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VORWORT 
 
Ineritalsensoren kommen in verschiedenen Ausführungen, Grössen, Preisklassen und 
Präzisionen, welche den Markt mit Anwendungen von den hochauflösenden Gravimetern 
bis hin zu den Smartphones abdekt. Die Qualität dieser Sensorsignale muss durch eine 
Kalibration verbessert werden und dies unabhängig von der Art des Sensors oder dessen 
Benutzung. Dies beinhaltet auch die Restfehler, welche stochastisch Charakterisiert 
werden können. Diese Werte werden insbesondere in integrierten Navigationssystemen 
benötigt, welche unter anderem in unbemannten Fahrzeugen oder Robotern zu Land, zu 
Wasser und in der Luft benutzt werden. In diesem Sinn fokussiert sich die Forschung von 
Dr. Clausen auf zwei neue Methodologien, welche die Benutzung von MEMS 
Inertialsystemen qualitativ für verschiedenste Anwendungen verbessert, und dies auch für 
Anwendungen ausserhalb von Navigations- und Kontrollsystemen. 
Zunächst schlägt der Autor eine Verfeinerung der Werkskalibrierung und deren Einsatz 
für kleine MEMS-IMUs mit höherer Qualität unter Laborbedingungen vor. Das Ergebnis 
wird in eine Reihe von Parametern aufgeteilt, die alle nachfolgenden Messungen 
korrigieren, während die sich eher zufällig ändernden Parameter in situ über ein 
vereinfachtes Kalibrations-Verfahren erneut bestimmt werden. Insbesondere die daraus 
resultierende Verbesserung der Lagegenauigkeit, die für viele UAV-Anwendungen von 
kurzer Dauer von entscheidender Bedeutung ist, ist herausragend. Angesichts der 
Tatsache, dass die Lageverbesserung proportional mit dem Quadrat der Sensorgröße 
zusammenhängt, ist die praktische Auswirkung von entscheidender Bedeutung, da wir 
auf leichten Plattformen mit derselben Instrumentierung eine erheblich höhere 
Genauigkeit erzielen können, was möglicherweise eine direkte Ausrichtung der optischen 
Sensoren ermöglicht. Dies wurde im Fall des luftgestützten Laserscannings detailliert 
demonstriert. 
Zweitens erweitert der Autor eine hochmoderne Methode zur Charakterisierung der 
komplexen stochastischen Prozesse (Generalized Method of Wavelet Moments 
[GMWM]) auf der Grundlage der möglichen Abhängigkeit stochastischer Parameter von 
einer externen Variablen, die hier als ‚Kovariate‘ bezeichnet wird. Es ist bekannt, dass 
die stochastische Charakterisierung des Sensorrauschens unter äußeren Einflüssen wie 
Umgebungsbedingungen (z. B. Temperatur, Druck und Dynamik) variieren kann. Daher 
trägt das hier vorgeschlagene Verfahren diesen Einflüssen Rechnung, indem neue 
Funktionsbeziehungen definiert werden, deren Parameter aus den Referenzsignalen 
abgeleitet werden können. Diese Theorie und ihre Open-Source-Implementierungen 
bieten neue Einblicke in potenzielle Anwendungen außerhalb des Bereichs der 
Inertialsensoren, wie z. B. Oszillatoren, die von kostengünstigem Quarz bis zu 
anspruchsvolleren Atomuhren reichen! Obwohl in Zusammenarbeit entwickelt, hat Dr. 
Clausen wesentlich dazu beigetragen, die Erweiterung des GMWM-Frameworks in die 
Praxis umzusetzen und gleichzeitig die stochastische Prozessanalyse direkt über ein 
Webinterface zu ermöglichen. Daher ist es nicht verwunderlich, dass sein Beitrag auf 
einer IEEE-Konferenz zu diesem Thema mit einem Preis ausgezeichnet wurde. 
 
Prof. Dr. Jan Skaloud     Prof. Dr. Alain Geiger 
EPFL Lausanne      ETH Zürich 
Dissertationsleiter      Präsident der SGK 



PREFACE 
Les capteurs inertiels peuvent se présenter sous un large éventail de déclinaisons en 
termes de taille, de coût, de précision, ou encore d’application. En effet, ces capteurs sont 
utilisés autant dans des systèmes à haute précision tel que les gravimètres que dans des 
systèmes embarqués à utilisation quotidienne tel que le Smartphone par exemple. Avant 
de pouvoir être traitées dans des systèmes intégrés tels que les systèmes de guidage, de 
navigation et de contrôle de véhicules autonomes, les mesures délivrées par ces capteurs 
doivent être corrigées par des techniques de calibration, et les erreurs résiduelles qui en 
découlent caractérisées stochastiquement. À cet égard, les recherches du Dr. Clausen 
portent sur deux nouvelles méthodologies qui améliorent qualitativement l’emploi des 
capteurs inertiels MEMS pour un vaste domaine d’applications, même au-delà du 
domaine de la navigation, du guidage et du contrôle. 
En premier lieu, l'auteur propose un affinement des techniques de calibration en usine et 
de leur application sur des capteurs de type MEMS-IMU en laboratoire. Le résultat de 
cette procédure se présente sous un ensemble de paramètres qui sont appliquées aux 
mesures afin de les corriger. Les erreurs résiduelles, de nature plus aléatoire, sont quant à 
elles corrigées in situ via une procédure d'étalonnage simplifiée. Le travail de l’auteur 
démontre que la procédure proposée améliore de façon remarquable la précision de 
l’attitude, une donnée essentielle pour de nombreuses applications (par exemple les 
drones de petite taille effectuant des missions de courte durée). En effet, l'amélioration de 
l'attitude étant proportionnelle au carré de la taille du capteur, la signification pratique de 
cette amélioration pour des plateformes légères est cruciale, car tout en utilisant la même 
instrumentation, une précision considérablement accrue peut être obtenue. Cela offre 
potentiellement la possibilité de calculer directement l’orientation de capteurs optiques 
embarqués sur des plateformes légères, ce qui a été démontré en détail dans ce travail 
pour le cas du balayage laser aéroporté. 
En second lieu, l’auteur élargit le développement d’une méthode de pointe pour la 
caractérisation de processus stochastiques complexes, la « méthode généralisée des 
moments d’ondelettes » (GMWM), qui est basée sur la dépendance éventuelle de 
paramètres stochastiques à une variable externe, appelée ici la « co-variable ». En effet, la 
nature stochastique du bruit affectant les signaux de capteurs peut varier en raison 
d’influences environnementales telles que la température, la pression et la dynamique. La 
méthode proposée par l’auteur tient compte de ces influences en définissant de nouvelles 
relations fonctionnelles, dont les paramètres peuvent être dérivés de signaux de référence. 
Cette méthode, implémentée et disponible dans un logiciel libre, offre de nouvelles 
possibilités d’applications bien au-delà de celle des capteurs inertiels, telles que la 
caractérisation d’oscillateurs de tout type, allant de l’oscillateur à quartz à faible coût 
jusqu’aux horloges atomiques les plus sophistiquées ! Bien que la recherche ait été faite 
en collaboration avec des partenaires, le travail du Dr. Clausen a largement contribué à la 
mise en pratique de l’extension de la méthode GMWM, en permettant notamment 
l’analyse stochastique de processus directement via une interface Web. Il n’est donc pas 
surprenant que sa contribution à une conférence de l’IEEE sur ce sujet ait été saluée par 
un prix. 
Prof. Dr. Jan Skaloud     Prof. Dr. Alain Geiger 
EPFL Lausanne      ETH Zürich 
Directeur de thèse      Président de la CGS 



FOREWORD 
 
The inertial sensors come with broad spectra of technology, size, cost, and eventually 
precision that serves precise gravimeters on one side and smart-phone industry on the 
other. Irrespectively of the type and application, the quality of such sensors needs to be 
improved by calibration, and the residual errors characterized stochastically for their 
subsequent usage in integrated systems, such as those inside unmanned vehicles or robots 
operating in the air, on the surface, and below. In this respect, Dr. Clausen’s research 
focuses on two novel methodologies that qualitatively improve the employment of 
MEMS inertial sensors in a large area of applications even beyond the field of navigation, 
guidance, and control. 
 
First, the author proposes a refinement of factory calibration and its substitution for small 
MEMS-IMUs of higher quality in laboratory conditions. Its outcome is split into a set of 
parameters that correct all subsequent observations, whereas those of more random nature 
are determined in situ via a simplified calibration procedure. In particular, the resulting 
improvement in the attitude accuracy, which is a critical part for many small UAV 
applications of short duration, is outstanding; given that the attitude improvement is 
proportional to the square of the sensor size, the practical impact is crucial as it allows us 
to achieve considerably increased accuracy on lightweight platforms with the same 
instrumentation – potentially enabling direct orientation of optical sensors. This was 
demonstrated in details in the case of airborne laser scanning. 
 
Second, the author expands a state-of-the-art method for the characterization of the 
complex stochastic processes (Generalized Method of Wavelet Moments [GMWM]) 
based on the possible dependency of stochastic parameters on an external variable, here 
called ‘covariate’. Indeed, it is well known that the stochastic characterization of sensor 
noise may vary under external influences such as environmental conditions (e.g., 
temperature, pressure, and dynamics); therefore, the here proposed method takes into 
account these influences by defining new functional relations, whose parameters can be 
derived from the reference signals. This theory and its open-source implementations 
provide new insights into potential applications outside the field of inertial sensors, such 
as oscillators ranging from low-cost quartz to more sophisticated atomic clocks! 
Although developed in collaboration, Dr. Clausen substantially contributed to putting in 
practice the extension of the GMWM framework while enabling the stochastic process 
analysis directly through a web interface. Therefore, it comes with no surprise that his 
contribution at an IEEE conference on this subject was appreciated by an award. 
 
 
 
 
 
 
Prof. Dr. Jan Skaloud      Prof. Dr. Alain Geiger 
EPFL Lausanne      ETH Zürich 
Thesis director       President of SGK 



 



Abstract
The use of a Bayesian filter (e.g., Kalman filter) for the fusion of information from satellite

positioning and inertial navigation is a common approach in many applications, where the

knowledge of position, velocity, and attitude in space are of great interest. The correctness of

these estimates depends on many factors, among others the quality of the sensor measure-

ments and the errors within, which are directly reflected in the filter design. A calibration

process allows compensating for deterministic influences (which in return improve for in-

stance qualitatively the attitude initialization) and their inherent stochastic error signals

required for filtering.

This thesis presents in the first part the development of methods to perform a thorough cali-

bration of different sensors in-lab under controlled conditions and in-field for a simplified

calibration with limited resources and equipment. The stochastic properties of error signals

are analyzed in the second part. A novel approach called Generalized Method of Wavelet

Moments (GMWM) allows investigating the error structure using wavelets, which is similar

to the Allan variance. An intuitive online tool is presented, which grants simplified access to

the GMWM framework that provides a consistent, identifiable, and computationally efficient

estimation of stochastic model parameters. The parameters of these error models are then

made dependent on an external covariate such as temperature or motion. Indeed, it is experi-

mentally confirmed that these properties shape the stochastic behavior of the measurements

and how the stochastic parameters relate functionally to the influence of the covariate. Later,

such knowledge is included in the filter for the correct estimation of confidence levels.

The successful implementation of these proposed concepts is validated in a fully functional

drone-system for mapping purposes. A real-time calibration scheme is applied first in-lab,

later in-field to initialize the navigation processor. Apart from the benefit of achieving consid-

erably better estimates of the attitude, and in case of satellite signal outage also of the position,

the calibration allows for a simplified fusion of redundant inertial sensors. The improved

performances through calibration and sensor redundancy are attractive to drone mapping ap-

plications relying on an accurate direct or integrated orientation such as lightweight airborne

laser scanning systems or frame-cameras, which are utilized in the experiments.

Key words: IMU, MEMS, GNSS, INS, deterministic calibration, stochastic process, stochastic

error modeling, sensor fusion, GMWM, Kalman filter, navigation





Zusammenfassung
Der Bayessche Filter (z.B. Kalman Filter) wird üblicherweise für das Zusammenführen ver-

schiedenster Messungen benutzt. Inertialsensoren und Satelliten-basierte Messungen sind

dabei die meistgebrauchten Kandidaten. Die geschätzten Grössen wie Position, Geschwindig-

keit und Orientation werden für verschiedene Aufgaben im Navigationsbereich verwendet.

Die Richtigkeit der Schätzung hängt sowohl von der Qualität der Messung als auch von deren

Fehlerstruktur ab. Diese Struktur muss nicht nur beim Filterdesign berücksichtigt werden,

sondern muss auch best möglichst von vornherein kalibriert werden.

Diese Arbeit präsentiert in einem ersten Teil die Kalibration von Sensoren unter Laborbedin-

gungen und zeigt Methoden, wie diese Kalibration unter erschwerten realen Bedingungen

ausgeführt werden kann. Die Fehlersignale der Sensoren werden dann in einem zweiten Teil

durch eine Zustandsraumdarstellung repräsentiert und analysiert. Der neue Ansatz durch

die sogenannte Generalized Method of Wavelet Moments (GMWM) erlaubt eine Analyse der

Fehlerstruktur mithilfe von Wavelets (ähnlich wie die Allan Varianz). Ein online Web-Tool wird

präsentiert, welches den Zugriff auf das GMWM Framework erleichtert. Diese Methode ist

konsistent, identifizierbar und nicht rechenintensiv. Die Schätzung der Parameter des Feh-

lermodels werden dann in einem nächsten Schritt in Abhängigkeit einer externen Messung

wie Temperatur oder Bewegungsdynamik gebracht. Diese beeinflussen je nach Sensortyp das

Messrauschen. Verschieden Ansätze werden untersucht und deren Resultate direkt in einem

Kalman Filter untergebracht.

Die erfolgreiche Umsetzung der Kalibration von deterministischen und stochastischen Feh-

lern wird anhand eines voll funktionsfähigen Drohnen-Systems aufgezeigt. Die Methoden

zur Sensorkalibration in einer Echtzeitanwendung werden präsentiert und einem Naviga-

tionscomputer zur Verfügung gestellt. Dank der rigorosen Kalibration der Inertialsensoren

verbessert sich die Navigationsautonomität, falls die Satellitenposition ausfällt. Zudem erlaubt

dieser Schritt eine direkte Fusion von mehreren redundanten Sensoren. Dieser Schritt erhöht

die Qualität der Positionsbestimmung, welche besonders attraktiv für z.B. luftgestützte leicht-

gewichtige Laserscannersysteme ist. Die Vorteile werden anhand verschiedenster Beispiele

veranschaulicht.

Stichwörter: IMU, MEMS, GNSS, INS, Kalibrierung deterministischer Fehler, stochastischer

Prozess, stochastische Fehlermodellierung, Sensorfusion, GMWM, Kalmanfilter, Navigation
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1 Introduction

1.1 Context

Accelerometers and gyroscopes are inertial sensors measuring specific forces and angular

rates, respectively. When spatially assembled, for instance into an orthogonal triad, they have

become an essential part of a large variety of motion sensing systems. They were originally

developed as the sensing components of Inertial Navigation System (INS) that are categorized

according to their performance (precision) into: strategic-grade, navigation-grade, tactical-

grade and low-cost [Greenspan, 1995]. An Inertial Measurement Unit (IMU) is the instrumental

part of an INS, where the latter comprises also a navigation computer. In particular, the low-

cost IMU enjoyed a steady boom over the last decades due to advances in the field of Micro-

Electro-Mechanical System (MEMS) to become omnipresent in new domains of robotics,

autonomous systems, as well as consumer electronics including smartphones, tablets, and

wearable devices [Shaeffer, 2013].

Conventionally, the measurement on the x-axis lx of an inertial sensor (accelerometer or

gyroscope) can be expressed in terms of the true applied specific force f or angular velocity

ω, respectively, along its sensitive axis ľx and the forces or angular velocities acting along the

other two other axes ľy and ľz , respectively, by the equation [Titterton and Weston, 2004]:

lx “p1`Sxqľx`θy ľy`θz ľz`bx`εx , (1.1)

where ľ P r f ,ωs, Sx is the scale-factor error, θy and θz are the cross-axis coupling factors

due to non-orthogonality of the assembly, bx is the mean measurement bias, and εx is the

random bias of the considered x-axis. Practical observation of scale-factor and bias is shown

in Figure 1.1 as the discrepancy between the actual motion (dotted line designated as input)

and the sensed data (full line designated as output). The prevailing effect (e.g., mean bias

and mean slope) of these two error sources is usually deterministic and can be calibrated in
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Figure 1.1: Input/output relation of a sensor affected by a constant offset also called bias, and
a scale-factor error.

a laboratory using reference signals [Titterton and Weston, 2004]. Similar calibration can be

completed for the different cross-coupling effects coming from the other axes of the sensor

triad.

The residual, non-calibrated random part of bx and εx is transformed by numerical processing

called “strapdown inertial navigation” [Titterton and Weston, 2004] into errors in attitude,

velocity, and position. Data fusion algorithms, such as the Extended Kalman Filter (EKF),

mitigates the transformed effect of these errors using external aiding [Gelb and Corporation,

1994]. The basic principle of the filter is to apply the estimated errors as corrections onto the

measurements as schematically depicted in Figure 1.2.

To achieve optimal estimation, the characteristics of random errors involving the inertial

sensors need to be known in terms of their structure (type of random processes) as well as the

value of their parameters. For instance, in state-space formulation of the sensor estimation

Filter

IMU

GNSS

Navigation

Solution

measurement

positio
n, velocity

correction

Figure 1.2: The filter estimates the corrections for the IMU, whenever an external aiding (e.g.,
the GNSS) provides a measurement update.
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problem [Farrell and Barth, 1999], the time-correlated errors are modeled within an augmented

state-vector, and their realization (actual magnitude) is observed under certain conditions

and removed by a feedback mechanism. However, as the error structure of MEMS low-cost

inertial sensors is inherently complex [Allen et al., 1998; Kraft et al., 1997], their representation

by state-space models is less straightforward, and the determination of correct parameters

becomes involved. Figure 1.3 shows an example of two MEMS sensors with each a different

typology of noise, modeling of which has motivated a considerable amount of research [Nikolic

et al., 2016; Xue et al., 2015; Zhang et al., 2016].

The main statistical methods employed for noise characterization in inertial sensors are:

the Maximum Likelihood Estimator (MLE) [Stebler et al., 2011; Zhao et al., 2011] and the

Allan Variance [El-Sheimy et al., 2008; Guerrier et al., 2016; Vaccaro and Zaki, 2012], or more

recently, the Generalized Method of Wavelet Moments (GMWM) [Guerrier et al., 2013a]. The

latter decomposes the observed noise (long time-series) into the wavelet variances. For a

given model structure it chooses the parameters to minimize the squared distance to the

wavelet variances induced by such a model. Its extension allows categorizing different model

structures by considering the goodness of fit per model versus its complexity [Molinari et al.,

2015]. The GMWM estimator is proven to be optimal and, in contrary to other methods, yields

consistent estimates for composite stochastic processes [Guerrier et al., 2013a]. The effect of

such noises is present in low-cost MEMS inertial sensors and its accurate modeling needs to be

reflected in the filter design as it influences the performance of integrated navigation [Stebler

et al., 2011; Guerrier et al., 2015]. Nevertheless, these designs use an important assumption

that the noise parameters are stationary with respect to environmental conditions, which – as
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Figure 1.3: Two sensors showing different typology and amplitude of sensor noise.
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will be shown in this work – is not the case. Additionally, the GMWM analysis and its derived

state-space models do not consider the randomness of the mean/offsets, albeit these may

have a strong or even dominant contribution in MEMS inertial sensors.

1.2 Motivation

• The factory calibration determines (and compensates for) the variation of the basic

model parameters from Equation 1.1 as bx , Sx with respect to temperature or dynamic

cycling over a given period of time [Titterton and Weston, 2004]. Although these condi-

tions are adequately addressed when dealing with the deterministic errors (i.e., the bias

changes as a function of the temperature, which is taken into consideration when deal-

ing with the sensor measurements by observing the information from a thermometer),

this is unfortunately not the case for the stochastic properties of the error measurements.

Indeed, the complex models underlying the stochastic errors are affected by the varying

external conditions, which modify the parameter values through time. This fact has

not been rigorously addressed so far. This motivates proposing an extension to the

GMWM estimator to determine the variation of stochastic parameters adequately as a

function of such external co-variate (be it motion dynamics, temperature, pressure, or

other influences).

• Second, although the constant bias/offset in the observed signal can be easily repre-

sented by state-space augmentation, its actual estimate depends on observing condi-

tions that are among others strongly correlated with (i) initial magnitude and associated

incertitude, (ii) the goodness of initial attitude (coarse alignment), (iii) available aiding

and trajectory dynamics. For these reasons, it is preferential to determine the most

significant part of the bias before starting the process of navigation, especially in spe-

cific applications. One example is the autonomous navigation and sensor orientation

with drones. The challenge is to use external observations to estimate/compensate the

amount of the error signals as much as possible over a short observation time (around

15 min for a drone). This may be difficult with sufficient accuracy when initial discrepan-

cies are large. The type of error as switch-on bias cannot be calibrated in the factory or

the laboratory, as it changes every time the sensor is turned on/off. Thus, a pre-mission

calibration is required and proposed here, for a variety of sensors.

• The position error is rapidly increasing when the external aid from the Global Navigation

Satellite System (GNSS) is not available. This is, for instance, the case when the sky gets

obstructed (e.g., tunnel, canyon of buildings). During this, inertial coasting through

strapdown inertial navigation of the IMU is performed. If large systematic errors in

the inertial readings are not mitigated, then the discrepancy from a real trajectory will

4
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proliferate in time. The forward filter is used during the processing for real-time applica-

tions. The smoothing of the trajectory improves the quality of the estimated position

and attitude. Nevertheless, the initial attitude determination is of great importance for

navigation. A poorly initialized attitude will take more time to be corrected, alongside

the other sensor errors. Estimating initial heading with MEMS-IMU only is difficult if

not impossible, reason for which the system can be equipped with other sensors, such

as magnetometers. Proper attitude determination is essential in applications requir-

ing direct sensor orientation, such as Airborne Laser Scanning (ALS). Thus, a way of

estimating the initial attitude as good as possible with a limited number of sensors is

proposed here.

• The packaging of such a system in small and light-weight applications is of large impor-

tance. The potential use in aerial applications for small Unmanned Aerial Vehicle (UAV)

is big. The automatic navigation capabilities of UAVs over larger distances in open

spaces require a firm reception of GNSS signals. This is not guaranteed in urban or

natural corridors. Hence a potential flying in these regions is always risky. The concepts

of ultra-safe navigation at low-cost were already introduced in other projects [Molina

et al., 2011]. Losing satellite-based positioning functionality may be problematic if used

in applications such as automated landing, autonomous navigation, and direct sensor

orientation. For these reasons, the correct fusion of redundant, yet small sensors is also

investigated.

1.3 Methodology

The aforementioned problems are divided into the following two parts:

• in-lab calibration and

• in-field calibration.

The in-lab calibration is composed of two elements: deterministics and stochastics. This first

part is performed in the laboratory under controlled conditions and with a precise reference

signal to rigorously determine the amount of the bias, non-orthogonality, and scale-factor for

each sensor in the system. A calibration methodology for the different sensors is presented

and evaluated.

The second component is the estimation of the stochastic error model and its parameters.

These include their properties under different scenarios: without and with a changing covari-

ate, such as temperature and motion dynamics. The specific framework for stochastic error

analysis is presented.
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The in-field calibration is composed of two parts as well, the first performed just before the

mission starts (e.g., UAV take-off). This part is dedicated to the deterministic errors, that

change their amount and quantity each time the system is powered on. This is the case for

the IMU switch on/off bias or the biases due to environmental dependencies (e.g., magnetic

perturbations depending on the location and setup).

The calibrated sensor measurements are then used to calculate the initial attitude, which

is required for starting the strapdown navigation. After the bias calibration and the initial

attitude estimation, the mission can begin. As the real-time navigation of the drone will

be based on the in-field calibration and the result from the attitude determination, these

calibration steps are executed in real-time with feedback to the user.

1.4 Outline

The content of this document is divided into three parts:

I: Preliminaries

Chapter 2 gives a small introduction to different MEMS sensors. Inertial sensors, as well as

other sensor technologies, are presented together with the most recent way of their fusion:

integrated inertial navigation.

Chapter 3 discusses the challenges with the identification of stochastic models. Ways to define

and estimate error models are presented.

II: Calibration Methodology

Chapter 4 presents the principles and methodologies used to calibrate inertial, magnetic, and

pressure sensors for their deterministic errors.

Chapter 5 expands the theory of the analysis of the wavelet variances to take into account

known covariates and their influence on the stochastic properties (i.e., non-stationary stochas-

tic models). Real models are conceived for specific sensors with covariates in temperature and

rotational dynamics.

Chapter 6 describes the implementation of the algorithms for the deterministic error cal-

ibration and its usage. Then, an online web application is presented for the analysis of

”user-presented“ error-signals, which allows for a complete and thorough, yet intuitive and

straightforward stochastic error calibration.
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III: Application

Chapter 7 shows the impact of a covariate and its influence on the stochastic properties on the

estimation of navigation parameters. This is demonstrated within a simplified (2D) simulation

scenario.

Chapter 8 shows the impact of pre-flight calibration and sensor fusion on the navigation

solution.

Chapter 9 analyzes the performances of the developed applications and methodologies ap-

plied on systems used for mapping purposes.

Chapter 10 presents the summary with the conclusions of the conducted research and gives

the perspectives for future work.
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2 Sensors for Aided Navigation

2.1 Introduction

This chapter first provides a brief introduction to inertial technology and shows typical char-

acteristics of current Micro-Electro-Mechanical System (MEMS) sensors used for integrated

navigation. After an introduction to reference frames, the basic principles of strapdown iner-

tial navigation and its integration is presented. Then, typical sensors used for inertial aiding

are listed.

2.2 Inertial Sensors

2.2.1 Classification

An Inertial Measurement Unit (IMU) is usually composed of a triad of accelerometers and

gyroscopes. These sensors measure specific force and angular velocity respectively on three

perpendicular axes. A detailed description of the IMU with its different classifications based

on the overall quality of its sensors as found in [Greenspan, 1995] is synthesized in Table 2.1.

Navigation- and Tactical-grade sensors have considerably better performance, meaning that

they can initialize their orientation on their own (i.e., self-align) as their gyroscope biases are

small enough to sense the Earth rotation. On the other end of the scale are the MEMS-IMU.

They are less expensive but have more complicated noise properties, which are challenging

to model and/or calibrate. This stochastic modelling will be discussed later in Chapter 3 in

more detail with several examples, while calibration aspects are proposed in Chapter 4. On the

other hand, MEMS devices have the largest advantage of being small and lightweight, which

make them attractive for applications in small embarked systems such as drones.
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Table 2.1: Rough comparison (bias and price) between the different IMU-grades.

Grade Navigation Tactical Low-cost

gyroscope bias [deg{h] 0.005´0.01 0.1´10 ą 100

accelerometer bias [m{s2] 5 ¨10´5 2´5 ¨10´3 0.05´0.5

price r$s 100000 10000-1000 10-100

2.2.2 IMU Characteristics

The characterization of an IMU is not straightforward as parameters in the datasheet of the

manufacturer may not be complete. A possible (non-exhaustive) list of typical specifications

contain

• Input Range

• Resolution

• Misalignment

• Noise Density

• In-run Bias Stability

• Scale Factor

• Scale Factor Linearity

• Bias (switch-on repeatability over temperature or time period)

• Acceleration dependency (called g-sensitivity)

• Temperature effects

• Data latency

Other parameters may influence the output as vibrations or pressure. Table 2.2 shows a partial

extraction of the datasheets of several IMU based on currently available MEMS technology of

higher quality taken from [Analog Devices, 2018a,b; Sensonor, 2017; Colibry, 2018; Intersense,

2018] while details are presented in Appendix C.3.

In all the lab-equipment and other experiments, we will use the "Intersense Navchip V1" IMU,

that despite being considerably older (from the year 2010) has still a comparable performance

to other IMU available today.
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Table 2.2: Comparison between small tactical grade lightweight MEMS IMU.

Figure 2.1: Pictures of MEMS IMUs taken from [Analog Devices, 2018a,b; Sensonor, 2017;
Colibry, 2018; Intersense, 2018] and Section C.3

13



Chapter 2. Sensors for Aided Navigation

2.3 Reference Frames

Different coordinate frames need to be defined within the context of inertial navigation. Some

of them are briefly introduced here, where a detailed description can be found in [Stebler,

2013].

2.3.1 Inertial Frame

The inertial frame (xi , yi , and zi ) is a non-accelerating and non-rotating reference frame that

is at rest or subject to a uniform translational motion. In such a frame, the laws of Newtonian

mechanics are valid. For the purpose of navigation, an inertial frame is approximated as a

celestial frame with origin at the center of mass of the Earth, such that the xi -axis points

towards the Vernal equinox and is, thus, the "spring" intersection line between the equatorial

and the ecliptic plane. The zi -axis points towards the mean celestial pole, and the yi -axis

completes the 3D right-handed Cartesian system.

2.3.2 Earth Frame

The Earth frame (xe , ye , and ze ) is an equatorial frame with origin at the center of mass of

the Earth, such that the xe -axis points towards the Greenwich meridian, the ze -axis points

towards the mean direction of the rotation axis of the Earth, and the ye -axis completes the

3D right-handed Cartesian system. This frame is, therefore, an Earth Centered Earth Fixed

(ECEF) frame. Examples of important realizations are the International Terrestrial Reference

Frame (ITRF) and the World Geodetic System 1984 (WGS84) being the reference frame of the

American Navstar Global Positioning System (GPS). Any point in this frame can be expressed

either in Cartesian coordinates (xe , ye , ze ) or for a defined Geodetic System in ellipsoidal

coordinates (φ, λ, h) with the latitude φ, the longitude λ, and the height h.

2.3.3 Local-Level Frame

The local-level frame (xl , yl , and zl ) is a local geodetic frame with arbitrary origin, for example

a point on the Earth surface, such that the xl -axis points to the north, the yl -axis points to the

east, and the zl -axis points to the local nadir (down). For the purpose of navigation, the zl

direction may be considered as orthogonal to a tangent-plane of the ellipsoid at this arbitrary

point. This triad of vectors constitutes the right-handed North-East-Down (NED) frame.
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2.4. Strapdown Inertial Navigation

2.3.4 Body Frame

The body frame (xb , yb , and zb) is a frame attached to the body of the vehicle. In navigation,

the usual convention is to choose the forward or longitudinal direction of the vehicle for the

xb-axis, while the yb-axis points towards the right side of the vehicle. The zb-axis completes

the triad and points downward. The rotation matrix Rb
l , transforming vectors from local-level

frame to body frame, is defined as follows, where Euler angles (roll r , pitch p, and yaw y) are

used as attitude parameters:

Rb
l “R1pr qR2ppqR3pyq, (2.1)

with the individual rotational matrices defined as:

R1pr q“

»

—

–

1 0 0

0 cospr q sinpr q

0 ´sinpr q cospr q

fi

ffi

fl
,

R2ppq“

»

—

–

cosppq 0 ´sinppq

0 1 0

sinppq 0 cosppq

fi

ffi

fl
, and

R3pyq“

»

—

–

cospyq sinpyq 0

´sinpyq cospyq 0

0 0 1

fi

ffi

fl
.

(2.2)

Other sequences of Euler angles are used in photogrammetry (ω, φ, κ). As the parametrization

of attitude by Euler angles represents a singularity (at p “ 90°) other rotation representations

can be considered such as quaternions, which are extensively discussed in [Altmann, 1986].

Although other frames related to sensors can be defined, it will be sufficient here to consider

the x-axis of an accelerometer in an IMU as the one coinciding with the x-axis of the body

frame.

2.4 Strapdown Inertial Navigation

An Inertial Navigation System (INS) uses the physical properties of its sensors to sense the

specific force f b acting on the body and the rotation rate ωb
i b of a body with respect to the

inertial frame (non-rotating & non-accelerating) expressed in the body frame. The respective

measurements are, after proper projection and correction, integrated over time.

The first-order navigation equation in the l-frame can be summarized in the following vector
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notation x from [Stebler, 2013]:

9x l “

»

—

–

9r l
e

9v l
e

9q l
b

fi

ffi

fl
“

»

—

—

–

D´1v l
e

R l
b f b´

`

2Ωl
i e`Ω

l
el

˘

v l
e`g l

1

2
q l

bb
“

ωb
lb

‰

q

fi

ffi

ffi

fl

. (2.3)

The position is expressed with ellipsoidal coordinates in the Earth frame as r l
e “ rφ,λ,hsT . The

velocity is represented in the Earth frame and expressed in the NED frame as v l
e “ rvN , vE , vDs

T .

The orientation from body frame with respect to the local frame here is represented by the

quaternion q l
b “ rq0, q1, q2, q3s

T .

The matrix D´1 is defined as

D´1“

»

—

—

—

–

1

RM `h
0 0

0
1

pRP `hqcospφq
0

0 0 ´1

fi

ffi

ffi

ffi

fl

. (2.4)

The meridian radius of curvature RM is expressed as

RM “
ap1´e2q

p1´e2 sin2pφqq3{2
, (2.5)

with the quantities a and e the semi-major axis and first numerical eccentricity of the reference

ellipsoid, respectively.

The prime vertical radius of curvature RP is expressed as

RP “
a

p1´e2 sin2pφqq1{2
. (2.6)

The rotation matrix R l
b is a function of the quaternion q l

b and can be computed as

R l
b “ f

`

q l
b

˘

»

—

–

q2
0`q2

1´q2
2´q2

3 2pq1q2´q0q3q 2pq1q3`q0q2q

2pq1q2`q0q3q q2
0´q2

1`q2
2´q2

3 2pq2q3´q0q1q

2pq1q3´q0q2q 2pq2q3`q0q1q q2
0´q2

1´q2
2`q2

3

fi

ffi

fl
. (2.7)

The vector g l represents the normal gravity vector in the ellipsoidal local frame. The vector

ωb
lb is computed from

ωb
l b “ω

b
i b´

`

R l
b

˘T
pωl

i e`ω
l
el q, (2.8)

where the angular velocity of the Earth frame with respect to the inertial frame expressed in
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the local frame isωl
i e “ rωi e cosφ 0 ´ωi e sinφsT , and the angular velocity of the local frame

with respect to the Earth frame expressed in the local frame isωl
el “

“

9λcosφ ´ 9φ 9λsinφ
‰T

.

