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VORWORT 
Unbemannte Luftfahrzeuge (UAV) kommen immer mehr zum Einsatz, nicht nur bei 
Anwendungen in der Geomatik, Bau- oder Umwelttechnik, sondern auch bei anderen 
wie z.B. visuellen Inspektionen, Überwachung und Paketzustellung. Im Gegensatz zu 
persönlichen Drohnen benötigen professionelle UAVs redundante Sensoren und eine 
zuverlässige Steuerung/Navigation, die ihren sicheren Betrieb auch bei variierenden 
oder unerwarteten Umgebungsbedingungen ermöglichen. 
Diese Arbeit konzentriert sich auf die Verbesserung der autonomen Navigation im 
Freien, welche auch im Zeitalter von (fast) 4 voll funktionsfähigen globalen Satelliten-
navigationssystemen (GNSS) wie eine Sisyphusarbeit anmutet. In der Tat ist GNSS die 
grundlegende Technologie für Drohnenoperationen, die auf der Grundlage einer 
vorgeplanten Trajektorie (Wegpunktnavigation) basiert. Sie erfreut sich zunehmender 
Beliebtheit, sowohl im Freizeit- als auch im professionellen Bereich. Während die 
steigende Anzahl der GNSS-Satelliten die Zahl der Signale und Frequenzen erhöhte, 
blieb die fragile Empfangsgüte eine Achillesferse bei der Garantie der Verfügbarkeit 
und Kontinuität der Positionierung. Aus diesen Gründen entstanden immer mehr 
Vorschläge für Backups, die hauptsächlich auf optischen Sensoren basieren. Diese 
Ansätze haben jedoch mehrere Nachteile wie bei eingeschränkter Sicht und bei 
schlechter Auflösung der Oberflächentextur. Zudem erhöht die Verwendung von 
mehreren Sensoren das Fluggewicht und die System-Komplexität. 
Aus diesen Gründen - und in Analogie zur bemannten Luftfahrt - bleibt die 
Navigationsautonomie für die Kontrolle und die Betriebssicherheit der Drohnen von 
grundlegender Bedeutung. Darüber hinaus wird die Qualität und Zuverlässigkeit der 
autonomen Navigation wahrscheinlich die zukünftige Genehmigungserteilung für 
BVLOS-Operationen (beyond visual line of sight) beeinflussen. Die Arbeit von Mehran 
Khaghani zeigt einen neuen und vielversprechenden Weg, wie die Autonomie ohne 
zusätzliche Sensoren elegant und effizient sichergestellt werden kann. Die vorliegenden 
Forschungsergebnisse zeigen, dass eine Verbesserung von bis zu einem Faktor 100 
möglich ist, ohne das Sensorsetup zu ändern. Der beschriebene Ansatz widerspricht 
dem Mainstream der integrierten Navigation auf Basis von kinematischen Modellen für 
Luftfahrzeuge, wie sie seit Jahrzehnten bekannt sind. Im neuen Ansatz wird das auf 
Trägheitssensoren beruhende Rückgrat der Navigation durch die Kenntnis der 
Aerodynamik des Fahrzeugs und der Steuerbefehle des Autopiloten ersetzt. 
Die Originalität des vorgeschlagenen Ansatzes wurde zunächst im Zuge mehrerer 
referenzierter Veröffentlichungen in Fachzeitschriften und an Konferenzen durch 
Fachgremien, danach zusätzlich durch die Revision des US-Patents, erteilt am 22. Mai 
2018 unter der Patentnummer US 9 978 285 evaluiert. Die vorgeschlagene Methode 
fand auch Zuspruch in der Drohnengemeinschaft, indem sie industrielle und staatliche 
Mittel für ihre Weiterentwicklung und Implementierung in verschiedenen 
Anwendungen mobilisierte. 
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PREFACE 
L'utilisation de micro-véhicules aériens sans pilote (UAV) se développe non seulement 
en géomatique, en génie civil ou en ingénierie environnementale, mais également dans 
de nombreuses autres applications telles que les inspections visuelles, la surveillance et 
la livraison de colis. Contrairement aux drones personnels, les drones professionnels 
doivent disposer de capteurs redondants et d'un système de contrôle / navigation fiable 
pour rendre sûre leur exploitation dans des conditions environnementales variables ou 
imprévisibles. 
Le travail ci-présent se concentre sur l'amélioration de la navigation autonome dans les 
espaces ouverts, qui semble être un rocher de Sisyphe, même à l’heure où (presque) 4 
systèmes mondiaux de navigation par satellite (GNSS) sont pleinement opérationnels. 
En effet, la technologie GNSS est à la base des opérations de drones utilisant des 
trajectoires pré-planifiées (navigation par way-points), dont nous voyons l’essor rapide 
aujourd’hui - à la fois à des fins récréatives et professionnelles. Cependant, alors que le 
nombre des satellites GNSS augmente le nombre de signaux et de fréquences, la 
fragilité de leur réception reste un talon d'Achille pour garantir la disponibilité et la 
continuité de ce moyen de positionnement pour les drones. De plus en plus de méthodes 
reposant sur la détection optique sont proposées pour remédier à ce problème. 
Néanmoins, des limitations dans la visibilité, la résolution ou la texture ainsi que le 
besoin de capteurs supplémentaires qui augmentent la charge utile et la complexité du 
traitement, restreignent ces méthodes à un usage marginal. 
Pour ces raisons - et par analogie avec les aéronefs pilotés par des humains - 
l’autonomie de la navigation demeure primordiale pour le contrôle des drones et la 
sécurité opérationnelle. 
De plus, la qualité et la fiabilité de la navigation autonome sont susceptibles d’influer 
la délivrance future des autorisations pour les opérations BVLOS (beyond visual line 
of sight ou au-delà de la ligne de visée). Les travaux de Mehran Khaghani démontrent 
une manière nouvelle et prometteuse d’assurer cette autonomie de manière élégante et 
efficace sans ajouter de capteurs supplémentaires à bord. En effet, cette recherche a 
montré qu’il était possible d’obtenir des améliorations d’un facteur allant jusqu’à 100 
sans changer la configuration sensorielle de l’aéronef en question. L'approche décrite 
va à l'encontre des approches conventionnelles de la navigation intégrée basée sur la 
modélisation cinématique des véhicules aériens, telle qu’appréhendée depuis des 
décennies. Elle remplace le cœur du système, basé sur la détection inertielle, par celui 
issu de la connaissance de l’aérodynamique du véhicule et des commandes du pilote 
automatique. 
L'originalité de l'approche proposée a d'abord été évaluée dans le cadre d’examens par 
des pairs dans plusieurs publications référencées dans des revues et des conférences ; 
en second lieu par la révision du brevet américain délivré le 22 mai 2018 sous le numéro 
de brevet US 9 978 285. La méthode proposée a également suscité l’intérêt dans la 
communauté des drones en attirant des financements industriels et gouvernementaux 
pour son développement et sa mise en œuvre pour différentes applications. 
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FOREWORD 
The usage of micro unmanned aerial vehicles (UAV) is expanding not only in 
geomatics, civil, or environmental engineering, but also in many other applications such 
as visual inspections, surveillance and parcel delivery. In contrary to personal drones, 
professional UAVs need to have redundant sensors and reliable control/navigation that 
makes their operation safe in varying or unexpected environmental conditions. 
This work focuses on improving autonomous navigation in open spaces, which in the 
era of (almost) 4 fully operational global navigation satellite systems (GNSS) seems 
like an Sisyphean task. Indeed, GNSS is the enabling technology for drone operations 
based on pre-planned trajectories (way-point navigation), boom of which we witness 
today – both, in recreational and professional sectors. Yet, while the abundance of 
GNSS satellites increased the number of signals and frequencies, the fragility of their 
reception remained an Achilles’ heel for “guaranteeing” availability and continuity of 
this mean of positioning for UAVs. For these reasons there is an upswing in proposing 
backup plans that are mostly based on optical sensing. Nevertheless, limited visibility, 
resolution or surface texture and need for additional sensor(s) that increase the payload 
as well as processing complexity are limiting such approaches for specific rather than 
general usage.  
For these reasons – and in analogy to manned aircraft – navigation self-sufficiency 
(autonomy) remains to play a primordial role for drone control and operational safety. 
Furthermore, the quality and reliability of autonomous navigation is likely to influence 
future deliverance of authorizations for BVLOS (beyond visual line of sight) 
operations. The work of Mehran Khaghani shows a new and promising way, how this 
can be achieved elegantly and efficiently without adding additional sensors on board. 
Indeed, this research has shown that up to 100 times improvement is possible without 
changing the sensory setup on board the UAV. The described approach goes against 
the mainstream of integrated navigation based on kinematic modeling for aerial 
vehicles, as it is known for decades. It does it by replacing the heart of the system based 
on inertial sensing by that stemming from the knowledge of vehicle aerodynamics and 
autopilot commands. 
The originality of the proposed approached was first challenged by several referenced 
publications in peer-reviewed journals and conferences; second by the revision of US 
patent– granted on May 22, 2018 under patent number US 9,978,285. The proposed 
method also echoed in drone community by attracting industrial and governmental 
funding for its further development and implementation in different flavors.  
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Abstract

The dominant navigation system for small civilian UAVs today is based on integration of
inertial navigation system (INS) and global navigation satellite system (GNSS). This strategy
works well to navigate the UAV, as long as proper reception of GNSS signal is maintained.
However, when GNSS outage occurs, the INS-based navigation solution drifts very quickly,
considering the limited quality of IMU(s) employed in INS for small UAVs. In beyond visual
line of sight (BVLOS) flights, this poses the serious danger of losing the UAV and its eventual
falling down. Limited payload capacity and cost for small UAVs, as well as the need for
operating in different conditions, with limited visibility for example, make it challenging to
find a solution to reach higher levels of navigation autonomy based on conventional approaches.
This thesis aims to improve the accuracy of autonomous navigation for small UAVs by at
least one order of magnitude. The proposed novel approach employs vehicle dynamic model
(VDM) as process model within navigation system, and treats data from other sensors such as
IMU, barometric altimeter, and GNSS receiver, whenever available, as observations within the
system. Such improvement comes with extra effort required to determine the VDM parameters
for any specific UAV. This work investigates the internal capability of the proposed system for
estimating VDM parameters as part of the augmented state vector within an extended Kalman
filter (EKF) as the estimator. This reduces the efforts required to setup such navigation system
that is platform dependent. Multiple experimental flights using two custom made fixed-wing
UAVs are presented together with Monte-Carlo simulations. The results reveal improvements
of 1 to 2 orders of magnitude in navigation accuracy during GNSS outages of a few minutes’
duration. Computational cost for the proposed VDM-based navigation does not exceed 3 times
that of conventional INS-based systems, which establishes its applicability for online application.
A global sensitivity analysis is presented, spotting the VDM parameters with higher influence
on navigation performance. This provides insight for design of calibration procedures. The
proposed VDM-based navigation system can be interesting for professional UAVs from at
least two points of view. Firstly, it adds little to no extra hardware and cost to the UAV.
Secondly and more importantly, it might be currently the only way to reach such significant
improvement in navigation autonomy for small UAVs regardless of visibility conditions and
electromagnetic signals reception. Possibly, such environmental condition independence for
navigation system may be needed to obtain certifications from legal authorities to expand
UAV applications to new types of mission.

Key words: UAV, Navigation, Vehicle Dynamic Model, GNSS Outage, Inertial, Kalman Filter
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been listed here, but described within the text upon usage.
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Introduction

Context

INS1/GNSS2 (INS-based navigation, in general) is the dominant navigation system for small
UAVs3 today [57, 9]. In such a system, INS provides autonomous PVA4 solution with high
frequency (typically 50 to 500 Hz for UAVs) in a dead reckoning fashion. This PVA solution gets
updated in a navigation filter whenever observations from other sensors/sources are available.
The most common navigation aid comes from GNSS receivers, which in loosely coupled scheme
consists of PVT5 solution at a lower frequency (1 to 10 Hz, normally). The integration of
these data types can provide solutions with sufficient short-term and long-term accuracy for
many applications. Since IMU6 is an environment dependent sensor (its measurements do not
depend on external infrastructures or electromagnetic signal reception, for example), INS offers
“autonomous navigation”. Another common aiding sensor is barometer providing altitude data
autonomously.

During regular presence of GNSS observations, conventional INS-based navigation provides
sufficient accuracy for most applications within reasonable expectations from the sensor setup.
However, navigation faces serious challenges when GNSS outage happens [46, 80, 30]. This is
not a rare situation and can happen due to intentional corruption of GNSS signals (jamming
and spoofing), or loss of direct line of sight to the satellites, or unintentional electromagnetic
interference in satellite signal reception [27]. In such cases, navigation is continued based on
stand-alone INS with possible aiding from navigation aids such as barometric altimeters. The
accuracy of the data provided by INS is directly determined by the quality of the IMU(s) that
is used in the system. The long-term accuracy of 3D7 inertial coasting based on small and
low-cost IMUs available for small UAVs today is so low that after only seconds or a minute of
GNSS outage, the position uncertainty is too far from being of practical use. If this “drift” is
not controlled by some other means in case of long outages in BVLOS8 flights, the UAV gets
quickly lost in space [8], posing dangers on people, animals, or objects on ground. This is one

1Inertial Navigation System
2Global Navigation Satellite System
3Unmanned Aerial Vehicle
4Position, Velocity, and Attitude
5Position, Velocity, and Time
6Inertial Measurement Unit
7Three Dimensional
8Beyond Visual Line Of Sight
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Approach

of the reasons why operation of MAVs1 is limited to VLOS2 in most developed countries (e.g.,
USA [1], Canada [10], and a large part of the EU [51]).

Research Objectives

There are mainly two categories of approaches to address the problem of rapid drift of
navigation solution for small UAVs during GNSS outages. The first is trying to improve
sensor error modeling (with IMU in focus) using advanced techniques [58, 54, 55], and the
second one is employing additional sensors to aid the system [82, 48, 77]. The first approach,
essentially, can only improve modeling and compensation for time-correlated errors. It cannot
help with time-uncorrelated errors, which in many cases is a main contributor of low-cost
inertial sensors errors. In general, this approach does not provide qualitatively sufficient
improvements for UAVs to overcome problems in GNSS outage conditions. Solutions related
to the second approach add cost, weight, and complexity to the system, and more importantly,
their performance may depend on environmental conditions that are not met all the times,
which challenges the autonomy of the navigation system. A widely used (yet partial) solution
of the second category is employing vision based methods that provide relative or absolute
measurements to inertial navigation [80, 11, 3, 69]. Apart from adding extra weight and
hardware and software complications, their correct functioning requires some prerequisites on
light, visibility, and terrain texture. While very attractive in nominal scenarios, they might
not work reliably, for example, at night or in foggy conditions or over ground with uniform
texture (vegetation, water, snow, etc.).

The main objective of this research is to introduce a navigation algorithm that considerably
(i.e., at least by one order of magnitude) mitigates the quick drift of low-cost inertial navigation
during GNSS outage in airborne environment, while preserving the navigation autonomy and
avoiding additional sensors and thus extra cost and weight. Ideally, the effort required to
design and implement such a navigation system is kept reasonably low so it can be practically
adopted for small UAVs. A suitable solution of such kind can be extremely beneficial for
increasing the reliability of autonomous navigation of small UAVs.

Approach

UAV is a physical system that can be associated with a dynamic model (called VDM3

throughout this thesis) that provides some information on its behavior. This fact is totally
ignored by conventional (INS-based) navigation systems, which are fundamentally based on
sensor data. Even in their process models, INS-based navigation filters still rely on sensor
data from IMU(s). This means that all the knowledge on dynamic behavior of the UAV,
which is basically available for free from hardware point of view, is not used in navigation. In
other words, the physical constraints on UAV motion are not considered, meaning that any
physically impossible motion suggested by the sensors due to their errors is accepted within
the navigation system.

1Micro Aerial Vehicle
2Visual Line Of Sight
3Vehicle Dynamic Model
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Thesis Outline

The primary idea of this research is to integrate the knowledge on dynamic behavior of the
UAV for improving the quality of navigation (in terms of PVA determination) with emphasis
on improving positioning accuracy in GNSS outage conditions. The “price to pay” is to drop
the very attractive property of INS-based navigation systems from design point of view, which
is platform independence. INS-based navigation systems can be used on any platform without
knowing anything about it, as long as the sensor setup is suitable for the operation conditions
(such as maximum speed for GNSS or acceleration for IMU). VDM-based navigation on the
other hand, requires some knowledge on the specific platform navigation for which is intended.

Thesis Outline

The thesis is structured in 4 parts, comprising 7 chapters in total.

Part I: Preliminaries
This part provides background material related to integrated navigation and dynamic modeling.

• Chapter 1: Essential aspects of integrated navigation are reviewed. A general description
of INS and GNSS as the main players in integrated navigation of UAVs today is provided,
along wide fundamental definitions and models used in INS-based navigation systems
that are expandable to VDM-based navigation. Kalman filter as the most frequently used
estimator is then briefed, followed by some notes on modeling techniques for stochastic
sensor errors.

• Chapter 2: A brief overview of classical mechanics and flight aerodynamics is presented,
as the requirements for deriving the VDM for a UAV. Advantages of different formulations
of classical mechanics and their relevance to different situations in dynamic modeling
are also briefly discussed.

Part II: VDM-Based Navigation Framework
The main contribution of the thesis is presented in this part, which is the development of the
VDM-based navigation.

• Chapter 3: The theory of VDM-based navigation is developed and presented in general
form for aerial applications. Navigation system architecture is detailed, followed by
presentation of process models for all the augmented states and the observation models
for all the sensors employed in the research, considering their errors and mounting
misalignments.

