioned quality indicators every time. We selected the grid place

by minimizing a, b, c, and d separately and its coordinates are displayed in Table 3.4.

It can be observed from this analysis that, even if the quality indicator a is the most intuitive

and straightforward, it should not be considered owing to its sensitivity to the random dis-

tribution of the tie-points. Hence, we suggest focusing on the quality indicators b, c, and d .

To compare the quality indicators computed with three GCPs and the same quality factor

computed with four GCPs, we could define the following improvement factor:

�4 GC Ps −�3 GC Ps

�mi n −�3 GC Ps
, (3.14)
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where the empty white square symbol: � could be replaced by any of the quality indicators

a, b, c or d . �3 GC Ps is the indicator calculated for three GCPs, whereas�mi n is the indicator

calculated for the optimal position of the new GCP (in bold in Table 3.4). This ratio is defined

as null if the new GCP is not usable; for example, if it does not appear in at least two images,

and 100% if the GCP placement is at the best selection, as evaluated by the (time-consuming)

grid search.

For any quality indicators b, c or d , this improvement factor is approximately 45% for the

second column of Table 3.3; that is, if a new GCP is placed on the tie-point with the maximum

standard deviation. However, this improvement factor is approximately 95% for the third

column of Table 3.3; that is, if 4th GCP is placed on the highest value of the eigenvector

associated with the highest eigenvalue of Σxx . The quality evaluation that was performed

using this exhaustive search demonstrated practically that the method for placing a new GCP,

as described in Section 3.3.3, is nearly optimal (at a 95% level) with respect to the considered

global mapping quality indicator b, c or d .

3.5 Conclusions and perspectives

We have proposed a method for assessing the quality of drone mapping in a complex natural

environment prior to the mapping being performed. The method is based on a flight plan and

consists of simulating all of the observables required in the real mapping adjustment, consid-

ering a particular time and date, the observations, and the geometry of the photogrammetric

network, using a priori knowledge regarding the terrain, drone payload, and GNSS satellites.

Compared to the traditional approach, its application avoids the need for mission repetition

frequency, which increases with the terrain complexity (Fig. 3.3 left vs. right).

The comparison of the quality prediction with the actual mapping accuracy in various geomet-

rical configurations as well as the quality of the airborne GNSS positioning in the mountain

environment exhibited satisfactory agreement in the sense that the statistical testing did not

reject the hypothesis (at 5% significance) of the observed misclosures fitting the prediction.

Practical experience also demonstrated that the PPK approach is preferable over the RTK

technology in an environment in which frequent occlusion of satellite signals occurs owing to

either the drone motion or its surroundings. For the sake of navigation safety, the method of

predicting the satellite positioning quality is worth considering not only at camera stations,

but also (possibly with different criteria) over the entire drone trajectory, including the takeoff

and landing zones.

The signalization and surveying of GCPs requires substantial effort in drone mapping, par-

ticularly in a complex terrain. Therefore, a method for the most effective placement of new
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GCPs was designed and evaluated. When actual realization of GCPs in the optimal location

is not practical (for example, when the environment is too steep or is not accessible), the

user may alter other geometrical or temporal parameters of the flight, and eventually change

the equipment to maximize the likelihood that the executed mission will satisfy the desired

precision criteria. Therefore, it is important that the prediction is not only correct, but also is

executed rapidly and can offer intuitive interpretation. In our experience, the adopted metric

of covariance interpolation and visualization satisfies this requirement.

In the future, we plan to develop an algorithm that can provide improved determination of the

tie-point density and tie-point quality based on the (a priori) ground texture. This algorithm

could make use of modern computer vision and machine learning. Moreover, the precision

prediction could be extended to optimize the entire flight plan and overall GCP placement.

3.6 Appendix: Interpolation of estimated precision

Bilinear

The first (and naive) method for computing the precision of any point on a surface is to proceed

to bilinear interpolation of the covariance matrix.

Let Pa , Pb , and Pc be three vertices of a given triangle of the Delaunay triangulation and let

Pd be a point inside this triangle. Then, there exist β and γ in [0,1] with β+γ< 1, such that

Pd = (
1−β−γ)

Pa +β Pb +γ Pc .

The bilinear interpolation leads to the following:

Σdd = (
1−β−γ)

Σaa +β Σbb +γ Σcc . (3.15)

However, it is not mathematically correct to interpolate covariance matrices element wise.

Error propagation

[146] suggested performing error propagation from the three observed vertices of the triangle

to the point Pd . Below is a modified version of the presented error propagation, taking

into account the eventual correlations between the different points in a rigorous, fully 3D

calculation.
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Σdd =
[(

1−β−γ)
I3 βI3 γI3

]
· 

Σaa Σab Σac

Σab Σbb Σbc

Σac Σbc Σcc




(
1−β−γ)

I3

β I3

γ I3

 (3.16)

This algorithm was designed for estimating the precision of a grid cell center from a relatively

regular and dense laser-scanning pattern. It is less suitable for randomly (and more sparsely)

distributed tie-points, because it may overestimate the precision towards the middle of the

triangles (when Pd does not necessarily lie in the perfect plane defined by Pa , Pb , and Pc ).

Log interpolation

As the covariance matrices are not directly associated with the conventional metric of Eu-

clidean space, it is improper to proceed with linear combinations of their elements as pre-

viously suggested, although this appears to be practical. However, the logarithms of such

matrices are part of Euclidean space [8]. Let the log of a covariance matrix be the matrix

in which the eigenvalues are substituted by their logarithms. If Σ= V Λ V T , where Λ is the

diagonal matrix of the eigenvalues, and V is the matrix of the eigenvectors, we can define

log (Λ) as the diagonal matrix containing the logarithms of the diagonal elements ofΛ, and

log (Σ) =V l og (Λ) V T . Moreover, it is possible to demonstrate that exp
(
log (Σ)

)=Σ using the

power series definition of the exponential function. Therefore, the suggested interpolation of

the covariance matrix logarithm is expressed as follows:

Σdd = exp
((

1−β−γ)
log (Σaa)+β l og (Σbb)+γ log (Σcc )

)
. (3.17)

Comparison

To assess the suitability of the methods for obtaining Σdd , we execute the algorithm that

evaluates the covariance matrices of the tie-points. Thereafter, we consider three precision

maps for display purposes, which are created by the three methods described above.

We run the code a second time to obtain different tie-point configurations, each with its

predicted covariance matrix. This second prediction enables validation of the interpolation

method selected for the first prediction. For each tie-point of the second prediction, the
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covariance matrix will be compared to the value provided by the interpolated map based on

the first prediction. There are several manners in which the 3×3 covariance matrices can be

compared. One of these is the relative LERM [8]. The relative LERM of the matrices Σ1 and Σ2

is expressed by the formula below, where ‖•‖F is the Frobenius norm (the square root of the

sum of the squared elements of the matrix).

∥∥log (Σ1)− log (Σ2)
∥∥

F∥∥log (Σ1)
∥∥

F

(3.18)

It is possible to compute the relative horizontal error and relative vertical error, which are

defined by the following two equations.

σ1x y −σ2x y

σ1x y
(3.19)

σ1z −σ2z

σ1z
(3.20)

To aggregate the statistics computed for all tie-points, we compute the maximum difference,

the mean of these differences, and the square root of the mean of the squared differences

in Table 3.5. In both criteria presented in this table, it can be observed that the logarithmic

interpolation is the most appropriate method for our problem, as it allows for interpolating

the covariance matrix at any position, a fortiori, with the smallest error.
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Bilin. Error Log

prop. bilin.

max •
relative LERM 41% 37% 29%

relative σhor i z. 185% 127% 81%

relative σver t . 207% 128% 100%

1
n

∑•
relative LERM 1% 13% 1%

relative σhor i z. 2% 29% 1%

relative σver t . 2% 29% 2%

√
1
n

∑•2

relative LERM 3% 14% 2%

relative σhor i z. 9% 31% 4%

relative σver t . 11% 31% 6%

Table 3.5. Comparison of three covariance interpolation methods.
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4 Fusion of photo with airborne Laser
Scanning

Chapter 1 provided the background theory for photogrammetry and introduced LIDAR mea-

surements. Chapter 2 and 3 exploited the Bundle-Adjustment in different configurations to

simulate and process images, but not LIDAR observations. This chapter -originated from the

following manuscript- will present a method to handle LIDAR data in the Bundle Adjustment.

E. Cledat and J. Skaloud, Fusion of Photo with Airborne Laser Scanning ISPRS Annals Nice,

2020

Abstract

Photogrammetry and Laser-Scanning are usually considered as complementary. Integration

of these two observation methods has the potential to blend their individual advantages. The

resulting benefit is likely to be higher in drone airborne mapping, which payload capacity

(and thus the quality of the embedded IMU) is limited. Thus, the trajectory computed by the

IMU is subject to important time-dependent errors: even if the global attitude is less adequate,

it is self-coherent locally. For this reason, we propose a close integration of Photogrammetry

with Laser-Scanning based on the correction of time-dependent error of the trajectory with

the help of the image observations acquired by the camera. Apart from the trajectory, this

hybridization requires optical correspondences between image and Laser measurements.

Such full set of input data is rigorously fused together in a Bundle-Adjustment in order to

better determine the trajectory, and thus the resulting point-cloud. The presented theory was

practically evaluated in an airborne case against a reference solution.
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4.1 Introduction

Photogrammetry and Laser-Scanning have been successfully used for countless mapping

applications such as land usage analyses, cultural heritage site preservation, civil engineering

infrastructure inspections, and so on. The exponential development of small drones1 over the

last decade has allowed for the transposition of plane and helicopter airborne photogrammetry

into drone airborne photogrammetry, with the advantages of mapping small and inaccessible

areas at a reduced cost [122], [129]. More recently, the miniaturization of LIDAR sensors has

allowed them to also be embedded in micro-UAVs (e.g. Velodyne Puck [163] and Riegl Vux

[135]).

The two mapping methods, Photogrammetry and Laser-Scanning can be seen as comple-

mentary (Table 4.1). This complementarity opens potential for the method of fusion to

improve the final mapping product, in aspects as geometric precision, radiometric precision

and exhaustiveness2. The complementarity could also be advantageous in further analyses,

such as segmentation, classification and object recognition. In particular,several decades of

experience in image processing ([54], [53], [3], [4], [154], [2]) has enabled the possibility to

automatically recognize and segment geometrics features such as polygons. The precise and

rigorous knowledge of the images IO and EO with respect to the points acquired by the LIDAR

sensor could open a wide range of new possibilities in segmenting the point-cloud thanks to

the images, and thus help the 3D CAD model reconstruction.

Data from several sensors are said to be loosely coupled when substancial pre-processing is

performed separately for each sensor before integration. Data are said to be closely coupled

when the data are fused together at an earlier stage. In the scope of Photo-LIDAR fusion, [67]

proposes a loosely coupled integration as the traditional photogrammetric processing chain is

independent from the LIDAR one; the point-cloud generated via photogrammetry and the one

from LIDAR are merged only after each is created separately. Photo-LIDAR closely coupled data

integration is possible, however, and permits the use of the benefits from one method to help

the other, and vice-versa. In particular, LIDAR measurements are taken one after the other,

where each measurement represents a single point of an object and is considered independent

from the next point, as the sensor moved between the subsequent measurements. Conversely,

photos taken by global shutter cameras of photogrammetry give a coherent representation of

[a sub-set of] an object at a given time. Direct geometric relationships can then be established

between different points visible on the same image. This global coherence of any single image

can give coherence both to the reconstructed 3D model and to the trajectory of the platform.

1MAV: Micro Aerial Vehicles, or micro-drone, usually < 3−5kg .
2Exhaustiveness stands for the minimalization of holes in the model due to occlusion. See [97] for a didactic

explanation of the concept of occlusion in Laser scanning and stereo-occlusion in photogrammetry. See [40] for a
visualization of the acquired points both by dense-matching photogrammetry and Laser scanning.
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4.1. Introduction

Photogrammetry Laser scanning

(Passive sensor) (Active sensor)

+ Sufficient for − Direct Sensor orientation

indirect orientation dependent

+ Precise in planimetry

− Less precise in altimetry + Precise in altimetry

− Needs overlap to create + Direct measurement of

3D: (sensitive to 3D points (less sensitive to

object occlusion) object occlusion)

− Sensible to illumination + Insensible to illumination

− Sensible to object texture + Insensible to object texture

− Problematic in + Penetrates tree canopy

high vegetation

Table 4.1. Comparison Photogrammetry/LIDAR

Forms of closely coupled integration are proposed in [97], [61], [60], [59] and [58]. In addition

to these approaches, there is a possibility to adapt Bundle-Adjustment to interfere image

observations (raw data of photogrammetry) with LIDAR raw observation. This requires es-

tablishing links between raw observations of both acquisition types. The principle and the

weakness of links used in the works cited above will be discussed in section 4.2 together with

the proposition of a stronger type of link.

The motivations for closely integration photogrammetry with LIDAR are as follows. a) IMU

adapted for micro-UAV are small & low-cost, and generally not sufficiently precise for direct

orientation of the platform in the scope of laser scanning. b) However, the trajectory is locally

coherent i.e. the relative orientation of temporally close values is precise. c) Thus, the local

shape of the trajectory described under point b) could be used under two well-oriented photos.

The paper contributions are organised as follow. First, different forms of optical correspon-

dences are reviewed in terms of proposed sensor hybridization, where the goal is to improve

the global redundancy and accuracy. Second, a rigorous interpolation is presented between

subsequent photos and inertial-derived relative orientation. This will allow, along with model

description, the rigorous merge of the whole set of observations into the Bundle Adjustment:

(Section 4.3). This method will then be tested on low quality IMU data and compared to

high-quality results: (Section 4.4).
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4.2 Review of optical correspondences

4.2.1 Tie-points: Link image-image

The prerequisite to Photogrammetry is the ability to recognize similar points (or other types

of geometric features) between images representing the same real object. The coordinates

of these points on the images are the image observations. The matching between a point

observation on one photo and a corresponding point observation on another photo makes

this point a tie-point (first column of table 4.2). This link between the observations is needed

to produce the 3D position of the point itself, EO and IO3.

4.2.2 Coplanarity: Link LIDAR plane-LIDAR plane

In the scope of airborne LIDAR, the first link between observation sets acquired at different

times is the plane to plane link [144] and [69]. There, the goal was to link planes representing

the same building roof from different flight-lines to calibrate the boresight-matrix and pos-

sibly other parameter in LIDAR and IMU sensors (column 2 of table 4.2). The weakness of

constraining two planes to be coplanar is that one could slip on the other, hence, planes of

different slope and aspect needs to be present.

4.2.3 Point to Patch: Link LIDAR point-LIDAR pointcloud

The plane to plane method described in sec. 4.2.2 has been generalized in [79] to generic

surfaces. The established correspondence aims to constraint a point acquired by the laser

scanner during one flight line (blue point of column 3 of Table 4.2) to a surface defined by

several points acquired during another flight-line (red point-cloud of column 3 of Table 4.2).

4.2.4 Homologous point: Link LIDAR point-LIDAR point

Two LIDAR points taken at different moments could also be matched (represented by a double

arrow in the third column of table 4.2). The naïve method of selecting them manually in a

point cloud is not rigorous since the object surfaces sampling is somewhat random due to the

nature of acquisition.

To input a match between two LIDAR points that are geometrically close but temporally

spaced, the detected difference vector must be considered relative to LIDAR EO at the time of

3The External Orientation (EO) of a camera refers to its position T and orientation R (by extension, the position
and orientation of the platform). The Internal Orientation of a camera refers to the function ξ needed to compute
the theoretical image observation from viewing-ray vector (by extension, all parameters describing the sensors
embedded on the same platform, and their mounting one with each-other: lever-arm & boresight matrices).
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measurement of one of the two points.

The following methods (1-4) permit the matching of LIDAR points.

1. [73] suggests to first rasterize the pre-processed LIDAR point-cloud, then apply raster-

based point detection and matching algorithm such as SIFT.

2. Target could be placed by the operator on the ground, and be detected within point-

cloud.

3. Cloud-to-cloud registration algorithms such as ICP can be applied on two small point-

cloud samples representing the same object, in order to find a correspondence. Adapted

versions of the ICP algorithm have been used in [59] and [58] for data adjustment.

4. [62] proposes performing the cloud sample registration with a neural network.

4.2.5 Tie-Point to LIDAR point: Link Photo-LIDAR

Close photogrammetric-laser scanning integration needs links between photo and LIDAR data.

This link could be established between a point acquired by the LIDAR and the corresponding

2D point in an image. The methods previously described for homologous point registration

can be adapted, in particular for the use of rasterized point-cloud [83].

Another method to match a 3D point with its corresponding 2D point on a photo is by using

building roof vertex corners. This shape is characterized by the exact intersection of three

planes (usually oblique). In the pre-processed point-cloud, the three planes could be fit with

robust algorithms and then intersected. In the image, the 2D point is the over-intersection of

three lines.

4.2.6 Tie-Point to LIDAR point cloud: Link Photo-LIDAR

[61] proposes to match tie-points (or points from photos computed by dense matching) to the

LIDAR point-cloud. The proposed link aims to constrain the tie-point to be on the surface

described by the LIDAR point-cloud (for clarity in the following explanation, we will consider

this surface to be close to horizontal). This constraint acts perpendicularly to this LIDAR point

cloud surface, i.e. vertically (represented by a double arrow in the last column of Table 4.2).

The tie-point could thus slip horizontally on this surface.

Due to the intersection geometry, a tie-point in airborne photogrammetry is generally more

precise in planimetry than in altimetry. This implies that altimetry could easily be modified

by other information, such as the constraint of lying on a (close to) horizontal surface. The
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4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6

Image-
Image

Plane-Plane Point-Patch Point-Point 2D Point-3D
Point

Tie-Point -
Point-cloud

SIFT, (robust) Point to 0. Manual point selection Dense

SURF, plane-fit closest 1. rasterize LIDAR point-cloud matching

ORB, surface and apply SIFT, SURF, etc.

KAZE, 2. target

etc. 3. ICP 3. Plane

intersec-
tion

4. Neural Network

Table 4.2. Differents type of links for Photogrammetry, Laser-Scanning and Photo-LIDAR fusion

corollary of this property indicates that this constraint does not bring much information. The

image-point to LIDAR-point link 4.2.5 is thus preferable for photo-LIDAR fusion because it

contains more information.

4.3 Methods and models

The links described in section 4.2 will be used as additional constraints in a Bundle-Adjustment

in order to determine the most probable values of the so-called parameters, describing the

mapping process. The choice of the parameters is an extremely important part of Bundle-

Adjustment design (4.3.1) together with observation models 4.3.2, 4.3.3, 4.3.4 and 4.3.5 is the

relation between the measurements (or observations) to the parameters.

4.3.1 Parametrizing variables

The first parameters to be considered are the 3D points on the ground, as well as other terrain-

object modelling parameters. For example, the primitive geometrical feature of point P on

Figure 4.1).

The trajectory could be described by the position and the orientation of the IMU at each
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IMU

LIDAR

Camera

Figure 4.1. Description of the complete trajectory based on camera pose parameters only. No photos
are taken at time t . Γt is not a parameter but could be computed from Γi and Γ j via interpolation of

double differences

IMU measurement. However, this will lead to a tremendously high number of parameters to

determine, and thus to a high complexity. We propose to parametrize the trajectory only by

using the position and the orientation of the camera while a photo is taken.

The position T (camera perspective center in local frame) and the orientation R (from camera

to local frame) of the camera are aggregated into the matrix Γ ∈ SE3 using homogeneous

formalism (Equation 4.1).