As for the notation used, the Ωr
pq represents a skew-symmetrix matrix associated with the

vectorωr
pq “ rω1 ω2 ω3s as

Ωr
pq “

»

—

–

0 ´ω3 ω2

ω3 0 ´ω1

´ω2 ω1 0

fi

ffi

fl
, (2.9)

and the mathematical operatorb represents the quaternion product between two quaternions

q “ rq0 q1 q2 q3s
T and p “ rp0 p1 p2 p3s

T expressed as

qbp “

»

—

—

—

—

–

q0p0´q1p1´q2p2´q3p3

q0p1`q1p0`q2p3´q3p2

q0p2`q2p0´q1p3`q3p1

q0p3`q3p0`q1p2´q2p1

fi

ffi

ffi

ffi

ffi

fl

. (2.10)

Equation 2.3 is resolved by the so-called strapdown navigation algorithm for each new mea-

surements with respect to the past solution (dead reckoning) [Stebler, 2013]. The system needs

to be initialized with position, velocity, and attitude at time zero.

The navigation solution provided by the INS suffers from different kinds of errors. Firstly,

initial conditions are required for the position, velocity, and attitude. Any errors in these initial

conditions are propagated in time. With the help of the Global Navigation Satellite System

(GNSS), the largest challenge is in the altitude initialization. Secondly, the measurements of

the sensors (accelerometer and gyroscope) suffer from different types of errors (deterministic

and stochastic in nature), which will, over time, accumulate as in navigational errors. Thirdly,

additional errors can come from computational errors and simplifications (e.g., local frame is

stationary with respect to the inertial frame, gravity models).

2.5 Integrated Navigation

2.5.1 Fusion Principle

To mitigate the influence of initialization errors as well as systematic and random errors in

an inertial navigator, the IMU data are integrated with satellite positioning as well as with

other aiding sensors. The most common way of integrating is the state-space approach [Gelb

and Corporation, 1994], and the application of Kalman filter (real-time) and smoother (post-

processing) [Titterton and Weston, 2004] introduced by Rudolf E. Kálmán in 1960. It is widely
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Chapter 2. Sensors for Aided Navigation

known and used in the science community ever since. Its main ability is the optimal combina-

tion of sensors of the same type (using the same physical effects for the measurements) and

the fusion of sensors of different types (using different physical effects). One core assumption

is the property of the signal (be it the noise or the actual measurement) of being Gaussian. This

property allows to linearly combine different Gaussian measurements resulting in another

Gaussian distribution. In other words, time correlated or systematic effects in observations

are modeled as additional parameters in such a way that the resulting distribution is Gaussian.

The most important source of aiding is satellite positioning. Thanks to that, the drift of the

INS can be suppressed/eliminated by comparing it to the GNSS, which long-term accuracy

is excellent. On the other hand, the INS can bridge the intervals between subsequent GNSS

solutions. Different levels of integration exist, but here the loosely coupled scheme is detailed.

It utilizes GNSS-derived position and velocity. Their differences with relation to INS find

themselves in the filter (as observations). The filter estimated corrections are injected to

the INS-solution as well as other error parameters. Figure 2.2 shows a possible realization

of such integration. This approach is simple, but if there is no GNSS solution (due to an

insufficient number of satellites observations), then no new corrections can be computed. In

this case, the INS carries on alone, or is only partially controlled (e.g., in height with barometric

observations).

2.5.2 Extended Kalman Filter/Smoother

The Kalman filter shown in Figure 2.2 is used to estimate the errors in the INS-predicted tra-

jectory as well as in the sensors. The parameters of its state vector δx can be comprised of the

position error δr , the speed error δv , the attitude error δφ. They represent the system states.

INSIMU

GNSS

BARO

Filter

Error Cal-
ibration

Filtered
PVA

e.g. PVA

e.g. PV

e.g. pressure

corrections

Figure 2.2: The loosely coupled GNSS/INS integration as a possible example for the sensor
fusion. Both systems work completely independently while their solutions are only fused at
the end by means of a filter. Eventual feedback on the error (corrections) is directly fed back
into the INS and utilized for the subsequent processes.
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The accelerometer error δea and the errors in the gyroscope δeg represent the augmented

states, showing the error states. They incorporate a certain number of time-correlated errors

in accelerometers and gyroscopes. Their implementation depends on the design criteria. The

following shows an example of a possible state-vector, where an additional error state for the

barometer bias was added:

δx “ rδr δv δφ

system states

δea δeg δeb

error states

sJ (2.11)

The Kalman filter is an iterative procedure, where update and prediction in the time k take

turns. The future state xk`1 only depends on the current state xk as well as the new mea-

surement zk`1 (property of a Markov Chain). This property is very interesting for numerical

evaluation in terms of computational resources. Figure 2.3 gives a simple overview of this

process. The time relation between the states x is not necessarily linear. This fact can be

circumvented by linearising the equations (e.g., Equation 2.3 possibly extended by auxiliary

states) around the current estimate, while applying the estimated state-vector for correct-

ing the trajectory as well as to time-correlated sensor errors. This gives rise to the Extended

Kalman Filter (EKF). The filter for discrete times is expressed as

xk “ f pxk´1,uk´1q`Γk´1wk´1

zk “hpxkq`vk´1

(2.12)

where f is the function relating the state of the previous step the to the current step and h

relates the observations to the current states. The vectors wk and vk are zero-mean Gaussian

white noise vectors. Their covariance matrices are represented by Qk and Rk respectively.

Γk´1 represent the coupling between the state and defined white noise vectors.

The predicted state x´k can be calculated and the covariance matrix P´k is computed using the

transition matrixΦk´1 using:

x´k “ f px`k´1,uk´1q,

P´k “Φk´1P`k´1Φ
T
k´1`Γk´1Qk´1Γ

T
k´1,

(2.13)

xk´1 xk xk`1

zk´1 zk zk`1

Figure 2.3: Hidden states x and observation z as a function of time k for the Markov Chain.
The current state only depends on the previous state and the present measurement.
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whereΦk´1“
B f px`

k´1,uk´1q

Bx . With measurement zk and its covariance matrix Rk the Kalman

gain Kk ,the updated state vector x`k , and its updated covariance matrix P`k can be computed

as:

Kk “P´k H T
k pHk P´k H T

k `Rkq
´1,

P`k “pI ´Kk HkqP
´

k ,

x`k “ x´k `Kkpzk´hpx´k qq,

(2.14)

with Hk “
Bhkpx

`

k´1q

Bx .

In general, the linearisation applies to the state transition model as well as the observation

models. The crucial part for the filter is the proper initialization as well as the correct choice of

the stochastic models which reflect the underlying certitude in modeling and observations.

The navigation solution can be smoothed in post-processing. This is achieved by combining

the forward filtered solution with the backward direction in a "fixed-interval-smoother" [Wägli,

2009]. Another option is to smooth the data only in one single direction (forward or backward)

by means of the "Rauch-Tung-Striebel" algorithm [Gelb and Corporation, 1994].

2.5.3 Redundant IMU

The concept of redundant IMUs is highlighted by [Wägli et al., 2010] for MEMS sensors and

further investigated by [Stebler, 2013]. Apart from the possible detection of faulty observation,

the sensor noise level can be estimated in a redundant-IMU configuration and its effect on

navigation mitigated. Multiple IMUs can be combined together by different means. The

simplest one is the so-called Synthetic IMU (SIMU): in this technique, the individual sensors

are projected onto a "virtual" IMU with defined axes (see Figure 2.4). The merged data is

only now introduced into the navigation processor. Hence one can replace a simple IMU

by such synthetic IMU in the strapdown navigation (see Figure 2.2) with minimal adaptions.

Another advantage is that defective sensors/axes can be identified and then excluded (if

enough redundancy is available) prior to its utilization. However, errors in the individual

sensors cannot be corrected Only the merged system is subject to corrections. Hence, this

approach is applicable when the largest part of the systematic errors es removed by calibration

(as presented in Chapter 4).

Averaging the sensor-readings (i.e., each axis of the sensors has the same weight) is simple.

Nevertheless, giving different weights (i.e., as opposed to equal weights) to the individual

sensor readings proves advantageous, when not every sensor has the same level of noise.

However, it may be, that one sensor is defective and a simple averaging of all the data will

lead to a large discrepancy. Different approaches (e.g., ARMA-GARCH and Markovian Regime-
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Switching) to weigh the individual sensor-readings were proposed in detail in [Stebler, 2013].

These algorithms are applicable especially if the noise levels of the different sensors change

significantly over time.

2.6 Aiding Sources

2.6.1 GNSS Position and Velocity

The GNSS is an absolute positioning system meaning that the Position, Velocity, and Timing

(PVT) are provided with respect to the Earth. These are available when signals from a minimum

of four satellites are tracked. Nowadays, there exist several systems. Each of them is controlled

by a different entity. They are interoperable on some frequencies. Hence combination of

them results in better coverage due to a higher number of tracked satellites. The GPS (U.S.),

GLONASS (Russia) are fully functional systems while COMPAS (China) and the GALILEO

(Europe) are being deployed. The observations and derived PVT from a receiver are provided

usually with an update rate of around 1 Hz - 10 Hz. While some receivers have output rates of

up to 100 Hz, nevertheless these are strongly correlated in time.

The dependency of a direct line of sight to the satellites brings this system to its limits when

navigating through natural or urban corridors when obstructions cover a big part of the sky.

There a position fix is not always possible under all circumstances while its quality varies

according to the observed constellation. The systems are designed to provide positioning in

the meter-level. In optimal conditions when ionospheric corrections are applied, sub-meter

or cm-level positioning is possible but requires special setup such as multi-frequency (and

multi-constellation) receivers operating in carrier-phase differential mode. This setup usually

consists of a base-station on the ground, which data/corrections are then combined with the

rover data either in real-time called Real Time Kinematic (RTK), or post-processing called Post

IMU 1

IMU 2

IMU 3

Synth
IMU

Nav Processor
& Filter

Nav Solution

GNSS

In-Lab/In-Field
Precalibration

corrections

Figure 2.4: Principle of the synthetic IMU for the case with three individual IMUs: the mea-
surements are projected onto a synthetic IMU. Its information is then used in the navigation
processor Waegli et al. [2008].
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Table 2.3: Comparison between the main properties of inertial and satellite navigation.

Property INS GNSS

Information relative to start-point absolute on Earth

Data Rate [Hz] 100 to few 1000 ă 10

Accuracy short term long term

Availability always limited

Operation modes strapdown, gimbalded SPP, differential, RTK, PPP,

single vs. multiple frequency

and constellation

Weakness sensor-errors, gravity field signal reception, quality,

attitude determination

Processed Kinematic (PPK). Although receiver-to-satellite ranges, range-rates, and carrier-

phase observations can be used for inertial aiding [Wägli, 2009] with certain advantages

[Farrell, 2001]. This work will consider the direct usage of GNSS derived PVT.

The presented properties of the GNSS are complementary to the properties of the IMU, which

make them ideal candidates for combining their individual advantages. The significant

disadvantage of the IMU is the long-term-instability, which is caused by the accumulation of

sensor errors. Some of them can be eliminated by calibration, but remaining errors have a

random character that can not be compensated apriori. In contrast, GNSS provides absolute

positioning. A resumé of integrating inertial and satellite positioning is given in the Table 2.3.

2.6.2 Barometer

The barometer is a device which measures the pressure of a medium. The daily unit used

in the weather forecast is hPa or bar, where 1 hPa is equivalent to 1 mbar. The pressure in

the atmosphere is inversely proportional to the height above the surface. A modeled relation

between the pressure p and the height h ranging from sea-level to several km above the surface

of the earth can be found in [Atmosphere, 1962].

The barometer with its pressure measurement and the subsequent altitude calculations can

be used for different applications. [Parviainen et al., 2011] uses the measurement changes

in a relative way to estimate the road grade in combination with the accelerometer. [Zhang

et al., 2012] improves the vertical GNSS solution with the barometer measurements while
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estimating the errors in the barometer first in an external filter. This augmented solution is

then used in the navigation with improved confidence on the vertical axis. [Bevermeier et al.,

2010] calibrates the barometer outputs with a topographic map, which is available at certain

waypoints. After the successful calibration, the data is fused with the GNSS and the IMU.

[Jonghyuk and Sukkarieh, 2003] does not calibrate the parameters of the barometer directly

but rather does propose to model the measurement outputs with a first-order Gauss-Markov

process. In Section 4.6 we describe a more rigorous approach of barometer-data usage within

an INS based integration. For that, we need to specify first the observation equations and

related parameters.

A typical evolution of pressure sensed by a barometer on a drone at two different flying heights

is shown in Figure 2.5. The drone reaches the flight heights after several minutes of climbing.

After completing a mapping mission, the drone comes back to the same place for landing.

The height can be derived from such pressure readings with several assumptions that are

generally valid when flying close to the ground (ă200 m above ground). The hydrostatic

equation, assuming the atmosphere is static with relation to the Earth, states, that small

changes in pressure d p depend on the density of the air ρ, the gravity g , and the slight change

in the altitude dh:

d p “´ρg dh. (2.15)

Strictly speaking, the air density, as well as the gravity, are depending on the altitude too, but

for applications using MEMS sensors and close to ground operations (e.g., small Unmanned

Aerial Vehicle (UAV)) this dependency can be ignored or accounted for by simpler models

[Atmosphere, 1962].

The air density ρ can be expressed using the equation of a perfect gas, which our atmosphere
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Figure 2.5: Evolution of the pressure after take-off during a typical mission with a difference in
altitude of up to 200 m above ground.
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is modeled after:

ρ“
pM

RT
, (2.16)

where M is the molar mass of the air expressed in mol, R is the gas constant with a value of

8.3144598 Jmol´1 K´1, and T is the temperature expressed in K. Substituting Equation 2.16

into Equation 2.15 yields after rearranging:

1

p
d p “´

M g

RT
dh. (2.17)

An assumption is made, that the atmosphere is isothermic (i.e., its temperature is constant

over the integrated altitudes). Indeed, for the drone flight ă200 m above the ground, the

thermal gradient over this region is negligible. Integrating Equation 2.17 on the left and right

side from the initial altitude h0 to some arbitrary altitude hi gives:

ln

ˆ

pi

p0

˙

“´
M g

RT
phi ´h0q, (2.18)

where p0 denotes the pressure at the initial altitude and pi represents the pressure at the

arbitrary altitude. By rearranging the terms, the equation expresses the altitude of a point

hi , if the temperature T , the initial altitude h0, the pressure at the starting point p0 and the

pressure on the height of interest pi are known:

hi “ h0´
RT

M g
ln

ˆ

pi

p0

˙

. (2.19)

The molar mass M of the air depends on the humidity. If water vapor is present, the molar

mass will decrease (i.e., Mhumide ă Mdry). To get a precise altitude, the molar mass of the

air has to be known accurately enough. Here again, we use the assumption, that this value

changes only slowly in time and that it stays constant locally and temporally, as for most

drone-operations. A similar problem exists with the pressure p0 at the reference altitude h0.

Instead of tracking it continuously, we assume that the local pressure stays constant during

the duration of the experiment (usuallyă1 h).

The influence of the parameters on the final height is resumed in Table 2.4. Standard pressure is

chosen for the reference pressure p0, whereas the pressure pi was selected in such a manner to

represent a height difference of roughly 200 m. The individual influences with their variations

show that a precise knowledge of the pressure p0 and pi are crucial to the final altitude

computation, as their influence is strong. In addition, the knowledge on the humidity of the

air to correctly define the molar mass of the humid air is important too. These parameters

influence the final altitude by several meters.
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Table 2.4: Influence of the individual parameters on the final height using standard values and
their variations.

Parameter Unit Typical value Variation Height influence

T K 293.15 ˘1 K ˘0.61 m

pi hPa 950 ˘1 hPa ˘9.03 m

p0 hPa 970 ˘1 hPa ˘8.83 m

M kg{mol 0.029 ˘0.001 kg{mol ˘6.17 m

2.6.3 Magnetometer

The Earth’s magnetic field is produced by several sources. One of the contributors is the Earth’s

liquid iron outer core that is in constant movement. Other materials like for instance magnetic

minerals in the crust contribute to the magnetic field as well. The direction of this field can

be sensed by a magnetometer with relation to the magnetic north that generally does not

coincide with the geographic north.

The World Magnetic Model (WMM) provides the direction of this magnetic field given a

specific location and a defined time. In the absence of local perturbation or other external

influences such as ionospheric changes, and for latitudesă75° the estimated accuracy of the

WMM isă0.5°. The knowledge of the time is used as an input to the WMM, as the magnetic

field evolves in direction and intensity over time. Due to this, the model has to be adapted after

a few years, so such prediction is valid. The currently adopted model is called "WMM2015"

and is valid until the year 2020. [Chulliat et al., 2015b] describe the usage of the model and

explain its validity from a depth of 1 km under the Earth to several km above the surface of the

Earth.

The implementation of the WMM via the freely accessible library [Chulliat et al., 2015a]

provides seven elements per position as shown in Figure 2.6. These magnetic field elements are

expressed in nT (nano Tesla). As example, the typical field strength measured in the Lausanne

area is about 47000 nT. The northerly intensity X , the easterly intensity Y , and the vertical

intensity Z are orthogonal vectors. The vertical intensity is measured positively downwards

with respect to the WGS84 ellipsoid, while the X intensity is in the direction of geographic

north. The remaining parameters are the horizontal intensity H with its declination angle

D, which is measured clockwise positively from the geographical north. The total intensity

F with its inclination angle I is measured positively downward from the horizontal plane.

The elements X , Y , and Z can be determined from F , I , and D and vice-versa. Note that

although the orientation with relation to North is a prime interest when employing a three-

axes magnetometer for navigation, the realization of the horizontal projection often requires

accelerometers (e.g., IMU).
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The magnetometer will sense in addition to the Earth’s magnetic field other magnetic distur-

bances. These disturbances can come from other magnetic sources placed nearby. When

these are constant per operating environment (electronic devices or specific location), then

their effect can be possibly accounted for and removed by calibration (see Chapter 4).

2.6.4 Attitude Initialization

As mentioned before, the IMU measurements are integrated over time, but the initial con-

ditions at time stamp t0 need to be known. The initial position of the system is for instance

provided by a GNSS receiver. The velocity can also be provided by the GNSS receiver or set to

zero when the vehicle or the platform with the IMU is not moving with respect to the Earth

surface. This is the moment where the initial attitude is computed. The accelerometers can

be used to compute roll and pitch in the leveling procedure. With that, the gyroscope output

is used to calculate the heading, as long as it "senses" the Earth rotation. Such static coarse

alignment uses the measurements directly from the body frame and tries to relate them via

the rotation matrix to the local frame. The procedure can be expressed by the projection of

two vectors, which reference is known. The gravity vector expressed in the local-frame g l and

the Earth rotation in relation to the inertial-frame i expressed in the local-frameωl
i e (which is

a function of the position on the Earth) are related through the following equation:

”

´ f b ωb
i b ´ f bˆωb

i b

ı

“Rb
l

”

g l ωl
i e g l ˆωl

i e

ı

. (2.20)

This equation is rearranged in a way to directly compute the attitude matrix as

Rb
l “

”

´ f b ωb
i b ´ f bˆωb

i b

ı”

g l ωl
i e g l ˆωl

i e

ı´1
. (2.21)

The measurements can be averaged over several seconds to decrease the noise of the measure-

ments. A problem arises when the matrix is non-invertible. This is, for instance, the case when

North
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X
Y

Z

H

D

F

I

Figure 2.6: Representation of the seven magnetic parameters provided by the WMM software
knowing position and time.
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2.6. Aiding Sources

one of the vectors is close to zero. The detection of the Earth’s rotation is for MEMS gyroscope

challenging due to the increased noise level and because the rotation rate is a weak signal. In

such a case one can use the magnetometer measurements instead of the gyroscope measure-

ments as presented in [Wägli, 2009]. The representation is similar and uses the magnetometer

measurements from the sensor in the body-frame mb as well as the reference local magnetic

field ml , which is provided by the WMM as explained in Subsection 2.6.3:

”

´ f b mb ´ f bˆmb
ı

“Rb
l

”

g l ml g l ˆml
ı

. (2.22)

Another possibility with optimal estimation is to define the attitude from vector observations

as first evoked in [Wahba, 1965] and known as Whaba’s Problem. The goal is to find the

orthogonal 3x3 matrix Rb
l that minimizes the function L expressed as

LpRb
l q“

1

2

ÿ

i

wi pl
b
i ´Rb

l l l
i q, (2.23)

where i represents the number of measurement vectors (e.g., magnetometer, and accelerome-

ter, and their cross-product means i “ 3), l l
i represents the measurements in the l-frame, l b

i

are the measurements in the b-frame with the corresponding weights on the measurement

wi . One possible solution to this problem was proposed by [Y. Bar-Itzhack, 1996] using the

quaternion q b
l parametrization:

Lpq b
l q“

1

2

ÿ

i

wi pl
b
i ´Rb

l

`

q b
l

˘

l l
i q. (2.24)

Such a quaternion estimation algorithm (QUEST) and its recursive version (REQUEST) can be

used, to estimate the rotation, even when the attitude between the different static measure-

ments changes. The information of the gyroscopes is then used to project the new attitudes

from one measurement position to the next [Choukroun et al., 2004]. A profound comparison

of the different algorithms of attitude determination and their usage (e.g., advantages and

disadvantages) can be found in [Markley, 1998].

We will later use the QUEST algorithm with the pre-calibrated signals of the accelerometers

and magnetometers to initialize the strapdown navigation with our redundant IMUs.
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3 Stochastic Model Identification

3.1 Introduction

This chapter provides an introduction to the problem of stochastic model identification.

Parameters of stochastic error models, which are a fundamental part of integrated inertial

navigation are determined here. In fact, after calibration of deterministic errors [IEEE, 2011],

the random stochastic characterization need to be incorporated inside the navigation filter.

This is done in a rigorous way, by identifying the stochastic model structure, determining its

parameters and express them as an augmented part of the state-space model.

In a first part of this chapter, a set of basic stochastic error models is recalled to the reader

following [Gelb and Corporation, 1994; Hamilton, 1994]. Then a quick overview to estimate the

parameters of these models is presented. More detailed description is given for the Generalized

Method of Wavelet Moments (GMWM) [Guerrier et al., 2013a], as this approach is used in this

research to first identify the stochastic properties of sensors. Later this approach is extended

to account for the evolution of stochastic parameters with changing environmental conditions.

In the last part of this chapter, the stochastic properties of inertial sensor employed in this

research are analyzed, and guidelines are given when proceeding with its stochastic sensor

calibration.

3.2 Definition

Let t denote the time and X p¨q a real function. The stochastic process for each index t with

X ptq can be defined. For time t ĎR the function X ptq is a continuous time stochastic process.

If the time can be indexed by the variable k as tk with k P Z, then the function becomes a

discrete time stochastic process with notation Xk .
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Chapter 3. Stochastic Model Identification

3.3 Stochastic Error Models

A short overview of the most common stochastic error models is presented. Most of them can

be expressed as state-space models, which is essential for their use in state-space estimators,

such as Kalman filters.

3.3.1 Random Constant

The continuous time equation of the Random Constant (RC) process is

9X ptq“ 0, (3.1)

with an initial value defined at time t0 as

X pt0q“ X0. (3.2)

This equation represents a random value, which is constant during the whole process. The

discrete time stochastic process can be written as

Xk`1“ Xk , (3.3)

with the initial value X0 following a Gaussian distribution with mean value and variance

defined in N pµX0 , σ2
RC q. Specific sensor characteristics like the tun-on turn-off bias (i.e., the

bias changes whenever the device is powered on) can be modelled with this random constant

process.

3.3.2 Quantization Noise

The name quantization noise used in this document here is also known as white phase

modulation noise, which is due to the time quantization of the signal and its resolution

[W. Allan, 2016]. It has not to be confused with the bit quantization resulting from quantization

in the analog-to-digital conversion, which will result in the quantization of the information

[Han and Wang, 2011; Titterton and Weston, 2004]. The continuous time equation for the

Quantization Noise (QN) process is given as

9X “Q ¨
?
∆t ¨ 9Uptq, (3.4)
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3.3. Stochastic Error Models

where ∆t represents the sampling period and Uptq is a uniformly distributed random number.

The discrete-time stochastic process can be written as

Xk`1“
a

Q ¨ pUk`1´Ukq

Uk “
?

12 ¨Ũk ,
(3.5)

where Ũk is a uniformly distributed number defined in the range r0,1s.

3.3.3 White Noise

The continuous White Noise (WN) process is a stationary process and is described as

X ptq“W ptq. (3.6)

The process W ptq follows a Gaussian distribution. The discrete-time process is written as

Xk “Wk , (3.7)

with Wk defined as a zero-mean Gaussian distribution N p0, σ2
W N q.

3.3.4 Random Walk

The continuous-time process of the Random Walk (RW) is expressed as

9X ptq“W ptq, (3.8)

stating that the time-derivative of the process is a WN process. With the initial condition

X pt0q“ X0 the integrated process is written as

X ptq“

ż t

t0

W pt 1qd t 1. (3.9)

The discrete-time sequence can be expressed as

Xk`1“ Xk`Wk , (3.10)

where Wk follows a zero-mean Gaussian distribution N p0, σ2
RW q as well.

31



Chapter 3. Stochastic Model Identification

3.3.5 First-order Gauss-Markov Model

The continuous-time exponentially time correlated Gauss-Markov (GM) process can be writ-

ten as

9X ptq“´βX ptq`W ptq, (3.11)

where the correlation time 1{β expresses how past measurements influence the current

measurements. The discrete-time sequence is written as

Xk`1“ e´β∆t Xk`Wk , (3.12)

where ∆t represents the time between samples. The variance of this process is σ2
GM and

can be used to generate the driving noise Wk following N p0, σ2
GM p1´e´2β∆t qq. If β is large,

the correlation time will be short, and thus the process will approach that of a WN. On the

other hand, if β is small, the process is highly correlated in time, and it will be similar to RW.

The Auto-Regressive model of order one (AR1) is another way to describe this process. It is a

re-parametrisation of Equation 3.12 as

Xk`1“φXk`Wk , (3.13)

with φ“ e´β∆t .

3.3.6 Random Rate Ramp

The Random Rate (RR) process is a linearly growing function X1 with a constant specific slope

of X2. It is expressed as

9X1ptq“ X p2q

9X2ptq“ 0.
(3.14)

The discrete-time sequence can be written as

Xk`1“ Xk` cRR ¨∆t , (3.15)

with cRR denoting the slope of the process following a Gaussian distribution N pµRR , σ2
RRq,

which can be interpreted as a continuous drift in a certain direction (i.e., positive or negative).
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3.3.7 Bias Instability

This Bias Instability (BI) is also known as ’flicker noise’ or as ’1/f noise’ has a strong dependency

on the frequency, hence the name. In a sensor, small bias fluctuations of the signal can be

modeled by this process. One possible way to generate the discrete-time sequence is as

Xk`1“

$

&

%

Wk`1, if modptk1 ,TB I q“ 0

Xk , otherwise.
(3.16)

The parameter TB I expresses the period of the fluctuations and Wk follows N p0, σ2
B I qq.

3.3.8 Example with Noise Parameters

A subset of the stochastic error models presented in the previous section is visualized here as

an example on Figure 3.1. The values for the model parameters are chosen in a way to reflect

the different contributions of each model visually. The following quantities are used:

• WN with model parameter σ2
W N “ 1,

• RW with model parameter σ2
RW “ 8.1 ¨10´5,

• GM with model parameter σ2
GM “ 2.5 ¨10´3 and correlation time 1{β“ 300, and

• RR with model parameter cRR “ 2 ¨10´5.

In this example, no units are used and the correlation time is expressed in number of samples.

This is equivalent to an acquisition frequency of 1 Hz. Each process individually has its own

characteristics, but the mix of several of these processes makes it difficult to distinguish visually

which stochastic processes are present and which are not (see bottom plot of Figure 3.1).

Once the stochastic models are defined, the next question is how to reverse the process

and determine the parameters quantitatively from the combined error signal. The following

sections will review some common methods employed for the noise model estimation and its

parameters.

3.4 Definitions and Estimation Methods

The process sequence Xk with k PZ is generated by the parameter vector θ. It can include

a multitude of the sequences presented in the previous section. These represent the error

components of the sensors (i.e., ∆ f b for the accelerometers and ∆ωb
i b for the gyroscopes).

The goal is firstly to define the stochastic error model, and in a second step to estimate this

parameter vector. This information is then used in the navigation Kalman filter/smoother.
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Figure 3.1: The bottom figure shows the sum of the individual stochastic processes.

The Auto-Correlation (AC) function or the Power Spectral Density (PSD) can be used to char-

acterize some properties of the signals [Brown and Hwang, 2011]. The analysis of the signal

through the AC can reveal the presence of correlated noise. The example shown in Figure 3.2

depicts a situation, where two different signals are compared. The first signal consist only

of a GM process with a correlation time 1{β“ 300. The resulting normalized AC sequence
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3.4. Definitions and Estimation Methods

can be used to estimate the correlation time from the plot β̂“ 1{301, which corresponds to

the theoretical one of β“ 1{300. In this simple case, the analysis through the AC function is

usable.

The problem arises when multiple stochastic signals are superimposed. The second example

on the Figure 3.2 shows a signal composed of a WN and a GM with the same properties as in

the first case. The analysis through the AC function does not provide any usable information

concerning the parameters of two composite processes. The only information it provides is

that there may be a mix of several models and that they are somehow superimposed.

The analysis through the PSD is also possible and is used for different kind of sensors [IEEE,

2011]. The result is represented in a log-log plot, where the frequency is represented on the

x-axis, and the power of the PSD is on the y-axis. Periodic signals are easily identifiable. In fact,

commonly used noise-processes can be identified and quantified by linear regression on parts

of the PSD curve. The relatively easily identifiable processes include the RW, BI, WN, and QN.

Like for the analysis through the AC, the identification is simple but is limited to a certain set

of processes. However, the estimation of parameters for a sum of several similar processes

is difficult (i.e., the parameters of a sum of multiple GM processes cannot be estimated) to

achieve reliably with the PSD analysis.
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Figure 3.2: Analysis of two signals through the auto-correlation function. The first signal is
just a GM process, whereas the second signal is composed of a GM and a WN.
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Chapter 3. Stochastic Model Identification

3.5 Allan Variance

The Allan Variance (AV) was originally introduced by David Allan to analyze the stability of

oscillators [Allan, 1966]. The variability of the stability of clocks is analysed in detail in [Lesage

and Audoin, 1973; Allan and Barnes, 1981], whereas an intuitive example is provided in [Allan,

1987]. The basic principle is explained here. The sample average of τ consecutive observations

from a realization Xk at position k is

X̄kpτq“
1

τ

τ´1
ÿ

j“0

Xk´ j . (3.17)

Then the AV σ2
X̄
pτq is defined as the expectation of the squared differences between the X̄kpτq

as

σ2
X̄
pτq“

1

2
E

”

pX̄kpτq´ X̄k´τpτqq
2
ı

. (3.18)

One of the estimators for this quantity was proposed in [Greenhall, 1991] and can be written

as:

σ̂2
X̄
pτq“

1

2pN´2τ`1q

N
ÿ

k“2τ

pX̄kpτq´ X̄k´τpτqq
s

, (3.19)

where N denotes the number of samples.

The analysis of error signals of for instance an Inertial Measurement Unit (IMU) through this

AV is employed by many researchers [Guerrier, 2009; Haiying, 2004; El-Sheimy et al., 2008;

Strus, 2007; Xing and Gebre-Egziabher, 2008; Yuan et al., 2016]. In addition, this procedure is a

recognized method to analyze the random processes in datastructures [IEEE, 1998]. Figure 3.3

shows a snippet from this document showing the individual contributions of the stochastic

error models on the Allan deviation.

Nevertheless, the work in [Guerrier et al., 2013b] has shown that the estimator of noise pa-

rameters via regression analysis of the AV is an inconsistent estimator when a multitude of

stochastic processes are present at the same time in the signal. This estimator converges for

a big dataset to the parameter value only if there is one single error model. When a mix of

processes is present, the estimator will be biased.
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3.6. Generalized Method of Wavelet Moments

Table 3.1: Different stochastic processes with their corresponding slopes as shown in the plot
of Figure 3.3 representing the Allan deviation.

Process Name Parameters Slope

QN Q ´1

WN σ2
W N ´0.5

BI TB I , σ2
B I 0

GM β, σ2
GM r´0.5,0.5s

RW σ2
RW 0.5

RR cRR 1

3.6 Generalized Method of Wavelet Moments

The previously mentioned methods for stochastic parameter estimation suffer from vari-

ous limitations going from numerical instability, computational inefficiency to statistical

inconsistency. For this reason, a recently proposed approach has been used to build a new

computational platform for sensor calibration which makes use of the quantity called Wavelet

Variance (WV) to deliver an estimation framework with the name GMWM [Guerrier et al.,

2013a]. This method not only allows to estimate the parameters of considerably complex

stochastic process models, but allows to do so in a numerically stable, computationally ef-

ficient, and statistically consistent manner. It can be employed on a personal computer

using the open-source statistical environment R with the gmwm package programmed in C++

[Balamuta et al., 2016b].

Figure 3.3: Sample plot of Allan deviation analysis. Taken directly from [IEEE, 1998].
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3.6.1 Wavelet Transform

A time-series can be analyzed via wavelets (in a similar way as a the Fourier analysis). The

wavelet-series represents the time-series by a certain orthonormal set of wavelets, which are a

basis. The wavelet can be shifted in position (along the dataset) and scaled to create a whole

family of wavelets issued from a mother wavelet. In this case, the wavelet coefficients are

issued from a modified discrete wavelet transform [Percival and Walden, 2000].

In general terms, to obtain this quantity, any observed signal (in our case the observed error-

signal) is transformed into a weighted-average over different scales of observations (i.e., the

averages are applied to a certain number of observations at a time). We refer to these scales

with the letter j , where j P r1, log2pT q´1s with T denoting the total number of data points.

The wavelet coefficient h j ,l used for filtering the data have the following properties:

L j´1
ÿ

l“0

h j ,l “ 0,
L1´1
ÿ

l“0

h2
1,l “

1

2
, and

8
ÿ

l“´8

h1,l h1,l`2m “ 0, (3.20)

where m PN`, L j “p2 j ´1qpL1´1q`1 is the length of the filter at level j and L1 is the length

of the first level filter h1,l . Then, the wavelet coefficients W j ,t are defined as

W j ,t “

L j´1
ÿ

l“0

h j ,l X t´l . (3.21)

The wavelet coefficients can be applied in different ways, but the most useful (in the present

context) is the Maximum Overlap Discrete Wavelet Transform [Percival, 1995]. Its simplified

usage on a dataset is depicted in Figure 3.4, where the Haar wavelet is applied to the signal of

interest, by firstly shifting it through all the samples. This process is then repeated with the

scaled version of the Haar filter until the WV for all the scales is computed.