• Chapter 4: The general VDM-based navigation introduced in Chapter 3 is applied to a
specific fixed-wing platform with a single propeller in front and four (or five) control
surfaces (two [coupled] ailerons, an elevator (or two coupled ones), and a rudder). The
experimental setup used in the research is detailed, followed by description of navigation
filter setup.

Part III: Results and Analyses
Simulation and experimental results are presented and analyzed in this part.

3



Thesis Outline

• Chapter 5: Results and analyses of applying VDM-based navigation to the specific
UAV introduced in previous chapter are presented. At the first stage, proof of concept is
established via Monte-Carlo simulations. Effects of wind velocity on the performance
of the navigation system are also evaluated via Monte-Carlo simulations. Experimental
results from flights of two platforms of the same type are then presented to backup the
simulation results and reveal practical details about navigation performance.

• Chapter 6: Some further analyses of VDM-based navigation are presented. First, a
global sensitivity analysis is presented to reveal the most and the least influential VDM
parameters for the specific UAV used in the research, results of which can potentially
assist the VDM calibration. Afterwards, a navigation scenario without IMU is presented
to assess the ability of VDM-based navigation in attitude estimation in absence of IMU
data, which could have practical application in case of IMU failure or malfunction.
Finally, a brief discussion on computational cost of VDM-based navigation is presented,
with comparison made to INS-based navigation.

Part IV: Conclusion Remarks
This short part, contains conclusion remarks from the conducted research in Chapter 7,
followed by some suggestions for the future research on the subject.
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Chapter 1

Integrated Navigation

Overview
Integrated navigation can be viewed as an estimation problem to optimally combine data
from different sources and deliver navigation information such as position and attitude.
Among others, this task requires relevant modeling of stochastic errors of input data. This
chapter establishes preliminary materials on essential aspects of integrated navigation.
Most wordings and equations on “attitude representations”, “frames definition”, and “stochas-
tic processes” are borrowed from [71]. The same is true for [23] regarding “estimation
methods”.

The term “navigation” is commonly understood as determination of position, velocity, and
attitude (referred to as “navigation states” hereinafter) of a moving platform. Occasionally,
this term is used equivalently as guidance, which usually refers to designing/planning desired
navigation states along the mission, further aimed to reach by the control system using
actuators to manipulate the motion of platform/vehicle. Throughout this document, the first
meaning of navigation is always meant.

Navigation is performed based on data/information available from different sensors and models.
A navigation system that fuses data/information from two or more sources is called an
“integrated navigation” system [20, 21, 26, 63, 74]. The main motivation behind performing
integrated navigation is to increase accuracy and reliability of navigation through combining
usually complementary benefits of different sensors/models. Sensors/models can have differences
in terms of short-term and long-term accuracy, autonomy, relativeness or absoluteness of
provided data, navigation states they cover, data frequency, working conditions, resilience to
environmental disturbances, and so on.

INS/GNSS is probably the most frequently used and well known integrated navigation system
for outdoor applications in terrestrial, aerial, and marine applications [20, 21, 26, 63, 74]. As
the navigation concept proposed in this thesis is closely related to INS-based navigation and
INS/GNSS integration, fundamentals of the latter are briefly presented in this chapter, along
with some estimation methods and sensor error modeling techniques. This presentation is not
exhaustive, as it is meant to only provide sufficient basis for introduction of the VDM-based
navigation as the main contribution of this research.

7



Integrated Navigation

1.1 Fundamentals of INS-based Navigation

Based on data coming from IMU, namely specific forces and rotation rates/angular velocities,
standalone or aided INS provides determination of PVA at high rates. INS is a dead reckoning
system, meaning it calculates navigation states based on the solution of a previous time
and the knowledge/estimation on the rate of change of this solution (velocity/acceleration)
over the passed interval. While INS autonomously provides high frequency (50 to 2000 Hz,
typically) PVA solution with good short term accuracy, it is prone to drift due to its dead
reckoning nature that integrates not only the true signal measured by the IMU, but also the
accompanying error. This solution, therefore, gets updated using other sources (navigation
aids) whenever available. For outdoor applications, GNSS is usually the main and minimum
navigation aid. GNSS provides absolute PVT solution with good long term accuracy at lower
frequencies, provided that signals from sufficient number of satellites are well received.

1.1.1 Coordinate Systems

A coordinate system provides a parameterization of position of any point in space. In navigation,
two frequently used coordinate systems are Cartesian and ellipsoidal systems, both depicted
in Figure 1.1.

Cartesian Coordinate System

In a 3D Cartesian coordinate system, position of a point p is determined by a vector [x, y, z]T
containing its signed distances (the coordinates) from an origin point O along three mutually
orthogonal axes x, y, and z. For simplicity, sometimes the same notation is used for both
the coordinates and the axes. This, however, does not normally make an ambiguity and the
meaning is well understood in the context. If directions of x, y, and z axes obey the right hand
rule, the coordinate system is called “right handed”, otherwise it is “left handed”. Throughout
this thesis, all the Cartesian coordinates are right handed.

Ellipsoidal Coordinate System

An ellipsoidal coordinate system, is set up in relation to Cartesian coordinates and is based
on an ellipsoid of revolution with semi-major axis a along x and y and semi-minor axis b
along z. Ellipsoidal coordinates of a point p are expressed as [φ, λ, h]T representing latitude,
longitude, and altitude (height), respectively. Although the definitions related to this frame
should be clear from Figure 1.1, more formal definitions and transformations to/from Cartesian
coordinates can be found in [32].

1.1.2 Attitude Representation

Among several representations of attitude of a reference frame1 (or an object) with respect
to another one, three are frequently used in navigation, namely rotation matrix (or direction

1A reference frame is a specific realization of a coordinate system. More details and definitions of the ones
used in this thesis are presented in Section 1.1.3
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Fundamentals of INS-based Navigation
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Figure 1.1 – Cartesian (x, y, z) and ellipsoidal (φ, λ, h) coordinate systems (adapted from [32])

cosine matrix), Euler angles, and quaternion. These three representations are reviewed in this
section, with most wordings and equations borrowed from [71].

Vectors can be expressed in different reference frames, which are indicated as a superscript.
For example, xa represents vector x expressed in a-frame.

Rotation Matrix

A rotation matrix is a matrix transforming a vector expressed in a Cartesian frame b to the
same vector expressed in another Cartesian frame a, and throughout this document is denoted
as Ca

b , where

xa = Ca
bxb. (1.1.1)

The matrix Ca
b is an orthonormal matrix, therefore (Ca

b )
T = (Ca

b )
−1 = Cb

a and det (Ca
b ) = 1.

The columns of Ca
b matrix represent the unit vectors of b-frame projected along a-frame axes,

or cosines of the three angles between each unit vector of b-frame and the three axes of a-frame.
In other words, the element of the ith row and jth column of Ca

b is the cosine of the angle
between the ith axis of a-frame and the jth axis of b-frame. This is why Ca

b is also called a
DCM1.

1Direct Cosine Matrix
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Euler Angles

The rotation from b-frame to a-frame can be performed by three sequential elementary rotation
matrices, denoted as Ci(·) : i = 1, 2, 3, associated to three Euler angles often called roll (r),
pitch (p), and yaw (y) in navigation, and performed about associated axis of the rotated frame.
The composed rotation is then given as following.

Ca
b = C1(r) C2(p) C3(y) =

1 0 0
0 cos r sin r
0 − sin r cos r


cos p 0 − sin p

0 1 0
sin p 0 cos p


 cos y sin y 0
− sin y cos y 0

0 0 1


(1.1.2)

Similarly, the inverse transformation can be obtained as

Cb
a = (Ca

b )T = CT
3 (y) CT

2 (p) CT
1 (r). (1.1.3)

Quaternions

Instead of describing rotations between two frames using the Euler angles, quaternions can be
used with some advantages (see [2], for example). A quaternion is a four-parameter attitude
representation method based on Euler’s theorem, which states that a transformation from one
reference frame to another can be performed by a single rotation of magnitude ||u|| about the
vector u = [ux, uy, uz]T [75]. The four elements of the quaternion, denoted here by the symbol
q, are functions of the vector u and the magnitude of rotation as

q =


q0
q1
q2
q3

 =


cos

(
||u||

2

)(
ux
||u||

)
sin
(
||u||

2

)(
uy

||u||

)
sin
(
||u||

2

)(
uz
||u||

)
sin
(
||u||

2

)

 , (1.1.4)

where ||u|| =
√
u2
x + u2

y + u2
z.

The operations of addition, subtraction, and multiplication by a scalar are done in the same
manner as in vector algebra. The quaternion multiplication of q = [q0, q1, q2, q3]T with another
quaternion p = [p0, p1, p2, p3]T , denoted by the symbol ⊗, is defined as following.

q ⊗ p =


q0p0 − q1p1 − q2p2 − q3p3
q0p1 + q1p0 + q2p3 − q3p2
q0p2 + q2p0 − q1p3 + q3p1
q0p3 + q3p0 + q1p2 − q2p1

 (1.1.5)

Extensive details about quaternion algebra can be found in [2, 75]. The relationship between
the rotation matrix Ca

b and its corresponding attitude quaternion qab is

Ca
b = f(qab ) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 . (1.1.6)
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Rotation of Reference Frames

Reference frames may rotate arbitrarily with respect to each other. In order to study motions
of reference frames experiencing such relative rotations, it is necessary to calculate derivatives
of attitude representations.
If the vector ωbab = [ω1, ω2, ω3]T represents the angular velocity (rotation rate) of b-frame with
respect to a-frame and expressed in b-frame, time-derivative of rotation matrix Ca

b is given
as [21]

Ċa
b = Ca

bΩb
ab, (1.1.7)

where Ωb
ab is the skew-symmetric matrix representation of associated ωbab = [ω1, ω2, ω3]T vector

as

Ωb
ab =

[
ωbab×

]
=

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 . (1.1.8)

The time-derivative of Euler angles can be shown to be calculated as following [75].

ṙ = ω1 + (ω2 sin r + ω3 cos r) tan p
ṗ = ω2 cos r − ω3 sin r (1.1.9)
ẏ = (ω2 sin r + ω3 cos r) sec p

Note that the well known singularity of Euler angles can be seen in Equation (1.1.9) when
p = ±π/2.
Finally, the time-derivative of quaternion qab is expressed as [75]

q̇ab = 1
2qab ⊗

[
ωbab

]
q
, (1.1.10)

with
[
ωbab

]
q

= [0, ω1, ω2, ω3]T being the quaternion equivalent of ωbab = [ω1, ω2, ω3]T .

At points, it may be necessary to transform an angular velocity vector or its skew-symmetric
matrix representation from one reference frame to another. In case of an angular velocity
vector, this can be done in the same way it is done for any vector using rotation matrices as
expressed in Equation (1.1.1).

ωcba = Cc
dω

d
ba. (1.1.11)

For the skew-symmetric matrix Ωd
ba, such transformation can be done as following.

Ωc
ba = Cc

d Ωd
ba Cd

c (1.1.12)

1.1.3 Frames Definition

A reference frame is a specific realization of a coordinate system, with a well defined origin and
axes. In INS-based navigation, five reference frames are frequently used. These reference frames
and the wind-frame, later used in VDM-based navigation, are briefly defined as following, with
most wordings borrowed from [71]. More details on definition of these frames can be found
in [32, 71].
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Inertial Frame (i-frame)

Inertial frame is a non-accelerating and non-rotating reference frame that is at rest or subject
to a uniform translational motion. In such a frame, the laws of Newtonian mechanics are valid.
Considering the limited resolution and accuracy of most sensors today and the tolerance for
the resulting errors, an inertial frame is approximated as a celestial frame with origin at the
center of mass of the Earth, such that the xi axis points towards the vernal equinox and is,
thus, the intersection line between the equatorial and the ecliptic plane, the zi axis points
towards the mean celestial pole, and the yi axis completes the 3D right-handed Cartesian
system [71]. Figure 1.2 depicts the i-frame, as well as e-frame, l-frame, and b-frame, defined in
the following.

O

zi, ze

xe

ye

xl

zl
yl

xi
yi

yb
xb

zb

(east)(north)

(vernal equinox)

(Greenwich meridian)

Figure 1.2 – Inertia (i), Earth (e), local-level (l), and body (b) frames

Earth Frame (e-frame)

Earth frame frame with origin at the center of mass of the Earth, such that the xe axis points
towards the Greenwich meridian, the ze axis points towards the mean direction of the rotation
axis of the Earth, and the ye axis completes the 3D right-handed Cartesian system. This
frame is therefore an ECEF1 frame. Examples of important realizations are the ITRF2 and
the WGS3-84 being the reference frame of GPS4. Any point in this frame can be expressed
either in Cartesian coordinates [xe, ye, ze]T , or ellipsoidal coordinates [φ, λ, h]T [71].

1Earth Centered Earth Fixed
2International Terrestrial Reference Frame
3World Geodetic System
4Global Positioning System
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Local-Level Frame (l-frame)

Local-level frame is a local geodetic frame with arbitrary origin, for example a point on
the Earth surface, such that the xl axis points to geographical north, the yl axis points to
geographical east, and the zl axis points down along ellipsoidal normal. The NED1 frame is
right-handed. To be strictly correct, this frame should be called ellipsoidal tangential frame
rather than local-level frame. However, for the purpose of navigation, the difference between
astronomical and ellipsoidal local-level frames can be neglected [71]. Therefore, throughout
the rest of this thesis, the local-level frame or local frame refers to the ellipsoidal NED frame.

Body Frame (b-frame)

The body frame is a frame attached to the body of the object/vehicle. The usual convention
is choosing the forward or longitudinal direction of the vehicle for xb axis, while yb axis points
towards right and zb axis is downward. The rotation matrix Cb

l to transform vectors from
local-level frame to body frame (as vb = Cb

lvl) is defined as follows, with Euler angles as
attitude parameters and Ci(·) elementary rotation matrices defined in Equation (1.1.2).

Cb
l = C1(r) C2(p) C3(y) (1.1.13)

The parameterization of attitude by Euler angles (roll r, pitch p, and yaw y) exhibits a
singularity at p = π/2, reason for which alternative ways of attitude representation such as
quaternions are provided in Section 1.1.2.

Note that the axis around which roll angle is measured is the same as the vehicle roll axis (xb),
which is not the case for the other two Euler angles. The axis of pitch angle is the vehicle pitch
axis (yb) rotated back by roll angle. Similarly, the axis of yaw angle is the vehicle yaw axis
(zb) rotated back by roll angle and then pitch angle. This arises some confusions or criticisms
with the widely accepted terminology, as the “rate of change of roll/pitch/yaw angle” is not
generally equal to the “roll/pitch/yaw rate”. One can investigate Equation (1.1.9) to see that
the two are equal (for arbitrary values of ωi’s) only when roll and pitch angles are zero.

Wind Frame (w-frame)

Wind frame is not typically used in INS-based navigation, unless air data is also integrated
within the system. However, since this frame will be used in the proposed navigation system,
its definition is presented here.

The airflow around a vehicle (UAV) which is due to the composition of its velocity v and wind
velocity w, is described by the airspeed vector V. The wind frame has its origin coinciding
with that of the body frame and its first axis in the direction of V, and is defined by two
angles with respect to body frame. These angles are called the angle of attack α and the
sideslip angle β, and are depicted in Figure 1.3. The following equation relates UAV’s velocity
v and wind velocity w via airspeed V (see Figure 1.3).

v = V + w (1.1.14)
1North-East-Down
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v
w

V
α

βxb

yb

zb

Ob

xw

yw

zw

Figure 1.3 – Body (b) and wind (w) frames with airspeed (V), wind velocity (w), UAV velocity
(v), angle of attck (α), and sideslip angle (β)

This reads in body frame as

vb = Vb + Cb
lwl ⇔ Vb = vb −Cb

lwl ⇔

V b
x

V b
y

V b
z

 =

vbxvby
vbz

−Cb
l

wlxwly
wlz

 . (1.1.15)

The rotation matrix to transform vectors from body frame to wind frame is defined as

Cw
b = C3(β) CT

2 (α) =

 cosβ sin β 0
− sin β cosβ 0

0 0 1


 cosα 0 sinα

0 1 0
− sinα 0 cosα

 . (1.1.16)

The airspeed magnitude V , the angle of attack α, the sideslip angle β, and the dynamic
pressure q̄ are defined as follows, where ρ denotes air density. The dynamic pressure will be
used in expressions for aerodynamic forces and moments in Sections 4.1.1 and 4.1.2.

V =
√
V b
x

2 + V b
y

2 + V b
z

2
, q̄ = ρV 2

2 , α = arctan
(
V b
z

V b
x

)
, β = arcsin

(
V b
y

V

)
(1.1.17)

Sensor Frame

Sensor frame is a rigidly attached to a sensor with its origin at the observations reference point,
and its axes along principal directions of the sensor, if such directions are defined. For example,
these principal axes for an IMU will be in the direction of single accelerometers/gyroscopes
inside the sensor (assuming perfect orthogonality), along which the accelerations and rotation
rates are expressed by the sensor.

As in general there can be non-orthogonality among the principal directions of a sensor that
prevents defining a Cartesian frame based on those directions, the principal axes in definition
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of the sensor frame throughout this thesis are considered to be the ones after taking the
non-orthogonality into account. As discussed in Section 3.5.1, raw data from sensors (IMU)
are compensated for pre-calibrated non-orthogonality [and scale factors], and then they are
assumed to be perfectly orthogonal and forming the sensor frame. As the pre-calibration is
imperfect in general, there will be some residual errors, which are absorbed by the additive
errors considered in observations. This modification of definition is made to avoid defining a
separate reference frame for the sensor either before or after taking non-orthogonality into
account, which would have equivalent result in navigation.