Γ=


R T

0 0 0 1



−1

=


RT −RT T

0 0 0 1

 (4.1)

The entire trajectory has been pre-processed using the INS/GNSS integration (top of Figure 4.1).

This pre-processed trajectory Γ̃ is subject to time dependent errors that must be corrected in

the Bundle-Adjustment. This pre-processed trajectory will act as a measurement between two

successive poses by virtue of relative orientations (Sec. 4.3.3), and allows the determination of

the position and the orientation Γt of the camera at any time t between two poses. This Γt is

related to the position and the orientation of the LIDAR sensor by the lever-arm and boresight

matrix encapsulated in the SE3 matrix Γbs .
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4.3.2 Camera model: collinearity equation

The camera model is based on a corrected pinehole camera model: a tie-point P projects4 to

the image observation `t p on a photo. Γ describes the position and orientation of the camera

at the time of the photo.

`t p = ξ
(
π

(
Π̀ Γ

P

1

))
(4.4)

4.3.3 Aerial control

The position measurement acquired by the embedded GNSS antenna (or INS/GNSS integra-

tion point) must be translated to the camera with the lever-arm −→a (from GNSS antenna phase

center or IMU-centre respectively to camera perspective center in camera frame).

`GN SS = Π̀ Γ−1

−→a
1

 (4.5)

The IMU position and orientation Γ̃ computed by the pre-processed IMU trajectory can also be

input as measurements by virtue of relative measurements [131]. Γ̃i and Γ̃ j correspond to IMU

pre-processed trajectory for two consecutive poses i and j , whose camera pose parameters

are Γi and Γ j .

4The collinearity equation 4.4 needs a so-called projection matrix Π̀, whose aim is to remove the last unitary
coordinate used by homogeneous coordinates formalism.

Π̀=

1 0 0 0

0 1 0 0

0 0 1 0

 (4.2)

The projection function π : R3 → R2 models the pinhole camera model while the function ξ : R2 → R2 models
the camera interior orientation: effect of the principal distance, principal point, skewing parameters, radial and
tangential distortions.

π : R3 → R2X

Y

Z

 7→ 1
Z

[
X

Y

]
(4.3)
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Note that this method of relative orientation permits the removal of the boresight matrix

between the camera and the IMU.

Γ̃i
−1
Γ̃ j = Γi

−1 Γ j (4.6)

The relative observations are weighted accordingly to their precision computed with [131].

4.3.4 LIDAR model

While images are acquired at discrete moments (low frequency < 1 H z), LIDAR measurements

are acquired continuously (high frequency > 20kH z). The measurement `LI D AR acquired

at time t must be associated with the pose determination Γt . The pre-computed IMU po-

sition/orientation determination from IMU measurements Γ̃t must be corrected with the

knowledge of the camera pose preceding (of index i ) and succeeding (of index j ) the LIDAR

observation. The ratio τ ∈ [0,1] quantifies the time difference between the lidar measurement

event and the image i . It is null when the lidar measurement time coincides with photo i and

one when the lidar measurement time coincides with photo j .

τ= t − ti

t j − ti
(4.7)

This ratio τ permits the interpolation5 of the double-differences of relative orientations com-

5The interpolation of SE3 matrices are performed in the tangent-space of SE3 denoted se3. The
[
•
]
⊗ operator

transforms a R6 vector into an element of the tangent-space se3.

[
t

ω

]
⊗ =



tx

ty

tz

ωx

ωy

ωz


⊗

=
[

[ω]× t

01,3 0

]
=


0 −ωz ωy tx

ωz 0 −ωx ty

−ωy ωx 0 tz

0 0 0 0

 (4.8)

The function l og is defined as one of the reciprocal function of expm

([
•
]
⊗

)
where expm is the function expo-

nential for square matrices: expm(M) =∑
n∈NMn with M0 = I . A method to compute log is proposed in [149]
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puted from the camera EO and IMU measurements.

Γt = Γi · expm

(
τ

[
log

(
Γi

−1 Γ j Γ̃ j
−1
Γ̃i

)]
×

)
Γ̃i

−1
Γ̃t (4.10)

The lidar measurement `LI D AR (position of the point in the LIDAR sensor frame) could be ex-

pressed in the frame of the camera due to the boresight/lever-arm matrix Γbs from the camera

to the LIDAR sensor. This Γbs could be known from previous calibration, or re-determined in

the Bundle-Adjustment.

`LI D AR = Π̀ Γbs Γt

P

1

 (4.11)

This approach is inspired by [60] and [59], but is more rigorous as the 6 components of the

trajectory (3 position and 3 orientation) are considered together (using lie-group formalism

and theory).

4.3.5 GCPs

The GCP observation model is trivial as it relates directly the parameters P of a given point on

the ground to a direct measurement of this same point with terrestrial independent methods

(terrestrial GNSS, tacheometry, etc.).

`GC P = P (4.12)

4.3.6 Bundle-Adjustment

The real measurements related to the observation models presented in 4.3.2, 4.3.3, 4.3.4 and

4.3.5 are subjects to inherent errors due to the sensor and measurement processes.

∀Γ ∈SE3,expm

([
log (Γ)

]⊗)
= Γ (4.9)
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Figure 4.2. Test-site. Red triangles represent the GCPs, blue spheres represent links between
Photogrammetry and LIDAR i.e. point on the ground measured both by LIDAR and on photos

The observations are going to be confronted with each other in an optimization process called

Bundle-Adjustment in order to determine the most probable value of the parameters. In the

scope of this work, the least-square criterion has been used, but other criterions (more robust

ones for example) could be used.

4.4 Results

A typical application for the proposed method of LIDAR/Photo data fusion is airborne map-

ping. The following test on orientation improvement with respect to low-cost INS-GNSS

attitude determination has been set up in order to study the benefit of photo-LIDAR links.

We propose the following practical benchmark. We embark high performance aerial control

and navigation sensors on the same platform as low-cost IMU (UAV-LIDAR) sensors and fly

them on a helicopter at altitude and speed mimicking UAV flight. Then, we study the gain on

orientation with respect to the reference. We hypothesize that there is more room for progress

for LIDAR sensor miniaturization than for IMU. This justifies the use of the same LIDAR sensor

for experimenting and ground-truthing, while two different IMU will be used.

The chosen test site is situated in a hilly area at the corner of five towns: Bremblens, Romanel-

sur-Morges, Aclens, Vufflens-la-Ville and Bussigny (VD, Switzerland). It presents a variety of

terrain types: bare ground, crops, forest, and industrial buildings, and it is also crossed by

roads, train railways and a high-tension power line.
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The N-S extension of the mapping area is 1.6 km while the E-W extension is 1.7 km (Figure 4.2).

The sensors were embedded on a helicopter as described in [32]. The flight velocity was about

13 m/s (min: 8 m/s, max: 18 m/s) which is compatible with the velocity of a quadcopter or a

fix wing drone. The flight height was between 250 m and 300 m above ground. The following

subset sensors was used in this study.

• Camera: Phase One frame digcam IQ180 with a sensor of 10328×7760 pi x. The field of

view is 52◦×44◦ [123].

• Laserscanner: Riegl VQ480U, using a rotating polygon mirror technology. The datasheet

characteristics are 25 mm of accuracy with a Laser Beam Footprint of 9 mm at 300 m

[134].

• IMU: IXblue AIRINS navigation grade IMU. The datasheet characteristics are 0.01◦/hr

for the Drift, and 0.005◦/
p

hr for the noise [72].

• GNSS receiver: Javad TRE-G3T dual frequency and muti constellation6 receiver.

• IMU: a low-cost MEMS-IMU (NavChip V1/2011, Thales) mounted on a gecko board [81].

The datasheet characteristics for the drift in run bias stability is 15◦/hr while switch-on

bias variation is not specified. The noise is estimated to be 0.3◦/
p

hr .

6GPS, GLONASS and Galileo were used, although other constellations are possible in a firmware option
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4.4. Results

Figure 4.3. Point-Cloud section centered on a powerline. Ground truth point cloud (blue) has been
computed using the Tactical Grade IMU trajectory. The point-cloud resulting from fusion of

photogrammetry and LIDAR (yellow) uses consumer grade IMU and should be compared to the
point-cloud using the same IMU without fusion (pink).

Ground Truth point-cloud (in blue on Figure 4.3) has been computed from LIDAR data using

LIEO [143] and the trajectory given by the navigation grade IMU (AIRINS) together with GNSS

measurements. The same method has been used to compute the point-cloud that would have

been produced with the consumer grade IMU (in pink on Figure 4.3).

This generated point-cloud originated directly from the INS/GNSS trajectory, is subject to

time-dependence errors as analysed in [32] and [161]. Figure 4.3 represents the point-cloud

acquired on an overlap zone: the same object has been measured in two different flight-lines

(thus, at two different moments in time). The ground truth point-cloud is coherent (blue),

while the point-cloud generated with the consumer Grade IMU shows that the same object

duplicated (pink).

The reference point-cloud data permits the simulation of 27 links between LIDAR measure-

ments and image observations (corresponding on the terrain to the blue dots on Figure 4.2).

In a practical application, these links would have been determined based on the methods

described in 4.2.5. Observations from the camera, the LIDAR, GNSS and consumer grade

IMU have been processed together in a Bundle-Adjustment renforced with these links as
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1 km
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True error in cm
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Figure 4.4. Difference between the generated point-cloud and the Ground Truth in East, North and Up
produced using the trajectory of the consumer Grade IMU without (first row) and with (second row)

fusion with photogrammetry.

additional observations and 11 GCPs. The resulting point-cloud (in yellow on Figure 4.3) is

self-coherent, unlike the one generated without fusion of photos (in pink on Figure 4.3). It has

been compared to the Ground Truth. Figure 4.4 displays the absolute errors in point-cloud

due to orientation errors of low-cost IMU (1 uncalibrated unit) after INS/GNSS fusion. The

adjusted point-cloud (after fusion with photo) is displayed in the lower portion of the same

figure. It can be seen that on the overlapped areas, the orientation errors were mitigated, so

the vertical (and also the planimetric) errors are reduced below 15 cm. The errors in resulting

DTM are likely to be even lower (< 10 cm) due to the effect of averaging.

The benefit of the fusion with photogrammetry is quantified by comparing the distance

between the Ground Truth and the produced point-cloud, both without (first row of Figure 4.4)

and with (second row of Figure 4.4) photogrammetric fusion. The improvement ratio of the

fusion can be defined as the ratio between the true-error of the results of the fusion and the

true-error of the results without fusion (where the true-error is computed as the distance from

Ground Truth). This ratio is equal to 1 if the fusion brings no improvement, is below 1 if the
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fusion worsens the results, and is above 1 if the fusion mitigates the orientation errors. The

improvement ratio varies with the location on the terrain. For example, on the area shown on

Figure 4.3, the improvement ratio is approximatively 5. Figure 4.5 is the histogram of the ratio

for each LIDAR points of the survey. The quantile at 0.5 % of the ratios is 1/2 and the quantile

at 99.5 % is 7. Thus, 99% of the ratios belong to the interval [ 1/2 − 7 ]. The ratio is inferior to

1 only for less than 7 % of the points. Indeed, these points for which data-fusion worsen the

results belongs to areas which are far from any Photo-LIDAR link. The geometric mean of all

ratios is 2. This shows that globally, the fusion between photogrammetry and LIDAR greatly

improves the precision of the final point-cloud. Further analysis has been proceeded with

the trajectory computed from a SIMU (Synthetic IMU) composed from 4 calibrated IMU as

described and analyzed in [32] and [161]. The improvement ration of the fusion of SIMU with

LIDAR and photo is inferior (1.75) to the improvement ration of a single IMU with LIDAR and

photo. The benefit of photo-LIDAR fusion decreases as the quality of the IMU increases.

Figure 4.5. Histogram of improvement ratio for all acquired points. 99 % of the values are represented
in blue.

4.5 Conclusion

We have proposed a new method for GNSS, IMU, LIDAR and photo data fusion utilising

strong correspondences between photo and LIDAR as additional observations in a Bundle-

Adjustment. The additional information provided by photogrammetry permits the improve-

ment of the absolute trajectory determination over the period of time between photos during

which relative IMU observation are self-coherent, and thus builds a point-cloud with smaller

geometrical deformations. Experiments are performed on real data, but with simulated corre-

spondences between photo and LIDAR observation (links), showed that even a small number

of these links can globally improve the absolute 3D point-cloud precision by a factor of 2.

With the long awaited miniaturization of LIDAR sensors, the proposed method could have an
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important impact on drone LIDAR mapping by reducing IMU volume and weight, improving

the geolocalization and thus increasing the area that can be mapped.

4.6 Future outlook

This study raises the need for accurate automated links between photo and LIDAR data. It

focuses on points but the presented fusion method could be extended with different links

between Photo and LIDAR based on other geometrical such as lines. Indeed, a line could

be detected either in a pre-processed point-cloud (via plane intersection) or with images (as

in Figure 4.6 from [34]). [83], [30] and [155] give the theory for line-based photogrammetry

while [126] proposes a method of image registration with respect to point-cloud of a particular

type of line: Contour Cues. A preliminary study of line-based Photo-LIDAR fusion has been

presented in [34].

The presented approach is based on a pre-processing of IMU data to generate a trajectory. It

aims to correct the time dependent trajectory errors up to a certain extent. The integration

of IMU data could be more closely achieved from Photos and LIDAR data with the help of

Dynamic Network [43].

Figure 4.6. Line as a link between Photo and LIDAR data

Finally, this method could be applied using different camera mounts (for example, an oblique

camera or an horizontal camera could help determining the azimuth of the system), different

types of camera (fish-eye camera) on different platforms (terrestrial mobile mapping handle
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by robots or humans).

4.7 Appendix: Precision assessment of plane intersection method

for Image-LIDAR matching

Points determined via plane-intersection are well defined, in particular if the intersection is

favorable (when the plane intersection is close to a right-angle). The aim of this annex study is

to assess the precision of such method to georeference images on a LIDAR point-cloud. The

point cloud representing the city of Fribourg (FR, Switzerland) has been acquired by LIDAR

with GNSS and tactical grade IMU embedded on a helicopter. In this study, the generated

point-cloud is considered as a ground-truth. The aim of this study is to georeference the

536 photos taken by a camera embedded on the copter without any priors. The covered

area is ' 2.2 km2 with an average Ground Sampling Distance (GSD) of 3.7 cm. For this task,

66 GCPs have been created from the LIDAR point-cloud. The first method to create these

GCPs was manual (interesting points have been selected by an experimented user in a point-

cloud visualizer software, first column of Table 4.3). The second method is based on plane

intersection (third column of Table 4.3). The planes have been fit with L1 norm minimization,

and then intersected. If more than 3 planes intersect (maximum 4), the intersection point

have been determined by least-square estimation.
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Manual selection Point on photo Plane (over-)intersection

Table 4.3. 4 examples of photo-LIDAR matches

After photogrammetric processing, the GCPs residuals are computed as the difference between

the 3D coordinate extracted from the point-cloud and their adjusted values. Their histograms
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are displayed on Table 4.4 (first raw). In order to improve the results, the GCPs generating the

highest residuals have been removed. Only the best 87% have been kept (second raw of Table

4.4).

Manual selection Plane (over-)intersection

A
ll

p
o

in
ts

σx y = 20cm σz = 13cm σx y = 7cm σz = 5cm

87
%

b
es

tp
o

in
ts

σx y = 11cm σz = 7cm σx y = 5cm σz = 3cm

Table 4.4. Performance evaluation

The suppression of the 13% worse points improve the precision only by a factor of 1.7 whereas a

rigorous determination of the GCPs coordinates by plane intersection permits an improvement

of the precision by a factor of 2.5.
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5 Mapping GNSS restricted environ-
ments with a drone tandem and indi-
rect position control

The first two parts of this thesis study photogrammetric and LIDAR methods with sensors

embedded on a single platform. The aim of this last part is to consider collaborative methods

with two platforms. This chapter in particular focus on two UAVs forming an aerial-aerial

mapping tandem. This chapter is originated from the following publication.

E. Cledat and D. A. Cucci. Mapping GNSS restricted environments with a drone tandem

and indirect position control. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial

Information Sciences, vol. IV-2/W3, pp. 1–7, 2017

The contribution of E. Cledat was mainly to suggest the concept and to adapt the photogram-

metric simulation software presented in Chapter 3 to predict the expected precision while the

contribution of D. A. Cucci was to prove the technical feasibility of this idea.

This original publication permits to launch the DoDo project: DrOne Duo for mapping GNSS

denied area, founded by InnoSeed ENAC grant and leads to the results described in [75] and

[148].

Abstract

The problem of autonomously mapping highly cluttered environments, such as urban and

natural canyons, is intractable with the current UAV technology. The reason lies in the absence

or unreliability of GNSS signals due to partial sky occlusion or multi-path effects. High quality

carrier-phase observations are also required in efficient mapping paradigms, such as Assisted

Aerial Triangulation, to achieve high ground accuracy without the need of dense networks

of ground control points. In this work we consider a drone tandem in which the first drone

flies outside the canyon, where GNSS constellation is ideal, visually tracks the second drone

and provides an indirect position control for it. This enables both autonomous guidance
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and accurate mapping of GNSS restricted environments without the need of ground control

points. We address the technical feasibility of this concept considering preliminary real-world

experiments in comparable conditions and we perform a mapping accuracy prediction based

on a simulation scenario.

5.1 Introduction

Unmanned Aerial Vehicles (UAVs) are becoming an important tool for surveyors, engineers

and scientists as the number of cost-effective and easy-to-use systems is increasing rapidly

[39]. These platforms nowadays offer an alternative to conventional airborne mapping every

time small or cluttered areas have to be mapped with centimeter level resolution. Many

successful applications have been reported, such as in repetitive surveys of buildings, civil

engineering structures or construction sites, land monitoring and precision farming.

One important limit of current UAV technology is the dependency on GNSS coverage. Indeed,

mapping missions are typically planned offline defining a set of waypoints in terms of abso-

lute coordinates; the autopilot then closes the position control loops employing the position

observations from a GNSS receiver (manual control is possible, but the quality of the overlap

between the photos is more difficult to ensure). We cite the eBee Plus platform [142], from

senseFly Ltd, a market leader in drones for professional applications, for which its ground

control segment does not allow to take off if the GNSS reception is degraded. While certain

platforms could also be flown in manual mode, the actual improvement in mapping produc-

tivity comes with a high degree of platform autonomy, as less qualified personnel is required

and the scale of the operation can be wider.

The dependency on the GNSS reception limits the applicability of UAV based mapping in

many interesting scenarios, such as natural and urban canyons, in which the sky is in large part

occluded by natural or artificial structures. In these situations the quality of the constellation

geometry is poor and severe multi-path effects can occur, introducing shifts in the position fix

that could result in crashes, making GNSS based navigation extremely risky. In the worst case

it is even impossible to compute the position fix. Examples of such sites, which require regular

inspection for assessment, safety and renovation planning, are mountain roads, bridges,

rock-fall protection galleries, dams, see Figure 5.1.

One very active research topic in UAVs and, more in general, in robotics regards the de-

velopment of visual-only or visual/inertial navigation systems which would allow to guide

autonomous platforms in an unknown environment without the dependency on the GNSS

coverage. Despite the number of promising solutions published in scientific venues, see for

instance [50], the technology readiness level of such systems is still rather low, and no such

general system is implemented in commercial products. One reason is that it’s practically
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Figure 5.1. Rockfall protection structures and bridges in a 300 m deep gorge (Viamala, Thusis,
Switzerland), where the GNSS reception is absent or unreliable for autonomous UAV guidance.

impossible to formulate guarantees about the performances of such navigation systems.