3.6.2 Wavelet Variance

Once the wavelet coefficients W j ,t are calculated, then the Wavelet Variance is defined as the

variance of these wavelet coefficients at level j

ν2
j “VarrW j ,t s. (3.22)

When using the Haar Wavelet filter h j ,l [Percival and Guttorp, 1994], then the WV has an exact

relationship to the AV, which is expressed as

ν2
j “ 2AV j . (3.23)
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3.6. Generalized Method of Wavelet Moments

An unbiased estimator for the WV issued from a certain wavelet transformation is given by the

maximum overlap discrete wavelet transform estimator directly calculated with the formula

[Percival, 1995]

ν̂2
j “

1

M j

T
ÿ

t“L j

W 2
j ,t , (3.24)

where M j “ T´L j`1 is the number of weighted-averages, formally called wavelet coefficients

and denoted as W j ,t , issued from the scale of decomposition j . Supposing we have J scales

(or levels) then we can define the vector of empirical WV as

ν̂“ rν̂2
j s j“1,...,J . (3.25)

3.6.3 WV of Stochastic Processes

The first step in modeling the stochastic behavior of the errors is in identifying the type of

stochastic model that can best describe them. These can be done by inspecting the log-log

Figure 3.4: Principle application of the Maximum Overlap Discrete Wavelet Transform using
shifted (and scaled) versions of the Haar Wavelet.
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plot of the WV. As it is a scaled version of the AV, which is also commonly represented through

a log-log-plot. Figure 3.5 visualizes some of these models (their sum is represented with a

red-dotted line), which are also listed in Table 3.1. This plot shows that it is relatively simple to

detect and associate one type of model at a separate part of the scale, but when several models

are overlapping at the same scales, then their identification becomes more problematic, and

the correct estimation of their parameters becomes challenging for traditional estimators such

as the regression in the AV or the maximum-likelihood-estimator [Guerrier et al., 2016]. Going

back to Table 3.1, it collects a broad set of models that the GMWM estimator can deal with

and, in particular, the second column shows the set of parameters that we are interested in

estimating (i.e., the values that in some way explain the behavior of the measurements) that

we generally denote as θ.

Once a model is identified by the user, it is possible to obtain a known form for the WV (called

theoretical WV) which depends on these parameters θ and which will be denoted as:

ν2
j pθq“VarrW j ,t pθqs, (3.26)

where W j ,t pθq represents the wavelet coefficients issued from the j th scale of the wavelet

decomposition which are a function of the parameter vector θ and Varr¨s represents the

variance operator (for more details see [Zhang, 2008] where a similar notion is discussed for

the AV). With this in mind, given a certain model (identified by the user) and its parameter

values, it is therefore possible to obtain the theoretical WV ν2
j pθq. However, in reality the

parameter vector θ is (obviously) unknown and the only quantity that can be observed is the

estimated (empirical) WV ν̂which should be close to the vector of theoretical model-based WV

denoted as νpθq“ rν2
j pθqs j“1,...,J , whose parameters are yet to be estimated and unknown.

3.6.4 Parameter Estimation

Given that the empirical WV and the model implied WV should be in some sense close to each

other, the GMWM estimator attempts to inverse the mapping between the WV and the model

scale

va
ri

an
ce

QN

WN

GM GM

RW

DR

Figure 3.5: Example log-log-plot showing the influences of the different models with their
shape. Red dotted: sum of theoretical noise models νpθq. Multiple GM can approach the flat
shape of the bias instability.
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parameters θ by finding the solution to the following minimization problem:

θ̂“ argmin
θPΘ

pν̂´νpθqq
T
Ωpν̂´νpθqq , (3.27)

whereΩ is a positive-definite weighting matrix chosen in an appropriate manner [Guerrier

et al., 2013a]. Hence, the GMWM tries to find the values of θ that allow the theoretical WV

(defined by the model structure selected by the user) to be close to the empirical (observed)

WV in a weighted least-squares manner. The statistical properties of the GMWM estimator

θ̂ have been proven to show that the estimator is consistent and asymptotically normally

distributed [Guerrier et al., 2013a].

Using the properties of the estimator, the GMWM framework allows to deliver a series of handy

tools for the sensor calibration procedure [Guerrier et al., 2015; Guerrier and Molinari, 2016;

Molinari, 2016]:

1. a large variety of noise-models mentioned in Table 3.1 can be combined to deliver the

needed complex models;

2. a so-called robust version of the GMWM allows to perform the same procedure also

when the observed data is affected by disturbances that could otherwise negatively

impact the analysis and estimation;

3. confidence intervals for the estimated parameters which provide a range of values within

which there is a high probability of finding the true parameter θ of interest;

4. a goodness-of-fit test that allows determining if the estimated model well describes the

observed errors;

5. the Wavelet Variance Information Criterion (WVIC), which allows to classify different

models and determine which model is the best in terms of prediction;

6. an automatic model selection procedure based on the WVIC.

The proper knowledge of the stochastic properties for the implementation of the navigation

filter improves the quality of the navigation solution [Stebler et al., 2014].

3.7 Error Analysis Example

This section briefly shows an analysis of stochastic errors in inertial sensors through the

GMWM framework, so the reader becomes familiar with the interpretations of plots and the

notation used in this document when comparing the empirical WV of two different sensors.
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Chapter 3. Stochastic Model Identification

The first sensor is the navigation grade IMU LN200 [Appendix C.2] and the second sensor is

the Micro-Electro-Mechanical System (MEMS) IMU Navchip [Appendix C.3]. The error signal

of the gyroscopes is considered here. The data is acquired under constant environmental

conditions with the sensor at rest. A constant offset in the signal is removed automatically by

the GMWM framework prior to analysis. This constant offset can, for instance, be the Earth’s

rotation rate sensed by the gyroscope (if it is not buried in the noise), or it can be the signal

picked up by an accelerometer, that corresponds to the projection of gravity and/or mean bias

of the sensor. Usually, the first couple of minutes of the sensor readings are discarded, before

the temperature of the sensor stabilizes. The applied model for the stochastic noise parameters

depends on the overall shape of the empirical WV. The error model of a low-cost MEMS IMU

tends to be more complicated than the one found on a high-end IMU (see Figure 3.6).

3.7.1 IMU Manufacture Specifications

Random Noise

One of the first quantities the datasheet of an IMU usually mentions is the noise density. It is

usually expressed as a PSD value relating a certain noise quantity to the frequency. Typical

units used for the accelerometers are µg{
?

Hz and m{s{
?

h for the quantity called velocity

random walk. The gyroscope noise is often characterized by the units °{s{
?

Hz for the PSD, or

the °{
?

h for the so called angular random walk. These characteristics are equivalent up to a

certain conversion factor.
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Figure 3.6: Comparison of the empirical WV between a navigation grade IMU and a low-cost
MEMS IMU. Its shape will define the error model.
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In-run Bias

A second value often found in datasheets of MEMS-IMU is the in-run bias stability. This

value reflects the flat part following the region dominated by a WN. This flat region cannot

directly be expressed through a state-space error model but it can be approximated by a sum

of multiple GM processes (see Figure 3.5). This value can be for instance expressed as mg for

the accelerometers and it can be expressed in °{h for the gyroscope.

Random Bias

The turn-on stability of the instrument mean offset is the so-called random bias. This charac-

teristic is usually present in the manufacturer datasheet only for more precise inertial sensors

(e.g., tactical and navigational grade) yet absent in low-cost MEMS-IMUs. This offset is sub-

stantial and can not be identified by the GMWM framework, as the mean signal is removed

prior to wavelet analysis. It needs to be dealt with separately either in pre-calibration (in-lab

and prior-mission) as will be explained in Chapter 4, and its residual part with state-space

modeling.

Bias Repeatability

This parameter describes how consistent the random bias is, and how much it evolves over

time and/or temperature range.

3.7.2 GMWM Analysis

The results from the GMWM estimation follow a unit, range, or convention that depends on the

input. In fact, the data is considered as is (i.e., as samples). Internally, the GMWM framework

and its optimization process handle all the computations in a unit-independent manner. The

only parameter the user can adapt is the frequency of the data. The default frequency is set to

1 Hz. Wrong specification of this variable will lead to false units in the estimated parameters.

If the data is for instance entered with the units [rad{s], then the estimated parameters, which

are mostly variances, would be expressed in the dedicated unit as [prad{sq2]. One exception is

the correlation time 1{β of the GM process, which is expressed as a function of the sampling

time expressed in [s]. The value of the sampling time is important to note, as the conversion

between the AR1 and the GM model parameters relies on this quantity. This is shown in the

next section, where with an example.

3.7.3 Example

We analyze the variations in a static dataset of approximately 2 h acquired for the Navchip

IMU. The first 15 min are not considered for thermal reasons. The rest of the data has a length

of 1800000 samples and has an acquisition frequency of 250 Hz. The following "R" code is
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used to read the binary data and to investigate the error structure of the signal. This example

data is encoded with seven double-values, as NAVCHIP_FLT was chosen as parameter for the

data-type. The first double-value represents the data timestamp with the unit [s]. Three

double-values for the three gyroscope axes are followed by another three double-values for

the three accelerometer axes. The unit used for the raw gyroscope measurements is [arcsec],

whereas the unit used for the raw accelerometer measurements is [mm{s]. Internal conversion,

through the acquisition frequency, results in the usual units [rad{s] and [m{s2] respectively.

1 # load l i b r a r y and data

2 l i b r a r y (gmwm)

3 data_object <́ read . imu( f i l e = " data . imu" , type = "NAVCHIP_FLT" )

4 imu_object <́ imu( data_object , gyros = 1 , freq = 250)

5

6 # plot WV

7 plot ( wvar . imu( imu_object ) )

By analyzing the shape of the empirical WV in Figure 3.7 (blue dots) and comparing it to

Figure 3.5 several process models can be visually identified:

• due to the steep negative slope in the small scales the QN model is selected,

• due to the less-steep negative slope in the small to middle scales the WN model is

selected,

• due to the long flat part in the middle spanning over multiple scales several GM models

are selected, and

• due to the slightly positive slope in the late scale the RW model is selected.

The combination of these models is then chosen and the gmwm-package will estimate the

model parameters when applying the following code snippet:

1 # define model

2 gyro_model <́ 3*GM( ) + QN( ) + WN( ) + RW( )

3

4 # estimate and plot model parameters

5 imu_gmwm <́ gmwm( gyro_model , imu_object , robust = FALSE , freq = 250)

6 plot (imu_gmwm)

7

8 # print parameters to terminal

9 summary(imu_gmwm, inference = TRUE)

A possible result printed in the terminal can look like this, with the first column denoting

the model parameter name, the second column denoting the estimated parameter value, the
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third with the fourth column denoting the upper and lower confidence interval, and the fifth

column denoting the standard error:

1 # terminal output

2 Model Information :

3 Estimates CI Low CI High SE

4 BETA 2.327144e´02 2.327144e´02 2.327144e´02 9.114528e´15

5 SIGMA2_GM 5.910478e´09 3.909285e´09 7.911671e´09 2.264824e´13

6 BETA 2.983416e´01 2.983416e´01 2.983416e´01 6.888085e´15

7 SIGMA2_GM 4.523155e´09 4.037374e´09 5.008937e´09 7.040430e´13

8 BETA 4.173938e+00 4.173938e+00 4.173938e+00 3.522668e´15

9 SIGMA2_GM 6.211927e´09 5.957557e´09 6.466296e´09 5.078587e´12

10 QN 2.188529e´06 2.184493e´06 2.192565e´06 2.453735e´09

11 WN 3.777401e´07 3.750446e´07 3.804356e´07 1.638753e´09

12 RW 3.756467e´13 2.359102e´13 5.153832e´13 8.495378e´14

The different GM are printed in the same order as they are labeled in the legend of Figure 3.7

(i.e., from large scales to small scales). They sum up and approach the flat part in the middle

to large scales. The chosen model is contained in the confidence interval of the estimated

WV. For using the estimated parameters in a Kalman filter/smoother or for comparison with

the datasheet of the manufacturer, these parameters may need to be re-scaled, e.g., from the

provided variance units into PSD values:

• The Navchip datasheet states a typical noise density for the WN component of the

gyroscope of 11 °{h{
?

Hz.

• The conversion from the GMWM raw-units [prad{sq2] to the required datasheet-units

by using the acquisition frequency is done by converting the estimated WN value from

the terminal output as
?

3.777401e´7{π ¨180 ¨3600{
?

250, which results in 8 °{h{
?

Hz.

• In case the GM-model is used in the estimation framework, then the first parameter

from the result is the inverse of the correlation time, also known as BETA, which has

the units [1/s]. It is only correct if the frequency of the dataset was included correctly

from the beginning. The parameter SIGMA2_GM follows the same notation as the WN

parameters, i.e., this parameter is a variance and needs conversion to the specific unit

as was done for the WN-parameter.

• If the AR1-model is used in the estimation framework, then the parameters provided

are AR1 and SIGMA2. They are a reparametrization of the GM-model, as explained

in the previous section. The in the framework included function ar1_to_gm(theta,

freq) can be used to easily convert the parameters, in which theta represents the two

parameters of the AR1-model, and freq is the frequency of the dataset.
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• The parameter RW is a variance value as well. Thus it can be converted into the appropri-

ate units following the same convention as the WN value.

The WN-values from the estimation framework and the datasheet correspond well to each

other. In fact, the datasheet is slightly pessimistic concerning these values, to stay on the save

sides, as these can vary per sensor as well as to account for the fact that the level of WN may be

higher at higher instrument temperature as discussed in Chapter 5. Nevertheless, each sensor

has to be calibrated individually for the error model and their parameters in order to correctly

represent the state-space error model, which is required for the subsequent sensor fusion.
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Figure 3.7: The implied WV is contained in the confidence interval of the empirical WV.
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4 Deterministic Errors

4.1 Introduction

This chapter provides information about the calibration of the deterministic errors. The

calibration details for the accelerometer, gyroscope, magnetometer, and the barometer are

presented. Nevertheless, these principles are applicable to other types and classes of sensors.

Whereas the calibration procedure is explained in detail, the results of the influence of the

proper calibration on the navigation solution is visualized by examples in Chapter 8 and

Chapter 9.

4.2 Problem Statement

Before the measurements of the Inertial Measurement Unit (IMU) are fed to the Inertial

Navigation System (INS), the deterministic errors are evaluated. These can include the random

bias b, the scale-factor S, and the non-orthogonality θ. The stochastic influences on the

measurements ε are explained in detail in Chapter 3 and Chapter 5. One way to express the

uncalibrated accelerometer or gyroscope readings l is

l “ ľ`S ¨ ľ`θ ¨ ľ`b`ε, (4.1)

where ľ represents the true specific force or the rotation rate vector. The scale-factor can for

instance also be included with a quadratic influence on the input. Other influences such

as acceleration/gravity dependency can be added to this model. The scale-factor and the

non-orthogonality can be rearranged into one single matrix RS as:

l “RS ¨ ľ`b`ε, (4.2)
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where the diagonal elements of the 3ˆ3 matrix RS represent the scale-factors and the off-

diagonal elements are the misalignment between the axes:

RS “

»

—

–

sxx θx y θxz

θy x sy y θy z

θzx θz y szz

fi

ffi

fl
. (4.3)

The vector b represents the long-term stable bias, which can be precalibrated (in-lab and

in-field prior to mission take-off). The last part is represented through the vector ε. It can be

split into two parts:

• short term correlated errors such as Auto-Regressive model of order one (AR1) and

• White Noise (WN).

These quantities need to be estimated for a proper representation of the signals prior usage.

In the calibration procedure, the sensor output l is compared to a reference signal ľ and

the discrepancies are split into the influences of the deterministic errors by the estimation

algorithm. If performed in controlled conditions in a laboratory, an expensive equipment

is used to align the IMU to a specific reference. The six-position calibration is widely used

and can calibrate for the bias and the scale-factor of the sensitive axes [Titterton and Weston,

2004]. This axis is usually aligned vertically. This static procedure takes advantage of the

knowledge of the local gravity to determine the accelerometer biases. In a similar way it takes

an advantage of the Earth’s rotation rate which is projected on to the vertical axis for a given

latitude ϕ for determining the gyroscope biases. The rotation rate of the Earth expressed in

the l-frame ωl
i e is obtained by projecting the true rotation rate of the earth on to the local

frame by using the latitude ϕ from the current position:

ωl
i e “

»

—

–

ωi e cosϕ

0

´ωi e sinϕ

fi

ffi

fl
. (4.4)

The bias b of the vertical sensitive axis (accelerometer as well as gyroscope) is then estimated

by taking measurements with the axis pointing upwards lup and another measurement with

the axis pointing downwards ldown [Aggarwal et al., 2008] and combining the measurements

as

b“
lup` ldown

2
. (4.5)

The scale-factor s can be retrieved with the knowledge of a reference signal r (either local
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gravity, Earth’s rotation rate) and both positive and negative measurements [Aggarwal et al.,

2008] by

s“
lup´ ldown´2r

2r
. (4.6)

However, this type of calibration with two measurements does not take into account the

non-orthogonality elements. Also, it assumes that the sensors sensitive axis is aligned with the

reference signal, realization of which is difficult. These problems can be circumvented by using

multiple measurements in different directions and by estimating the unknown parameters

via e.g., a Least-Squares (LS) approach. Denoting the measurement from one attitude as

rlx , ly , lzs
T , the n observations at different orientation are assembled in a measurement vector

l with size 3nˆ1, the n reference signals for each axis r are assembled in a 3nˆ12 matrix A,

and the vector of the unknown parameters (i.e., scale-factor, non-orthogonality, and bias) is

represented in the vector x as:

l “ A ¨x

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

lx1

ly1

lz1

lx2

ly2

lz2
...

lxn

lyn

lzn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

rx1 ry1 rz1 1 0 0 0 0 0 0 0 0

0 0 0 0 rx1 ry1 rz1 1 0 0 0 0

0 0 0 0 0 0 0 0 rx1 ry1 rz1 1

rx2 ry2 rz2 1 0 0 0 0 0 0 0 0

0 0 0 0 rx2 ry2 rz2 1 0 0 0 0

0 0 0 0 0 0 0 0 rx2 ry2 rz2 1
...

...
...

...
...

...
...

...
...

...
...

...

rxn ryn rzn 1 0 0 0 0 0 0 0 0

0 0 0 0 rxn ryn rzn 1 0 0 0 0

0 0 0 0 0 0 0 0 rxn ryn rzn 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

sxx

θx y

θxz

bx

θy x

sy y

θy z

by

θzx

θz y

szz

bz

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.7)

The parameters x̂ are then estimated in the LS sense by using:

x̂ “
`

AT A
˘´1

AT l (4.8)

This procedure appears simple and effective, however its practical realization is difficult. The

complexity in this procedure is manifold. Firstly, in order to compare the measurements of a

sensor axis to a reference, they need to be perfectly aligned. Any misalignment is projected

back to a faulty calibration. Secondly, the reference signal from the Earth’s rotation is weak

(small) and therefore can not be used to calibrate the low-cost Micro-Electro-Mechanical Sys-

tem (MEMS) gyroscopes, with an increased noise. This calibration hence requires a reference
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signal of higher amplitude, as the one provided by a rotation table. This makes the calibration

procedure not usable in the field. On the other hand, Earth’s gravity is sufficient to calibrate

the accelerometers.

4.3 Multi-Position Calibration

In order to circumvent the disadvantages presented in the previous section, [Syed et al., 2007]

proposes a different scheme. The measurements from the x-axis of the IMU lx are considered

to be only influenced by a scale factor Sx . Moreover, the measurements on the y-axis ly are

influenced by the y-axis scale-factor Sy and its misalignment with respect to the x-axis θy z . The

measurements of the z-axis lz are influenced by the z-axis scale-factor Sz , the misalignment to

the x-axis θz y as well as the misalignment to the y-axis θzx . In addition, a bias value for each

axis is defined with bx , by , and bz . This can be put in an equation as:

»

—

–

lx

ly

lz

fi

ffi

fl
“

»

—

–

1`Sx 0 0

´θy z 1`Sy 0

θz y ´θzx 1`Sz

fi

ffi

fl
¨

»

—

–

ľx

ľy

ľz

fi

ffi

fl
`

»

—

–

bx

by

bz

fi

ffi

fl
, (4.9)

where the quantities ľx , ľy , and ľz denote the true acceleration or rotation rate for each axis

and can be extracted as:

ľx “
lx´bx

1`Sx

ľy “

ly´by`θy z
lx´bx

1`Sx

1`Sy

ľz “

lz´bz´θz y
lx´bx

1`Sx
`θzx

ly´by`θy z
lx´bx

1`Sx

1`Sy

1`Sz

(4.10)

The reference local gravity g or the reference Earth’s rotation rate ωi e is used to impose a

condition on the norm on the accelerometers or the gyroscopes readings:

facc “ ľ 2
x` ľ 2

y` ľ 2
z ´‖g‖2“ 0

fg yr “ ľ 2
x` ľ 2

y` ľ 2
z ´‖ωi e‖2“ 0

(4.11)

The combination of the previous two equations results in the calibration model f with the

observations l , the residuals v , and the parameters (bias, scale-factor, and non-orthogonality)
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assembled in the vector x

f pl´v , xq“ 0. (4.12)

The linearization of Equation 4.12 around the initial parameter x̊ with its incremental parame-

ter vector δx gives:

f pl´v , x̊`δxq“ 0

f pl , x̊q ´
B f pl , xq

Bl

ˇ

ˇ

ˇ

ˇ

ˇ

l ,x̊

¨v `
B f pl , xq

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

l ,x̊

¨δx “ 0

w ´B ¨v `A ¨δx “ 0

(4.13)

This functional relationship is called Gauss-Helmert model [Merminod, Septembre, 2018] with

the two design matrices A and B . w represents the misclosure vector, components of which

are depending on the measurements l and the first guess of the parameter vector. The goal is

to satisfy the following relation in a LS adjustment:

B v´ Aδx´w “ 0 (4.14)

The parameter vector x̂ is calculated, by incrementally adding the estimated correction vector

δx̂ to the initial estimate x̊ as

x̂ “ x̊`δx̂ , (4.15)

where the correction vector is calculated as

δx̂ “´N´1 AT C´1w , (4.16)

with

C “B P´1B T , (4.17)

and normal matrix as

N “ AT C´1 A. (4.18)

The matrix P is the weight given to the measurements. The standard deviation σ for the

different observations is considered constantly and equal for each axis and can be taken from

the datasheet (noise levels):

P “
1

σ2 I3nˆ3n , (4.19)
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where n represents the number of readings taken at different attitudes. As observations are

averaged, their Power Spectral Density (PSD) noise level theoretically decreases with
?

n. The

cofactor matrix Qx x of the unknown parameters is useful to establish the correlation matrix

between these parameters and is obtained from

Qx x “N´1. (4.20)

The vector of residuals is estimated from

ê “P´1B T C´1pAδx̂`wq. (4.21)

The estimated variance for each parameter component σ̂2
x is based on the estimated a posteri-

ori variance:

σ̂2
x “ êT P ê, (4.22)

from the dispersion matrix D , which gives the uncertainty on the estimated parameter vector

x̂ as

D “ σ̂2
xQx x . (4.23)

4.3.1 Accelerometer

The local gravity g serves as a reference for the calibration of the accelerometers, when the

IMU is in a fixed position and thus not experiencing other external forces. By orienting the

sensor into different attitudes, the signal strength per axis varies accordingly, which allows to

decouple the parameters.

In order to facilitate the task of acquiring data, a specific support was created (see Figure 4.1).

It is composed of an aluminum body with 2 independent turnable axes. The increments for a

fixed rotation is set to 15° per step. Note that the use of the multi-position-calibration scheme

does not require perfect alignment between the IMU and this support, nor the exact change in

orientation. Thus, the angular increments are only approximate and their perfect knowledge is

not needed for the calibration procedure. For the same reason, the table on which the device

is mounted, does not need to be perfectly leveled either.

The order in which the readings from different attitudes are recorded does not matter, however,

their distribution is important. The following procedure is proposed that assures that the

measurements from each axis can be put in relation with at least one other axis:

(1) set the x-y-plane approximately horizontal with the z-axis pointing upwards,
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(2) average a measurement for 30 s,

(3) rotate the IMU by 30° along the y-axis and take another measurement,

(4) repeat the rotations and measurements along the y-axis until 360° are reached,

(5) rotate the IMU by 30° along the x-axis and take another measurement,

(6) repeat the measurements at 30° steps along the x-axis until 360° are reached,

(7) rotate the IMU such that the y-z-plane is horizontal with the x-axis pointing upwards,

(8) rotate the IMU by 30° along the z-axis and take another measurement,

(9) repeat the measurements at 30° steps along the z-axis until 360° are reached.

This procedure for the rotation around the different axis is visualized in Figure 4.2. Here again,

a perfect alignment is not necessary, as only the norm of the measurements is needed for the

calibration.

If several intermediate attitudes are missed, the multi-position-calibration will not be able

to decorrelate the different parameters to be estimated. In this case, the correlation matrix

is badly shaped. This is shown in the left part of Figure 4.3, where the three biases bx , by ,

and bz are sufficiently decorellated from the other parameters, whereas the scale-factors and

the non-orthogonalities remain correlated. Only the full set of the different attitudes leads

axis 1

axis 2

Figure 4.1: Aluminum support (310 mmˆ220 mmˆ180 mm) for the sensor board. Two inde-
pendent axes (axis 1 and 2) allow for free rotation with increments of 15° (see Appendix E).
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to sufficient decorrelation of the parameters. This scenario is represented in the right part of

Figure 4.3.

A typical dataset with the raw measurements is shown in Figure 4.4. The calibration procedure

can be followed step-by-step. One can see how the x-axis was almost leveled and how the
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Figure 4.2: Side view of the IMU for the calibration procedure. A total of 12 rotations of 30°
around a specific axis are presented. This sums up to a total of 36 different measurement
attitudes.
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rotation was executed around this axis, as the y and the z-axis undergo a full rotation and hence

sense the local gravity once in a positive sense, and once in a negative sens. The subsequent

rotations around the y-axis as well as the z-axis are nicely visible too. The norm of the acquired

signal is shown in the bottom part of Figure 4.4. The deviations from the local gravity are

significant and easily visible for the non-calibrated signal. The different changes in the norm

of the signal are a function of the attitudes, as every axis contributes with its own properties

(i.e., bias, scale-factor and non-orthogonality).

The calibration results for one IMU are shown in Table 4.1. The results from bad (insufficient)

configuration are associated with a correlation matrix as the one shown in the left Figure 4.3,

whereas the good calibration results are associated to the case, where the correlation matrix is

almost the identity matrix (e.g., Figure 4.3 right).

If not enough different attitudes are available, the algorithm will have difficulties to correctly

estimate the parameters. In other words, accumulating more measurements of the same

attitude does not lead to a better parameter estimation. One option to circumvent this

problem, is to decrease the number of unknowns (i.e., the number parameters to estimate).

This is applicable if some set of parameters is constant in time (e.g., non-orthogonalies or

possibly also scale-factors) and therefore is determined once for all (e.g., in lab), while others

change per switch-on (e.g., biases). Indeed, such an approach will be adopted later for the

Unmanned Aerial Vehicle (UAV) pre-flight calibration. Then, instead of estimating the full set,

one can choose to calibrate a subset of the parameters. Although the number of measurements

stays the same, the decreased complexity of the matrices A and B in the calibration model

allows to estimate the reduced parameter vector from less variations of attitude. We will
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Figure 4.3: Left: badly shaped correlation matrix for the scale-factors and the non-
orthogonalities. Right: the parameters are decorrelated sufficiently due to a sufficient number
of different attitude measurements.
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Table 4.1: Full calibration result for a Navchip IMU accelerometer. The right amount and
distribution of the attitudes is required to estimate the parameters.

insufficient configuration optimal configuration

parameter value std value std

bx [m/s2] -5.91e-2 9.70e-5 -6.52e-2 1.43e-4

by [m/s2] 2.08e-1 1.26e-4 2.12e-1 1.36e-4

bz [m/s2] -3.58e-2 5.00e-5 -2.92e-2 1.58e-4

Sx [-] 2.36e-3 1.83e-4 -3.45e-4 1.73e-5

Sy [-] -2.02e-3 8.37e-5 -3.21e-4 1.60e-5

Sz [-] -1.18e-3 5.97e-6 -1.22e-3 1.94e-5

θy z [rad] 4.54e-2 2.20e-3 -7.05e-4 4.05e-5

θzx [rad] -1.52e-5 2.10e-5 -3.70e-4 4.36e-5

θz y [rad] 6.40e-4 7.16e-5 -9.04e-4 4.11e-5

distinguish between these three calibration cases:

(a) the full model consists of all 9 parameters: bias, scale-factor, and non-orthogonality for
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Figure 4.4: Top: shows the raw data from the IMU used for the calibration. Bottom: shows the
norm of the uncalibrated data, the norm of the calibrated data, and the reference value (i.e.,
local gravity).
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4.3. Multi-Position Calibration

Table 4.2: Evolution of the estimated parameters for different calibration models.

full model reduced model minimal model

parameter value std value std value std

bx [m/s2] -5.91e-2 9.70e-5 -5.87e-2 1.03e-4 -5.81e-2 9.98e-5

by [m/s2] 2.08e-1 1.26e-4 2.09e-1 1.27e-4 2.09e-1 1.27e-4

bz [m/s2] -3.58e-2 5.00e-5 -3.41e-2 5.62e-5 -3.41e-2 5.62e-5

Sx [-] 2.36e-3 1.83e-4 - - - -

Sy [-] -2.02e-3 8.37e-5 - - - -

Sz [-] -1.18e-3 5.97e-6 - - - -

θy z [rad] 4.54e-2 2.20e-3 6.33e-3 2.23e-4 - -

θzx [rad] -1.52e-5 2.10e-5 1.35e-4 2.13e-5 - -

θz y [rad] 6.40e-4 7.16e-5 -3.12e-4 1.91e-5 - -

each axis;

(b) the reduced model consists of 6 parameters: bias and non-orthogonality for each axis;

(c) the minimal model consists of 3 parameters: only the bias for each axis.

According to the needs, the two design matrix A and B are adapted to the new calibration

model. The result of the estimated parameters is shown in Table 4.2 with their respective cor-

relation matrix in Figure 4.5. By reducing the model, the errors or mismatches are distributed

on the retained parameters. The estimation will find the optimal solution in the sense of LS.

4.3.2 Gyroscope

When the IMU is stationary, the gyroscope senses only the rotation rate of the Earth and

this value can be used as the reference. As with the accelerometers, different orientations of

the gyroscope sensitive axis with relation to the local level frame lead to different amounts

of the Earth’s rotation rate sensed. The problem with this approach is twofold. First, the

excitation of the gyroscopes is limited to the very weak Earth rotation rate. This compared

to the rotational dynamics of a vehicle or a drone (i.e., rotation rates of several degrees per

second) is insignificant. Hence, in order to correctly estimate the scale-factor parameters, a

significantly stronger signal is required. Secondly, the amount of noise present in sensors of

lower quality (i.e., consumer MEMS sensors) is likely to be too high to distinguish between the

reference signal and noise, as the Earth’s rotation is buried in the latter.

A stronger reference signal can be obtained by using a rotation table as that shown in Figure 4.6.

This one-axis table is capable to change orientation with a precision of 1 arcsec (0.00028°) and
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Chapter 4. Deterministic Errors

a set angular speed with precision better than 0.00004% of its value up to a rotation rate of

360 °{s (see Appendix F). The rotation table has a 40 cm large plate, on which equipment can

be mounted. It posses a mechanism with which data and power can be transported from the

rotating table to the static base. By this means, power up to 24 V and 1 A can be supplied to

the equipment if necessary.

For our case, the IMU mount from Figure 4.1 is directly fixed on this rotation table. The

interface is compatible to either hold an external battery, or to be supplied via the base of

the rotation table. Figure 4.6 shows the final setup with the protective cage around it. The

gyroscopes are excited with different rotation rates. Here, the rates of 3 °{s, 30 °{s, and 300 °{s

are chosen. The different axis are exited, by turning the mounted IMU in different orientations

with relation to the calibration table. As each axis is completely flipped during the calibration

procedure, there is no need to set negative reference rotation rates.

As opposed to the calibration for the accelerometers (i.e., only one single acceleration value),

the calibration of the gyroscopes is possible with a multitude of reference rotation rates. This

allows to relax the number of different attitudes and thus the required number of different

excitations on each axis. As with the case of the accelerometer calibration, the absolute

orientations do not have to be precisely set, as the calibration input is the absolute rotation

value of the reference signal (i.e. speed of the rotation table). The following procedure is

considered for the gyroscope calibration by notating arbitrary the 6 faces of the IMU by letters

A through F and the 8 corners of the IMU by the letters A’ through H’:

(1) point the first face A upwards,
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Figure 4.5: Evolution of the correlation matrix by reducing the parameter number. The same
dataset is used as for Figure 4.3. Left: bias and non-orthogonality are estimated. Right: only
bias parameters for each axis are estimated.
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4.3. Multi-Position Calibration

(2) set the rotation speed to 3 °{s and measure for 10 s,

(3) set the rotation speed to 30 °{s and measure for 10 s,

(4) set the rotation speed to 300 °{s and measure for 10 s,

(5) repeat points (1) though (4) for the remaining faces B, C, D, E, and F, by pointing them

upwards as well one after the other,

(6) point the first corner A’ upwards, such that the 3 faces emerging into corner A’ represent a

pyramidal shape,

(7) set the rotation speed to 3 °{s and measure for 10 s,

(8) set the rotation speed to 30 °{s and measure for 10 s,

(9) set the rotation speed to 300 °{s and measure for 10 s,

(10) repeat points (6) though (9) for the remaining corners B’, C’, D’, E’, F’, G’ and H’ by pointing

them upwards one after the other.

A typical dataset of 42 measurements (14 different spacial orientations with each three different

rotation speeds) for the in-lab gyroscope calibration is represented in Figure 4.7. The lower

Figure 4.6: IMU installed on the one-axis high-precision rotation table (Appendix F).
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Table 4.3: Calibration result for a Navchip IMU gyroscope.

parameter value std

bx [rad/s] -1.09e-4 5.05e-5

by [rad/s] 3.25e-3 5.19e-5

bz [rad/s] 3.28e-5 3.94e-5

Sx [-] -7.84e-4 2.27e-5

Sy [-] -2.97e-3 2.40e-5

Sz [-] -7.31e-5 1.71e-5

θy z [rad] 1.85e-3 4.55e-5

θzx [rad] -1.63e-3 3.26e-5

θz y [rad] 1.49e-3 3.26e-5

part of this figure shows a zoom on the peak values of 300 °{s. There is clearly a difference

between the measured norm and the reference signal. This calibration procedure decorrelates

the estimated parameters sufficiently. As with the case of the accelerometers, the order of the

measurements is not important. The value of the estimated parameters for the dataset shown

in Figure 4.7 is presented in Table 4.3.
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Figure 4.7: Top: measurements of the three axis for different rotation speeds and attitudes.
Bottom: Zoom on the norm of the rotation rate around 300 °{s.
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4.3.3 Stability Over Time of Estimated Parameters

The stability of the estimated parameters between independent measurements is analyzed on

ten full calibration datasets. The measurements are all collected under the same conditions.