In case of some sensors, there is no principal direction, as far as navigation system is concerned.
In case of a GNSS receiver, for example, the observations are only related to the phase center
of the antenna, regardless of its orientation. In these cases, only the origin of the sensor frame
matters and the direction of its axes are arbitrary or irrelevant.

Sensor frames for the sensors used in this thesis are presented in Section 3.4.5.

1.1.4 Inertial Navigation System (INS)

INS is composed of an IMU providing inertial measurements and a computer running a
navigation algorithm to calculate navigation solution based on such measurements. In UAV
applications, the strapdown mechanization is used, in which the inertial sensors are rigidly
attached (strapped down) to the platform. This is as opposed to the gimbaled mechanization,
in which the sensors are mounted on a platform that is mechanically isolated from rotational
motion of the platform thanks to gimbals. In strapdown mechanization, all the inertial
measurements are resolved in IMU sensor frame (after compensation for non-orthogonality),
that is normally in a fixed position and orientation relation to the body frame. Unless
the body frame coincides with the sensor frame, the misalignment between the two frames
(sensor and body) needs to be determined and compensated for. The navigation equations
are conventionally derived assuming that measurements are available in body frame (after
applying necessary compensations). As INS is principally integrating the linear accelerations
and rotation rates to obtain PVA solution, the measurements need to be expressed in navigation
frame –the frame in which the navigation solution is to be determined.

Navigation equations can be derived and then solved in any reference frame, as long as
everything is clearly defined and the equations are treated correctly. Applying the pertinent
transformations, the results will be equivalent regardless of the choice of reference frames.
Therefore, one needs to check which reference frames provide the most helpful representation of
the navigation solution for the intended application. In this research, a set of frames have been
chosen that are usually adopted in aerial navigation and are also beneficial for VDM-based
navigation. Position is stated with respect to e-frame and is expressed in ellipsoidal coordinate
system, as

rle = [φ, λ, h]T . (1.1.18)

Velocity is also stated (measured) with respect to e-frame (ve), but expressed in l-frame (vle)
for more comprehensive representation. The relation between vle and ve is established via the
following rotation.

vle = [vN , vE , vD]T = Cl
eve (1.1.19)
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Finally, attitude is expressed with respect to l-frame and is represented by the quaternion qlb
for continuity and computation efficiency benefits. For results representation, though, Euler
angles are used, as they provide a more comprehensible and intuitive representation of attitude.
The INS navigation state vector is then defined as

xl =

 rle
vle
qlb.

 (1.1.20)

In order to obtain navigation equations (time-derivative of xl), Newton’s second law of motion
for a rigid body in i-frame is first considered.

r̈i = Ci
bf b + ği(r). (1.1.21)

Substituting ri by re = Ce
iri and considering Equation (1.1.7) when taking time derivative of

Ce
i gives Newton’s second law of motion in e-frame.

r̈e = Ce
bf b + ğe − 2Ωe

ieve −Ωe
ieΩe

iere (1.1.22)

Note that in deriving Equation (1.1.22), the angular velocity of Earth with respect to inertial
frame (Ωe

ie) is assumed to be a constant, which is quite acceptable for navigation purposes.
As both the gravitational acceleration ğe and the centrifugal acceleration Ωe

ieΩe
iere are only a

function of position and the main part of both is in the same direction (along xD in l-frame),
they are normally combined to form the local gravity vector ge as

ge = ğe −Ωe
ieΩe

iere. (1.1.23)

Denoting ṙe by ve and using Equation (1.1.23) in Equation (1.1.22), velocity dynamics in
e-frame can be written in a more compact form as

v̇e = Ce
bf b + ge − 2Ωe

ieve. (1.1.24)

Rewriting Equation (1.1.24) for vle as defined in Equation (1.1.19) and considering Equa-
tion (1.1.7) when taking time derivative of Cl

e gives velocity dynamics equation in l-frame as

v̇le = Cl
bf b + gl −

(
Ωl
el + 2Ωl

ie

)
vle, (1.1.25)

where the angular velocity vectors ωlie (angular velocity of Earth expressed in local frame)
and ωlel (local frame transport rate) are defined as follows, with ωie = 7.292115× 10−5rad/s
being magnitude of angular velocity of the Earth [59]. The rotation matrix Cl

b is calculated
from the quaternion qlb using Equation (1.1.6).

ωlie =
[
ωie cosφ 0 −ωie sinφ

]T
(1.1.26)

ωlel =
[
λ̇ cosφ −φ̇ λ̇ sinφ

]T
(1.1.27)

A gravity model for the ellipsoidal local frame can be used to evaluate the gravity vector gl in
local frame, for example as proposed by WGS-84 model [59] and used in this research.
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Time derivative of position vector rle can be expressed as

ṙle = D−1vle, (1.1.28)

where the matrix D−1 matrix is defined as

D−1 =


1

RM +h 0 0
0 1

(RP +h)cosφ 0
0 0 −1

 , (1.1.29)

to convert velocity from Cartesian to ellipsoidal coordinates. The quantities
RM = a(1−e2)

(1−e2 sin2(ϕ))3/2 and RP = a

(1−e2 sin2(ϕ))1/2 represent meridian radius of curvature
and prime vertical radius of curvature, respectively, with a being the semi-major axis of the
reference ellipsoid and e being its eccentricity [59].

According to Equation (1.1.10), time derivative of qlb as the attitude representative can be
expressed as following.

q̇lb = 1
2qlb ⊗

[
ωblb

]
q

= 1
2qlb ⊗

[
ωbib −

(
Cl
b

)T (
ωlie + ωlel

)]
q

(1.1.30)

Finally, Equations (1.1.28), (1.1.25), and (1.1.30) can be collected to form the time derivative
of INS navigation state vector1 xl as following.

ẋl =

 ṙle
v̇le
q̇lb

 =


D−1vle

Cl
bf b −

(
2Ωl

ie + Ωl
el

)
vle + gl

1
2qlb ⊗

[
ωbib −

(
Cl
b

)T (
ωlie + ωlel

)]
q

 (1.1.31)

This is the final form of INS navigation equations in l-frame adopted in this research. As
mentioned before, INS navigation equations can take different –yet equivalent– forms according
to choices made on coordinate systems, reference frames, and attitude representations.

1.1.5 Global Navigation Satellite System (GNSS)

GNSS is usually the minimum –and the most important– aiding system in INS-based nav-
igation for outdoor applications. GNSS provides range related observations per satellite of
the constellation, usually converted to higher level measurements on absolute PVT solution
for terrestrial and aerial –and even space– applications, based on triangulation using the
observed pseudo-distances to satellites. Currently, there are four fully or partially operational
constellations [5], namely the American GPS2, the Russian GLONASS3, the European global

1Rigorously defined, states are independent, while the four components of the quaternion ql
b are not, as

there is the unity constraint (||ql
b|| = 1). A rigorous way to resolve this issue is replacing the four quaternion

states by three error states for attitude [71]. However, for the sake of implementation simplicity, especially the
automated linearization as described in Section 4.3.3, the four quaternion states are kept in the state vector in
this research, with the unity of quaternions being preserved externally.

2Global Positioning System
3GLObal NAvigation Satellite System (read as “GLObalnaya NAvigatsionnaya Sputnikovaya Sistema” in

Russian)
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satellite-based navigation system (Galileo), and the Chinese BeiDou-2 navigation satellite
system. There are also three regional constellations, namely the Chinese BeiDou-1 navigation
satellite system, the Indian NAVIC1, and the Japanese QZSS2.

Although the principle seems simple and straightforward, algorithmic implementation can be
very complex due to the many systematic and stochastic effects that have to be accounted for,
such as relativistic effects, timing errors on satellite and receiver clocks, atmospheric effects on
signal propagation, multi-path phenomena in signal reception, and low signal power. Today,
there are still ongoing research activities on hardware and software aspects to get the most out
of available signals. Furthermore, the raw observations from GNSS receivers can be processed
in many different ways to get the position/velocity data, from single point positioning to
multi-constellation multi-frequency carrier phase differential methods [5]. Positioning accuracy
can vary from several meters to a few centimeters for kinematic applications.

The level of integration with INS can vary from loosely to tightly coupled schemes, depending
on the internal loops between the two systems. The simplest and most common integration
scheme is loosely coupling, in which each system provide their independent navigation solutions
(PVA for INS and PVT for GNSS) that are then fused together to estimate the final solution.
This is the coupling scheme used in this research. More details on estimation methods is
provided in Section 1.2.

1.2 Estimation Methods

Integrated navigation is essentially an estimation problem to find navigation states (and
perhaps other augmented states) based on fusion of data/information available from sensors
and models. This section provides brief explanation on some estimation methods commonly
used in navigation. Most wordings and formulations are borrowed from [23] with adjustments
in notation.

Estimation is defined in [23] as the “process of extracting information from data –data which
can be used to infer the desired information and may contain error.” This definition may
get further clarified and detailed via definition of an optimal estimator as “a computational
algorithm that processes measurements to deduce a minimum error –in accordance with some
stated criterion of optimality– estimate of the state of a system by utilizing: knowledge of
system and measurement dynamics, assumed statistics of system noise and measurement
errors, and initial condition information” [23]. From temporal point of view, there are three
types of estimation problems for dynamic systems, namely prediction, filtering, and smoothing,
as schematically depicted in Figure 1.4.

When the time at which the estimation is required is outside the time span of available
measurement/observation3 data, the estimation problem is referred to as prediction. In this
case, the state of the system is to be estimated for a future time with respect to the last
available measurement. When the time at which the estimation is required coincides with the
last point of the time span of available measurement data, the estimation problem is referred

1NAVigation with Indian Constellation
2Quasi-Zenith Satellite System
3Throughout this thesis, “measurement” and “observation” are used interchangeably.
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t

Prediction:

Filtering:

Smoothing:
t

t

time span of available
measurement/observation data

Figure 1.4 – Three types of estimation problems (adapted from [23])

to as filtering. In this case, the state of the system is to be estimated for the current time with
respect to the last available measurement. When the time at which the estimation is required
is inside the time span of available measurement data, the estimation problem is referred to as
smoothing. In this case, the state of the system is to be estimated for a time with available
measurements before and after that [23].

Even today after more than half a century since it was first introduced [35], Kalman filter is
probably the most well known and frequently used filtering algorithm in many fields including
aerial navigation. In the rest of this section, the original (linear) Kalman filter and some
extended versions of it for nonlinear systems are briefly introduced.

1.2.1 Linear Kalman Filter (KF)

Kalman filter was originally developed to solve filtering problem in linear systems. It is the
optimal estimator in such systems, minimizing a weighted scalar sum of diagonal elements of
the covariance matrix of the estimation error after a measurement is applied, or equivalently,
the length of the estimation error vector [23].

There are several formulations, depending on whether the system dynamics/process model1
and observation equation are available/expressed in continuous or discrete form. In a common
situation in engineering problems, the system dynamic is expressed in continuous form, while
the measurements are available in discrete domain, and estimation is also done discretely with
k denoting the current step (index) in time.

Ẋ = F(t)X + L(t)U + G(t)w (1.2.1)
Zk = HkXk + nk (1.2.2)

The states are denoted by X, the observations by Z, the deterministic input by U. System
dynamics noise or process noise denoted by w and observation noise denoted by n are both

1Throughout this thesis, “system dynamics” and “process model” are used interchangeably.
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supposed to follow a Gaussian distribution. The matrices F, L, G, and H are usually called
system dynamics matrix, input matrix, process noise shaping matrix, and observation matrix.

Kalman filter has two separate phases. In prediction phase, the system dynamics is used to
obtain the estimation of the state vector at current step (k) based on all the information
available up to the previous step (k − 1) denoted as X̂k|k−1 and the associated covariance
matrix P̂k|k−1 at current step. In discrete domain, the prediction phase can be formulated as
following.

X̂k|k−1 = Φ(tk, tk−1)X̂k−1|k−1 +
∫ tk

tk−1
Φ(tk, τ)L(τ)U(τ)dτ (1.2.3)

P̂k|k−1 = Φ(tk, tk−1)P̂k−1|k−1ΦT (tk, tk−1) + Qk,k−1 (1.2.4)

Here, Φ(t2, t1) is the transition matrix, calculated as following.

Φ(t2, t1) = e

∫ t2
t1

F(t)dt (1.2.5)

The discrete covariance matrix Qk,k−1 accounts for system dynamic uncertainty, calculated as

Qk,k−1 =
∫ tk

tk−1
Φtk,τG(τ)Q(τ)GT (τ)ΦT

tk,τ
dτ, (1.2.6)

where Q(t) is the spectral density matrix for system dynamic noise vector w. When tk − tk−1
is sufficiently small (depending on the desired precision), a first order approximation can be
used for Qk,k−1.

Qk,k−1 ≈ G(tk)Q(tk)GT (tk) (tk−1 − tk) (1.2.7)

In the update phase, if available, the measurements Zk and their associated covariance matrix
RK are used to obtain the estimation of the state vector at current step (k) based on all the
information available up to the current step (k) denoted as X̂k|k and the associated covariance
matrix P̂k|k at the current step. In order to do so, the gain matrix needs to be calculated first,
as

Kk = P̂k|k−1HT
k

(
HkP̂k|k−1HT

k + RK

)−1
, (1.2.8)

where RK is the covariance matrix of measurement noise vector rk. Then the update phase
can be performed as,

X̂k|k = X̂k|k−1 + Kk

(
Zk −HkX̂k|k−1

)
(1.2.9)

P̂k|k = (I−KkHk) P̂k|k−1 (1.2.10)

where I denotes the identity matrix [23].
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1.2.2 Extended Kalman Filter (EKF)

In many cases, such as navigation, the system dynamic and the observation equations are
nonlinear, as following.

Ẋ = f(X,U, t) + G(t)w (1.2.11)
Zk = hk(Xk) + nk (1.2.12)

EKF is one of the extensions of Kalman filter to deal with such nonlinearities. In this method,
f(X,U) and hk(Xk) functions are linearized as following.

f(X,U, t) ≈ f(X̂,U, t) + ∂f(X,U, t)
∂X

∣∣∣∣
X=X̂, U=U(t)

(
X− X̂

)
(1.2.13)

hk(Xk) ≈ hk(X̂) + ∂h(X)
∂X

∣∣∣∣
X=X̂

(
X− X̂

)
(1.2.14)

The nonlinear part of the original system dynamics can be expressed as following.

˙̂X = f(X̂,U, t) (1.2.15)

Now, two new variables ∆X and ∆Z are introduced, and F and H matrices are defined as
following.

∆X = X− X̂ (1.2.16)
∆Z = Z− h(X̂) (1.2.17)

F(t) , ∂f(X,U, t)
∂X

∣∣∣∣
X=X̂, U=U(t)

(1.2.18)

H ,
∂h(X)
∂X

∣∣∣∣
X=X̂

(1.2.19)

Then, the remaining part of the system dynamics and the observation model form a new linear
system as following.

∆Ẋ = F(t)∆X + G(t)w (1.2.20)
∆Zk = Hk(∆Xk) + nk (1.2.21)

In prediction phase, the nonlinear part (Equation (1.2.15)) is solved in time to obtain X̂k|k−1.
Then the update phase of a linear Kalman filter is applied to the linear system of Equa-
tion (1.2.20) and Equation (1.2.21) to calculate ∆X̂k|k assuming ∆X̂k|k−1 = 0. The updated
state vector can now be calculated as following.

X̂k|k = X̂k|k−1 + ∆X̂k|k (1.2.22)

The propagation of covariance matrix is performed in the same manner as in linear Kalman
filter.
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1.2.3 Unscented Kalman Filter (UKF)

In EKF, covariance matrix is propagated via an exact method, but applied to a linearized
version of system dynamic, which is accurate only to first order. In case of high nonlinearities,
this may cause high errors and even unstability. UKF on the other hand, features a deterministic
sampling approach to generate a set of points that can capture the mean of the states, as
well as the covariance matrix to the second order. These points are then propagated using
the original [nonlinear] system dynamics, and again collocated to estimate new mean and
covariance. Therefore, the way to represent covariance information (using the spread of a set
of points) is not exact. However, the propagation of such representation occurs via nonlinear
version of system dynamics with no approximations. This can be seen as opposed to EKF,
in which the way to represent covariance information is exact, whereas its propagation is
performed via the linearized model accepting an approximation.

In many cases, UKF has been reported to produce better results, when the system is highly
nonlinear in the time scale of propagation [78]. However, better performance of UKF over EKF
is not always the case [62]. When the duration of propagation at each step (or the sampling
frequency) is short enough and no extraordinary nonlinearity is expected in the system, EKF
may be the preferred choice due to lower computational cost. This is probably the reason why
EKF is still the dominant filtering method in navigation. It is also the preferred choice for
VDM-based navigation in this research. More details on definition and formulation on UKF,
as well as ready to implement explanations can be found in [70].

1.3 Sensor Error Modeling

Measurements from real sensors always have errors, at least when it comes to continuous
quantities. In this section, a very brief overview of common types of errors encountered in
INS-based navigation and some modeling/estimation techniques is presented.

1.3.1 Systematic and Stochastic Errors

The errors in a sensor data can be divided into two categories of systematic and stochastic
errors. Systematic errors are the ones with predictable behavior and known cause, and are
often constant or changing very slowly. An example is nonorthogonality in IMU data, caused
by physical deviation of sensors triad from mutual orthogonality to some extent. Systematic
errors can usually be measured directly or estimated in a calibration procedure. In such cases,
the errors can be directly compensated. However, this calibration may have not been done
for any sensor used in a setup, or there may be some residual to such errors. In such cases,
these errors can be modeled and be a part of augmented states in the navigation filter to be
estimated/refined.