Even if such GNSS-independent navigation systems were available and well performing in

arbitrary environmental conditions, high quality GNSS carrier-phase measurements are still

required to perform high accuracy photogrammetry. Indeed, the far most common approach

to image orientation in UAVs, Aerial Triangulation (AT), also referred as Indirect Sensor Ori-

entation (ISO), is solely based on image observations, yet the process of establishing a dense

network of ground control points (GCPs) is required to ensure global orientation and 3D point-

ing accuracy, especially in cluttered scenarios where a satisfactory overlap between the photos

is sometime difficult to achieve. The process of establishing ground control is extremely time

and money expensive in absence of GNSS coverage, as conventional topographic methods

based on total stations have to be put in place. Second, the topology of such scenarios can

make the accessibility of certain areas very impractical and even dangerous for the operators,

see again Figure 5.1.

It is a well known fact that the requirements on GCPs can be eliminated in image-block

scenarios if precise absolute or relative aerial control is introduced in the bundle adjustment

(even if this aerial control is not operating for some parts of the flight), in the so called Assisted

Aerial Triangulation (AAT) fashion [130, 105, 48]. Indeed, the recent evolution of GNSS antenna

technology enabled the usage of multi-frequency and multi-constellation GNSS receivers on

board of commercial MAVs [102, 142] and integrate the derived “geo-tags” (i.e., aerial position
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Figure 5.2. Schematic representation of the proposed method. Red shading represents field of view of
the cameras embedded on D1 and D2 drone, blue lines represent image measurements, black dotted

lines represent phase GNSS observation.

control) within the established processing software, e.g., [151].

In this work we propose a novel mapping concept, based on two UAVs, that enables the

autonomous acquisition of aerial images in cluttered environments where the GNSS reception

is degraded, such as deep gorges, natural and urban canyons. The first drone flies above

the canyon where the GNSS reception is good. The second drone autonomously flies in the

gorge employing position observations provided by the first drone. These are determined in

real-time by tracking multiple optical signaling devices (e.g., high power LEDs) mounted on

the second drone. Via the concept of indirect position control, the proposed mechanism also

allows to georeference the aerial images taken by the second drone, and thus enables accurate

mapping without the need of establishing dense networks of ground control points.

The idea of cooperative mapping is not new in the literature, yet it is often focused on strategies

to divide the work and perform it in parallel [9, 87]. Cooperative localization instead consists
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in having a tight link between the mapping robots that permits them to achieve a shared

notion of each one’s position. In [159] three terrestrial robots are equipped with cameras and

an optical target and move in a so-called “Leap-Frog” pattern: one robot is moving while the

other two are staying stationary, then, the role of the robots is exchanged. This path permits

to build a triangulation network similar to the ones used for mapping entire countries with

theodolites in the nineteenth century [90]. This cooperative principle is used for terrestrial

robots, for example in [98] where olfactory sensors (air quality sensors) are embedded on

the robots, for underwater vehicles [101] and for a team of UAVs [63]. In this last case, if the

precision of the positioning is not satisfactory, one UAV could land, and act as a fixed beacon.

[125] raises the problem of the complexity of dealing with a numerous team of cooperative

robots.

Recently [166] introduced a hierarchy between the robots. Certain robots (called leaders) have

better localization capabilities and higher quality sensors and can assist the robots which

do detailed mapping (child robots) in localization. Such hierarchy exist also in the mapKITE

project1, where tactical grade navigation instruments are placed on a terrestrial vehicle, along

with an optical target. This target permits to track the moving terrestrial vehicle from an UAV

and to enhance its aerial mapping accuracy [42, 108].

In this work we build on cooperative localization ideas and propose a solution to replace

GNSS signal both in real-time, for guidance and in post-processing, for accurate mapping

without ground control points. After presenting in detail the concept, in Section 5.2, we will

discuss how the main technical difficulties could be tackled based on real world preliminary

experiences. In Section 5.4 we will present the results of mapping accuracy predictions using

different flavours of indirect position control in a conventional bundle adjustment scenario.

We conclude the paper with some remarks and hints towards the real implementation.

5.2 Indirect Position Control

In this work we propose a novel mapping system suited for operations in cluttered outdoor

environments where natural or artificial structures occlude the line-of-sight to GNSS satellites.

The system is based on two UAVs, refer to Figure 5.2. The first one, from now on referred as D1,

performs the actual mapping mission, acquiring high resolution nadir and possibly side aerial

images. D2 carries high accuracy navigation sensors. It follows D1 and it provides position

observations for D1 in real-time. D2 also captures nadir images to be used in post-processing

along with the ones acquired by D1. A detailed description follows.

D2 flies in line of sight with respect to D1, typically, but not necessarily, above it. D2 flies high

enough such that no environmental structure occludes the sky and the GNSS constellation

1"mapKITE: EGNOS-GPS/Galileo-based high-resolution terrestrial-aerial sensing system".
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is ideal. The payload of D2 includes a high grade INS/GNSS navigation system, such as, for

instance, the SPAN-IGM-A1 [114]. Such systems nowadays weight around 0.5 kg and they are

suitable for rotary-wing UAVs. The position and the orientation of D2 are thus available with

high precision in real-time (RTK GNSS can be employed, but it is not necessary). The payload

of D2 also includes a high resolution machine vision camera to acquire nadir images, store

them, but also make them available to be processed by an on-board companion computer.

Multiple high power LEDs are mounted in a known, asymmetric, 3D pattern on the upper part

of the D1 frame. These LEDs are visible from very high distance in camera images, as we will

show later on, and are robustly identifiable with simple image processing algorithms. As the

3D LED pattern is known, the relative position and orientation of D2 with respect to D1 can

be determined solving the Perspective-n-Point problem [167]. For this, the intrinsic camera

calibration parameters must be known, yet, as we will discuss later on, the quality of such

calibration is not determinant for the real time processing.

Once the relative position of D2 with respect to D1 is known, the absolute position of D1 can

also be determined in real time: we compose the absolute position and orientation of D2 given

by the INS/GNSS navigation system with the relative information from the visual tracking

system. The solution is then transmitted to D1 which uses it as a position observation in the

autopilot navigation filter, as if it was computed by a conventional GNSS receiver. This is what

we call indirect position control.

Once an absolute position fix is available, D1 can perform waypoint based navigation, and

thus execute a conventional mapping mission autonomously. Such a mission can be planned

beforehand by means of a 3D mission planning software, such as [56]. D1 is equipped with

conventional nadir camera suited for UAVs, such as the Sony NEX-5, as in [145]. Whereas

the nadir camera is required, as it will become clear in the following, a side camera can be

optionally installed in case the user wants to map facades or slopes, see again Figure 5.2. A

low-cost IMU can also be installed on D1 and it provides relative attitude control in post-

processing, as in [16], as long as some robustness in case of temporary loss of position fixes

from D2.

In order for this concept to work, D2 has to follow D1, such that D1 is always in line-of-sight.

This is critical as if the line-of-sight is lost, also the position fix for D1 is lost, possibly leading

to accidents. The simplest strategy is such that D2 generates for itself a stream of waypoints

always on the vertical of D1. D2 could also send commands to D1 to control the execution of

the mission plan, such as pause it, or abort, in case for instance line-of-sight is at danger or

speed is to high.

Once the mapping mission has been performed, data has to be post processed in order to

obtain the final mapping products. In the following we propose a post-processing strategy
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that can be performed with the currently available commercial software.

As a first step, the INS/GNSS raw data from D2 is fused by means of an offline Kalman smoother,

such as the one available in commercial INS/GNSS processing software, as POSPac [7]. This

gives centimeter level position (GNSS raw observations are processed in carrier-phase differ-

ential mode) and orientation for D2, the quality of which depends on the available IMU.

Next, the two streams of nadir images, from D1 and D2, are processed together for automatic

tie-point detection. There will be thus two kind of matches: i) features that are matched only

between images belonging to the same stream (i.e., only seen by the D1 or D2), and, ii) features

that are matched in both streams, or, in other words, features that are identified at least in an

image from D1 and in an image from D2. Matches of type ii) are the ones that allow to transfer

the global position control between D1 and D2, which we call off-line indirect position control.

Image observations from D1 and D2, and absolute position and orientation control for the

D2 ones, obtained from INS/GNSS (we assume that images from D2 are time-tagged via the

GNSS receiver) are then combined in a conventional bundle-adjustment software capable of

Assisted Aerial Triangulation (AAT). This step yields the nadir mapping products.

As we will discuss in Section 5.4, there are cases in which a limited number of common

tie-points is available between D1 and D2 images. In this case, the precise image positions

of the signaling devices fixed on D1, in D2 images, can be also introduced in the bundle-

adjustment, as extra collinearity observations. Also, relative orientation control obtained

pre-processing D1’s IMU should be considered, as described in Chapter 1, which may require

custom adjustment software.

Once the positions and the orientations for the D1 nadir camera are known, they can be used

as position and orientation control for the D1 oblique cameras, once the proper boresight and

lever-arm have been applied. This allows to run the conventional Assisted Aerial Triangulation

(AAT) pipeline for these images as well. Nadir and side images can also be processed together

for increased accuracy, provided that the bundle-adjustment software can handle boresights

and lever-arm between different cameras.

The proposed mechanism allows to perform autonomous mapping missions in environments

that are intractable with the currently available technology. We will discuss certain critical,

yet technical details in the next section. The proposed adjustment scheme also allows to

obtain accurate georeferenced mapping products even in the absence of absolute position

control for D1. In Section 5.4 we will discuss different adjustment scenarios and we will derive

conclusions regarding the precision that can be expected for both mapping products.
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5.3 Technical Feasibility

Here we discuss possible issues and point towards technological solutions that have worked in

the past in similar scenarios.

5.3.1 Tie-points Matched in Both D1 and D2 Nadir Images

As presented in Section 5.2, indirect position control form D2 to D1 is obtained when the

same environmental feature is seen from both UAVs’ nadir camera. As D2 alone can accurately

georeference world features seen in its own images via AAT, these points can act as ground

control points for D1, if they are also seen in D1’s nadir images. Thus, the key for indirect

position control is that enough image points are correctly matched between D1 and D2 nadir

images.

To confirm that such matches are possible and indeed common, even though images are

captured from different elevations and orientations, we examine the tie-points extracted

with Pix4D mapper in a standard, UAV based, photogrammetric flight over a rural area. See

Figure 5.3. North-South flight lines are flown at an elevation of 150 m, while East-West ones at

190 m. The average GSD was 4.55 cm. A total of 1885 usable tie-points were extracted, out of

which 1746 (92.63%) were seen from both elevation, while only 139 (7.37%) where matched in

one image stream only. The density was 130 tie-points per hectare.

From Figure 5.3 it is possible to see that common tie-points are approximately uniformly

distributed in the considered area (the red dashed polygon) and that there is no area in which

these points are missing. We recognise that the considered flight depicts a nearly-optimal case,

and that the elevation difference between crossing flight line may not reflect the one needed

in the environments considered in this work. In the following we will consider a much lower

percentage of common tie-points and we will show how the proposed method can work in

much more degraded scenarios.

5.3.2 Visual Tracking and localizing of D1 from D2

[75] describes an algorithm for tracking the 8 LEDs in the image of the camera embedded on

D2, and for determining the position of D1 in the camera frame of D2. The LEDs of D1 are

mounted on an asymmetrical pattern such that the distances between the LEDs could reach

65 cm. The distance between the two drones were up to 100 m, leading to a GSD of the camera

embedded to D2 of about 4 cm. The planimetric precision or the relative positioning between

D1 and D2 was 13 cm while the altimetric precision of this relative positioning was 65 cm.
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Figure 5.3. Planimetric position of tie-points. The black line are the UAV flight path. Yellow dots are
seen by both N-S and E-W flight lines, blue dots only from N-S or E-W flight lines.

5.4 Mapping Accuracy Prediction

In this section we formulate predictions on the mapping quality achievable with the proposed

method based on a simulated scenario.

We are interested in the precision of the tie-points 3D positions obtained in a conventional

bundle-adjustment scenario. The parameters describing the photogrammetric network are the

absolute poses of each drones (position and orientation), and the 3D position of each tie-points.

These parameters are concatenated together to form the state vector x . The observations

are: i) position and orientation control obtained from the D2 INS/GNSS navigation system

(post-processed in tightly coupled, carrier-phase differential mode), ii) image observations of

the tie-points in both D1 and D2 images, iii) (optionally) and image observation of the D1 LEDs

in D2 nadir images. These observations are concatenated together to form the observation

vector `. It is possible to build a function f wich could simulate ` knowing x : `= f (x). The

design matrix A is defined as the Jacobian matrix of f with respect to the state vector x , see

Equation 5.1. The observation models are well known, e.g., see [131].

A = ∂ f (x)

∂x
(5.1)

The covariance matrix Σx x of the parameters vector is obtained from the design matrix A and

the observations covariance Σ``

Σx x = (
AT Σ−1

`` A
)−1

(5.2)

The predicted tie-point precision is obtained from the proper diagonal blocks of Σx x .
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Figure 5.4. Contour lines of the canyon every five meters in height.

For this study case we consider an irregular, 350 m long canyon, up to 70 m wide and 100 m

deep. See Figure 5.4 for the isolines.

Both D1 and D2 cameras have a 16 Mp sensors (4912×3264 pixels), and a focal length of 16 mm

(≈ 3300 pix). Thus, the vertical field of view is 73◦, and the horizontal one is 53◦. In optimal

configuration, the precision of a tie-point observation in assumed to be a third of a pixel

(Chapter 1.9. of [78]) and the one of a LED observation could be considered as a tenth of a pixel

([75]). However, since the conditions of mapping for urban or natural canyons are not fully

controlled, we choose to input conservative values (factor 3) for the expected precisions of the

image observations of tie-points and LEDs. The standard deviation of the position control for

D2 is 2 cm in planimetry and 3 cm in elevation, which is compatible with GNSS carrier-phase

differential processing. For the position control, we considered a standard deviation of 0.012◦

for roll and pitch, and 0.074◦ for heading, as reported for the SPAN-IGM-A1 [114].

D2 flies between 110 m and 115 m above the canyon floor2, its ground sampling distance is

around 33 mm on the floor of the canyon, and the footprint of the image is around 110 m

(considered in the direction of the canyon). The forward overlap is around 90 %. D1 flies

between 36 m and 42 m above the canyon floor. The ground sampling distance of the nadir

camera is around 11 mm on the floor of the canyon, the footprint of these images is around

38 m (considered in the direction of the canyon). The longitudinal (i.e., in the direction

of the canyon) distance between two poses remain 10 m, but the drone does also lateral

displacements (i.e., perpendicular of the direction of the canyon). The overlap between two

successive images is up to 70 %. Two sides cameras are also embedded on D1. These cameras

are equivalent to the nadir one, and are rotated by 90◦. The distance from the canyon slopes

oscillates between 10 m and 35 m, so, the GSD varies from 3 mm to 11 mm and the average

2In a real site such as Via-Mala or dense cities, we expect a satisfactory GNSS satellite visibility for a drone at
100 m above the (natural or urban) canyon floor.
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Study case

SO
TA

ca
se

C
as

e
1

C
as

e
2

C
as

e
3

C
as

e
4

D1

σx 9 11 14 23 10

σy 9 11 15 14 10

σz 22 24 30 29 25

nb. pts. 299 255 481 538 543

D2

σx 27 29 34 29 27

σy 16 17 21 19 17

σz 36 38 45 47 39

nb. pts. 248 254 492 529 534

D12

σx 9 11 12

σy 9 12 12

σz 22 26 27

nb. pts. 520 539 15 0 0

Side

σx 32 32 42 34 31

σy 13 14 20 15 13

σz 15 18 27 26 18

nb. pts. 151 169 292 307 320

Table 5.1. Accuracy prediction of the tie-points representing the canyon floor, and the canyon slopes
(unit: mm)

overlap of the oblique images is around 40 %.

The simulation results are summarized in Table 5.1. The lines D1, D2, D12 and Side give the

precision and the number of, respectively, the tie-points visible by D1 nadir camera, D2, and

both. σx is the precision along x direction: perpendicular to the direction of the canyon, σy

is the precision along y direction: in the direction of the canyon, σz is the precision along z

direction.

The classical approach for airborne UAV photogrammetry would have been to have only

one UAV flying inside the canyon and equipped with INS/GNSS navigation system and one

or multiple cameras. This approach can not work due to the degraded GNSS constellation.

Nevertheless, we can pretend that high quality GNSS observations were available and consider

such case as a reference. (column SOTA case of Table 5.1). This case will act as a reference case

for comparing others cases.
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Figure 5.5. Tie-point precision as computed in Case 3. Poses are represented by pyramids (showing the
field of view). In orange, error ellipsoids of D2 tie-points, in purple, error ellipsoids of D1 tie-points, in
blue, error ellipsoids of D1 side camera tie-points. All ellipsoids are up-scaled by a factor 100. See the

white double arrow for scale (10 m for the environment, 10 cm for the ellipsoids).

We consider four different adjustment scenarios. In the first case (Case 1) several tie-points are

visible both by the upper drone, and by the lower one (line D12 of table 5.1). Most of these

tie-points are visible in at least two images of D2. It is thus possible to determine their position

thanks to D2, and they could act as GCPs for D1. The precision of D1 tie-points matches the

one of the SOTA case, meaning that the position and orientation control for D1 is fully replaced

by the indirect approach in this work. In highly cluttered environment, like urban or natural

canyon, the number of common tie-points visible both by D1 and D2 could be lower than in

Case 1. The lower the number of common tie-points is, the higher the standard deviation of

the tie-points is. The extreme case arises when there are less than 3 commons tie-points: the

system becomes unsolvable. The Case 2, is a middle case, between Case 1 and this unsolvable

case.

In Case 3, all the common tie-points are removed, see Figure 5.5. To make the system solvable

again, we introduce the image observations of the LEDs. These observations permit to substi-

tute all the common tie-points measurements between D1 and D2. The results are comparable

to the ones of case 1, for the tie-points we are interested in: the tie-points visible by nadir and
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side cameras of D1. This shows the importance of LED observations, which could substitute to

hundreds of common tie-points between D1 and D2 in difficult scenarios. Such observations

are always available in post processing, as D2 has to maintain D1 in the line-of-sight and uses

the LEDs to provide the real-time position fix. However, the x precision of the tie-points taken

by the nadir camera of D1, and the z precision of the tie-points taken by the side camera is

worse than in Case 1. This is due to bad determination of the roll angle of D1.

A final case is also considered in which we add another type of observation, more difficult

to achieve in practice, that is, D2 position in D1 images, as if LEDs were also placed on the

bottom of D2. The roll and pitch angle becomes more observable as these observation have

the effect of introducing position control with tens of meters of lever-arm (position control is

available for D2), and thus constraining also the D1 orientation. The results are comparable to

the SOTA case (except for the altitude whose precision is slightly worse).

5.5 Conclusions

This paper has presented a new technique for mapping highly cluttered environment like

natural or urban canyon. The principle is to have a cooperative mapping between two drones,

one flying high enough to receive GNSS signals, and localize the other one, flying in the

cluttered environment.

The visual link between the two drones has shown its importance first for guidance purposes

(to permit to guide the lower drone), second, for post-processing photogrammetric data. This

visual link permits to reach an accuracy comparable with the one it is possible to reach in non

GNSS-denied scenario.