The datasets 1 through 6 were acquired on the first day, whereas the datasets 7 through 10 were

acquired on the second day. The 10 estimated parameter sets for one axis of the accelerometer

are presented in Figure 4.8. The amount of the bias changes between the two days, whereas the

observed variations in the scale-factor and the non-orthogonality terms corresponds to their

2σ confidence interval. A similar pattern is observed for the different axis of the accelerometer

and the gyroscope.

Therefore, scale-factor and the non-orthogonality present some stability over the time. Apart

from the temperature change, the mechanical mounting inside the housing of the IMU will

have an influence especially on the alignment between the axis. This alignment (compensated

via the three non-orthogonality parameters between the axis) can be considered as time

invariant. The same is considered for the scale-factor. Hence, 6 parameters can be considered

as constants for a specific IMU and its axis. As the switch-on-switch-off-bias is the part that

evolves the most over different datasets it is recommended to be re-calibrated every time the

sensor is switched on.

The estimation of the full model (accelerometers or the gyroscopes) requires a considerable

amount of attitudes and external equipment. However, if only a subset of the calibration

parameters is to be estimated, then the amount of orientations is lower to be practicable in

the field. Hence, precalibrating the IMU for the scale-factors and the non-orthogonalities

leaves the three biases, which can be estimated (as the minimal calibration model) with only 6

different attitudes. This presents a huge advantage practically, as this calibration procedure

can be used in the field with small UAV, without special equipment.

The same procedure may be considered for the gyroscopes. The gyroscope triad is precali-

brated for all 9 parameters while the 3 biases are considered time-varying. If low-cost MEMS

sensors with a bias stabilityą20 °{h are used, then the Earth’s rotation rate can not be sensed.

For sensors considered here, the in-run bias stability is specified as 18 °{h, while the switch-on

bias is at a level of hundred °{h or larger. In such case taking the mean-offset from the zero as

the bias replaces the calibration. This idea is further explained with it’s implementation in the

software in Chapter 6 and a typical full calibration result is shown in Appendix G again with its

2σ bound representing the uncertainty.

63



Chapter 4. Deterministic Errors

4.4 Dynamic Calibration Scheme

The disadvantage with the previously described calibration procedure for the gyroscope is its

dependency on a high-precision calibration table to generate the reference signal. Another

possibility to obtain a reference signal for the gyroscope calibration is to use another IMU. In

fact, any (more) precise IMU than the one that needs calibration can be used. Figure 4.9 shows
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Figure 4.8: Variations of accelerometer calibration in time for the navchip x axis and its 2σ
bound.
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a setup, where a tactical grade IMU (IMAR-FSAS see C.1) is rigidly connected to the MEMS

IMU (Navchip). This setup allows to rotate both IMUs in a same way. The rigid construction

allows for a correct measurement of the rotation rate, as long as the acquired observations are

referred to the same time. Both IMUs should have also same or similar sampling rate, that is

sufficient for the induced rotations (up to 200 °{s).

The principle for this calibration procedure follows a similar idea as with the rotation table:

the norm of the reference IMU gyroscope readings is used as the condition in the Gauss-

Helmert model. However, instead of having only a couple of different reference values (i.e.,

3 °{s, 30 °{s, and 300 °{s) at a limited number of attitudes, a whole vector with a discrete set

of norms is generated. The dataset is acquired by swinging first the IMUs around each axis

individually, then around a combination of several axis. A typical signal set acquired by the

IMU is represented in Figure 4.10.

The calibration is only as good as the reference IMU. If the reference signal is biased, this error

will be projected on to the supposedly calibrated IMU. The procedure itself is tested here

with a emulated dataset. The dataset takes the raw measurements of the swinging IMAR and

adds on it the 9 parameters, which are to be estimated. In addition, a white noise component

of 0.001 rad{s amplitude is added to all the axis. This is done to simulate a lower grade IMU,

which has increased stochastic noise properties. Indeed, this noise level is a typical value

for the Navchip IMU, which can also be found in Section C.3. The result of the calibration

Figure 4.9: The 41 cm by 31 cm mount holds the IMAR and the Navchip senors. The handles
allow for easy grip and save manual swinging of the setup with the power and data cables
leaving the platform.
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Table 4.4: Calibration result for a gyroscope with emulated data based on typical error values.

parameter simulated value estimated value estimated std

bx [rad/s] -3.60e-4 -3.28e-4 1.99e-5

by [rad/s] 1.96e-3 1.95e-3 2.03e-5

bz [rad/s] -2.45e-4 -2.56e-4 1.89e-5

Sx [-] -3.02e-3 -3.02e-3 1.36e-5

Sy [-] -3.19e-3 -3.18e-3 1.31e-5

Sz [-] 3.57e-4 3.69e-4 1.25e-5

θy z [rad] 1.58e-4 1.23e-4 1.96e-5

θzx [rad] -1.27e-3 -1.29e-3 1.75e-5

θz y [rad] 1.34e-3 1.32e-3 1.77e-5

considering the full model is summarized in Table 4.4. It shows, how the parameters can be

correctly recovered and how this system can be used to calibrate an IMU without the need of

the rotation table.
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Figure 4.10: Top: Gyroscope measurements for each axis. First, individual axis are excited, then
there is a mix of the rotation about different axis. Bottom: The accelerometer measurements
are acquired by linearly shaking the setup, which is visible by the peaks.
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4.5 Magnetometer

4.5.1 Problem Statement

An ideal magnetometer measures the strength of the total magnetic field and its direction m̌.

The magnetic field of the Earth is subject to distortions due to many sources. The hard iron bias

expressed by the 3ˆ1 vector bh is due to a nearby magnetic source (e.g., UAV motor magnets).

It shifts the magnetometer measurement by a constant amount in one direction. In contrast,

the soft iron distortion, expressed by the 3ˆ3 matrix Rs , affects the measurements irregularly

depending on the orientation of the sensor. This kind of distortion is due to ferromagnetic

materials and their interaction with the magnetic field. Sensor axis non-orthogonality N , scale-

factors S, and sensor offsets bo can be considered too. An example is shown in Figure 4.11,

where the unit sphere at the centre represents the calibrated readings, while the spheroid

results from the combined effect of the previously mentioned influences as

m“Rs ¨S ¨Npm̌`bhq`bo`ε, (4.24)

with ε representing a Gaussian white noise N p0,σ2q. A translation by b plus a total transfor-

mation by the 3ˆ3 matrix R describes this shifted ellipsoid as:

m“R ¨m̌`b`ε. (4.25)

The transformation matrix and bias are combined as:

R “Rs ¨S ¨N

b“Rs ¨S ¨N ¨bh`bo .
(4.26)
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Figure 4.11: Calibrated magnetometer readings are centered on a unit sphere, whereas the
uncalibrated measurements are shifted and scaled.
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The calibration of the magnetometer in its environment can be achieved by different means.

One example is the so called compass swinging explained by [Bowditch, 1984] and [Gebre-

Egziabher et al., 2006]. Here, only the horizontal component of the Earth’s magnetic field

is considered. The heading with respect to the magnetic north is measured. This value is

then directly compared to a reference. Several measurements are taken by swinging the

magnetometer through different headings and a correction is determined by means of the

reference. The drawbacks of this method are twofold. First, the error corrections of the heading

depend on the total magnetic field, which is a function of a location. So the calibration has to

be redone when moving. The other drawback consists of the need to level the magnetometer

prior calibration and this is done through extra sensors such as an accelerometer.

Another approach focuses on the minimization of the difference between the magnitude of the

observed magnetic field and the magnitude of the local Earth magnetic field via a Maximum

Likelihood Estimator (MLE) [Alonso and Shuster, 2003]. It was shown that such "scalar value

approach" is highly dependent on the initial values and can converge to wrong parameters.

The utilization of the vector measurements is some what better, yet still sensitive to the

goodness of the initialization [Wu and Shi, 2015; Vasconcelos et al., 2011]. Those approaches

try to best fit the measurements to the ellipsoid. [Kok et al., 2012] goes one step further and

calibrates the alignment between the magnetometer and the IMU at the same time, by taking

the accelerometer measurements into account.

Another approach consists of fitting the measurements not via the MLE but geometrically, for

instance utilizing Singular-Value Decomposition (SVD) and the properties that relay a sphere

to the ellipse [Renaudin et al., 2010; Vasconcelos et al., 2011]. Such method is adapted as

follows.

4.5.2 Transformation of Ellipse to a Sphere

The goal of calibration is to invert the Equation 4.25 to recover the ideal measurements m̌,

which are represented by a centered sphere with a radius of the intensity of the magnetic field:

m̌“R´1pm´bq. (4.27)

The LS approach is used here. For this, the 3-axis ellipsoid is expressed in its quadratic form:

ax2`by2` cz2`2d x y`2exz`2 f y z`2g x`2hy`2i z “ 1. (4.28)

The parameters x̂ “ ra,b,c,d ,e, f , g ,h, i sT are estimated from the i th sensor readings xi , yi ,

and zi . The system with the N measurements, the design matrix H , the residual v , and the
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parameters in x are written as

z´v “H ¨x
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(4.29)

With the same weight for all the measurements the solution to the LS problem is

x̂ “
`

H T H
˘´1

HT z. (4.30)

The parameters in x̂ are then used to recompute the matrix R , respectively the inverse R´1

and the translation vector b of the ellipsoid as in Equation 4.27 [Vasconcelos et al., 2011]. A

typical result is shown in Figure 4.12. The uncalibrated magnetometer dataset is composed

of full revolutions of the sensor around all its axes. A complete ellipse can be described and

the parameters can be estimated. A rotation and translation leads then to the centered unit

sphere.

This full dataset represents an optimal acquisition from the laboratory. In reality, this calibra-

tion will be performed on the field, on the location where the sensor will be used. A real-time

implementation is required for the usage with a feedback mentioning a complete calibration.

A typical in-field calibration is represented in Figure 4.13, where the distribution of the data

points does not follow patterns around the sphere. They are more randomly clustered, as the

calibration is done by hand without an apriori any indicator for completeness.

In fact, the problem comes from the quadratic form of equation 4.28, which is used to describe

the ellipsoid. Under certain circumstances, the same equation is used to describe other

surfaces, such as hyperboloids or paraboloids. If the parameter determination is done in

real-time, with pieces of data coming in periodically, attention has to be paid not to converge

too early to a local optimum, which could correspond to another quadratic surface (i.e., not

the ellipsoid).

To avoid such situation, two indicators are employed. The first indicator represents the data
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coverage of the sphere. In fact, the total surface of the sphere is divided into 100 equally

distributed small surface areas. If a measurement falls into the area delimited by such a

bin, then this bin will be assumed as complete. The only data considered are the data from

different bins acquired during movement. This lightens the computation while improving

the observability of the parameter vector x̂ . The nearby mounted IMU is used to distinguish

between the moving and the static states with some empirical threshold on the IMU data. The

acquisition goes on as long as the minimum number of required bins is not filled.

Figure 4.12: Left: raw magnetometer data as ellipse and arbitrary units. Right: calibrated
magnetometer data as a centered unit sphere. Data was acquired in perfect lab conditions.

Figure 4.13: Left: raw magnetometer data as ellipse and arbitrary units. Right: calibrated
magnetometer data as a centered unit sphere. Data acquired by hand on the field. Big holes in
the dataset can be seen.
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The second indicator is the variation of the norm of the calibrated data that should lie around

the value of the radius of the sphere, which equals the value one. This distribution is an

indicator of how close the mapped data are to the sphere. These two indicators and their

evolution of a dataset acquired in-field conditions is shown in Figure 4.14. In fact, the first

estimation of the parameters is carried out after 30 packets, where one packet corresponds to

one second of data acquired at 125 Hz. Subsequent estimations are executed every 10 packets.

This procedure is repeated until both criteria are met. The sphere coverage threshold is set

to 65% whereas the threshold for the standard deviation from the norm is set to 0.05. Both

indicators highly depend on the distribution of the data. Several jumps in these indicators can

be observed when the estimation leads to a new set of parameters for the sphere.

4.6 Barometer

4.6.1 Problem Statement

The Equation 2.19shows the basic relations to calculate the height difference δH from observ-

ing the pressures p0 and pi , with the molar mass M , and the temperature T provided by a

model. Figure 4.15 shows so determined barometric differences in altitude during a UAV flight

together with the differences to the reference. Humid air is assumed. As seen in the bottom of

the figure, the barometric solution drifts away with relation to the reference provided by the

Global Navigation Satellite System (GNSS) carrier-phase differential height, which grows with
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Figure 4.14: Top: evolution of the standard deviation from the norm (equals 1) of the datapoints
with a threshold set to 0.05. Bottom: evolution of the sphere coverage with a threshold of 65%.
Both conditions are met around the 300th receiver packet of data. One packet consists in this
case of 1 s of data.

71



Chapter 4. Deterministic Errors

increasing height.

The reasons for the increasing drifts are mainly twofold:

1. Wrong guess (model) of the molar mass of the humid air,

2. Imprecise measurements of the temperature and the pressure due to the hardware

limitations.

The barometer used in the setup is a small MEMS device as explained in Appendix C.5. Al-

though the sensor provides temperature and pressure measurements, however the fact that it

is mounted inside the bay of the UAV drone does not reflect the temperature of the air. During

the preparation on the ground before takeoff, all the sensors are running and producing

heat, the temperature T rises by more than 10 ˝C above the ambient air temperature. The

direct usage of the temperature measurement from the sensor is thus not reliable and without

compensation introduces errors of several meters.

Similar problems exist with the pressure data. In fact, the provided pressure data is internally

compensated by the measured temperature. In other words, wrong measurement of the

temperature leads to a wrong internal scaling of the the pressure. This is problematic, as the

reference pressure p0 comes directly from the barometer, as additional equipment to measure

this quantity is unavailable.

After take-off, air is pushed by the engine through holes in the fuselage of the drone to cool

the engine controller and indirectly also the additional hardware. Due to this airflow, the
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Figure 4.15: The upper plot shows the absolute reference height, whereas the lower plot shows
the difference in height between the reference and the converted barometric height measure-
ments. The error grows with increasing heights. Typical values for pressure, temperature, and
humidity were used for the conversion.
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measured temperature inside the drone approaches the external ambient air temperature

0and thus the pressure readings pi are correctly scaled. Such ’stabilization’ occurs within

minutes after take-off.

The exact molar mass M of the air is also unknown, as no additional equipment is available to

observe this quantity directly and reliably on the field. The humidity in the air influences the

modeled value and thus the height estimation via the Equation 2.19 by several meters (see

Table 2.4).

4.6.2 Parameter Calibration via EKF

Instead of relying in these wrongly measured parameters p0 and T as well as the immeasurable

parameter M , an o-line calibration of these quantities is proposed, employing the initial height

measurement h0 and the subsequent height measurements during the flight hi from the GNSS-

receiver. The ratio of the temperate and the molar mass is combined in a single new parameter

k “M{T .

The parameters to be estimated are assembled in an augmented state vector:

x “ r∆h k p0s
T , (4.31)

noting that ∆h is already a part of the usual state vector. The height hI N S is traditionally

calculated from the INS or some other dynamic model. The measurement update is usually

expressed as

z “ hpxq` v. (4.32)

Linearisation around the current state x̃ and rearranging results in the KF observation

z´hpx̃q“

„

Bh

Bx



x̃
∆x` v. (4.33)

If a GNSS measurement hGN SS is available, then a KF-observation can directly be calculated

as

zGN SS “ hGN SS´hI N S , (4.34)

with the measurement matrix HGN SS “ r1 0 0s. If a barometer measurement pbar o is

available, then the KF-observation is rewritten as

zbar o “ pbar o´p I N S , (4.35)
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Chapter 4. Deterministic Errors

where p I N S is the pressure and expressed as a function of the to be estimated parameters p0

and k, the calculated height hI N S as well as the other quantities h0, R, and g , which are fixed

and known. They are related via

p I N S “ p0 exp

ˆ

´kg

R
phI N S´h0q

˙

. (4.36)

The measurement matrix is computed from Hbar o “ r
Bp I N S

BhI N S

Bp I N S

Bk
Bp I N S

Bp0
swith

Bp I N S

BhI N S
“
´kg

R
¨p I N S

Bp I N S

Bk
“
´g

R
phI N S´h0q ¨p I N S

Bp I N S

Bp0
“

p I N S

p0

(4.37)

Current estimates are used to calculated the H matrix whenever updates are available. The

process models are incorporated with 9c “ 0, meaning that this parameter does not change in

time (i.e., the humidity and the temperature does not change, which is reasonable for UAV

applications with a typical duration of 20 min). The initial quantity can be calculated from

standard atmospheric values such as cp0q“ M
T .

The process model for the reference pressure is stated as 9p0“ 0. Here again, the change in

time is negligible, as the pressure is assumed constant for the short time of the UAV mission. It

is initialized by simply taking the first pressure reading from the barometer p0p0q“ pbar op0q.

The Figure 4.16 shows the results of the continuous estimation of the two parameters. The

drone flies at roughly 200 m height. The parameters p0 and k are estimated during the climbing

and stabilize once the drone remains at the same altitude (i.e., additional measurements do

not change the estimation of the parameters).

The newly calculated parameters of the state vector x̂ serve as values in the conversion from

pressure to altitude, until a next set is estimated. The longer the flight is, the smaller the error

becomes. The GNSS code measurements are noisy and have an offset compared to the Post

Processed Kinematic (PPK) solution, which is smooth. The barometer is able to compensate

such noise and bridge the outages in GNSS signal reception practically with very high accuracy

(ă1 m).
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Figure 4.16: The first plot shows the evolution of the absolute altitude. The second and third
plot show the estimated parameters p0 and k and their evolution through the GNSS code-
measurements. They evolve, when the altitude is changed until they reach a plateau. The
fourth plot shows firstly the difference between the barometer solution and the reference, and
secondly the difference between the GNSS code solution and the reference. The reference is
the GNSS PPK solution.
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5 Stochastic Parameters with Time De-

pendency

5.1 Introduction

The factory calibration determines (and compensates for) the variation of basic model pa-

rameters as bias b or scale-factor S with respect to temperature or dynamic cycling over a

given period of time [Titterton and Weston, 2004]. Although these conditions are adequately

addressed when dealing with the deterministic errors (i.e., the bias changes as a function of the

temperature, which is taken into consideration when dealing with the sensor measurements),

this is unfortunately not the case for the stochastic properties of the error measurements. In-

deed, the complex models underlying the stochastic errors are affected by the varying external

conditions which modify the parameter values of the error state-space model through time.

This fact has not been rigorously addressed so far. This motivates proposing an extension to

the Generalized Method of Wavelet Moments (GMWM) estimator to determine the variation of

stochastic parameters adequately as a function of such external co-variate (e.g., temperature,

pressure).

This chapter will in a first part refresh the stochastic parameters and the GMWM estimator, to

pass on to the extension, which takes into account an external co-variate. The mathematical

properties of the estimator are briefly presented. The mathematical proof is being edited

and will be submitted in spring 20191. Part of this chapter is based on this manuscript in

preparation. Two case-studies are considered. In the first case, we analyze the evolution of the

stochastic properties as a function of the temperature. This is realized by placing the sensor on

a flat surface inside a thermal chamber temperature of which is modified over a long period of

time. The variations of the sensor signal output are studied (after subtracting its mean) as a

function of the temperature.

1Estimation of Inertial Sensor Stochastic Characteristics under Varying Environmental Conditions, IEEE Trans-
actions on Signal Processing
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In the second case, we analyze the evolution of the stochastic properties of a sensor subject to

motion dynamics. There, the sensor is placed on a high precision rotation table and spun at

different rotational speeds. Then, variations from the reference are studied as a function of

turn-rate.

The information from the stochastic calibration of the sensors is fed directly to the Kalman

filter, which will allow for an optimized solution in the sense of uncertainty (i.e., not too

optimistic and not too pessimistic). We will demonstrate the impact of covariate-dependent

stochastic models (and their omission) on the estimation of trajectory parameters in the later

Chapter 7.

5.2 Model Description

The determined parameters of the stochastic noise of a sensor evolve in time due to ex-

ternal/environmental influences, they do not necessarily correspond to those found in the

controlled environment, which is provided by a datasheet. An influence can be the tempera-

ture or the physical motion of the device. Other influences such as pressure, or humidity are

possible too and depend on the typology of the sensor used. Although part of these conditions

is adequately addressed when dealing with the deterministic errors (e.g., a sensor in a heating

chamber observes a constant signal and the temperature-dependent deterministic calibration

model then forces the signal back to such a constant), this is unfortunately not the case for the

stochastic characterization.

We let pYt , X t : t ě 1q denote the real-valued bi-variate stochastic process we wish to study

with t the indexed time-stamps defined in r1,T s. The processes pYt q and pX t q correspond,

respectively, to the process of interest (e.g., signal of an inertial sensor) and an explanatory

covariate (e.g., temperature); they are referred to as the signal and the covariate from hereafter.

The covariate is believed to have an “impact” on the signal, it is formalized by the following

regression model

Yt “ f pX t q`Zt , t “ 1, . . . ,T, (5.1)

where the error process Zt (the error from hereafter) is a zero-mean process, i.e. ErZt |X t s “ 0,

and f is an unknown real-valued smooth function (see [Hastie and Tibshirani, 1990]). More

specifically, the error is modelled as a finite sum of independent latent processes. Attention is

restricted to error processes that have the following form

Zt “Wt `Qt `

d
ÿ

i“1

At ,i , d ă8, (5.2)
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where Wt is a white noise process (WN), Qt is a quantization noise process (QN), and At

represents a first order auto-regressive process (AR1). In the context of inertial sensor cali-

bration, each of these latent processes has a physical meaning [Titterton and Weston, 2004].

Although the same model is sometimes considered in various applications (see for example

the model considered in [Nikolic et al., 2016]), there are a variety of latent models that are

preferred to characterize the stochastic error of inertial sensors so that these have a state-space

representation.

5.3 Dynamic GMWM Estimator

Until now, the dataset was constructed from signal variations in static conditions, where the

sensor was placed at rest, and the measurements are taken for several hours. Hence, an entire

dataset would be used for a GMWM analysis by subtracting its mean. For a situation when

such conditions are no longer valid (e.g., leap-change in temperature or several different

rotation speeds) we define a total of K different bins k in the dataset with each a different

constant covariate ck . Different latent stochastic processes used for each bin k are defined as:

• White Noise (WN):

σ2
W N ,k “ f1pς1,ς2,ckq

“ exppς1`ς2 ¨ ckq
(5.3)

• Quantization Noise (QN):

σ2
QN ,k “ f2pκ1,κ2,ckq

“ exppκ1`κ2 ¨ ckq
(5.4)

• Auto-Regressive model of order one (AR1):

φAR1,k “ f3pϕ1,ϕ2,ckq

“ tanhpϕ1`ϕ2 ¨ ckq
(5.5)

σ2
AR1,k “ f4pυ1,υ2,ckq

“ exppυ1`υ2 ¨ ckq
(5.6)

The functions f1,2,3,4 are mapping functions that incorporate the covariate dependence of the

stochastic process. The choice to connect the noise parameters and the covariate ck via an

exp-function can be translated to a kind of linear relation on the log-log plot. This mapping

function can also be chosen differently. The choice for the tanh-function in Equation 5.5 is
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Chapter 5. Stochastic Parameters with Time Dependency

related to the fact that the parameter φ from the AR1 process has a definition domain between

´1 and 1. Hence, other functions fulfilling this requirement could be used as a mapping

function as well.

With these definitions we write, the new extended parameter vector θ taking into account WN,

QN, and AR1 to:

θE “ rς1 ς2 κ1 κ2 ϕ1 ϕ2 υ1 υ2s
T (5.7)

Here again, the empirical Wavelet Variance (WV) ν̂k over the K different bins have to match

with the theoretical WV νpθ,ckq of these bins, which is now a function of the measured

covariate ck . The estimator θ̂ is thus minimizing the following objective function, which is a

modified version of the GMWM estimator:

θ̂“ argmin
θPΘ

1

K

K
ÿ

k“1

∥∥∥∥ν̂k´νpθ,ckq

∥∥∥∥2

Ω̂k

, (5.8)

where Ω̂k is a weighting matrix of the k th bin. The formal discussion and the different proofs

of the estimator properties will be addressed in detail in the mentioned upcoming manuscript.

The proofs include the following properties:

• Identifiable: stating that if the result of one set of parameters leads to the same result as

another set of parameters, then these parameters have to be the same:

νpθ1q“νpθ2q iff θ1“ θ2. (5.9)

• Consistent: the estimator θ̂ is said to be consistent if it converges in probability and

with growing dataset size to the true θ0:

θ̂
p
ÝÑ θ0. (5.10)

• Asymptotically normal: stating that the distribution converges to a normal distribution

with growing dataset size :

?
T
`

θ̂´θ0
˘ p
ÝÑ

TÑ8
N p0,Σq . (5.11)
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5.4. Temperature

5.4 Temperature

This first case study will show how the dynamic-GMWM performs on a real dataset. The

chosen data was acquired from a non-moving Inertial Measurement Unit (IMU) placed in a

cooling/heating chamber2. Hence, the signal-change corresponds to errors, which nature

has deterministic and stochastic dependence on a (continuous) change of the temperature.

The temperature X t is observed and recorded at time t with an acquisition rate of 1 Hz. This

information is used in a first step to compensate for the bias variation f pX t q (according to

Equation 5.1). The determination of this function and its parameters is considered as the

deterministic sensor calibration for the temperature induced bias. Such a calibration step is

necessary, as pure raw data is recorded (i.e., no data calibration was performed beforehand).

The IMU sensor was installed in a closed heating/cooling unit. The temperature in this

chamber was set in a way that the starting temperature was 60 ˝C. The room was then cooled

down to´20 ˝C over a time-span of roughly 3 h (see Figure 5.1). The change of the temperature

is neither linear nor step-wise, but it is smooth and continuous.

The static data acquired during the temperate change consists of the three axes of a gyroscope

and the three axes of an accelerometer (an IMU-sensor-triad). The transition from a hot state

to a cold state, which corresponds to the temperature-changes is shown Figure 5.2 together

with the sensor uncompensated and not pre-calibrated raw-data. One can directly see two

things. First, the values of the mean signals change considerably in time with the change

of the temperature. Over the 80 ˝C temperature range the gyroscope bias evolves by more

than 8 mrad{s whereas the accelerometer bias evolves by more than 0.1 m{s2. Secondly, the

apparent change of the noise characteristics (quantity and amplitude) is visible in the left part

of Figure 5.2. The change in the noise-characteristics is clear from the shown amplitude.

2automotive grade IMU, data courtesy of Applanix
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Figure 5.1: The temperature changes smoothly from a hot state (60 ˝C) to a cold state (´20 ˝C)
in roughly 3 h.
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In order to compensate for the influence f pX t q of the temperature on the mean error-signals

(Equation 5.1), we employ a spline regression by taking as inputs the observed raw data

signal Yt and the measured temperature X t . Then we apply the fitted spline to the dataset in

order to compensate for the temperature change. This brings the mean error-signal back to

zero. Depending on the typology of the influence, it is possible to choose a simpler linear or

quadratic model to account for the temperature influence. The right part of Figure 5.2 shows

the resulting signal for a gyroscope as well as an accelerometer after application of the spline

regression. From now on we are working only on such residual signal Zt as introduced in

Equation 5.1 and further expanded in Equation 5.2. The analysis of such signal will be used in

the following for determining the noise characteristics as a function of the temperature.

Figure 5.3 shows the analysis WV plot of the residual z-axis accelerometer error signals for two

different temperatures. A total of 200’000 samples from the beginning and another 200’000

samples from the end of the dataset are considered. The mean temperature of the first sub-

sample is 57 ˝C whereas the second sub-sample has a mean temperature of around´19 ˝C.

The change of the noise characteristics is clearly visible in the first scales, which are determined

with the highest confidence. The WV at larger scales are determined with lower confidence.

Nevertheless, they continue to depict the general tendency of the change.

The applied model for the GMWM analysis is a sum of one AR1 plus a WN process. The

combination of these two noise-typologies becomes apparent when looking at the Figure 5.4. It
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Figure 5.2: Left: raw data of a gyroscope and an accelerometer. Right: temperature-calibrated
data where the temperature dependent bias is eliminated through splines regression.
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5.4. Temperature

shows the two model parameters which are determined by the GMWM and their combination

(final implied model) for a moderate temperature of 20 ˝C.

The optimization process according to the objective function Equation 5.8 is supplied with

derivatives of the defined model, parameters, and the initial values deducted from the bor-

der conditions of the data at hot and cold temperatures. The found parameters after the

optimization procedure are summarized in Table 5.1.

These estimated noise parameters are plotted in Figure 5.5 against the individual (manual) bin-
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Figure 5.3: The two WV overlaid noise characteristics for a hot state of 57 ˝C (orange) and the
cold state of´19 ˝C (blue) with their respective confidence intervals on the z-axis accelerome-
ter.
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Figure 5.4: Empirical and model implied WV of the z-axis accelerometer at 20 ˝C mean tem-
perature with the decomposition to AR1 and WN models.
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Table 5.1: Stochastic model parameters (WN, AR1) for a variable temperature estimated via
the optimization.

WN AR1

ς1 ς2 ϕ1 ϕ2 ε1 ε2

-11.68 6.71e-3 0.32 -2.53e-5 -9.21 3.88e-3

wise estimation of the very same model. The separately "per bin" estimated parameters follow

the global temperature dependent stochastic model nicely and stay within its confidence

interval (2σ). The optimization through the "dynamic GMWM" took a couple of seconds to

execute, whereas the bin-wise computation was long and took almost 1 h on the very same

computer to terminate.

As can be seen on Figure 5.5, the model parameters vary abruptly on the boundaries of the

data (i.e., at very hot temperature) and follow less the general estimated trend. Hence, using

these extreme boundary conditions for the initialization of the searched parameters could

lead to different results (i.e., local minimum). Moreover, the length of the used bins can be

modified/adapted as a function of the available data (e.g., slowly changing temperature over

time allows for longer bins, which leads to higher confidence of determined parameters.
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Figure 5.5: Straight line (trend): estimated stochastic parameters though the dynamic-GMWM
as a function of temperature; solid irregular line: bin-wise manually calculated parameters
with confidence interval of 2σ for the process parameters WN and AR1.
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5.5 Rotational Dynamics

The sensor used in this second experiment is the Micro-Electro-Mechanical System (MEMS)-

IMU with an angular random walk of 0.18 °{
?

h and an in-run bias instability of 10 °{h, which

is presented in Appendix C.3. The sensor board was mounted on a high-precision single-

axis rotation table from Actidyn (Figure 5.6). This rotation table is capable of orienting the

mounted equipment in any given direction from its origin with a precision of„0.0003°. The

rate precision is 0.00004 % of rate value, which is sufficient to precisely command all rotational

speed up to 1000 °{s (see Appendix F). As explained before, a good WV analysis requires a high

number of samples (Á 106). This table rotation speeds are stable. Thus a sufficient amount of

data can be gathered for the WV of each bin. The commanded values of rotation speeds serve

as a reference observable ck for the gyroscope, which sensitive axis is parallel to that of the

rotation table.

A dataset was collected containing a total of K “ 13 bins at rotation rates ranging from 30 °{s

up to 390 °{s with an equal spacing of 30 °{s (see Figure 5.7). Each bin k has a length of 40 min

with the IMU running at an acquisition frequency of 500 Hz. This amounts to a total of 15.6

millions data samples per one axis of the gyroscope.

A preliminary analysis is performed at the two extreme points k “ 1 where the rotation

Figure 5.6: MEMS-IMUs board mounted on the left with its power source as counterweight on
the right side of the rotation table, which has a mounting plate diameter of 40 cm.
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Table 5.2: Values of noise parameters. The units are expressed in the GMWM default repre-
sentation of variances. The exception is the WN, where the units were converted to be easily
comparable to the one from the datasheet.

Process Parameter Unit Datasheet
rotation rate

30 °{s
rotation rate

390 °{s

WN σ2
W N °{

?
h 0.18 0.146 0.439

QN σ2
QN prad{sq2 - 9.756e-06 2.220e-16

AR1#1
φAR1

σ2
AR1

-
prad{sq2

-
0.9998091
3.751e-12

0.9999607
2.923e-12

AR1#2
φAR1

σ2
AR1

-
prad{sq2

-
0.9939760
1.107e-10

0.9996113
9.573e-12

rate is 30 °{s and at k “ 13 with a rotation rate of 390 °{s. The WV is calculated from the

rotational error sequence and a suitable stochastic model is chosen. The model parameters

are estimated by the GMWM estimator. The top plot in Figure 5.8 shows how well the model

fits at low rotational speeds 30 °{s composed of WN, QN, and two AR1 processes within the

confidence interval of the WV, noting that the uncertainty of the latter grows with larger scales.

The WV signature is significantly different for the rotational speed of 390 °{s (middle plot of

Figure 5.8). The GMWM optimization is fed with the same model as for the 30 °{s rotation

speed. Nevertheless, the QN is completely absent as the slope of the WV at small scales

now resembles that of a WN. Hence, the WN process changed its strength while the value of

parameters for two AR1 processes (see Figure 5.8) moved slightly as well.