Stochastic (or random) errors on the other hand, are the ones with unknown causes or very
complicated models, which are often randomly changing over time. These can be further
categorized into time-correlated and time-uncorrelated errors. Time-correlated errors such as
random biases can be part of augmented states in the navigation filter and estimated each time
the navigation is performed. Time-uncorrelated errors, often assumed to be white Gaussian

22



Sensor Error Modeling

noise, cannot be estimated by nature and are only introduced to the filter as observation
uncertainty. In any case, performance of filtering depends to a great extent on relevant modeling
of stochastic errors.

1.3.2 Stochastic Processes

Four types of stochastic processes that are frequently used in navigation are white noise,
random bias, random walk, and first order Gauss-Markov process. These are introduced in
this section, with most wordings and equations borrowed from [71]. More details and formal
definitions can be found in [71].

White Noise

Continuous white noise, denoted by W (t), is a stationary process with equal intensity at
different frequencies, resulting in a constant PSD1. Although a white noise process can have
any probability distribution, the Gaussian distribution is often assumed for time-uncorrelated
errors, making it a white Gaussian noise.

The equivalent discrete-time white noise process {Wk : k ∈ Z} is defined as the consecutive
averages of W (t) over small periods of time (∆tk = tk − tk−1). A discrete white Gaussian
(normally distributed) noise process Wk with zero mean and variance σ2

WN is denoted by
Wk ∼ N

(
0, σ2

WN

)
.

Random Constant (Bias)

A random constant or a random bias, as the name suggests, is a process with constant yet
randomly determined value over time. Therefore, the governing equation in continuous domain
has the form

Ẋ(t) = 0, (1.3.1)

and the following form in discrete domain.

Xk+1 = Xk (1.3.2)

The initial condition for this process is often assumed to be follow a Gaussian (normal)
distribution with variance σ2

WN .

Random Walk

A random walk process is the output of integrating a Gaussian white noise in time, with the
following governing equation in continuous domain.

Ẋ(t) = W (t) for t ∈ R. (1.3.3)
1Power Spectral Density
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Integrating this equation yields

X(t) =
∫ t

t0
W (s)ds (1.3.4)

with initial condition X(t0), often assumed to be zero. The random walk process is not
stationary.

The equivalent discrete process is the sequence {Xk : k ∈ Z} such that

Xk+1 = Xk +Wk, (1.3.5)

with Wk ∼ N
(
0, σ2

RW

)
.

First Order Gauss-Markov Process

A first order Gauss-Markov process has a first order delay model driven by Gaussian white
noise W (t). This is equivalent to a first order autoregressive model. The governing equation in
continuous time is as following.

Ẋ(t) = −βGMX(t) +W (t) for t ∈ R, (1.3.6)

where q = 2σ2
GMβGM with βGM ∈ R+ assumed constant in time.

The discrete version is the sequence {Xk : k ∈ Z} described by

Xk+1 = e−βGM ∆tXk +Wk, (1.3.7)

such that Wk ∼ N (0, qk) with

qk = σ2
GM

[
1− e−2βGM ∆t

]
. (1.3.8)

1.3.3 Stochastic Modeling

Consider the sequence {yk : k = 1, . . . , N} representing the observed one-dimensional error
signal of a sensor. This sequence can be seen as a realization of an univariate Gaussian
time series {Yk : k ∈ Z} to which the conditional distribution F (Yk|Yk−1, Yk−2, . . . ,θ) with
parameters θ is associated.

Stochastic modeling consists of two main tasks. The first one called model building refers to
determining the types of processes observed within a signal to be modeled, denoted by F (·).
The second task called model estimation refers ot determining the parameters of those models,
denoted by θ.

In this section, some methods for stochastic modeling are briefly presented. First, some of
frequently used traditional methods will be presented, and then a recent and very powerful
method called GMWM1 [29] will be presented, as the method used in this research for stochastic
modeling of sensor errors.

1Generalized Method of Wavelet Moments
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1.3.4 Traditional Methods

Three of the most frequently used traditional methods for stochastic modeling are mentioned
here.

Signal Autocorrelation Method

Computing the ACF1 of the observed signal {yk : k = 1, . . . , N} may reveal the presence
or the absence of [time-]correlated noise. This modeling technique assumes the noise to be
composed of an uncorrelated and a correlated part. The procedure, described with a detailed
example in [81], consists of low-pass filtering to remove the uncorrelated part, and then fitting
a model to the ACF of the remaining correlated filter output.

Allan Variance Method

In 1998, the IEEE2 standard put forward this technique as a noise identification method to
determine the characteristics of the underlying random processes that perturb data [72].

Let Ȳk(τ) be the sample average of τ consecutive observations.

Ȳk(τ) = 1
τ

τ−1∑
j=0

Yk−j (1.3.9)

The Allan variance at scale τ , noted as σ2
Ȳ

(τ), aims to measure how much the sample average
Ȳk(τ) changes from one period of time to another. This quantity is defined as half the
expectation of squared differences between adjacent non-overlapping Ȳ (τ):

σ2
Ȳ

(τ) = 1
2E
[(
Ȳk(τ)− Ȳk−τ (τ)

)2
]
. (1.3.10)

Several estimators of the Allan variance, noted σ̂2
ȳ(τ), have been proposed. One of the most

efficient ones has been proposed in [25] and can be computed from a realization {yk : k =
1, . . . , N} using

σ̂2
ȳ(τ) = 1

2(N − 2τ + 1)

N∑
k=2τ

(ȳk(τ)− ȳk−τ (τ))2 . (1.3.11)

In general, only basic processes are considered with the Allan variance, such as quantization
noise, white noise (also known as angular random walk), bias instability (also known as flicker
noise), random walk (also known as rate random walk), and the random rate ramp. Under
these considerations, θ is usually estimated by performing linear regressions on (visually)
identified linear regions in the Allan variance curve plotted using logarithmic scales. However,
this method is only well defined for these few types of processes and it is not clear how inference
on θ can be made with this approach [28].

1AutoCorrelation Function
2Institute of Electrical and Electronics Engineers
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Power Spectral Density (PSD) Method

The PSD analysis is a convenient method for analyzing and characterizing signals, and for
stochastic modeling. It is especially well suited for analyzing periodic or aperiodic signals.
Similarly to the Allan variance methods, noise coefficients of well defined processes, usually
random walk, flicker noise, white noise, and quantization noise, can be identified by linear
regions in the log-log PSD plots.

1.3.5 Limitations of Traditional Stochastic Modeling Methods

Autocorrelation Method

When several processes are superposed, the ACF does not always enable to clearly separate
them. The estimation of the model parameters becomes challenging or even impossible in such
cases. As an example, the estimation task for a signal consisting the sum of a white noise and
a first order Gauss-Markov process is non-trivial, despite its apparent simplicity. The low-pass
filter design required for isolating the correlated noise part when using the autocorrelation
method is often problematic. This is especially true in cases of more complex composite models
like sums of first-order Gauss-Markov processes.

PSD and Variance Methods

Although the Allan variance (and PSD) method is a well-established technique for identifying
processes and estimating their parameters by performing linear regression of (visually) identified
linear regions in such plots, it suffers from severe drawbacks [28]. The Allan variance (and PSD)
method works reasonably well only for processes which are clearly identifiable and separable
in the spectral domain. However, it does not allow to directly read out the parameters of a
Gauss-Markov process as large values of β make this process similar to Gaussian white noise,
while small values of β approximate a random walk. Like the autocorrelation method, both
the Allan variance and PSD do not allow the estimation of sums of Gauss-Markov processes.

1.3.6 Generalized Method of Wavelet Moments (GMWM)

GMWM is a recently introduced method for stochastic modeling [29], with many advantages
over traditional methods, from numerical stability and computational inefficiency to statistical
consistency. GMWM makes use of the wavelet varianceto estimate the parameter vector θ of
the complex models F (·) that underlie the observed error. A software was developed recently
in statistical tool R as a calibration platform based on GMWM [12]. Using GMWM estimator
properties, this platform provides some very useful tools for sensor error modeling. For example,
it provides confidence intervals for the parameters, and goodness of fit test to determine if
the selected model with estimated parameters fit well the observed data. It also provides a
criterion to assess the prediction error of the estimated model. Furthermore, it allows to rank
models of different structures according to an index that penalizes model complexity and thus
over-fitting. In this research, this platform is used for stochastic modeling of IMU errors. Also,
an online version of the tool is available under ggmwm.smac-group.com.
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Chapter 2

Basis for Dynamic Modeling of
UAVs

Overview
Motion dynamics for a UAV can be described by a model obtained based on the principles of
classical mechanics for rigid bodies and flight aerodynamics to predict forces and moments
acting on a UAV during its flight. This chapter provides a brief presentation of the bases
for dynamic modeling of UAVs employed in this research.

2.1 Classical Mechanics

Classical mechanics is one of the oldest branches of science, studying motion of objects involving
not very small sizes and not very high velocities, which lie in the realms of quantum mechanics
and relativistic mechanics, respectively. The three main formulations for classical mechanics,
leading to equivalent results, are mentioned in the following.

2.1.1 Newtonian-Euler Formulation

Famous Newton’s laws of motion were formulated for point masses, to which only translational
motions were associated. For a rigid body –as a continuous distribution of mass with fixed
distances between any two points in it– there can also be rotational motions. Based on Newton’s
laws of motion, Euler formulated equation’s of motion for rigid bodies. For a rigid body with
mass m under resultant force ΣF, denoting linear/translational acceleration of its center of
mass by aCM , the first Newton-Euler equation, or Newton’s second law for translational
motions, is formulated as following.

ΣF = maCM (2.1.1)

The second Newton-Euler equation, or Newton’s second law for rotational motions, is formu-
lated as

ΣMCM = ICMα+ ω × ICMω, (2.1.2)
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where ΣMCM is the resultant moments applied to the rigid body about its center of mass, ω
is its angular velocity, and α denotes its angular acceleration. The moment of inertia matrix
for the rigid body around its center of mass is denoted by ICM , whose elements are defined
as [73]

Iij ,
∫
V
ρ(r)

(
δij

3∑
k=1

(x2
k)− xixj

)
dV, (2.1.3)

with V being the volume of the rigid body, ρ(r) being mass density as a function of position
of position vector r –from center of mass to any point–, xi being the ith element of position
vector, and δij denoting Kronecker delta valued 1 for i = j and 0 otherwise.

2.1.2 Lagrangian Formulation

Newton-Euler formulation requires knowledge of all forces, including the ones related to
constraints applied on the body and also the conservative forces, i.e., the ones derived from a
potential filed whose work on the body in displacement from one point to the other does not
depend on the path. Lagrangian formulation, on the other hand, allows to obtain equations of
motion without explicitly expressing these forces.
Another very useful property of this formulation is working with generalized coordinates.
Generalized coordinates are the minimum number of parameters required to uniquely define the
configuration of the body. If there are holonomic constraints applied to the motion, generalized
coordinates implicitly contain those constraints and make the analysis easier due to reduction
in number of coordinates/dimensions (by the numbers of the constraints) and eliminating
the need to apply those constraints separately. Even in absence of holonomic constraints,
specific motions may be expressed more conveniently in coordinates other than Cartesian,
which can be handled using generalized coordinates in Lagrangian formulation usually in an
easier manner compared to Newton-Euler formulation.
If the generalized coordinates are denoted by qi, Lagrangian (L) of the system (which may
consist of more than one body) is defined as the difference between the kinetic energy (T ) and
the potential energy (U) of the system.

L , T − V (2.1.4)

The equations of motion for a system with N generalized coordinates is then states as [24]
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi (for i = 1, 2, . . . , N), (2.1.5)

where Qi represents the generalized force not arising from a potential field.

2.1.3 Hamiltonian Formulation

Hamiltonian formulation is another formulation of classical mechanics. In this approach, for a
system with N degrees of freedom, the states of are chosen to be N generalized coordinates qi
as in Lagrangian formulation, and N generalized momenta pi, defined as

pi ,
∂L

∂qi
. (2.1.6)
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The Hamiltonian of the system is defined as

H(q, p, t) ,
N∑
i=1

(piq̇i)− L(q, q̇, t), (2.1.7)

which often, but not always, corresponds to the total energy of the system T + V .
The Hamiltonian equations of motion are represented as following [6].

q̇i = ∂H

∂pi
(2.1.8)

ṗi = −∂H
∂qi

+Qi (2.1.9)

While the equations of motion in Newton-Euler and Lagrangian formulations are represented
by N second order differential equations for a system with N degrees of freedom, Hamiltonian
formulation results directly in 2N first order equations for the 2N states of the system.
In specific problems, Hamiltonian formulation has some implementation and representation
advantages over Lagrangian formulation. However, “the Hamiltonian methods are not particu-
larly superior to Lagrangian techniques for the direct solution of mechanical problems. Rather,
the usefulness of the Hamiltonian viewpoint lies in providing a framework for theoretical
extensions in many areas of physics. Within classical mechanics it forms the basis for further
developments, such as Hamilton-Jacobi theory, perturbation approaches and chaos. Outside
classical mechanics, the Hamiltonian formulation provides much of the language with which
present-day statistical mechanics and quantum mechanics is constructed” [24].

2.2 Flight Aerodynamics

Aerodynamic forces and moments are the ones applied on a body immersed in a gas (usually
air) due to interactions between the body and the surrounding gas in relative motion with
respect to one another. Modeling these forces and moments is very challenging in general.
Theoretical approaches to model them, analyze the air (gas) flow around the body, allowing
to determine forces and moments applied on it in the boundaries with the body. According to
Newton’s third law of motion, the forces and moments applied on the body will be the equal
and oppositely directed reactions to those.
The most general governing equation for fluid dynamics often considered in engineering
applications is the Navier-Stocks equation. This equation represents application of classical
mechanics to a fluid flow field, assuming a linear constitutive relation between stress tensor
and rate of strain tensor and constant viscosity parameters η and ζ for the fluid [45].

ρ
Dv
Dt

= −∇p+ η∇2v +
(
ζ + 1

3η
)
∇(∇ · v) (2.2.1)

In this equation, ρ, p, and v denote density, pressure, and velocity fields, respectively. The
“material derivative” D

Dt is defined as
D

Dt
= ∂

∂t
+ u · ∇, (2.2.2)

29



Basis for Dynamic Modeling of UAVs

with ∇ being the gradient operator, and ∇2 being the Laplace operator defined as ∇2 = ∇ ·∇.
In Cartesian coordinates, ∇ is defined as

∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂

∂z
, (2.2.3)

with i, j, and k being the unit vectors in the directions of x, y, and z axes, respectively.

Analytical solution to Navier-Stocks equation is possible only in very specific situations. In
fact, even very fundamental aspects such as existence and uniqueness of solution are still
subjects of open questions. This has been recognized important enough by CMI1 to state it
in the year 2000 as one of the seven “Millennium Problems” with a one-million-dollar prize,
only one of which2 solved to date. “The challenge is to make substantial progress toward a
mathematical theory which will unlock the secrets hidden in the Navier-Stokes equations3”[33].

In most cases, this equation, or a simplified version of it (ignoring viscosity or two dimensional
modeling, for example) is solved via the methods and tools provided by CFD4 [31]. Experimental
derivation of aerodynamic forces and moments is normally performed via wind tunnel tests,
performing of which can be very expensive in terms of time and cost, especially for larger
bodies.

The model for aerodynamic forces and moments used in the dynamic model of the aircraft is
usually represented by a set of equation in polynomial form, relating those forces and moments
to dynamic states (such as velocity) and control commands (such as aileron deflection) via
some coefficients. These coefficients are specific to the aircraft and usually given via extensive
lookup tables obtained by CFD analyses or wind tunnel tests or a combination of both.
Depending on the fidelity, accuracy, and simplicity requirements on the final dynamic model
of the aircraft, these coefficients may be considered as constants over operational conditions
(excluding stall conditions, for example). Extensive details on flight aerodynamics can be found
in many references, a commonly referenced one of which being [64].

1Clay Mathematics Institute
2Poincaré conjecture
3Restricting the problem to incompressible fluids filling all of Rn

4Computational Fluid Dynamics
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VDM-Based Navigation Framework
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Chapter 3

Theory and System Architecture

Overview
The main contribution of this research, development of VDM-based navigation for aerial
applications, is described in this chapter in a general form for aerial applications. The
description is preceded by a review of related work in the literature on some forms of
using VDM within navigation system while establishing the novelties of current research.
General form of the VDM for UAVs and the architecture of the navigation system are
detailed, together with the process models of augmented states, as well as observation
models considering imperfections in measurements and mounting of sensors.
A considerable amount of wordings and equations throughout this chapter are borrowed
form peer reviewed published papers [36, 37, 38, 39, 41] and an under review paper [40].

In this chapter, the proposed VDM-based navigation algorithm is described in detail.

3.1 Related Work

There has been research activities on some forms of integration of VDM into navigation
system in order to improve the navigation accuracy of aerial vehicles, especially in GNSS
outage conditions. Most of these proposed solutions employ INS as main process model within
navigation filter [8, 79, 17], while using VDM output either in prediction phase or in update
phase within the filter (see Figures 3.1 and 3.2, for example). Such approach is totally IMU
dependent and is prone to divergence in case of IMU malfunctions. On the other hand, high
frequency content of IMU error coming from sensor noise or platform vibrations is integrated
within the navigation system, which increases the drift rate for the navigation solution.
Although both INS and VDM have been utilized at the same level in multi process model
architectures by some authors [44] (see Figure 3.1), navigation solution at the end has been
delivered based on filtered INS output and problems of total reliance on IMU and integration of
high frequency error content persist. In many cases, presence of wind is discarded [8, 79, 17, 15],
in-flight estimation of VDM parameters in not provided [8, 79, 17, 15, 14], or VDM is integrated
into navigation only partially [15, 16, 53]. Some researchers also consider IMUs of higher
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accuracy [44], which is impractical for small UAVs in terms of size, weight, and cost. A sample
collection of mentioned studies are briefly reviewed in the following.

