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VORWORT 
 
Die Cube-Satellitenmission CubETH des Instituts für Geodäsie und Photogrammetrie (IGP) der 
ETH Zürich in Zusammenarbeit mit verschiedenen Partnern aus Akademie und Industrie hat das 
Ziel, eine GNSS-Empfänger-Nutzlast im Weltraum zu fliegen, die aus fünf Antennen (vier auf der 
Zenitseite und eine seitwärtsgerichtet) besteht, wobei jede Antenne mit zwei kleinen Ein-Frequenz-
Empfängern der Schweizer Firma u-blox verbunden ist. Der Cube-Satellit mit einer Grösse von 10 
cm auf 10 cm auf 10 cm wurde entwickelt, um sowohl die Satellitenbahn als auch die -orientierung 
mit der GNSS-Nutzlast zu bestimmen. Da die drei Basislinien zwischen den vier GNSS-Antennen 
auf der Zenitseite des kleinen Satelliten extrem kurz sind, wird die Lagebestimmung zu einer 
richtigen Herausforderung.  Diese Schwierigkeit wird noch vergrössert durch den Umstand, dass die 
durch die COTS GNSS-Empfänger aufgezeichneten Beobachtungen um bis zu 0.5 ms in der Zeit 
versetzt sein können, während der Satellit sich mit einer Geschwindigkeit von typischerweise 7 
km/s bewegt. Eine weitere Fehlerquelle sind die grossen GNSS-Phasenzentrumsvariationen, die bei 
so kleinen Patch-Antennen zu erwarten sind und die Lagebestimmung stark verschlechtern.   
Daniel Willi widmete sich sehr erfolgreich all diesen Problemen, indem er zuerst ein sehr 
detailliertes, genaues Korrekturmodell für die nicht-synchronisierten Beobachtungen erarbeitete und 
dieses Modell dann mit Simulationsrechnungen und mit einem Industrieroboter testete. Er erreichte 
dabei eine beachtliche Genauigkeit der Lagebestimmung von ein paar Grad mit den extrem kurzen 
Basislinien von 5-8 cm. Um die Bestimmung der Ausrichtung des Satelliten mit den sehr kurzen 
Basislinien weiter zu verbessern, war es notwendig, die Phasenzentrumsoffsets und -variationen der 
kleinen GNSS Patch-Antennen genau zu kalibrieren. Diese Kalibrieraktivitäten haben den Fokus in 
Richtung der Kalibrierung von GNSS-Empfängerantennenphasenzentren im Allgemeinen 
verschoben. Die Kalibrierung der Antennenphasenzentren der wichtigsten Antennentypen für alle 
GNSS und alle verfügbaren Frequenzen ist eine absolute Notwendigkeit für hochgenaue GNSS-
Anwendungen, die Multi-GNSS-Antennen und -empfänger einsetzen. Insbesondere die 
Realisierung eines extrem stabilen und genauen Referenzrahmens als metrologische Basis für 
äusserst anspruchsvolle Anwendungen wie etwa das Erfassen des Meeresspiegelanstiegs, erfordert 
lange Zeitserien von mit höchster Genauigkeit und Zuverlässigkeit berechneten GNSS-
Stationskoordinaten. Da kein konsistenter Satz von Phasenzentrumskalibrierungen für alle 
wesentlichen geodätischen Antennentypen verfügbar war, stellte sich Daniel Willi dieser 
schwierigen Herausforderung und konzentrierte sich auf die absolute Kalibrierung von GNSS-
Antennenphasenzentrumsvariationen im Allgemeinen. In nur gerade zwei Jahren entwickelte Daniel 
Willi von Grund auf ein komplettes und völlig automatisiertes System für die Kalibrierung von 
GNSS-Antennen, wobei er dazu einen Industrieroboter, eine neue Datenanalysemethode mit 
Dreifach-Differenzen zur Unterdrückung von Mehrwegeffekten und eine optimierte Folge von 
Rotationen für die Orientierung der zu kalibrierenden Antenne verwendete. Zudem musste Daniel 
Willi auch den Industrieroboter selbst kalibrieren. Dies geschah mit Hilfe eines kinematischen 
Modells und einer geschickten Parametrisierung der Robotergeometrie und war eine 
Herausforderung an sich. Zusammengefasst hat Daniel Willi damit ein sehr effizientes System für 
die GNSS-Antennenkalibrierung entwickelt. Die hohe Genauigkeit dieses Systems wurde bereits 
durch Vergleiche mit anderen Kalibriermethoden und mit Resultaten auf kurzen Basislinien, die 
zusammen mit swisstopo durchgeführt wurden, eindrücklich demonstriert. Die SGK dankt sowohl 
dem Autor für den wertvollen Beitrag als auch der Schweizerischen Akademie für 
Naturwissenschaften (SCNAT) für die Übernahme der Druckkosten. 

 
Prof. Dr. M. Rothacher 

Institut für Geodäsie und Photogrammetrie ETH Zürich 
ETH Zürich Präsident der SGK 



PREFACE 
 

La mission satellitaire CubETH, de l’institut de géodésie et photogrammétrie (IGP) de l’école 
polytechnique fédérale de Zurich, est un projet collaboratif de divers partenaires industriels et 
académiques et qui a pour but la mise en orbite terrestre d’un système global de navigation par 
satellite (GNSS) consistant en cinq antennes (quatre dirigées en direction du zénith et une dirigée 
sur le côté) ; chacune d’elles étant connectée à deux récepteurs miniatures à une fréquence, 
développés par la compagnie suisse u-blox. Le satellite porteur de la charge utile GNSS est de 
forme cubique de 10 cm de côté et a été développé pour accomplir des déterminations d’orbites et 
d’attitudes. Du fait que les trois lignes de base entre les quatre antennes GNSS de la face zénithale 
du petit satellite sont extrêmement courtes, la détermination de l’attitude est un réel défi. Cette 
difficulté est amplifiée par le fait que les observations collectées par les récepteurs GNSS à bas coût 
peuvent êtres décalées dans le temps jusqu’à 0.5 millisecondes alors que le satellite se déplace à une 
vitesse de 7 km/s. D’autres sources d’erreurs sont les variations des centres de phase auxquelles l’on 
peut s’attendre pour des antennes miniaturisées telles que celles utilisées. Ces variations dégradent 
significativement les valeurs des estimations d’attitudes.    Monsieur Willi a résolu avec succès ces 
problèmes en développant un modèle très précis et très détaillé pour les observations asynchrones 
puis en testant ce modèle, en se basant sur des simulations et sur des donnée obtenues à l’aide d’un 
robot industriel, et a atteint une précision remarquable de quelques degrés sur une ligne de base de 5 
à 8 centimètres. Afin d’améliorer les résultats d’attitude sur une ligne de base si courte, les 
variations des centres de phase des antennes miniaturisées ont dû être calibrées. Ces activités de 
calibrations ont déplacé la focalisation de la thèse de doctorat de Monsieur Willi, vers un but plus 
général qui est la calibration des variations des centres de phase des antennes GNSS. La calibration 
des variations des centres de phase des principaux modèles d’antennes pour toutes les fréquences et 
toutes les constellations GNSS est une nécessité absolue pour l’obtention d’une haute précision de 
positionnement lors d’applications multi-GNSS utilisant des récepteurs et des antennes 
multifréquences. Plus particulièrement, la réalisation d’un cadre de référence hautement stable et 
précis comme base métrologique pour des applications audacieuses comme par exemple la 
détermination de l’élévation du niveau des océans, nécessite de longues séries temporelles des 
coordonnées des stations GNSS, stables et calculées avec grande précision. Comme aucune 
calibration consistante des variations des centres de phase couvrait toutes les principales antennes, 
Monsieur Willi a relevé le défi en étendant son travail au problème plus général de la calibration 
absolue des variations des centres de phase des antennes GNSS. En seulement deux ans Monsieur 
Willi a développé un système complet, et hautement automatisé, de calibration des antennes GNSS 
en utilisant un robot industriel. Pour ceci il a développé une nouvelle méthode d’analyse des 
données GNSS par triple différences, ce qui réduit les erreurs dues à la propagation des signaux par 
chemins multiples, et une séquence optimisée des rotations pour les changements des orientations 
des antennes à calibrer. De plus il a dû lui-même calibrer le robot industriel en développant un 
système basé sur un modèle cinématique et un paramétrage de la géométrie du robot: un réel défi en 
soi. En résumée le système de calibration développé par Monsieur Willi est extrêmement 
performant ce qui a été démontré par des comparaisons avec d’autres méthodes at aussi avec des 
résultats sur de courtes lignes de bases poursuivies en collaboration avec swisstopo. 
La Commission Géodésique Suisse (CGS) remercie chaleureusement l’auteur pour cette 
contribution d’une grande valeur, de même que l’Académie Suisse des Sciences Naturelles 
(SCNAT) pour avoir pris à sa charge les coûts de l’impression du présent fascicule. 
 

Prof. Dr. M. Rothacher 
Institut de Géodésie et Photogrammétrie ETH Zürich 
ETH Zürich Président de la CGS 



FOREWORD 
 
The cube satellite mission CubETH of the Institute of Geodesy and Photogrammetry (IGP) at ETH 
Zurich, a project in collaboration with various partners from academia and industry, had the goal to 
fly a Global Navigation Satellite System (GNSS) payload consisting of five antennas (four on the 
zenith-pointing side and one pointing sidewise), each of them connected to two miniature 1-
frequency receivers developed by the Swiss company u-blox. The cube satellite with a size of 10 
cm by 10 cm by 10 cm was designed to perform orbit as well as attitude determination with the 
GNSS payload onboard. Due to the fact that the three baselines between the four GNSS antennas on 
the zenith-pointing side of the small satellite are extremely short, attitude determination becomes a 
real challenge. This difficulty is even deepened by the circumstance, that the observations collected 
by the low-cost of-the-shelf (COTS) GNSS receivers may be offset in time by up to 0.5 ms, while 
the satellite moves at a speed of typically 7 km/s. A further source of error are the large GNSS 
antenna phase center variations to be expected for the small patch antennas used, heavily degrading 
the attitude estimates.  
Daniel Willi coped successfully with all these problems by, first, developing a very detailed and 
accurate correction model for the non-synchronized observations and by testing the model based on 
simulations as well as on an industry robot, reaching an remarkable accuracy of a few degrees on 
the extremely short baselines of 5-8 cm.  
In order to further improve the attitude results on such short baselines, the phase center offsets and 
variations of the small GNSS patch antennas had to be calibrated. These calibration activities 
shifted the focus of the PhD thesis of Daniel Willi towards the more general goal of GNSS receiver 
antenna phase center calibrations.  
The calibration of the phase centers of the most important antenna types for all GNSS constellations  
and for all frequencies used by these GNSS is an absolute necessity for high-accuracy GNSS 
positioning using multi-GNSS and multi-frequency antennas and receivers. Especially the 
realization of a highly stable and accurate reference frame, as the metrological basis for very 
challenging applications such as sea level rise, requires long time series of GNSS station 
coordinates computed with utmost accuracy and reliability. As a consistent set of antenna phase 
center calibrations for all major ground antenna types used in high-precision GNSS was still 
missing, Daniel Willi took up this challenge and extended his antenna calibration work from the 
relative calibration of the antennas on the CubETH satellite (or similar setups for attitude 
determination) to the more general issue of absolute antenna phase center calibration. 
In just about two years, Daniel Willi developed a complete and highly automated system for GNSS 
antenna calibrations from scratch, using an industry robot, a new triple-difference GNSS data 
analysis approach to reduce multipath and an optimized sequence of rotations for changing the 
orientation of the antenna to be calibrated. In addition, Daniel Willi had to calibrate the industry 
robot itself based on a kinematic model and a parameterization of the robot geometry, a challenge in 
itself.  
In summary, a very performing antenna calibration system has thus been established by Daniel 
Willi. Its high-accuracy performance has already been demonstrated by comparisons with other 
calibration methods and with results on short baselines achieved in collaboration with swisstopo. 
The SGC thanks the author for his valuable contribution as well as the Swiss Academy of Sciences 
(SCNAT) for covering the printing costs of this volume. 
 

Prof. Dr. M. Rothacher 
Institute for Geodesy and Photogrammetry ETH Zürich 
ETH Zürich President of SGC 





Abstract

CubETH is a project of a scientific nano-satellite of 10 x 10 x 10 cm3 size. Its destination is a
Low Earth Orbit (LEO) at 450 km height above the Earth surface. The spacecraft is equipped
with ten Global Navigation Satellite Systems (GNSS) receivers and five GNSS antennas. The
employed GNSS receivers are manufactured by the Swiss company u-blox. They are called
‘commercial off-the-shelf’ chipsets, but are extremely well suited to be used in space: their power
consumption, their weight and their size are very small.

As the satellite is equipped with four antennas on its upper size, GNSS attitude determination
can be performed. The attitude is the orientation of the spacecraft relatively to a reference
frame, for instance the terrestrial reference frame. In GNSS attitude determination, the relative
position of the antennas with respect to each other is used.

In the first part of the present work, an algorithm for GNSS attitude determination was
developed. Compared to the algorithms in the scientific literature, the GNSS measurements
are extrapolated. The extrapolation term ranges approximately from −6 to +6 m. The need
for extrapolation is a consequence of the non-synchronicity of the receivers. The measurement
epoch lies within a window of 1 ms around the nominal measurement epoch. Because of the high
velocity of the spacecraft in LEO (about 8 km/s), extrapolation of the measurements is crucial.

The new algorithm was tested throughout. A hardware in the loop signal simulator test
campaign was conducted successfully. The algorithm was also proven to work in a static real
data experiment on the ground.

From the first experiences with a model of the CubETH spacecraft, it became obvious
that the limiting factor for the accuracy are the antennas. Mutual coupling of the antennas
can theoretically not be excluded for baselines shorter than one wavelength. A relative field
calibration was set up to obtain Phase Centre Corrections (PCC) for the antennas on the satellite
model. PCC are correction values that depend on the frequency and on the direction of the
incoming signals. PCC have been studied since the beginning of the US Global Positioning
System (GPS) in the 80s, theoretically and experimentally. However, low-cost antennas in the
vicinity of each other, as onboard CubETH, have never been in the scientific focus.

The results from the relative field calibration show that mutual coupling occurs. The
magnitude of the PCC range up to several centimetres. It is shown that the application of PCC
is crucial in order to estimate an unbiased attitude with GNSS. The experiments also showed
the limitation of the relative field calibration. It is extremely prone to multipath errors.

The focus of the second part lies on absolute field calibration for GNSS antennas. A new
GNSS antenna calibration system was developed from scratch. It uses a six-axis industrial robot
to bring the antenna to be calibrated into various orientations. Reference data is collected on a
station just a few metres away from the robot. The data is processed on the triple-difference
level, i.e., on time-differences of classical double-differences.
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The system is currently able to generate calibrations for any Code Division Multiple Access
(CDMA) signal, if enough GNSS spacecraft are visible. Calibration of the Russian GLONASS
Frequency Division Multiple Access (FDMA) signals is a matter of implementation.

Various analyses show that the repeatability of the calibrations is below the millimetre-level.
A comparison with the de facto standard, PCC from the German company Geo++® GmbH,
allowed to verify that the results are meaningful and that they are in the same accuracy range as
the reference PCC. Calibrations of GNSS receiver antennas for signals of the European satellite
navigation system Galileo were presented at the International GNSS Service (IGS) Workshop
2018 in Wuhan. Our new system is the first absolute field calibration that reportedly generated
calibrations for Galileo signals. This is an important step towards a better combination of all
available GNSS.

In contrast to the US GPS, Galileo satellites have calibrated emitter antennas. Eventually,
PCC of receiver antennas for Galileo signals could be the key to obtain a scale of the terrestrial
reference frame from GNSS measurements. This scale would be independent of other space
geodetic techniques. This requires both, the transmitter and the receiver antennas to be
accurately calibrated.
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Zusammenfassung
CubETH ist ein Projekt für einen wissenschaftlichen Satelliten von 10 x 10 x 10 cm3. Sein Ziel
ist eine tiefe Erdumlaufbahn in ungefähr 450 km Höhe über der Erdoberfläche. Der Satellit ist
mit zehn Global Navigation Satellite System (GNSS)-Empfängern und fünf GNSS-Antennen
ausgerüstet. Die verwendeten Empfänger werden von der Schweizer Firma u-blox hergestellt. Es
sind Chips aus der Serienproduktion, doch weisen sie Eigenschaften auf, die sie für einen Einsatz
im Weltraum attraktiv machen: sie brauchen wenig Strom, sind leicht und kompakt.

Weil der Satellit vier Antennen auf seiner nach oben gerichteten Fläche aufweist, kann mittels
GNSS die Attitude bestimmt werden. Die Attitude ist die Orientierung des Satelliten relativ
zu einem Referenzrahmen, zum Beispiel dem terrestrischen Referenzrahmen. Für die GNSS-
Attitude-Bestimmung wird das Prinzip der relativen Positionierung der Antennen gegenüber
den anderen Antennen ausgenutzt.

Als erster Teil der vorliegenden Arbeit wurde ein Algorithmus für die Attitude-Bestimmung
entwickelt. Entgegen den in der wissenschaftlichen Literatur erwähnten Algorithmen enthält
der Algorithmus einen Extrapolationsterm. Der Extrapolationsterm beträgt zwischen −6 und
+6 m. Die Ursache für den Extrapolationsterm liegt in den nicht synchronisierten Empfängern.
Der Messzeitpunkt liegt innerhalb eines Zeitfensters von 1 ms um den nominalen Messzeitpunkt.
Wegen der hohen Geschwindigkeit des Satelliten (ungefähr 8 km/s) ist eine Extrapolation der
Messungen unabdingbar.

Der neue Algorithmus wurde intensiv getestet. Eine Studie mit einem Signalgenerator und
den Empfängern wurde erfolgreich durchgeführt. Der Algorithmus wurde ebenfalls mit echten
Daten aus einem statischen Experiment am Boden validiert.