In this work we have neglected all the important aspects related to intrinsic camera calibration

and boresights and lever-arms determination. We considered the cameras, the lever arm and

the boresight matrix to be perfectly calibrated. However, we argue that the intrinsic camera

calibration is also observable in the combined adjustment of D1 and D2 images, and that

lever-arm and boresights can be calibrated in dedicated flights as it is common in single drone

UAV-based photogrammetry. The only non-trivial lever-arms are the ones which relates D1

camera to the LEDs. However, this can be determined with millimeter level accuracy with

careful UAV fabrication.

We argue that the technological challenges behind the actual implementation of this methods

have been addressed in previous, related, experiments. The next step is the validation of the

concept in real-world applications.
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6 Compensating over- and underexpo-
sure in optical target pose determina-
tion

The chapter 5 presents an aerial-aerial mapping tandem involving two drones. This chap-

ter will present a subsystem for the terrestrial-aerial collaborative mapping project entitled

mapKITE, and described in [108]. Such a method permits to map the same object from two

viewpoints: side and above, and to embed heavy equipment on the terrestrial vehicle. This

chapter will focus on the visual link between the aerial vehicle and the terrestrial one and is

originated from the following preprint.

E. Cledat, M. Ruffener and D. A. Cucci. Compensation over-under exposure in optical target

pose Determination submitted to Journal of Pattern recognition, 2019

The contribution of D. A. Cucci was mainly to determine the target boundaries P̂ ′
i while the

one of E. Cledat was to use them to determine the position and the orientation of the camera

(which is intended to be embedded on the aerial vehicle) that see the target. The experimental

validation was performed by all three authors.

Abstract

Optical coded targets allow to determine the relative pose of a camera, on a metric scale,

from one image only. Furthermore, they are easily and efficiently detected, opening to a wide

range of applications in robotics and computer vision. In this work we describe the effect of

pixel saturation and non-ideal lens Point Spread Function, causing the apparent position of

the corners and the edges of the target to change as a function of the camera exposure time.

This effect, which we call exposure bias, is frequent in over- or underexposed images and

introduces a systematic error in the estimated camera pose.

We propose an algorithm that is able to estimate and correct for the exposure bias exploiting

specific geometric features of a common target design based on concentric circles. Through
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rigorous laboratory experiments carried out in a highly controlled environment, we demon-

strate that the proposed algorithm is seven times more precise and three times more accurate

in the target distance estimation than the algorithms available in the literature.

6.1 Introduction

Optical coded targets generally consist of a set of high-contrast geometric features (such as

lines, squares or circles), in which a code is embedded to exclude false matches and distinguish

multiple targets in a scene. Knowing the physical dimensions of the target and the camera

calibration allows us to determine from a single image the metric pose of a target relative to

the camera. Several target designs and detection algorithms have been proposed in the litera-

ture, such as ARToolKit [165], AprilTags [119], and ArUco [57], which have been successfully

employed in multiple applications, such as camera calibration, photogrammetry, augmented

reality, machine vision and robotics in general.

Target detection algorithms establish correspondences between the geometric features in

object space and their projections on the image plane. From these correspondences, the pose

of the camera relative to the target can be inferred. For instance, the main target feature in

ArUco is a black square on a white background; its four corners are localized by a sub-pixel

corner detector and the camera pose is determined by solving the Perspective-n-Points (PnP)

problem [167].

The accuracy of the camera pose depends on how precisely the critical target features can be

measured on the image. A major source of bias is the exposure time. Indeed, the apparent po-

sition of edges and corners may be different in long-exposed images because of the combined

effect of a non-ideal lens Point Spread Function (PSF) and pixel saturation. In Figure 6.1, we

compare two images of an ArUco target taken with two different exposure times: the apparent

size of the target is different in the two images and the target on the right seems to be farther

away from the camera. We refer to this effect as exposure bias, i.e., the systematic error in the

estimated camera pose that is a function of the exposure time.

Since saturation in over- or underexposed images leads to a loss of information, it seems

difficult to recover the true position of an image feature, such as a corner or an edge, just by

using the intensity of pixels in its vicinity. Therefore, image exposure has to be optimized

to avoid saturation. However, this is difficult in many cases because of unpredictable light

conditions, variable scene illumination as functions of time and space, and reflections on the

target surface. Moreover, auto-exposure algorithms are typically implemented at sensor level

to optimize either the overall scene exposure or the exposure of a predefined area, which does

not guarantee an optimal exposure of the target.
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Figure 6.1. Two images of an ArUco target taken from the same camera pose with different exposure
times, the underexposed image is on the left and the overexposed one on the right. The brightness of
the underexposed image has been enhanced. The difference between the apparent location of the top

and bottom edge is highlighted by red and blue lines.

In this work, we introduce a new optical target design and its corresponding pose determi-

nation algorithm that are not affected by either the exposure time or the illumination. The

proposed target design is shown in Figure 6.2 and it consists of a black ring over a white back-

ground; inside the ring, there are small white dots in which a code is embedded. The same

pattern is repeated in a fractal fashion to allow for multi-scale detection (e.g., from very far

or very near). In this design, the over- or underexposure affects the apparent thickness of the

black ring. However, this effect is orthogonal to the one that we obtain by moving the camera

farther or closer to the target, leading to a uniform scaling of the whole target and preserving

the proportions of every feature (see the purple and red arrows in Figure 6.2). Hence, we

can design an algorithm that exploits this effect to estimate and correct the exposure bias in

contour positions.

Many studies have investigated how to determine the camera pose from concentric circular

features. For instance, in [74], a method for camera calibration based on concentric circles

was presented, and another formulation was proposed in [1]. The geometric and algebraic

constraints related to the projection of concentric circles were discussed in [80]. In [42], the

authors addressed the issue of how to accurately locate the center of two concentric circles

based on their projections (non-concentric ellipses). However, all these works assume that the

apparent location of the circles on the image plane is not biased by the exposure. Here, we

propose a new algorithm for camera pose determination, derived from the well-known Bundle

Adjustment algorithm [158], that exploits the specific geometry of the target to estimate and
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Increasing
exposure

Decreasing
distance

Outer and
inner circles Fractal replica

Figure 6.2. The proposed target design. Overexposing the target results in a reduction of the apparent
thickness of the black ring (purple arrow), while increasing the camera distance leads to a uniform

scaling of the whole target.

compensate for any exposure bias in the localization of edges.

This work is organized as follows. In Section 6.2, we introduce the image processing pipeline

for our target design. Each step of the pipeline will be detailed in later sections: in Section 6.3

and Section 6.4 we develop a method to determine with sub-pixel precision the apparent

image location of the two concentric circles of the target, taking into account a non-ideal

lens PSF. In Section 6.5, we determine the camera pose by using the position of a set of

edge points and assuming that those are the projections of two concentric circles of known

diameter. In Section 6.6, we modify such method to compensate for the exposure bias, which

we link to the deviations in the apparent thickness of the black ring. In Section 6.7, we

validate our exposure compensation algorithm through acquired ground truth data, proving

its illumination invariance and the orthogonality between the distance effect and the exposure

bias effect.

6.2 Overview of the image processing pipeline

In this section, we summarize the steps required to determine the position and the orientation

of the proposed target relative to the camera.

1. The target is located in the image and its main features, the inner and the outer circle,

are coarsely identified. First, a pixel-level edge detection algorithm (e.g., Canny [27]) is

applied, then the elliptical contours are clustered in concentric couples. For each couple,

the distinctive target code is searched (see again Figure 6.2), and the two contours for
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which the code test succeeds are selected as the outer and inner target circle. This step

is described in detail in a previous work of the authors [42].

2. Two ellipses are fitted on the selected contours as in [49]. Then, by using the determined

parameters of the ellipses, a set of normal directions ~ni is analytically computed for a

set of equally spaced points P ′
0,i on the ellipses.

3. The apparent position of the edge along each ~ni is refined by employing the edge

formation model and the sub-pixel edge detector introduced in Section 6.3 and 6.4. The

result is a set of refined edge points P̂ ′
i .

4. The position and the orientation of the camera relative to the target are computed from

P̂ ′
i , without or with exposure compensation, as discussed in Section 6.5 and 6.6.

6.3 Edge Formation Model

In this section, we derive a closed-form model for the light intensity in the vicinity of black-

/white transitions (i.e., edges) of the target, as measured from the imaging sensor. This model

will be used in the next section to construct a rigorous sub-pixel edge detector.

Consider an arbitrary 3D point P on a black/white edge of the target and refer to Figure 6.3.

Each point on the target maps to a point on the image plane via a functionΠ(·) :R3 →R2, so

that P ′ =Π(P ). Π(·) accounts for the camera pose relative to the target, the lens distortion, and

the projection onto the image plane. Let now −→n be a unitary vector orthogonal to the edge at

P ′ and directed towards the white side of the edge. We define a reference frame with axes −→n
and −→m, such that −→n ⊥−→m, and with origin close to P ′.

If no significant blur is introduced by the lens system (i.e., the PSF is ideal), the black/white

transition occurs sharply on the image plane. More precisely, in the vicinity of P ′, the light

intensity i at coordinates (n,m) on the image plane is independent of m and it is given by

i (m,n) = i (n) = a1(n −nP ′)+b, (6.1)

where: a and b are two constants such that b is the light intensity of black areas and (b +a) is

the one of white areas, nP ′ is the n coordinate of P ′, and 1(·) is the unit step function.

However, black/white transitions are never sharp, due to the pixel sampling1 and the lens

property. Thus, the light intensity at each position of the image plane can be obtained by

1The pixel value of the pixels that receive the image of the black/white boundary is the average of the black and
white values (weighted by their surface) under the hypothesis that the PSF sigma is negligible compared to the
pixel size. See paragraph 1.9.3.1.1. of [78].
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Figure 6.3. A 3D edge point P maps to its unknown projection P ′ on the image plane viaΠ(·). −→n is
defined as orthogonal to the edge at P ′, while −→m is parallel to it.

the convolution of the intensity function i (m,n) with the lens PSF. We have taken into con-

sideration only zero-mean Gaussian PSFs as they are widely used to model lens systems of

common cameras. These PSFs are characterized by a two-dimensional covariance matrix Σ

that encodes the spread of a point light source on the image plane due to a non-ideal lens

system. The light intensity mediated by the lens system is given by:

i d(m,n) = i (n,m)∗ps f (m,n) = i (n)∗ps f (m,n) =
=

Ï
(τm ,τn )∈R2

i (n −τn) ps f (τm ,τn) dτm dτn =

=
∫

τn∈R
i (n −τn) φ(τn ;σ) dτm dτn , (6.2)

where φ(·,σ) is the one-dimensional Gaussian probability density function with variance

σ2 = Σnn . Here, we have regarded the light intensity i (m,n) as independent of m in a local

neighbourhood of P ′ because −→m is parallel to the edge, and we have considered the integral in

dτm as corresponding to the marginalization of m.
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By further expanding Equation 6.2, we obtain:

i d(n) = i (n)∗pfs(n) =
∫ ∞

−∞
(a1(n −nP ′ −τ)+b)

1

σ
p

2π
e−

τ2

2σ2 dτ

= a
∫ n−nP ′

−∞
1

σ
p

2π
e−

τ2

2σ2 dτ+b = a

2

[
1+erf

(
n −nP ′p

2σ

)]
+b. (6.3)

Equation 6.3 gives a closed-form expression of the expected light intensity at continuous

coordinates on the image plane. It involves four parameters: i) nP ′ , the actual edge position; ii

and iii) a and b, which encode the light intensity associated with black and white areas; iv) σ,

the component of the lens PSF in the −→n direction.

In the next section, we show how we can obtain a sub-pixel estimate of the image coordinates

of P ′ by fitting the model in Equation 6.3 to the pixel intensities in the image.

6.4 Subpixel Edge Position

In the following section, we consider the problem of determining the sub-pixel location of P ′

given that an initial guess, P ′
0, and the vector orthogonal to the edge and passing trought P ′

0,
−→n , are known. These are obtained in previous image processing steps. For example, in [42],

the authors determine the pixel-level edge points of circular target features by using the Canny

edge detector. Next, an ellipse is fitted on those as in [49]; from the ellipse, −→n can be obtained

in closed form for each edge point. We also show how the introduced sub-pixel edge detector

is biased if any of the pixels in the vicinity of the edge point is saturated, e.g., because of over-

or underexposure.

The sub-pixel edge position P ′ on −→n is obtained by fitting the edge model in Equation 6.3

to the measured pixel intensities along −→n via a non-linear least-squares optimization. First,

we sample the image along −→n with one pixel spacing, i.e., n j ∈ [−N ,−N +1, ..., N ], where N

is the maximum distance from the query point for which we assume Equation 6.3 to hold

(e.g., N = 3). Note that the initial guess for the position of P ′, P ′
0 lies at n = 0. For each n j ,

the image intensity ĩ (n j ) is obtained interpolating the image pixels, e.g., by means of bilinear

interpolation. Given ĩ (ni ), an estimate for the location of the edge point along −→n , n̂P ′ , is

calculated by solving the following least-squares optimization problem:

[n̂P ′ , â, b̂, σ̂] =nP ′ ,a,b,σ

N∑
j=−N

(i (n j )− ĩ (n j ))2. (6.4)

This is a non-linear curve-fitting problem that can be solved with the Levenberg-Marquardt

algorithm if the initial guess of every unknown is sufficiently close. An effective initialization
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is given by nP ′ = 0, a = ĩ (nN )− ĩ (n−N ), b = ĩ (n−N ), and σ= 1. The curve fitting problem also

yields estimates for a and b (the intensity of black and white areas in the image plane). Note

that σ is the component of the PSF in the direction of −→n and that PSF is stable across multiple

frames and consistent for different areas of the image.

The estimation problem in Equation 6.4 is solved for each edge point P ′
0,i , obtaining a set of

refined estimates of the edge location along each −→n i . These 1D coordinates are transformed

back in the image reference frame and build the set of image observations P̂ ′
i that we will

employ in later sections to estimate the camera pose relative to the target.
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i (n) spans the entire range of the sensor, i.e., [0,1] i (n) > 1 for some n

Figure 6.4. Pixel intensity of a black/white transition along −→n . The intensity i is proportional to the
amount of light exposing the sensor. ĩ is the measured pixel intensity (subject to overexposure) and î is

the estimated from ĩ . The estimated edge position n̂P ′ differs from the true value nP ′ by a few
hundredths of pixels if the image exposure is ideal. However, in overexposed images the difference can

reach several pixels.

We now show that the estimate n̂P ′ is biased if some image intensities ĩ (n j ) are saturated.

This is common in over- or underexposed images. Figure 6.4 depicts the pixel intensity in an

image with an ideal exposure (Figure 6.4a) and in an overexposed image (Figure 6.4b). In the

ideal exposure case, no saturation occurs and the continuous intensity function i (n) (in blue)

can be accurately recovered from the samples ĩ (n j ) (in red). In this case, n̂P ′ = nP ′ . On the

other hand, in the overexposed image, i (n) is saturated for j > 1. Thus, the estimated intensity

function î (n) (in yellow) differs from i (n) in the whole saturated area, resulting in n̂P ′ 6= nP ′ .

Note that the estimated intensity function is close to the true intensity in the non-saturated

area (i.e., for n < 2).

Figure 6.5 shows a numerical study of the bias in sub-pixel edge position as function of σ and
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Figure 6.5. Exposure bias as a function of the overexposure ratio for different values of σ.

overexposure. The overexposure is parameterized as the ratio between the maximum of the

intensity function i (n) and the saturation level. The exposure bias is severe in blurry images

(high values of σ) but it is significant also in reasonably sharp images (σ≈ 1). Similar results

hold for the underexposure case.

To give a measure of the error in the camera pose determination due to the exposure bias,

we introduce an error ∆d when we determine the target distance d by comparing its known

size 2r with the size measured on the image plane 2r ′ (which is subject to the exposure bias

γ). When a target is parallel to the image plane, this error is given by ∆d =− dγ
r ′+γ ≈−d γ

r ′ . ∆d

is proportional to the distance from the target, and it is approximately proportional to the

relative exposure bias (i.e., exposure bias normalized by the target radius). For example, a 5

cm target imaged from 3 m, with focal length f = 2900 px, has a diameter of 48 px in the image.

In this case, an exposure bias of one pixel leads to an error of 13 cm (≈ 5 %) in the distance

estimation.

In the next sections, we will explain how specific features of our target design (Figure 6.2) allow

estimating and correcting for the exposure bias.

6.5 Camera Pose Determination

We present a new rigorous approach to determine the camera pose starting from a set of edge

points being the projection of the two concentric circles composing the target (see Figure 6.2).

In Section 6.6, we will extend this approach to estimate and compensate for the exposure bias.

After applying the sub-pixel detection algorithm introduced in Section 6.4, a set of edge points

P̂ ′
i is available. These are the projections of object points lying on two concentric circles of
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Figure 6.6. Geometric elements involved in the pose determination problem. The image plane is
depicted in red. The pose of the camera reference frame in relation to the target frame is given by T

and R. An object point Pi lying on one of the two concentric circles of the target with angle θi projects
to P̂ ′

i on the image plane.

known radius. The camera pose is determined by minimizing the reprojection error associated

with each of these points with an approach similar to Bundle Adjustment.

The edge points are given in homogeneous coordinates P̂ ′
i = [xP̂ ′

i
, yP̂ ′

i
, 1]T and they will be used

as input for the algorithm presented in this section. First, P̂ ′
i is transformed into a unit-less

vector P̃ ′
i by employing the camera calibration matrix:

P̃ ′
i =


f 0 ppx

0 f ppy

0 0 1


−1

P̂ ′
i , (6.5)

where f is the principal distance of the camera, and ppx and ppy are the x and y coordinate

of the principal point, respectively. Equation 6.5 can also be modified to account for lens

distortion, as described in [24]. Note that the intrinsic camera calibration must be known a

priori because the focal length f is correlated with the depth of the target, and they cannot be

simultaneously determined with the approach presented in this work.

Let the target reference frame be placed at the center of the two concentric circles of the target

with the Z axis normal to the target plane and pointing away from it. Let T be the position
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of the optical center of the camera in this frame, and R the rotation from the camera to this

frame (Figure 6.6). Since P̃ ′
i can be the projection of a point belonging either to the outer or to

the inner circle of the target, we define the function r (i ) :N→R+ that provides the radius of

the circle to which P̃ ′
i belongs to. It is worth noting that this function allows us to generalize

the approach presented below to an arbitrary number of concentric circles.

We know from perspective geometry that, for any object point P and its projection onto the

image plane P̃ ′, given in unit-less homogeneous coordinates, it holds that

∃λ ∈R | T +λRP̃ ′ = P. (6.6)

λ is generally obtained from the third component of Equation 6.6 and eliminated.

For any P̃ ′
i , we know that the corresponding object point lies on a circle of radius r (i ) on the

plane Z = 0. Therefore we have that:

∃λi ∈R,θi ∈ [0,2π) | T +λRP̃ ′
i =


r (i )cosθi

r (i )sinθi

0

 . (6.7)

θi encodes, for each edge points, its corresponding position on the target circle in object space:

it is unknown at this stage since it is not possible, by using only local features of the target, to

establish a univocal 2D-to-3D correspondence between object points on the target circles and

their projections on the image plane. We eliminate λ and θi from Equation 6.7, as discussed in

detail in Appendix, obtaining a 1D condition for each point P̃ ′
i .