The bottom plot of Figure 5.8 illustrates both situations in a common perspective. The change

of the noise characteristic is visible, especially the absence of the QN on the orange plot (faster

rotation), respectively its change to WN. Table 5.2 resumes the found parameters by the

GMWM framework for these two rotational speeds. Each model is mentioned together with

that specified on the factory datasheet.
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Figure 5.7: Acquired reference rotation rates per bin with its duration.
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Figure 5.8: Gyroscope stochastic signature and models at minimal and maximal rotations. Top:
rotational speed of 30 °{s. Middle: rotational speed of 390 °{s. Bottom: WV of slow rotation
overlaid with WV of fast rotation rate.
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As can be seen from Table 5.2 and Figure 5.8, the stochastic parameters evolve considerably

with the dynamics, fact of which motivates the application of the "dynamic GMWM" estimator

from Equation 5.8 using the noise functional dependencies described in Equation 5.3 through

- Equation 5.6. This expanded GMWM estimation is then applied to the data using all bins. The

individual WV per bin are visualized in the top plot of Figure 5.9. The result of the optimization

provides the desired relation that is depicted in the bottom plot of Figure 5.9, where the

stochastic noise parameters are predicted as a function of dynamics. The transition from a mix

of the QN and WN processes at low rotational speeds to a state that is mostly dominated by

WN is depicted in Figure 5.9 as a color-transition from blue (slow rotational speed) to red (fast

rotational speed). The stochastic noise parameters found by the extended GMWM framework
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Figure 5.9: Top: Empirical WV per each bin from slow (in blue) up to fast (in red) rotational
speeds, which form the input to the extended GMWM framework. Bottom: predicted WV of
gyroscope noise with the estimated rotational dependent stochastic model (output from the
extended GMWM framework).

89



Chapter 5. Stochastic Parameters with Time Dependency

Table 5.3: Covariate (dynamics) dependency of stochastic parameters as estimated by the
extended GMWM optimization.

Noise Acronym Parameters Value

WN
ς1

ς2

´14.0893
0.4014

QN
κ1

κ2

´11.2795
´3.9025

AR1#1

ϕ1

ϕ2

υ1

υ2

4.5624
0.1260
´26.2883
´0.0398

AR1#2

ϕ1

ϕ2

υ1

υ2

2.7867
0.2186
´22.7203
´0.3902

are summarized in Table 5.3. These values can be employed in the functional relations from

Equation 5.3 through - Equation 5.6 to update the stochastic properties in the Kalman Filter

according to the actual dynamics.
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6 Implementation

6.1 Introduction

This chapter describes the implementation of the proposed software and hardware solutions

related to stochastic and deterministic calibration of inertial sensors. These include in the first

part the software for the deterministic error calibration before a mission and its interaction

with a navigation filter in real-time. Prior to that, the hardware implementation of the whole

system is presented with all sensors and data flows on a small Unmanned Aerial Vehicle (UAV)

platform. In the second part, the stochastic parameter identification and estimation are

presented, with its web Graphical User Interface (GUI) in a free online implementation.

6.2 Hardware Implementation

The laboratory posses a multitude of drones for different purposes. Although the developed

navigation payload can be carried on several of these drones, it will be presented in relation to

the model airplane called TOPOplane (see Figure 6.1 [Rehak and Skaloud, 2015]). It has a size

of 1630 mm by 1700 mm and its overall weight at full capacity is 2.8 kg. This airframe has a

typical endurance of 40 min with a payload of 600 g. The flying speed is around 15 m{s and the

stabilization and way-point trajectory following are handled by a pixhawk autopilot [Pixhawk,

2018].

A second airframe was developed in 2017 and a new payload in 2018. The heart of this payload

is composed of a rigid box which holds the sensor board with redundant Inertial Measurement

Unit (IMU), the camera, and the embedded computer (see Figure 6.2). This box is fixed in the

bay of the airplane and is removable. It is made of machined carbon plates in an assembly

that reduces the weight while preserving rigidity. The rigidity of this box is of importance for

photogrammetric applications, where the measurements of the IMU have to be put in relation
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with the information from the camera. The relative orientation between these two sensors

(IMU and camera) should stay as constant as possible, to correctly relate the attitude provided

by the IMU to the photos for the direct or integrated orientation of the latter.

The sensor board with the redundant IMUs consists of two layers. A Field Programmable Gate

Array (FPGA) is implemented on the bottom part of the sensor board, which handles the data

acquisition, time synchronization, and power distribution [Kluter, 2012]. A specific software

runs on this FPGA, which configures the different sensors and serves the data through the

USB port upon request to the host computer. The upper board is composed of a multitude

of sensors. Up to four IMUs, five magnetometers, and a barometer can be hosted. In fact,

the Navchip sensor includes one IMU plus one 3-axis magnetometer in the same enclosure.

In addition, an external magnetometer is installed next to it. This amounts to a total of five

magnetometers. Figure 6.3 gives an overview of the components and their assembly.

This sensor board is also equipped with serial and digital inputs. Its serial connection accepts

any information sent either via the RS-232 or the TTL protocol at a typical rate of 9600 baud.

It is connected to the Global Navigation Satellite System (GNSS) receiver and records any

messages such as Position, Velocity, and Timing (PVT). This information is later used for

the fusion with IMU data. The digital input serves for synchronization. In fact, the GNSS

receiver outputs a Pulse Per Second (PPS) signal, which is used for precise timekeeping. This

pulse consists of a sharply rising and falling signal and is forwarded to the IMU for aligning

its sampling. The signal is also received by the sensor board to synchronize all other sensor

measurements to the common GNSS time.

The embedded computer (AAEON UP Board on the newest payload of Figure 6.2) is equipped

with a 64-bit Intel Atom processor with 4 cores and runs a 64-bit version of Linux [UP board,

2018]. It has sufficient computation capacity for all data handling and processing. Smaller

and lighter embedded computers (such as a Raspberry Pi Zero [Raspberry Pi, 2018]) are also

Figure 6.1: Left: model airplane in the air. Right: schematic side-view of drone with depiction
of some internal components including the IMU, camera, and GNSS antenna [Rehak and
Skaloud, 2015].
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used in other setups, where the camera weight is greater. This trade-off comes with lower

Figure 6.2: Top-view and side-view of the payload with the camera (SODA), sensor board, and
embedded computer.

IMUs

Barometer

Magnetometer

9cm Serial Input

USB

top: sensor board

bottom: FPGA board

Figure 6.3: Sensor board hosting two Navchip IMUs, a barometer, and an external magnetome-
ter. The USB connector brings power and the connectivity to a computer for data transfer.
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computational capacity in data serving, real-time in-field calibration (see Section 6.3), and

integrated inertial navigation, including its initialization (see Section 6.4) and possibly also

the piloting of the camera.

Although the software on the embedded computer does all such calculations, these can be

controlled by a remote PC. Different solutions were implemented to ease the interface between

the computer on the ground and the embedded computer within the drone. Typically, results

and messages from the computation (i.e., completion of deterministic calibration and its

quality) are displayed on the ground computer so the user can take appropriate action. The

working principles are explained in details in the next sections.

The integration between the main hardware components and the information flow is depicted

schematically in Figure 6.4 and explained as:

• GNSS-receiver: mounted in the airplane body and provides PVT data, that is sent to the

autopilot as well as to the FPGA board, where it is stored and forwarded to the embedded

PC. In addition, certain events, such as ’taking a picture’, are time-tagged directly by the

receiver and are transmitted as EV-messages.

• FPGA board: is equipped with different sensors. Each IMU provides measurements of

rotation rates (ω) and accelerations ( f ) at a maximum of 1000 Hz1. The magnetometer

provides the information on the magnetic fields (m) at a frequency of 250 Hz. The

barometer measurements include the pressure (p) as well as the temperature (T ) at

10 Hz. The board takes care of gathering data from all sensors (including the messages

from the GNSS receiver) and making them available for further use through the USB

connector.

1with more than 2 IMUs on board, the maximum sampling is limited to 500 Hz
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Figure 6.4: Schematics of the hardware and software implementation for the setup used in the
drone application.
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• Manual Control: allows to switch between different flight modes, including manual or

assisted piloting via the remote control during take-off, landing, or emergency situations.

• Autopilot: receives PVT data from the GNSS receiver, and possibly also a complete navi-

gation solution from the embedded µPC. It can also forward information or commands

issued from the Ground Control Station (GCS) to the µPC, or initiate camera exposures.

• GCS PC: receives telemetry data, plans and monitors the mission including the possi-

bility of switching between flight modes. Other instances provide a user interface to

display information and results from the calibration. If the drone is close, the latter

communication goes through a local WiFi connection. Otherwise, a 433 MHz radio

connection is used.

• µPC: downloads the data from the FPGA board. This raw binary data is then extracted

and put in a format, which is expected by the navigation computer. A part of it is also

sent to the GCS PC, where it is displayed to the user in a GUI in the pre-calibration phase

of the mission or later within a mission for real-time navigation. This embedded PC

pilots also the presented camera.

• Camera: physically connected to µPC that commands its operation. It sends to the

GNSS receiver a pulse at each exposure to time-tag the acquired photos.

The usage of the different programs running on the µPC and the GCS PC is explained in detail

in Figure 6.5 concerning the different phases of the mission. In the first step (I), the sensors

such as accelerometer, gyroscope, and magnetometer are calibrated in-field. The newly

estimated parameters are then directly applied to the sensor readings. With the corrected

sensor measurements, the initial attitude of the platform is calculated in the second step (II),

to initiate (together with the GNSS provided position and velocity) the strapdown navigation.

CALIB

I

IMU
`

´

b f ,bω,bm

θ,S

INIT

II

INS-BASED NAVIGATION

time

IN-LAB IN-FIELD TAKE-OFF FLIGHT LANDING

Figure 6.5: Two different phases of a typical mission. The in-lab calibration parameters are
used to re-calibrate the setup just before the in-field bias calibration so that the computation
of the initial attitude with calibrated data assures a certain quality.

95



Chapter 6. Implementation

6.3 Deterministic Error Calibration In-Field

6.3.1 Accelerometer and Gyroscope

Figure 6.6 shows a typical in-field calibration setup with the drone. The embedded µPC is

connected to the GCS PC via a WiFi-Router and transmits information and status messages.

The plane is placed securely and firmly on a support at different orientations for the calibration

procedure.

The main window of the calibration GUI executed on the GCS PC is shown in Figure 6.7. It

informs the user about the states of the sensors:

• GPS-time and other information provided by the GNSS (e.g., leap seconds, number of

satellites),

• calibration status for the accelerometers, gyroscopes, and magnetometers,

• sensor frequency and total amount of data downloaded,

• information provided by the thermometer and barometer,

• tab with related information on the sensor readings, and

• buttons to launch processes such as ’Calibrate’ and ’Initial Position’.

Theoretically, a full calibration of the 9 error parameters of the accelerometers is possible

Figure 6.6: Typical test site for a UAV mission. The internal µPC of the drone is connected to
the GCS via the WiFi-Link and transmits information about the calibration process during
handling.
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in the field, as the reference signal (Earth’s gravity) is available. Nevertheless, the procedure

with the many (ą 20) positions distributed over all possible attitudes is not practical in the

field, when the sensor board is installed inside the drone bay. An unstable surface, possible

wind, and constraints on the different attitudes due to wings and antennas do not allow for

a long static measurement, which is required to correctly estimate the non-orthogonality θ

and the scale-factor error S. On the other hand, these parameters can be pre-calibrated in the

laboratory, and only random biases need to be determined in the field. For these practical

reasons, a reduced multi-position-calibration procedure is utilized, which requires a minimal

of 6 positions and estimates the bias of the accelerometers in real-time. As seen in the previous

chapters, their change is significant and needs to be calibrated every time the sensor is turned

on/off. Since the non-orthogonality θ and scale-factor errors S are known for each axis and

sensor from the lab-calibration, they are already applied to the raw data prior to all other

calibration.

The situation for the gyroscopes is different, as no strong reference signal is available in the

field (i.e., the signal of the Earth’s rotation is buried within the noise of the employed sensors).

Hence, the only field calibration that will be applied to the gyroscopes is subtracting the

mean measurements taken over a short times span of typical 10 s while the plane is still on

the ground. As it is the case for the accelerometers, this procedure is fused with the in-lab

calibrated θ and S.

Figure 6.8 depicts a typical synthesis of the in-field calibration displayed on the GCS PC.

Figure 6.7: Main GUI window on the GCS for pre-flight calibration. It displays relevant
information to the user as received from the µPC. Bidirectional interaction takes place, in
order to launch the calibration process and inform the user about the estimated parameters.
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During the calibration, the static data acquired at different attitudes is shown as a progress bar.

The change of attitude is recognized automatically. Only attitude changes with a minimum

angular distance of 20° between them are accepted by the algorithm. The GUI informs the

user about the acceptability of chosen attitudes. Once enough data is acquired, the parameter

estimation is launched. Depending on the µPC used, the estimation process for all the IMUs

Figure 6.8: GUI on the GCS PC showing the results of the real-time calibration. Top: real-
time information to the user with information about the acquired attitudes. Bottom: after
the calibration, the sensor can be selected, and calibration parameters are presented. The
correlation matrix of the calibration shows the calibration quality in a simplified way. Other
parameters (θ and S) are displayed with zeros, as in this case the reduced multi-position-
calibration scheme only estimates the current bias, whereas the non-orthogonality and scale-
factor were already pre-calibrated in the lab.

98



6.3. Deterministic Error Calibration In-Field

is executed in a couple of seconds. The estimated parameters are displayed alongside their

matrix of correlation. This serves as a tool to verify the quality of the in-field calibration. If

necessary, the procedure can be re-initialized for all or some of the sensors. The parameters

not subjected to the estimation process are represented as zeros and their corresponding

places in the correlation matrix is blackened.

As shown in Figure 6.9, the accelerometer and gyroscope tabs also show the current sensor

readings. In order to reduce the load on the data transfer and the GUI update rate, 1 s-packages

are created of all the sensors (i.e., mean of data over 1 s) when transmitted to the GCS. The

actual application of the calibration result can be verified, by plotting the norm of the signal

and turning the sensor in different attitudes. Figure 6.9 shows an example of how much

the norm of the sensor reading changes for the accelerometer after calibration. A similar

procedure can be applied to the magnetometers and gyroscopes.

6.3.2 Magnetometers

The magnetometers need to be calibrated for each take-off, as environmental conditions may

change locally. The user has to watch the defined criteria (percentage on sphere coverage

and norm/standard-deviation of sphere radius), which were introduced in Chapter 4 and

has to keep on rotating the sensor until completion. A recommended way to achieve proper

calibration is following this procedure:

• point the x-axis upwards,

Figure 6.9: GCS GUI in-field calibration verification: accelerometer tab providing real-time
information of the sensor data. Different IMUs can be selected and individual sensor axes can
be displayed alongside the mean value to visualize the calibration quality in a simplified way.
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• rotate around the x-axis two times,

• point the y-axis upwards,

• rotate around the y-axis two times,

• point the z-axis upwards,

• rotate around the z-axis two times,

• point the z-axis downwards, and

• do precession-like movements around this axis to complete the calibration.

The calibration for each magnetometer is then directly applied to the raw sensor readings. As

the calibration depends on the environment, the best location is to perform the calibration

next to the launch position with all the in-board electronics turned on, by avoiding the possible

influence of the car, other metal objects, and the PC.

6.4 Initial Attitude Determination

The initial attitude is determined after a full calibration of the sensors (accelerometers, gy-

roscopes, and magnetometers) by the procedure described in Section 6.3 once the GNSS

position fix is available. The calculations for the initial attitude of the drone for the subsequent

navigation process is launched via the GUI. Ideally, the drone is placed on the ground next to

the launch position. When pressed, the button Initial Position executes automatically

two tasks. The first task stores the current position of the drone, which is provided by the

GNSS-receiver, while its velocity is set to zero. The second task that is launched in parallel is

the initial attitude determination via the accelerometers and the magnetometers through the

QUEST algorithm described in Chapter 4.

If the desired position and attitude of the drone before launch are adequate, then the button

Create init files in the GUI can be pushed. This process will initiate all the necessary

parameters for the integrated navigation based on the results of the calibration and the attitude

initialization.

6.5 Stochastic Noise Parameter Estimation with an Online GUI

6.5.1 Introduction

The stochastic noise calibration can be accessed on the following link: https://github.com/

SMAC-Group/gui4gmwm. It is called gui4gmwm and uses the principles and extension to the
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theory shown in Chapter 3. The server implementation of the freely available gmwm-package

in the programming language R [R Core Team, 2016; Balamuta et al., 2016a] with an online

GUI makes it easy to use. It surpasses the hurdle for a user of installing, understanding, and

modifying the specific programming language. It provides practitioners a readily-available

tool to perform sensor calibration in the sense of estimating the stochastic parameters of an

error signal. This can be performed without the knowledge of different functions and their

influence on the result.

This motivated the development of this web implementation, where the user can access

a limited yet important amount of the gmwm-R-package functions in a simplified and a

comprehensive way via an online tool. This latter is programmed through shiny, a web

application framework for R [Chang et al., 2017]. The parameters of stochastic time-series

can be estimated either from provided test-datasets, or custom data can be uploaded and

analyzed. The best model is then automatically suggested via the Wavelet Variance Information

Criterion (WVIC), described in Chapter 3.

This section presents in the first part an overview of the GUI. In a second part, a dataset is

analyzed via the Wavelet Variance (WV), and the noise model is identified within an iterative

process. We describe more details about the usage in [Clausen et al., 2018b] and [Clausen

et al., 2018a].

6.5.2 Installation

The GUI is not only available on a particular server, but can also be installed offline on the

personal computer. The following lines of code allow its installation on a system running a

recent version of R through Rstudio while including the installation of all necessary packages

from GitHub and its dependencies:

1 # I n s t a l l dependencies

2 devtools : : i n s t a l l _ g i t h u b ( "SMAĆ Group/gmwm" )

3 devtools : : i n s t a l l _ g i t h u b ( "SMAĆ Group/imudata" )

4 i n s t a l l . packages ( c ( " scales " , "reshape" , " shiny " , "shinydashboard" , " l e a f l e t " ) )

5 # I n s t a l l the GUI package from GitHub

6 devtools : : i n s t a l l _ g i t h u b ( "SMAĆ Group/gui4gmwm" )

After the installation, the program can be run by loading the gui4gmwm-package and launch-

ing the application through the terminal in R:

1 l i b r a r y (gui4gmwm)

2 runApp( "gui4gmwm" )

The functionality of the online interface equals to the offline version. However, the offline
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version can be adapted and changed by the user. The implementation is done through the

Shiny-application in Rstudio [RStudio Inc., 2017].

6.5.3 Functionality Overview

After the startup, the main application window is presented as in Figure 6.10. This window is

divided into four parts. The first part is located in the upper half and displays graphical and

numerical results of the calculations (dashed box in Figure 6.10). Graphical results (in the

tab called Selected Sensor) represent the analysis of the WV on a log-log plot, whereas the

numerical results (shown in the tab called Summary) represent the estimated parameters of

the defined model for the time-series. The tab called Help provides more information and a

link to a webpage, where a detailed description about this GUI can be found.

The second part is situated on the left-hand side of the lower half of the window (dotted box in

Figure 6.10). This part is used for the selection of the dataset containing the error measure-

ments. Different datasets are included by default in the package and serve as an example to

learn about the features of the platform. This is emphasized by the default checkbox named

from library. A predefined set of IMUs and their different sensor axes (e.g., accelerometer,

gyroscope) can be chosen. The data included in the software are error measurements from

different kinds of sensors ranging from low-cost Micro-Electro-Mechanical System (MEMS)-

IMUs to navigational-grade high-end IMUs. The data consists of static measurements of the

two types of sensors (gyroscopes and accelerometers), where each consist of three axes. The

lengths of the error measurements vary between datasets. In general, these should be taken

over a period of at least 30 min at relatively high frequency. Also, the longer the dataset, the

more reliable the estimation is achieved (i.e., confidence is improved), but there is no imposed

minimal length of the dataset. The mean value of the dataset is irrelevant for the calculations

as it is removed automatically.

A custom dataset can be uploaded by choosing the checkbox custom. A drop-down menu

unfolds like shown in Figure 6.11 and a dataset can be uploaded. It must have a column-wise

arranged text format with comma-separated values. The data is directly read and interpreted

with a default sampling frequency of 1 Hz as indicated in the GUI. The data provided is neither

interpreted nor converted; it is used as provided. The following example shows a snippet from

a dataset containing six columns of data:

1 0.53766714 ,0.51975577 ,1.46454965 ,1.46454965 ,2.52197255 ,2.52197255

2 1.83388501 ,2.01266500 ,2.92617312 ,2.92836720 ,6.77272314 ,6.77491722

3 ´2.25884686 ,0.24339694 ,3.60153901 ,3.60811577 ,1.58608908 ,1.59266584

4 0.86217332 ,1.99341731 ,3.29950158 ,3.31147061 ,6.15509221 ,6.16706124

5 0.31876524 ,2.84457976 ,5.22828018 ,5.24518630 ,8.39162517 ,8.40853129
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The maximum file size for the custom dataset on the online version is 100 MB, whereas there

is no limitation for the offline version. This is due to the long processing time on the currently

available server. If needed, the sampling frequency can be set, the units can be defined, and

the column number to be interpreted can be selected through a slider according to the dataset

and the number of available columns. Attention needs to be paid to a sufficient number of

decimal values. The plot of the empirical WV ν̂ of the selected data is calculated when the

button Plot WV is clicked. The result is shown on the log-log plot as a blue line with its 95%

confidence interval in a light blue color.

The third part is situated in the center of the lower half of the window (dash-dotted box in

Figure 6.10). In this section, the user can choose a subset of the available models. These

Figure 6.10: Overall view of the GUI with all the information as seen online. The upper
part displays graphical and numerical results. The lower parts allow for data-uploading and
selection, noise-modeling, and setting of options related to the computation and parameter
estimation.
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include Quantization Noise (QN), White Noise (WN), Random Walk (RW), Drift (DR), and

multiple Gauss-Markov (GM) processes through a slider, selection of which ranges from one to

five models. The button Fit Model launches the estimation of the parameters defined by the

selected model. Clicking the button Reduce Model Automatically will perform the same

task, but it will check each possible model permutation and combination. If n represents the

number of selected models, then the total number of possible noise model combinations that

is checked is 2n´1. According to the number of models selected, this procedure can take a

long time to execute. The best model is evaluated and selected via the WVIC. Its fit is then

presented visually, and the values of its parameters are shown in the Summary tab.

The fourth part is situated on the right side of the lower half of the window (dotted box in

Figure 6.10) and includes several options. The first set concern the plotting of the results:

• Process Decomp.: The result of the parameter estimation is the implied WV, which will

be displayed in orange color. If the user wants to observe the individual contributions

of the noise parameters to the overall model, then this checkbox can be activated. The

different model’s contributions are shown with different colors.

• Add Datasheet WV: This option overlays the plot with the WV according to the manu-

facturer’s datasheet of the selected sensor from the library onto the plot with a red color.

If a custom sensor is used, the parameters of the QN, WN, RW, DR, and one GM can be

specified. In addition, as most of the datasheets lack the information on the specific

parameters of a GM process, the Bias Instability (BI) can be set with its cut-off frequency.

Figure 6.11: Drop-down menu for the custom dataset. The column can be chosen, the
frequency can be set, and the units can be defined for the resulting plot.
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The second set of options concern the computation and the results shown in the Summary tab:

• Show CI parameters: By default, this option is turned off, as the estimation of the

confidence intervals takes more time to execute. It calculates the confidence intervals

of the estimated parameters which are displayed in the summary tab. This is not to be

confused with the confidence intervals of the empirical WV, which is always plotted.

• Edit Optimization Parameters: Here, some options for the optimization procedure

can be set to adapt the optimization process, such as the seed number for the random-

ness and repeatability of the results.

• Information Window: Whenever the server or a local computer is processing data,

some information is shown in this window, and the user is informed which calculations

are executed. The information includes messages such as Generating summary with

Confidence Intervals... or Calculating empirical WV....

6.5.4 Empirical WV and Datasheet Value

Once the data source is selected (library or custom), the datasheet values are overlaid by

activating the checkbox Add Datasheet WV in the fourth part of the GUI. A click on the

button Plot WV launches the calculations of the empirical WV ν̂ and if necessary, also the

theoretical WV based on the datasheet parameters. An example is shown in Figure 6.12 and is

placed in the upper half of the actual GUI. Information about the dataset is directly integrated

onto the figure title, such as type and name of the sensor, duration, and sampling frequency.

Figure 6.12: Empirical WV representation (blue line/full-circles) for Navchip gyroscope y-axis
with its CI. Datasheet specified theoretical WV displayed by the red line/empty-circles.
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6.5.5 Iterative Model Identification

The log-log plot of the WV is useful to understand what kind of models underlie the provided

error signal. An example of how this plot is useful in this sense is given in Figure 3.5, where

the shape of the WV curve over several scales may indicate the presence or absence of certain

stochastic models. If we compare the latter plot with the one given in Figure 6.12 we arrive

quickly to a suggestion that the signal is likely composed at least of a QN, WN and several GM

process models.

In order to find out which combination of the models appears to fit the best, we select the

desired models by clicking the checkboxes in the middle part of the GUI and then press the Fit

Model button to start the parameter estimation. The estimated composite model comprising

QN + WN noise (error) is shown in the top part of Figure 6.13 as orange line of its implied WV.

Given the fact that the chosen model (orange line) does not entirely lie within the confidence

intervals of the empirical WV (blue line), we decide to add an additional GM process, to

improve the fit on the middle and larger scales between the empirical and the theoretical WV.

The result is plotted in the center of Figure 6.13, where we see that the model appears to fit

better the empirical WV.

Although adding a GM process model improves the fit visually and decreases the objective

function value around the middle scales, there still persists a small difference at some bigger

scales. Thus, we can add more GM processes to the model and continue the iterative model

selection. The final solution is presented in the bottom of Figure 6.13, which shows an overall

(almost) perfect match between the empirical and the model-implied WV. However, such

good agreement may be considered excessive given the size of the confidence intervals at the

last few larger scales. In any case, it is appropriate that the final chosen model lies within the

confidence interval of the empirical WV (blue color). In this case, we can stop the iterative

model identification (which can also result in a set of different models) and go to the next step

to extract the parameters of these models.

6.5.6 Estimated Parameters

Once the model is defined, and the parameters are estimated, we can retrieve their values

with the level of confidence by clicking in the upper part on the tab called Summary. The

parameters will appear for each underlying model together with the value of the objective

function, which gives an overall indication of how well the fitted model describes the empirical

WV (see Figure 6.14). The smaller the objective function value, the better the fit to the observed

signal. In addition, the confidence interval with upper and lower bounds for each parameter

value is provided.
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Figure 6.13: Evolution of iterative model identification. Noise models are added successively.
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Table 6.1 presents an example of the estimated parameter values for the gyroscopes from

Navchip and MTi-G IMU. It can be seen how parameter values change depending on the

underlying models in the estimation. In each case, the Generalized Method of Wavelet Mo-

ments (GMWM) matched the empirical and the theoretical WV (implied by the fitted model)

as best as possible. It can be seen that the estimated amplitude of the WN corresponds well

to the values in the datasheet (first line in Table 6.1 for each sensor) of the Navchip; while it

differs by one order of magnitude for the MTi-G. There is also a significant difference in the

typology of noises, i.e., the MTi-G does, for instance, not contain a QN. Of course, the param-

eters provided by the datasheet are general across a product line of many sensors; however,

a detailed analysis of each individual sensor axis refines the modeling. The parameters may

differ between the IMUs of the same type and even with the sensor axis of the same IMU.

6.5.7 Model Selection

Once a set of models has been identified as possible candidates to describe the stochastic

error signal, the WVIC criterion can be used to select which of these models appears to better

predict the WV of future replicates of this error signal while preventing overfitting. Although

the platform allows computing this criterion for each individual model, it is its comparison

to other models that helps to understand a reasonably low WVIC value. To do so, the GUI

provides the function Reduce Model Automatically, in which it is possible to define an

overall most complex model which includes all other models. This function evaluates all

possible combinations of the stochastic models automatically and ranks their fit in terms of

the WVIC directly in the GUI with its parameters in the summary tab. With this additional

information coming from the automated model selection process, it is, therefore, possible to

make a final decision on which model to use within the navigation filter, together with the

knowledge of its parameters.

Figure 6.14: Summary of the parameters with their confidence interval for the last iteration
shown in Table 6.1.
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6.5. Stochastic Noise Parameter Estimation with an Online GUI

Table 6.1: Estimated parameters for each iteration. The upper part is dedicated to the Navchip
gyroscope, whereas the bottom part shows the analysis of the Xsens sensor. The datasheet
provides only the minimal information. This is properly re-scaled for the acquisition frequency
of the dataset (250 Hz for the Navchip and 100 Hz for the Xsens sensors). The analysis through
the online GUI (and the GMWM) allows for a refined analysis of the stochastic model.

WN QN GM #1 GM #2 GM #3 Objective Function

units prad{sq2 prad{sq2
(1{sq
prad{sq2

(1{sq
prad{sq2

(1{sq
prad{sq2

(-)

N
av

ch
ip

G
yr

o
sc

o
p

e
Y datasheet 6.85e-7 -

5.00e-1
2.35e-9

- - -

iteration (a) 7.69e-7 2.25e-6 - - - 192

iteration (b) 7.66e-7 2.25e-6
5.05e-3
3.45e-8

- - 151

iteration (c) 7.52e-7 2.26e-6
8.13e-4
2.91e-8

1.49e-1
1.10e-8

- 53

iteration (d) 7.36e-7 2.27e-6
1.34e-2
9.93e-9

3.34e-4
3.42e-8

6.36e-1
7.77e-9

17

M
T

i-
G

G
yr

o
sc

o
p

e
Y

datasheet 7.62e-5 -
2.50e-2
9.40e-9

- - -

iteration (a) 4.72e-5 - - - - 456

iteration (b) 3.50e-6 -
2.04e+2
4.54e-5

- - 12

iteration (c) 2.65e-6
1.51e-3
2.98e-7

2.06e+2
4.62e-5

- 8

iteration (d) 2.03-6 -
6.10e-2
1.15e-7

9.43e-4
2.04e-7

2.08e+2
4.68e-5

2

6.5.8 Summary

Given the rigor and the capacity of the GMWM method to separate composed stochastic

processes and estimate its parameters, the developed software interface is envisaging exten-

sions for including the new developments of this methodology. Indeed, the main updates

will include the implementation and visualization of additional and more complex stochastic

signals where, for example, the model parameters may vary over time as a function of known

external factors. For the moment this is possible - as shown in Chapter 5 - only within the

R-environment through the updated R-package. Nevertheless, even at this current stage, we

believe that the presented platform allows engineers to easily perform calibration tasks which

were originally extremely complex to carry out. It does so by new avenues to a more straight-

forward tackling of problems that can refine the calibration of inertial sensors. Moreover, it

must be stated that the presented methodology that underlies the IMU stochastic calibration

is completely general and can be used for all kinds of analyses dealing with other types of

sensors or time-dependent random data.
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7 Adaptive Stochastic Model

7.1 Background

The use of covariate dependent stochastic models, parameters of which are estimated with the

dynamic-GMWM, is employed in INS-based navigation filtering within a simplified simulated

scenario. The Inertial Measurement Unit (IMU)-measurements are fused with other sensor

information (e.g., Global Navigation Satellite System (GNSS) position and velocity, barometer,

odometer) to correct the IMU trajectory that is due to initialization as well as systematic and

random errors in inertial sensors. The time-correlated errors are part of the augmented state

vector, the value of it is estimated and fed back (i.e., subtracted) from inertial observations

prior to strapdown navigation.

If the calibration by an external aid is missing, the errors of the IMU will accumulate while

propagating from the measurements to the navigation solution. In a simplified way: a sys-

tematic error in the acceleration will become a linearly growing error in velocity, and due to

the two integrations in the computation, this will become a quadratically increasing error

in position. A similar dependence applies to the gyroscopes which are measuring rotation

rates and in the end affect the orientation. Without correction, the navigation solution drifts

depending on the quality of the measurements and magnitude of initialization errors.

As a manner to take into account the errors of the inertial measurements and their accumula-

tion during fusion with other observations, the Kalman filter computes the uncertainty value

of the states such as position, velocity, and orientation. The knowledge of the underlying noise

model and its parameters (i.e., quantity) allows the filter to predict the encountered dynamics

accordingly. Generally, the uncertainty of trajectory (navigation) states will grow as long as

there are no external updates available. Apart from the actual trajectory, this growth is directly

related to the noise parameters specified in the filter.
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Chapter 7. Adaptive Stochastic Model

Table 7.1: Direct influence of constant gyroscope bias (8 mrad{s) and accelerometer bias
(10 mg) on attitude and positon over different time periods.

time [s] attitude error [°] speed error [m/s] position error [m]

20 9 2 20

40 18 4 80

60 27 6 180

120 55 12 720

For instance, if the White Noise (WN) value of the sensor errors in the Kalman filter is set

too low (although the measurements posses a higher WN value), then the uncertainty on

the filtered states will grow not fast enough, and thus the predicted quality of the navigation

solution will be too optimistic. On the other hand, if the WN value in the Kalman filter is

set too high (although the measurements posses a lower WN value), then the uncertainty

of the filtered states will grow unnecessarily fast, and thus the predicted uncertainty of the

navigation solution will be too pessimistic. Both scenarios (pessimistic and optimistic) are

undesired with relation to sensor fusion (e.g., rejection/acceptation of observations and their

effect on the estimated trajectory as well as auxiliary states such as sensor biases). To stay on

the save side, and thus pessimistic, a higher WN parameter value is usually chosen manually

on a case-by-case selection.

7.2 Simulation Scenario

A sensor may undergo large temperature changes, which affect the sensor readings (e.g.,

the sensor in a vehicle is turned on and warms up, later cools down with an airflow. The

analysis in the previous Chapter 5 showed that the temperature has a non-negligible effect on

the sensor readings in both the deterministic and stochastic part of the signal. Of course, if

the deterministic part is not correctly accounted for, the integration of included errors will

systematically and directly influence the position and attitude of the navigation solution. This

is briefly shown in Table 7.1, where the bias on the accelerometers and gyroscopes influence

the position and the orientation respectively.

The influence of the stochastic part of the signal is more difficult to demonstrate, and that is

why the following simulation scenario is considered here:

• A vehicle is moving on a 2D circular trajectory. A local frame is considered as an inertial

frame, where gravity is omitted.

• The vehicle is initialized at the East/North coordinates (0,100) m with an East/North ve-
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locity of (3.49,0) m/s. Then the trajectory is estimated via strapdown inertial navigation

around a circle with a radius r “ 100m at a constant velocity.

• Upon reaching the point (0,-100) m (i.e., after 90 s) the GNSS position updates are used

at 1 Hz and the vehicle completes one turn of the circle after another 90 s (i.e., after a

total of 180 s).

The IMU mounted on the car senses the rotation rate via the z-gyroscope ωz (mounted

perpendicular to the 2D trajectory) and the acceleration via the x-y accelerometers ax{y (x-axis

pointing in the direction of movement around the circle, whereas the y-axis is perpendicular

and points to the center of the trajectory). The nominal reference signals are:

ωz “
2π

180
rad{s,

ax “ 0,

ay “ rω2
z “ 0.122 m{s2.