Aus den ersten Experimenten liess sich schliessen, dass die Antennen den entscheidenden
Faktor für die Genauigkeit darstellen. Gegenseitige Beeinflussung der Antennen kann theoretisch
nicht ausgeschlossen werden, wenn die Basislinienlänge kürzer ist als eine Wellenlänge. Eine
relative Feldkalibration wurde aufgesetzt um Phasenzentrumskalibrationen (PZK) für ein Modell
des CubETH zu erhalten. PZK sind frequenz- und richtungsabhängige Korrekturwerte für die
eintreffenden GNSS-Signale. PZK werden seit Beginn des amerikanischen Global Positioning
System (GPS) untersucht, sowohl theoretisch wie auch experimentell. Dennoch war die Kalibra-
tion von preiswerten Antennen in direkter Nähe zueinander, wie sie auf CubETH vorkommen,
nie im wissenschaftlichen Fokus.

Die Resultate der relativen Feldkalibration zeigen auf, dass gegenseitige Beeinflussung der
Antennen untereinander stattfindet. Die ermittelten PZK betragen mehrere Zentimeter. Es
wurde aufgezeigt, dass die Verwendung von PZK für die fehlerfreie Schätzung von Attitude
unabdingbar ist. Gleichzeitig wurden die Grenzen der relativen Antennenkalibration aufgezeigt.
Sie ist extrem empfänglich für Fehler aus Mehrwegausbreitung.

Der Fokus des zweiten Teils liegt bei absoluten Feldkalibrationen für GNSS-Antennen. Von
Grund auf wurde ein operationelles Kalibrierungssystem für GNSS-Antennen entwickelt. Dieses
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besteht aus einen Sechs-Achsen-Industrieroboter, der die Antenne in alle möglichen Orientier-
ungen bringt. Referenzdaten werden von einer nur wenige Meter vom Roboter entfernten Station
aufgenommen. Die Daten werden auf Dreifachdifferenz-Stufe ausgewertet. Dreifachdifferenzen
sind Zeitdifferenzen von klassischen Doppeldifferenzen.

Das System kann im jetzigen Zustand Kalibrationen für alle Code Division Multiple Access
(CDMA) Signale generieren, vorausgesetzt es sind genug Satelliten sichtbar. Kalibrationen
für die russischen GLONASS Frequency Division Multiple Access (FDMA) Signale sind auch
denkbar, sofern diese auch implementiert werden.

Diverse Analysen zeigen, dass die Wiederholbarkeit der Kalibrationen bei unter einem Milli-
meter liegt. Ein Vergleich mit dem de facto Standard, den PZK der deutschen Firma Geo++®

GmbH, zeigen auf, dass die erhaltenen Resultate plausibel sind und im selben Genauigkeits-
bereich liegen wie die Referenz. Kalibrationen von GNSS-Empfangsantenne für die Signale vom
europäischen Satelliten-Navigationssystem Galileo wurden am International GNSS Service (IGS)
Workshop 2018 in Wuhan vorgestellt. Unser System ist das erste absolute Feldkalibrationssystem,
das nachweislich Galileo-Kalibrationen generiert hat. Dies ist ein wichtiger Schritt zur besseren
Kombination aller verfügbaren GNSS.

Im Gegensatz zum amerikanischen GPS weisen Galileo-Satelliten kalibrierte Sendeantennen
auf. Letzten Endes wird die Kalibration von Empfängerantennen für die Galileo-Signale der
Schlüssel zur Bestimmung des Massstabs des terrestrischen Referenzrahmens aus GNSS sein.
Dieser Massstab wäre unabhängig von demjenigen anderer weltraumgeodätischen Techniken.
Dies erfordert jedoch, dass sowohl die Sendeantennen wie auch die Bodenantennen hochgenau
kalibriert werden.
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Résumé

CubETH est le projet d’un nano-satellite de 10 x 10 x 10 cm3. Il est destiné à une orbite basse
à environ 450 km d’altitude au-dessus de la surface de la terre. Cet astronef est équipé de dix
récepteurs de système de positionnement par satellites (Global Navigation Satellite System,
GNSS) et cinq antennes GNSS. Les récepteurs GNSS utilisés sont fabriqués par l’entreprise
suisse u-blox. Il s’agit d’équipement électronique standard, mais leurs performances les rendent
parfaits pour une utilisation dans l’espace : ils sont peu énergivores, de petite taille et légers.

Le satellite étant équipé de quatre antennes sur sa face supérieure, la détermination de
l’attitude devient possible. L’attitude est l’orientation du satellite par rapport à un cadre de
référence, par exemple le cadre de référence terrestre. La détermination de l’attitude par GNSS
est basée sur le positionnement relatif des antennes par rapport aux autres antennes.

Dans la première partie de ce travail, un algorithme pour la détermination de l’attitude
par GNSS a été développé. Contrairement aux autres algorithmes présents dans la littérature
scientifique, les données GNSS sont extrapolées. Le terme d’extrapolation mesure entre −6 et
+6 mètres. La nécessité du terme d’extrapolation découle du non- synchronisme des récepteurs.
L’instant de mesure se situe dans une plage de 1 ms autour de l’époque nominale. A cause de
la grande vitesse du satellite en orbite basse (environ 8 km/s), l’extrapolation des mesures est
indispensable.

Le nouvel algorithme a été soigneusement testé. Une simulation avec un générateur de
signaux GNSS et les récepteurs a été menée avec succès. Le bon fonctionnement de l’algorithme
a aussi été prouvé dans une expérience statique au sol et avec de vrais signaux GNSS.

Dès les premières expériences avec un modèle du satellite, il était évident que les antennes
seraient le facteur limitant la précision. Une influence mutuelle des antennes ne peut pas
être exclue pour des lignes de bases plus courtes qu’une longueur d’onde. Une calibration de
terrain relative est mise en place afin d’obtenir les Corrections des Centres de Phases (CCP)
pour les antennes du satellite. Les CCP sont des valeurs de correction qui dépendent de la
fréquence et de la direction du signal reçu. Les CCP sont étudiées depuis les débuts du Global
Positioning System (GPS) des États-Unis d’Amérique dans les années 80, tant à un niveau
théorique qu’expérimental. Cependant, la calibration d’antennes à bas coût à proximité l’une de
l’autre, comme sur CubETH, n’a jamais été au centre de l’attention scientifique.

Les résultats obtenus lors des calibrations relatives montrent qu’une influence mutuelle des
antennes se produit. La magnitude des CCP est de plusieurs centimètres. Il est démontré que
la prise en compte des CCP est cruciale afin d’estimer une attitude GNSS qui soit libre de
biais. Les expériences ont aussi montré les limites de la calibration de terrain relative. Elle est
susceptible aux erreurs dues aux propagation par trajets multiples.

Le focus de la deuxième partie sont les calibrations de terrain absolues pour les antennes
GNSS. Un système opérationnel de calibrations d’antennes GNSS a été développé en partant
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de zéro. Il utilise un robot industriel à six axes afin de tourner l’antenne GNSS dans tous les
sens. Des données de références sont collectées par une station à quelques mètres du robot. Les
mesures sont traitées sous forme de triple-différences. Les triples-différences sont des différences
temporelles des doubles-différences classiques.

Le système est actuellement capable de générer des calibrations pour n’importe quel signal
modulé par accès multiple par répartition en code (AMRC), tant que suffisamment de satellites
sont visibles. Les calibrations pour les signaux modulés par accès multiple par répartition en
fréquence (AMRF) du système russe GLONASS sont en principe également possible; il s’agit de
les implémenter dans le logiciel.

Diverses analyses ont montré que la répétabilité des calibrations était meilleure que le
millimètre. Une comparaison avec le standard de facto, les PCC de l’entreprise allemande
Geo++® GmbH, ont permis de vérifier la vraisemblance des résultats. La précision des résultats
est similaire à la précision des résultats de référence. La calibration d’antennes pour les signaux
du système européen de navigation Galileo ont été présentés au Workshop 2018 du « International
GNSS Service » (IGS) à Wuhan. Notre nouveau système est la première calibration de terrain
absolue avérée à générer des calibrations pour les signaux Galileo. Ceci est une étape importante
vers une meilleure combinaison de tous les GNSS disponibles.

Contrairement au GPS américain, les antennes d’émission des satellites Galileo sont calibrées.
Un jour ou l’autre, les CCP des antennes de récepteurs pour les signaux Galileo pourraient être
la clé pour déterminer l’échelle du système de référence terrestre à partir de mesures GNSS.
Cette échelle serait indépendante des autres techniques de géodésie spatiale. Ceci requiert que
les antennes de transmission ainsi que les antennes de réception soient précisément calibrées.
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Chapter 1

Introduction

CubETH is a nano-satellite project under the lead of the Institute of Geodesy and Photogram-
metry (IGP) at ETH Zurich. It is a collaboration between several universities, universities of
applied sciences and companies in Switzerland. This work is part of the CubETH project and
was supported by ETH Research Grant ETH-43 14-2.

The idea for CubETH was triggered by recent developments in Global Navigation Satellite
System (GNSS) receiver technology. u-blox, a receiver manufacturer located in Thalwil (Switzer-
land), is a world leader in miniaturized multi-GNSS receivers. Because of their remarkable
performance, the idea came up to use these commercial off-the-shelf (COTS) chipsets for a space
mission. This would highly reduce the cost of GNSS positioning in space and make precise
positioning affordable for small missions.

The design study foresees a spacecraft of 10 x 10 x 10 cm3, equipped with five GNSS antennas
and ten GNSS receivers (see Figure 1.0.1). The main mission goal is technology demonstration.
It will be attempted to prove that the u-blox receivers can be used in space. The secondary
mission goal is attitude determination. Attitude is a body’s orientation in space. Attitude
determination is possible because the tiny satellite is equipped with several antennas. Through
the relative positioning of the antennas with respect to each other, the attitude can be estimated.

The first part of this work deals with the challenge of attitude determination with the
u-blox receivers. The u-blox chips are not equipped with clock steering. Therefore, the different
receivers are not synchronised with each other. The goal of the work presented in Chapter 2 is
to develop an algorithm for attitude determination with non-synchronised receivers.

The classical way to enhance the accuracy of GNSS attitude determination is to increase the
length of the baselines between the antennas. On the small CubETH, the baseline lengths are
limited by the size of the satellite. Because the accuracy cannot be increased by increasing the
baseline length, special attention has to be put on the accuracy of the antennas. The shorter
the baseline, the larger the influence of antenna errors onto the estimation of the attitude. A
general introduction to antenna calibration is provided in Chapter 3.
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1 Introduction

Figure 1.0.1 : Digital rendering of a CAD model of the 10 x 10 x 10 cm3 CubETH spacecraft. The
white patches are the GNSS antennas. Four antennas are placed on the zenith looking
face, one antenna on the side serves experimental purposes.

An additional difficulty on very short baselines is the potential coupling of the antennas
because of their proximity. This challenge was addressed in Chapter 4; a relative field
calibration method was set up and a campaign was conducted with the goal to investigate the
behaviour of the antennas on the CubETH model.

The subsequent chapters present the development of an absolute field calibration method for
GNSS antennas. This method, using a robotic arm, is able to reduce the impact of multipath on
the estimated antenna calibration. Thus, it is expected to deliver more reliable results than the
relative field calibration.

In order to use the robotic arm for high-accuracy antenna calibration, its kinematics and its
accuracy needed to be studied: all aspects related to the kinematics of the robotic arm are
covered in Chapter 5. The absolute field calibration method using this robot is detailed in
Chapter 6.
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Chapter 2

GNSS Attitude Determination

GNSS attitude determination has been performed since the very beginning of the Global
Positioning System (GPS). An excellent introduction on general attitude determination is
provided in Giorgi (2017). On spacecraft in Low Earth Orbit (LEO), GNSS attitude determination
is performed since the nineties (Cohen, 1992). GNSS attitude determination has some appreciable
advantages over other techniques, as star trackers or inertial navigation systems (INS). It is
autonomous in acquiring an initial solution, it needs only two visible GNSS satellites for a
deterministic solution, it is resistant to high spin rates and it provides position, velocity and
time (PVT; Arbinger and Enderle, 2000). Compared to INS, it is free of drift.

On the other hand, the amount of raw data to process is considerable and the system is very
sensitive to multipath. And maybe more importantly, its accuracy is very modest compared to
star trackers.

Nevertheless, GNSS attitude determination remains an attractive technique, especially if its
availability is granted for free, as in the case of the satellite CubETH. The four antennas on the
upper side of the spacecraft allow for GNSS attitude determination.

In the following chapter, the state of art of attitude determination onboard spacecraft in
LEO is discussed, followed by a presentation of the governing equations and principles. The
chapter is concluded by a summary of the first publication.

2.1 State of the Art

RADCAL was one of the first missions to perform attitude determination in space (Cohen et al.,
1994). Dedicated Trimble TANS Quadrex receivers, specially adapted by Stanford University,
were used. A receiver was connected to the four antennas, and a second receiver was carried as
spare. The four antennas are evenly distributed on the upper face of the cylindrical spacecraft
with a diameter of about 0.75 meters. The authors of the study compared the GPS attitude to
the attitude obtained from the gravitational dynamics of the spacecraft. The estimated accuracy
lies around 1 deg and is limited by uncertainties in the antenna Phase Centre Variations (PCV)
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2 GNSS Attitude Determination

and in the electrical delays. The authors state that the accuracy inherent to the system lies
around 0.3 deg.

In 2000, a modified Trimble Force-19 receiver was flown onboard the space shuttle Atlantis
in order to perform an attitude determination experiment (Um and Lightsey, 2001). Again,
dedicated space receivers were used. Attitude from a star tracker served as ground truth.
Interestingly, the authors tried to model the multipath originating from the spacecraft with a
spherical harmonics model. This approach was qualified unsuccessful. The lack of flight data and
the complex geometry of the environment were given as explanations. The authors also compared
two approaches for the combination with the INS, firstly using differentiated phase observables,
secondly using quaternion observations previously generated from GPS. The first approach was
clearly preferred, as the accuracy of the results increased. Additionally, phase measurements can
enter the filter algorithm even if not enough satellites are visible for a quaternion solution. In
the conclusions, the authors estimate that 90% of the error budget is due to multipath.

Other authors studied attitude determination (designed for space) in ground tests. All
authors use carrier phase observables, but many differences are found in the way of processing
the observations and in the parametrisation of the attitude.

Arbinger and Enderle (2000) tested a combination of GPS and a star tracker on a turn
table on the ground. The GPS-based solution is obtained using an iterative solution to Wahba’s
problem and after solving the phase ambiguities. The comparison led to the conclusion that the
GPS solution is affected by much more jitter than the star tracker solution. Furthermore, an
offset between the GPS solution and the star tracker solution remains unexplained.

Kim and Langley (2007) studied a system based on the COTS receivers Novatel OEM4-G2L,
aimed to operate on the small satellite CASSIOPE. The system consists of three receivers (and
an additional spare). Ambiguities are solved epoch-wise using a wide-lane linear combination
and adding the baseline lengths as pseudo-observations in the adjustment. The normalization of
the attitude matrix is achieved by transforming the matrix into Euler angles and then computing
an orthogonal matrix with these Euler angles. An experiment with a turning table demonstrated
the ability to reach 5 deg accuracy with baseline lengths between 1 and 1.6 m.

A last group of authors studied the behaviour of algorithms in GNSS simulator studies.
Ziebart and Cross (2003) used synthetic data and a very complete attitude determination
algorithm. Euler angles were chosen as parametrisation. The initial ambiguity resolution is
performed using a search in the attitude space. Under realistic observation noise, sub-degree
accuracy was found to be achievable with 2 to 3 m baselines. Assuming a realistic stochastic
model, the algorithm performs well in outlier detection.

Nadarajah et al. (2012) performed hardware-in-the-loop simulator tests with a Spirent
GSS6560 signal generator. NamuruV2Rx receivers were used. The processing is achieved in
two steps. First, an epoch-wise solution is generated with a modified version of the LAMBDA
algorithm (see for instance Park and Teunissen, 2003; Teunissen, 1995; Teunissen, 2010), then
this solution is filtered in an unscented Kalman filter. In conclusion, the angular error was found
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2 GNSS Attitude Determination

to depend strongly on the geometry of the GPS constellation. Root Mean Square Errors (RMSE)
in the order of one degree were obtained for a configuration with two baselines of one metre
length.

GNSS attitude determination is also intensely studied for other applications than on space-
craft. This includes studies on Earth, for instance on ships (Giorgi et al., 2012), onboard
planes (Van Graas and Braasch, 1991; Cannon and Sun, 1996), for UAV (Sabatini et al., 2012)
or for terrestrial applications (Chen and Qin, 2012; Aghili and Salerno, 2013).

2.2 Research gap

The CubETH project aims at using COTS receivers of the type u-blox M8. The u-blox receiver
clock is only partially steered, resulting in an actual measurement epoch within a time window
of 1 ms around the nominal 1 Hz measurement epoch (u-blox, 2014). The velocity of an Earth’s
satellite in an circular orbit can be computed as:

v =
√
µe
r

(2.1)

with µe being the Earth’s gravitational constant and r the radius of the orbit. For a satellite in
a 400 km orbit, this results in approximatively 8 km/s. At this speed, the spacecraft travels 8 m
in one millisecond, which is the synchronisation error of the receivers. It is obvious, that under
theses circumstances, an extrapolation of the measurements is of tremendous importance.

In previous studies, either dedicated receivers running on a common oscillator or receivers
with well steered clocks were used.

Furthermore, no paper gave a fully satisfactory solution for the handling of the parametrisation
of the attitude. The present chapter addresses both issues: a consistent mathematical formulation
for the attitude parametrisation within a Kalman filter is derived on the observation level and a
procedure for the extrapolation of the measurements is developed. The chosen extrapolation
method works in real-time and is not dependent on any precise products, like precise orbits or
precise clocks.

2.3 Parametrisation of attitude

The attitude describes the orientation of a body in space:

bworld = Rworld←body bbody (2.2)

where bsystem is the baseline vector in the respective coordinate system and R is the rotation
matrix between the two coordinate systems. The body coordinate system is usually attached to
the rigid body. For example, a rigid body coordinate system attached to a plane could have its
x-axis pointing in flight direction, its y-axis in wing direction, and the z-axis complementing
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the right-hand system. The space of all rotations is the 3D special orthogonal group SO(3).
Because attitude is described by a rotation, R ∈ SO(3).