We can formulate Equation 6.7 for each edge point P̃ ′
i . This gives us a system of equations that

can be solved for the desired R and T (e.g., in least-squares sense), provided that enough edge

points are available on both circles. However, since we have not established an unambiguous

2D-to-3D correspondences, such system is underconstrained. Indeed, Equation 6.7 is still

satisfied if we multiply the left side of the equality by an arbitrary rotation matrixΩZ around

the Z axis. This issue can be solved by constraining the optical center of the camera to the

Y = 0 plane. This is achieved as follows: letT̃ = ΩZ T

R̃ = ΩZ R
, (6.8)
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such that T̃ = [X̃ ,0, Z̃ ]. This requires that

ΩZ =


TX√

T 2
X +T 2

Y

TY√
T 2

X +T 2
Y

0

− TY√
T 2

X +T 2
Y

TX√
T 2

X +T 2
Y

0

0 0 1

 . (6.9)

We can now replace T and R with T̃ and R̃ in Equation 6.7 and rearrange it in the form

fi (T̃ , R̃, P̃ ′
i ) = 0. (6.10)

This gives us one condition fi per observation P̃ ′
i , providing a system of equations that can

be solved for T̃ and R̃, e.g., in the least-squares sense, with the Gauss-Newton or Levenberg-

Marquardt algorithm. As R̃ belongs to the special orthonormal group SO(3), we rely on the

manifold encapsulation technique described in [149] to deal with non-Euclidean unknowns

in least-squares estimation.

As already mentioned, the target can rotate around the Z axis without changing the geometry

of the problem (refer to Figure 6.6). This is because we cannot establish unique 3D-to-2D

correspondences between object points on the target circles and their image projections.

Indeed, θi is not known in Equation 6.7. To solve this issue, we constrain the camera to the

Y = 0 plane. However, this is not a limiting problem since the position of the target relative to

the camera, −R̃T T̃ , can still be determined.

In this section, we have described a method to determine the pose of the camera relative to the

target by using a set of edge points being the projection of two concentric circles with known

radius. In the next section, we will extend this method to take into account the exposure bias,

i.e., the condition in which the location of the edge points on the image plane is affected by

over- or underexposure.

6.6 Correcting for the exposure bias

In the previous section, we have seen how to determine the position and the orientation of

the camera relative to the proposed target from a set of sub-pixel edge locations obtained

as described in Section 6.4. However, we also saw that these measurements can be biased if

the exposure time is not ideal (see Figure 6.4). Indeed, in case of over- or underexposure, the

apparent position of P̂ ′
i can be displaced along the line normal to the edge~ni : When the image

is overexposed, such displacement is towards black areas and vice versa for underexposed

images. This effect is shown in Figure 6.7, which compares the pixel intensities of two pictures
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taken with different exposure times from the same camera position and orientation.
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Figure 6.7. Pixel intensity along the diameter of the target for an underexposed (top) and an
overexposed (bottom) image. The brightness of the top image has been enhanced. In the

underexposed image, the black/white transition is shifted by a few pixels towards the black area, which
is highlighted by red and blue lines in the plots on the right.

Recall that, as defined in Section 6.3, ~ni is a unitary vector on the image plane, perpendicular

to the edge, and directed towards the white side of the edge. Let γi ∈R be the shift of P̃ ′
i along

the vector ~ni . If the target has a uniform illumination, we can assume γi = γ, ∀i . The new

parameter γ can be estimated along the geometric parameters T̃ and R̃ . In order to do this, we

substitute P̃ ′
i in Equation 6.7 with an observation corrected for the exposure: P̃ ′

i +γ ~ni . Hence:

∃λi ∈R,θi ∈ [0,2π) | T +λR
(
P̃ ′

i +γ~ni
)=


r (i )cosθi

r (i )sinθi

0

 . (6.11)

The three conditions of this system can be simplified to one condition in the form fi (T̃ , R̃,γ, P̃ ′
i ) =

0 for each edge measurement P̃ ′
i by eliminating λ and θi , as discussed in the Appendix.
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Figure 6.8. Reprojection error for the considered edge points P̂ ′
i in an image without (on the left) and

with (on the right) exposure compensation.

Figure 6.8 shows the residuals associated with each fi in an overexposed image with (on the

right) and without (on the left) correction for exposure bias. In the case of overexposure, the

thickness of the black ring is smaller then expected, which translates in systematic residuals

that cannot be compensated by any assignment of R̃ and T̃ (the residuals on the inner circle

points are bigger as those points are outnumbered by the ones on the outer circle). On the other

hand, such systematic effect in the residuals is completely captured once the estimation of the

γ parameter is enabled. The impact of this on the accuracy of the camera pose determination

with respect to the target will be investigated in the next section.

6.7 Experimental Evaluation

The goal of our method is to determine the position of a camera relative to a target compen-

sating for any possible bias caused by over- or underexposure. We validated it in a highly

controlled environment: refer to Figure 6.9. Both the camera A and the target D were fixed on

a rigid tripod, and a set of photos with different exposure times was taken to simulate normal

or difficult light conditions. The same set-up was repeated for 20 different positions of the

target, and, for each of them, the relative position of the camera was determined i) by means of

total-stations to compute a mm level precision ground truth positioning, and ii) with several

Computer-Vision algorithms, including the ones presented in this paper. The results are then

compared focusing on the estimated distance from the camera to the target, since the effects

of over- and underexposure mainly translates in a bias in the apparent target distance. The

detailed ground truth-ing procedure be found in the Appendix.

The concentric circle target D was printed on a 50×50 cm white plastic rigid board (the target

design is shown in Figure 6.2), and the total-stations measured four crosses printed on the
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Figure 6.9. Schematic representation of the set-up to obtain the reference positions of the target and
the camera. The total-stations network in B , B ′ and B ′′ measures the position of the camera (A), the

position of several ArUco targets (C ), and the position and orientation of the proposed target (D). The
camera A is oriented from the total-stations and from image observation of the ArUco targets, C .

four corners of the board (Figure 6.9).

This experimental set-up allows computing the position of the camera A relative to the target

D . By using the images taken by the camera A, we validated the method presented in Sections

6.5 and 6.6 and determined the camera position. Since the pose determination depends on

the exposure time, a set of 117 photos was taken with different exposure times ranging from

10 ms to 300 ms (such high exposure times depends on the rather dark indoor setup used

for the experiment). We applied four computer-vision algorithms to determine the position

of A relative to D, considering both the outer target (diameter: 25cm) and the inner target

(diameter: 5cm). We first applied the PnP algorithm [109],[89], [] by using the centroids of the

five white dots composing the target code (Figure 6.2); second, we used an algorithm based on

separated ellipse fitting [42]; third, we run the joined ellipse adjustment described in Section

6.5; lastly, we corrected the joined ellipse adjustment for the exposure bias as described in

section 6.6. Figure 6.10 shows the computed target distance with the four different algorithms

for a given camera position and for for each exposure time.

First, when comparing the obtained results with the reference distance, we notice that the

errors associated with the inner target are about five times bigger than the errors for the outer

target. This is expected, as the inner target is five times smaller than the outer one. Second,
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Outer target Inner target

Figure 6.10. Target distance as a function of exposure time obtained with different algorithms with
respect to the reference. It is possible to see that the distance obtained with exposure compensation, as

in Section 6.6, is practically independent with respect to exposure time.

we notice that when the image is not overexposed (e.g., exposure time less than 50 ms, no

algorithm exibhits a bias which can be correlated with the exposure time. However, if the

image was overexposed (e.g., exposure time greather than 50 ms), all the algorithms without

exposure compensation, with the exception of PnP, i.e., ([42] and Section 6.5) show a deviation

from the reference distance that increased with the exposure time. On the other hand, when

the exposure bias γwas computed together with the other parameters (Section 6.6), the results

became independent from the exposure. Regarding the PnP algorithm, in this particular case

it is not affected by exposure time as the position of the white dots, used as an input for this

algorihtm, does not change as a function of the exposure. This would not be the case, for

example, in the case corner points are used, as in ArUcO. As a side note, as only five points are

available, the distance obtained from PnP is more noisy if compared with the other algorithm

employing several points on the two circles.

The same experiment was repeated for different positions of the target D . The position of A,

B , B ′, B ′′ and C remained unchanged while we modified the position of D 20. Two statistical

indicators were calculated to assess the quality of the results: the Standard deviation and the

RMS of true error (Figure 6.11). The Standard deviation is determined by comparing the results

of each exposure time to their mean d̄ ; it describes the dispersion of the computed values but

it does not assess the influence of a potential bias. To address this issue, we also computed the

RMS of true error based on the comparison between the obtained results and their ground

truth value ď .

The summary statistics are shown in Table 6.1. The errors in Figure 6.11 are normalized by
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Figure 6.11. Distance error as a function of the true target distance for different pose determination
algorithms.
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Geometric mean of:

relative relative

standard deviation RMS of true error√
1

n−1

∑n
i=1

(
di−d̄

)2

d̄

√
1
n

∑n
i=1

(
di−ď

)2

ď

O
u

te
r

ta
rg

et Without exposure compensation 0.49 % 1.01 %

With exposure compensation 0.05 % 0.37 %

Cucci, 2016 [8] 0.66 % 1.17 %

PnP 0.10 % 0.15 %

In
n

er
ta

rg
et Without exposure compensation 2.79 % 4.30 %

With exposure compensation 0.44 % 1.16 %

Cucci, 2016 [8] 4.16 % 5.73 %

PnP 1.76 % 1.86 %

Table 6.1. Geometric mean of the relative error for every position.

the distance to the target and aggregated by geometric mean. These results show that the

exposure compensation is more than seven times more precise, and more than three times

more accurate than ellipse fitting without exposure compensation. However, since the position

of the white dots is not affected by the exposure, the distance calculated by the proposed

method is only about two times more precise than the one assessed by the PnP, and it is

approximately as accurate.

We validated the method described in Section 6.6 also by assessing the independence between

the geometric parameters and the exposure bias parameter γ by calculating the correlation

factor between the computed distance d and γ. The covariance matrix of X̃ , Z̃ , and γ is

computed after solving the least-squares estimation problem formulated in Section 6.6. The

covariance matrix of d and γ is determined by variance propagation as follows:

 σ2
d σdγ

σdγ σ2
γ

= F


σ2

X̃
σX̃ Z̃ σX̃γ

σX̃ Z̃ σ2
Z̃

σZ̃γ

σX̃γ σZ̃γ σ2
γ

 F T , (6.12)

where the F matrix is given below:

F =
 X̃p

X̃ 2+Z̃ 2

Z̃p
X̃ 2+Z̃ 2

0

0 0 1

 . (6.13)

The correlation between d and γ was computed by normalizing the non-diagonal term of
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the covariance matrix between d and γ (given by 6.12) by the square root of their variances:

σdγ/(σd ·σγ). The typical value was around 5%, proving the orthogonality between the deter-

mination of the distance from the camera to the target and the determination of the exposure

effect on the position of the ellipse edge (as suggested by Figure 6.2).

6.8 Conclusions

We have introduced a new method to rigorously fit the image of a concentric circle target to

determine the pose of the camera that sees it. Moreover, we have addressed the problem of

the exposure that displaces black and white edges, moving them towards the white direction

and leading to systematic effects. Then, we have proposed a way to estimate this displacement

and reduce the error.

We performed experimental evaluations of the algorithm in controlled laboratory conditions:

We measured the reference target position with total-stations with millimeter-accuracy and

captured several images with different exposure times; we then compared the measured

distance with the distances calculated by our method at every exposure time. Our method led

to highly accurate estimates of the target position with a mean error of 0.37% of the distance on

the 25 cm diameter target, the accuracy of the measurements was also not affected by changes

in the illumination. We showed the illumination invariance property of the novel algorithm

for a single target position by plotting the target distance estimated with the algorithm in [42]

and the illumination invariant one. Finally, we observed that the γ parameter is basically

uncorrelated (< 5%) with the target position parameters.

Appendix: Derivatives of f with respect to parameters and observa-

tions

The goal of this appendix is to simplify Equation 6.7 and Equation 6.11 in order to clarify the

least-square optimization problem. For convenience, we set a new vector P̄i that is equal to

R̃ P̃ ′
i when there is no exposure compensation (as in Section 6.5), or to R̃

(
P̃ ′

i +γ~ni
)

when

there is exposure compensation (as in Section 6.6). Thus, both Equation 6.7 and Equation 6.11

can be simplified as below (where the vector P̄X Y i is composed of the two first components of

P̄i , and the vector P̄Zi of its last component):


∥∥∥∥∥∥
X̃

0

+λi P̄X Y i

∥∥∥∥∥∥ = r (i )

Z̃ +λi P̄Zi = 0

(6.14)
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This system of two equations can be solved by removing λi . Therefore, for each measurement

point, the condition described in Equation 6.15 is imposed:

∥∥∥∥∥∥
X̃

0

− Z̃

P̄Zi

P̄X Yi

∥∥∥∥∥∥
2

− r (i )2 = 0. (6.15)

To solve the non-linear least-squares optimization problem, we need to compute the deriva-

tives of the conditions with respect to the parameter vectors and the observation vectors.

For convenience, we introduce the notations ¯̄P ,Ψ and ℵ:

¯̄Pi =
P̄X Yi

P̄Zi

, (6.16)

Ψi =
X̃

0

− Z̃ ¯̄Pi , (6.17)

ℵi = ‖Ψi‖2 . (6.18)

Hence, Equation 6.15 can be re-written as:

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

X̃

0

− Z̃
P̄X Yi

P̄Zi︸ ︷︷ ︸
¯̄Pi︸ ︷︷ ︸

Ψi

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

− r (i )2 = 0. (6.19)

Figure 6.12 sums up the calculation flow to compute a condition such as 6.15.

Figure 6.12 helps to compute the derivatives of 6.15 with respect to the parameters ∂ℵ
∂X̃

, ∂ℵ
∂Z̃

, ∂ℵ
∂R̃
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Figure 6.12. Calculation flow. At the top, we see the input, the intermediates steps, and the output; at
the bottom, the formulae used to calculate the parameters.

or to the observations ∂ℵ
∂P̃ ′ (here, we have intentionally misused a derivative with respect to a

rotation matrix. The rigorous approach is described below).

First, we introduce the computation of the Jacobian matrix of the condition with respect to

the observations:

∂ℵ
∂P̃ ′ =

∂ℵ
∂Ψ

∂Ψ

∂ ¯̄P

∂ ¯̄P

∂P̄

∂P̄

∂P̃ ′ . (6.20)

The four (elementary) matrices to compute are derived below:

∂ℵ
∂Ψ

= 2
(
ΨX ΨY

)
, (6.21)

∂Ψ

∂ ¯̄P
=−Z̃ I2, (6.22)

∂ ¯̄P

∂P̄
= 1

P̄Z

1 0 − P̄X

P̄Z

0 1 − P̄Y

P̄Z

 , (6.23)

∂P̄

∂P̃ ′ = R̃. (6.24)
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Similarly to the previous calculation, it is possible to compute the derivative with respect to X̃ :

∂ℵ
∂X̃

= ∂ℵ
∂Ψ

∂Ψ

∂X̃
. (6.25)

A new matrix needs to be computed:

∂Ψ

∂X̃
=

1

0

 . (6.26)

Similarly to the previous calculation, it is possible to compute the derivative with respect to Z̃ :

∂ℵ
∂Z̃

= ∂ℵ
∂Ψ

∂Ψ

∂Z̃
, (6.27)

and a new matrix needs to be calculated:

∂Ψ

∂Z̃
=− ¯̄P. (6.28)

The Jacobian matrix with respect to R must use methods to properly handle the rotations,

such as the theory of Lie-groups. Here we give a short explanation of how this theory can be

applied to bundle adjustment.

The position of the camera is described by two parameters: X̃ and Z̃ . These parameters belong

to an Euclidean space, and, for this reason, we can use the standard update-step:

 ˆ̃X
ˆ̃Z


︸︷︷︸

Ad j usted

=
X̃

Z̃


︸︷︷︸

Appr oxi mated

+
δX̃

δZ̃

 . (6.29)

However, the rotations do not belong to an Euclidean space but to the SO(3) rotation group.
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Therefore, we need to change their update-step:

ˆ̃R︸︷︷︸
Ad j usted

= exp ([ω]×) R̃︸︷︷︸
Appr oxi mated

, (6.30)

where ω does not belong to the non-Euclidean rotation group but to the Euclidean tangent

plane of R (see [149]). The derivatives are computed with respect to ω. The exponential

function allows converting a value from the tangent plane into the Lie-Group. [ω]× is the Skew-

symmetric matrix built from ω. We can now compute the Jacobian matrix of the condition

with respect to the rotation:

∂ℵ
∂ω

= ∂ℵ
∂Ψ

∂Ψ

∂ ¯̄P

∂ ¯̄P

∂P̄

∂P̄

∂ω
. (6.31)

For any 3D vector x, if ω and R are linked by the Equation 6.30, the following formula can be

introduced [149]:

∂ (Rx)

∂ω
=− [Rx]× , (6.32)

which can be applied to the Equation 6.31, giving:

∂P̄

∂ω
=−[

P̄
]
× . (6.33)

The Jacobian matrices computed above allow running a bundle adjustment with the five

geometric parameters of our initial question (two parameters for the camera position, and

three for its rotation). If we want to take into account the exposure compensation (i.e., if the

parameter γ is not fixed to 0), we also need to compute the Jacobian matrix with respect to

this parameter:

∂ℵ
∂γ

= ∂ℵ
∂Ψ

∂Ψ

∂ ¯̄P

∂ ¯̄P

∂P̄

∂P̄

∂γ
. (6.34)
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A new matrix needs to be computed:

∂P̄

∂γ
= R̃~n. (6.35)

The Jacobian calculations described in this appendix must be determined for each condition,

i.e., for each measurement. Then, it is possible to build the matrices A and B , which are the

Jacobian matrices of the function f with respect to parameters and observations, respectively

(where f is the concatenation of all conditions fi defined by the left part of equation 6.15). For

each iteration of the Gauss-Newton or the Levenberg-Marquardt algorithm, we can formulate

and solve the following linearised equation:


...

...
...

...
...

...
∂ℵi

∂X̃
∂ℵi

∂Z̃
∂ℵi
∂ωX

∂ℵi
∂ωY

∂ℵi
∂ωZ

∂ℵi
∂γ

...
...

...
...

...
...


︸ ︷︷ ︸

A



δX̃

δZ̃

ωX

ωY

ωZ

δγ


︸ ︷︷ ︸
δx

+


. . . 0

∂ℵi

∂P̃ ′
i

0
. . .


︸ ︷︷ ︸

B


...

vi

...


︸ ︷︷ ︸

v

+


...

wi

...


︸ ︷︷ ︸

w

=


...

0
...

 . (6.36)

The misclosures wi are computed from the observations P̃ ′
i thanks to the condition fi :

wi = fi (T̃ , R̃, P̃ ′
i ,γ). (6.37)

This problem is solved in a least-square sense (the L2 norm of the residuals vector v is min-

imized) by using minimization algorithms, such as the Gauss-Newton or the Levenberg-

Marquardt method. At each step of the algorithm, the update-step is given by Equation 6.29 for

the position, and by Equation 6.30 for the orientation. Moreover, data-snooping is performed

to remove conditions that have high normalized misclosure.
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Appendix: Ground truth determination with total-stations

The set-up of the validation experiment is shown in Figure 6.9. A network of total-stations and

prisms (B , B ′, B ′′) measures the position of the objects in the experiment (i.e., the camera A

and the target D). The two total-stations B and B ′ were aligned by using the autocollimation

method, in which both total-stations are focused to infinity, they are pointing at each other,

and each total-station is aligned on the reticle of the other. The distance between the two

total-stations was determined with a laser after replacing one of the total-stations with a prism.