These signals (accelerometer and gyroscope) are corrupted only with a WN process to simplify

the example. The strength of the simulated WN grows linearly from the beginning of the track

(sensor is cold) to the end (sensor warms up). The Kalman filter fuses the inertial trajectory

with GNSS positions, while using noise models at three different scenarios:

1. Kalman filter with a constant low WN value corresponding to sensor state/temperature

at the beginning of the track;

2. Kalman filter with a constant high WN value corresponding to sensor error values at the

end of the track;

3. Kalman filter with temperature-corresponding (i.e., covariate updated) WN value that

represents the true modeled noise parameter.

7.3 Discussion

Figure 7.1 shows Monte-Carlo realizations. A total of 1000 trajectories (i.e., realizations of

WN sequences) are considered. Depending on the actual error accumulation, the position

deviates at time t “ 90 s up to 30 m from the reference trajectory. Then the position error is

bounded at the moment the GNSS position measurements are used.

The quality of the estimated trajectory is given by the P-matrix of the filtered states containing

variance on its diagonal. As long as there are no external updates, this uncertainty will

grow. Figure 7.2 shows the different growth rates of such uncertainty (in terms of σ) on the
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Chapter 7. Adaptive Stochastic Model

orientation and the velocity for different cases of the WN-values. If falsely a high value of WN

is used in the filter, then the uncertainty grows unnecessarily fast. However, this case stays on

the "save side" of the sensor fusion.
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Figure 7.1: Position solutions (gray) in comparison to the reference (black). The estimated
solutions shown exceed the 3σ boundary on some point of the trajectory.
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Figure 7.2: Evolution of the estimated uncertainty with different noise models programmed
into the Kalman filter. The GNSS updates appear after 90 s.
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On the other hand, if a too optimistic value of WN is set in the filter (i.e., a falsely too low

value), the result will be overconfident, and correct updates may get rejected. This is not

only sub-optimal but dangerous. Using the dynamically adapted value of the WN in the filter,

the reality is correctly represented in the filter and the filtered solution is optimal, and the

predicted confidence adequate.

Figure 7.3 visualizes the advantages when using the covariate (temperature) adapted stochastic

models within a Kalman filter. For each time stamp along the trajectory, the distribution of the

1000 computed navigation solutions is compared to the reference. This empirical deviation

is set in relation to the predicted uncertainties of the navigation states and the three defined

noise models (i.e., static low, static high, covariate-adaptive). The 80% confidence interval

is chosen here as an example. In theory, this interval puts 80% of the trajectories inside the

1.28σ-bound and 20% of the trajectories beyond this 1.28σ threshold. The distribution of the

trajectories with the static low noise model (blue) deviates quickly from the reference 80%

bound. The same can be said about the distribution of the trajectories with the static hot noise

level (red). Only the distribution of the trajectories generated through adaptive filtering of the

noise model (green) allows following the reference distribution correctly. This is necessary to

correctly/optimally estimate the states and their confidence.
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Figure 7.3: Percentage outside 80%-bound. Top: azimuth. Bottom: north velocity. Black
dashed line represents the theoretical amount of trajectories outside the bound, which would
be 20%. The adaptive noise model (in green) follows this theoretical value, whereas the other
two do not (hot model in red, cold model in blue).
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8 Integrated Navigation

8.1 Introduction

This chapter shows the application of different calibration schemes discussed in Chapter 4

and the fusion of the accelerometer, magnetometer, and the barometer in relation to airborne

missions, where the derived attitude and altitude is compared to a reference. The sensors

in question are mounted inside a Unmanned Aerial Vehicle (UAV), which has interesting

properties: on the one hand, the light nature of the UAV allows for easy deployment and

usage for a multitude of applications, on the other hand, as the payload is limited, a reference

high-grade Inertial Measurement Unit (IMU) cannot be mounted inside. Other means to

obtain a reference are therefore explored.

The equipment used in relation with the UAV and its experiments were presented in Chapter 6.

It consists of the IMU board. The subsequent sections show its applications for the altitude

determination in the absence of a Global Navigation Satellite System (GNSS)-signal and the

attitude initialization with simulated and real data. In the last section, a navigation solution is

considered, where multiple IMUs are fused into one single synthetic IMU.

8.2 Altitude Determination with Barometer

The performance of barometer calibration and height determination Above Ground Level

(AGL) is investigated as follows: the IMU and the GNSS observations are fused until time

stamp 400 s after the micro-UAV take-off. At this moment, a GNSS outage occurs (artificially)

for the rest of the flight. This can be due to a bad satellite constellation, as the drone flies in a

narrow valley, due to electromagnetic interference, or a GNSS malfunctioning. Also, the cause

could be due to a large banking angle of the drone, as the GNSS antenna is directional and a

too steep banking angle will cause the GNSS-receiver to lose visibility to some of the satellites.

119



Chapter 8. Integrated Navigation

A first solution consists of the IMU standalone navigation from this point on. As such, the

navigation solution diverges quickly with an unbound error on the vertical axis (as well as

on the horizontal plane). The absolute navigation solution in the altitude for this scenario is

shown with a dotted line in the top part of Figure 8.1. The error in the altitude reaches more

than 30 m after 2 min of the outage, a fact of which compromises safe navigation close to the

ground.

The second solution consists of considering additional pressure measurements pi provided

by the barometer once the outage occurs at time-stamp 400 s. The barometer observations

are present from the beginning. Hence the parameters (p0 and k) are calibrated with the

method explained in Section 4.6 thanks to the GNSS observations directly from the start on.

These additional pressure observations are able to stabilize the navigation solution in the

vertical channel from the time index 400 s to GNSS like quality. This is shown in the top part of

Figure 8.1 as a dashed line.
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Figure 8.1: Top: absolute altitude for different scenarios. The IMU-only solution (dotted line)
diverges quickly after the GNSS outage, whereas the measurements of the barometer (dashed
line) enable to bound the drift. Bottom: altitude error with confidence bound with respect to
the reference.
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The lower part of Figure 8.1 shows the error with relation to the reference for the normal case

(no outage) and the case with the outage but with the use of barometer measurements. As

can be seen, the barometer aiding in height surpasses in quality what a multi-frequency GNSS

receiver used in a stand-alone mode could provide. This is further highlighted in Figure 8.2,

showing the 1σ confidence interval only.

On the one hand, it shows how fast the navigation solution based only on the IMU measure-

ments diverges (dotted line). The 1σ confidence interval reaches 2 min after the GNSS outage

a value of 25 m. This value continues increasing continuously to several hundreds of meters

afterward. On the other hand, the navigation solution (dashed line) is more precise directly

with the barometer (mean σ“ 1m), than it would be with the GNSS measurements (mean

σ“ 1.8m) provided by the receiver (full line). This is due to the fact that the GNSS height

determination with code measurements has a worse precision in the vertical axis than a fully

calibrated and sensitive barometer.

8.3 Initial Attitude Estimation

The goal here is to investigate how well the REQUEST algorithm estimates the initial attitude

(with roll, pitch, and yaw parametrization), by using three different approaches while verifying

its performances in different situations. The first approach uses simulated measurements to

compute the attitude, on which several combinations of accelerometer errors are introduced.

The second approach compares the estimated attitude from the REQUEST to the estimated

attitude computed via a GNSS/Inertial Navigation System (INS) fusion from a real dataset

(smoothed solution before and after the mission, which represent take-off and landing). The

third approach uses a photogrammetric approach that verifies the quality of the attitude

initialization.
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Figure 8.2: The KF-predicted uncertainty in the altitude of the GNSS-IMU fusion is worse than
the fusion between the IMU and the barometer. The IMU-only uncertainty grows quickly after
the GNSS outage.
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8.3.1 Simulated Data

A total of 100 different attitudes are created with simulated measurements for the accelerome-

ters and the magnetometers. The angle for roll is confined to˘180°, pitch is limited to˘90°,

and yaw is defined in˘180°. The perfect sensor readings from accelerometers and magne-

tometers are overlaid with simulated white noise. The REQUEST algorithm is then used to

determine the attitude of the sensor platform as explained in Subsection 2.6.4. This scenario

represents the error-free case, which was used to determine the correct implementation of the

algorithm. The estimated results in roll, pitch, and yaw are directly compared to the reference

attitudes, which were used to generate the measurements in the first place (see Figure 8.3).

In the next step, the impact of a correct accelerometer calibration is investigated (whereas

a correct magnetometer calibration is discussed in the following subsection). The attitude

determination quality is compared to different scenarios, where parameters such as scale-

factor S, non-orthogonality θ, and bias b are added. Typical values for the accelerometer error

parameters found in the datasheet C.3 are used here to simulate an eventual impact. The

following parameters are used:

• bias with b“ r25 ´25 25sT mg;

• scale-factor error with S“ r0.2 ´0.2 0.2sT %;
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Figure 8.3: Errors in roll, pitch, and yaw based on 100 simulated accelerometer and magne-
tometer measurements with relation to their reference attitude.
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8.3. Initial Attitude Estimation

• non-orthogonality with θ“ r4 ´4 4sT mrad.

These parameters are employed to falsify the true accelerometer data ľ as:

l “ A ¨ ľ`b, (8.1)

with

A“

»

—

—

—

–

1`Sp1q 0 0

θp1q 1`Sp2q 0

θp2q θp3q 1`Sp3q

fi

ffi

ffi

ffi

fl

and b“

»

—

—

—

–

bp1q

bp2q

bp3q

fi

ffi

ffi

ffi

fl

. (8.2)

The error-free attitude determination is compared to the cases, where the data is corrupted

with

1. only the bias parameter b (equivalent to the in-lab pre-calibration of S and θ),

2. only the scale-factor parameter S,

3. only the non-orthogonality parameter θ,

4. a mix of the non-orthogonality θ and scale-factor S parameters (equivalent to pre-

calibration of only b),

5. the full set of the parameters (equivalent to no pre-calibration).

The mean errors in roll, pitch, and yaw including the standard-deviation as well as the max-

imum error are assembled in Table 8.1 for all the previously defined scenarios 1 through 5

as well as the error-free case. The usage of error-free measurements and the correct estima-

tion of the attitude angles show that the implementation is done in the right way. In fact,

the REQUEST-algorithm is implemented in the calibration GUI functionality presented in

Chapter 6.

If no pre-calibration is performed and the data is taken as such (see scenario 5), then the

attitude determination is not usable, as it can vary in the attitude values by several ten degrees.

The distribution of the errors can be decreased by pre-calibrating the sensor readings for

scale-factor and non-orthogonality (see scenario 1), where only the bias of the accelerometer

is influencing the attitude determination. Mean errors and the distribution are decreased, but

the distribution is still one order of magnitude higher than is required. A full calibration is

necessary, as the bias component represents by far the most significant influence.
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Table 8.1: Influence of different calibration parameters for the accelerometer (bias, scale-factor,
and non-orthogonality) on the 100 simulated attitude data.

influence scenario difference roll [°] pitch [°] yaw [°]

mean 0.009 -0.002 -0.079

error free std 0.162 0.022 0.204

max 0.976 0.068 0.904

mean -0.071 -0.668 -1.274

1) only b std 12.395 0.819 12.681

max 84.615 2.285 56.362

mean 0.014 -0.004 -0.056

2) only S std 0.182 0.044 0.234

max 1.020 0.117 0.946

mean 0.118 -0.001 -0.043

3) only θ std 1.172 0.132 1.199

max 5.345 0.332 5.276

mean 0.124 -0.003 -0.020

4) θ and S std 1.172 0.139 1.195

max 5.383 0.345 5.312

mean -0.072 -0.666 -1.388

5) θ and S and b std 12.959 0.831 13.285

max 89.337 2.208 56.886

The scenarios 2 through 4 show the influence of the scale-factor and non-orthogonality and

their impact on the attitude determination. Especially scenario 4 shows a case, where the bias

is calibrated with the latter two left aside. The impact is small (std of 1° with a max error of 5°)

compared to the bias influence, but for a complete calibration, it has to be taken into account

and to as.

8.3.2 GNSS/INS Prior/After Flight

A flight mission with our UAV was performed to acquire a real dataset usable in this part of

the experiment. The flight duration was around 20 min. This allows, among others, for proper

mitigation of errors due to attitude initialization with GNSS/INS fusion, especially at the ter-

minal phase of the mission and thanks to smoothing, also at the start. This trajectory/attitude

serves here as a reference, to which the algorithms are compared to.
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The typical flight mission foresees a certain period before the take-off, where the accelerome-

ters, gyroscopes, and the magnetometers are calibrated. Like mentioned in earlier sections,

the accelerometers are calibrated via the multi-position-calibration scheme explained in

Section 4.3 and the magnetometers are calibrated (i.e., ellipsoid to sphere transformation) by

the procedure explained in Subsection 2.6.3. After the calibration, just before take-off, the

UAV is set on the ground, and the attitude determination algorithm REQUEST is performed to

calculate the initial attitude of the UAV (and its sensor board mounted inside the payload bay).

The same procedure (e.g., calibration of accelerometers and magnetometer and subsequent

attitude determination) is performed again at the end of the mission just after landing. The

accelerometers may have changed their bias and thus need a re-calibration. The same prob-

lem exists for the magnetometers, where the landing spot may influence the magnetic field. It

will affect the shape of the correctly calibrated sphere based on the magnetometer data from

another location, as it is a function of the local magnetic field.

In order to asses the impact of the pre-calibration of the accelerometers and the magnetome-

ters on the attitude determination, several calibration scenarios are considered here, which

can all be compared to the GNSS/INS reference:

1. all the sensors are fully calibrated,

2. the accelerometer is not calibrated, whereas the magnetometer is,

3. the magnetometer is only partially calibrated, but the accelerometer is corrected, and

4. the magnetometer is not calibrated, whereas the accelerometer is.

Table 8.2 resumes the results of these defined scenarios. First of all, the reference GNSS/INS

absolute attitude can be compared to the case, where all the sensors are correctly and fully

calibrated. This corresponds to scenario 1. The roll and pitch attitude correspond to each

other and the yaw-value, with a difference to the reference of 1°, is usable for the initialization

of the navigation in the case of prior take-off and after the landing.

If the magnetometer is only partially calibrated (sphere parameter estimation based on an

ellipse with 30% coverage, instead of the 70%), then the attitudes do not correspond to the

reference values. This is shown in scenario 3. The same can be said, when the sensors are not

calibrated at all (i.e., scenario 4). Especially the values in the yaw-component are significantly

different from the reference. Thus, a partial magnetometer calibration is not sufficient. As

much as possible of the magnetometer-sphere has to be covered, by swinging the sensors/UAV

through all the different orientations, to map the local magnetic field.
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Table 8.2: Influence of different calibration scenarios on the attitude determined by the
REQUEST algorithm and by GNSS/INS fusion. Absolute attitude values for top: prior take-off,
and bottom: after landing.

scenario roll [°] pitch [°] yaw [°]

p
ri

o
r

ta
ke

-o
ff

GNSS/INS 2.36 -0.46 15.51

1) all calibrated 2.16 -0.40 16.59

2) no accelerometer calibration 1.86 -0.48 16.10

3) partial magnetometer calibration 1.70 -1.05 33.38

4) magnetometer not calibrated 11.45 -15.35 -30.62

af
te

r
la

n
d

in
g

GNSS/INS 12.45 1.39 75.04

1) all calibrated 11.40 1.35 76.34

2) accelerometer not calibrated 11.25 1.17 76.61

3) magnetometer partially calibrated 7.29 0.78 83.53

4) magnetometer not calibrated 11.13 2.00 -17.25

8.3.3 Static Photogrammetry

More measurements are required for statistical evaluation of the attitude initialization quality.

For this, another approach is pursued. Our plane (with the integrated camera and IMU board)

is fixed on a tripod at large bending angle and photos are taken at different places with some

variation in their rotation.

The method of the photogrammetric bundle adjustment (with ground control points) is

employed to provide the absolute attitude reference [Pix4D, 2018]. This process requires to

identify points/features on the photos, which are then directly referenced to the same points

in the other photos, if present. If some points in the picture are known in the real world, then

their projection on the pictures can be directly related to the camera orientation. Indeed, the

camera needs calibration too, which is not further elaborated here.

The lab has access to such a calibration field (see Figure 8.4) with numerous signalized targets

of known coordinates placed in different positions throughout this camera calibration field.

The experiment was conducted in this environment that is challenging for magnetometers

due to its proximity to steel-reinforced concrete or other steel structures.

The attitude parametrization used in the photogrammetry (angles ω, φ, and κ) differs from

the notation used in this document and other navigational literature. Hence, the results

from the REQUEST algorithm need to be converted for comparison reasons to this specific

photogrammetric notation [Baumker and Heimes, 2002].
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8.3. Initial Attitude Estimation

The sensors need calibration prior to attitude determination. Hence, the accelerometers are

again calibrated as shown via the multi-position calibration scheme in Section 4.3. The calibra-

tion scheme for the magnetometers is used as well, which was presented in Subsection 2.6.3.

In fact, the static positions are used for the accelerometer calibration, whereas the movement

between the static positions is used for the magnetometer calibration (i.e., in order to fill the

bins of the magnetometer calibration sphere and to obtain an ideal minimal coverage of 70%).

After the conversion to the photogrammetric notation, the Figure 8.5 shows the difference

between the reference (i.e., from the employed photogrammetric Pix4D software) and the

REQUEST algorithm. The results are resumed in Table 8.3. The standard deviation calculated

from the attitude errors lies between 2° to 3°. This should be sufficient for starting the "fine-

alignment"/refining via the Kalman filter filtering.

Figure 8.4: Example of 2 photos taken at different attitudes from the calibration field with the
visible black/white targets.
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Chapter 8. Integrated Navigation

Table 8.3: Comparison between the attitude provided by the photogrammetric software Pix4D
and the REQUEST algorithm.

quantity ω [°] φ [°] κ [°]

mean error -0.28 0.08 1.53

std error 2.50 2.09 3.00

max error 4.66 4.37 6.92

The relatively higher differences in the results compared to the simulation or to the GNSS/INS

fusion can be explained by the location of the experiment. In fact, the calibration of the

accelerometers does not depend on the physical location. This changes drastically for the

magnetometers. Concrete structures and metal bars embedded in the concrete supporting the

targets as well as in the buildings surrounding the calibration field influence the local magnetic

field. Knowing the algorithm delivers such results in this environment, it is completely usable

in the application fulfilling the need to initialize the navigation filter in an outdoor scenario.

8.4 Navigation during GNSS Outage

The real-time strapdown inertial navigation/integration originally developed for PC-platforms

[Skaloud et al., 2010] was adapted for the developed sensor board and an embedded computer.
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Figure 8.5: Error of the attitude expressed as ω, φ, and κ between the REQUEST algorithm and
the angles provided by the photogrammetric application.
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8.4. Navigation during GNSS Outage

The stochastic parameters per each IMU and each sensor axis were adequately estimated via

the GMWMW framework (see Appendix D for complete stochastic modeling results of the

sensors). The sensors consist of the four individual IMUs mounted on our IMU-board and the

fused (with equal weights) synthetic version which we call SIMU.

A total of five navigation computers (data coming from precalibrated IMU1, IMU2, IMU3,

IMU4, and SIMU) can be run simultaneously on the embedded computer in parallel if needed,

which will provide the navigation solution. A typical scenario is chosen for a micro UAV flight.

A GNSS outage of 30 s is simulated on the recorded data, to force the navigation solution to

be solely dependent on strapdown navigation. The trajectory in question is a U-turn and is

depicted in Figure 8.6.

Table 8.4 resumes the navigation errors for the position and the velocity, which are also

visualized in Figure 8.7 with more details. The fused SIMU has overall a less bad navigation

solution than the individual IMUs. The planimetric error, as well as the velocity error, can be

cut in half, depending on which IMU it is compared to. In any case, the SIMU performs best in

this shown example. The added "autonomy" allows for a save usage in case a problem (e.g.,

GNSS outage) occurs.
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Figure 8.6: Top view of the trajectory part, during which a 30 s GNSS outage is simulated.
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Table 8.4: Error statistics for the 30 s GNSS outage for different IMU configurations.

maximum error IMU1 IMU2 IMU3 IMU4 SIMU

planimetric [m] 236.79 126.29 195.37 142.30 93.55

altimetric [m] 3.86 10.59 28.39 15.62 5.46

absolute velocity [m/s] 14.33 7.19 13.69 9.24 4.90
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Figure 8.7: Errors with relation to the reference for the IMU board. Top: planimetric error.
Middle: altimetric error. Bottom: absolute velocity error.
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9 Mapping

9.1 Introduction

This chapter shows the benefit when using the proposed calibration and data fusion methods.

The first section applies this method to direct orientation of an Airborne Laser Scanning (ALS)

system. This particular setup is described with a brief overview of the reference sensors

and testing area. Then, the performance of our sensor board is analyzed. It demonstrates

the possible benefits when using a system composed of multiple Micro-Electro-Mechanical

System (MEMS) Inertial Measurement Unit (IMU), which were all correctly calibrated.

The second section applies the presented calibration methods to mapping with a micro

Unmanned Aerial Vehicle (UAV). Again, the setup and the mapping missions are described,

and the impact of the precalibration on the performance of the attitude determination is

shown.

9.2 Close-Range Helicopter

9.2.1 Setup

To benefit from a continuous orientation reference while investigating the ALS performance,

our MEMS IMU board is rigidly mounted on a state-of-the-art airborne mapping system on

board a helicopter. Principally, the ALS system is composed of several elements:

• laser scanning unit: it sends a laser pulse, detects the reflected beam from a surface, and

measures the time between sending and receiving;

• geo-referencing system: this system provides position and attitude in order to relate the

information from the laser scanner to the world. It is composed of an Inertial Navigation
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Chapter 9. Mapping

System (INS) and a Global Navigation Satellite System (GNSS) receiver;

• dedicated software: to synchronize the measurements and treat the data in real-time

and/or post-processing:

• frame camera: takes photos to increase the palette of derived mapping products.

The density (in terms of cm per pixel, or number of laser points per area) of the generated

maps depends on the equipment used, which is directly related to the scanning height Above

Ground Level (AGL), the velocity, and the update rate of the system and its sensors. This

depends on the application and the requirements needed for the final mapping product. An

overview of the technology, as well as the different applications and hardware can be found in

[Baltsavias, 1999; Schär, 2010].

The ALS system from the Lausanne based company Helimap is used here in this experiment

[Helimap System SA, 2018]. Our sensor board with the redundant MEMS-IMU system is

mounted rigidly to a whole acquisition apparatus (as mentioned before), and it is partly

composed of:

• Laserscanner Riegl VQ480U [Riegl, 2015],

• PhaseOne frame digcam (IXAR180, 42 mm lens, 80Mpx, pixel size 5.2µm) [PhaseOne,

2014],

• IXblue AIRINS navigation grade IMU (gyro bias 0.008 °{h) [Ixblue, 2015], and

• Javad GNSS dual constellation and dual frequency receiver.

These devices are providing the reference measurements and reference solutions both in the

air and in the ground. They usually are side mounted on a helicopter, as depicted in Figure 9.1

and the mission is flown at a speed of 10-15 m{s - that is similar to that of a fixed-wing micro

UAV. In the described experiment the system is augmented not only by our redundant IMU

board but also by a lighter and smaller data acquisition unit that is supposed to be carried by a

drone. This 2.7 kg integrated package is equipped with a set of sensors:

• Laserscanner velodyne Puck LITE [Velodyne Lidar, 2018],

• Camera Sony (A6000, 16 mm lens, 24Mpx, pixel size 3.9µm)[Sony, 2018],

• small GNSS-IMU integrated solution APX-15[Trimble, 2016]
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9.2. Close-Range Helicopter

For further analysis and the simplicity of the description, our Navchip MEMS IMU will be

simply referred to as IMU. The first two setups concern the experiment, where this IMU is

either calibrated (in-lab and just before the flight) or uncalibrated. The third setup is the fusion

of the four side-by-side mounted and calibrated IMUs to form one Synthetic IMU (SIMU).

The flight line considered for the photogrammetric reference consists of a 1.5 km straight line

(forward-backward), which was flown in the vicinity of Romanel-sur-Morges next to Lausanne

(see Figure 9.2). Different ground control points are implemented in the region, to have a

reference to compare the results to. Around 90 photos are taken just in this area. The flight

duration of this particular flight line is 300 s, whereas the whole mission (start to landing) was

almost one hour long.

Figure 9.1: Top Left: ALS installed on helicopter. Top Right: zoom on ALS system. Bottom Left:
Helimap system used as reference. Bottom right: UAV "puck" scanning system with APX15.
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Figure 9.2: Top: complete helicopter flight path (camera events represented as white triangles).
Bottom: long strip area considered for the experiment (ground control points in red).
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9.2. Close-Range Helicopter

Table 9.1: Summary of the errors in the attitude from the navigation solution between our
IMU with its different configurations and the reference AirINS.

Sensor Error roll [deg] pitch [deg] yaw [deg]

IMU std 0.023 0.027 0.104

uncalibrated max 0.080 0.129 0.248

IMU std 0.022 0.027 0.087

precalibrated max 0.064 0.106 0.181

SIMU std 0.016 0.017 0.054

fused max 0.047 0.063 0.116

9.2.2 Attitude Quality - Continuous Reference

Given the fact that the position-accuracy in nominal conditions is guided by the GNSS accuracy

that is comparable between high-end receivers placed either on a helicopter or a drone

(assuming comparable signal-to-noise ratio), the analysis focuses on the quality of the attitude

determination.

The data from the base and airborne GNSS receivers are combined providing a solution at

1 Hz. Then, loosely coupled integration with different IMUs is performed in an Extended

Kalman Filter. Four navigation solutions are considered, each one using the same GNSS

position/velocity information but "different" inertial sensors. These are (i) the uncalibrated

IMU, (ii) the calibrated IMU, and (iii) the fused SIMU. These are then compared to (iv) the

reference solution provided by the fusion of GNSS and AirINS (see Figure 9.3).

The distribution and the amplitude of the errors in roll/pitch/yaw are quantified in Table 9.1.

The 20% decrease of the yaw standard deviation is firstly due to the correct calibration, which

was performed prior to the flight before the mission with the presented multi-position calibra-

tion scheme. Secondly, the fusion into one SIMU of our four individual IMUs of the sensor

board allows decreasing the standard deviation (i.e., improve the accuracy) further by a factor

of 2 between the uncalibrated and the fused version.

The maximum error (in the absolute sense) was reduced by about 20-30% by the calibration

and again another 20-40% by the synthetic fusion. This can also be observed in Figure 9.3,

where the amplitude of the yaw error is considerably decreased.
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Figure 9.3: Differences to the AirINS in the attitude solution for the first flight line. Top:
uncalibrated IMU. Middle: calibrated IMU. Bottom: fused SIMU.
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9.2. Close-Range Helicopter

Table 9.2: Summary of orientation differences between INS/GNSS derived trajectory and that
resulting from the photogrammetric adjustment per photo and IMU.

Sensor Error φ [mdeg] ω [mdeg] κ [mdeg]

IMU mean 3.8 -20.3 -87.1

uncalibrated std 67.1 28.1 175.4

max 146.9 100.7 362.4

IMU mean 13.0 -11.6 49.7

precalibrated std 49.2 23.21 170.5

max 126.39 79.6 491.0

mean 4.7 -12.7 -40.1

SIMU std 23.4 18.4 79.9

max 53.5 63.0 172.0

mean -10.2 -4.0 14.7

APX15 std 10.7 11.4 109.4

max 35.5 33.8 235.5

mean -0.4 -0.1 -0.3

AirINS std 1.0 1.0 4.9

max 2.7 3.4 9.5

9.2.3 Attitude Quality - Photogrammetric Reference

Here the attitude reference is obtained by a photogrammetric block of roughly 350 images. The

absolute orientation of the somewhat 90 photos (via ground control points) is then compared

to the orientation of the different sensor systems. Figure 9.4 shows the evolution of the different

residuals for each sensor system. The offset and dispersion by an uncalibrated IMU compared

to a fully fused SIMU system is clearly visible on this plot, and it is quantified in Table 9.2, where

the performances of our fused system are comparable if not even slightly better in heading

than the commercially available sensor system APX15. This method also independently

verifies the attitude quality of the AirINS that served for the continuous evaluation in the

previous subsection. The agreement is at few mdeg.
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Figure 9.4: Orientation differences between INS/GNSS derived trajectory and that resulting
from the photogrammetric adjustment per photo and IMU.
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9.2. Close-Range Helicopter

9.2.4 Attitude Quality - Direct Sensor Orientation

The AGL was 250 m during scanning. This is likely either at or above possible employment of

laser scanner on micro-UAVs. Figure 9.6 shows an error in the derived surface height (reference

produced by AirINS) and three specific MEMS IMU configurations. The first consists of using

one IMU without any calibration. The second uses the configuration with a pre-calibrated

IMU, whereas the third configuration was computed with the SIMU.

The impact of a well calibrated IMU and especially the SIMU is visible as a clear reduction of

the amount of height-differences exceeding 15 cm (i.e., white colored patches). In the same

plots, a general shift to a uniform green color can be seen, which makes the surface more close

to the reference.

Figure 9.5 depicts a side view of two cross-sections of the same flight line. This shows just a

small snippet of the whole dataset but allows to analyze the error on the surface height with

relation to the slope of the terrain. Indirectly, this highlights systematic errors (if any) in the

pitch. The different colors show the different IMU configurations again. It is clearly visible

how the APX15 (cyan colored) is shifted, which is not the case with the data coming from our

sensor board.

Figure 9.5: Side-view of height profile for two slopes for the different sensor configurations
(pink: not-calibrated IMU; yellow: calibrated IMU; green: SIMU; cyan: APX15; red: AirINS).
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Figure 9.6: Height differences for the Laser data between the reference and specific sensor
configurations. White patches indicate difference in height exceeding 15 cm. Top: IMU
without calibration. Middle: pre-calibrated IMU. Bottom: SIMU.
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9.3. Micro-UAV

9.3 Micro-UAV

We now study the impact of IMU calibration on the attitude determination on board of a

microUAV. In contrary to the helicopter scenario described in the previous section, there

will be, however, no navigation-grade INS as a reference. Instead, the fixed-wing UAV will be

taking images for during about 40 min, orientation of which is derived by photogrammetry.

9.3.1 Platform

Our fixed-wing UAV with a take-of-weight of about 2.4 kg [Rehak and Skaloud, 2015] is fitted

with a custom payload comprising our previously described IMU sensor board with the

redundant IMUs and a camera developed by IGN [Martin et al., 2014]. The camera body

utilizes a full-frame CMOS with 5120 x 3840 pixels and 6.4um x 6.4um pixel size. The images

are panchromatic with 12bit resolution. Attached to the camera body via a Leica M-mount

is the Zeiss Biogon f 2.8 / 35 mm lens. The IMU board and camera are connected rigidly by

a carbon structure as shown in Figure 9.7 to preserve the relative orientation between both

instruments.

While this offset is calibrated in flight (together with camera interior orientation), the spa-

tial offset between the GNSS antenna and the camera-perspective centers are calibrated by

tachymetric and photogrammetric means; setup of which is depicted in Figure 9.8. It shows

the calibration field with the targets [Rehak and Skaloud, 2015]. The images are triggered by

an open-source autopilot (PixHawk) according to the mission plan. The camera signals the

time of each exposure via a pulse, the arrival of which is time-stamped by a dual frequency

dual constellation GNSS receiver. A second static receiver is employed in the vicinity of the

mission to provide a reference for the PPK, cm-level positioning that is used for INS-based

filtering/smoothing.

9.3.2 Mission

A rural area north-west of Lausanne of 1 kmˆ 0.7 km size and 30-40 m elevation changes is

utilized as a test field. Several agriculture roads go through this zone and on their surface

approximately 20 points of known coordinates are distributed and permanently signalized

with 0.3 mˆ 0.3 m targets. Part of the zone is flown over at 180 m AGL, while the whole area is

covered at 140 m AGL with 75% forward and 60% side overlap. Figure 9.9 shows the test-site

with the implemented ground control points along the roads. The exposure time is 1{5000 s,

so that the effect of smear on the ground sampling distance of 2.52 cm is negligible at 20 m{s.

The IMU data are lab-calibrated for non-orthogonality and constant scale-factors, while the

random offsets are calibrated in the field by the procedure described in Section 6.3. In less
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than one minute after static initialization the plane is thrown in the air where it stays for

almost 45 min.

The derived orientation reference for each image is based on the combined adjustment of

following observations: GNSS-observed coordinates of ground control points, INS/GNSS

camera position/attitude, automatically observed image coordinates of signalized targets and

Figure 9.7: Bottom and side view of the IGN camera carbon mount (length of 23 cm) together
with the IMU board and the embedded computer.

Figure 9.8: Calibration field with the targets and UAV fuselage.
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9.3. Micro-UAV

homologous points.

9.3.3 Effect of Initialization

We consider two INS/GNSS trajectories both derived by optimal smoothing with PPK posi-

tions and velocities updates at 1 Hz. One utilizes the inertial observation without calibration,

and the other applies the parameters of laboratory and pre-flight calibration procedure. Fig-

ure 9.10 plots the sequence of differences between the smoother predicted and updated roll

values (units 1/60 deg) at 1 Hz. The considerably higher oscillations are apparent for the

non-calibrated sensor as the filter/smoother tries to separate the observed discrepancies

between INS-predicted and GNSS-observed position and velocities into many elements —

error states — related to navigation and sensor biases. This is depicted on the left side of

200 m

N

Figure 9.9: Test-site showing the flight path (in red) of the micro UAV with distribution of
ground control points (black dots).
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Figure 9.10. The oscillations take about 25 min to dampen, a time when many missions of

small UAVs are already terminated.

The removal of sensor biases prior to the mission is represented in the filter by setting low

variance of their respective states. In a combined consequence (less systematic errors and

higher certitude) the oscillation magnitude of roll differences (on right side plot of Figure 9.10)

is considerably lower than in the non-calibrated scenario. In other words, the derived attitude

is exploitable for sensor orientation within a few minutes after the take-off.

9.3.4 Attitude Performance

Figure 9.11 compares the orientation differences between INS/GNSS derived trajectory to

that resulting from the photogrammetric adjustment, again for non-calibrated and mission

pre-calibrated IMU data. The differences of the former are considerably higher (> 2x for roll).

The variance of the encountered deviations are summarized in Table 9.3.

Figure 9.10: Differences between the predicted and updated roll values. Left: non-calibrated
IMU exhibiting oscillations 25 min into the flight. Right: in-lab plus pre-mission calibrated
IMU exploitable within minutes after take-off.
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Figure 9.11: Orientation differences between INS/GNSS derived trajectory and that resulting
from the photogrammetric adjustment for the IGN camera per photo and IMU.
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Table 9.3: Summary of the orientation differences between INS/GNSS derived trajectory and
that resulting from the photogrammetric adjustment for the IGN camera.