In consequence:
R RT = R R−1 = I3 (2.3)

with I3 being the identity matrix. This condition expresses the orthogonality of the matrix.
Within an adjustment process, rotation matrices are difficult to handle, as additional constraints
are necessary in order to maintain the orthogonality.

The main alternatives to rotation matrices are Euler angle sequences and quaternions. Euler
angle sequences suffer from singularities, the so-called ‘gimbal lock’. Quaternions do not have
this disadvantage, but an additional parameter is needed. Various conventions exist for both
representation forms. The following section briefly presents the chosen convention. A complete
overview of attitude parametrisations is provided in Diebel (2006). Attitude parametrisation
is also discussed in the inertial navigation or GNSS literature, for instance in Jekeli (2001)
respectively in Giorgi (2017).

2.3.1 Euler angle sequences

An Euler angle sequence is the combination of three different coordinate axis rotations. Coordin-
ate axis rotations rotate a vector around one axis of the coordinate system and are defined as
follows:

R1(α) =


1 0 0
0 cosα sinα
0 − sinα cosα

 (2.4)

R2(α) =


cosα 0 − sinα

0 1 0
sinα 0 cosα

 (2.5)

R3(α) =


cosα sinα 0
− sinα cosα 0

0 0 1

 (2.6)

where Ri is a rotation around the i th axis of the coordinate system and α is the angle of rotation.
The 321 Euler sequence is defined as follows:

Rlocal←global = R1(γ) R2(β) R3(α) (2.7)

Note that this rotation matrix would be the transpose of the attitude matrix as defined in
Eq. 2.2. α, β and γ are the yaw, pitch and roll angles. If β = π

2 + nπ, n ∈ Z, the system is in a
singularity. In that case, the rotations R1 and R3 have the same derivatives and the system
looses one degree of freedom. Mechanically spoken, if thinking of cardans, the first and the last
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cardan would be parallel, thus being in gimbal lock.
The inverse function reads:

α = atan2 (R12, R11)

β = − arcsin (R13)

γ = atan2 (R23, R33)

 if |R13| 6= 1 (2.8)

α = atan2 (−R21, R22)

β = − arcsin (R13)

γ = 0

 if |R13| = 1 (2.9)

where Ri,j is the element in line i and column j of the matrix Rlocal←global. In case of a singularity,
an infinite number of solutions exists. One way to resolve this singularity is to set γ to zero.

The 323 Euler sequence consistently reads:

Rlocal←global = R3(γ) R2(β) R3(α) (2.10)

This parametrisation has a singularity at β = 0 + nπ, n ∈ Z and would therefore be useless for
the estimation of the attitude, but is convenient in other cases, for instance for the description
of the position of a robot. To give an another example, for the Earth orientation, the sequence
313 is frequently used.

The inverse function of the 323 Euler sequence reads:

α = atan2 (R32, R31)

β = arccos (R33)

γ = atan2 (R23,−R13)

 if |R33| 6= 1 (2.11)

α = atan2 (−R21, R22)

β = arccos (R33)

γ = 0

 if |R33| = 1 (2.12)
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2.3.2 Quaternions

Quaternions are four element vectors with a scalar part and a vector part:

qlocal←global =


q0

q1

q2

q3

 =

 q0

q1:3

 =

 cos
(
α
2
)

sin
(
α
2
)
n

 (2.13)

where q is a quaternion that represents a rotation by the angle α around the axis n. The
advantage of this parametrisation is its constant norm:

q =
√
q2

0 + q2
1 + q2

2 + q2
3 = 1 (2.14)

Quaternions not having a norm equal to one do not represent pure rotations. Within the
adjustment, several techniques can be applied to guarantee a norm of one:

i. Only three quaternion elements are estimated and the fourth one is computed,

ii. All four elements are estimated and a constraint on the norm is applied or

iii. All four elements are estimated and the quaternion is normalised after each iteration in
the estimation.

In the case of a Kalman filter, (iii) is largely sufficient, if the update rate of the filter is high
compared to the dynamics of the system. In this case, the change of the norm of the quaternion
is very small at every iteration step and can well be handled with normalisation.

Quaternions can be transformed to rotation matrices using following formula:

R =


q2

0 + q2
1 − q2

2 − q2
3 2 q1 q2 + 2 q0 q3 2 q1 q3 − 2 q0 q2

2 q1 q2 − 2 q0 q3 q2
0 − q2

1 + q2
2 − q2

3 2 q2 q3 + 2 q0 q1

2 q1 q3 + 2 q0 q2 2 q2 q3 − 2 q0 q1 q2
0 − q2

1 − q2
2 + q2

3

 (2.15)

A quaternion can be obtained from a rotation matrix using following relationship:

q =
1

2
√
k

(k,R23 −R32, R31 −R13, R12 −R21)T

k = 1 +R11 +R22 +R33


if R22 ≥ −R33, R11 ≥ −R22,

R11 ≥ −R33

(2.16)

q =
1

2
√
k

(R23 −R32, k, R12 +R21, R31 +R13)T

k = 1 +R11 −R22 −R33


if R22 < −R33, R11 ≥ R22,

R11 ≥ R33

(2.17)
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q =
1

2
√
k

(R31 −R13, R12 +R21, k, R23 +R32)T

k = 1−R11 +R22 −R33


if R22 ≥ R33, R11 < R22,

R11 < −R33

(2.18)

q =
1

2
√
k

(R12 −R21, R31 +R13, R23 +R32, k)T

k = 1−R11 −R22 +R33


if R22 < R33, R11 < −R22,

R11 < R33

(2.19)

The derivatives of the quaternions can be linked to angular velocities via the following function:

q̇(q,ω) = (q̇0, q̇1, q̇2, q̇3)T = 1
2 TT(q)ω (2.20)

T(q) =


−q1 +q0 −q3 +q2

−q2 +q3 +q0 −q1

−q3 −q2 +q1 +q0

 (2.21)

where ω is the rotation vector in the global frame and T is the quaternion rate matrix. Alternative
formulations allow to express the angular velocities in the local (or body) frame (see Diebel,
2006).

2.4 Principle of GNSS attitude determination

GNSS attitude determination is based on the following principle (see Figure 2.4.1): the baseline
vectors are perfectly known in the body-fixed frame of the spacecraft, but observed in a world
coordinate system, for instance WGS84:

r = eT
world Rworld←body bbody + v (2.22)

where r is a range difference, eT
world is the line-of-sight (LOS) in the world frame and v is the

observation noise, which is assumed to be normally distributed. This last term makes obvious
that Eq. 2.22 is an observation equation. The observable is typically a carrier phase observation.
Eq. 2.22 is valid assuming that the baselines are shorter than a few meters and that the body is
rigid.

If measurements are taken over several baselines and several satellites are seen by the
antennas, the attitude is over-determined and can be estimated with least-squares:

L (R) =
∑
k

∑
i

1
σ2
ik

(
rik − eiT R bk

)2
(2.23)

where L is the cost function and σik is the observation noise of the range difference on baseline
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k to satellite i. The minimization of this function is well known as Wahba’s problem (Farrell
et al., 1966). Some analytical solutions exist to solve this problem, but are limited to the case of
vector observations (Cohen, 1992). As processing speed is not critical nowadays, these methods
are not of much interest anymore. Preferentially, raw GNSS phase observations are processed
directly. The main advantage of a proper least-squares formulation is, that correlations between
the observations are properly taken into account, which is not the case in Eq. 2.23.

A GNSS phase observation reads (Hauschild, 2017a):

P iA = eiA
T
(
xi(tA − τA)− xA(tA)

)
+ c δtA − c δti + λN i

A + T iA + IiA + PCV i
A + viA (2.24)

where

P iA is the carrier phase observation between antenna A and satellite i,
eiA is the line-of-sight vector,
xi is the GNSS satellite position at signal emission time,
tA is the measurement epoch,
τA is the signal travel time,
xA is the position of the receiver antenna at signal reception,
c is the speed of light,
δtA is the receiver clock error,
δti is the satellite clock error,
λ is the carrier wavelength,
N i
A is the integer phase ambiguity,

T iA is the tropospheric delay,
IiA is ionospheric delay,
PCV i

A is the Phase Centre Variation (PCV) and
viA is the zero-difference observation noise.

The observations of two antennas can be subtracted from each other in order to obtain a
single-difference observation:

P iAB = P iB − P iA = eiB
T
(
xi(tB − τB)− xB(tB)

)
− eiA

T
(
xi(tA − τA)− xA(tA)

)
+ c δtB − c δtA + λN i

AB + viAB (2.25)

where

P iAB is a phase single-difference between antenna A and B,
N i
AB is the single-difference ambiguity term and

viAB is the single-difference observation noise.
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The satellite clock error as well as the tropospheric and ionospheric delays vanish as the
baseline is assumed to be short. The PCV vanish hypothetically, if identical antennas are used
(the following chapter will show that this assumption does not hold).

The baseline between antenna A and B, bAB, is defined as follows:

bAB = RT (xA − xB) (2.26)

where bAB is the baseline vector between antennas A and B in the body frame and R is the
attitude matrix from Eqs. 2.2 and 2.23. Assuming that:

i. The baseline is short and therefore eiA = eiB,

ii. The baseline is short and therefore τA = τB and

iii. The receivers are synchronised and therefore tA = tB.

Introducing Eq. 2.26 into Eq. 2.25 leads to the final expression for the single-difference observation
equation:

P iAB = P iB − P iA = ei T R bAB + c δtB − c δtA + λN i
AB + viAB (2.27)

The error which is induced due to approximation (i) is about:

ε = b sin
(

arctan b

2d

)
(2.28)

where

ε is the range error due to the approximation,
b is the length of the baseline and
d is the distance to the GNSS satellite.

Assuming a baseline length of 1 m and a distance to the GNSS spacecraft of 20 000 km, the
range error amounts to 2.5 · 10−8 m and is therefore negligible. The error due to approximation
(ii) is always smaller than the length of the baseline divided by the speed of light. For a baseline
length of 1 m, the resulting timing error never exceeds 3.3 · 10−9 seconds and thus, can be
neglected as well.
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Figure 2.4.1 : Principle of GNSS attitude determination. b is the baseline, r is the range difference
and e is the line-of-sight unit vector.
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2.5 Extrapolation of the GNSS measurements

Eq. 2.27 is based on assumptions that are not valid onboard a fast vehicle equipped with
non-synchronised receivers, for instance a spacecraft in LEO. As shown in Eq. 2.1, the velocity
of such a spacecraft is approximately 8 km/s. Within a millisecond, which is the maximal
synchronisation error, the spacecraft travels 8 m. That means that the receiver connected to
antenna A performs the GNSS measurements up to 8 m further from the coordinates, where the
receiver connected to antenna B performed its GNSS measurement. From this example, it is
obvious that an extrapolation is necessary.

Assuming that eiA = eiB = ei, Eq. 2.25 can be simplified to lead to following expression.

P iAB = P iB − P iA = ei T
(
xi(tB − τB)− xB(tB)− xi(tA − τA) + xA(tA)

)
+ c δtB − c δtA + λN i

AB + viAB (2.29)

The attitude of the spacecraft does not appear explicitly in this last equation. Therefore, we
introduce:

xA(tA) = xA(tA) + xA(tnom)− xA(tnom) (2.30)

xB(tB) = xB(tB) + xB(tnom)− xB(tnom) (2.31)

where tnom is the nominal measurement epoch. Substitution of Eqs. 2.30 and 2.31 into Eq. 2.29
leads to:

P iAB = ei T
(
xi(tB − τB)− xB(tnom)− xi(tA − τA) + xA(tnom)

− xB(tB) + xB(tnom) + xA(tA)− xA(tnom)
)

+ c δtB − c δtA + λN i
AB + viAB (2.32)

At this state, the equation can be combined with Eq. 2.26 again, as xA and xB appear with the
same time argument.

P iAB = ei T R(tnom) bAB + EiAB + c δtB − c δtA + λN i
AB + viAB (2.33)

EiAB = ei T
(
xi(tB − τB)− xi(tA − τA)− xB(tB) + xB(tnom) + xA(tA)− xA(tnom)

)
(2.34)

where EiAB is the extrapolation term.
The coordinates of an antenna can be expressed relatively to the coordinates of the centre of

mass of the spacecraft and the attitude of the spacecraft:

xA(t) = xcm(t) + R(t) bcm,A (2.35)

where
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xA(t) are the coordinates of the antenna A,
xcm(t) are the coordinates of the centre of mass of the spacecraft,
R(t) is the attitude matrix of the spacecraft and
bcm,A is the vector from the centre of mass of the spacecraft to antenna A.

Therefore:

xA(tA) = xcm(tA) + R(tA) bcm,A (2.36)

xA(tnom) = xcm(tnom) + R(tnom) bcm,A (2.37)

xB(tB) = xcm(tB) + R(tB) bcm,B (2.38)

xB(tnom) = xcm(tnom) + R(tnom) bcm,B (2.39)

Because the rotation rate of the satellite is small and the baselines are short, R(tA) = R(tB) =
R(tnom) can be assumed. The first order error introduced by this simplification is ∆x =
(tB − tA) Ṙ bAB . For a baseline of 10 cm, the error is smaller than 2 µm for rates up to 1 degree
per second.

Introducing this simplification and Eqs. 2.36 to 2.39 into Eq. 2.34 leads to the final expression
for the extrapolation term:

EiAB = ei T
(
xi(tB − τB)− xi(tA − τA)− xcm(tB) + xcm(tA)

)
(2.40)

The first part of this expression can be calculated with the broadcast ephemeris (see for instance
IS-GPS-200, 2015 for GPS broadcast ephemeris). The second half of this expression can be
computed using the receiver navigation solution or any other PVT solution. The quality of
the extrapolation will depend on the quality of the PVT estimation. The uncertainty in the
line-of-sight propagates linearly with time. Assuming an accuracy of the velocity of 1 m/s and
an extrapolation span of 1 ms, the accuracy of the extrapolation is 1 mm. In orbit, the accuracy
of the u-blox velocity estimation is better than 10 cm/s, as reported in Hollenstein et al. (2014).

The velocity of a GNSS spacecraft can be computed using the broadcast ephemeris. The
accuracy of GNSS spacecraft velocities derived in that way is around 1 mm/s for GPS (Zhang
et al., 2006) and therefore negligible compared to the accuracy of the PVT solution.

2.6 Practical aspects of GNSS measurement extrapolation with
Bernese

The Bernese GNSS Software V5.2 (Dach et al., 2015) was used to generate synthetic data. Bernese
is a widely used and well established GNSS processing and analysis software. It has a more
than 30 years long history. However, the processing of very fast stations with non-synchronised
receivers was originally not foreseen. In order to obtain reliable results, some minor software
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modifications had to be performed. These changes are documented here. The modifications
were validated by performing a comparison in Matlab. After the software modifications, the
synthetic observations are consistent to 10−6 m for LEO spacecraft.

In Bernese, GTLEOCO.f is the subroutine which allows to retrieve the coordinates of the centre
of mass of a LEO spacecraft in different coordinate systems, LEOSKY.f90 computes distance,
azimuth and elevation to GNSS satellites as seen from a LEO spacecraft and SMPRNG.f is the
actual range simulation routine. Table 2.6.1 holds a summary of the performed changes.

The main obstacle is the limited precision of the internal time representation. A Fortran
double is used for the representation of epochs, thus providing 15 digits. Because the time
is saved as a fractional Modified Julian Date (MJD), five digits are used for the integer part.
Ten digits are left for the fractional part of a day (which counts 86 400 seconds), leading to a
time resolution of only 86 400 s · 10−10 = 8.64 µs. This is insufficient to precisely position a
spacecraft with a speed of 8 km/s. A workaround consists of using the receiver clock error in
SMPRNG.f, which is in seconds, to hold the difference to the actual time and thus compensating
the truncation error due to the time representation in MJD.

Another change is the addition of the second order term in the position computation of
the LEO satellite in LEOSKY.f90. Finally, a new function is added in order to check whether a
signal is obstructed by the Earth or not. This feature was not present, as it is not necessary
when generating synthetic observations for stations with an antenna always pointing in zenith
direction. This is the case for stations on Earth, but also for GNSS antennas onboard satellites
with sophisticated attitude control.
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Table 2.6.1 : Summary of modifications to the Bernese GNSS Software.

Subroutine Performed changes

GTLEOCO.f Modified call of COOTRA

LEOSKY.f90 Added second order term in the position computation
of the LEO satellite

SMPRNG.f Modified call of XYZTIM

Modified call of TRUEEARTH

Modified call of LEOSKY

Correction of the rounding error due to the time
representation in MJD

Computation of Earth shadowing of signals and
removal of those
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2.7 Phase ambiguity resolution

Eq. 2.33 is still affected by an unknown integer phase ambiguity N i
AB . In order to solve for phase

ambiguities, a double-difference solution is computed. At this stage, phase ambiguities can most
easily be resolved to integer numbers. Instantaneous methods are simple in the implementation,
but provide lower ambiguity resolution success rates. Methods using several epochs show better
success rates, but are sensitive to phase cycle slips. These must be detected and corrected or
dealt with properly in order not to bias the ambiguity resolution process.

Ambiguity resolution has been extensively studied in the past. A general introduction
to ambiguity resolution is provided in Teunissen (2017). The most prominent algorithm is
the so-called LAMBDA algorithm (Teunissen, 1995). In the case of ambiguity resolution for
attitude determination, prior information about the geometry of the antenna system can be
provided to the adjustment as pseudo-observations or as constraints and help to reduce the
ambiguity search space and do increase the ambiguity resolution success rate. Such algorithms
were presented in Park and Teunissen (2003) or Teunissen (2010) and successfully employed in
different use-cases (Teunissen et al., 2011). Ambiguity resolution for attitude determination is
also presented in Giorgi (2017, pp. 793–798).