An additional prism, B ′′, was placed at the back of the set-up to orient the total-stations. We

regularly checked the position of this prism to test the stability of the set-up. At the end of the

experiment, after replacing the total-stations B and B ′ with two prisms, the prism in B ′′ was

in turn replaced by a total-station to measure the position of B and B ′. These measurements

allowed us to build a strong geodetic network and to set a laboratory frame of reference.

Figure 6.13. Schematic representation of the camera with two targets that the total-stations must
measure.

The camera A was a Ximea with a 16mm TAMRON-Optics lens fixed on a geodetic tripod to

ensure stability. The camera was calibrated in-situ with the method described in [21]. The

position of the perspective center of the camera was measured by intersection from two total-

stations (B and B ′). Since the center of perspective of the camera is a virtual point inside the

lens, it is not possible to directly aim at it with a theodolite; therefore, we built a set of two

targets around the lens (see Figure 6.13). The 3D positions of the crosses (to the left and to the

right of the camera) were determined by intersecting the total-stations. We assumed that the

perspective center of the camera was in the middle of the segment joining these two crosses.

The two targets were made with a Computer Numerical Control Machine with an estimated

precision of a tenth of a millimeter. When the targets were mounted on the lens, we considered

our setting having a millimeter-level precision in both directions parallel to the CMOS sensor
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plane (x and y axis). The set of two targets was placed around the diaphragm setting ring.

Since the actual position of the perspective center might not be inside of the diaphragm, the

position measured by the total-station could differ from the actual one by a few millimeters in

the direction of the optical axis (z axis). We then compared the two positions with a resection

method.

We placed dozens of ArUco targets at the back of the set-up (C ) and we determined with the

total-stations their 3D position in the laboratory frame. The ArUco targets were detected in the

photos by using ArUco [57]. A resection calculation, which included the camera calibration

details (weighted by the provided standard deviations), allowed determining the position of

the perspective center of the camera, its orientation relative to the laboratory frame, and a

better determination of the camera calibration parameters. This position was then compared

with the one obtained by the theodolite, and it showed a difference of 1.6 mm in the image

plane (x,y axis) and of 9mm in the optical axis (z axis). The final internal and external camera

parameters were determined with an adjustment that included the measurements of the

ArUco targets, the position of the perspective center measured with the theodolite, and the

previous camera calibrations weighted by the provided standard deviations.

The concentric circle target was printed on a 50×50×1 cm plastic board with four reference

crosses printed on the corners. We measured the crosses with the total-stations and we then

corrected our measurements with a conditional adjustment (i.e., imposing the conditions that

the distance between the center of the cross is known and that the edges of the cross form the

four corner of a square). These adjusted measurements allowed determining the position and

the orientation of the target in the laboratory frame.

Lastly, we computed the ground truth pose and orientation of the camera relative to the target

from the absolute camera and target positions and orientations that were calculated in the

laboratory frame.
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Conclusion and Perspectives

Summary of the thesis contributions

The basic theory needed in the scope of this thesis is given in Chapter 1 in which Lie-Groups

are shown to be a powerful formalism in use in Bundle-Adjustment, noteworthy because it

eases the input of absolute and relative orientation.

In the first part I are given directions for the GCP placement, for camera calibration procedure

and modelling as well as flight-planning optimization. The propositions of part I are simple

advices to improve classical photogrammetry. They have been shown to improve the final 3D

accuracy while reducing costs.

The others two parts II and III show that more exotic surveying methods such as LIDAR-Photo

hybridizing and collaborative mapping could improve the quality of the final mapping product,

and extend the possibilities of photogrammetry.

Perspective

Diffusion of methods to end-users

Some of the methods described in this thesis could be easily implemented in existent profes-

sional software.

• The accuracy prediction method described in Chapter 3 have been implemented in

C++ and integrated as an add-on of the eMotion Flight-planner and mission handling

Software. The release of a version of eMotion with this add-on to final customers could

permit to share this method.

• The method to input the camera parameters with their given full covariance matrix

(described in Chapter 2) is very simple since the observation model is trivial. It could

be implemented in photogrammetric software, together with a user-friendly manager
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to monitor the evolution of the camera parameter and its uncertainty for the different

mapping projects achieved by the user.

• The method presented in Chapter 6 could be used in the mapKITE processing chain to

improve their photogrammetric results.

Mid-term technology transfer objective

The fusion of LIDAR with photogrammetry proposed in Chapter 4 has promising applications.

Mapping projects that are currently achieved with copters could be handled with drones. This

method inspires further research to improve the fusion. The technology transfer could be

achieved via three possible business models.

1. Surveyor firm using a custom drone and custom software to directly sell mapping

product to customers. This activity could be achieved by creating a new company or by

joining an existing company such as Altametris.

2. Start-up to commercialize the drone and the software to be sold to surveyor firms.

3. Partnership between a research laboratory and 1) a drone manufacturer such as senseFly,

Wingtra or Microdrones for the synchronization of the sensors, 2) a photogrammetric

software developer company such as Pix4D, Agisoft LLC, SimActive or GEOWN for the

implementation of the method.

Research perspectives

The feasibility study described in Chapter 5 motivates the outset of the DoDo project (DrOne

DuO project financed by the InnoSeed ENAC grant) which confirms its technical feasibility.

In the scope of this project, [75] proposes a method to recognize and localize the Lower-Drone

with respect to the Upper-One which give a dm accuracy with a height difference up to 100 m.

[148] describes the full operating system to fly both drones together. Further research is

however needed to complete an autonomous mapping survey in the targeted scenario for this

technology: highly cluttered environment such as narrow gorges.

Finally, the concept of collaborative drone mapping could greatly take benefit from the LIDAR-

Photogrammetric hybridization method proposed in Chapter 4. An active sensor embedded

on the lower drone could be useful to map the bottom of a narrow gorge in the penumbra

while being georeferenced by the upper drone.
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A 3D Visualization toolbox for easy dis-
play of complex data from Matlab or
Python

Available at: https://github.com/ManuCledat/Matlab_Python_3D_toolbox

This 3D Visualization toolbox permits to create visualization for debugging purposes, data

analysis and results rendering. It permits to export usual 3D object used in research in a CAD

software. This eases the navigation in the 3D model, its modification and its rendering (e.g.

background, shadows, fog could be easily modified). Finally, it permits to visualize, by a simple

click the meta-data of the objects, inputted by the user (i.e. object name or number) and

calculated by the CAD software, as traditional GIS functionalities.

Figure A.1. Example of figure created with the toolbox

223

https://github.com/ManuCledat/Matlab_Python_3D_toolbox


Appendix A. 3D Visualization toolbox for easy display of complex data from Matlab or
Python

Introduction

This toolbox is implemented both in Matlab and in Python. It permits to export 3D data (such

as results of research data) in the free software sketchUp [147]. This CAD software where

chosen for its user-friendliness and its diversity of use. This software could be used for various

applications, such as mechanical engineering, architecture, spatial design, and environmental

modeling. Moreover, it is usually chosen for educational purposes as a first CAD software to

learn (here, a course designed for 14-15 years-old students [157]). Previous versions of our

toolbox (not released) were used for geodetic engineering publications: [33, 127, 71, 35, 36, 37,

38].
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A.1 User Manual for MATLAB

A.1.1 ruby_create

Description:

Creates and initializes a ruby file and returns a struct which contains id, path and name of the

file. Default file is ‘script_ruby_3d.rb’in the local folder. File must be closed by ruby_close.

Function Declaration:

1 file = ruby_create ()
2 file = ruby_create(nameOrPath)
3 file = ruby_create(nameOrPath , name)

• nameOrPath (optional): ‘script_ruby_3d.rb’(default) | string

It is either the name of the file or the path of the file.

• name (optional): string

Name of the file

Examples:

1 % Create file in local folder with name ’script_ruby_3d.rb ’.
2 file = ruby_create ();
3

4 % Specify name , .rb appended , ’my_model.rb ’.
5 file = ruby_create(’my_model ’);
6

7 % Alternative specifying full path. .rb is appended , ’C:\Users\my_model.rb ’.
8 file = ruby_create(’C:\Users ’, ’my_model ’);

A.1.2 ruby_close

Description:

Completes and closes the ruby file.

Function Declaration:

1 ruby_close(file)

• file: file struct

File structure created with ruby_create
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Examples:

1 ruby_close(file);

A.1.3 Input in SketchUp

If the file is closed correctly, it could be inputted in SketchUp as follow.

Copy the commanded printed on Matlab console.

Open a ruby console in SketchUp

Paste the command line from Matlab
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A.1.4 ruby_point

Description:

Creates isolated points.

Figure A.2. Different type of points

This function also permits to display point-clouds.

Function Declaration:

1 ruby_point(file , XYZ , issymbolic , ’symbol ’, symbol , ’color ’ , color , ...
2 ’name ’, name)

• file: file struct

File structure created with ruby_create.

• XYZ: (Nx3) matrix

Matrix where N is the number of points. Each row corresponds to a point and the

columns correspond to three coordinate axis.
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Figure A.3. Display of a point-cloud of a church

• issymbolic (optional): 0 (default) | 1 | column vector containing 0 and 1 values.

If it is a numeric value, all points are treated equally in terms of symbols. If it is 0, there

is no symbol. If it is 1, a symbol is used for each and every point.

If it is a column vector, the number of rows should be the same as the number of rows in

XYZ matrix.

• symbol (optional): ‘triangle’(default) | ‘cross’| ‘circle’| ‘square’

It defines how points are represented in 3D plane by assigning a particular symbol.

• color (optional): char | [R, G, B]

Either one of the following colors or a set of RGB values.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow

‘g’: green
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‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string | column vector containing strings.

If it is a column vector, the number of rows should be the same as the number of rows in

XYZ matrix.

Examples:

1 % Construct some points (Here [2,2,2] and [3,3,3])
2 ruby_point(file , [2, 2, 2; 3, 2, 3]);
3

4 % To represent all points with a symbol , set the third argument to 1
5 ruby_point(file , [2, 3, 2; 3, 3, 3], 1);
6

7 % Symbol representation can be activated point by point
8 ruby_point(file , [2, 4, 2; 3, 4, 3], [1; 0]);
9

10 % The symbol is selected with a name -value pair. All points have the same
11 % symbol
12 ruby_point(file , [2, 5, 2; 3, 5, 3], 1, ’symbol ’, ’cross ’);
13

14 % With red cicrle
15 ruby_point(file , [2, 6, 2; 3, 6, 3], 1, ’symbol ’, ’circle ’, ’color ’, ’r’);
16

17 % With blue square
18 ruby_point(file , [2, 7, 2; 3, 7, 3], 1, ’symbol ’, ’square ’,...
19 ’color ’, [0, 0, 255]);
20

21 % Points can be named globally or individually using a single string or an
22 % array of strings.
23 ruby_point(file , [2, 2, 2; 3, 3, 3], 1, ’name ’, string(’Pts ’));
24 ruby_point(file , [2, 2, 2; 3, 3, 3], 1, ’name ’,...
25 [string(’pt1’); string(’pt2’)]);

A.1.5 ruby_line

Description:

Draws a line or multiple lines.

Function Declaration:

1 ruby_line(file , XYZ , ’name ’, name);

• file: file struct
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Figure A.4. Example of line drawn by the library

File structure created with ruby_create.

• XYZ: (Nx3) matrix

Matrix where N is the number of points and n should be at least 2. Each row corresponds

to a point and the columns correspond to three coordinate axis. The points are con-

nected by a line one by one according to the given order. In other words, first point is

connected with the second point, second point is connected with third point and so on.

• name (optional): string | column vector containing strings

If it is a column vector, the number of rows should be the same as the number of rows in

XYZ matrix.

Examples:

1 % Draw stylized cube with lines.
2 ruby_line(file , [0 0 0; 1 0 0; 1 1 0; 0 1 0; 0 1 1; 0 0 1; 1 0 1; 1 1 1]);
3

4 % Give the drawn line a name.
5 ruby_line(file , [0, 0, 5; 5, 0, 5], ’name ’, string(’Line1’));

A.1.6 ruby_axis

Description:

Creates a reference coordinate axis defined by the orientation matrix and center point.

Function Declaration:

1 ruby_axis(file , origin , R, ’name ’, name)

• file: file struct

File structure created with ruby_create.
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Figure A.5. Axis definition

• origin: (1x3) matrix

It contains x, y, z coordinates of the new origin

• R: (3x3) matrix

Orthogonal orientation matrix.

• name (optional): string

Examples:

1 R = [1, 0, 0; 0, cos(1), sin(1); 0, -sin(1), cos (1)];
2

3 % Create coordinate system at 4,4,4.
4 ruby_axis(file , [4, 4, 4], R);
5

6 % Create coordinate system at 4,5,4 named Origin2
7 ruby_axis(file , [4, 5, 4], R, ’name ’, string(’Origin2’));

A.1.7 ruby_pose

Description:

Constructs a pose. The photo is taken in the -Z direction.

Function Declaration:

1 ruby_pose(file , P , R, ’focal ’, focal , ’width ’, width , ...
2 ’height ’, height , ’color ’, color , ’name ’, name)
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Figure A.6. Camera pose

• file: file struct

File structure created with ruby_create.

• P: (1x3) matrix

It contains x, y, z coordinates of the center of the projection of the pose.

• R: (3x3) matrix

It is an orthogonal matrix.

• focal (optional): 0.2 (default) | Numeric value

It is in meters.

• width (optional): 0.1 (default) | Numeric value

It is in meters.

• height (optional): 0.1 (default) | Numeric value

It is in meters.

• color (optional): char | [R, G, B]

Either one of the following colors or a set of RGB values.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow

‘g’: green

‘b’: blue
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‘p’: pink

‘k’: black

• name (optional): string.

Examples:

1 R = [1, 0, 0; 0, cos(1), sin(1); 0, -sin(1), cos (1)];
2

3 % Basic default pose.
4 ruby_pose(file , [5,5,5], R);
5

6 % Set custom focal length and image size.
7 ruby_pose(file , [6,5,5], R, ’focal ’, 0.1, ’width ’, 0.3, ’height ’, 0.2);
8

9 % Labeled.
10 ruby_pose(file , [7,5,5], R, ’focal ’, 0.1, ’width ’, 0.3, ...
11 ’height ’, 0.2, ’name ’, string(’f0.1w0.3h0.2’));
12

13 % Set the image plane from undefined to blue.
14 ruby_pose(file , [8,5,5], R, ’focal ’, 0.1, ’width ’, 0.3, ...
15 ’height ’, 0.2, ’color ’, ’b’);
16

17 % Set the image plane from undefined to red with hint of blue.
18 ruby_pose(file , [9,5,5], R, ’focal ’, 0.1, ’width ’, 0.3, ...
19 ’height ’, 0.2, ’color ’, [255, 0, 63]);

A.1.8 ruby_ellipsoid

Description:

Creates an ellipsoid.

Figure A.7. Ellipsoids

An ellipsoid is a surface defined by a center point P and a covariance matrix (also called tensor)

K .

vT K v = 1 (A.1)

v is the vector between a point of the 3D space and the center of the ellipsoid: P .
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Function Declaration:

1 ruby_ellipsoid(file , P , K , ’color ’, color , ...
2 ’name ’, name)

• file: file struct

File structure created with ruby_create.

• P: (1x3) matrix

It contains x, y, z coordinates of the center P of the ellipsoid.

• K: (3x3) matrix

It contains the variance-covariance matrix of the ellipsoid.

• color (optional): char | [R, G, B]

Either one of the following colors or a set of RGB values.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow

‘g’: green

‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string.

Examples:

1 K = [1.666 -0.424 0.244; -0.424 2.961 -0.558; 0.244 -0.558 4.121];
2

3 % Default ellipse
4 ruby_ellipsoid(file , [0,0,5], K);
5

6 % With preset color
7 ruby_ellipsoid(file , [0,0,10], K, ’color ’, ’r’);
8

9 % With RGB color
10 ruby_ellipsoid(file , [0,0,15], K, ’color ’, [248 ,123 ,156]);
11

12 % With label
13 ruby_ellipsoid(file , [0,0, 20], K, ’name ’, string(’Pos1’));
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A.1.9 ruby_plane

Description:

Constructs a polygone.

Figure A.8. Example of polygone drawn by the function ruby_plane

Function Declaration:

1 ruby_plane(file , XYZ , ’texture ’, texture , ’color ’, color , ’name ’, name)

• file: file struct

File structure created with ruby_create.

• XYZ: (Nx3) matrix

It is a numeric matrix consisting of points that define a plane. Points must not be

colinear, but must be coplanar.

• texture (optional): ” (default)

An image file path with extension ‘.png’, ‘jpg’or‘.jpeg’

• color (optional): char | [R, G, B]

Either one of the following colors or a set of RGB values.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow

‘g’: green

‘b’: blue
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‘p’: pink

‘k’: black

• name (optional): string

Examples:

1 % Inclined plane
2 ruby_plane(file_id , [ 5 , 0 , 0 ;...
3 5 , 2 , 2 ;...
4 6 , 2 , 2 ;...
5 6 , 1 , 1 ;...
6 7 , 1 , 1 ;...
7 7 , 2 , 2 ;...
8 8 , 1 , 1 ;...
9 8 , 0 , 0 ])

10

11 % Triangle with texture and name.
12 ruby_plane(file , [0, 0, 3; 0, 3, 0; 2, 0, 0],...
13 ’texture ’, ’/images/rainbow.jpeg ’, ’name ’, string(’myplane ’));
14

15 % Rectangle with red color.
16 ruby_plane(file , [0, 1, 3; 0, 1, 5; 1, 2, 5; 1, 2, 3], ’color ’, ’r’);
17

18 % Triangle with blue color.
19 ruby_plane(file , [0, 4, 3; 0, 7, 0; 2, 4, 0], ’color ’, [0, 0, 255]);

A.1.10 ruby_tin

Description:

Constructs a triangulated irregular network (tin).

Function Declaration:

1 ruby_tin(file , XYZ , triangles , ’texture ’, texture , ’color ’, color , ...
2 ’name ’, name)

• file: file struct

File structure created with ruby_create.

• XYZ: (Nx3) matrix

It is a numeric matrix consists of position of points. N is the number of points.

• triangles: (Mx3) matrix

It is a numeric matrix which consists of indexes of triangle points. M is the number of

triangles. The triangles are best created using the dalaunay function.
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Figure A.9. Example of Digital Elevation Model created by ruby_tin with a gradient texture overlaid

• texture (optional): ” (default)

An image file path with extension ‘.png’, ‘jpg’or‘.jpeg’

• color (optional): char | [R, G, B]

Either one of the following colors or a set of RGB values.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow

‘g’: green

‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string.

Examples:

1 Points = [ 10 * rand (100 ,1) + 10 , 10* rand (100 ,1) , randn (100 ,1) ];
2 triangles = delaunay(Points(:, 1:2));
3
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4 ruby_tin(file , Points , triangles , ’texture ’, ’/images/rainbow.jpeg ’,...
5 ’name ’, string(’Elevation ’));

A.1.11 ruby_antenna

Description:

Constructs an antenna or multiple antennas.

Function Declaration:

1 ruby_antenna(file , P, ’color ’, color , ’name ’, name)

• file: file struct

File structure created with ruby_create.

• P: (Nx3) matrix

A numeric matrix consisting of antenna positions. N is the number of antennas.

• color (optional): char | [R, G, B]

Either one of the following colors or a set of RGB values.

‘r’(default): red

‘w’: white

‘o’: orange

‘y’: yellow

‘g’: green

‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string | column vector containing strings

Examples:

1 % Create default (red) antenna at 2,2,2
2 ruby_antenna(file , [2, 2, 2]);
3

4 % Green Antenna
5 ruby_antenna(file , [2, 2, 3], ’color ’, ’g’);
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6

7 %Blue Antenna
8 ruby_antenna(file , [2, 2, 4], ’color ’, [0, 0, 255]);
9

10 % Add global antenna name
11 ruby_antenna(file , [2, 2, 5], ’name ’, string(’Ant1’));

A.1.12 ruby_arrow

Description:

Constructs an arrow or quiver plot.