One of the earliest studies on integrating VDM in navigation system of UAVs dates back
to 1999, when Koifman and Bar-Itzhack [44] studied the possibility of aiding INS by means
of aircraft dynamics for a fixed-wing platform. They suggested a navigation filter with two
simultaneous process models, VDM and INS, and employed observations from an unspecified
source on horizontal position, horizontal velocity, and attitude of the aircraft within the
navigation system. They also used an altimeter to dampen the vertical channel error in GNSS
outage conditions. Figure 3.1 depicts a simplified version of navigation system architecture
in their research to show the roles of IMU and VDM in determination of PVA solution. The
study was aimed at aiding low-grade INS. However, the proposed error statistics suggested a
tactical-grade INS, a system for which the quality of sensors is higher than those normally
available for small UAVs. Based on simulation results, they concluded that VDM is capable
of aiding INS under specific conditions. Appropriate maneuvering of the aircraft was found
to be necessary to estimate wind velocity and the errors in dynamic model. They reported
that if not estimated, errors of up to 10 percent in dynamic model coefficients led to large
accumulation of navigation errors that make the aiding pointless.

IMU

VDM

Filter





_+
PVA

( )PVA

PVA

Figure 3.1 – Simplified system architecture in [44] showing roles of IMU and VDM in PVA
determination

Bryson and Sukkarieh [8] employed VDM to enhance the observability of sensor errors in INS
within the navigation system inside a fixed-wing UAV. They compared two configurations,
with INS computing the navigation solution in both, where a Kalman filter utilized VDM
output to estimate the error in INS. Figure 3.2 depicts a simplified version of navigation system
architecture in their research to show the roles of IMU and VDM in determination of PVA
solution. In configuration 1, which was found to have a better performance, VDM provided
the navigation filter with velocity and attitude data to estimate sensor errors in the IMU,
as well as velocity and attitude error in INS solution. Configuration 2 utilized acceleration
and rotation rate data from VDM to estimate only the sensor errors in the IMU. Wind was
ignored, and there was no mechanism for VDM parameter estimation.

Crocoll et al. [15] proposed and tested a navigation system for a quadcopter UAV that was
aided by a translational dynamics model. The authors unified the VDM and INS before
Kalman filter prediction step to reduce computational cost and improve stability. Their model
ignored rotational dynamics, and no considerable improvement in heading angle estimation
was observed. The effect of wind was also not considered, and a parameter identification step
was required to identify model parameters, which could not be re-calibrated in-flight. This
identification was carried out using measurements from a laser range finder. The in-flight
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Figure 3.2 – Simplified system architecture in [8] showing roles of IMU and VDM in PVA
determination

parameter estimation [16] and wind estimation [52, 53] were integrated into their system in
further developments, which proved the benefits of both in final navigation accuracy. However,
only the translational dynamic model was considered in these studies, as well. The reported
results revealed improvements over unaided navigation system, but probably not enough to
properly guide a UAV in case of GNSS outages of several minutes’ duration.

Sendobry reviewed and classified many studies on using VDM in navigation available in the
literature, and proposed a new approach of own [68]. This approach, along with the one
proposed in [14], may be considered as the closest ones to the one proposed here, in the sense
that inertial measurements are treated as observations and not as a process model. In-flight
parameter estimation was available within the filter, but no estimation on the wind velocity
was considered, and no results on navigation autonomy during GNSS outage was provided.
The algorithm performance was investigated through simulations for a quadcopter UAV.

In his doctoral dissertation, Lennon Cork [14] proposed a VDM-based navigation for a full-size
aircraft (F16). The dynamic model was borrowed from a publicly available NASA technical
report [56], derived from wind-tunnel tests covering a broad range of flight situations, in form
of large lookup tables for aerodynamic coefficients. Constructing such a model for a small
UAV is overly complex and impractical if not practically unfeasible (outside large companies).
In-flight VDM parameter estimation was not proposed, which can become problematic for
small UAVs if the structure undergoes some modifications (body or propeller repairs altering
aerodynamics, payload change, etc.). Wind estimation was also impossible in absence (or
malfunction) of airspeed sensors. Navigation performance of proposed system was investigated
via Monte-Carlo simulations, revealing 4 to 8 times improvement in positioning accuracy
during GNSS outages of up to 3 minutes.

3.2 Methodology Overview

In this research, a navigation algorithm is proposed that integrates VDM within navigation
system. The main idea behind this algorithm is to benefit from available information on vehicle
dynamic modeling and control input within the navigation system to increase redundancy and
accuracy in PVA determination. Since VDM is a formulation of physical laws on UAV motion,
integration of it can reject parts of impossible motion suggested by sensors (including IMU)
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due to their errors, as well as initialization errors. As will be seen in Chapter 5, it significantly
mitigates the drift of autonomous navigation during GNSS outages of a few minutes.

Since VDM is only a mathematical model and relies on no extra sensors, integrating it within
navigation system adds no additional cost and complexity in terms of hardware, which can be
an interesting aspect for small UAVs. VDM needs to be fed with the control input to the UAV,
though, which is principally available in the control/autopilot system. Correct time tagging
of this data in relation to IMU and other observations is required. Wind velocity is another
input that VDM needs, which can be estimated within the proposed navigation system even
in absence of airspeed sensor. In case airspeed sensor is available, the internal estimation
capability of wind estimation adds redundancy to the system that may be beneficial in case
the sensor malfunctions, and better performance is also expected. Detailed evaluation of wind
effects on performance of proposed navigation system can be found in Section 5.2.

A key feature in the proposed solution is VDM acting as the main process model within the
navigation filter, where its solution is updated with raw IMU observations and if available,
observations from GNSS receiver and other sensors (see Figure 3.3). Such architecture avoids
the complications of multi-process-model filters [8, 44] and thus leads to simpler filter imple-
mentation, smaller state vector, and lower computational cost. It is also preferred over the
architectures in which INS is the main process model that gets updated by VDM, due to the
following reasons. In case of IMU failure, the proposed architecture can simply stop using all
or some of inertial observations1, while the architecture with INS as the main process model
will fail. Of course, if the controller or the processing unit fails, VDM no longer works either,
but in such a case the whole system may be lost irrespective of its navigation quality.

On the other hand, the high frequency measurement noise in IMU data contribute to further
drift of the navigation solution when integrated within the navigation filter, as analytically
shown in [67]. The mechanical vibrations on the platform also affect the IMU measurements,
but not the VDM output. If these vibrations were of considerably lower frequencies than
sampling rate of the IMU, they could be properly reconstructed, and thus the navigation
accuracy would not be mitigated. However, these vibrations are mainly related to propellers
spinning, and typically can have frequencies of hundreds of Hz. Depending on the sampling
frequency of IMUs (usually between 50 to 500 Hz), parts of these vibrations may become
aliased noise that further deteriorates navigation performance. Theoretically, this can be
avoided by choosing IMUs with high enough sampling frequency. However, this may not
be affordable in all cases. Therefore, treating the IMU data as observations and avoiding
integration of them as a process model is expected to decrease the error growth in autonomous
navigation.

The structure of VDM depends on the host platform type (fixed-wing, copter, etc.) and its
control actuators, which is generally described well in the literature [13, 19, 22, 7]. The model
parameters, however, depend on specific platform at hand. These parameters can be either
identified/pre-calibrated, or estimated in-flight. The ability of proposed navigation system for
in-flight parameter estimation minimizes the required effort in design and operation.

1provided that proper fault detection and exclusion is implemented, which goes beyond the scope of current
research.
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Figure 3.3 – Simplified system architecture in current research showing roles of IMU and VDM
in PVA determination

3.2.1 Theoretical Benefits of VDM in Navigation

As a mathematical motion model of the platform (UAV), VDM provides information on linear
and rotational accelerations, very similar to an IMU. This is an independent additional source
of information to what is available in conventional INS-based navigation. Therefore, utilizing
VDM in navigation system increases redundancy, and if tuned well enough, the accuracy of
navigation.

VDM is constructed based on physical laws of motion, with its parameters being platform-
dependent. Therefore, even in presence of remaining structural and parametric uncertainties,
it suggests motions that are physically possible and exact for a hypothetical platform that
is similar to the real UAV. The degree of this similarity depends on the level of modeling
errors. INS is platform-independent, but affected by remaining systematic errors, as well as
high levels of stochastic errors with complex structure in case of MEMS IMUs. Hence, INS
may suggest motions that are not physically possible for any platform similar to the one at
hand. Therefore, fusion of VDM data with other available data, removes parts of impossible
motions suggested by IMU and reduces navigation error, as a result.

When GNSS updates are available regularly, the growth of navigation errors due to accumu-
lation of IMU errors is controlled. However, in long GNSS outages, bringing another source
of information and removing parts of IMU error can considerably limit growth of navigation
error. This is what VDM-based navigation does by applying physical constraints on dynamic
behavior of the platform, even though with some uncertainty.

The role of VDM in UAV navigation may be compared to the role of non-holonomic constraints
in terrestrial vehicle navigation. Although these constraints are very simplistic, when combined
with IMU data, they substantially decrease uncertainty of inertial coasting by applying physical
constraints on motion, even though partially. In [18], as one example of many references on this
matter, applying non-holonomic constraints and odometry via a wheel encoder has reported
to reduce position error in horizontal channel from 808 meters to only 11 meter in a GNSS
free period of 2 minutes, meaning an improvement of over 70 times.

3.3 Navigation System Architecture

The sensors used for navigation of a UAV fall under two categories, “autonomous sensors”
and “environment dependent sensors”. IMUs and pressure sensors are examples of autonomous
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sensors that provide data regardless of environmental features and conditions such as texture,
visibility, or signal reception conditions. On the other hand, there are environment dependent
sensors such as RF1 ranging sensors (GNSS receivers for example) and vision based sensors. In
conventional navigation system for a UAV, data from all these sensors are fused in a navigation
system with INS being the process model to provide the navigation solution, as depicted
schematically in Figure 3.4. Time stamping of sensor data to a common reference (usually
GPS time) may be handled inside sensors or externally.

S II

S I
Time stamper Navigation

filter

solution
Navigation

S I: Autonomous sensors

S II: Environment dependent sensors
(RF-ranging (e.g., GNSS), vision, ultrasound, optical flow, etc.)

(IMU, pressure sensor, etc.)

INS

INS: Inertial Navigation System

Figure 3.4 – Conventional (INS-based) navigation system for UAVs

As explained in Section 3.2, the main idea behind the proposed navigation algorithm in this
research is integrating information on dynamic model of UAV in a particular way within
the navigation system. This is achieved by using VDM as process model in navigation filter
(Extended Kalman filter, for example) and feeding the navigation filter with control input to
UAV, as schematically depicted in Figure 3.5. This figure, shows the general implementation
scheme for the proposed navigation system.

Depending on specific sensors available on the platform, there are some hardware requirements
for the proposed navigation method to work. The autopilot/control unit output to actuators
needs to be accessible by navigation system (since this information is needed by VDM) and
time-stamped with respect to other sensory data to a common reference. An alternative would
be having sensors directly measuring actuator states such as propeller speed. For autonomous
navigation, for example, usually an IMU is a minimum necessary sensor setup. With the
proposed method, there is nevertheless the possibility for the system to work (determine
PVA) without the IMU, but with at least a single GNSS receiver or another setup of sensors
providing position fixes. Since an IMU is almost always used within a navigation system for
unmanned vehicles, such configuration can be most beneficial as a backup solution in case of
IMU failure to increase reliability of the whole system.

Control input and data from all sensors must be properly referenced to a common time base
in order to be used within the navigation system. This requires a hardware/software time
stamper to perform data tagging with respect to a common time reference. Depending on
configuration of sensors, a partial time stamping may be performed in other manners. For

1Radio Frequency
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S I: Autonomous sensors

S II: Environment dependent sensors
(RF-ranging (e.g., GNSS), vision, ultrasound, optical flow, etc.)

(IMU, pressure sensor, etc.)

VDM

VDM: Vehicle Dynamic Model

Figure 3.5 – General scheme for the proposed (VDM-based) navigation system for UAVs

example, in case both an IMU and a GNSS receiver are available, there may be a connection
between them in which the GNSS time frame is used to tag IMU data. A time stamping unit
may also be available within the controller. In any case, all the data flow to the navigation
system needs to be referenced to a common time base.

3.3.1 General Form of VDM

Vehicle dynamic model (VDM) is a mathematical model describing dynamics of motion of the
platform. The VDM here is derived based on Newtonian formulation of classical mechanics,
and is presented in state space form with the following state vector1.

Xn =
[
rle
T
,vle

T
,qlb

T
,ωbib

T
]T

(3.3.1)

The position vector rle = [φ, λ, h]T represents position of platform (represented by position
of body frame origin) in earth frame and in ellipsoidal coordinates. The velocity vector
vle = [vN , vE , vD]T denotes velocity of platform as observed in earth frame and expressed in

1See footnote 1 on page 17 for a discussion on dependence of quaternion components in the state vector.
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local (NED) frame. The quaternion qlb = [q0, q1, q2, q3]T defines orientation of body frame
(platform) with respect to local frame. Finally, the angular velocity vector ωbib = [ωx, ωy, ωz]T
represents angular velocity (rotation rate) of body frame with respect to inertial frame,
expressed in body frame.

The dynamic model is derived based on Newton-Euler formulation of classical mechanics as
presented in Section 2.1.1 and can be expressed as [38]

Ẋn =


ṙle
v̇le
q̇lb
ω̇bib

 =



D−1vle
Cl
bf b −

(
2Ωl

ie + Ωl
el

)
vle + gl

1
2qlb ⊗

[
ωbib −

(
Cl
b

)T (
ωlie + ωlel

)]
q(

Ib
)−1 [

Mb −Ωb
ib

(
Ibωbib

)]


, (3.3.2)

where Ib denotes the matrix of moments of inertia of the UAV, and Mb represents the [resultant]
vector of moments applied on the UAV, both expressed in b-frame. The rest of the symbols
were introduced/defined in Section 1.1.4.

The presented model (Equation (3.3.2)) is so far a general form of dynamic model for any rigid
body in arbitrary motion in 3D space affected by Earth gravity, external specific force f , and
external moment M, based on classical mechanics. Completing the model for a specific type of
vehicle, a fixed-wing UAV for example, requires proper models for f and M, an aerodynamic
model in this case, which can be a function of dynamic states, control inputs, and physical
parameters of the platform. Those physical parameters can be different per specific UAV.

3.3.2 Importance of Modeling Earth Effects

Although a “non-rotating flat Earth” model is widely assumed for UAV applications in robotics
community, a “rotating ellipsoidal Earth” model [59] is used in this research. It is a known
fact that for large platforms, even with rather short flight ranges and moderate speeds,
considering a non-rotating flat Earth would result in large navigation errors. However, some
simplified calculations reveal that employing a non-rotating flat Earth model may influence
error accumulation to a non-trivial extent, even for small UAVs.

Ignoring Earth rotation introduces errors mainly due to discarding Coriolis acceleration.
For a UAV flying at 20 m/s, the discarded acceleration can be as big as 2.92 × 10−3 m/s2

(= 2 × 7.29 × 10−5 × 20). In 3 minutes of inertial coasting, this leads to a position error of
47 m (= 1/2× 2.92× 10−3 × 1802).

Assuming a flat Earth also introduces errors due to discarding changes in the direction of
gravitational force. Over a range of 1 km, considering the mean radius of 6371 km for Earth,
this change in direction is 1/6371 rad. The average committed error in acceleration will be
7.70× 10−4 m/s2 (= 1/2× 1/6371× 9.81). In 3 minutes of inertial coasting, this can lead to
a position error of 12 m (= 1/2 × 7.70 × 10−4 × 1802), setting the combined error to 49 m
(=
√

472 + 122).

Error of such magnitude seems to be negligible compared to the errors that typical MEMS1

IMUs produce in the same situation (in order of kilometers). However, as will be seen in
1Micro-Electro-Mechanical Systems
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Chapter 5, this is almost on par with the ranges of errors in VDM-based navigation, and thus
quite important to avoid. Also, as those errors grow linearly with speed and flights range and
quadratically with time, modeling Earth effects becomes more important for larger platforms
and in beyond visual line of sight (BVLOS) operations.

3.3.3 VDM as Process Model

The proposed navigation system utilizes VDM as the main process model within the navigation
filter. The filter provides estimation of navigation states and other necessary augmented states
as will be discussed in Section 3.4. An extended Kalman filter (EKF) [23] is chosen to estimate
the states (X) and associated covariance matrix (P). Other types of filters/estimators such
as unscented Kalman filter (UKF) could also be used. As mentioned in Section 1.2.2, while
prediction of state vector X is provided by the generally nonlinear process model, EKF
utilizes a linearized version of the process model (via F = ∂Ẋ/∂X, with Ẋ = f(X,U, t) and
X being the state vector, U being the vector of deterministic inputs, and t denoting time)
and a linearized version of observation model (via H = ∂Z/∂X, with Z = h(X, t) being the
observation vector) to provide prediction of covariance matrix P and to update both state
vector and covariance matrix. More details on Kalman filters can be found in [23] and many
other sources available on the subject. Description of different states and their process model
will be presented in Section 3.4.