Sensor Error ω [mdeg] φ [mdeg] κ [mdeg]

IMU mean 12.0 21.7 18.6

uncalibrated std 139.8 143.1 154.5

max 307.8 253.1 510.6

IMU mean -3.7 2.2 9.7

precalibrated std 31.0 27.7 127.3

max 150.1 116.6 400.0
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10 Conclusion

10.1 Impact

This research aimed at developing the methodology to perform calibration of Micro-Electro-

Mechanical System (MEMS) sensors used for autonomous navigation and/or sensor orienta-

tion both in deterministic as well as stochastic aspects. The main focus was on MEMS Inertial

Measurement Unit (IMU), as their error structure is complicated and calibration is necessary.

The developed theoretical concepts were presented with examples and their implementation

shown in several fully functional software packages, that have practical and user-friendly

interfaces. The presented experimental testing on the two platforms (Unmanned Aerial Ve-

hicle (UAV) drone and Airborne Laser Scanning (ALS)) showed the impact of the developed

techniques (e.g., un-calibrated, calibrated, fused) both on the quality of the navigation and

direct orientation.

10.2 Summary of Contributions

The theoretical and engineering contributions of this research are summarized here.

10.2.1 Theoretical/Conceptual Contributions

Deterministic Error Calibration

A rigorous calibration scheme for deterministic errors is proposed, in which partial calibration

from in-lab conditions is utilized alongside the calibration parameters specific to each mission.

The procedure is especially adaptable to MEMS sensors mounted on a lightweight platform

with short mission duration as it allows to improve the quality attitude initialization.
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Chapter 10. Conclusion

Stochastic Error Calibration

The parameters of complex stochastic processes as those present in MEMS IMU are best

estimated within the Generalized Method of Wavelet Moments (GMWM) framework. How-

ever, up to now, these were considered as time invariant. An extension to this framework

was presented, in which a covariate such as temperature or motion-dynamics influence the

stochastic properties of the error signal. Such influence was presented on practical examples,

a contribution to their estimation was formalized, and their impact was also quantified. While

the theoretical proofs of the extended estimator were advanced in collaboration with leading

statisticians, Samuel Orso from the University of Geneva and Prof. Stéphane Guerrier from the

Pennsylvania State University, the implementation and the influence of such calibration on

the estimated trajectory was investigated.

10.2.2 Engineering Contributions

Online stochastic calibration platform

A free to use online sensor calibration platform was created, that analyses the stochastic

behavior of a given dataset. The basis for its implementation is the open-source "R" program

with the updated GMWM framework package that is hosted either locally or on a server. The

text-data format is accepted for the upload. The user does not need to learn "R" programming

language, but it performs its analysis through the developed intuitive graphical user interface.

This comfortable and fast usable platform is available online on a university web-server

and can be freely downloaded from github1. The implementation allows to analyze several

hours of data and to estimate model parameters together with their confidence levels with

the combination of commonly used error models such as Quantization Noise (QN), White

Noise (WN), Auto-Regressive model of order one (AR1), Random Walk (RW), and Drift (DR).

IMU board

The IMU board with multiple redundant sensors was developed and tested with external

equipment such as different GNSS-receivers and barometers. The first protocol allows for

accurate time stamping and storing of the data for treatment in post-processing. The second

protocol provides real-time streaming of the incoming measurements directly to a computer

at a rate of 1 Hz, which allows the user of this board to utilize the data in real-time navigation

and for pre-calibration tasks. This software can also ’re-play’ old datasets, to re-visit the same

conditions. Finally, this software allows to directly fuse the IMU data from the four redundant

sensors into one Synthetic IMU (SIMU), which is presented in the same manner as a ’fifth’

IMU. The sensor fusion is only possible after proper pre-calibration of the deterministic and

stochastic properties.

1https://smac-group.github.io/gui4gmwm/
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Sensor calibration software

This software allows calibrating the sensors such as magnetometer, gyroscope, and accelerom-

eter for deterministic errors either in laboratory or in-field prior to missions. The µPC, con-

nected to the IMU board, interprets the commands from the user via the ground control

station on which runs a client program with a graphical user interface. This allows for real-

time calibration of inertial and magnetic sensors with which the attitude initialization for the

navigation is performed.

Embedded integrated navigation

The real-time strapdown inertial navigation/integration originally developed for PC-platforms

[Skaloud et al., 2010] was adapted for the developed sensor board and embedded computer.

This represented (i) the need for the estimation of adequate stochastic parameters per each

IMU of the sensor board, (ii) communication of real-time calibrated values into initialization,

(iii) code porting to different OS (Linux) and processor architecture, while supporting either

multiple instances (up to 4 per IMU board) and/or the SIMU fusion for the estimation of the

trajectory (position, velocity, and attitude) within an extended Kalman filter.

10.3 Main Scientific Publications

Peer-Reviewed

S. Orso, P. Clausen, S. Guerrier and J. Skaloud, "Estimation of Inertial Sensor Stochastic Char-

acteristics under Varying Environmental Conditions," to be submitted in Spring 2019 to IEEE

Transactions on Signal Processing.

P. Clausen, J. Skaloud, R. Molinari, J. Lee and S. Guerrier, "Use of a new online calibration plat-

form with applications to inertial sensors," IEEE Aerospace and Electronic Systems Magazine,

vol. 33, no. 8, pp. 30-36, August 2018.

P. Clausen, J. Skaloud, S. Orso and S. Guerrier, "Construction of dynamically-dependent

stochastic error models," 2018 IEEE/ION Position, Location and Navigation Symposium

(PLANS), Monterey, CA, 2018, pp. 1336-1341.

P. Clausen, P. Gilliéron, H. Perakis, V. Gikas and I. Spyropoulou, "Assessment of positioning

accuracy of vehicle trajectories for different road applications," IET Intelligent Transport

Systems, vol. 11, no. 3, pp. 113-125, 4 2017.

P. Clausen, J. Skaloud, P. Gilliéron, B. Merminod, H. Perakis, V. Gikas and I. Spyropoulou,

Ioanna, "Position accuracy with redundant MEMS IMU for road applications," European

Journal of Navigation, vol. 13, pp. 4-12, 2015.
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Conference

J. Skaloud, P. Clausen, S. Guerrier and S. Orso, "Parameter determination of sensor stochastic

models under covariate dependency," Presentation, European Geosciences Union (EGU)

Conference, Vienna, Austria, April 2018.

P. Clausen, J. Skaloud, R. Molinari, J. Balamuta and S. Guerrier, "An overview of a new sen-

sor calibration platform," 2017 IEEE International Workshop on Metrology for AeroSpace

(MetroAeroSpace), Padua, 2017, pp. 364-368.

P. Clausen, M. Rehak, J. Skaloud, "UAV sensor orientation with pre-calibrated redundant

IMU/GNSS observations: preliminary results", 36te Dreiländertagung Photogrammetrie and

Fernerkundung der SGPF, DGPF und OVG, Bern, Switzerland, June 7-9, 2016.

Award

Best Demo Award, "A Computationally Efficient Framework for Automated Inertial Sensor

Calibration", 4th IEEE International Workshop on Metrology for Aerospace 2017, Padua, Italy.

10.4 Perspective

Several new concepts and questions surfaced during this work, which would make further

research and investigations justifiable.

Investigations on stochastic properties with multiple covariates

The influence of one covariate on the stochastic parameters was shown. Possible investigations

could go in the direction of using multiple covariates and investigate their impact on error

models and estimated quantities within integrated navigation.

Investigations on stochastic properties of fused sensors

Combining several IMUs with different/complementary stochastic properties within a SIMU

could be another object of investigations. This would require deriving an adaptive or uneven

weighing according to stationary or covariate-dependent error characteristics analyzed by the

presented extension of the GMWM framework

Influence of stochastic calibration in an online tool

The developed web interface ’gui4gmwm’ for stochastic characterization can estimate model

parameters in a simple and user-friendly way, which has broad applications inside and outside

the IMU-community. Nevertheless, the impact of employing stochastic models of higher com-

plexity on navigation is not directly quantified inside the application. A simulated trajectory

of different form and dynamic could be integrated inside the online version to demonstrate,

in a simplified way, the advantages of using the correctly estimated model parameters through

the GMWM framework.

150



10.4. Perspective

Increase of Real-Time Update Frequency

The current system (IMU board with its software) allows for a real-time data transfer of a

total of 4 IMUs sampled at 500 Hz at 1 Hz data packets. By increasing this rate to 10 Hz the

continuity of the navigation solution can be dramatically improved. This is especially critical

if the estimated trajectory is also used for platform control or guidance.
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A File Formats

A.1 Accepted GNSS Receiver Messages

The GECKO4NAV-board is connected to a GNSS receiver. The data is transmitted via a serial

protocol at a baud rate of 9600 or 38400. The data can either be in a specific binary format or

directly encoded as ASCII characters. The first format is used by the JPS-messages (see Subsec-

tion A.1.1), whereas the second format is used by the NMEA-messages (see Subsection A.1.2).

The GECKO4NAV-board registers whatever is transmitted and is decoded accordingly.

A.1.1 JPS

The JPS-message is a binary standard for messages sent from a GNSS-receiver. All the different

definitions and set-up options are discussed in [JAVAD, 2017]. The GECKO4NAV-board can

decode the following messages:

• GT: time of week, GPS week number;

• PV: cartesian coordinates: x, y, z and velocities v x, v y, v z with corresponding position

and velocity Spherical Error Probable (SEP), solution type;

• PG: geodetic coordinates: latitude, longitude, and ellipsoidal height with position SEP,

solution type;

• VG: geodetic velocities: northing, easting, and height velocities with corresponding

velocity SEP, solution type;

• DP: dilution of precision for east, horizontal, vertical, and time with solution type;

• PS: position statistics with the number of GPS satellites used in positioning.
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A.1.2 NMEA

The NMEA-messages are ASCII-characters sent from a GNSS-receiver. All the different defini-

tions and set-up options are discussed in [JAVAD, 2017]. The GECKO4NAV-board can decode

the following messages:

• GPZDA: time expressed in UTC and date;

• GPGGA: time expressed in UTC, geodetic coordinates (latitude, longitude, and altitude

above mean sea level), height of geoid above WGS84 ellipsoid, numbers of satellites

tracked, horizontal dilution of precision, quality of fix;

• GPRMC: time expressed in UTC, geodetic coordinates (latitude, longitude), speed over

ground, course with relation to geographic north;

• MCEXT: time expressed in UTC, up to 9 float-values separated by commas, special

lab-intern NMEA-message-string.
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B Geckoboard

B.1 Upload Specific Firmware

Once the firmware is loaded, it stays in the memory and is called automatically upon powering

the system. There are different firmware available. Their difference lies in the acquisition

frequency (100 Hz, 200 Hz, 250 Hz, 333 Hz, 500 Hz and 1000 Hz). They all require either 9600

bauds or 38400 bauds to communicate with the GNSS receiver via the serial connector and

the 1 Hz PPS-signal either through the TTL or the RS232 protocol. The following lines give an

example of how to upload the firmware to the GECKO4NAV-board through a Linux computer

with the usbtmc-protocol:

1. connect the system to a computer running Linux

2. some LEDs will blink, don’t bother

3. in terminal: ’sudo -s’

4. move to the repository where the firmware is stored

5. in terminal: ’echo "erase" > /dev/usbtmc0’

6. most right LED lights up for a few seconds

7. most right LED turns off

8. some LEDs will blink, don’t bother

9. in terminal: ’cat firmware_autostart_250Hz_javad_9600baud.do > /dev/usbtmc0’

10. most right LED lights up for a few seconds

11. most right LED turns off
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12. some LEDs will blink, don’t bother

13. done

14. power off the system

B.2 Download / Stream Data

This section explains how to transfer the data from the GECKO4NAV-board internal flash at

the end of a mission to the computer running on a Linux system with the usbtmc-protocol. To

be able to read out the measurement data with this method you first have to open a terminal.

In the terminal you perform the command sequence listed below:

1. in terminal: ’sudo -s’

2. go to the repository where you want to save the data

3. in terminal: ’echo "fifo?" > /dev/usbtmc0’

4. most left LED on the GECKO4NAV-board blinks red

5. in terminal: ’cat /dev/usbtmc0 > measurements.dat’

6. wait until most left LED is static green (may take some time)

7. in terminal: ’chmod 777 measurements.dat’

After this sequence the file measurements.dat will contain the complete measurement data

stream that can be converted by another program.

As explained in the previous chapter, after having transferred the data, the content of the flash

is erased. This can take some time, and the power source shall not be unplugged until deleting

is completed!

The same procedure can be executed in real-time during the acquisition. The difference here

is that instead of the whole dataset, only one single packet with the data acquired during

1 s is transmitted to the host computer. The data is still kept in the flash memory of the

GECKO4NAV-board board and is not erased.
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C Datasheets

This chapter assembles the specifications and datasheets of the sensors used in this document.
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C.1 IMAR: iIMU-FSAS

GESELLSCHAFT FÜR INERTIALE MESS-,
AUTOMATISIERUNGS- UND REGELSYSTEME MBH
WWW.IMAR-NAVIGATION.DE

iIMU-FSAS
IMU with Raw Data Interface and Integrated Power Regulation

The iIMU-FSAS is a very small size IMU con-
sisting of 3 fiber optical gyros (FOG) in closed-
loop technology of class 0.75 deg/hr and 3
servo-accelerometers of class 1 mg.

· < 0.75 deg/hr / 1 mg / 500 Hz
· higher MTBF than RLG systems
· Stabilisation tasks
· INS/GPS navigation
· Surveying applications
· Guidance and Control
· UAV applications
· used e.g. in NATO navy projects
· used in many countries / applica-

tions worldwide

The IMU is designed for ruggedized
applications and is internally equipped
with shock absorbers. As an option the
unit also can be delivered hard-mounted, i.e.
without shock-absorbers. The iIMU-FSAS can
be operated on a unregulated wide range input
supply voltage and is protected against wrong
polarity and moderate over-voltage. The data
output can be triggered and the data are sent

via RS422 on an HDLC protocol. As an option
the system can be delivered with an additional
integrated AHRS or navigation processor and
with odometer interface (see also our iNAV-FMS

series). All signals are
fed via an robust con-
nector of type MIL-C-
38999-III.

The iIMU-FSAS is
manufactured in Ger-
many and can be
used as a replace-
ment for Litton’s LN-
200 or Honeywell’s
HG1700/ 1900. Com-
pared to HG1700 the
iIMU-FSAS has more
than 10 times higher

MTBF.

Only a German export license is required for
using the device outside of Germany / Europe in
commercial applications. iMAR’s iIMU-FSAS is
currently in operation in China, India, Canada,
Korea, UK, Belgium, Austria, Switzerland etc.
(also for defence applications).

Technical Data of iIMU-FSAS:
Angular Rate Acceleration

Sensor Range: ± 800 °/s ± 5 g (option: ±25 g)
Bias: < 0.75 deg/hr (1 sigma) 1 mg
Resolution: 0.1 arcsec / LSB 0.05 / 215 m/s/LSB
Linearity / Scale error: < 0.03 % < 0.03 %
Angular random walk: < 0.16 °/ h < 50 µg/ Hz
Output: 3 x angular increment + 3 x velocity increment
Axis Misalignment: < 0.15 mrad between all sensor axes
Digital Interface: HDLC via RS422, 2 MBit/s (options: CAN, RS232),
Connector: MIL-C-38999-III, 22 pin ( male), type D38999/24WC35PN
Data rate: 0...500 Hz (external triggered)
Temperature, Shock, Vibration: -40...+71 °C (operating, case temperature),

-20...+60 °C (calibrated; other on request)
-40...+85 °C (storage)
90 g, 11 ms; 10...2000 Hz 6 g rms

Environment / MTBF/ MTTR: IP67 / > 35.000 hrs (estimated) / 10 minutes
Size, Weight: 116 x 128 x 98 mm (plus connector), approx. 1700 grams
Power, Start-up-Time: 10...34 V DC ; 16 W (max); < 1 sec

Power-On/Off control line available (TTL)

Please do not hesitate to contact us for further information.

iMAR GmbH · Im Reihersbruch 3 · D-66386 St. Ingbert / Germany
Phone: +49-(0)-6894-9657-0 · Fax: +49-(0)-6894-9657-22
http://www.imar-navigation.de · sales@imar-navigation.de

ã iMARÒ / '04 (Technical modifications reserved)
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C.2 Northrop Grumman: LN200

The LN-200 inertial family of 
fiber-optic gyros (FOG) offers 
the lowest accel/gyro bias, 

lowest random walk and the highest 
mean time between failures (MTBF).

Description
The LN-200 is a small, light weight, 
highly reliable, state-of-the art, 
fiber-optic, all-altitude, strap down 
Inertial Measurement Unit (IMU). 
The LN-200 has three solid-
state fiber-optic gyros and three 
solid-state silicon Micro Electro-
Mechanical System (MEMS) 
accelerometers in a compact 
package that measures velocity 
and angle changes in a coordinate 
system fixed relative to its case.  
Digital output data of incremental 
velocity and incremental angle 
are provided to user equipment 
over a digital serial data bus. The 
LN-200 is hermetically sealed 
and contains no moving parts, 
ensuring low noise, long usage and 
shelf life. The LN-200 has been in 
high rate production since 1994 
with over 25,000 units produced.

Configurations
The LN-200 is a versatile inertial 
measurement instrument and has a 
variety of configurations.  

LN-200
The LN-200 is a 1 degree/hr 
gyroscope, 300 mg accelerometer 
IMU with low white noise for 
superior performance.
LN-200E (Enhanced)
In the LN-200E, FOG path length 
is increased by adding more fiber 
onto the coil. Added fiber length 
increases gyro performance over 
the standard LN-200; LN 200E 
form factor is the same as the 
standard LN-200.  
LN-200A
The LN-200A allows the user to 
supply +28 volts to the IMU for ease 
of integration. The LN-200A is a 
modular top assembly that can be 
applied to any LN-200 product. 

Applications
Any LN-200 can be installed with 
variations of software, including: 

•	Attitude and Heading Reference 
System (AHRS)

•	Motion Compensation
•	Electro-optical/FLIR / Camera / 

Radar Stabilization
•	Guidance 
•	Fly-By-Wire (FBW) Flight Controls 
•	ACMI/TSPI*

The AHRS version of the LN-200 is 
certifiable to DO-178B Level A.

Advantages
The LN-200 FOG family is a 
hermetically sealed non-dithered, low-
voltage inertial sensor, ensuring long, 
reliable usage life.  It has the lowest 
gyro and accelerometer white noise 
and highest MTBF in the medium 
accuracy IMU class. 

* Air Combat Maneuvering Instrumentation/ 
Time, Space, Position.

LN-200 FOG Family
Advanced Airborne IMU/AHRS
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www.northropgrumman.com
© 2013 Northrop Grumman Systems Corporation
All rights reserved.

For more information, please 
contact:

Northrop Grumman  
Navigation and Maritime Systems 
21240 Burbank Boulevard 
Woodland Hills, CA 91367 USA 
1-866-NGNAVSYS (646-2879) 
www.northropgrumman.com

Performance
Accelerometer

Bias Repeatability 300 µg, 1σ
Scale Factor Accuracy 100 ppm, 1σ

Gyro
Bias Repeatability 0.5°/hr, 1σ
Scale Factor Accuracy 100 ppm, 1σ
Random Walk (max) 0.05°/√hr

Power Spectral Density
(PSD) level

* LN-200 “Enhanced” IMU Performance – Achieved with increased 
FOG length and additional accelerometer processing

Performance
AHRS

Heading Accuracy 0.50°, 1σ
Pitch & Roll Accuracy 0.25°, 1σ

Characteristics
Power < 16 W (over all environments)

Dimensions Diameter: 3.5 in. (8.89 cm)
Height: 5.2 in. (13.21 cm)

Weight < 2.75 lbs (1.25 kg)
Input Voltage +28 Volts
Input Voltage Range +13 to +35 Volts
Cooling Conduction

Performance  

Accelerometer
Bias Repeatability 300 µg to 3.0 milli-g, 1σ
Scale Factor Accuracy 300 to 5,000 ppm, 1σ

Gyro
Bias Repeatability 1°/hr to 3°/hr, 1σ
Scale Factor Accuracy 100 to 500 ppm, 1σ
Random Walk 0.07° to 0.15°/√hr

Power Spectral Density
(PSD) level

Characteristics
Power 12W steady-state (nominal)
Dimensions Diameter: 3.5 in. (8.89 cm)

Height: 3.35 in. (8.51 cm)
(plus connector)

Weight <1.65 lb (750g)
Temperature -54°C (-65°F) to + 71°C 

(160°F) continuous operation
Shock 90g, 6 msec terminal  

sawtooth
Input Voltage +5 Volt, ±15 Volt
Cooling Conduction to mounting plate
Vibration 15g rms, 20-20,000 Hz  

@ PSD
NTE 0.114 g2/Hz in any  
bandwidth

MTBF >20,000 hrs
Features

Angular Rate Up to ±11,459°/sec
Angular Acceleration ±100,000°/sec2

Acceleration >40g
Angular Attitude Any Orientation
Input/Output RS-485 serial data bus 

(SDLC)

LN-200 Core IMU

LN-200A IMU – Fly-By-Wire / AHRS 
Applications 

LN-200 “Enhanced” IMU Performance*

25572_032013

DS-476-JYC-0313 
ePROCS: 13-0454 
2013 WH Graphics
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C.3 Intersense: Navchip

 

Page 1 of 9 Information provided in this document is believed to be accurate, but is not guaranteed. InterSense reserves the 

right to change specifications at any time without notice.   ©2010 InterSense Incorporated.  All rights reserved. 

 

072-00120-0K09 Rev 1.0 

 www.intersense.com 
 

 
 

 

  

 
    

GENERAL DESCRIPTION 

The NavChip™ ISNC01 is a high precision 

MEMS 6-axis inertial measurement unit (IMU) . 

Using proprietary MEMS technologies and 

advanced signal processing techniques, the 

NavChip achieves a level of performance, 

miniaturization, and environmental ruggedness 

superior to competing IMUs using standard off-

the-shelf MEMS sensors. The ISNC01 is 

available in two variants:  the -000 component 

has a maximum angular rate range of  2000
o
/s, 

while the -010 has a maximum rate of 480
o
/s. 

 

The ISNC01 comes in a environmentally-sealed 

epoxy surface-mount package.  It operates from 

a wide 3.25-5.5 V supply range and consumes 

about 60mA (typ.), making it especially well-

suited for embedded applications where 

extremely small size, low cost, and low power 

consumption are required. It is fully factory-

calibrated and temperature compensated over an 

operating range of -40
o
C to +85

o
C. 

 

APPLICATIONS 

Camera &Antenna Stabilization 

Pedestrian Navigation 

Robotics 

UAVs 

GPS/INS integration 

Aiming & Alignment 

Agriculture, Construction & Mining Equipment 

 

 

 

 

FEATURES 

� Fully-compensated ∆Θ∆Θ∆Θ∆Θ and ∆∆∆∆V 

outputs 

� Gyro bias in-run stability 12
o
/hr  

� Angular random walk 0.25
o
/√hr  

� Velocity random walk 0.03 m/s/√hr 

� Full-scale acceleration 11g 

� Full-scale angular rates 2000
o
/s  

(ISNC01-000) or 480
o
/s  (ISNC01-

010) 

� Low power consumption 200mW 

� Selectable built-in test (BIT) modes 

for commanded and continuous 

diagnostic monitoring 

� Factory calibrated bias, scale factor 

and misalignment (-40
o
C to +85

o
C) 

� User selectable TTL UART or SPI-

compatible data output interfaces 

� Auxiliary analog and digital input 

channels 

� Embedded temperature sensor 

output 

� Single supply operation 3.25V to 5.5V 

� Selectable output data rates up to 

1000Hz 

� External sync pin can accept optional 

GPS pulse-per-second or faster 

synchronization signal 

 

NavChip™      

Precision 6-Axis MEMS Inertial Measurement Unit  

      ISNC01-000/010 
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InterSense Incorporated  ISNC01 Inertial Measurement Unit 

 

Page 2 of 9 Information provided in this document is believed to be accurate, but is not guaranteed. InterSense reserves the 

right to change specifications at any time without notice.   ©2010 InterSense Incorporated.  All rights reserved. 

 

072-00120-0K09 Rev 1.0 www.intersense.com 

ABSOLUTE MAXIMUM RATINGS 

 Vdd to GND………………...…-0.3V to +6.0V 

Dig In/Out Voltage to GND……-0.3V to +3.3V 

Analog Inputs to GND………....-0.3V to +3.3V 

Max Shock, Any Axis……..…….TBD 

 

 

PACKAGE CHARACTERISTICS 
18-Pin LCC 

Operating Temperature Range….-40
o
C to +85

o
C 

Storage Temperature Range.........-40
o
C to +85

o
C 

Lead Temperature (soldering, 10s).…..…+250
o
C 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. 

Functional operation at condition beyond those indicated in the operational sections of the specifications is not 

implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 

 

 

 

 
 

 

GYROSCOPE PERFORMANCE (3.3V, +25
o
C, unless otherwise specified)  

PARAMETER TYP MAX UNITS 

Full Scale Range 

        ISNC01-000: 

        ISNC01-010: 

 

± 2000 

± 480 

 

 

± 480 

 

°/s 

In-Run Bias Stability (Allan Variance) 12 15 °/hr, 1σ 

Bias Residual over Operating Temp Range ±0.15  °/s, 1σ 

Turn-On Bias Repeatability  ±0.5  °/s, 1σ 

g Sensitive Bias TBD  °/hr/g, 1σ 

Scale Factor Accuracy over Operating Temp Range TBD  %, 1σ 

Scale Factor Linearity (best fit over  ± 100°/s) 0.1  %, 1σ 

Scale Factor Linearity (best fit over full scale range) 0.5  %, 1σ 

Angle Random Walk  0.25 0.3 °/√hr 

Noise Density (rms)  0.004 0.005 °/s/√Hz 

Frequency Response  (90° Phase Shift) 100  Hz 

Axis Mutual Alignment Accuracy 3  mRad 

 

ACCELEROMETER PERFORMANCE (3.3V, +25
o
C, unless otherwise specified)  

PARAMETER TYP MAX UNITS 

Full Scale Range ± 8  g 

In-Run Bias Stability (Allan Variance) 0.1  mg, 1σ 

Bias Residual over Operating Temp Range ±10  mg, 1σ 

Turn-On Bias Repeatability TBD  mg, 1σ 

Scale Factor Linearity (best fit over  ± 1g) 0.1  %, 1σ 

Scale Factor Linearity (best fit over full scale range) 1  %, 1σ 

Velocity Random Walk 0.05  m/s/√hr 

Noise Density (rms) 70  ug/√Hz 

Frequency Response (90° Phase Shift) 100  Hz 
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C.4 XSENS: MTi-G

     

  Document MT0137P.G
© Xsens Technologies B.V. MTi‐G User Manual and Technical Documentation
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4.5 Status Byte (BIT) 
This byte contains flags that represent the status and estimated validity of the output of the MT. The 
currently defined flags are summarized below. A flag is set to 1 when the relevant condition is true. 
 

 
 
Self Test: This flag indicates if the power‐    test completed successfully. up self
XKF Valid: This flag indicates if input into the XKF orientation filter is reliable and / 

or complete. If for example the measurement range of internal sensors
is exceeded, orientation output cannot be reliably estimated and the 

 For the MTi-G, the XKF flag will also become 
 remains invalid for an extended period 

GPS Fix

 

XKF flag will drop to 0.
invalid if the GPS status

:   This  flag  indicates  if  the GPS unit has a proper  fix. The  flag  is only available  in MTi‐G 
units. 

NoRotation Status (only available for MTi/MTx) 

4 ation .6 Calibrated data performance specific
    rate of 

turn 
accele‐
ration 

magnetic 
field 

tempe‐
rature 

static pressure

Unit   [deg/s] [m/s2] [mGauss] [°C]  [Pa] 
Dimensions   3 axes 3 axes 3 axes ‐  ‐ 
Full Scale  [units]  +/‐ 300 +/‐ 50 +/‐ 750 ‐55 ‐ +125  30 – 120∙ 103

Linearity  [% of FS]  0.1 0.2 0.2 <1  0.5 

Bias stability  [units 1σ]22 1  0.02  0.1  0.523 100  
/year 

Scale factor 
[% 1σ]22 ‐  0.03  0.5  ‐  ‐ 

stability 
 

Noise density  [units /√Hz]  0.0524 0.002 0.5 (1σ)25 -  426

Alignment error(27)  [deg]  0.1 0.1 0.1 ‐  ‐ 
Bandwidth  [Hz]  40 30 10 ‐  ‐ 
A/D resolution  [bits]  16 16 16 12  9 

Table  1,  Calibrated  inertial,  magnetic  and  static  pressure  data  performance  specification.  These 
specifications are valid for an MTi‐G with standa  configuration. rd

                                                                 
emperature compensated, deviation over operating22  temperature range (1σ) 

23  resolution of digital readout is 0.0625, absolute accuracy is ±0.5 °C 
24 rent specifications see MTi‐G User Manual version B. 
25   be  susceptible  to  electro‐magnetic  radiation.  For  example,  a  1  kHz 
amplitude  high frequency EM radiation of 80‐1000 MHz of 10 V/m or higher may result in a noise 
d
26

27 onality (calibration) 

 t
 minimal
 Sensors with ID < 500500 have diffe , 

r  noise  density  can  magnetomete
 modulated

ensity of 16 times the typical value 
 Equivalent to approximately 0.3m/√Hz 
 after compensation for non‐orthog
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C.5 TE Connectivity Measurement Specialties: MS5611-01BA03

 

MS5611-01BA03 Barometric Pressure Sensor, with stainless steel cap  

DA5611-01BA03_011 www.meas-spec.com       Oct. 26, 2012 
000056111624 ECN1742 1/20 

 

 
• High resolution module, 10 cm 
• Fast conversion down to 1 ms 
• Low power, 1 µA (standby < 0.15 µA) 
• QFN package 5.0 x 3.0 x 1.0 mm3 
• Supply voltage 1.8 to 3.6 V 
• Integrated digital pressure sensor (24 bit ΔΣ ADC) 
• Operating range: 10 to 1200 mbar, -40 to +85 °C 
• I2C and SPI interface up to 20 MHz 
• No external components (Internal oscillator) 
• Excellent long term stability 

 

DESCRIPTION 

The MS5611-01BA is a new generation of high resolution altimeter sensors from MEAS Switzerland with SPI 
and I2C bus interface. This barometric pressure sensor is optimized for altimeters and variometers with an 
altitude resolution of 10 cm. The sensor module includes a high linearity pressure sensor and an ultra low power 
24 bit ΔΣ ADC with internal factory calibrated coefficients. It provides a precise digital 24 Bit pressure and 
temperature value and different operation modes that allow the user to optimize for conversion speed and 
current consumption. A high resolution temperature output allows the implementation of an 
altimeter/thermometer function without any additional sensor. The MS5611-01BA can be interfaced to virtually 
any microcontroller. The communication protocol is simple, without the need of programming internal registers in 
the device. Small dimensions of only 5.0 mm x 3.0 mm and a height of only 1.0 mm allow for integration in 
mobile devices. This new sensor module generation is based on leading MEMS technology and latest benefits 
from MEAS Switzerland proven experience and know-how in high volume manufacturing of altimeter modules, 
which have been widely used for over a decade. The sensing principle employed leads to very low hysteresis 
and high stability of both pressure and temperature signal. 

 

FEATURES

FIELD OF APPLICATION TECHNICAL DATA 

• Mobile altimeter / barometer systems Sensor Performances (VDD = 3 V) 

• Bike computers Pressure Min Typ Max Unit 

• Variometers Range 10  1200 mbar 

• Height sensing for medical alarms ADC 24 bit 

• Indoor navigation Resolution (1) 0.065 / 0.042 / 0.027 
/ 0.018 / 0.012 mbar 

 
FUNCTIONAL BLOCK DIAGRAM 

 VDD

GND

PS

SCLK

SDO

SDI/SDA

Meas. MUX

ADC

Digital
Interface

Memory
(PROM)
128 bits

SENSOR

SGND

+IN

-IN
dig.

Filter

Sensor
Interface IC

PGA

CSB

 

Accuracy 25°C, 750 mbar -1.5  +1.5 mbar 
Error band,  -20°C to +85°C  
450 to 1100 mbar (2) -2.5  +2.5 mbar 

Response time (1) 0.5 / 1.1 / 2.1 / 4.1 / 
8.22 ms 

Long term stability  ±1  mbar/yr 

Temperature Min Typ Max Unit 

Range -40  +85 °C 
Resolution  <0.01  °C 
Accuracy -0.8  +0.8 °C 
Notes: (1) Oversampling Ratio: 256 / 512 / 1024 / 2048 / 4096 
            (2) With autozero at one pressure point 
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D GMWM Analysis

This chapter assembles the stochastic properties of the redundant sensor board called ID2 with

its four IMUs and their fusion as a synthetic IMU. The data with a sampling frequency of 500 Hz

and the results are stored on the server under "\common\DATA\navchip\static\2018_01\id2".

This chapter assembles the stochastic properties of the redundant sensor board called ID3

with its two IMUs. The data with a sampling frequency of 250 Hz and the results are stored on

the server under "\common\DATA\navchip\static\2014_04\id_3_2014_04_08_5_hours".

This chapter assembles the stochastic properties of the redundant sensor board with the new

Navchip V2. The data with a sampling frequency of 200 Hz and the results are stored on the

server under "\common\DATA\navchip\static\2017_06\nc_v2_evalboard_on_id5\raw".
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Appendix D. GMWM Analysis

D.1 ID2 - NC0

Table D.1: Gyroscope X-axis

Process R mapping conversion

QN 5.1596e-06 - -

WN 1.0475e-06 - σW N : 9.5
”

deg

h
?

Hz

ı

AR1 9.9933e-01 β: 3.357e-01 1{β: 2.9 [s]

SIGMA2 7.7946e-12 σ2
GM : 5.809e-09 σGM : 0.7

”

deg

h
?

Hz

ı

AR1 9.9995e-01 β: 2.410e-02 1{β: 41.5 [s]

SIGMA2 1.1575e-12 σ2
GM : 1.201e-08 σGM : 1.01

”

deg

h
?

Hz

ı

RW 3.7396e-14 - σRW : 0.00178
”

deg

h
?

Hz

ı

Table D.2: Gyroscope Y-axis

Process R mapping conversion

QN 9.0654e-06 - -

WN 1.2232e-06 - σW N : 10.3
”

deg

h
?