In the case of the CubETH spacecraft, the simplest implementation proved to be very efficient.
An approximation for the carrier phase ambiguities was generated by setting the baseline length
to zero at double-difference level. The double-difference can for instance be derived from Eq. 2.33:

P ijAB =
(
ej − ei

)T
R bAB + EijAB + λN ij

AB + vijAB (2.41)

where

P ijAB is the double-difference phase observation,
EijAB is the double-difference extrapolation term,
N ij
AB is the double-difference phase ambiguity and

vijAB is the double-difference observation residual.

The receiver clock vanishes, as every antenna observes two GNSS satellites at exactly the
same time. The approximation for the phase ambiguity is:

Ñ ij
AB = P ijAB − E

ij
AB (2.42)

Strictly spoken, this approximation is only valid for baselines shorter than half a wavelength
or approximatively 10 cm. The true ambiguity must then lie in the interval [−1, 1] around
Ñ ij
AB (Van Graas and Braasch, 1991). As this search space is very narrow, it can easily be fully

searched through. The size of the search space for single-frequency receivers is:

ncandidates = 3nsatellites−1 (2.43)
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where ncandidates is the number of candidates in total and nsatellites is the number of satellites. If
the baseline length is significantly increased, other search strategies, as mentioned before, have
to be used.

2.8 Filter formulation

In the absence of a strong attitude control, a spacecraft will have a very regular attitude and
typically constant turn rates. This dynamics predestines the Kalman filter for the estimation
of the attitude. Details on the Kalman filter can be found in Welch and Bishop (2006). Two
successive states are linked by a process:

xs = f(xs−1) + us−1 (2.44)

us−1 ∼ N(0,Us−1) (2.45)

where

xs is the state at the epoch s,
f is the state transition function,
xs−1 is the state at the epoch s− 1,
us−1 is the process noise and
Us−1 is the process noise variance-covariance.

The observation equation reads as follows.

zs = h(xs) + vs (2.46)

vs ∼ N(0,Vs) (2.47)

where

z is the observation vector,
h is the observation function,
v is the observation noise and
V is the observation variance-covariance.

The filter update step is given by:

x̂−s = f(x̂s−1) (2.48)

P−s−1 = Fs−1 Ps−1 FT
s−1 + Us−1 (2.49)

Fij = ∂fi(x)
∂xj

(2.50)
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x̂−s is the propagated state, x̂s−1 is the state estimate of the previous epoch, P−s−1 is the
propagated state variance-covariance, Fs−1 is the matrix of partial derivatives and Ps−1 is the
variance-covariance of the state estimate of epoch s− 1. The filter measurement update reads as:

Ks = P−s HT
s

(
Hs P−s HT

s + Vs

)
(2.51)

x̂s = x̂−s + Ks

(
zs − h(x̂−s )

)
(2.52)

Ps = (I−Ks Hs) P−s (2.53)

Hij = ∂hi(x)
∂xj

(2.54)

where

Ks is the Kalman gain matrix,
Hs is the matrix of partial derivatives,
x̂s is the estimated state and therefore the result of the Kalman filter and
Ps is the variance-covariance matrix of this state.

2.8.1 State propagation

The Kalman filter state vector is composed of the quaternion q and the turn rates ω and reads
as follows:

x
7×1

=

q
ω

 =
(
q0 q1 q2 q3 ω1 ω2 ω3

)T
(2.55)

As the spacecraft is symmetrical, it is expected to have very regular turn rates. Furthermore,
no information about the attitude control (e.g. torques) is available. Therefore, a very simple
dynamical model has been chosen:

xs = xs−1 + (ts − ts−1) ẋs−1 (2.56)

=

q
ω


s−1

+ (ts − ts−1)

q̇
0


s−1

(2.57)

where (ts − ts−1) is the time between two successive epochs. This model assumes constant turn
rates.
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2.8.2 Stochastic model

The associated stochastic model can be derived starting from the state-space equation. It is
assumed, that the process noise affects the system only depends on the rotation rates, leading to:

ẋ(t) =

q̇(t)
ω̇(t)

 = a(x(t)) + G w(t) (2.58)

=

q̇(q(t),ω(t))
03x1

+

04x3

I3




w1(t)
w2(t)
w3(t)

 (2.59)

where

ẋ is the time derivative of the state,
a(x) is the system model function,
G is the noise shaping matrix and
w is the white noise entering the system.

After linearisation, this function reads:

δẋ = A δx + G w (2.60)

δẋ = ẋ− g(x0) (2.61)

δx = x− x0 (2.62)

Aij = ∂ai(x0)
xj

(2.63)

where A is the Jacobian matrix of the function a and x0 is the linearisation point. The solution
to the differential equation 2.60 reads:

δx(t) = e(t−t0)A δx(t0) +
∫ t

t0
e(t′−t0)A G w(t′) dt′

= e(t−t0)A δx(t0) + u (2.64)

Assuming that w is a stationary white noise process and that all three components have
the same standard deviation, variance-covariance propagation can be applied to obtain the
variance-covariance of the propagated state:

U =
∫ t

t0
e(t′−t0)A G I3 σ

2
w I3 GT

(
e(t′−t0)A

)T
dt′ (2.65)

where U is the Kalman filter process noise (see Eq. 2.45) and σ2
w is the noise variance. Integration
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of this equation leads to an analytical formula for U:

U = σ2
w

 Θ Ω
ΘT ∆t I3

 (2.66)

Θ =
∆t3

12


q2

1 + q2
2 + q2

3 −q0 q1 −q0 q2 −q0 q3

−q0 q1 q2
0 + q2

2 + q2
3 −q1 q2 −q1 q3

−q0 q2 −q1 q2 q2
0 + q2

1 + q2
3 −q2 q3

−q0 q3 −q1 q3 −q2 q3 q2
0 + q2

1 + q2
2

 (2.67)

Ω =
∆t2

4


−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

 (2.68)

where ∆t is the time interval between two epochs and qi is the i th element of the quaternion.
The stochastic model of the double-difference observations V is simply obtained after application
of variance-covariance propagation:

V = D Qll DT (2.69)

where D is the differencing operator leading to double-difference observations and Qll is the
variance-covariance matrix of the zero-difference observations. If equal weighting of all observa-
tions is assumed, Eq. 2.69 becomes:

V = D In σ2
p In DT (2.70)

where σ2
p is the zero-difference observation variance and n is the number of zero-difference

observations.

2.9 Outlook

Unfortunately, the CubETH project was not continued, giving us no opportunity to pursue the
development of the algorithm. The present work is a solid base. It could easily be enhanced with
outlier detection, a robust initialization and a more powerful ambiguity resolution algorithm.
These three topics were extensively studied in the past and do not represent novel scientific
issues.

The next step after the synchronisation of the receivers is the modelling of the Phase Centre
Calibrations (PCC). Because of the short baselines, any uncorrected PCV has a huge impact on
the accuracy. This topic is addressed in the next chapters.
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Chapter 3

GNSS Antenna Calibration

GNSS antennas are a key factor in GNSS measurements. Antennas transform incoming electro-
magnetic signals into voltage. They are an essential part of any Satellite Navigation System, as
they are the interface between the GNSS signals and the receiver. A very good introduction to
GNSS antennas is provided in Maqsood et al. (2017) and in Rao et al. (2013).

Antennas are not perfect and are therefore subject to errors. When measuring coordinates
with a GNSS antenna, the coordinates refer to a mechanical point on the antenna, the Antenna
Reference Point (ARP). Usually, the intersection of the lowest horizontal surface of the antenna
with the vertical symmetry axis is defined as ARP. An updated list of the ARP for the most
common antennas including technical drawings is provided by the antenna working group (AGW)
of the International GNSS Service (IGS).1

The electronic centre of the antenna is not located in the ARP. Therefore, Phase Centre
Offsets (PCO) were introduced. The PCO is the vector from the ARP to the so-called Mean
Phase Centre (MPC). The MPC is a purely conventional point, as the measurement locations of
the incoming electromagnetic waves never meet in a single point. First theoretical considerations
for interferometric baseline measurements were made already at the end of the seventies (Coun-
selman and Shapiro, 1979). Very soon, phase centre calibrations were studied, attempted and
achieved (Sims, 1985; Geiger, 1988; Tranquilla and Colpitts, 1989).

The result of a successful calibration is a map of the so-called Phase Centre Variations (PCV),
which are corrections that are added on top of the PCO. PCV are typically in the range of
several millimetres (Rothacher, 2001), but can reach centimetre level for miniaturized low-cost
antennas. Although this nomenclature is a bit confusing, as the MPC is arbitrary and the
PCV directly depends on the chosen PCO, this convention is still widely used in the antenna
calibration community after its introduction in the early nineties (Geiger, 1990). Nowadays, the
term Phase Centre Correction (PCC) should be used to designate calibrations that include PCO
and PCV.

1Antenna information file of the IGS AWG, ftp://igs.org/pub/station/general/antenna.gra.
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3 GNSS Antenna Calibration

The present chapter describes antenna calibration in general, the parametrisation of PCC
and the underlying estimation theory. Chapter 4 presents the relative field calibration approach
tailored to the calibration of attitude determination systems. Robot specific questions are
addressed in Chapter 5, followed by Chapter 6 on absolute field calibrations using a robot.

3.1 Definitions

Within the present document, following nomenclature is adopted.

Phase Centre Correction (PCC) is the total correction to be applied to the measured
range in order to obtain the coordinates of the Antenna Reference Point (ARP). The PCC
is divided into:

i. The Phase Centre Offset (PCO), which is the vector from the ARP to the Mean
Phase Centre (MPC), an arbitrary point and

ii. The Phase Centre Variation (PCV), which is the actual direction dependent
correction function.

Generally, the MPC is chosen in such a way that the PCV is minimized. However, various
different conventions exist (see for instance in Dach et al. 2015, pp. 404–405). The obtained MPC
is dependent on the weighing of the observations and on the elevation cut-off angle. Therefore,
the PCC is the only meaningful quantity. The comparison of two or several antenna calibrations
should always be based on a comparison of the PCC. Figure 3.1.1 illustrates the relationship
between the different quantities.

3.2 State of the art

Antenna calibration procedures can be divided into three categories: (Görres et al., 2006;
Rothacher, 2001)

i. Relative field calibration.

ii. Absolute calibration:

a. Anechoic chamber calibration.

b. Absolute field calibration using a robot.

Antenna calibrations are performed routinely worldwide by a dozen of groups. German insti-
tutions were particularly active in GNSS antenna calibration. A GNSS antenna calibration
workshop was held annually in Germany from 1999 to 2009.2 Nowadays, German institutions

2GNSS antenna workshops, University of Bonn, 10.03.2019, https://www.gib.uni-bonn.de/team/
lehrbeauftragte/bgoerres/antennen-workshops
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PCV

PC
O

ARP

APC APC

MPC

Signal 2

Signal 1

Figure 3.1.1 : Illustration of the relevant quantities in antenna calibration. The Antenna Reference
Point (ARP) is the mechanical reference of the antenna. The Phase Centre Offset
(PCO) is the vector from the ARP to the Mean Phase Centre (MPC). The MPC is
purely conventional and can be arbitrarily chosen. The actual direction dependent
correction, the Phase Centre Variation (PCV), is added on top of the PCO, leading to
the Apparent Phase Centre (APC). The Phase Centre Correction is the projection of
the vector from the ARP to the APC (drawn in orange) onto the line-of-sight.
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are still leading in this field, as is shown in the following sections. German speaking practitioner
can find general information on antenna calibrations in Görres et al. (2018).

Various studies show that the results from different techniques agree well for the first GPS
frequency (L1), typically below the millimetre level, but some improvements are possible for
GPS L2 (Görres et al., 2006; Bilich et al., 2012).

The repeatability within each technique is very well documented for robot calibrations (Schmitz
et al., 2002; Wübbena et al., 2003) and for anechoic chamber measurements (Zeimetz and Kuhl-
mann, 2008).

3.2.1 Relative field calibration

In relative field calibration (Rothacher et al., 1995), a short baseline is set up and data is collected
over a period of at least one day. The first antenna of the baseline is the reference antenna. It
can either have perfectly known PCC or arbitrarily been set to zero. The second antenna of the
baseline is the uncalibrated antenna. During the estimation, a PCC function is fit through the
residuals, resulting in estimates of the station coordinates and of the PCC.

In order to decorrelate the PCO from the station coordinates, the antenna can be rotated
around its vertical axis of symmetry. Typically, four sessions with four different azimuths are
recorded, every session lasting for one hour. The vertical component of the PCO will still
correlate to 100% with the station height and needs to be constrained to a known value. This
value can be determined with terrestrial surveying methods (levelling). Alternatively, all three
components of the station position can be surveyed and fixed. In this case, only the PCC are set
up as parameters. The antenna still needs to be rotated, in order to probe the entire antenna
hemisphere and thus filling the north or the south hole respectively. These are the sections of the
sky which are never occupied by any GNSS satellite due to the inclination of the GNSS orbits.

The relative field calibration method is illustrated in Chapter 4 based on the very specific
use-case of a GNSS attitude determination system.

3.2.2 Anechoic chamber calibration

In anechoic chamber measurements (Sims, 1985; Tranquilla and Colpitts, 1989; Schupler et al.,
1994; Zeimetz, 2010), the GNSS antenna is set up in an anechoic chamber together with a signal
source. The signal is received by the antenna and interfered with the original signal, leading to
a measurement of the phase shifts. Either the antenna is rotated or the sender is moved in order
to scan the antenna hemisphere. This will produce a map of phase shifts. Anechoic chamber
measurements are not affected by multipath and realise a very pure form of antenna calibration.
In return, the infrastructure is very demanding and the synchronisation of all the equipment is
difficult to achieve.
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Currently, the University of Bonn is the only institution having been approved by the IGS
to deliver chamber calibrations.3

3.2.3 Absolute field calibration

Absolute field calibrations use a device to rotate the antenna around at least two axes. Calibra-
tions currently being undertaken make use of 2-axis robots (Bilich and Mader, 2010) or robots
with five or more axes (Wübbena et al., 2000; Menge, 2003; Kersten, 2014; Riddell et al., 2015;
Hu et al., 2015). The actuator rotates the antenna into different orientations, and therefore
decorrelates the PCC from the station coordinates.

Furthermore, the rotation allows to sample the antenna hemisphere much more efficiently.
As a consequence, an elevation mask can be applied. All low-elevation signals, for instance below
20 degrees elevation, are removed. Because the antenna is inclined towards all possible directions
by the robotic arm, reliable data can be collected even for low elevations in the antenna specific
coordinate system. In other words, the entire antenna hemisphere is sampled. As the calibration
procedure does not rely on low elevations anymore, multipath is mitigated.

The most sophisticated systems use a robot with five or more axes. The advantage is that
the coordinates of the antenna can be kept fixed during the calibration. The first robotic
calibration system was developed by the University of Hanover and the German company
Geo++® GmbH (Wübbena et al., 2000; Menge, 2003; Dilßner, 2008; Kersten, 2014). These two
institutions and the Landeskalibriereinrichtung of the Senatsverwaltung für Stadtentwicklung
Berlin are the only institutions performing robot type calibrations and being currently approved
by the IGS AWG.3

Other groups are currently setting up robotic calibration systems with six axes as well,
namely Wuhan University (Hu et al., 2015), Geoscience Australia (Riddell et al., 2015) and the
US American National Geodetic Survey (NGS; Bilich et al., 2018). The system developed at
ETH Zurich and related scientific questions are discussed in Chapter 6.

3Readme file of the IGS AWG, 27.11.2018, ftp://igs.org/pub/station/general/antenna_README.pdf.
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3.3 Phase Centre Correction Model

A GNSS phase observation reads (Hauschild, 2017a):

P iA = eiA
T
(
xi − xA,MPC

)
+ c δtA − c δti + λN i

A + PCV i
A + viA (3.1)

where

P iA is the carrier phase observation between antenna A and satellite i,
eiA is the line-of-sight vector,
xi is the GNSS satellite position at signal emission,
xA,MPC is the position of the receiver antenna MPC at signal reception,
c is the speed of light,
δtA is the receiver clock error,
δti is the satellite clock error,
λ is the carrier wavelength,
N i
A is the integer phase ambiguity,

PCV i
A is the PCV and

viA is the zero-difference observation noise.

Atmospheric delays (ionosphere and troposphere) and relativistic corrections were neglected
in this latest equation. The PCV in Eq. 3.1 is modelled as an azimuth and zenith angle dependent
correction as follows:

PCV i
A = PCVA(αi, zi) (3.2)

where αi is the azimuth angle of the GNSS satellite in the antenna-fixed coordinate system and
zi is the zenith angle. The coordinates of the conventional MPC are obtained after application
of the PCO to the geometrical reference of the antenna, the ARP, as follows:

xMPC = xARP + PCO (3.3)

where xARP is the position of the ARP and PCO is the PCO vector. Substitution of Eq. 3.3
into Eq. 3.1 and rearranging leads to:

P iA = eiA
T
(
xi − xA,ARP

)
+ c δtA − c δti + λN i

A + PCV i
A − eiT PCO + viA (3.4)

The PCV and the PCO term can be grouped into one term, the PCC. The total correction
applied on top of the raw measurements is not affected:

PCC i
A = PCV i

A − eiT PCO (3.5)

where PCC i
A is the total range correction or PCC and ei is the line-of-sight (LOS; positively
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pointing towards the GNSS spacecraft). The negative sign in Eq.3.5 emerges due to the ANTEX
sign convention (Rothacher and Schmid, 2010) and the choice of the direction of ei. A PCV can
always be transformed to any other PCO by the following relation:

PCV ′A(αi, zi) = PCVA(αi, zi) + ei T (PCO′ −PCO
)

(3.6)

where PCV ′A(αi, zi) is the PCV belonging to the offsets PCO′ and PCVA(αi, zi) is the PCV
belonging to the offsets PCO. In both cases, the total PCC is identical. PCV and PCO must
always be used consistently.

3.4 Phase Centre Parametrisations

Grid parametrisations with piecewise linear interpolation between the grid points and spherical
harmonics are the two most common types of PCC parametrisations. The different methods
will shortly be discussed hereafter.