Figure A.10. Example of single arrow

Function Declaration:

1 ruby_arrow(file , P , v, ’color ’, color , ’name ’, name)

• file: file struct

File structure created with ruby_create.

• P: (3x1) matrix

Is a vector with the coordinates.

• v: (3x1) matrix

Is a vector representing the direction of the arrow.

• color (optional): char | [R, G, B]

Either one of the following colors or a set of RGB values.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

239



Appendix A. 3D Visualization toolbox for easy display of complex data from Matlab or
Python

‘y’: yellow

‘g’: green

‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string

Examples:

1 % Draw arrow at 5,5,5 pointing along x axis
2 ruby_arrow(file , [5; 5; 5], [1; 0; 0]);
3

4 % Red arrow
5 ruby_arrow(file , [5; 5; 5], [0; 1; 0], ’color ’, ’r’));
6

7 % Labeled blue arrow
8 ruby_arrow(file , [5; 5; 5], [0; 0; 1], ’color ’, [0, 0, 255], ...
9 ’name ’, string(’Arrow1’));
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A.2 User Manual for Python

A.2.1 ruby_create

Description:

Creates and initializes a ruby file. Returns file object file.

Function Declaration:

1 file = ruby_create(name_or_path = ’script_ruby_sketchup.rb’)

• nameOrPath (optional): string

File name of output file. .rb file extension is mandatory.

Examples:

1 # Open ’script_ruby_sketchup.rb’ in local folder.
2 file = ruby_create ()
3

4 # Open ’script3d.rb’ in local folder.
5 file = ruby_create(’script3d.rb’)
6

7 # Open ’/Users/myUser/Documents/script3d.rb ’.
8 file = ruby_create(’/Users/myUser/Documents/script3d.rb’)

A.2.2 ruby_close

Description:

Completes and closes the ruby file.

Function Declaration:

1 ruby_close(file)

• file: file struct

File structure created with ruby_create.

Examples:
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1 ruby_close(file);

A.2.3 Input in SketchUp

If the file is closed correctly, it could be inputted in SketchUp as follow.

Copy the commanded printed on Python console.

Open a ruby console in SketchUp

Paste the command line from Python console
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A.2.4 ruby_point

Description:

Creates isolated points.

Figure A.11. Different type of points

Function Declaration:

1 ruby_point(file , XYZ , issymbolic = 0, symbol = ’triangle ’,
color = ’n’, name = ’’);

• file: file struct

File structure created with ruby_create.

• XYZ: (Nx3) numpy.array

N is the number of points. Each row corresponds to a point and the columns correspond

to the three coordinate axis.
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• issymbolic (optional): int | (Nx1) numpy.array

Single integer or column vector containing 0 and 1 values.

If it is a numeric value, all points are treated equally in terms of symbols. If it is 0, there

is no symbol. If it is 1, a symbol is used for each and every point.

If it is a column vector, the number of rows should be the same as the number of rows in

XYZ matrix.

• symbol (optional): ‘triangle’(default) | ‘cross’| ‘circle’| ‘square’

It defines how points are represented in 3D plane by assigning a particular symbol.

• color (optional): char

One of the following colors.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow

‘g’: green

‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string | (Nx1) numpy.array of strings

If it is a column vector, each point is given a separate name. Otherwise all points share

the same name.

Examples:

1 # Draws a single point
2 ruby_point(file , np.array([[-5, 2, 2]]))
3

4 # Draws 2 points with default symbol(triangle) and default
color(white)

5 ruby_point(file , np.array([[-4, 2, 2], [-3, 2, 2]]),
issymbolic = 1)

6
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7 # Draws 2 points with default symbol(triangle) and color
black

8 ruby_point(file , np.array([[-2, 2, 2], [-1, 2, 2]]),
issymbolic = 1,

9 color = ’k’)
10

11 # Draws 2 points with color red
12 # One with symbol(square) and other without symbols
13 # Both share the same name (’points ’)
14 ruby_point(file , np.array ([[2, 2, 2], [3, 2, 2]]),
15 issymbolic = np.array ([[1], [0]]), symbol = ’square ’,

color = ’r’,
16 name = "points")
17

18 # Draws 2 points with color green
19 # One without symbols and other with symbol(circle)
20 # They are named ’point1 ’ and ’point2 ’ respectively
21 ruby_point(file , np.array ([[4, 2, 2], [5, 2, 2]]),
22 issymbolic = np.array ([[0], [1]]), symbol = ’circle ’,

color = ’g’,
23 name = np.array ([["point1"], ["point2"]]))

A.2.5 ruby_line

Description:

Draws a line or polyline.

Figure A.12. Example of line drawn by the library

Function Declaration:
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1 ruby_line(file , XYZ , name = ’name’);

• file: file struct

File structure created with ruby_create.

• XYZ: (Nx3) numpy.array N is the number of points and should be at least 2. Each row

corresponds to a point and the columns correspond to three coordinate axis. The points

are connected by a line one by one according to the given order. In other words, the first

point is connected with the second point, the second point is connected with the third

point and so on.

• name (optional): string | ((N-1)x1) numpy.array of strings

If it is a column vector, each segment is given a separate name. Otherwise all segments

share the same name.

Examples:

1 # Draws 3 connected lines
2 ruby_line(file , np.array ([[0, 3, 2], [0, 3, 4], [0, 5, 4],

[0, 5, 2]]))
3

4 # Draws 2 connected lines with the same name (’lines ’)
5 ruby_line(file , np.array ([[0, 3, 4], [2, 3, 4], [2, 3, 2]]),

name = "lines")
6

7 # Draws 2 connected lines with different names (’line1 ’, ’
line2 ’)

8 ruby_line(file , np.array ([[0, 5, 4], [2, 5, 4], [2, 5, 2]]),
9 name = np.array ([["line1"], ["line2"]]))

A.2.6 ruby_axis

Description:

Creates a reference coordinate axis by changing the orientation and center point of the original

axis.

Function Declaration:

1 ruby_axis(file , P, R, name = ’’)
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Figure A.13. Axis definition

• file: file struct

File structure created with ruby_create.

• P: (1x3) numpy.array

Contains x, y, z coordinates of the axis origin.

• R: (3x3) numpy.array

Orthogonal rotation matrix representing the orientation of the axis.

• name (optional): string

Examples:

1 # Orthogonal orientation matrix
2 R = numpy.array ([[1, 0, 0], [0, cos(1), sin(1)], [0, -sin(1),

cos(1)]])
3 # Draws an axis with name (’reference_axis ’)
4 ruby_axis(file , np.array ([[4, 4, 4]]), R, name = "

reference_axis")

A.2.7 ruby_pose

Description:

Constructs a pose.

Function Declaration:
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Figure A.14. Camera pose

1 ruby_pose(file , P, R, focal = 0.2, width = 0.1, height = 0.1,
color = ’n’, name = ’’)

• file: file struct

File structure created with ruby_create.

• P: (1x3) numpy.array

Contains x, y, z coordinates of the center of the projection of the pose.

• R: (3x3) numpy.array

Orthogonal rotation matrix representing the orientation of the pose.

• focal (optional): float

In meters.

• width (optional): float

In meters.

• height (optional): float

In meters.

• color (optional): char

One of the following colors.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow
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‘g’: green

‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string

Examples:

1 # Orthogonal Matrix
2 R = np.array ([[1, 0, 0], [0, np.cos(1), np.sin(1)], [0, -np.

sin(1), np.cos(1) ]])
3

4 # Draws a pose with default focal length (0.2), width (0.1),
height (0.1)

5 # and color (weight) options
6 ruby_pose(file , np.array ([[5, 5, 5]]), R)
7

8 # Draws a pose with a name(’pose1 ’) and focal length (0.1)
9 ruby_pose(file , np.array ([[6, 5, 5]]), R, focal = 0.1, name

= "pose1")
10

11 # Draws a pose with the given focal length (0.6) and color (
orange)

12 ruby_pose(file , np.array ([[7, 5, 5]]), R, focal = 0.6, color
= ’o’)

13

14 # Draws a pose with the given focal length (0.8) and width
(0.3)

15 ruby_pose(file , np.array ([[8, 5, 5]]), R, focal = 0.8, width
= 0.3, color = ’p’)

16

17 # Draws a pose with the given focal length (1), width (0.3) ,
height (0.2)

18 # and color (red)
19 ruby_pose(file , np.array ([[9, 5, 5]]), R, focal = 1, width =

0.3, height = 0.2,
20 color = ’r’)
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A.2.8 ruby_ellipsoid

Description:

Creates an ellipsoid.

Figure A.15. Ellipsoids

An ellipsoid is a surface defined by a center point P and a covariance matrix (also called tensor)

K .

vT K v = 1 (A.2)

v is the vector between a point of the 3D space and the center of the ellipsoid: P .

Function Declaration:

1 ruby_ellipsoid(file , P , K , texture = ’’, color = ’n’, name=
’’)

• file: file struct

File structure created with ruby_create.

• P: (1x3) numpy.array

Contains x, y, z coordinates of the center of the ellipsoid.

• K: (3x3) numpy.array

Contains the variance-covariance matrix of the ellipsoid.

• texture (optional): string

Image file path with extension ‘.png’, ‘jpg’or‘.jpeg’.

• color (optional): char

One of the following colors.

‘n’(default): none
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‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow

‘g’: green

‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string

Examples:

1 # Variance -covariance matrix
2 R = np.array ([[1, 0, 0],
3 [0, np.cos(1), np.sin(1)],
4 [0, -np.sin(1), np.cos(1)]])
5 K = np.linalg.inv(R) * np.array ([[1, 0, 0], [0, 4, 0], [0, 0,

9]]) * R
6

7 # Draws an ellipsoid with color(red) given variance -
covariance matrix R

8 ruby_ellipsoid(file , np.array ([[0, 0, 10]]), K, color = ’r’)
9

10 # Draws an ellipsoid with texture given variance -covariance
matrix R

11 ruby_ellipsoid(file , np.array ([[0, 0, 20]]), K, texture = ’/
images/color.jpg’)

12

13 # Draws an ellipsoid with color(yellow) and name(’error
ellipsoid ’)

14 # given variance -covariance matrix K
15 ruby_ellipsoid(file , np.array ([[0, 0, 30]]), K, color = ’y’,
16 name = "error ellipsoid")
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A.2.9 ruby_plane

Description:

Constructs a polygone.

Figure A.16. Example of polygone drawn by the function ruby_plane

Function Declaration:

1 ruby_plane(file , XYZ , texture = ’’, color = ’n’, name = ’’)

• file: file struct

File structure created with ruby_create.

• XYZ: (Nx3) numpy.array

Numeric matrix that consists of N points that define a plane, points must not be colinear,

but must be coplanar. N must be larger than 3.

• texture (optional): string

Image file path with extension ‘.png’, ‘jpg’or‘.jpeg’.

• color (optional): char

One of the following colors.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow

‘g’: green

‘b’: blue
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‘p’: pink

‘k’: black

• name (optional): string

Examples:

1 % Inclined plane
2 ruby_plane(file_id , [ 5 , 0 , 0 ;...
3 5 , 2 , 2 ;...
4 6 , 2 , 2 ;...
5 6 , 1 , 1 ;...
6 7 , 1 , 1 ;...
7 7 , 2 , 2 ;...
8 8 , 1 , 1 ;...
9 8 , 0 , 0 ])

10

11 # Draws a blue plane with the label ’myplane ’
12 ruby_plane(file , np.array ([[0, 1, 3], [0, 1, 5], [1, 2, 5],

[1, 2, 3]]),
13 color = ’b’, name = ’myplane ’)

A.2.10 ruby_tin

Description: Constructs a triangulated irregular network (tin).

Function Declaration:

1 ruby_tin(file , XYZ , triangles , texture = ’’, color = ’n’,
name = ’’)

• file: file struct

File structure created with ruby_create.

• XYZ: (Nx3) numpy.array

Numeric matrix of point coordinates. N is the number of points.

• triangles: (Mx3) numpy.array

Numeric matrix of point indexes as returned by delaunay.simplices. M is th number of

triangles.
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Figure A.17. Example of Digital Elevation Model created by ruby_tin with a gradient texture overlaid

• texture (optional): string

Image file path with extension ‘.png’, ‘jpg’or‘.jpeg’.

• color (optional): char

One of the following colors.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange

‘y’: yellow

‘g’: green

‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string

Examples:

1 # Create dataset
2 p1 = 10 * np.random.rand (100, 1) + 10
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3 p2 = 10 * np.random.rand (100, 1)
4 p3 = np.random.rand (100, 1)
5

6 points = np.concatenate ((p1, p2), axis = 1)
7 points = np.concatenate ((points , p3), axis = 1)
8

9 # Extract triangles
10 triangles = Delaunay(points[:, 0:2])
11

12 # Create tin with texture
13 ruby_tin(file , points , triangles.simplices.copy(),
14 texture = ’/images/rainbow.jpeg’)

A.2.11 ruby_theodolite

Description:

Constructs a theodolite.

Function Declaration:

1 ruby\_theodolite(file , P, name = ’’)

• file: file struct

File structure created with ruby_create.

• P: (1x3) numpy.array

Numeric matrix consisting of theodolite coordinates.

• name (optional): string

Examples:

1 ruby_theodolite(file , numpy.array ([[1, 2, 0]]), name = "
theodolite")

A.2.12 ruby_antenna

Description:

Constructs an antenna or multiple antennas.
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Function Declaration:

1 ruby\_antenna(file , P, name = ’’)

• file: file struct

File structure created with ruby_create.

• P: (Nx3) numpy.array

Numeric matrix consisting of antenna positions. N is the number of antennas.

• name (optional): string | (Nx1) numpy.array of strings

If it is a column vector, each antenna is given a separate name. Otherwise all antennas

share the same name.

Examples:

1 ruby_antenna(file , numpy.array ([[5, 5, 3]]), name = "antenna"
)

A.2.13 ruby_resection

Description:

Constructs a resection object.

Function Declaration:

1 ruby_resection(file , P, pos_antennas , name = ’’)

• file: file struct

File structure created with ruby_create.

• P: (1x3) numpy.array

Numeric matrix consisting of theodolite coordinates.

• pos_antennas: (Nx3) numpy.array

Numeric matrix consisting of antenna positions. N is the number of antennas.

• name (optional): string
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Examples:

1 ruby_resection(file , [5, 5, 3], [[0, -10, 0], [0, -2, 0],
[-3, 0, 0]],

2 name = "resection")

A.2.14 ruby_arrow

Description:

Draws an arrow / quiver plot.

Figure A.18. Example of single arrow

Function Declaration:

1 ruby_arrow(file , P, v, color = ’n’, name = ’’)

• file: file struct

File structure created with ruby_create.

• P: (3x1) numpy.array

Coordinate vector.

• v: (3x1) numpy.array

Orientation vector.

• color (optional): char

One of the following colors.

‘n’(default): none

‘w’: white

‘r’: red

‘o’: orange
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‘y’: yellow

‘g’: green

‘b’: blue

‘p’: pink

‘k’: black

• name (optional): string

Examples:

1 # Draws an arrow at 5,5,5, pointing along x axis
2 ruby_arrow(file , np.array ([[5] , [5], [5]]), np.array ([[1],

[0], [0]]))
3

4 # Draws a red arrow
5 ruby_arrow(file , np.array ([[5] , [5], [5]]), np.array ([[0],

[1], [0]]), \
6 color = ’r’)
7

8 # Draws a green arrow with label
9 ruby_arrow(file , np.array ([[5] , [5], [5]]), np.array ([[0],

[0], [1]]), \
10 color = ’g’, name = "arrow3")

Acknowledgements

The author would like to thank in particular Beat Geissmann for his technical contribution in

formatting both Matlab and Python codes. Moreover, we would like to thank Pinar Ezgi Çöl

and Simon Lütolf for their help, and the supervisors: Jan Skaloud, Jean-François Hullo and

Bertrand Merminod who encouraged for the development of this toolbox.

258



B Bundle-Adjustment Algorithm: Code
description

This appendix presents a custom Bundle-Adjustment algorithm developed during this PhD.

The global theory is presented in Chapter 1, then, a benchmarking using a wide range of

different parameters is performed in Chapter 2. Chapter 3 uses a C++ version of this algorithm

together with a photogrammetric network simulator. Chapter 4 and 5 use further extensions

of this algorithm.

This user manual is intended both for users and for developers. First, the Section B.1 gives just

the necessary instructions to import the data and get a first result. A TEST ME example is also

provided. Section B.2 presents all the adjustments parameters to test and compare different

configurations whose results could be assessed with the tools presented in Section B.3. Finally,

Section B.4 explains the methods used in the Bundle-Adjustment algorithm. The equations

presented in this section are referred in the code.

B.1 Quick Start: import file and process it

B.1.1 Input file

Images Observations from Photoscan

This Bundle-adjustment uses as inputs the image observations outputted by the software

Agisoft Metashape. These measurements are obtained by creating an Agisoft Metashape project,

in which the images are inputted. To match the images, the adjustment procedure must be

clicked. Then, the user must to click on file/Export/Export Cameras... as in Figure B.1.
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Figure B.1. Click File/export/export cameras...

The file that will be used as input in our custom Bundle-Adjustment is an .xml Blocks exchange

file: Figure B.2.

Figure B.2. Choose Blocks Exchange .xml
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This first step is crucial for the functioning of the Bundle-Adjustment. If the Bundle-Adjustment

fails, it is probably because this step has not been proceed properly. If some photos are not

aligned in photoscan software, it is recommended to create a new project including only the

photos that can be aligned.

Trajectory

The trajectory is computed by integrating the IMU data with the GNSS positioning. The file

that must be inputted in our custom Bundle-Adjustment is a .fmb file.

Creating a project in our custom Bundle-Adjustment

Our custom Bundle-Adjustemnt software is a Matlab function called topo-bun-f which

takes as input a structure in which all the parameters of the adjustment are given. This

structure is presented in detail in the section B.2. Three elements are important to create

a project. The PROJECT-NAME, the PROJECT-STORAGE-FOLDER and the NAME-PHOTO-INPUT.

A time-consuming step is the parsing of the .xml file. This parsing is achieved at the first run of

topo-bun-f on a new project. A file called imported.mat is created in the PROJECT-STORAGE-FOLDER.

The given PROJECT-NAME is stored in the imported.mat file together with the images observa-

tions. If the topo-bun-f function is run again on the same project with different parameters

or a different GCP configuration, the .xml file is not parsed again. To check that the correct

imported.mat is imported, the PROJECT-NAME must remain the same at each run of the same

project (if not, a warning pop-up).

The GCP/CP Graphical User Interface

The GCP/CP Graphical User Interface could be used to select which point must be used as

a Ground Control Point (GPS) or as a Checkpoint (CP). This functionality is opened if the

GCP-GUI element of the input structure is set to true.
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Figure B.3. GCP/CP Graphical User Interface. Green: Images position, Red: GCPs, Blue: CPs

The GCPs are represented on the map (right part of Figure B.3) by red dots, the CP are repre-

sented by blue dots. GCPs could be transformed in CP (and conversely) by clicking on the GCP
CP button (left box in Figure B.3) and then by clicking on (or as close as possible) the points to

modify. This mode must be stopped by clicking anywhere on the map with the right button of

the mouse. It is thus possible to zoom or un-zoom to click others points. When the GCP-CP

configuration is satisfying, click on the button Validate.