As depicted in Figure 3.6, VDM provides the navigation solution (Xn) that is updated as a
part of the augmented states vector (X) by the filter based on available observations. Hence,
IMU data are treated as observations, just the way data from other sensors such as GNSS
receiver, barometer, and airspeed sensor are when available. It is important to note that IMU
observations are related to system states via the VDM, as discussed in Section 3.5.1. Any
other available sensor such as optic flow sensor or magnetometer can also be integrated within
the navigation system as an additional observation source.

VDM is fed with the control input (U) acting on the UAV, which is commanded by the
autopilot and therefore available. To be more exact, VDM needs to be fed with actuator
states. If internal dynamics of the actuators is ignored, actuator states will be equivalent to
the control input (U). Otherwise, the control input is fed to associated models for actuator
dynamics, which provide actuator states to be fed to the VDM. In such a case, the unknown
parameters of actuator dynamics model may also be considered as a part of the augmented
states to be estimated within the filter.

Another needed input for VDM is the wind velocity (Xw), which can be estimated within the
navigation system with or without the aid of airspeed sensors. Of course, if airspeed sensors
are available, better performance is expected thanks to the direct measurements and the
introduced redundancy.

Finally, the parameters of VDM, which are basically the physical properties of the UAV, are
required. Pre-calibration of these parameters as fixed values is an option. However, to increase
flexibility and accuracy of the proposed approach while minimizing design effort, in-flight
estimation/refinement of VDM parameters (Xvp) is implemented.

The state vector can be further augmented to include actuator parameters, sensor errors,
and sensor mounting misalignment. Depending on the needs and available observations and
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Figure 3.6 – VDM-based navigation filter architecture (X̃k ≡ X̂k|k−1)

maneuvers to provide the required observability, these can be estimated or only compensated
for. State space augmentation is detailed in Section 3.4.

3.4 State Space Augmentation

The navigation filter may be used to estimate some parameters or variables in addition to the
navigation states, and this is done via augmenting the state vector. In the following, all the
states that may be included in the augmented state vector (either for the purpose of calibration
or navigation) are introduced with their process model. The process model is dynamic (Ẋ 6= 0)
in general, but it can be static (Ẋ = 0) if a constant variable (a parameter) is being estimated
within the filter.
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3.4.1 Actuator Dynamics

The internal dynamic of any actuator state ai (such as propeller speed, and deflections of
aileron, elevator, and rudder for a fixed-wing UAV) is modeled considering first-order delay,
scaling, and shifting of the command as

ȧi = 1
τi

(biui + ci − ai) , (3.4.1)

where ai denotes the actuator state and ui is the desired (commanded) value for ai. Three
parameters are recognized for this model, being τi as a first order delay, bi as a scale factor,
and ci as a shift. All these parameters can be also included in the augmented state vector. If
this is the case, they are modeled as constants (for example, τ̇i = 0). To sum up, if there are
M actuators on the platform, the state space is augmented by an actuator state vector as

Xa = [a1, a2, . . . , aM ]T , (3.4.2)

and an actuator parameter state vector as

Xap = [τ1, b1, c1, τ2, b2, c2, . . . , τM , bM , cM ]T . (3.4.3)

The process model for Xa is simply a collocation of (3.4.1), and the process model for Xap is
as following.

Ẋap = [0]3M×1 (3.4.4)

3.4.2 VDM Parameters

Parameters used in dynamic model of the UAV reflect physical properties of the platform,
which are normally constant. However, their constant values may not necessarily be known
initially (e.g., for a new UAV) with sufficient certitude, hence the possibility of estimating
them within the filter is desirable, at least for the purpose of calibration. A static model
is used for them within the filter. The VDM parameters vector (Xvp) contains mainly the
aerodynamic coefficients used in the UAV dynamic modeling. Mass and moments of inertia of
the UAV are not included in this vector, since they appear as scaling factors in the equations
of motion and therefore they are completely correlated with the already included coefficients
of aerodynamic forces and moments. Also, geometric measures of the UAV such as propeller
diameter can be measured physically (or using 3D models of the platform) with sufficient
accuracy. In such a case, they are not part of the augmented states vector. If there are N
aerodynamic coefficients (pi) in the VDM estimation of which within the filter is intended, the
VDM parameters vector will be

Xvp = [p1, p2, . . . , pN ]T , (3.4.5)

with the process model as

Ẋvp = [0]N×1 (3.4.6)
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3.4.3 Wind Velocity

The wind velocity is stated as a vector in local-level frame consisting of the three components
in north, east, and down directions.

Xw = [wn, we, wd]T (3.4.7)

Although in usual cases wind velocity is expected to change rather slowly and smoothly from
one moment to another, in general there is no information on such transition. Therefore, no
deterministic part is considered in the process model for wind velocity, and only a stochastic
model is considered for wind. If a white noise is assumed to rule the transition in time, this
leads to a random walk process model. Constant part of the wind is also covered by the
random walk process if a non-zero initial uncertainty is attributed to it within the filter.

3.4.4 Sensor Errors

Time correlated errors of a sensors may be modeled and estimated within the filter stochastically.
Frequently used models are bias (random constant), random walk, and autoregressive models
such as first order Gauss-Markov. The time uncorrelated error for each sensor is considered as
a Gaussian white noise that is taken into account as observation uncertainty within the filter.
The usage of sensor error sates (as well as sensor mounting misalignment states introduced
in Section 3.4.5) in observation models is detailed in Section 3.5, while the purpose of this
section is presenting these states generally with their process models.

In case a random walk process is considered for the error of a sensor, there will be no added
value for modeling separately a bias, as the bias can be estimated by the random walk provided
that a non-zero initial uncertainty is set for it. In other words, a random walk process with
non-zero initial uncertainty is equivalent to the sum of a bias and a random walk process with
zero initial uncertainty.

IMU

For the IMU in this research, a random walk (eIRW ) and a first order Gauss-Markov (eIGM )
error vector are considered as additive errors, each consisting three elements for accelerometers
(denoted by superscripts ai) and three elements for gyroscopes (denoted by superscripts gi).
This model has been found sufficient for the low-cost IMU in consideration here, but can be
extended as needed. Non-orthogonality and scale factors were pre-determined and compensated
during filtering1.

eIRW =
[
ea1
RW , e

a2
RW , e

a3
RW , e

g1
RW , e

g2
RW , e

g3
RW

]T
(3.4.8)

1In practice, not all the different error types are well observable, and therefore, some error types (e.g., scale
factor) may be partially absorbed by other error types (e.g., additive errors). The unabsorbed parts will remain
as sources of error, though. One may only do their best to estimate them and then accept the residuals and
possibly modify error statistics within the filter to better reflect the real situation.
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eIGM =
[
ea1
GM , e

a2
GM , e

a3
GM , e

g1
GM , e

g2
GM , e

g3
GM

]T
(3.4.9)

The IMU error states vector concatenates these two as

XI
e =

[(
eIRW

)T
,
(
eIGM

)T ]T
. (3.4.10)

Barometer

For the barometer, an additive error modeled as a random walk (eBRW ) is considered, as well as
a scale factor (eBSF ) that is also modeled by a random walk. Random walk is chosen over bias
to account for unpredicted changes in environmental conditions (temperature and pressure).
The barometer error states vector contains the additive random walk and the scale factor as

XB
e =

[
eBRW , e

B
SF

]T
. (3.4.11)

Airspeed Sensor

The considered error states for the airspeed sensor are very similar to the barometer, an
additive error as a random walk (eARW ), as well as a scale factor (eASF ) that is also modeled by
a random walk. Hence, the airspeed error states vector is defined as

XA
e =

[
eARW , e

A
SF

]T
. (3.4.12)

3.4.5 Sensor Mounting Misalignments

A sensor frame is associated to any sensor mounted on the platform, with the origin at the
effective point of the sensor, at which the measurements are made, and the axes oriented in
the directions in which the measurements are made, for the ones with a direction dependent
measurement. In general, the sensor frames are not aligned perfectly with the body frame.
The misalignment between a sensor frame and the body frame is defined via translational (i.e.,
lever-arm) and rotational (i.e., boresight) components. Lever-arm is a position vector from
body frame origin to sensor frame origin, expressed in body frame. Boresight is a rotation
(in any representation form) expressing the attitude of sensor frame with respect to body
frame. While lever-arm needs to be determined for every sensor, boresight is defined only
for some sensors. For example, measurements from barometer and GNSS receivers do not
have any orientation in body frame. The additional states accounting for the sensor mounting
misalignments are detailed in the following. The usage of these states in observation models is
detailed in Section 3.5, though.

If the platform and the mountings of rigidly attached sensors are not physically modified, the
lever-arms and boresights are stable in time. Since their values may be difficult to measure
directly, especially for boresights, they are modeled as random constants to be refined in-flight
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during calibration flights. Once they are estimated with satisfactory certainty, they can be
removed from augmented states and be used only for compensation1.

IMU

The relative alignment of IMU and body frame is depicted in Figure 3.7. The lever-arm is
expressed as the position vector rbbI = [LI1, LI2, LI3]T , and boresight is represented by the vector
Θb
bI = [BI

1 , B
I
2 , B

I
3 ]T containing the three Euler angles parameterizing the rotation matrix CI

b .
This rotation matrix is calculated as

CI
b = C1(B1)C2(B2)C3(B3), (3.4.13)

with elementary rotation functions Ci(·) defined in Equation (1.1.2). The associated state
vector is then as following.

XI
m =

[(
rbbI
)T

,
(
Θb
bI

)T ]T
(3.4.14)
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Figure 3.7 – IMU frame alignment with respect to body frame

As discussed in sensor frame definition in Section 1.1.3, the internal non-orthogonality of the
sensor is modeled separately, and the introduced misalignment here refers to the misalignment
between the IMU sensor frame after accounting for non-orthogonality and the body frame.

GNSS Antenna

To express the misalignment between the GNSS antenna phase center and the body frame,
only the lever-arm (rbbG) is required, making the associated state vector look like the following.

XG
m = rbbG =

[
LG1 , L

G
2 , L

G
3

]T
(3.4.15)

1In practice, sensor mounting misalignments, especially in case of boresight, can be very weekly observable.
Therefore, their fine estimation is frequently discarded and some modification (in conservative direction) is
made in sensor error statistics within the filter to partially absorb their effects.
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Barometer

Similar to GNSS antenna, only a lever-arm (rbbB) is required to express the misalignment
between the barometer frame and the body frame, resulting in the following state vector.

XB
m = rbbB =

[
LB1 , L

B
2 , L

B
3

]T
(3.4.16)

Airspeed Sensor

For airspeed sensor, relative alignment with respect to body frame is depicted in Figure 3.8.
In this case, in addition to the position vector rbbA = [LA1 , LA2 , LA3 ]T for lever-arm, the vector
Θb
bA = [BA

1 , B
A
2 ]T containing the two boresight angles is also required to express the direction

of the unit vector ûbA along which the airspeed measurement is made. As the rotation of the
airspeed sensor around its effective axis (ûbA) does not affect its measurements, a third angle
is not required for expressing the boresight. The unit vector ûbA is calculated as

ûbA =

cosBA
2 cosBA

1
cosBA

2 sinBA
1

sinBA
2

 . (3.4.17)

The state vector for airspeed sensor mounting misalignment is as following.

XA
m =

[(
rbbA
)T

,
(
Θb
bA

)T ]T
(3.4.18)
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Figure 3.8 – Airspeed frame alignment with respect to body frame

3.4.6 State Vector in Most General Case

In the most general case here, the augmented state vector is composed of navigation states (Xn),
actuator states (Xa), actuator parameters (Xap), VDM parameters (Xvp), wind velocity (Xw),
IMU error (XI

e), barometer error (XB
e ), Airspeed error (XA

e ), IMU mounting misalignment
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(XI
m), GNSS antenna mounting misalignment (XG

m), barometer mounting misalignment (XB
m),

and airspeed sensor mounting misalignment (XA
m).

X =
[
XT
n ,XT

a ,XT
ap,XT

vp,XT
w,XI

e
T
,XB

e
T
,XA

e
T
,XI

m
T
,XG

m
T
,XB

m
T
,XA

m
T
]T

(3.4.19)

However, not all these states are necessarily present in the augmented states vector in
every situation. For example, sensor mounting misalignment or the VDM and actuator
parameters may have been already calibrated to an acceptable level for excluding them from
the estimation. Also, keeping all of these states at the same time will most probably not result
in best performance outside a calibration scenario, due to the lack of enough observability.
For example, if the altitude change is small, the additive error and the scale factor for the
barometer may not decorrelate and therefore they are estimated poorly. Apart from the choice
on augmented states, observability depends on the available observations and the maneuvers
that the UAV performs. The designer needs to consider all these facts when deciding on the
states to include.

3.5 Observation Models

Observations from onboard sensors need to be clearly related to system states via observation
models in order to be used in the filter. This section provides the observation models for all
the employed sensors, considering the modeled errors and the mounting misalignments.

3.5.1 IMU data

An ideal (error-free) IMU consists of an orthogonal triad of accelerometers, measuring specific
force applied to the IMU casing expressed in IMU frame (f II), and an orthogonal triad of
gyroscopes measuring rotation rate (angular velocity) of the casing with respect to inertial
frame expressed in IMU frame (ωIiI). In VDM navigation equations (Equation (3.3.2)), specific
force applied to body expressed in body frame (f bb) and rotation rate of body frame with
respect to inertial frame expressed in body frame (ωbib) are required. The IMU is assumed to
be rigidly attached to the body, with misalignment (XI

m) as expressed in Equation (3.4.14)
and additive error (XI

e) as expressed in Equation (3.4.10).

To obtain the relation between f II and f bb, let’s start with the relation between position vector
of IMU and body frame origins, expressed in inertial frame.

riI = rib + Ci
brbIb (3.5.1)

Differentiating this equation twice with respect to time and applying the rigid attachment
assumption (meaning constant rbIb) and using Equation (1.1.7) leads to

r̈iI = r̈ib + Ci
bΩ̇

b
ibrbbI + Ci

bΩb
ibΩb

ibrbbI . (3.5.2)

On the other hand, according to Equation (1.1.21), r̈iI and r̈ib can be written as following.

r̈iI = f iI + giI = Ci
bCb

If II + giI (3.5.3)
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r̈ib = f ib + gib = Ci
bf bb + gib (3.5.4)

Substitution of Equations (3.5.3) and (3.5.4) in Equation (3.5.2) and multiplying both sides
by Cb

i yields

Cb
If II + Cb

igiI = f bb + Cb
igib + Ω̇b

ibrbbI + Ωb
ibΩb

ibrbbI . (3.5.5)

Discarding the difference between giI and gib, and denoting f II as f I and f bb as f b to simplify
notation, Equation (3.5.5) can be solved for f I as following.

f I = CI
b

(
f b +

(
Ω̇b
ib + Ωb

ibΩb
ib

)
rbbI
)

(3.5.6)

Considering ωIiI = ωIib +ωIbI and applying the rigid attachment assumption (meaning constant
CI
b and hence, zero ωIbI), one can have

ωIiI = CI
bω

b
ib. (3.5.7)

Finally, putting f I from Equation (3.5.6) and ωIiI from Equation (3.5.7) together in ZI vector,
corrupted by non-orthogonality, scale factors, additive errors as in Equation (3.4.10), and nI
measurement noise, IMU observation model is obtained as

ZI = (I + N + S)
[
CI
b

(
f b +

(
Ω̇b
ib + Ωb

ibΩb
ib

)
rbbI
)

CI
bω

b
ib

]
+ XI

e + nI , (3.5.8)

where I is the identity matrix. Both the skew-symmetric matrix of non-orthogonality factors
(N), and the diagonal matrix of scale factor (S) are pre-determined and compensated for
within the navigation filter.

3.5.2 GNSS Position and Velocity

In loosely coupled integration, GNSS observations consist of position of GNSS antenna in Earth
frame (reG) and velocity of GNSS antenna with respect to Earth frame expressed in local frame
(Cl

eveG). Considering GNSS antenna mounting misalignment as expressed in Equation (3.4.15),
reG can be related to system states as

reG = reb + rebG = reb + Ce
brbbG = reb + Ce

lCl
brbbG. (3.5.9)

Differentiating Equation (3.5.9) with respect to time and applying the rigid attachment
assumption (meaning constant rbbG) yields

ṙeG = ṙeb + Ce
bΩb

ebrbbG. (3.5.10)

Defining vlea , Cl
evea = Cl

eṙea for any arbitrary point a, Equation (3.5.10) can be rewritten as

vleG = vleb + Cl
eCe

bΩb
ebrbbG = vleb + Cl

bΩb
ebrbbG. (3.5.11)
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Considering Ωb
eb = Ωb

ib−Ωb
ie and Ωb

eb = Cb
lΩl

ebCl
b, and denoting vleb as vle to simplify notation,

Equation (3.5.11) takes the following form.

vleG = vle +
(
Cl
bΩb

ib −Ωl
ieCl

b

)
rbbG (3.5.12)

Finally, putting reG from Equation (3.5.9) and vleG from Equation (3.5.12) together in ZG
vector, corrupted by nG measurement noise, GNSS observation model is obtained as following.

ZG =
[

reb + Ce
lCl

brbbG
vle +

(
Cl
bΩb

ib −Ωl
ieCl

b

)
rbbG

]
+ nG (3.5.13)

3.5.3 Barometric Altitude

A barometer measures static air pressure. Assuming a hydrostatic model for the atmosphere,
this pressure is then related to the altitude of the barometer inlet point hB, knowing the atmo-
spheric states (temperature and pressure) at some initial point for each mission. Considering
barometer misalignment as expressed in Equation (3.4.16), hB can be related to system states
as

hB = hb +
[
0 0 1

]
Cl
br
b
bB. (3.5.14)

Corrupting hB with barometer error as expressed in Equation (3.4.11) and nB measurement
noise, and denoting hb as h to simplify notation, barometer observation model is obtained as
following.