3.4.1 Grid parametrisation

The PCC is represented as a regular grid covering the antenna hemisphere. A typical resolution
for an antenna pattern is 5 times 5 degrees. PCC values are available in a look-up table for
every point in the grid. The number of parameters equals:

nparameters =

 90
∆z + 1

 360
∆α [deg] (3.7)

where nparameters is the number of grid points, ∆z is the vertical resolution in degrees and ∆α is
the azimuthal resolution in degrees.

In the estimation process, the grid has to be constrained, because its constant part correlates
with the receiver clock (as can be seen for instance in Eq. 2.24). One way to make the system
regular is to constrain the PCC values at zenith to zero. This is very convenient, as the zenith
values have to be constrained in any case, as all points located in the zenith have the same value.
This operation reduces the degree of freedom of the system, leading to a final degree of freedom
of:

nparameters =
90
∆z ·

360
∆α [deg] (3.8)

In the case of the standard resolution of 5 degrees times 5 degrees, this represents 1296 parameters.
The PCC between the grid points are obtained after two linear interpolations, one in zenith
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angle and one in azimuth. These two linear interpolations, combined into one equation, read:

PCC(α0, z0) = w1 PCC(αi, zi) + w2 PCC(αi+1, zi)

+ w3 PCC(αi, zi+1) + w4 PCC(αi+1, zi+1) (3.9)

w1 = 1− rα − rz + rα rz (3.10)

w2 = rα − rα rz (3.11)

w3 = rz − rα rz (3.12)

w4 = rα rz (3.13)

rα =
α0 − αi
αi+1 − αi

(3.14)

rz =
z0 − zi
zi+1 − zi

(3.15)

where PCC(α0, z0) is the interpolated PCC and αi, zi, αi+1 and zi+1 are the coordinates of
the grid points (see Figure 3.4.1). This formulation is equivalent to performing two linear
interpolations, one in azimuth and one in zenith angle.

The drawback of this approach is the large distortions that appear close to zenith. The
grid parametrisation is inherently a representation of values on a plane. In contrast, spherical
harmonics are perfectly suited to represent scalar values on a sphere and should therefore be
preferred, if no evidence speaks against it.

3.4.2 Grid partial derivatives

After omission of the arguments α and z, Eq. 3.9 reads:

PCC = w1 PCC1 + w2 PCC2 + w3 PCC3 + w4 PCC4 (3.16)

The partial derivatives are trivial:

∂PCC
∂PCC1

= w1 (3.17)

∂PCC
∂PCC2

= w2 (3.18)

∂PCC
∂PCC3

= w3 (3.19)

∂PCC
∂PCC4

= w4 (3.20)
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Figure 3.4.1 : Principle of the grid interpolation. The actual parameters are the values at the grid
intersection points, marked in red. An interpolation along the azimuth (resulting in
the green values) is followed by an interpolation along the zenith, resulting in the
value at the requested azimuth and elevation (in blue). Source: Willi et al. (2018a).

31



3 GNSS Antenna Calibration

3.4.3 Spherical harmonics parametrisation

The phase centre correction, expressed as spherical harmonics, read as:

PCC(αi, zi) =
nmax∑
n=0

n∑
m=0

P̃nm(cos zi)
(
anm cos(mαi) + bnm sin(mαi)

)
(3.21)

where

n is the degree and
m is the order of the spherical harmonics series,
P̃nm are the normalized associated Legendre polynomials,
anm are the spherical harmonics cosine coefficients and
bnm are the spherical harmonics sine coefficients.

The typical resolution for spherical harmonics PCC is degree and order 8 or degree and
order 12. The total number of parameter equals:

nparameters = (n+ 1) (m+ 1) (3.22)

This count excludes all coefficients bn0, because their contribution equals zero, as sin 0 = 0.
Exactly as in the case of the grid parametrisation, the inversion of the unconstrained system
will lead to singularities. The absolute term a00 correlates with the receiver clock parameter and
is constrained to zero (see Figure 3.4.2). The parameters a10, a11 and b11 fully correlate with
the PCO components. Therefore, no explicit PCO parameters are necessary in the PCC model.

Because no measurements are available for the lower hemisphere of the antenna, a symmetry
assumption has to be made. If symmetry is assumed between the upper and the lower antenna
hemisphere, all coefficients that represent a function with an odd number of zeros between
z = 0 deg and z = 180 deg along z (called odd coefficients hereafter) have to be constrained to
zero. This is the case if n−m is odd (see Figure 3.4.2). Figure 3.4.3 illustrates odd and even
coefficients of spherical harmonics.

Assuming that n = m and that all odd coefficients but a10, a11 and b11 are constrained to
zero, the total number of parameters reads (Willi et al., 2018a):

nparameters = (n+ 2) (n+ 1)
2 (3.23)

This leads to 91 parameters for a degree and order 12 expansion and 45 parameters for a degree
and order 8 spherical harmonics expansion. Compared to a grid parametrisation, the number of
parameters is reduced. This reduction occurs at the cost of a lower resolution: A degree and
order 12 spherical harmonics has a resolution of about 15 degrees, as P̃12,0 has twelve zeros along
z, which ranges from 0 to 180 degrees and cos(mα) and sin(mα) have 24 zeros along α, which
ranges from 0 t 360 degrees.
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a00

b11 a10 a11

b22 b21 a20 a21 a22

b33 b32 b31 a30 a31 a32 a33

b44 b43 b42 b41 a40 a41 a42 a43 a44

b55 b54 b53 b52 b51 a50 a51 a52 a53 a54 a55

Figure 3.4.2 : Spherical harmonics coefficients up to degree and order five. The coefficient in red is
the absolute term, the coefficients in blue are fully correlated with the PCO and the
green coefficients are the odd terms. Source: Willi et al. (2018a).
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(a) coefficient a41 = 1

(b) coefficient a42 = 1

Figure 3.4.3 : Illustration of the contribution of an odd spherical harmonics coefficient (a) and an
even coefficient (b). Odd functions create fields with no symmetry with respect to the
equator (zenith angle of 90 deg), whereas even functions create equatorial symmetry.
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3.4.4 Spherical harmonics partial derivatives

Since the spherical harmonics expansion is a linear function of the coefficients (see Eq. 3.21), the
partial derivatives simply read:

∂PCC(αi, zi)
∂anm

= P̃nm(cos zi) cos(mαi) (3.24)

∂PCC(αi, zi)
∂bnm

= P̃nm(cos zi) sin(mαi) (3.25)

3.5 Multi-GNSS requirements

PCC are frequency-dependent. All current GNSS transmit ranging signals at different frequencies.
Thus, an independent calibration is generated for each frequency transmitted. The frequencies
of the GNSS included in RINEX 3.03 (RINEX Working Group and RTCM-SC104, 2015) are
presented in Table 3.5.1.

Traditionally, calibration institutes have generated calibrations for GPS L1, GPS L2,
GLONASS G1 and GLONASS G2.4

Since the new GPS L5 and the Galileo E5a signals are in the vicinity of the GPS L2 signal
(see Figure 3.5.1), a first approximation is to assume GPS L2 patterns for GPS L5 and for
Galileo E5a measurements. Unfortunately, no L5/E5a robot calibrations are available yet, as no
institution is providing those. However, Geo++® announced an upgrade to Galileo calibrations
for 2019.5 Individual chamber calibrations, which include all frequencies, are available for several
antennas of the European Permanent Network6 (EPN) and the IGS network7.

FDMA signals are a particular challenge for PCC calibration, because every satellite in view
has another frequency. As the PCC is modelled as frequency-dependent correction function, in
principle each satellite has a different PCC.

Wübbena et al. (2006) present a method to deal with the frequency changes within the
GLONASS signals. Basically, the PCC difference between GPS L1 and GLONASS G1 is used
to linearly extrapolate the GLONASS PCC for slot number k = 0 to any other GLONASS
frequency within the GLONASS G1 signal. The same procedure is applied for GPS L2 and
GLONASS G2. Frequency dependent PCC within a GNSS signal is not foreseen in the ANTEX
format version 1.4 (Rothacher and Schmid, 2010).

The frequency range within GLONASS G1 and GLONASS G2 are small compared to the

4As of November 2018, the official PCV file used by the IGS is igs14.atx available on ftp://igs.org/pub/
station/general. For receiver antennas, solely GPS L1, GPS L2, GLONASS G1 and GLONASS G2 calibrations
are available in this file.

5IGS AWG mail 508 from 15.11.2018 by Michael Moore, available at www.igs.org/mail for registered users.
6Which kind of antenna calibration is available for EPN stations can be checked under http://epncb.oma.

be/_networkdata/stationlist.php.
7Oral communication during the AWG splinter meeting, 31.10.2018, IGS Workshop, Wuhan, China.
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general spread of the GNSS frequencies. The difference between the highest and the lowest
frequencies is approximately 7.3 MHz within the GLONASS G1 signal and 5.7 MHz within
GLONASS G2, assuming slot numbers between k = −7 and k = 6. Therefore, the estimation of
a unique PCC at the GLONASS centre frequency (slot number k = 0) seems to be a reasonable
approximation.

3.6 Validation strategies

In order to verify the performance of any calibration system, validations are essential. In
principle, relative and absolute field calibrations can be validated in a similar manner. The
following methods require an important logistical effort. It would make no sense to carry out
such ambitious validations for a relative antenna calibration.

These methods are:

i. A validation on very short baselines is conducted. The baselines are surveyed and therefore,
a ground truth is available. The comparison is conducted either on the coordinate level or
on the observation residual level. This kind of validation is documented in (Kallio et al.,
2018).

ii. A so-called ‘ring calibration’ is conducted. This implies that the same antenna is shipped
to several calibration institutions and the results are compared at the PCC level.

Strategy (i) is difficult to carry out and requires a test field with as many pillars as antennas
and a sufficient number of multi-GNSS receivers. Antenna types should be mixed, in order to
investigate the behaviour of antennas with mixed equipment. A ground truth not only for the
height but also for the position of every pillar would strengthen the validation compared to the
method presented in Kallio et al. (2018). However, a full 3D ground truth at a precision of
0.1 mm is cumbersome and difficult to achieve. Strategy (ii) is complementary to approach (i).
As no ground truth is available, no absolute statement can be derived from a ring calibration.
However, the consistency between different calibration facilities is of uppermost importance,
especially, if PCC from different facilities are used together in a GNSS solution.
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Table 3.5.1 : Centre frequencies of the current GNSS according to the RINEX 3.03 standard (RINEX
Working Group and RTCM-SC104, 2015). 1 The frequencies of the GLONASS FDMA
signals G1 and G2 are dependent on the satellite slot number k. The slot numbers
range from k = −7 to k = 6; 2 E5 is the E5a+E5b AltBOC signal.

Si
gn
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R
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e

Frequency [MHz]

GPS L1 1 1575.42

L2 2 1227.6

L5 5 1176.45

GLONASS G11 1 1602+ 9
16 k

G21 2 1246+ 7
16 k

G3 3 1202.025

Galileo E1 1 1575.42

E5a 5 1176.45

E5b 7 1207.14

E52 8 1191.795

E6 6 1278.75

SBAS L1 1 1575.42

L2 5 1176.45

BeiDou B1 2 1561.098

B2 7 1207.14

B3 6 1268.52

QZSS L1 1 1575.42

L2 2 1227.6

L5 5 1176.45

LEX 6 1278.75

IRNSS L5 5 1176.45

S 9 2492.028
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1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650
Frequency [MHz]

GLONASS

Galileo

GPS

BeiDou

L5 L2 L1

G1G2G3

E1E6E5a E5 E5b

B3 B1B2

Figure 3.5.1 : Graphical overview of the frequencies of the main four GNSS. FDMA signals are
displayed in orange with two dots, marking the highest and the lowest frequency
assigned. CDMA signals are displayed in blue. L1 and E1 are compatible, as well as
L5 and E5a and E5b and B2 (see blue lines). The other signals do not match each
other.
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Chapter 4

Relative GNSS antennas field
calibrations

In relative field calibration, a GNSS antenna is set up in the field together with a reference station.
A PCC function can be estimated with the collected GNSS data. The result is a calibration
relative to the reference antenna, thus the name ‘relative calibration’. Depending on the latitude
of the experimental site, some portions of the antenna hemisphere are not sampled by any data
(this is the so-called north or south hole), preventing the estimation of azimuthal variations of
the PCC. To solve this issue, data is acquired with several different antenna orientations. This
rotation of the antenna has three effects:

i. Enhanced sampling of the antenna hemisphere (filling of the north or south hole).

ii. Multipath mitigation.

iii. Separation of the horizontal PCO from the station coordinates, as illustrated in Figure 4.0.1.

The relative field calibration was extensively used in the past (Rothacher et al., 1995). However,
its application decreased because of following limitations:

i. The obtained calibration is dependent on the reference antenna (thus the name ‘relative
calibration’).

ii. Multipath is not prevented from affecting the results.

iii. The method is not able to separate the height component of the PCO from the station
height.

iv. The method is not well suited to provide reliable PCC for low elevations.

Nowadays, the use of the relative field calibration is limited to validation campaigns, as for
instance shown in Kallio et al. (2018).
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PCO 
(azimuth 0 degree)

PCO
(azimuth 180 degrees)

ARP

Rotation axis

Figure 4.0.1 : The principle of PCO estimation in relative field calibration. The horizontal com-
ponents of the coordinates can be decorrelated from the horizontal offset by rotating
the antenna around its vertical axis. Measurement with more different azimuths (for
instance, 0 deg, 90 deg, 180 deg and 270 deg) further enhance the PCO estimation.

4.1 Observation equation

A GNSS phase observation reads (Hauschild, 2017a):

P iA = eiA
T
(
xi − xA,ARP

)
+ c δtA − c δti + λN i

A + T iA + IiA + PCC i
A +W i

A + viA (4.1)

where

P iA is the carrier phase observation between antenna A and satellite i,
eiA is the line-of-sight vector,
xi is the GNSS satellite position at signal emission,
xA,ARP is the position of the receiver antenna ARP at signal reception,
c is the speed of light,
δtA is the receiver clock error,
δti is the satellite clock error,
λ is the carrier wavelength,
N i
A is the integer phase ambiguity,

T iA is the tropospheric delay,
IiA is the ionospheric delay,
PCC i

A is the PCC,
W i
A is the phase wind-up and

viA is the zero-difference observation noise.
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4 Relative GNSS antennas field calibrations

In so-called double-differences (Hauschild, 2017b), measurements from two stations to two
satellites are differenced against each another:

P ijAB =
(
P jB − P

j
A

)
−
(
P iB − P iA

)
=P jB − P

j
A − P

i
B + P iA (4.2)

where P ijAB is the double-difference phase observation. In this differencing process, the receiver
clock error as well as the satellite clock error is eliminated.1 This can be seen by substitution
of Eq. 4.1 into Eq. 4.2. On short baselines, the tropospheric and ionospheric delays are highly
correlated between both stations. Therefore, it can be assumed that they vanish on double-
difference level. Assuming antenna rotations only around the antenna vertical axis, the phase
wind-up is identical to all observations of an antenna and therefore eliminated by the differencing
process as well. After simplification, the double-difference reads:

P ijAB = ρijAB + λN ij
AB + PCCB(αjB, z

j
B)− PCCB(αiB, ziB)

− PCCA(αjA, z
j
A) + PCCA(αiA, ziA) + vijAB (4.3)

where

ρijAB is the double-difference geometry term,
N ij
AB is the double-difference phase ambiguity,

α is the azimuth of a satellite as seen from the station,
z is the zenith angle of a satellite as seen from the station and
vijAB is the double-difference observation noise.

As can easily be seen from Eq. 4.3, the PCC of the antenna to be calibrated (which is the
parameter of interest) is fully correlated with the PCC of the reference antenna: any mismodelling
of the reference PCC will lead to a bias in the PCC estimation. The conclusion is that the
estimation of PCC on the double-difference level leads to relative PCC estimates.

4.2 Relative calibration of an attitude estimation platform

Although its limitations, relative antenna calibration has some appreciable advantages:

i. The set up is very easy.

ii. Virtually no infrastructure is needed.

1The satellite clock of satellite i is only completely eliminated, if the signal emission time of P iA is identical to
the signal emission time of P iB . This is the case for synchronised receivers on short baselines. Otherwise, the
double-difference is still affected by the differential satellite clock error. The differential satellite clock error is the
difference in satellite clock between the two emission times. It is due to the drift of the satellite clock.
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4 Relative GNSS antennas field calibrations

Therefore, the relative field calibration method is well suited for a first study of the PCC of the
CubETH satellite model.

In the very specific case of an attitude determination platform, all antennas of the platform
can be calibrated together in a unique field experiment. Figure 4.2.1 shows the implemented
processing pipeline for a case with four antennas on a common platform. The Bernese GNSS
Software V5.2 (Dach et al., 2015) was used for the processing.

The first step of the processing is to convert the RINEX data to Bernese observation files
(see Figure 4.2.2). This step can be carried out individually for every file. One additional nearby
antenna serves as common reference.

In a second step, baselines are formed and processed within every session (see Figure 4.2.3).
Each antenna observation file is differenced against the reference antenna observation file. A
standard processing pipeline leads to one normal equation system per antenna to be calibrated
and per session.

Normal 
equations

Session 1

Ref1 2 3 4

Ref1 2 3 4Preprocessing

1 2 3 4

Ref1 2 3 4Baseline processing

Session 2

Ref1 2 3 4

Ref1 2 3 4Preprocessing

1 2 3 4

Ref1 2 3 4Baseline processing

Stacked normal 
equation

Session …

PCC and coordinates 
estimation

Antennas

Figure 4.2.1 : Summary of the processing of relative field calibrations. Antennas 1 to 4 designate
the antennas which are to calibrated and Ref designates the reference antenna. Every
session results in one normal equation per antenna to be calibrated. The NEQ are
stacked before inversion. The NEQ system parameters are summarized in Table 4.2.1.
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4 Relative GNSS antennas field calibrations

The parameters present in the normal equation system after ambiguity resolution and after
stacking are shown in Table 4.2.1. The number of parameters does not increase with increasing
number of sessions. A unique set of station coordinates is set up for all sessions. The resulting
PCO are relative to the centre of rotation, which is identical to the estimated common station
coordinates. This principle is schematised for two antennas and two sessions in Figure 4.2.4. A
session-wise estimation of station coordinates is not possible, as the PCO fully correlates with
the station coordinates.