Hz

ı

AR1 9.9792e-01 β: 1.04e+00 1{β: 0.96 [s]

SIGMA2 2.6735e-11 σ2
GM : 6.433e-09 σGM : 0.74

”

deg

h
?

Hz

ı

AR1 9.9992e-01 β: 3.85e-02 1{β: 25.97 [s]

SIGMA2 1.5122e-12 σ2
GM : 9.820e-09 σGM : 0.92

”

deg

h
?

Hz

ı

RW 6.5791e-13 - σRW : 0.00748
”

deg

h
?

Hz

ı

Table D.3: Gyroscope Z-axis

Process R mapping conversion

QN 6.8458e-06 - -

WN 1.0113e-06 - σW N : 9.3
”

deg

h
?

Hz

ı

AR1 9.9810e-01 β: 9.48e-01 1{β: 1.06 [s]

SIGMA2 3.5917e-11 σ2
GM : 9.485e-09 σGM : 0.9

”

deg

h
?

Hz

ı

AR1 9.9989e-01 β: 5.19e-02 1{β: 19.3 [s]

SIGMA2 1.0119e-12 σ2
GM : 4.874e-09 σGM : 0.64

”

deg

h
?

Hz

ı

RW 2.2446e-13 - σRW : 0.00437
”

deg

h
?

Hz

ı

168



D.1. ID2 - NC0

Table D.4: Accelerometer X-axis

Process R mapping conversion

QN 2.8247e-05 - -

WN 1.1952e-04 - σW N : 49
”

µg
?

Hz

ı

AR1 9.9775e-01 β: 1.12e-00 1{β: 0.89 [s]

SIGMA2 2.4884e-09 σ2
GM : 5.545e-07 σGM : 3.35

”

µg
?

Hz

ı

AR1 9.9903e-01 β: 4.82e-01 1{β: 2.07 [s]

SIGMA2 7.1911e-10 σ2
GM : 3.729e-07 σGM : 2.73

”

µg
?

Hz

ı

RW 7.4811e-12 - σRW : 0.01223
”

µg
?

Hz

ı

Table D.5: Accelerometer Y-axis

Process R mapping conversion

QN 5.4322e-05 - -

WN 6.8811e-05 - σW N : 38
”

µg
?

Hz

ı

AR1 9.5523e-01 β: 2.29e+01 1{β: 0.05 [s]

SIGMA2 5.7159e-07 σ2
GM : 6.530e-06 σGM : 11.45

”

µg
?

Hz

ı

AR1 9.9938e-01 β: 3.09e-01 1{β: 3.23 [s]

SIGMA2 5.4619e-10 σ2
GM : 4.416e-07 σGM : 2.97

”

µg
?

Hz

ı

RW 3.7165e-12 - σRW : 0.00862
”

µg
?

Hz

ı

Table D.6: Accelerometer Z-axis

Process R mapping conversion

QN 8.4058e-05 - -

WN 6.3854e-05 - σW N : 36
”

µg
?

Hz

ı

AR1 9.7292e-01 β: 1.37e+01 1{β: 0.08 [s]

SIGMA2 5.6116e-07 σ2
GM : 1.050e-05 σGM : 14.53

”

µg
?

Hz

ı

AR1 9.9961e-01 β: 1.95e-01 1{β: 5.13 [s]

SIGMA2 1.4530e-09 σ2
GM : 1.867e-06 σGM : 6.11

”

µg
?

Hz

ı

RW 3.6520e-12 - σRW : 0.00854
”

µg
?

Hz

ı
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Appendix D. GMWM Analysis

D.2 ID2 - NC1

Table D.7: Gyroscope X-axis

Process R mapping conversion

QN 7.8866e-06 - -

WN 7.6081e-07 - σW N : 8.1
”

deg

h
?

Hz

ı

AR1 9.9869e-01 β: 6.575e-01 1{β: 1.52 [s]

SIGMA2 2.2740e-11 σ2
GM : 8.657e-09 σGM : 0.9

”

deg

h
?

Hz

ı

AR1 9.9995e-01 β: 2.605e-02 1{β: 38.39 [s]

SIGMA2 9.5718e-13 σ2
GM : 9.186e-09 σGM : 0.88

”

deg

h
?

Hz

ı

RW 3.7041e-14 - σRW : 0.00178
”

deg

h
?

Hz

ı

Table D.8: Gyroscope Y-axis

Process R mapping conversion

QN 6.4882e-06 - -

WN 2.2752e-06 - σW N : 13.96
”

deg

h
?

Hz

ı

AR1 9.9885e-01 β: 5.77e-01 1{β: 1.73 [s]

SIGMA2 2.1112e-11 σ2
GM : 9.156e-09 σGM : 0.9

”

deg

h
?

Hz

ı

AR1 9.9993e-01 β: 3.43e-02 1{β: 29.20 [s]

SIGMA2 2.0367e-12 σ2
GM : 1.487e-08 σGM : 1.12

”

deg

h
?

Hz

ı

RW 3.7955e-14 - σRW : 0.00180
”

deg

h
?

Hz

ı

Table D.9: Gyroscope Z-axis

Process R mapping conversion

QN 9.0919e-06 - -

WN 4.8246e-07 - σW N : 6.44
”

deg

h
?

Hz

ı

AR1 9.9692e-01 β: 1.54e-00 1{β: 0.64 [s]

SIGMA2 4.6474e-11 σ2
GM : 7.549e-09 σGM : 0.8

”

deg

h
?

Hz

ı

AR1 9.9992e-01 β: 4.15e-02 1{β: 24.12 [s]

SIGMA2 1.2381e-12 σ2
GM : 7.467e-09 σGM : 0.8

”

deg

h
?

Hz

ı

RW 2.6609e-13 - σRW : 0.00476
”

deg

h
?

Hz

ı
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D.2. ID2 - NC1

Table D.10: Accelerometer X-axis

Process R mapping conversion

QN 3.7227e-05 - -

WN 1.1306e-04 - σW N : 48
”

µg
?

Hz

ı

AR1 9.9330e-01 β: 3.36e+00 1{β: 0.30 [s]

SIGMA2 3.1118e-09 σ2
GM : 2.331e-07 σGM : 2.16

”

µg
?

Hz

ı

AR1 9.9959e-01 β: 2.04e-01 1{β: 4.89 [s]

SIGMA2 3.1520e-10 σ2
GM : 3.859e-07 σGM : 2.8

”

µg
?

Hz

ı

RW 1.0720e-11 - σRW : 0.01464
”

µg
?

Hz

ı

Table D.11: Accelerometer Y-axis

Process R mapping conversion

QN 2.6752e-05 - -

WN 8.7225e-05 - σW N : 42
”

µg
?

Hz

ı

AR1 8.0987e-01 β: 1.05e+02 1{β: 0.01 [s]

SIGMA2 2.1382e-06 σ2
GM : 6.214e-06 σGM : 11.15

”

µg
?

Hz

ı

AR1 9.9916e-01 β: 4.206e-01 1{β: 2.38 [s]

SIGMA2 8.7117e-10 σ2
GM : 5.183e-07 σGM : 3.27

”

µg
?

Hz

ı

RW 3.7214e-12 - σRW : 0.00863
”

µg
?

Hz

ı

Table D.12: Accelerometer Z-axis

Process R mapping conversion

QN 3.4358e-04 - -

WN 2.7640e-05 - σW N : 24
”

µg
?

Hz

ı

AR1 8.4422e-01 β: 8.47e+01 1{β: 0.01 [s]

SIGMA2 3.6514e-06 σ2
GM : 1.271e-05 σGM : 15.94

”

µg
?

Hz

ı

AR1 9.9922e-01 β: 3.91e-01 1{β: 2.56 [s]

SIGMA2 1.4349e-09 σ2
GM : 9.175e-07 σGM : 4.3

”

µg
?

Hz

ı

RW 1.4280e-11 - σRW : 0.01690
”

µg
?

Hz

ı
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Appendix D. GMWM Analysis

D.3 ID2 - NC2

Table D.13: Gyroscope X-axis

Process R mapping conversion

QN 6.2269e-06 - -

WN 9.7437e-07 - σW N : 9.2
”

deg

h
?

Hz

ı

AR1 9.9878e-01 β: 6.111e-01 1{β: 1.63 [s]

SIGMA2 2.5836e-11 σ2
GM : 1.058e-08 σGM : 0.95

”

deg

h
?

Hz

ı

AR1 9.9995e-01 β: 2.510e-02 1{β: 39.84 [s]

SIGMA2 1.0849e-12 σ2
GM : 1.081e-08 σGM : 0.96

”

deg

h
?

Hz

ı

RW 3.7244e-14 - σRW : 0.00178
”

deg

h
?

Hz

ı

Table D.14: Gyroscope Y-axis

Process R mapping conversion

QN 7.3856e-06 - -

WN 1.1724e-06 - σW N : 10
”

deg

h
?

Hz

ı

AR1 9.9788e-01 β: 1.06e+00 1{β: 0.94 [s]

SIGMA2 3.6630e-11 σ2
GM : 8.661e-09 σGM : 0.85

”

deg

h
?

Hz

ı

AR1 9.9993e-01 β: 3.72e-02 1{β: 26.88 [s]

SIGMA2 1.6165e-12 σ2
GM : 1.086e-08 σGM : 0.96

”

deg

h
?

Hz

ı

RW 3.7686e-14 - σRW : 0.00179
”

deg

h
?

Hz

ı

Table D.15: Gyroscope Z-axis

Process R mapping conversion

QN 8.0358e-06 - -

WN 8.1825e-07 - σW N : 8.4
”

deg

h
?

Hz

ı

AR1 9.9852e-01 β: 7.42e-01 1{β: 1.35 [s]

SIGMA2 2.8755e-11 σ2
GM : 9.700e-09 σGM : 0.91

”

deg

h
?

Hz

ı

AR1 9.9992e-01 β: 3.84e-02 1{β: 26.07 [s]

SIGMA2 1.4515e-12 σ2
GM : 9.462e-09 σGM : 0.90

”

deg

h
?

Hz

ı

RW 2.8391e-14 - σRW : 0.00155
”

deg

h
?

Hz

ı
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D.3. ID2 - NC2

Table D.16: Accelerometer X-axis

Process R mapping conversion

QN 3.23497e-05 - -

WN 1.1491e-04 - σW N : 48
”

µg
?

Hz

ı

AR1 9.9339e-01 β: 3.32e-00 1{β: 0.30 [s]

SIGMA2 2.6130e-09 σ2
GM : 1.982e-07 σGM : 1.99

”

µg
?

Hz

ı

AR1 9.9962e-01 β: 1.89e-01 1{β: 5.29 [s]

SIGMA2 3.4556e-10 σ2
GM : 4.572e-07 σGM : 3.0

”

µg
?

Hz

ı

RW 1.0974e-11 - σRW : 0.0148
”

µg
?

Hz

ı

Table D.17: Accelerometer Y-axis

Process R mapping conversion

QN 2.5243e-05 - -

WN 1.0336e-04 - σW N : 46
”

µg
?

Hz

ı

AR1 8.9644e-01 β: 5.47e+01 1{β: 0.02 [s]

SIGMA2 5.2592e-07 σ2
GM : 2.6780e-06 σGM : 7.32

”

µg
?

Hz

ı

AR1 9.9928e-01 β: 3.62e-01 1{β: 2.76 [s]

SIGMA2 1.5415e-09 σ2
GM : 1.065e-06 σGM : 4.7

”

µg
?

Hz

ı

RW 9.9368e-12 - σRW : 0.0141
”

µg
?

Hz

ı

Table D.18: Accelerometer Z-axis

Process R mapping conversion

QN 3.7912e-04 - -

WN 2.4267e-05 - σW N : 22
”

µg
?

Hz

ı

AR1 8.3578e-01 β: 8.997e+01 1{β: 0.01 [s]

SIGMA2 3.8079e-06 σ2
GM : 1.263e-05 σGM : 15.89

”

µg
?

Hz

ı

AR1 9.9907e-01 β: 4.66e-01 1{β: 2.14 [s]

SIGMA2 2.5970e-09 σ2
GM : 1.393e-06 σGM : 5.3

”

µg
?

Hz

ı

RW 3.4388e-11 - σRW : 0.0262
”

µg
?

Hz

ı

173



Appendix D. GMWM Analysis

D.4 ID2 - NC3

Table D.19: Gyroscope X-axis

Process R mapping conversion

QN 9.1311e-06 - -

WN 7.4083e-07 - σW N : 8.0
”

deg

h
?

Hz

ı

AR1 9.9737e-01 β: 1.319e-00 1{β: 0.76 [s]

SIGMA2 5.7140e-11 σ2
GM : 1.086e-08 σGM : 0.96

”

deg

h
?

Hz

ı

AR1 9.9995e-01 β: 2.340e-02 1{β: 42.7 [s]

SIGMA2 1.1850e-12 σ2
GM : 1.266e-08 σGM : 1.04

”

deg

h
?

Hz

ı

RW 3.7556e-14 - σRW : 0.00179
”

deg

h
?

Hz

ı

Table D.20: Gyroscope Y-axis

Process R mapping conversion

QN 7.1321e-06 - -

WN 1.6898e-06 - σW N : 12.0
”

deg

h
?

Hz

ı

AR1 9.9787e-01 β: 1.07e+00 1{β: 0.93 [s]

SIGMA2 2.2571e-11 σ2
GM : 5.294e-09 σGM : 0.67

”

deg

h
?

Hz

ı

AR1 9.9992e-01 β: 3.84e-02 1{β: 26.04 [s]

SIGMA2 1.5102e-12 σ2
GM : 9.832e-09 σGM : 0.92

”

deg

h
?

Hz

ı

RW 3.7535e-14 - σRW : 0.00179
”

deg

h
?

Hz

ı

Table D.21: Gyroscope Z-axis

Process R mapping conversion

QN 9.7948e-06 - -

WN 5.2658e-07 - σW N : 6.7
”

deg

h
?

Hz

ı

AR1 9.9768e-01 β: 1.16e-00 1{β: 0.86 [s]

SIGMA2 3.7837e-11 σ2
GM : 8.167e-09 σGM : 0.83

”

deg

h
?

Hz

ı

AR1 9.9992e-01 β: 3.93e-02 1{β: 25.44 [s]

SIGMA2 1.3575e-12 σ2
GM : 8.636e-09 σGM : 0.86

”

deg

h
?

Hz

ı

RW 4.4930e-13 - σRW : 0.00618
”

deg

h
?

Hz

ı
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D.4. ID2 - NC3

Table D.22: Accelerometer X-axis

Process R mapping conversion

QN 4.0584e-05 - -

WN 1.1371e-04 - σW N : 48
”

µg
?

Hz

ı

AR1 9.8959e-01 β: 5.23e-00 1{β: 0.19 [s]

SIGMA2 1.8179e-09 σ2
GM : 8.781e-08 σGM : 1.325

”

µg
?

Hz

ı

AR1 9.9938e-01 β: 3.11e-01 1{β: 3.22 [s]

SIGMA2 1.7129e-10 σ2
GM : 1.379e-07 σGM : 1.7

”

µg
?

Hz

ı

RW 4.7695e-12 - σRW : 0.00977
”

µg
?

Hz

ı

Table D.23: Accelerometer Y-axis

Process R mapping conversion

QN 5.2198e-05 - -

WN 1.0144e-04 - σW N : 46
”

µg
?

Hz

ı

AR1 8.8973e-01 β: 5.84e+01 1{β: 0.02 [s]

SIGMA2 2.5058e-07 σ2
GM : 1.2025e-06 σGM : 4.9

”

µg
?

Hz

ı

AR1 9.9871e-01 β: 6.45e-01 1{β: 1.55 [s]

SIGMA2 6.4008e-10 σ2
GM : 2.483e-07 σGM : 2.3

”

µg
?

Hz

ı

RW 5.6121e-12 - σRW : 0.01059
”

µg
?

Hz

ı

Table D.24: Accelerometer Z-axis

Process R mapping conversion

QN 1.6877e-04 - -

WN 9.0674e-05 - σW N : 43
”

µg
?

Hz

ı

AR1 9.7516e-01 β: 1.26e+01 1{β: 0.08 [s]

SIGMA2 1.5013e-07 σ2
GM : 3.060e-06 σGM : 7.82

”

µg
?

Hz

ı

AR1 9.9938e-01 β: 3.12e-01 1{β: 3.21 [s]

SIGMA2 1.5961e-09 σ2
GM : 1.281e-06 σGM : 5.1

”

µg
?

Hz

ı

RW 3.7749e-11 - σRW : 0.02748
”

µg
?

Hz

ı
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Appendix D. GMWM Analysis

D.5 ID2 - Synthetic NC

Table D.25: Gyroscope X-axis

Process R mapping conversion

QN 2.0352e-06 - -

WN 1.9121e-07 - σW N : 4.1
”

deg

h
?

Hz

ı

AR1 9.9636e-01 β: 1.83e-00 1{β: 0.55 [s]

SIGMA2 1.5395e-11 σ2
GM : 2.116e-09 σGM : 0.43

”

deg

h
?

Hz

ı

AR1 9.9992e-01 β: 4.25e-02 1{β: 23.535 [s]

SIGMA2 5.2672e-13 σ2
GM : 3.098e-09 σGM : 0.52

”

deg

h
?

Hz

ı

RW 1.7501e-14 - σRW : 0.00122
”

deg

h
?

Hz

ı

Table D.26: Gyroscope Y-axis

Process R mapping conversion

QN 2.0289e-06 - -

WN 3.9185e-07 - σW N : 5.8
”

deg

h
?

Hz

ı

AR1 9.9809e-01 β: 9.54e-01 1{β: 1.05 [s]

SIGMA2 6.5234e-12 σ2
GM : 1.713e-09 σGM : 0.39

”

deg

h
?

Hz

ı

AR1 9.9984e-01 β: 8.15e-02 1{β: 12.27 [s]

SIGMA2 6.3292e-13 σ2
GM : 1.942e-09 σGM : 0.41

”

deg

h
?

Hz

ı

RW 6.3061e-13 - σRW : 0.00232
”

deg

h
?

Hz

ı

Table D.27: Gyroscope Z-axis

Process R mapping conversion

QN 1.9570e-06 - -

WN 2.3955e-07 - σW N : 4.5
”

deg

h
?

Hz

ı

AR1 9.9786e-01 β: 1.07e-00 1{β: 0.93 [s]

SIGMA2 6.7916e-12 σ2
GM : 1.586e-09 σGM : 0.37

”

deg

h
?

Hz

ı

AR1 9.9983e-01 β: 8.50e-02 1{β: 11.77 [s]

SIGMA2 5.8833e-13 σ2
GM : 1.732e-09 σGM : 0.39

”

deg

h
?

Hz

ı

RW 6.1979e-14 - σRW : 0.00229
”

deg

h
?

Hz

ı
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D.5. ID2 - Synthetic NC

Table D.28: Accelerometer X-axis

Process R mapping conversion

QN 1.5216e-05 - -

WN 3.0731e-05 - σW N : 25
”

µg
?

Hz

ı

AR1 9.5515e-01 β: 2.29e+01 1{β: 0.04 [s]

SIGMA2 2.1667e-08 σ2
GM : 2.471e-07 σGM : 2.23

”

µg
?

Hz

ı

AR1 9.9971e-01 β: 1.45e-01 1{β: 6.88 [s]

SIGMA2 5.9314e-11 σ2
GM : 1.021e-07 σGM : 1.43

”

µg
?

Hz

ı

RW 2.3298e-12 - σRW : 0.00683
”

µg
?

Hz

ı

Table D.29: Accelerometer Y-axis

Process R mapping conversion

QN 6.3327e-06 - -

WN 2.8606e-05 - σW N : 24
”

µg
?

Hz

ı

AR1 9.5999e-01 β: 2.04e+01 1{β: 0.05 [s]

SIGMA2 4.3982e-08 σ2
GM : 5.609e-07 σGM : 3.35

”

µg
?

Hz

ı

AR1 9.9972e-01 β: 1.41e-01 1{β: 7.1 [s]

SIGMA2 8.6745e-11 σ2
GM : 1.541e-07 σGM : 1.76

”

µg
?

Hz

ı

RW 1.3699e-12 - σRW : 0.00523
”

µg
?

Hz

ı

Table D.30: Accelerometer Z-axis

Process R mapping conversion

QN 9.8402e-05 - -

WN 3.1327e-05 - σW N : 25
”

µg
?

Hz

ı

AR1 9.7541e-01 β: 1.25e+01 1{β: 0.08 [s]

SIGMA2 4.6037e-08 σ2
GM : 9.478e-07 σGM : 4.36

”

µg
?

Hz

ı

AR1 9.9972e-01 β: 1.38e-01 1{β: 7.2 [s]

SIGMA2 2.0656e-10 σ2
GM : 3.743e-07 σGM : 2.74

”

µg
?

Hz

ı

RW 6.1121e-12 - σRW : 0.01106
”

µg
?

Hz

ı
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Appendix D. GMWM Analysis

D.6 ID3 - NC0

Table D.31: Gyroscope X-axis

Process R mapping conversion

QN 1.9805e-06 - -

WN 4.6464e-07 - σW N : 8.89
”

deg

h
?

Hz

ı

AR1 9.9683e-01 β: 7.95e-01 1{β: 1.26 [s]

SIGMA2 4.9769e-11 σ2
GM : 7.852e-09 σGM : 1.16

”

deg

h
?

Hz

ı

AR1 9.9997e-01 β: 8.60e-03 1{β: 116.28 [s]

SIGMA2 1.4152e-12 σ2
GM : 2.0569e-08 σGM : 1.87

”

deg

h
?

Hz

ı

RW 1.1787e-14 - σRW : 0.001416
”

deg

h
?

Hz

ı

Table D.32: Gyroscope Y-axis

Process R mapping conversion

QN 2.9208e-06 - -

WN 5.7064e-07 - σW N : 9.85
”

deg

h
?

Hz

ı

AR1 9.9634e-01 β: 9.18e-01 1{β: 1.09 [s]

SIGMA2 1.0002e-10 σ2
GM : 1.367e-08 σGM : 1.53

”

deg

h
?

Hz

ı

AR1 9.9996e-01 β: 1.03e-02 1{β: 97.56 [s]

SIGMA2 1.3414e-12 σ2
GM : 1.636e-08 σGM : 1.67

”

deg

h
?

Hz

ı

RW 4.8479e-15 - σRW : 0.0009
”

deg

h
?

Hz

ı

Table D.33: Gyroscope Z-axis

Process R mapping conversion

QN 1.8793e-06 - -

WN 5.5659e-07 - σW N : 9.73
”

deg

h
?

Hz

ı

AR1 9.9603e-01 β: 9.95e-01 1{β: 1.01 [s]

SIGMA2 9.9782e-11 σ2
GM : 1.259e-08 σGM : 1.46

”

deg

h
?

Hz

ı

AR1 9.9994e-01 β: 1.47e-02 1{β: 67.8 [s]

SIGMA2 3.2971e-12 σ2
GM : 2.794e-08 σGM : 2.18

”

deg

h
?

Hz

ı

RW 9.4035e-14 - σRW : 0.004
”

deg

h
?

Hz

ı
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D.6. ID3 - NC0

Table D.34: Accelerometer X-axis

Process R mapping conversion

QN 1.5426e-05 - -

WN 6.7604e-05 - σW N : 52.0
”

µg
?

Hz

ı

RW 1.3993e-11 - σRW : 0.023658
”

µg
?

Hz

ı

Table D.35: Accelerometer Y-axis

Process R mapping conversion

QN 1.4833e-05 - -

WN 6.0248e-05 - σW N : 49.1
”

µg
?

Hz

ı

AR1 9.9976e-01 β: 6.08e-02 1{β: 16.4 [s]

SIGMA2 2.9649e-11 σ2
GM : 6.094e-08 σGM : 1.56

”

µg
?

Hz

ı

RW 1.6068e-12 - σRW : 0.008017
”

µg
?

Hz

ı

Table D.36: Accelerometer Z-axis

Process R mapping conversion

QN 5.2378e-05 - -

WN 4.5997e-05 - σW N : 42.89
”

µg
?

Hz

ı

AR1 9.9987e-01 β: 2.82e-02 1{β: 35.49 [s]

SIGMA2 3.2081e-11 σ2
GM : 1.423e-07 σGM : 2.39

”

µg
?

Hz

ı

RW 5.7022e-13 - σRW : 0.0047758
”

µg
?

Hz

ı
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Appendix D. GMWM Analysis

D.7 ID3 - NC1

Table D.37: Gyroscope X-axis

Process R mapping conversion

QN 2.4786e-06 - -

WN 3.6449e-07 - σW N : 7.88
”

deg

h
?

Hz

ı

AR1 9.9134e-01 β: 2.18e-00 1{β: 0.46 [s]

SIGMA2 1.1276e-10 σ2
GM : 6.518e-09 σGM : 1.05

”

deg

h
?

Hz

ı

AR1 9.9975e-01 β: 6.21e-02 1{β: 16.09 [s]

SIGMA2 6.4216e-12 σ2
GM : 1.292e-08 σGM : 1.48

”

deg

h
?

Hz

ı

RW 8.4626e-14 - σRW : 0.003794955
”

deg

h
?

Hz

ı

Table D.38: Gyroscope Y-axis

Process R mapping conversion

QN 2.9628e-06 - -

WN 6.9192e-07 - σW N : 10.85
”

deg

h
?

Hz

ı

AR1 9.9848e-01 β: 3.79e-01 1{β: 2.63 [s]

SIGMA2 2.8083e-11 σ2
GM : 9.255e-09 σGM : 1.26

”

deg

h
?

Hz

ı

AR1 9.9998e-01 β: 4.85e-03 1{β: 206.2 [s]

SIGMA2 4.4839e-13 σ2
GM : 1.156e-08 σGM : 1.4

”

deg

h
?

Hz

ı

RW 3.3667e-15 - σRW : 0.0007569348
”

deg

h
?

Hz

ı

Table D.39: Gyroscope Z-axis

Process R mapping conversion

QN 1.9714e-06 - -

WN 3.4821e-07 - σW N : 7.7
”

deg

h
?

Hz

ı

AR1 9.9694e-01 β: 7.66e-01 1{β: 1.31 [s]

SIGMA2 4.4373e-11 σ2
GM : 7.265e-09 σGM : 1.11

”

deg

h
?

Hz

ı

AR1 9.9997e-01 β: 7.38e-03 1{β: 135.6 [s]

SIGMA2 1.8709e-12 σ2
GM : 3.171e-08 σGM : 2.32

”

deg

h
?

Hz

ı

RW 5.9291e-14 - σRW : 0.0031765
”

deg

h
?

Hz

ı
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D.7. ID3 - NC1

Table D.40: Accelerometer X-axis

Process R mapping conversion

QN 3.2156e-05 - -

WN 7.8737e-05 - σW N : 56.12
”

µg
?

Hz

ı

AR1 9.9689e-01 β: 7.77e-01 1{β: 1.29 [s]

SIGMA2 3.6494e-09 σ2
GM : 5.887e-07 σGM : 4.85

”

µg
?

Hz

ı

AR1 9.9989e-01 β: 2.72e-02 1{β: 36.79 [s]

SIGMA2 1.4032e-10 σ2
GM : 6.455e-07 σGM : 5.08

”

µg
?

Hz

ı

RW 1.3122e-11 - σRW : 0.02291
”

µg
?

Hz

ı

Table D.41: Accelerometer Y-axis

Process R mapping conversion

QN 1.5673e-05 - -

WN 7.7945e-05 - σW N : 55.83
”

µg
?

Hz

ı

AR1 9.9990e-01 β: 2.48e-02 1{β: 40.36 [s]

SIGMA2 2.7476e-11 σ2
GM : 1.386e-07 σGM : 2.35

”

µg
?

Hz

ı

RW 5.8441e-13 - σRW : 0.004834895
”

µg
?

Hz

ı

Table D.42: Accelerometer Z-axis

Process R mapping conversion

QN 9.9105e-05 - -

WN 6.1972e-05 - σW N : 49.8
”

µg
?

Hz

ı

AR1 9.9956e-01 β: 1.09e-01 1{β: 9.19 [s]

SIGMA2 1.0796e-10 σ2
GM : 1.241e-07 σGM : 2.23

”

µg
?

Hz

ı

RW 3.9156e-12 - σRW : 0.01251499
”

µg
?

Hz

ı
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Appendix D. GMWM Analysis

D.8 IDX - NCV2

Table D.43: Gyroscope X-axis

Process R mapping conversion

QN 2.2936e-08 - -

WN 6.1719e-07 - σW N : 11.46
”

deg

h
?

Hz

ı

AR1 9.9997e-01 β: 5.28e-03 1{β: 189.39 [s]

SIGMA2 1.1303e-13 σ2
GM : 2.141e-09 σGM : 0.67

”

deg

h
?

Hz

ı

RW 8.82178e-15 - σRW : 0.00137
”

deg

h
?

Hz

ı

Table D.44: Gyroscope Y-axis

Process R mapping conversion

QN 1.3992e-08 - -

WN 9.4623e-07 - σW N : 14.19
”

deg

h
?

Hz

ı

AR1 9.9996e-01 β: 8.46e-03 1{β: 118.2 [s]

SIGMA2 3.8311e-13 σ2
GM : 4.529e-09 σGM : 0.98

”

deg

h
?

Hz

ı

RW 3.8329e-15 - σRW : 0.00090297
”

deg

h
?

Hz

ı

Table D.45: Gyroscope Z-axis

Process R mapping conversion

QN 2.0095e-08 - -

WN 7.7029e-07 - σW N : 12.8
”

deg

h
?

Hz

ı

AR1 9.9920e-01 β: 1.59e-01 1{β: 6.27 [s]

SIGMA2 9.7967e-13 σ2
GM : 6.146e-10 σGM : 0.36

”

deg

h
?

Hz

ı

RW 2.0974e-14 - σRW : 0.002112259
”

deg

h
?

Hz

ı

DR 2.5244e-10 - -
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D.8. IDX - NCV2

Table D.46: Accelerometer X-axis

Process R mapping conversion

QN 5.1144e-07 - -

WN 3.5949e-05 - σW N : 42.4
”

µg
?

Hz

ı

AR1 9.9859e-01 β: 2.82e-01 1{β: 3.5[s]

SIGMA2 8.1477e-10 σ2
GM : 2.89e-07 σGM : 3.8

”

µg
?

Hz

ı

RW 1.5873e-11 - σRW : 0.02817155
”

µg
?

Hz

ı

DR 3.4126e-09 - -

Table D.47: Accelerometer Y-axis

Process R mapping conversion

QN 6.7442e-07 - -

WN 3.5935e-05 - σW N : 42.4
”

µg
?

Hz

ı

AR1 9.9309e-01 β: 1.39e+00 1{β: 0.7 [s]

SIGMA2 1.2313e-09 σ2
GM : 8.947e-08 σGM : 2.11

”

µg
?

Hz

ı

RW 2.1135e-11 - σRW : 0.03250745
”

µg
?

Hz

ı

DR 3.4103e-09 - -

Table D.48: Accelerometer Z-axis

Process R mapping conversion

QN 4.1645e-07 - -

WN 2.8828e-05 - σW N : 37.97
”

µg
?

Hz

ı

AR1 9.9769e-01 β: 4.63e-01 1{β: 2.16 [s]

SIGMA2 1.0514e-09 σ2
GM : 2.274e-07 σGM : 3.37

”

µg
?

Hz

ı

AR1 9.9989e-01 β: 2.040e-02 1{β: 49.0 [s]

SIGMA2 1.0009e-10 σ2
GM : 4.907e-07 σGM : 4.95

”

µg
?

Hz

ı

RW 1.3385e-12 - σRW : 0.008180773
”

µg
?

Hz

ı
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E Calibration Table

This chapter assembles the specifications and the calibration setup with its mount (Figure E.1)

to interface the rotation table from Appendix F.

The rotation axes of this calibration table do no cross with the rotation axis of the rotation

table. This is the case, as the gyroscope calibration procedure requires the precise rotation

rate of the rotation table and compares it directly to the norm of the gyroscope measurements

from the sensors mounted on this calibration table. Thus, information about orientation and

alignment are not necessary.

Figure E.1: Setup with 40 cm diameter base plate of the rotation table.
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Appendix E. Calibration Table

E.1 Base Plate
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E.2. Base Wall

E.2 Base Wall
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Appendix E. Calibration Table

E.3 Transversal
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E.4. Case Holder

E.4 Case Holder
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F Rotation Table

This chapter shows the specifications for the rotation table (see Figure F.1) installed at the

EPFL facilities.

Figure F.1: Rotation table with 40 cm diameter base plate.
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Appendix F. Rotation Table

F.1 Specifications
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c) Top 360° 

TEST A : Rate (deg/s) = 360 ; Time Theory (s) = 1 
 
    CW     CCW 
   9.999996450E-001   9.999996670E-001 
   9.999997200E-001   9.999996170E-001 
   9.999996550E-001   9.999996450E-001 
   9.999996550E-001   9.999997250E-001 
   9.999995470E-001   9.999995620E-001 
   9.999995750E-001   9.999995650E-001 
   9.999994820E-001   9.999996550E-001 
   9.999996270E-001   9.999996120E-001 
   9.999996300E-001   9.999995650E-001 
   9.999998020E-001   9.999994850E-001 
 
Rate Precision (%) 0.0000366200134   0.0000390200152 
 
Rate Stability (%) 0.0000084167452   0.0000064618573 
Specification  (%) 0.0001000000000   0.0001000000000 
Status    OK     OK 
 
TEST B : Rate (deg/s) = 720 ; Time Theory (s) = 0.5 
 
    CW     CCW 
   4.999998350E-001   4.999997700E-001 
   4.999998220E-001   4.999998100E-001 
   4.999997820E-001   4.999997550E-001 
   4.999999020E-001   4.999998720E-001 
   4.999997950E-001   4.999998370E-001 
   4.999997970E-001   4.999997300E-001 
   4.999998370E-001   4.999997570E-001 
   4.999998100E-001   4.999997800E-001 
   4.999999020E-001   4.999997270E-001 
   4.999997970E-001   4.999997820E-001 
 
Rate Precision (%) 0.0000344200119   0.0000436000190 
 
Rate Stability (%) 0.0000040704914   0.0000043749286 
Specification  (%) 0.0001000000000   0.0001000000000 
Status    OK     OK 
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Appendix G. Gyroscope Calibration Result
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Figure G.1: Variations of 10 independent gyroscope calibration results with a 2σ bound for
a typical Navchip z axis. The bias changes between 1000 °{h and 1300 °{h. The scale-factor
changes between 500 ppm and 1000 ppm. The non-orthogonality changes between 0.5 mrad
and 0.8 mrad.
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