ZB =
(
1 + eBSF

) (
h+

[
0 0 1

]
Cl
br
b
bB

)
+ eBRW + nB (3.5.15)

Another option to employ the barometric data is including the parameters of the hydrostatic
model for the atmosphere in the navigation (or a separate) filter and keep estimating them as
long as GNSS position observations are present. This approach was explored in [47].

3.5.4 Airspeed

A single-axis airspeed sensor measures dynamic pressure (difference between total/stagna-
tion pressure and static pressure) along its axis, which after some internal calibration and
transformation gives the airspeed along its axis at inlet point VûA

, which can be expressed as
following.

VûA
= Vb

eA · ûbA =
(
Vb
eA

)T
ûbA =

(
Vl
eA

)T
ûlA =

(
vleA −wl

eA

)T (
Cl
bûbA

)
(3.5.16)

In exactly the same way vleG was expressed in terms of system states in Equation (3.5.12),
vleA can be expressed as

vleA = vle +
(
Cl
bΩb

ib −Ωl
ieCl

b

)
rbbA. (3.5.17)
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Assuming wl
eA as representative of wind velocity wl

eb acting on the platform and substituting
Equation (3.5.17) in Equation (3.5.16) yields

VûA
=
(
vle +

(
Cl
bΩb

ib −Ωl
ieCl

b

)
rbbA −wl

eb

)T (
Cl
bûbA

)
(3.5.18)

Finally, corrupting VûA
with airspeed error as expressed in Equation (3.4.12) and nA mea-

surement noise, and denoting wl
eb as wl to simplify notation, airspeed observation model is

obtained as following.

ZA =
(
1 + eASF

) (
vle +

(
Cl
bΩb

ib −Ωl
ieCl

b

)
rbbA −wl

eb

)T (
Cl
bûbA

)
+ eARW + nA (3.5.19)
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Chapter 4

Fixed-Wing Implementation

Overview
This chapter presents the implementation of the VDM-based navigation proposed in Chap-
ter 3 for a specific fixed-wing platform. Development of the VDM for this platform with
models of aerodynamic forces and moments is presented, as well as description of the
experimental setup and the navigation filter setup used in Chapters 5 and 6.
A considerable amount of wordings and equations throughout this chapter are borrowed
form peer reviewed published papers [36, 37, 38, 39, 41] and an under review paper [40].

4.1 VDM for a Typical Fixed-Wing UAV

As depicted schematically in Figure 4.1, the fixed-wing UAV considered here has a single
propeller in front and four (or five) control surfaces; two [coupled] ailerons, an elevator (or two
coupled ones), and a rudder. The models for aerodynamic forces and moments for this UAV
are borrowed from [19] and presented in Sections 4.1.1 and 4.1.2. These are, however, just
sample models for aerodynamic forces and moments, and can be replaced by other models.

4.1.1 Aerodynamic Forces

Four components of aerodynamic forces are recognizable in this model. The thrust force is
expressed in body frame (along xb axis), while the lift, lateral, and drag forces are expressed
in wind frame.

Thrust force is expressed as

FT = ρω2
pD

4CFT
(J), (4.1.1)

where ρ is the air density, ωp is the propeller speed, D is the propeller diameter, and J is
called thrust advance ratio and defined as J = V

Dπωp
with V being the airspeed magnitude.

The dimensionless thrust force coefficient CFT
is expressed as

CFT
(J) = CFT 1 + CFT 2J + CFT 3J

2, (4.1.2)
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left elevator

xb

yb

zb
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right aileron

left aileron

right elevator
rudder

propeller

Figure 4.1 – Schematic of the fixed-wing UAV used in this research with propeller, aileron(s),
elevator(s), and rudder

with CFT ...s being the thrust force derivatives for the particular UAV at hand.

Drag force is expressed as

Fwx = q̄SCFx(α, β), (4.1.3)

where S is the wing surface, and q̄, α and β denote dynamic pressure, angle of attack and sideslip
angle, respectively, defined in Equation (1.1.17). The dimensionless drag force coefficient CFx

is expressed as

CFx(α, β) = CFx1 + CFxαα+ CFxα2α
2 + CFxβ2β

2, (4.1.4)

with CFx...s being the drag force derivatives for the particular UAV at hand.

Lateral force is expressed as

Fwy = q̄SCFy (β), (4.1.5)

where the dimensionless lateral force coefficient CFy is stated as

CFy (β) = CFy1β, (4.1.6)

with CFy1 being the lateral force derivative for the particular UAV at hand.

Lift force is expressed as

Fwz = q̄SCFz (α), (4.1.7)

where the dimensionless lift force coefficient CFz is expressed as

CFz (α) = CFz1 + CFzαα, (4.1.8)

with CFz ...s being the lift force derivatives for the particular UAV at hand.
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The specific force vector f is composed of these four components (summed up with necessary
rotations applied) divided by the mass of the UAV.

f b = 1
m


FT0

0

+ Cb
w

FwxFwy
Fwz


 (4.1.9)

The rotation matrix between wind frame and body frame (Cw
b ) is defined in (1.1.16) as a

function of α and β.

4.1.2 Aerodynamic Moments

In addition to aerodynamic forces, three components of aerodynamic moments are also recog-
nizable in the model. The dimensionless angular velocities used in expressions for aerodynamic
moments are defined as

ω̃x = bωl,x
2V , ω̃y = c̄ωl,y

2V , ω̃z = bωl,z
2V , (4.1.10)

with ωl,x, ωl,y, and ωl,z being components of angular velocity (rotation rate) of body frame
with respect to local level frame, expressed in body frame defined as seen in Equation (1.1.30)
and repeated here.

ωblb = ωbib −
(
Cl
b

)T (
ωlie + ωlel

)
(4.1.11)

Roll moment is expressed as

M b
x = q̄SbCMx(δa, β, ω̃x, ω̃z), (4.1.12)

where q̄, S, and β were just mentioned in Section 4.1.1, b is the wing span, and δa is the
normalized aileron deflection (δa ∈ [−1, 1]). The dimensionless roll moment coefficient CMx is
expressed as

CMx(δa, β, ω̃x, ω̃z) = CMxaδa + CMxββ + CMxω̃xω̃x + CMxω̃z ω̃z, (4.1.13)

with CMx...s being the roll moment derivatives for the particular UAV at hand.

Pitch moment is expressed as

M b
y = q̄Sc̄CMy (δe, α, ω̃y), (4.1.14)

where α was just mentioned in Section 4.1.1, c̄ is the mean aerodynamic chord, and δe is the
normalized elevator deflection (δe ∈ [−1, 1]). The dimensionless pitch moment coefficient is
expressed as

CMy (δe, α, ω̃y) = CMy1 + CMyeδe + CMyω̃y ω̃y + CMyαα. (4.1.15)

with CMy ...’s being the pitch moment derivatives for the particular UAV at hand.
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Yaw moment is expressed as

M b
z = q̄SbCMz (δr, ω̃z, β), (4.1.16)

where δr is the normalized rudder deflection (δr ∈ [−1, 1]). The dimensionless yaw moment
coefficient is expressed as

CMz (δr, ω̃z, β) = CMzrδr + CMzω̃z ω̃z + CMzββ. (4.1.17)

with CMz ...s being the yaw moment derivatives for the particular UAV at hand.
The moments vector M is composed of these three components.

Mb =

M b
x

M b
y

M b
z

 (4.1.18)

Equation (3.3.2) together with Equations (4.1.1) to (4.1.18) form the VDM for the specific
fixed-wing UAV employed in this research that is schematically shown in Figure 4.1.

4.1.3 Air Density Model

Depending on accuracy requirements and fidelity of modeling, the air density may be considered
as a constant or as a function of local pressure and temperature according to a suitable model
for the application. Local pressure and temperature can theoretically be observed on board
or expressed as functions of the altitude as is the case here. For example, according to the
International Standard Atmosphere model for low altitude, the air density can be presented
as [19]

ρ = p0[1 + ah/T0]4.2561

RaT0
, (4.1.19)

with p0 and T0 denoting local pressure and temperature at the reference altitude, h being the al-
titude, Ra = 287.3m2K−1s−2 being the specific gas constant of air, and a = −6.5× 10−3Km−1

being the air temperature gradient.
However, in cases that were considered in this thesis, using a fixed value for air density or
using the mentioned model did not make a meaningful difference in results. The reason is likely
the high correlation between air density and in-flight recalibrated aerodynamic coefficients,
which causes the effects of considering a variable air density model to be absorbed by the
aerodynamic coefficients to a high extent, especially when considering the limited change in
altitude in the trajectories.

4.1.4 Actuator Dynamics

As described in Section 3.4.1, whenever applicable, dynamics of actuators is modeled considering
first-order delay, scaling, and shifting, as in Equation (3.4.1). For the employed fixed-wing
UAV in this research, there are four actuator states, being the propeller speed n, aileron
deflection δa, elevator deflection δe, and rudder deflection δr. The last three, are normalized by
maximum deflections, therefore being numbers in the range [−1, 1]. Note that the two ailerons
are coupled, which is why only one state is considered for aileron deflection.
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4.2 Experimental Setup

This section provides details on the experimental setup used in this research.

4.2.1 Platforms

The UAVs used for this study are custom made fixed-wing UAVs of the same type but
in two realizations. They were constructed in “Geodetic Engineering Laboratory TOPO”
at EPFL for serving the research in navigation and precise mapping. The first realization
(called “TOPO plane 1”) taken from [60] is shown in Figure 4.2(a), and the second realization
(called “TOPO plane 2”) is shown in Figure 4.2(b). Both planes are equipped with the open-
source autopilot Pixhawk [50] and have a maximum payload capacity of around 0.8 kg, with
operational mass around 2.5 to 2.7 kg. The geometric measures of the two platforms used in
the VDM are shown in Table 4.1. Flying endurance is about 45 minutes, and nominal airspeed
is around 15 m/s. Thanks to its lightweight construction, the launching can be done from
hand and it requires only a small place for landing.

Figure 4.2 – Custom made UAVs, TOPO plane 1 (a) and TOPO plane 2 (b), together with
the IMU board (c)
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Table 4.1 – Geometric measures of the fixed-wing platform

Parameter Symbol Value Unit

Wing span b 1.630 m

Wing surface S 0.3439 m2

Mean aerodynamic chord c̄ 0.225 m

Propeller diameter D 0.362 m

4.2.2 Sensor Setup

The sensor setup is presented here, which is very similar for the two platforms. The stochastic
models presented in this section are used in simulations to generate realistic sensor data. These
are not necessarily the stochastic models used in the navigation filter, which are detailed in
Section 4.3.1.

IMU

The inertial measurements come from Navchip MEMS IMUs [34] on a custom made board
called Gecko4Nav [42] shown in Figure 4.2(c) with a high resolution barometer. The board
can host up to four IMUs, that can be software-combined to an R-IMU1. To obtain a realistic
stochastic model for IMU errors, an in-house identification was performed, using the novel
approach of GMWM introduced in Section 1.3.6. Summary of IMU error parameters from the
GMWM analysis and the values provided by the manufacturer are provided in Table 4.2. In
this research, values from the GMWM analysis are used.

GNSS Receiver

Both planes are equipped with multi frequency multi constellation high-end GNSS boards
(Javad G3T and Topcon B110 for TOPO plane 1 and TOPO plane 2, respectively) receiving RF
signals from an L1/L2 GNSS antenna from Maxtena [49] and provide position and velocity data
to the autopilot. Both receivers have RTK2 capability and store internally raw observations
(range, carrier phase, and Doppler measurements). These observations were then post processed
using a proprietary software to obtain PPK3 solution at 10 Hz. Throughout the thesis, the
standalone solution at 1 Hz is used for navigation –whether in simulations or experimental
tests– unless stated otherwise. PPK solution is used either in experimental scenarios either for
calibration phase or to provide the reference for evaluating navigation solutions. Although
the processing of raw data provides the confidence levels for position and velocity data at
each point, typical error statistics for both PPK and standalone modes can be considered as
presented in Table 4.3.
TOPO plane 1 carries also low-cost GNSS receiver/antenna from “u-blox” [76] that is connected
to the autopilot, as well.

1Redundant IMU
2Real Time Kinematic
3Post Processed Kinematic
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Table 4.2 – MEMS IMU error stochastic model

Sensor Error type Parameter
Value

UnitData sheet [34]
GMWM

TYP* MAX**

Accelerometers

Bias σ 3 15 – mg

White Noise σ 50 83 67 µg/
√
Hz

first order σ 0.04 0.10 0.15 mg

Gauss-Markov T – – >200 s

Gyroscopes

Bias σ 720 1440 – ◦/hr

White Noise σ 0.003 0.005 0.005 ◦/s/
√
Hz

first order σ 5 10 31 ◦/hr

Gauss-Markov T – – >200 s

*“TYP Specs are mean values or 1σ for values that are nominally zero.” [34]
**“MAX Specs are maximum factory test limits unless otherwise specified.” [34]

Table 4.3 – Stochastic models for GNSS data errors

GNSS mode
Position error (m) Velocity error (cm/s)

Horizontal* Vertical Horizontal* Vertical

PPK 0.03 0.05 4 5
Standalone 1 2 3 4
*Each of the two horizontal channels

Barometer

A high resolution barometer is available on the Gecko4Nav board together with the IMUs. Raw
temperature and pressure observations from the barometer needs to be properly calibrated
and converted to altitude data, which can be done separately in a Kalman filter [47]. In this
research, however, temperature and pressure data are mapped to altitude with some default
constant calibration parameters, leaving a bias (in order of tens of meters) and a scale factor
(in order of a few percents) in addition to a white noise with σ = 0.5 m.

Airspeed Sensor

The airspeed sensor provides dynamic pressure measurements, which are then converted
to airspeed observations for internal usage of the autopilot. Airspeed is extracted from the
autopilot (with velocity dimension) together with control commands. To determine the error
statistics of this sensor, over 3 hours of static data (with expected output of zero) were
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collected and analyzed. The error identification was performed after removal of the mean value
at 2.41 m/s, using the novel approach of GMWM introduced in Section 1.3.6. Summary of
airspeed error parameters is provided in Table 4.4.

Table 4.4 – Airspeed error stochastic model

Error type Parameter Value Unit

White Noise σ 0.99 m/s

first order σ 0.15 m/s

Gauss-Markov T 24 s

first order σ 0.21 m/s

Gauss-Markov T 284 s

4.2.3 Actuators

The control commands from the autopilot are extracted as PWM1 values. To be used in the
VDM, these values needs to be mapped to steady state values of actuator states. In order to
obtain the map, some lab tests were performed, measuring actuator states (propeller speed and
deflections of ailerons, elevator, and rudder) in several (at least 5) fixed values of associated
commands in PWM from zero to maximum value (in both directions for control surface
deflections). Control surface deflections were normalized to the maximum values to lie within
the range [−1, 1]. As the two ailerons are coupled, their deflections are superposed. A linear
relationship was then established between the commands in PWM and the actuator states
in steady condition as Actuator state = Scale × PWM + Shift. The scale and shift values
for TOPO plane 2 are presented in Table 4.5 with the goodness of fit for linear regression
presented as R2 values.

Table 4.5 – Summary of the map between control commands in PWM and actuator states in
steady condition for TOPO plane 2

Actuator state Unit Scale Shift R2

Propeller speed [rad/s] 1.15 −1240 0.957
Aileron deflection [ ] −3.20× 10−3 4.87 0.999
Elevator deflection [ ] 3.02× 10−3 −4.63 0.997
Rudder deflection [ ] 3.31× 10−3 −4.94 0.962

4.3 Filter Setup

In this section, main aspects of the setup of the navigation filter are detailed.
1Pulse Width Modulation
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4.3.1 Stochastic Models for Observations

Unless stated otherwise, the stochastic models for observations within the navigation filter,
used in both simulation and experimental scenarios in Chapters 5 and 6, are the ones presented
in this section.

Inertial Measurements

In navigation on both simulation and experimental data, IMU error was first modeled as a
random walk and a first order Gauss-Markov process. Inspecting Table 4.2 for IMU error
model, one can see that the time-correlated errors are a bias and a first order Gauss-Markov
process with a correlation time of 200 s. Considering the duration of flight, 200 s seems long
enough for the first order Gauss-Markov process to have a similar signature to a random
walk process. On the other hand, a random walk process naturally covers also a bias (as a
non-zero mean process) when its initial uncertainty is set to a non-zero value (as discussed in
Section 3.4.4). Therefore, navigation was repeated by replacing the bias and the first order
Gauss-Markov process with only a single random walk process in the filter. This covered both
the bias and the first order Gauss-Markov process with “long” correlation time and leaded
to practically the same results. As this approach reduces the number of states in the filter
without affecting the performance, it was preferred and implemented afterwards. The values
of error model parameters following from GMWM analysis are summarized in Table 4.2.

GNSS Position and Velocity

The error for GNSS position and velocity data is considered as white noise with the statistics
presented in Table 4.3 for both PPK and standalone modes.

Barometric Altitude

The error statistics used in the filter are the same as presented in Section 4.2.2. The white
noise is considered with σ = 0.5 m, and the bias and scale factor are either removed before
navigation, or estimated within the filter thanks to the availability of GNSS position data
during the initial part of the flight.