The rotation around a vertical axis decorrelates the horizontal station coordinates from the
horizontal PCO. The station height in contrary is constrained to the average height of all four
antennas, as it remains fully correlated with the PCO in up direction. Other rotations, for
instance around the x- or y-axis are necessary to decorrelate the height components as well.

Reading RINEX file

RINEX observation file

Single point solution

IGS precise clock

IGS precise orbits

IGS earth orientation parameters

Bernese observation file

Figure 4.2.2 : Preprocessing of the observations. This step is carried out individually for every
antenna and every session. The Single Point Positioning (SPP) is performed for
receiver clock synchronisation.

Table 4.2.1 : Relative field calibration NEQ parameters after ambiguity resolution. The number of
PCV parameters corresponds to a degree and order 8 spherical harmonics expansion.
The receiver clock parameters have vanished on double-difference level.

Parameter Number of parameters

Centre of rotation coordinates X, Y, Z 3

PCC antenna 1 3 PCO + 42 PCV

PCC antenna 2 3 PCO + 42 PCV

PCC antenna 3 3 PCO + 42 PCV

PCC antenna 4 3 PCO + 42 PCV
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4 Relative GNSS antennas field calibrations

For implementation reasons (for instance the support of PCV in the NEQ handling program
of Bernese) it is necessary to first estimate PCO and station coordinates. In a second iteration,
the PCO and the station coordinates are constrained to the estimated values and only PCV are
set up. This can be done separately for every baseline (but including all sessions). The results
are equivalent to the results that are obtained if all parameters are set up in one estimation
process. Differences might occur if the PCV is considered separately, but the PCC is identical in
both cases.

4.3 Outlook

The Relative antenna calibration method gives a first insight into the expected magnitude of
the PCC for a small satellite. However, according to experience, the relative field calibration
method is prone to errors due to multipath. The implemented method does not allow a clean
assessment of multipath, neither its mitigation.

For these reasons, an absolute field calibration using a robotic arm is targeted. Such an
approach has the potential to significantly enhance the results. The implementation of an
absolute field calibration is presented in the next chapters.
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Single-differencing

Float solution

IGS precise clock

IGS precise orbits

IGS earth orientation parameters

Bernese observation file
Bernese observation file

(reference station)

Outlier detection and 
removal

Ambiguity resolution

Normal equation writing

Normal equation

Double-differencing

Figure 4.2.3 : Baseline processing of the observations. A baseline is formed between the reference
antenna and every antenna of the attitude determination system. At the end, a normal
equation is written for every baseline and every session.

Rotation centre 
constrained to
average height

Rotation axis

PCO  antenna 1
(azimuth 0 deg)
PCO  antenna 2
(azimuth 180 deg)

PCO antenna 1
(azimuth 180 deg)

PCO antenna 2
(azimuth 0 deg)

CubETH model

Figure 4.2.4 : Principle of PCO estimation on CubETH. The height component of the PCO cannot
be separated from the height of the station coordinates solely with rotations around a
vertical axis. To overcome this singularity, the height of the station is constrained to
the average height of the antennas.
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Chapter 5

Robot geometry

Six-axis robots have some appreciable advantages over robots with less axes in the context of
antenna calibration. Five-axis robots lack one degree of freedom. Because the 6th axis is omitted
compared to six-axis robots, rotations around the antenna vertical axis are not possible. Robots
with two axes for instance do not allow to keep the antenna coordinates fixed while changing
its orientation. Six-axis robots have six degrees of freedom and are therefore best suited for
antenna calibration.

Among serial manipulator arms with six axes, the serial manipulator with an ortho-parallel
basis and a spherical wrist is the most common one (Brandstötter et al., 2014). An example for
such a robot is given in Figure 5.0.1. The underlying kinematic equations as well as an enhanced
kinematic model, allowing for the calibration of the robot, are presented in this chapter.

5.1 Definitions

In this Chapter, following terminology is applied:
The world coordinate system is any global reference frame, for instance WGS84.
The topocentric coordinate system is the East, North, Up system with respect to the

reference ellipsoid. This system is approximately parallel to the Local Level Frame (LLF), which
is aligned to the local gravity field. The convention East, North, Up instead of North, East, Up
is chosen in order to have a right-hand coordinate system.

The robot (base or root) coordinate system is a coordinate system attached to the
base of the robot (see Figure 5.1.1).

The flange coordinate system is a coordinate system attached to the flange of the robot
(see Figure 5.1.1).

The tool coordinate system is a coordinate system attached to the tool mounted on
the robot flange. For instance, if a welding equipment is mounted on the robot flange, the
tool coordinate system is centred at the welding flame and the x-axis of the coordinate system
is aligned with the flame. This coordinate system is meant to facilitate the computation of
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5 Robot geometry

Figure 5.0.1 : KUKA Agilus KR 6 R900 sixx mounted on the roof of the Institute of Geodesy and
Photogrammetry (IGP) at ETH Zurich. The robot is performing a GNSS antenna
calibration. The aluminium plate serves as interface between the four bolts inserted
into the concrete foundation and the robot base. The white antenna in the back is
used as reference station.
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x

y

z

x
y

z

Figure 5.1.1 : Robot (base) coordinate system and flange coordinate system. The orientation of the
flange coordinate system depends on the angular position of the last axis. Source:
Willi and Guillaume (2019).
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5 Robot geometry

poses and trajectories if a tool is attached to the robot. The relationship between the different
coordinate systems is shown in Figure 5.1.2.

The robot flange is the mechanical interface between the robot and any tool. Mathematically,
if referred to it as a point, the robot flange is the intersection between the last axis and the
surface of the flange.

The pose of the robot is the position and the orientation of the flange of the robot with
respect to the robot base. The pose can be given either in X, Y, Z, A, B and C or in angular
values for all axes. In the first case, KUKA applies the following convention:

Rt←r = (Rr←t)T = R1(C) R2(B) R3(A) (5.1)

where

Rt←r is the rotation from the robot coordinate system to the tool coordinate system,
Ri are the rotation matrices according to Eqs. 2.4 to 2.6 and
A, B, C are the three angles used by KUKA to describe the orientation of a point.

The posture is the topology of the robot, for instance shoulder up or shoulder down.
Figure 5.1.3 shows two postures of the same pose. The same posture can be identified for
different poses. For instance, if the robot goes to point A and then to a different point B without
changing its topology, these are different poses but the same posture.

The pose repeatability is the ability of the robot to reach the same pose in the same posture
several times (Willi and Guillaume, 2019) as precisely as possible. The standard deviation of
the positions is a quantitative measure for this ability.

The precision of the robot is the ability to precisely reach given coordinates with varying
orientations (Willi and Guillaume, 2019). The standard deviation is a quantitative indicator for
this ability.

The accuracy of the robot designates its ability to reach any pose in any posture with
the best accuracy. The Root Mean Square Error (RMSE) best quantifies this ability.

5.2 KUKA Agilus KR 6 R900 sixx

The KUKA Agilus KR 6 R900 sixx is a small six-axis serial manipulator. The main technical
data are shown in Table 5.2.1. The whole set-up comprises:

i. The robotic arm,

ii. the robot controller (manufacturer provided),

iii. a SmartPad (manufacturer provided) which acts basically as control panel for the controller
and

iv. an optional notebook computer to run custom software.

50



5 Robot geometry

Astronomical longitude and 
latitude 

Orientation and rotation of the 
robot base 

Current robot pose
(position of every axis) 

World frame 
(for instance WGS84)

Topocentric system
(Local Level Frame)

Robot system
(robot base attached system)

Flange system
(robot flange attached system)

Orientation and position of the 
tool (shape of the tool) 

Tool system
(tool attached system)

Figure 5.1.2 : Overview of the different coordinate systems and of the transformations between each
of the coordinate systems.

Figure 5.1.3 : The KUKA robot in two different postures but in the same pose (position and
orientation of the flange).
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The components but the robotic arm are depicted in Figure 5.2.1. The interface which allows to
interact with the controller by UDP and XML is called RobotSensorInterface (RSI). A custom
software was developed for this specific task of interacting with the robot controller. It is called
QKuka and is written in C++. The overall scheme is presented in Figure 5.2.2. Implementation
details are given in the next section.

5.3 QKuka control software

A software called QKuka was developed to interact with the controller of the robotic arm. It
is written in C++ and runs on a standard laptop. The communication with the controller is
based on User Data Protocol (UDP) and Extensible Markup Language (XML). Figure 5.3.1
is an example for a file sent by the controller. The ‘IPOC’ integer which is contained in this
message must be returned within a specified time frame, typically 100 milliseconds. If this is
not the case, the robot executes an emergency stop. An example for an answer returning this
‘IPOC’ is displayed in Figure 5.3.2.

As soon as they are received, the XML files are interpreted within a program running on the
robot controller (see Figure 5.3.3). A program running on the controller executes the required
actions, for instance steering the tool of the robotic arm to a certain position.

5.4 Robot Kinematics

Forward kinematics is the task of computing the coordinates and the attitude of the flange (or of
the tool) from angular values for every of the six axes whereas inverse kinematics is the inverse
task. In general, no analytical solution to inverse kinematics is available. In some special cases,
analytical solutions can be derived from geometrical thoughts.

Robots with a configuration similar to the KUKA Agilus KR 6 are said to have an ortho-
parallel basis and a spherical wrist. The ortho-parallel basis consists of two parallel axes (axes 2
and 3) mounted on a first, perpendicular axis. In case of the spherical wrist, the last three axes

Table 5.2.1 : Size, weight, accuracy and operation temperature range of the KUKA KR 6 R900
sixx (Kuka, 2018).

Axes 6
Operation volume 2.85 m2

Operation radius 901.5 mm
Maximum payload 6 kg

Weight 52 kg
Pose repeatability 0.03 mm

Operation temperature +5℃ to +45℃
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5 Robot geometry

Figure 5.2.1 : KUKA control equipment consisting of a standard notebook computer (1), the KUKA
controller (2) and the KUKA SmartPad (3). The notebook computer is used to run a
custom software. The interface is based on a network protocol called UDP and uses
XML files.

Notebook
running QKuka

(custom software)

XML
via UDP KUKA controller

KUKA SmartPad

KUKA Agilus KR 6 
R900 sixx

Figure 5.2.2 : Interface between the robotic arm, the controller, the SmartPad and QKuka.

1<Rob Type="KUKA">
2<RIst X=" 625.00043 " Y=" 0.00000 " Z=" 889.99976 "
3A=" 179.78603 " B=" 89.99429 " C=" 179.78603 "/>
4<AIPos A1=" 0.00000 " A2=" -77.16124" A3=" 75.60643 "
5A4=" 0.00000 " A5=" 1.56052 " A6=" -0.00002"/>
6<Delay D="1"/>
7<IINA >1</IINA >
8<IPOC >896032 </IPOC >
9</Rob >

Figure 5.3.1 : Example for a message sent by the robot controller. It contains the current position of
the tool (X, Y, Z), the Euler angles of the tool orientation (A, B, C) and the angular
readings of axes A1 to A6 as well as the integer ‘IPOC’ and the current delay.
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1<Sen Type=" ImFree ">
2<EStr ></EStr >
3<RKorr X=" 625.00 " Y="0.00" Z=" 890.00 "
4A="0.00" B="90.00" C="0.00"/>
5<TYPE >0</TYPE >
6<IOUT >1</IOUT >
7<IPOC >896032 </IPOC >
8</Sen >

Figure 5.3.2 : Example for a message sent to the robot controller. It contains a position and
orientation instruction for the tool (X, Y, Z, A, B and C) and two integers (TYPE
and IOUT) as well as the mandatory ‘IPOC’.

QKuka

reader

writer

Controller

qkuka.src

qkuka.rsi

qkuka.xml

<Rob>

<Sen>

Figure 5.3.3 : Details of the exchange of XML messages. A program (qkuka.src) is running on
the controller and executes predefined actions. The actual reading of the XML file
is achieved in qkuka.rsi, based on the format description of the XML file, which is
contained in qkuka.xml.

(axes 4 to 6) intersect in one point. The consequence is very pleasant, as this property allows to
separate the coordinate computation part from the attitude determination part. The following
developments are based on Brandstötter et al. (2014). As shown by the authors, this kind of
robots can be parametrized by only seven parameters. The values of the parameters for the
present case are given in Table 5.4.1. The six non-zero parameters are shown in Figure 5.4.1.
Figure 5.4.2 should convince the reader that all links and joints are in one plane and that b = 0.
The axes one to three control the coordinates, whereas the axes four to six control the attitude
of the flange. The variables θ1 to θ6 are the angles of rotation of every axis and therefore our
control variables.

5.4.1 Forward kinematics (Brandstötter et al., 2014)

The task of computing the position and the attitude of the flange of the robot or the tool
mounted on the robot flange, given the angle of every axis, is called forward kinematics. The
point C is the intersection of the last three axes (see also Figure 5.4.1). The coordinates c of the
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5 Robot geometry

Table 5.4.1 : The seven geometrical parameters of the KUKA Agilus KR 6 R900 sixx. b is equal to
zero as all the links and joints are in one plane for this type of robot.

Parameter Value [mm]

a1 25

a2 -35

b 0

d1 400

d2 455

d3 420

d4 80

a1 = 25 mm

a2 = -35 mm

d2 = 455 mm

d1 = 400 mm

d3 =
 420 m

m

d4 =
 80 m

m

C

Figure 5.4.1 : The six non-zero geometrical parameters of the KUKA Agilus KR 6 R900 sixx. The
robot x-axis is on the left, the y-axis is pointing towards the reader. The red dot
shows the point C, which is the intersection of the last three axes.
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Figure 5.4.2 : Front view of the KUKA Agilus KR 6 R900 sixx. It can easily be seen that all links
and joints are in one plane.
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point C in the robot coordinate system are given by:

c =


cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1

 c′ +


0
0
d1

 (5.2)

with

c′ =


d2 sin θ2 + k sin(θ2 + θ3 + φ3) + a1

b

d2 cos θ2 + k cos(θ2 + θ3 + φ3)

 (5.3)

and with

φ3 = arctan a2
d3

(5.4)

k =
√
a2

2 + d2
3 (5.5)

where

c is the set of coordinates, given in the robot coordinate system, of the
intersection of the last three axes,

θi is the angular reading of axis i,
c′ is an auxiliary point,
φ3 is an auxiliary variable and
k is an auxiliary variable as well.

The final coordinates of the flange are computed using the attitude of the flange and the
length of the last articulation:

u = c + d4 Rr←f


0
0
1

 (5.6)

with u being the coordinates of the flange. The angles four to six control the attitude of the
flange. The final attitude is the product of the attitude up to the point C and the attitude of
the last three axis.

Rr←f = Rr←c Rc←f (5.7)

Rc←f =


cθ4cθ5cθ6 − sθ4s(θ6) −cθ4cθ5sθ6 − sθ4cθ6 cθ4sθ5

sθ4cθ5cθ6 + cθ4sθ6 −sθ4cθ5sθ6 + cθ4cθ6 sθ4sθ5

−sθ5cθ6 sθ5sθ6 cθ5

 (5.8)
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Rr←c =


cθ1cθ2c

θ3
− c

θ1
sθ2sθ3 −sθ1 cθ1cθ2sθ3 + cθ1sθ2cθ3

sθ1cθ2cθ3 − sθ1sθ2sθ3 cθ1 sθ1cθ2sθ3 + sθ1sθ2cθ3

−sθ2cθ3 − cθ2sθ3 0 −sθ2sθ3 + cθ2cθ3

 (5.9)

where

Rr←f is the rotation from the flange attached system to the the robot system,
Rr←c is the rotation from the system associated with the point C to the robot coordinate system,
Rc←f is the rotation from the flange system to the system associated with point C,
sθi is the sine of θi and
cθi is the cosine of θi.

The separation, mentioned earlier, between the attitude computation and the coordinate
computation is well reflected by the fact that Rr←c only depends on θ1 to θ3 and Rc←f only
depends on θ4 to θ6.

In order to comply with the KUKA convention, following operations have to be performed:

θ1 = −θ′1 (5.10)

θ2 = θ′2 + π

2 (5.11)

θ4 = −θ′4 (5.12)

θ6 = −θ′6 (5.13)

with θ′i being the angles used by the KUKA controller (see also Figure 5.4.3).
If the tool is affected by an offset, an additional transformation leads to the coordinates of

the tool in the robot coordinate system:

Rr←t = Rr←f Rf←t (5.14)

t = u + t′′z Rr←t


0
0
1

+ t′′x Rr←t


1
0
0

+ t′′y Rr←t


0
1
0

 (5.15)

Where

t is the set of coordinates of the tool (in the robot coordinate system),
t′′x is the tool offset in x (in the tool system),
t′′y is the tool offset in y (in the tool system),
t′′z is the tool offset in z (in the tool system) and
Rf←t is the rotation from the tool system to the flange system.

Frequently, tools do have an offset in z- but not in x- and y-direction. This is the reason for
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1 (0°)

2 (-90°)

3 (90°)

4 (0°)5 (0°)6 (0°)
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–

Figure 5.4.3 : The KUKA angle convention for θ1 to θ6. Axes shown in yellow are parallel to the
image plane, red axes are out of plane. Source: Willi and Guillaume (2019).

the non-alphabetic order in Eq. 5.15. Typically, Rf←t is either an identity matrix (as in the case
of antenna calibrations) or its values are calibrated and therefore known. It can be expressed as
an Euler sequence:

Rt←f = (Rf←t)T = R1(γ′′) R2(β′′) R3(α′′) (5.16)

where α′′, β′′ and γ′′ are the tool yaw, pitch and roll angles. The final results of the algorithm
are the coordinates of the tool t and its orientation Rr←t in the robot coordinate system.