The TEST ME example

The TEST ME example is provided to understand quickly the functioning of our Bundle-

Adjustment. The files are already stored in the example-project-folder.
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B.2 Tuning parameters

One of the advantage of our Bundle-adjustment is the wide range of parameters that can be

tuned. These parameters are summarized in the table next page. However, the choice of these

parameters is interdependent.

If the number of parameters to model the Interior Orientation is high (such as when the

Brown model contains high degree polynomials or when INTERIOR-ORIENTATION-MODEL is

ORTHO-POLY18), it is recommended to slow (i.e. to damp) the Interior Orientation parameters

(by setting SLOW-INTERIOR-PARAM-NUM to 18 and SIGMA-SLOW-PARAM to 30 in the example of

ORTHO-POLY18). Moreover, when the slowing method is used, the iterative process is slower,

and thus, the number of iteration must be increased and the tolerance on the increment could

be reduced (NB-MAX-IT could be increased to 10 000 and tol-conv could be reduced to 1e−8

in the example of ORTHO-POLY18).

If the CAMERA-PARAMETERS-ORIGIN is CONFIG-FILE, the camera parameters must be given in

the param-struct. This param-struct.CAMERA-PARAMETERS contains the IO parameters as

described in Table B.1.

  Name parameter Variable type description 
    

B
ro

w
n
 

CAMERA_PARAMETERS.f float Principal distance 
CAMERA_PARAMETERS.pp 2*1 vector Principal point 
CAMERA_PARAMETERS.R123 n*1 vector Where n = CALIBRATE_RADIALS 
CAMERA_PARAMETERS.T12 n*1 vector Where n = CALIBRATE_TANGENTIALS 
CAMERA_PARAMETERS.B12 2*1 vector Skew parameters 

    

O
rt

h
o
 

p
o
ly

 1
8
 CAMERA_PARAMETERS.ortho_a 9*1 vector Elements of the orthogonal polynomial 

matrix for x 
CAMERA_PARAMETERS.ortho_b 9*1 vector Elements of the orthogonal polynomial 

matrix for y 
    

O
rt

h
o
 

p
o
ly

 1
5
 

CAMERA_PARAMETERS.a11 float Elements of the orthogonal polynomial 
with constraints for the x and y 
coordinates 

CAMERA_PARAMETERS.a13 float 

CAMERA_PARAMETERS.a21 float 

CAMERA_PARAMETERS.a22 float 

CAMERA_PARAMETERS.a23 float 

CAMERA_PARAMETERS.a32 float 

CAMERA_PARAMETERS.a33 float 

CAMERA_PARAMETERS.b11 float 

CAMERA_PARAMETERS.b12 float 

CAMERA_PARAMETERS.b21 float 

CAMERA_PARAMETERS.b22 float 

CAMERA_PARAMETERS.b23 float 

CAMERA_PARAMETERS.b31 float 

CAMERA_PARAMETERS.b32 float 

CAMERA_PARAMETERS.b33 float 

 

 

 Table B.1. Structure of camera Interior Orientation model
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 Name parameter Variable type or 
Possible value 

description 

   

PROJECT_NAME string Name of the project 
PROJECT_STORAGE_FOLDER string Folder where temp files and output are stored 
NAME_output string Name of the output file 
NAME_PHOTO_INPUT Empty string Put an empty string if the file has been 

already loaded 
string Path of block exchange.xml 

NAME_IMU_INPUT string Path to the .fmb trajectory file 
TYPE_GNSS_AERIAL_CONTROL 'NONE' No GNSS on the drone 

'CENTERED' The lever-arm between GNSS phase center 
and camera perspective center is null. 

'KNOWN_LEVER_ARM' The lever-arm between GNSS phase center 
and camera perspective center is known and 
equal to lever_arm 

'CALIB_LEVER_ARM' The lever-arm between GNSS phase center 
and camera perspective center is unknown. 

TYPE_IMU_AERIAL_CONTROL 'NONE' No IMU on the drone 
'ABSOLUTE' Absolute orientation with known 

bore_sight matrix between the IMU and 

the camera. 
'ABSOLUTE_CALIB' Absolute orientation with calibration of the 

bore_sight matrix between the IMU and 

the camera.  
'RELATIVE' Relative orientation between successive 

poses. The bore_sight matrix is not 

needed. 
INTERIOR_ORIENTATION_MODEL 'BROWN' Uses Brown camera model 

'ORTHO_POLY18' Uses the full Orthogonal polynomials with 
18 coefficients to model the camera 

'ORTHO_POLY15' Uses the constrained Orthogonal polynomials 
with 15 coefficients to model the camera 

INTERIOR_CALIBRATION 'FIX' The camera IO parameters are known in 
advance and is fixed in the adjustment 

'LEADING' The principal point and principal distances 
are adjusted (free) while the other parameters 
are fixed in the adjustment 

'FREE' All the IO parameters are adjusted 
CALIBRATE_F 0 or 1 If INTERIOR_CALIBRATION is FREE, 0 if 

the principal distance is fixed, 1 if it is free 
CALIBRATE_PP 0 or 2 If INTERIOR_CALIBRATION is FREE, 0 if 

the principal point is fixed, 2 if it is free 
CALIBRATE_RADIALS positive integer If INTERIOR_CALIBRATION is FREE, 

number of radial coefficients 
CALIBRATE_TANGENTIALS 0 or a positive 

integer > 1 
If INTERIOR_CALIBRATION is FREE, 0 if 

the tangential distortions are fixed, 2 or more 

if it is free (corresponds to the number of 
tangential distortions parameters) 

CALIBRATE_SKEW 0 or 2 If INTERIOR_CALIBRATION is FREE, 0 if 

the skew parameters is fixed, 2 if it is free 



DIRECT_OBSERVATION Column Vector of 

observations 
Direct observation of the IO parameters. 
To add these measurements,  
INTERIOR_CALIBRATION must be FREE, 

DIRECT_OBSERVATION_NUM must be the 

length of the DIRECT_OBSERVATION 

vector and of the 
DIRECT_OBSERVATION_SIG  

DIRECT_OBSERVATION_NUM positive integer Length of the DIRECT_OBSERVATION 
DIRECT_OBSERVATION_COV false The covariance matrix of the 

DIRECT_OBSERVATION vector is diagonal, 

and the values of this diagonal are given in 
the vector DIRECT_OBSERVATION_SIG 

true The covariance matrix of the 
DIRECT_OBSERVATION vector is full, and 

the values of this squared matrix are given in 
the vector DIRECT_OBSERVATION_SIG 

DIRECT_OBSERVATION_SIG Column Vector of 

sigma of direct 

observations 

If DIRECT_OBSERVATION_COV is false 

Square covariance 

matrix of direct 

observations 

If DIRECT_OBSERVATION_COV is true 

SLOW_INTERIOR_PARAM_NUM positive integer Number of IO parameters to slow 
SIGMA_SLOW_PARAM Real number Sigma of the pseudo-observation to slow 
CAMERA_PARAMETERS_ORIGIN 'INPUT_FILE' IO are taken in the .xml file 

'CONFIG_FILE' IO are given in the CAMERA_PARAMETERS 
'OTHER_FILE' IO are taken in file whose path is given by 

CAMERA_PARAMETERS_ORIGIN 
CAMERA_PARAMETERS Structure containing the camera parameters (Table B.1) 
CAMERA_PARAMETERS_ORIGIN string Path to the camera parameters 
NB_MAX_IT positive integer Maximum number of iterations 
tol_conv float Tolerance on the maximum position 

displacement of the tie-points 
lever_arm 3*1 float vector Lever-arm between the GNSS phase center 

and the camera perspective center 
bore_sight 3*3 float 

rotation matrix 
Boresight matrix between the IMU and the 
camera 

sig_pix float Sigma of a tie-point image observation 
sig_pix_GCP float Sigma of a CP or a GCP image observation 
sig_inertia float If TYPE_IMU_AERIAL_CONTROL is 

ABSOLUTE_CALIB or ABSOLUTE_CALIB 

Sigma of direct observation in rad 
float If TYPE_IMU_AERIAL_CONTROL is 

RELATIVE Sigma of direct observation in 

rad/√s 
sig_GCP 3*1 float vector Sigma of the GCPs (X,Y,Z) 
load_GCPs false or true If true, load the GCPs in list_GCPs 
list_GCPs string Path to the list of GCPs to import 
GCP_GUI false or true If true, shows the GUI for GCPs selection 
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B.3 Output and visualisation

B.3.1 Convergence rate

The first visible output is the convergence of the maximum value of δx as a function of the

iteration. If the adjustment converges properly, the max(δx) globally decreases util it reaches

the tolerance.

B.3.2 Covariances matrices

The total number of observation is given by nb-obs and the total number of parameters is

given by u. Thus, the redundancy is given by nb-obs – u.

The precision of an observation of unitary weightσ0 could be computed as sigma-0 = sqrt(
v’*P*v/(nb-obs - u) ).

The inversion of AT P A is notoriously time and memory consuming. Thus, it is important to

inverse only part of this matrix as described in section 1.2.10.

compute-block-inverse( N , interval-row , interval-column ) compute subset of

the inverse of the matrix N. interval-row and interval-column are respectively the set of

integers of the rows and the set of integers of the columns.

To extract the proper elements of the inverse of AT P A, it is necessary to refer the columns

of A properly as described in Figure B.5. In particular, string-param-calib contains the IO

parameters name.

B.3.3 GCP residuals

The residus-GCPs variable contains the GCP residuals in the same order as the list-GCP.

B.4 Code and Algorithm description

The goal of this section is to explain the functioning of Topo-Bundle and what is the structure

of the code in order to help permit potential developer modifying the code.

The adjustment algorithm uses Gauss-Newton algorithm (it could be damped for some vari-

ables if needed). This Bundle-Adjustment algorithm needs to build the Design matrix as the

Jacobian of the observation equations.

The philosophy of the topo-Bundle code structure is to show the computations that are
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meaningful for surveyors/photogrammetrists, and to hide the technical informatics subtilities.

B.4.1 Important variables

The structure variable poses describes the poses parameters of the camera while a photo is

taken. For example, poses(5) describes the poses parameters while the 5th photo was taken.

poses(5).P is the position of the camera perspective center, poses(5).R is the rotation

matrix from local frame to camera frame for the 5th photo. These two values are adjusted

parameters in the Bundle-Adjustment (i.e. they are updated at each step). poses(5).Tin and

poses(5).Rin are the corresponding values given by the inputted trajectory from GNSS/IMU

fusion. They are considered in the Bundle-Adjustment as observations (thus, they are con-

stant).

obs are the 2D image observations. The first column describes in which image the point

is seen. The second column describes which point is seen, and the two last one are the

images observation (The unit is usually the pix and must be coherent with the one describing

the IO). This obs is linked to the variable terrain in which all the points of the terrain are

described (Figure B.4). The first column is the unique identifier of the point, and the three

other columns are the points coordinates. This terrain variable is an adjusted parameter in

the Bundle-Adjustment (i.e. it is updated at each step).

B.4.2 Update step

The orientation of the camera (poses(i).R) is updated in the Bundle-Adjustment with the

right multiplication as in the right column of Table 1.4. The boresight-matrix is updated in the

Bundle-Adjustment with the left multiplication as in the left column of Table 1.4. This choice

is justified by the input of absolute and relative orientation. The derivatives of Table 1.4 and

Table 1.5 will be used for the derivation of the observation equations.

B.4.3 Observation models and derivations

Mathematic Vs Informatic notations

For the scope of conciseness, the notations (Table B.2) in this appendix are slightly different

from the one used in the code.
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Notation In the matlab code

Camera perspective center T poses(i).T

Camera orientation R poses(i).R

∂ Camera orientation ω dx(jposes+(i∗6-2:i∗6))

Tie-point position P terrain(j,2:4)

Camera position from trajectory T̃ poses(i).Pin

Camera orientation from trajectory R̃ poses(i).Rin

GNSS antenna Lever arm Tl a lever-arm

camera-IMU Boresight matrix Rbs bore-sight

Projection function π pi-

Projection function Jacobian Π PI

IO function jacobian Ξ XI

Table B.2. Notations
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Image observations

The 2D image observation `i m is simulated as follows, where π is the R3 → R2 perspective

projection function (1.2) and ξ models the camera IO (As described in 1.1.6 and discussed in

Chapter 2)

`i m = ξ(
π

(
RT (P −T )

))
(B.1)

Ξ is the jacobian matrix of the function ξ, andΠ is the jacobian matrix of the function π.

Ξ= ∂ξ(p))

∂p
(B.2)

Π= ∂π(P ′))

∂P ′ (B.3)

The computation of the derivatives with respect to elements in an euclidian space is straight-

forward (Equation B.4 and B.5), while the one with respect to a SO3 rotation uses Table 1.4

(Equation B.6).

∂`

∂P
=Ξ Π RT (B.4)

∂`

∂T
=−Ξ Π RT (B.5)

∂`

∂ω
=Ξ Π [

RT (P −T )
]
× (B.6)
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GCP observations

The GCP observation model is trivial since the GCP coordinates are directly measured.

`GC P = PGC P (B.7)

∂`GC P

∂PGC P
= I3 (B.8)

Embedded GNSS observations

The GNSS antenna embedded on the platform measures the position of the antenna phase

center which differs from the position of the camera perspective center by the lever-arm Tl a

(expressed in the camera frame).

`GN SS = T +R Tl a (B.9)

∂`GN SS

∂T
= I3 (B.10)

∂`GN SS

∂ω
=−R [Tl a]× (B.11)

∂`GN SS

∂Tl a
= R (B.12)

Absolute orientation observations

Absolute or Relative orientation input observations belongs to SO3. Section 1.5.6 gives the

theoretical background for its input in the Bundle-Adjustment.
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A SO3 element cannot be concatenated inside an observation vector. This is why, neither the

observations vector ` nor the
◦
` is explicitly built. However, the misclosure of each observation

equation is explicitly built as equation B.13 for absolute orientation and B.16 for relative orien-

tation. The derivatives of these misclosures will be computed with respect to the increment

that will be used for the update-step of the parameters.

◦
v R̃ = log

(
RT R̃ RT

bs

)
(B.13)

The derivatives are computed with the help of Table 1.5.

∂
◦
v R̃

∂ω
= I3 (B.14)

∂
◦
v R̃

∂ωbs
= I3 (B.15)

Relative orientation observations

The misclosure for the equation of relative orientation observations is given below, with their

derivatives used in the Bundle Adjustment.

◦
v∆R̃ = log

(
RT

1 R̃1 R̃T
2 R2

)
(B.16)

∂
◦
v∆R̃

∂ω1
= I3 (B.17)

∂
◦
v∆R̃

∂ω2
=−I3 (B.18)
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Direct observations

The direct observations consist in giving the values of the IO given by a previous calibration

(and optionally of the lever-arm and of the boresight-matrix) as observations `Θ weighted by

their uncertainty: Σ−1
Θ . This process is explained and discussed in 2.4.

The observation equation between the IO parametersΘ and there direct observation is thus

an equality, whose jacobian matrix is the identity.

`Θ =Θ (B.19)

If the weight matrix Σ−1
Θ is diagonal, the values are concatenated in the vector p containing all

the weights of the Bundle-Adjustment. This p vector is then transformed in a diagonal matrix

P. If the weight matrix Σ−1
Θ is full, the P matrix is built with the others observations, and then,

the Σ−1
Θ are added to create a block-diagonal matrix.

Damping pseudo-observations

The Damping pseudo-observations permit to Damp some of the parameters (it could be

considered as a modified version of the Levenberg-Maquard algorithm where the damping

parameter is given by the weight of the Damping pseudo-observations for the observations

that are damped, and is 0 for the others).

We choose to Damp these observations by putting a Identity matrix as the derivative, and to

give null values to the
◦
v values associated to these damped observations.

B.4.4 Management of the position of the sub-matrix-block

The derivatives computed in the previous section needs to be appropriately placed in the A
matrix.

The index for the row (on the left side of Figure B.5) and for the columns (on the top side of

Figure B.5) corresponds to the division between respectively the observation type, and the

parameter type. These integer values correspond to the last element before the considered

block.

For example, we know that a GCP observation contains 3 element. The column of the derivative

of the first GCP will be:

272



B.4. Code and Algorithm description

i_GCP + [1 2 3]

The column of the derivative of the second GCP will be:

i_GCP + [4 5 6]

and so on.

u
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i_slow

i_image_obs=0
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p
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Figure B.5. Matrix A structure
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B.4.5 Management of the construction of the sparse matrix

The design matrix A is sparse. Thus, it should be build in a sparse way to improve performances.

However, the construction and the modification of a sparse matrix is non-trivial. Therefore,

the construction of the Design matrix A is hidden in an object structure.

This object is constructed as follows.

A = Sparse_A_matrix( number_derivative );

where number-derivative is the number of single values derivatives i.e. the number of scalar

numbers that will be inserted in the sparse matrix A.

Then, the matrix is fill with blocks as follow.

Figure and Code B.6 illustrates the insertion a sub matrix at the rows 137,138 and at the

columns 42,43,44,45.
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137

138

4
2

4
3

4
4

4
5

A.FeedA [137 138] , [42 43 44 45] , ( )

Figure B.6. Adding sub-matrix in matrix A

If the block-sub-matrix to insert is diagonal, the insertion could be done as on the Figure and

code B.7, where the 3×3 diagonal matrix is inserted at the rows 92,93,94 and at the columns

51,52,53.

275



Appendix B. Bundle-Adjustment Algorithm: Code description

92

93
5
1

5
2

5
3

A.FeedAdiag [92 93 94] , [51 52 53] , ( )

94

Figure B.7. Adding sub-diagonal-matrix in matrix A

Before being used in algebraic computation, the A sparse matrix object must be converted in

actual matrix as follows.

A = A.return_matrix;

The produced A matrix could be visualised with the command spy(A).
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Figure B.4. Link between obs and terrain variable
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Photographic credits

The ortho-photo, the DTM and the snow pack thickness of Figure 1 is originated from [140].

The point-cloud and the Point-cloud section of Figure 1 have been created from the data

provided by Julien Vallet.

Table 1 is a compilation of images from various sources.

• The hand laser-scanner is a ZG 3d laser scanner.

• The terrestrial laser scanner is a Leica geosystem laser-scanner https://leica-geosystems.

com/products/laser-scanners/scanners

• The drone airborne Laser-scanner is developed by Northern Robotics Laboratory, Ulaval:

https://norlab.ulaval.ca/publications/survey-lidar-UAV/

• The Helicopter airborne Laser-scanner is the Helimap system: http://www.helimap.ch/

• The plane airborne Laser-scanner is an image from the following article https://www.

auav.com.au/articles/drone-data-vs-lidar/

• The laser-scanner embedded on a Satellite orbiting around Mars Planet is the Mars

Orbiter Laser Altimeter: Mars Global Surveyor Missions by NASA https://mars.nasa.gov/

mars-exploration/missions/mars-global-surveyor

• The macro photogrammetry is the scan of the Maori head of the museum of Rouen,

described in [162]

• The terrestrial photogrammetry is an image of the Arco di Constantinoin Rome, Italy

created with the software and the data provided by Niclas Börlin, described in [17].

• The drone for airborne photogrammetry is an eBee+ [142].
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• The explanation of the plane airborne photogrammetry was found in [112] but the

author of the original drawing is unknown to us.

Figure 3 is a compilation of several images including the terrestrial and the aerial vehicle of

the mapKITE project http://www.mapkite.com, and the lower drone of the DoDo project [75].
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