5.4.2 Inverse kinematics (Brandstötter et al., 2014)

Unsurprisingly, inverse kinematics is more complicated than forward kinematics. This tasks
consist of computing the angles θ1 to θ6 given the position and attitude of the tool. Again, the
problem can be solved in two parts. The coordinates of the tool t and its orientation Rr←t are
the input variables:

u = t− t′′z Rr←t


0
0
1

− t′′x Rr←t


1
0
0

− t′′y Rr←t


0
1
0

 (5.17)

Rr←f = Rr←t Rt←f = Rr←t (Rf←t)T (5.18)
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c = u− d4 Rr←f


0
0
1

 (5.19)

where

u is the set of coordinates of the flange in the robot system,
t is the set of coordinates of the tool in the robot system,
t′′x is the tool offset in x in the tool system,
t′′y is the tool offset in y in the tool system,
t′′z is the tool offset in z in the tool system,
Rr←t is the rotation from the tool system to the robot system,
Rr←f is the rotation from the flange system to the robot system and
c is the set of coordinates of the intersection of the last tree axis.

Once the coordinates c of the point C have been computed, they can be used to retrieve the
angular values of the first three axes. Eight different solutions exist. The eight possible postures
for a given pose are displayed in Figures 5.4.4 and 5.4.5. The solutions one to four for θ1 to θ3

read:

θ1,1 = atan2(c2, c1)− atan2(b, h1 + a1) (5.20)

θ1,2 = θ1,1 (5.21)

θ1,3 = atan2(c2, c1) + atan2(b, h1 + a1)− π (5.22)

θ1,4 = θ1,3 (5.23)

θ2,1 = − arccos s
2
1 + d2

2 − k2

2 s1 d2
+ atan2(h1, c3 − d1) (5.24)

θ2,2 = arccos s
2
1 + d2

2 − k2

2 s1 d2
+ atan2(h1, c3 − d1) (5.25)

θ2,3 = − arccos s
2
2 + d2

2 − k2

2 s2 d2
− atan2(h1 + 2 a1, c3 − d1) (5.26)

θ2,4 = arccos s
2
2 + d2

2 − k2

2 s2 d2
− atan2(h1 + 2 a1, c3 − d1) (5.27)

θ3,1 = arccos s
2
1 − d2

2 − k2

2 d2 k
− atan2(a2, d3) (5.28)

θ3,2 = − arccos s
2
1 − d2

2 − k2

2 d2 k
− atan2(a2, d3) (5.29)

θ3,3 = arccos s
2
2 − d2

2 − k2

2 d2 k
− atan2(a2, d3) (5.30)

θ3,4 = − arccos s
2
2 − d2

2 − k2

2 d2 k
− atan2(a2, d3) (5.31)

where θi,j is the j th solution of θi and ci is the i th component of c. The additional variables h1,
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s1, s2 and k are defined as follows:

h1 =
√
c12 + c22 − b2 − a1 (5.32)

s1 =
√
h2

1 + (c3 − d1)2 (5.33)

s2 =
√

(h1 + 2 a1)2 + (c3 − d1)2 (5.34)

k =
√
a2

2 + d2
3 (5.35)

The solutions five to eight for θ1 to θ3 are identical to solutions one to four for these three
angles:

θi,j = θi,j+4 i ∈ [1, 2, 3] , j ∈ [1, 2, 3, 4] (5.36)

Eq. 5.36 can easily be verified by comparing Figure 5.4.4 to Figure 5.4.5. The solutions for the
angles θ4 to θ6 read:

θ4,j = atan2 (R23 h3,j −R13 h2,j , R13 h3,j h5,j +R23 h2,j h5,j −R33 h4,j) (5.37)

θ4,j+4 = θ4,j + π (5.38)

θ5,j = atan2
(√

1− h2
6,j , h6,j

)
(5.39)

θ5,j+4 = −θ5,j (5.40)

θ6,j = atan2 (R12 h3,j h4,j +R22 h2,j h4,j +R32 h5,j ,

−R11 h3,j h4,j −R21 h2,j h4,j −R31 h5,j) (5.41)

θ6,j+4 = θ6,j − π (5.42)

where Rmn are the elements of Rr←f from Eq. 5.18 and j ∈ [1, 2, 3, 4]. The auxiliary variables
h2,j to h6,j are defined as follows:

h2,j = sin θ1,j (5.43)

h3,j = cos θ1,j (5.44)

h4,j = sin(θ2,j + θ3,j) (5.45)

h5,j = cos(θ2,j + θ3,j) (5.46)

h6,j = R13 h3,j h4,j +R23 h2,j h4,j +R33 h5,j (5.47)
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Figure 5.4.4 : View of the postures one to four (j ∈ [1, 2, 3, 4]), from left to right, for a given pose.
Source: Willi and Guillaume (2019).
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Figure 5.4.5 : View of the postures five to eight (j ∈ [5, 6, 7, 8]), from left to right, for a given pose.
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In order to match the KUKA sign and offset conventions, following changes must be performed:

θ′1 = −θ1 (5.48)

θ′2 = θ2 −
π

2 (5.49)

θ′4 = −θ4 (5.50)

θ′6 = −θ6 (5.51)

where θ′i denotes the KUKA angle convention and θi denotes the angles as computed by the
present algorithm.

5.5 Enhanced kinematic model

Every robot is affected by errors, as the actual geometry does not perfectly fit the nominal
geometry. In the same way as axis errors affect theodolites, axis errors also affect an industrial
robot: orthogonal axes are not necessarily perfectly orthogonal and parallel axes are not
necessarily perfectly parallel.

Furthermore, the dimensions do not necessarily fit the nominal values: the robot’s arms can
be slightly longer or shorter than indicated in the data-sheet. Finally, the axis angles can be
affected by offsets. The first kind of errors cannot be modelled by the kinematic model presented
in Section 5.4.1. Therefore, the so-called Denavit-Hartenberg (DH) convention is used (Corke,
2017; Hollerbach et al., 2016).

5.5.1 State of the art

Kinematic robot models based on DH parameters or a similar parametrisation are widely
used (Schröer, 1999; Motta, 2006; Hollerbach et al., 2016). The different robot calibration models
are very well discussed in (Schröer et al., 1997). Most typically, laser trackers are used for the
calibration. Nubiola and Bonev (2013) and Allman et al. (2018) are good examples for robot
calibrations using laser trackers. Typically, accuracies of 0.2 mm to 0.4 mm are obtained after
calibration of the robot (Nubiola and Bonev, 2013; Allman et al., 2018).

Menge (2003) and Kersten (2014) present a calibration model for a robot with five axes. The
subject of the calibration is a robot used for GNSS PCC estimation. The model comprises 20
parameters, including parameters for the joint elasticity. The accuracy of the calibrated robot is
0.2 to 0.3 mm. The measurements were performed with theodolites in the first case and with a
laser tracker in the second case.

5.5.2 Denavit-Hartenberg parametrisation

The basic idea is to represent every axis of the robot as a coordinate transformation in 3
dimensions. In principle, this would require three translational parameters and three rotational
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parameters. By adroitly attaching the coordinate systems to every axis, the number of parameters
can be reduced to four: two rotation angles and two translation. The principle is schematised in
Figure 5.5.1.

The first rotational parameter Θ is the angle between two subsequent x-axes. It is the control
variable and therefore the final angle reading from the robot. The signs were chosen to match
the KUKA convention. α is the angle between two successive y-axes and is 0 for parallel axes.
The length of a link is denoted by a and the lateral offset of a joint is denoted by d. The DH
parameters for the KUKA Agilus KR 6 R900 sixx are given in Table 5.5.1 and the non-zero
parameters are depicted in Figure 5.5.2. The addition of δΘ is necessary to comply with the
KUKA convention.

Using DH parameters, the coordinates and the orientation of the flange read as a homogeneous
transformation matrix:

T =
6∏
i=0

Ti =


Rr←f u

0 0 0 1

 (5.52)

where

T is the homogeneous transformation matrix of the flange,
Ti is the transformation associated with joint and link i,
Rr←f is the rotation from the flange system to the robot system and
u is the coordinates of the flange.

With i ∈ [1, 2, 3, 4, 5, 6]. The individual transformations are functions of the DH parameters:

Ti =


cos(Θi + δΘi) − sin(Θi + δΘi) cosαi sin(Θi + δΘi) sinαi ai cos(Θi + δΘi)
sin(Θi + δΘi) cos(Θi + δΘi) cosαi − cos(Θi + δΘi) sinαi ai sin(Θi + δΘi)

0 sinαi cosαi di

0 0 0 1


(5.53)

Table 5.5.1 : DH parameters for the KUKA Agilus KR 6 R900 sixx.

Θ [rad] δΘ [rad] α [rad] a [mm] d [mm]

1 −θ1 0 π/2 25 400

2 −θ2 0 0 455 0

3 −θ3 π/2 −π/2 35 0

4 θ4 0 π/2 0 -420

5 −θ5 0 −π/2 0 0

6 θ6 π π 0 -80
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0

1

2

3

4

5

6

α1 (90°)
θ2+δθ2 (-90°)

x y

z

Figure 5.5.1 : Application of the DH convention to a robot with the same configuration as the KUKA
Agilus KR 6 R900 sixx. A coordinate system is attached to every joint. Its z-axis is
collinear with the joint axis. Each joint and link pair is represented by four parameters.
The angle between two successive x-axes is called Θ and the angle between to successive
z-axes is α. Source: Willi and Guillaume (2019).
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a1 = 25 mm

a3 = 35 mm

a2 = 455 mm

d1 = 400 mm

d4 =
 -4

20 m
m

d6 =
 -8

0 m
m

Figure 5.5.2 : The non-zero DH length parameters (a and d) of the KUKA Agilus KR 6 R900 sixx.
Source: Willi and Guillaume (2019).
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If T0 is equal to the identity matrix, the obtained coordinates are in the robot coordinate
system. To obtain coordinates in an other frame, T0 can be initialized as follows:

T0 =


Rw←r

t′x

t′y

t′z

0 0 0 1

 (5.54)

where Rw←r is the rotation matrix from the robot system to the world system (e.g. a topocentric
system) and t′x, t′y and t′z are the offsets and therefore equal to the coordinates of the robot in
the world frame. This rotation can be expressed as Euler sequence:

Rr←w = (Rw←r)T = R1(γ′) R2(β′) R3(α′) (5.55)

where α′, β′ and γ′ are the yaw, pitch and roll angles of the robot in the world coordinate
system1. The convention for the rotation matrices is the same as in Eqs. 2.4 to 2.6. If desired,
the tool orientation and the tool offsets can be applied on top of this transformation exactly as
shown in Eqs. 5.14 and 5.15

5.5.3 Calibration model

Based on the developments of the previous chapter, a model with 36 parameters was defined.
The parameters are listed in Table 5.5.3. In order to decorrelate all parameters from each other,
measurements well distributed in the whole operation space of the robot would be needed. The
tool orientation can only be estimated if the attitude of the tool is observed. This is for instance
the case, if three or more targets are mount on the robot flange.

In general, it is not necessary to fully decorrelate the parameters. If a calibration is meant
to be used only over a confined part of the robot operation space, a reduced calibration can be
conducted. In general, the calibration will be valid at least in the vicinity of the measurement
points. In the specific case of GNSS antenna calibrations, a reduced sequence was found to work
well.

5.5.4 Model limitations

The current implementation has several limitations, namely:

i. Temperature dependency is not modelled,

ii. joint elasticity is not modelled and

iii. the non-linearity of axis six is not modelled.

1Note that in the software QKuka the opposite convention is used: Rw←r = R1(γ′) R2(β′) R3(α′).
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Table 5.5.3 : KUKA DH calibration model parameters. Source: Willi and Guillaume (2019).

1 to 6 δΘ1 to δΘ6 Axis angle offsets

7 to 12 α1 to α6 DH parameters α

13 to 18 a1 to a6 DH parameters a

19 to 24 d1 to d6 DH parameters d

25 to 27 t′′x, t′′y, t′′z Tool offsets in x, y and z

28 to 30 α′′, β′′, γ′′ Tool orientation as Euler sequence

31 to 33 t′x, t′y, t′z Robot coordinates in the world frame

34 to 36 α′, β′, γ′ Robot orientation in the world frame as Euler sequence

The latter two effects are well studied and presented in the literature. Nubiola and Bonev (2013)
included a stiffness model and a non-linearity model for axis six and obtained excellent results.
Inclusion of these two models is expected to enhance the accuracy of the calibrated robot. The
non-linearity model parameters can be estimated only if the orientation of the tool is observed
as well. This requires a laser tracker with a probe for six degrees of freedom.

The temperature dependence is more difficult to model. Theoretical considerations and
simulations lead to the conclusion that the temperature dependence can be neglected if using a
small robot and if high precision and not high accuracy is targeted (Willi and Guillaume, 2019).
However, further experiments are necessary to verify this assumption. A possible approach to
deal with temperature changes is to include temperature dependent DH parameters, as suggested
by Bilich et al. (2018).

5.6 Outlook

With the successful calibration, the robot is ready to be used for absolute antenna calibrations
(see Chapter 6). The use of the robot in the field, together with periodic recalibration, will help
to answer the open research questions. Namely:

i. How is the long-term stability of the calibration?

ii. How do temperature variations influence the DH parameters?

Further data will help to improve the understanding of the underlying processes and finally
improve the kinematic robot models.
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Chapter 6

Absolute GNSS antenna field
calibration

Absolute field calibrations represent an enhancement of relative field calibration. Introducing
rotations around axes other than the antenna vertical axis allows to decorrelate all three
components of the PCO from the station coordinates. The other main advantages of absolute
field calibration over relative field calibration are:

i. The probing of the antenna hemisphere can be controlled by choosing appropriate rotations,
for instance by choosing a large inclination of the antenna,

ii. multipath can potentially be mitigated and

iii. the calibration result is independent from the calibration of the reference antenna.

Time-differenced GNSS observations fulfil requirement (ii) and (iii), unlike double-differenced or
single-differenced observations. This approach is presented in the following section.

6.1 Time-differencing mode

In principle, two differencing modes in time are imaginable:

i. Differences over a sidereal day and

ii. Differences over only a few seconds.

The first absolute field calibrations were performed using differences over a sidereal day (Wübbena
et al., 1997; Menge, 2003). As the GPS constellations repeats after a sidereal day, the same
multipath is expected to repeat as well. This technique does not apply to other GNSS with
other repeat periods. The drawback of this method is the very long calibration time of at
least a sidereal day plus the duration of the measurements on the second day. However, the
measurements on the first day do not necessarily need to cover 24 hours.

In the second differencing mode, a robotic manipulator is used to perform very fast rotations.
Multipath is a time varying quantity. Differencing epochs that are very close to each other
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eliminates the multipath fraction which is common to both epochs. In order to have a reasonable
correlation, the time between epochs should not exceed a few seconds. Multipath from the ground
has a rate of 1.73h ·10−4 m/s, where h is the antenna height over ground (Braasch, 2017, p. 447);
The multipath change (and thus the error in time-differences) already exceeds a millimetre after
five seconds. Objects located closer to the antenna (for instance the measurement pillar) will
have faster multipath rates and thus, their multipath contribution will not be eliminated in the
time-differencing process.

6.2 Triple-difference observation equation

A GNSS phase observation reads (Hauschild, 2017a):

P iA = eiA
T
(
xi − xA,ARP

)
+ c δtA − c δti + λN i

A + T iA + IiA + PCC i
A +W i

A + viA (6.1)

where

P iA is the carrier phase observation between antenna A and satellite i,
eiA is the line-of-sight vector,
xi is the GNSS satellite position at signal emission,
xA,ARP is the position of the receiver antenna ARP at signal reception,
c is the speed of light,
δtA is the receiver clock error,
δti is the satellite clock error,
λ is the carrier wavelength,
N i
A is the integer phase ambiguity,

T iA is the tropospheric delay,
IiA is ionospheric delay,
PCC i

A is the PCC,
W i
A is the phase wind-up and

viA is zero-difference observation noise.

The phase wind-up is modelled according to Wu et al. (1993). Triple-differences involve eight
measurements, as two satellites are observed from two stations at two epochs (Hauschild, 2017b):

P ijAB,t1t2 =
((
P jB − P

j
A

)
−
(
P iB − P iA

))
t2
−
((
P jB − P

j
A

)
−
(
P iB − P iA

))
t1

=
(
P jB − P

j
A − P

i
B + P iA

)
t2
−
(
P jB − P

j
A − P

i
B + P iA

)
t1

(6.2)

where P ijAB,t1t2 is the triple-difference involving epochs t1 and t2. After substitution of Eq. 6.1
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into Eq. 6.2 and simplification, the triple-difference reads:

P ijAB,t1t2 =
(
ρjB,t2 − ρ

j
A,t2
− ρiB,t2 + ρiA,t2

)
−
(
ρjB,t1 − ρ

j
A,t1
− ρiB,t1 + ρiA,t1

)
+
(
N j
B,t2
−N j

A,t2
−N i

B,t2 +N i
A,t2

)
−
(
N j
B,t1
−N j

A,t1
−N i

B,t1 +N i
A,t1

)
+
(
PCCB(αjB,t2 , z

j
B,t2

)− PCCA(αjA,t2 , z
j
A,t2

)

− PCCB(αiB,t2 , z
i
B,t2) + PCCA(αiA,t2 , z

i
A,t2)

)
−
(
PCCB(αjB,t1 , z

j
B,t1

)− PCCA(αjA,t1 , z
j
A,t1

)

− PCCB(αiB,t1 , z
i
B,t1) + PCCA(αiA,t1 , z

i
A,t1)

)
+
(
W j
B,t2
−W j

A,t2
−W i

B,t2 +W i
A,t2

)
−
(
W j
B,t1
−W j

A,t1
−W i

B,t1 +W i
A,t1

)
+ vijAB,t1t2 (6.3)

where

ρ is the respective geometrical term,
vijAB,t1t2 is the triple-difference observation noise,
α is the azimuth of the GNSS satellite and
z is the zenith angle of a GNSS satellite as seen from the station.

The triple-difference observation noise is 2
√

2 times larger than the zero-difference observation
noise (assuming that all observations have the same standard deviation and are uncorrelated).
Assuming a short baseline, the ionospheric and the tropospheric delays are strongly reduced
already on station single-difference level, together with the satellite clock error (Hauschild, 2017b,
p. 594). Receiver clock errors vanish at double-difference level (Hauschild, 2017b, p. 597).

Assuming that the interval between the two epochs is very small, further simplifications can
be introduced:

i. In the absence of cycle slips, the ambiguity term is constant in time, thus:

a. N j
B,t1

equals N j
B,t2

,

b. N j
A,t1

equals N j
A,t2

,

c. N i
B,t1

equals N i
B,t2

and

d. N i
A,t1

equals N i
A,t2

.

ii. Because the reference antenna B does not rotate, its phase wind-up is almost constant
over short time intervals. Therefore:

a. W i
B,t1

equals W i
B,t2

and

b. W j
B,t1

equals W j
B,t2

.

iii. The apparent positions of the GNSS satellites change very slowly. Therefore:
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a. αiB,t1 equals αiB,t2 ,

b. αjB,t1 equals αjB,t2 ,

c. ziB,t1 equals ziB,t2 and

d. zjB,t1 equals zjB,t2 ,

practically leading to the elimination of the PCC of the reference antenna.

Introducing these simplifications into Eq. 6.3 leads to the following, final expression:

P ijAB,t1t2 = ρijAB,t1t2−PCCA(αjA,t2 , z
j
A,t2

) + PCCA(αiA,t2 , z
i
A,t2)

−PCCA(αjA,t1 , z
j
A,t1

) + PCCA(αiA,t1 , z
i
A,t1)

−W j
A,t2

+W i
A,t2 −W

j
A,t1

+W i
A,t1 + vijAB,t1t2 (6.4)

where ρijAB,t1t2 is the triple-difference geometry term. The geometry term can easily be modelled
using broadcast or precise satellite orbits and approximate station coordinates. The phase
wind-up is modelled according to Wu et al. (1993). Even though the phase wind-up and the
PCC of the reference antenna nearly vanish on triple-difference level, the modelled corrections
are applied in the processing software.

6.3 Absolute character of triple-difference antenna calibration

The last remaining deterministic signal component in Eq. 6.4 is the PCC. The PCC of the
reference antenna has vanished, leading to a truly absolute estimation of PCC. If the reference
antenna PCC is still present in the observation equation, the calibration cannot be said to be
truly ‘absolute’ (see also Bilich and Mader, 2010, p. 1371).

This independence on the reference PCC of the triple-differences is illustrated with the
help of a use case. A sequence of 4042 orientations and a precise orbit file from 22.8.2018
have been used to generate synthetic observations. Biases were added on the reference station
during the data generation process. The data was then processed with double-difference as
well as triple-difference algorithms. As can be seen in Table 6.3.1, the triple-difference is much
less sensitive to biases like the modelled PCC of the reference antenna. Even a very long
calibration sequence of over 4000 orientations is not able to eliminate the bias which is due to the
omission of the reference PCC, if double-differences are used. An error of up to 0.3 mm is the
consequence. If a five times larger PCC bias is applied, the difference between double-differences
and triple-differences becomes more obvious. In this case, the error on the estimated PCC
amounts to over 1.5 mm for the double-difference approach, while the triple-difference approach
leads to a PCC with only 0.16 mm maximal error.
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Table 6.3.1 : Results from a study on PCC biases conducted with synthetic data. Biases were added
to the data during the data generation process. During the estimation process, the
biases were not modelled. The results show a different sensitivity of the processing
based on triple-differences (TD) compared to the processing based on double-differences
(DD). In the first case, a PCO bias of 10 cm was added to the reference station. In
the second case, the PCC of the ‘SEPCHOKE_B3E6 SPKE’ antenna (IGS type mean
value) was added to the reference station. In the last case, a bias corresponding to
five times the PCC of the ‘SEPCHOKE_B3E6 SPKE’ antenna (IGS type mean value)
was added to the reference. The table holds the Root Mean Square error (RMSE), the
minimal error (Min.) and the maximal error (Max.) of the estimated PCC.

[mm] RMSE Min. Max.

PCO bias (100 mm) TD 0.03 -0.09 0.12

DD 0.03 -0.06 0.15

PCC bias I (80 mm) TD 0.03 -0.08 0.11

DD 0.08 -0.32 0.26

PCC bias II (400 mm) TD 0.03 -0.16 0.08

DD 0.34 -1.61 1.13
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Of course, the pure access to the PCC of the antenna to be calibrated has a cost, namely a
higher noise level of triple-differences compared to double-differences. As eight observations are
involved in a triple-difference, the standard deviation of one observation is 2

√
2 times higher than

the standard deviation of a zero-difference observation (in the case of uncorrelated observations
with equal weight). Nevertheless, triple-differences should always be preferred if:

i. The goal is to obtain unbiased estimates of the PCC and if

ii. enough measurements are available to reduce the variance of the estimates to a reasonable
level.

6.4 Rotation sequence

During the calibration, a point within the antenna, for instance the nominal GPS L1 phase
centre, is kept fixed in space. The nominal coordinates of the chosen point do not change during
the calibration. A fixed rotation point has following advantages:

i. The dynamics of the antenna is reduced. Therefore, dynamics induced tracking loop
responses are reduced and

ii. beside the tilt, the antenna is stationary with respect to its environment. Thus, the change
in the multipath pattern is reduced.

The algorithm for the generation of the rotation sequence is displayed in Figure 6.4.1. First,
a regular grid in azimuth and elevation is formed. This grid describes in which direction and
by which angle the antenna is tilted. This step and all subsequent steps are illustrated in
Figure 6.4.2. In a second step, a common rotation is applied to all normal vectors. The goal of
this additional rotation is to avoid pointing towards the north hole. In step three, the sequence
is randomized. Finally, rotations around the inclined antenna z-axis are added.

The randomisation of the rotation sequence is the key to successful antenna calibration.
Randomisation ensures that time correlated effects do not systematically bias the estimation of
the PCC. Another key factor is a good mixture between rotations around the antenna z-axis
and rotations around the two other axes.

Rotations around the antenna z-axis do not change the orientation of the antenna gain
pattern with respect to the site, because the gain pattern of geodetic antennas is typically highly
symmetrical. However, rotations around the z-axis do not add information about the zenithal
behaviour of the PCC. They strengthen the observability of azimuth variations of the PCC.
This is illustrated in Figure 6.4.3. Two or three different rotations of the antenna z-axis for each
orientation is a reasonable choice.
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List of all orientations of the 
antenna z-axis

Final rotation sequence

Common rotation
(tilt towards south)

Azimuth

Zenith angle

Randomisation of the sequence 

Application of antenna z-rotations 

Azimuth increment

Zenith angle increment

Maximal zenith angle

Minimal zenith angle

Figure 6.4.1 : Flowchart of the algorithm for the generation of the randomized rotation sequence.

1
South

2 4

Figure 6.4.2 : Algorithm for the generation of the randomized rotation sequence. In 1, all orientations
for the antenna z-axis are set up. In 2, the space of all rotations is tilted towards
south, in order to avoid the north-hole. Pointing towards the north-hole unnecessarily
reduces the number of observations. In 3 (not shown), the order of the sequence is
randomized. Finally, in 4, rotations around the antenna z-axis are added.
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Azimuthal
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Figure 6.4.3 : Skyplot illustrating azimuthal and zenithal resolution. Azimuthal information is added
by rotating the antenna around the antenna z-axis. In this case, only the azimuth
satellite changes. Information on the zenithal variability of the PCC is obtained by
applying rotations around the antenna x- or y-axis (or both), in order to change the
elevation of the GNSS satellite.

6.5 Receiver dynamical stress

As pointed out in Häberling (2015), receiver suffer from dynamical stress in high dynamical
situations. The rotation around the nominal phase centre theoretically reduces the dynamics
during the change of orientation of the antenna. Only the PCC rate remains. However, the
KUKA robot does not perform trajectory control between two stationary positions. In fact, all
axes are driven linearly. This might induced a small dynamics. Within the frame of this thesis,
receiver dynamical stress was not given particular attention. From the comparisons of the results
obtained with various signals on the same frequency, it is obvious that the GPS L2W signals,
which are derived from the encrypted P-code, lead to absurd results. These measurements have
an inertia of several seconds and can therefore not be used for antenna calibration purposes.1

More information on the signal structure is found in Teunissen and Montenbruck (2017), more
information on GNSS receiver architecure is found in Kaplan and Hegarty (2017).

For most of the calibrations, Septentrio PolaRx 5 receivers with the default setting were
used.

1Personal communication from Septentrio at the ION GNSS+ 2018 conference, 24–28 September 2018, Miami.
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6.6 Differencing strategy

Two requirements drive the differencing strategy:

i. The triple-difference observations should be algebraically uncorrelated. This allows a
sequential parameter estimation process (normal equation stacking) and

ii. the time interval between two epochs being differentiated against each other should be
small.

A sequence fulfilling these requirements is displayed in Figure 6.6.1. Half of the measurements
taken at orientation k are differentiated against half of the measurements taken at orientation
k+1. The measurements acquired during the robot motion are discarded. Those measurements
can be taken into account, provided that the robot motion is sufficiently well-known between to
stationary positions and provided that the dynamics of the robot does not lead to dynamical
stress tracking errors.

In case of an odd number of measurement epochs, one epoch is discarded. The number of
epochs finally taken into account is dependent on:

i. The sampling rate of the receiver,

ii. the duration of the stationary position of the robot and

iii. the timing accuracy of the robot, which is less accurate than the timing accuracy of the
GNSS receivers.

time

ro
bo

t
or

ie
nt

at
io

n

measurement epochs

robot motionorientation k orientation k+1
approx. 1 sec

Figure 6.6.1 : Differencing strategy avoiding algebraic correlation between the triple-differences.
Source: (Willi et al., 2018a).
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6.7 Processing pipeline

A summary of the processing pipeline, which is implemented in Matlab, is presented in Fig-
ure 6.7.1. The pipeline uses the following input data:

i. GNSS observations:

a. A RINEX observation file from the reference station and

b. a RINEX observation file from the antenna to be calibrated.

ii. A file with the start time and the end time of each orientation (robot attitude file),

iii. a configuration file (see Table 6.7.1) and

iv. precise GNSS products:

a. Precise GNSS orbits,

b. precise GNSS clocks and

c. a RINEX navigation file for the ionospheric correction parameters.

The configuration file contains all options for the processing, for instance the signal for which
to generate a calibration. Its content is shown in Table 6.7.1. After data reading and automatic
download of precise products, a Single Point Positioning (SPP) solution is computed. The Centre
for Orbit Determination in Europe (CODE; Prange et al., 2017) is one example for a facility
offering precise orbits and clocks.2 The SPP solution uses the GPS user algorithm from the GPS
ICD 200 (2015) and the ionospheric model coefficients from a concatenated RINEX navigation
file. This file is available, for instance, at NASA’s Crustal Dynamics Data Information System
(CCDIS).3 The main goal of this processing step is to provide a receiver clock estimate with
respect to GPS time, which is necessary for the alignment of the measurements.

The alignment part consists of a loop establishing the time correspondence between the
GNSS observations from the reference station, the GNSS observations from the antenna to be
calibrated and the robot orientations, according to the scheme presented in Section 6.6 and in
Figure 6.6.1. The result is a list of simultaneous GNSS observations from both, the reference
station and the antenna to be calibrated, labeled with the orientation of the robot at that exact
moment.

The actual PCC estimation is achieved in the main computation loop, based on triple-
differences generated according to Section 6.2. The observation equation is set up, the derivatives
are computed and the normal equation matrix is populated. This operation is performed
sequentially and all normal equations are summed up. The inversion of the accumulated normal
equations leads to the final estimation of the PCC.

2http://ftp.aiub.unibe.ch

3ftp://cddis.gsfc.nasa.gov/gnss/data/daily. The daily concatenated navigation files containing the
coefficients are named brdcDOY0.YYn with DOY being the day of the year and YY being the two digit year.

80

http://ftp.aiub.unibe.ch
ftp://cddis.gsfc.nasa.gov/gnss/data/daily


6 Absolute GNSS antenna field calibration
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Figure 6.7.1 : Overview of the processing of the GNSS observations for PCC estimation.
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Table 6.7.1 : Configuration options for PCC estimation. As suggested by the entry ‘Reference PCC’,
the PCC of the reference antenna are applied, even though they nearly vanish on
triple-difference-level.

Option Description E.g.
Folder Path to data folder
Campaign Name of the campaign for file naming
Save path Path for all result files
Date Date of the processing
RINEX Input GNSS observation files
Attitude Input file of robot orientations
Type Type of the antenna to be calibrated
Serial Serial number of the antenna
Offset to ARP X, Y and Z Offset of the ARP in the robot tool

system in mm
System 1 GNSS used for Single Point Positioning GPS
Signal 1 Signal used for Single Point Positioning C1C
System 2 GNSS to be calibrated Galileo
Signal 2 Signal to be calibrated L5Q
Pseudorange 2 Pseudorange associated with the above signal C5Q
Resolution Degree and order of the spherical harmonics expansion 8
Reference PCC Path to the ANTEX file of the reference antenna
Reference type Type of the reference antenna
Reference serial Serial number of the reference antenna
Robot
coordinates

Approximated coordinates (in the topocentric frame)
which were kept fix during the calibration

Reference station
coordinates

Approximated coordinates of the reference station

Coordinate
weight

Standard deviation of the reference coordinates in
metres. The coordinates are introduced as
pseudo-observations

Elevation mask Minimum elevation in the topocentric reference frame
Grid Optional estimation of PCC with the grid

parametrisation
Grid resolution Spacing of the grid in azimuth and elevation
Simulation Optional simulation ability
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All parameters are originally set up in the normal equation. The singular parameters, for
instance the spherical harmonics coefficients representing anti-symmetry (see section 3.4.3) are
hard-constrained to zero. The relative coordinates of the antenna to be calibrated (or more
accurately, the coordinates of the rotation point) with respect to the reference antenna are
introduced as pseudo-observation (soft-constrain). If a spherical harmonics parametrisation is
chosen, the PCO is not explicitly set up, as it is implicitly already contained in the spherical
harmonics series (see section 3.4.3).

The configuration file is needed a second time in order to generate the ANTEX file. In the
case of PCC parametrisation as spherical harmonics, the spherical harmonics are evaluated at
a regular spacing (typically 5 degrees). The best-fit PCO is estimated and subtracted from
the grid. The resulting grid is written into the ANTEX file instead of spherical harmonics
coefficients, as ANTEX does not support a spherical harmonics representation. If necessary for
conventional reasons, a best-fit PCO can be estimated and subtracted from the PCV before the
ANTEX file is written.

6.8 Outlook

The future effort will focus on further validation. The implementation of Frequency Division
Multiple Access Signals (FDMA) is foreseen as well.

Multipath will remain a big challenge. Software Defined Radio (SDR) GNSS receivers
(also called software receivers) are a very efficient way of quantifying and mitigating multipath
propagation errors. Efforts should be put in utilizing SDR GNSS receivers for GNSS antenna
calibration. SDR GNSS receivers allow to investigate dynamical stress errors and multipath on
the receiver tracking loop level. This is the key for an efficient quantification and mitigation of
multipath.
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Chapter 7

Conclusions and outlook

This work initially dealt with the attitude onboard a spacecraft with baselines of less than 10 cm.
In a first step, the synchronisation of the receivers on a software level was investigated. The
result is an algorithm for the extrapolation of the measurements, which was published in GPS
Solutions (Willi and Rothacher, 2017). The algorithm was validated with a synthetic data study
and a signal simulator study.

The insights from the first studies led to further investigations on the Phase Centre Corrections
(PCC) of antennas in the vicinity of each other. A relative field calibration was set up. It allowed
to calibrate a model of the CubETH satellite and a GNSS attitude determination platform with
low-cost geodetic antennas at 15 cm distance from each other. The final results were published in
the ION GNSS proceedings 2017 (Willi et al., 2017) and in Navigation (Willi et al., 2018b). They
included a synthetic data study and a validation with real data. We showed that the correction
of the PCC is of tremendous importance on short baselines. Furthermore, we demonstrated
that mutual coupling affects antennas and that this effect must be taken into account when
performing PCC estimation.

Although the relative field calibration was suited to calibrate the GNSS attitude determination
system, it has fundamental weaknesses. These weaknesses could be mitigated by focusing on
absolute GNSS antenna calibration. Within a short time, an operational, absolute field calibration
system for GNSS antennas was developed from scratch. This includes the commissioning and the
calibration of the industrial KUKA robot, which is documented in Willi and Guillaume (2019).

Preliminary results obtained with the new calibration system were presented at the ION
GNSS+ 2018 (Willi et al., 2018a). The system obtained the attention of the international
community at the IGS Workshop 2018 in Wuhan, China, as being the first absolute field
calibration system able to produce calibrations for the new Galileo signals.

The need for high-accuracy, multi-GNSS antenna calibration is going to increase in the future.
Properly calibrated antennas are a central element of permanent station networks. The full
strength of a multi-GNSS processing can only be exploited, if multi-GNSS antenna calibrations
are available for ground antennas. Eventually, calibrated GNSS antennas will help to better
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quantify and assess socially relevant changes in the environment, as see level rise.
The need for calibrated low-cost antennas might rapidly increase as well. The 21th century is

already marked by the automation of transportation. Autonomous cars are the most prominent
example. GNSS will be one of the technologies used for the positioning of autonomous vehicles.
Due to significant advances in kinematic positioning, Phase Centre Corrections (PCC) of GNSS
antennas already tend to become the limiting factor in low-cost GNSS positioning.

Finally, well-calibrated antennas might be a key to further advances in Precise Point Pos-
itioning (PPP). A remarkable progress was achieved in the convergence time of PPP and in
PPP ambiguity resolution. PPP will sooner or later run into limitations due to the PCC of the
receiver antenna. Here again, precise muti-GNSS and multi-frequency calibrations will help to
reach the accuracy, which is inherent to PPP.
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