Airspeed

According to the error model for the real sensor presented in Section 4.2.2, apart from the
bias, a white noise and two first order Gauss-Markov processes are recognized for the sensor.
Considering the relatively small powers of the two Gauss-Markov processes, only a bias with
initial uncertainty of 2 m/s and a white noise with σ = 1 m/s is considered within the filter.
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4.3.2 Initialization

Navigation States

As the VDM in this research was developed for the flying phase (considering only the
aerodynamic forces and moments), it cannot be used to predict navigation states when the
UAV is not flying (e.g., before take-off). This means that the VDM-based navigation filter
needs to be initialized “in the air” when the UAV is flying. The following procedure is followed
for initialization.

1. Navigation states (position, velocity, and attitude) are initialized for INS-based naviga-
tion.

2. INS-based navigation is performed until flight phase is detected. This detection can be
conservative, as the passage to VDM-based navigation does not need to be immediate.

3. The VDM based navigation is activated. This requires that the navigation states provided
by INS-based navigation, and possibly auxiliary states such as IMU errors, are transferred
as initial conditions for the VDM-based navigation.

It is worth mentioning that as currently the navigation is performed in post process mode,
VDM-based navigation is activated manually. In online implementation, though, the flying
condition should be detected automatically [61] to activate VDM-based navigation. Otherwise,
the activation will require an input from a human user during the flight.

Unless stated otherwise, the considered initial uncertainties for navigation states in Chapters 5
and 6 are as following. For position and velocity, initial uncertainties correspond to GNSS
observations uncertainty presented in Table 4.3. In cases where GNSS velocity observations
were not used, an initial uncertainty of 1 m/s was considered for each velocity component.
The initial attitude uncertainty was considered at 4◦ for roll and pitch and 6◦ for yaw, while
2◦/s of initial uncertainty was considered for each angular velocity component.

VDM Parameters

The nominal values for VDM parameters (aerodynamic coefficients) used in simulations in
Chapters 5 and 6 follow from [19] and are presented in Table 4.6. Mass and geometry related
parameters for both TOPO plane 1 and TOPO plane 2 are measured in the lab and presented
in Section 4.2.1. In simulations, a random error with standard deviation of 10% was applied to
the nominal values, unless stated otherwise. These nominal values are also used as the starting
point for calibration in experimental scenarios.

Other States

For wind velocity, sensor errors, and sensor mounting misalignment, initial values of zero were
considered, unless stated otherwise. Initial uncertainty for sensor errors were considered in
accordance with sensor error statistics presented in Section 4.2.2. Values not provided in this
section are presented separately for each case in Chapters 5 and 6.
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Table 4.6 – Nominal values of VDM parameters (aerodynamic coefficients) [19]

Parameter CFT 1 CFT 2 CFT 3 CFx1 CFxα CFxα2 CFxβ2

Value 0.0842 −0.136 −0.928 −0.0212 −0.0266 −1.55 −0.401

Parameter CFy1 CFz1 CFzα CMxa CMxβ CMxω̃x CMxω̃z

Value −0.379 0.0129 −3.25 0.0679 −0.0130 −0.192 0.0361

Parameter CMy1 CMye CMyω̃y CMyα CMzr CMzω̃z CMzβ

Value 0.0208 0.545 −9.83 −0.0903 0.0534 −0.214 0.0867

4.3.3 Model Linearization for EKF

Manual Linearization

As stated in Chapter 3, an EKF is used in this research as the estimator. This implies that
the linearized versions of both process model and observation model is required. In the early
development stages when the non-rotating flat Earth model was considered and fewer aug-
mented states were included, the linearization was done manually to come close to the most
algebraically simplified and compact linearized version in favor of easier implementation and
lower computational cost. Considering the complexity of the models and high number of the
states, such a manual task is laborious and results in long expressions and implementation/ver-
ification process. To reflect the complexity and hint to the motivation behind automation
of this process, manual linearization of the main part of a simplified VDM is reported in
Appendix A. It is worth mentioning that the validity of the manual linearization was ensured
using symbolic toolbox of MATLAB.

Automated Linearization

As some simplifications in modeling were dropped and the state vector was further augmented
to include new effects/parameters, new sensors, and more detailed observation models, the
effort for manual linearization became impractical. Therefore, an object oriented MATLAB
software was developed to design and construct the filter entirely, including linearized models,
in an automated manner with minimum input required from the user. In fact, the user only
provides the bare minimum information required from theoretical point of view to design the
filter, including the process and observation models in a symbolic manner. Such a setup, allows
for extreme flexibility in filter design and facilitates testing different scenarios.

As an example, all the required input from the user to define main process and observation
models in construction of a basic INS-GNSS navigation filter is presented as the following
MATLAB script.

63



Fixed-Wing Implementation

Required user input in automated construction of a basic INS/GNSS navigation filter

1 %% Process Model: INS
2 syms phi lambda h v_N v_E v_D q0 q1 q2 q3 real
3 syms f_x f_y f_z omega_x omega_y omega_z real
4 syms B_I1 B_I2 B_I3 L_I1 L_I2 L_I3 real
5 syms e_rw_a1 e_rw_a2 e_rw_a3 e_gm1_a1 e_gm1_a2 e_gm1_a3 e_gm2_a1 e_gm2_a2 ...

e_gm2_a3 real
6 syms e_rw_g1 e_rw_g2 e_rw_g3 e_gm1_g1 e_gm1_g2 e_gm1_g3 e_gm2_g1 e_gm2_g2 ...

e_gm2_g3 real
7 e_a = [e_rw_a1 e_rw_a2 e_rw_a3].' + [e_gm1_a1 e_gm1_a2 e_gm1_a3].' + ...

[e_gm2_a1 e_gm2_a2 e_gm2_a3].';
8 e_g = [e_rw_g1 e_rw_g2 e_rw_g3].' + [e_gm1_g1 e_gm1_g2 e_gm1_g3].' + ...

[e_gm2_g1 e_gm2_g2 e_gm2_g3].';
9 f_I = [f_x f_y f_z].';

10 omega_iI_I = [omega_x omega_y omega_z].';
11 C_b_I = C_elementary(B_I1,1) * C_elementary(B_I2,2) * C_elementary(B_I3,3);
12 r_bI_b = [L_I1 L_I2 L_I3].';
13 f_b = C_b_I.' * ((f_I-e_a) - (SkSymMat(omega_iI_I)*SkSymMat(omega_iI_I)) * ...

C_b_I*r_bI_b);
14 omega_ib_b = C_b_I.' * (omega_iI_I-e_g);
15 r_e_l = [phi; lambda; h];
16 v_e_l = [v_N; v_E; v_D];
17 q_b_l = [q0; q1; q2; q3];
18 R_M = WGS84.a * (1 - WGS84.e^2) / (1 - (WGS84.e*sin(phi))^2)^(3/2);
19 R_P = WGS84.a / sqrt(1 - (WGS84.e*sin(phi))^2);
20 D_inv = diag([1/(R_M+h), 1/((R_P+h)*cos(phi)), -1]);
21 dot__r_e_l = D_inv * v_e_l;
22 dot__phi = dot__r_e_l(1);
23 dot__lambda = dot__r_e_l(2);
24 g_l = [0; 0; WGS84_gravity( WGS84, phi, h )];
25 C_b_l = quat2dcm(q_b_l);
26 omega_ie_l = [WGS84.w * cos(phi); 0; -WGS84.w * sin(phi)];
27 omega_el_l = [dot__lambda * cos(phi); -dot__phi; -dot__lambda * sin(phi)];
28 omega_lb_b = omega_ib_b - C_b_l.' * (omega_ie_l+omega_el_l);
29 dot__q_b_l = 1/2 * quatMult(q_b_l,[0; omega_lb_b]);
30 dot__v_e_l = C_b_l * f_b + g_l - (SkSymMat(omega_el_l) + ...

2*SkSymMat(omega_ie_l)) * v_e_l;
31 INS_model_data.X_sym = [r_e_l; v_e_l; q_b_l];
32 INS_model_data.dX_sym = [dot__r_e_l; dot__v_e_l; dot__q_b_l];
33 INS_model_data.ModelName = 'INS';
34 INS = SubModel(INS_model_data);
35 %% Observation Model: GNSS
36 syms L_G1 L_G2 L_G3 real
37 r_bG_b = [L_G1 L_G2 L_G3].';
38 GNSS_position = [phi; lambda; h] + D_inv*C_b_l*r_bG_b;
39 GNSS_velocity = [v_N; v_E; v_D] + ...

(C_b_l*SkSymMat(omega_ib_b)-SkSymMat(omega_ie_l)*C_b_l)*r_bG_b;
40 GNSS_model_data.obsMdl = [GNSS_position; GNSS_velocity];
41 GNSS_model_data.name = 'GNSS';
42 GNSS = Sensor(GNSS_model_data);
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Chapter 5

Main Results

Overview
This section provides simulation and experimental results that demonstrate performance of
the proposed VDM-based navigation system. The results are organized in 4 sections, each
verifying a different aspect of navigation performance and reliability. A short description of
these 4 sections is represented in the following list, with a summary in Table 5.1. This list
also provides references to previously published papers on current research from which most
wordings and results are borrowed.

Section 5.1: Proof of concept was done via Monte-Carlo simulation. There were 100 runs
with different realizations of random terms on sensor errors, initialization errors, and VDM
parameters error. The simulated flight follows a trajectory with ascending, 90 degree turns,
level flight, and descending. Most wordings and results in this section are taken from two peer
reviewed papers [37, 38].

Section 5.2: Effects of wind on navigation performance was evaluated via Monte-Carlo
simulation using real 3D wind data [43]. Wind is a major factor affecting the behavior of the
UAV, and its estimation is critical in VDM predictions. There were 50 runs with different
3D wind velocity profiles applied on the UAV. Wind velocity came from real data [43]. Most
wordings and results in this section are taken from a peer reviewed paper [39].

Section 5.3: To validate the simulations and evaluate real-world performance of VDM-
based navigation, some experiments were performed using TOPO plane 1 UAV, described in
Section 4.2.1. The results of one of the flights are presented here. Data collected form the
real flight were processed with VDM-based navigation system. Then, the real trajectory was
used to generate way-points in a Monte-Carlo simulation to emulate reference data and sensor
data for navigation. Similar to Section 5.1, there were 100 runs with different realizations of
random terms on sensor errors, initialization errors, and VDM parameters error. Comparison
between the navigation results in experimental scenario and emulation scenario reveals the
level of validity of simulations. Most wordings and results in this section are taken from a peer
reviewed paper [41] and an under review paper [40].

Section 5.4: To further evaluate VDM-based navigation performance, more experiments were
performed using a second UAV, TOPO plane 2, described in Section 4.2.1. The results of
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two of these flights are presented here. The first flight, containing some high dynamics parts
in the trajectory that was used to estimate the VDM parameters in the navigation system.
Navigation was then performed on the second flight with a area mapping type trajectory to
estimate navigation performance during GNSS outages.

Table 5.1 – Summary of results section organization

Section Main Goal Type Main variations
in Monte-Carlo

Trajectory UAV

5.1 proof of
concept

simulation sensor errors,
initialization
errors, VDM
parameters

error

ascending, 90
degrees turns,
level flight, and

descending

synthetic

5.2 evaluation
of wind
effects

simulation wind velocity same as 5.1 synthetic

5.3 validation
of

simulations

emulation
&

experiment

same as 5.1 area mapping type TOPO
plane 1

5.4 further ex-
periments

experiment – high dynamics for
calibration & area
mapping type

TOPO
plane 2

General Remarks

Unless stated otherwise, stochastic models to simulate sensor error come from Section 4.2.2,
and filter setup, such as initialization and observation error statistics, is in accordance with
the details presented in Section 4.3.

For better interpretation of results, position is presented in Cartesian coordinates in a local
level frame ENU1 fixed at some point close to/coinciding the initial position, and attitude is
presented by Euler angles (roll, pitch, and yaw).

The main focus of the results presented in this section is the navigation system performance
during GNSS outages of a few minutes. However, the added value of the navigation system in
precise attitude estimation for photogrammetry/mapping applications was investigated via
Monte-Carlo simulations, whose results were published in a peer reviewed paper [36].

1East-North-Up
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5.1 Proof of Concept

This section presents some simulation results, performed primarily as a proof of concept that
the proposed VDM-based navigation system works and has potential to significantly improve
the accuracy of autonomous navigation with respect to conventional INS-based navigation. A
minimum sensor setup was used in this simulation, comprising an IMU and GNSS position
observations. Most wordings and results in this section are taken from a previously published
paper [38].

The Monte-Carlo simulation was performed with 100 runs, using real 3D wind velocity
data [43]. While the trajectory and the wind were kept the same in each realization, the error
in observations, initialization, and VDM parameters changed randomly for each individual
run. Figure 5.1 depicts the reference trajectory, as well as the solution from a sample run.
The trajectory has an approximate ground footprint of 2 km× 2 km and a total change of
1km in altitude. Detailed results are presented in sections 5.1.1 and 5.1.2, and a discussion on
observability is provided in Section 5.1.3.

Figure 5.1 – Reference trajectory and the solution from a sample run with GNSS signals
available during first 100s only (adapted from [38])

5.1.1 Navigation States

The position error is presented in Figure 5.2 for all the 100 Monte-Carlo runs. The graphs show
how the error grows as time passes after GNSS outage starts, and how the overall behavior is
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similar for individual runs. An empirical RMS1 is calculated from these individual errors and
plotted against the predicted confidence level (1σ) in the same figure.

Figure 5.2 – Position errors for all the 100 Monte-Carlo runs with empirical RMS and predicted
confidence level (adapted from [38])

Figure 5.3 depicts the empirical RMS of attitude errors for all the 100 runs, with associated
predicted values of confidence (1σ). In order to avoid clattering the graph, error values are
depicted at discrete times with an interval of 40 seconds. First thing to notice is how closely
(and slightly conservatively) the error is predicted within the filter, which reveals the relevance
of stochastic setup. The results are promising in terms of preserved navigation accuracy as
well, with the RMS of position error being less than 110m after 5 minutes of autonomous
navigation during GNSS outage. This error is only 0.007◦ for roll, 0.020◦ for pitch, and 0.38◦
for yaw. In comparison, the classical INS coasting would result in errors of 11.7km for position,
2.6◦ for roll, 1.5◦ for pitch, and 16.6◦ for yaw under exactly the same situations.

Figure 5.4 represents the comparison of the RMS of position and yaw errors for all the 100 runs
between proposed VDM-based and INS-based navigation approaches over the whole interval.
The improved performance of the proposed filter is noticeable also during the availability of
GNSS in estimating yaw.

5.1.2 Auxiliary States

Figure 5.5 shows the empirical RMS of errors in estimation of IMU error terms for all the 100
runs, which were modeled as random walk processes. The predicted confidence values (1σ) are
again close to empirical RMS, and the accuracy of the estimation is satisfactory in comparison
to the amplitude of simulated errors (realization values) plotted on the same graph.

1Root Mean Square
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Figure 5.3 – RMS of attitude errors from 100 Monte-Carlo runs (adapted from [38])

Figure 5.4 – Comparison between INS-based and VDM-based navigation: RMS of position
and yaw errors from 100 Monte-Carlo runs (adapted from [38])
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Figure 5.5 – RMS of estimation error for IMU error terms from 100 Monte-Carlo runs, together
with the amplitude of simulated errors (adapted from [38])
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The empirical RMS of mean error in estimation of VDM parameters for all the 100 runs is
plotted in Figure 5.6. Although the prediction of confidence levels of estimation by the filter
is slightly optimistic here, the difference does not exceed 24%. The evolution of this error
reveals that there is a sharp decrease in the mean error of parameter estimation from the
initial 10% error to 6% during the first 40 seconds with GNSS available, which is followed by
a slowly decreasing trend. The reason behind the second regime is the correlation between
some parameters within the set. In such situations, some parameters are estimated as a group
(in some sense) rather than individually, and the remaining individual errors contribute to
increasing the mean error for the whole set. More details on this can be found in section 5.1.3
when discussing the observability of the states. Note that the mean error is calculated in an
RMS sense for all the parameters at any given time to be stricter and to cover both the mean
value and the standard deviation.

Figure 5.6 – RMS of estimation error for VDM parameters from 100 Monte-Carlo runs (adapted
from [38])

Finally, the RMS of error in estimation of wind speed for all the 100 runs is depicted in
Figure 5.7. Again, the filter has been able to provide a close and slightly conservative prediction
on the estimation error, and the accuracy of the estimation is good enough for navigation
purposes, especially when considering the fact that no airspeed sensor was considered in the
system and the estimation is provided just as a courtesy of the UAV dynamic model provided
with IMU data. As revealed by the slow growth of predicted error, the wind speed estimation
uncertainty is expected to increase as time passes during GNSS outage. However, the rate
of this growth is well controlled, reaching only 0.7m/s after 5 minutes of GNSS outage. It is
worth noting that all the three components of the wind velocity are estimated within the filter,
which are converted to the wind speed when presenting results in favor of the plot being less
clattered.
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Figure 5.7 – RMS of estimation error for wind speed from 100 Monte-Carlo runs, together
with real wind speed [43] (realization values) (adapted from [38])

5.1.3 Discussion on Observability

This section discusses some aspects of the observability of filter states. The discussion will be
based on analysis of covariance matrix throughout the time. Close agreement between the
empirical errors and the predicted confidence levels through covariance matrix as revealed in
sections 5.1.1 and 5.1.2, provides the validity of stochastic parameters setup in the filter, so
that the subsequent discussion based on analyzing the covariance matrix can take place.

One should note that although the plots presented in this section are related to one sample
Monte-Carlo run, the stochastic aspects discussed here are very similar for all the 100 runs.

Figure 5.8 shows the ratios of uncertainties of states during GNSS presence period (top)
and GNSS outage period (bottom). During GNSS presence period, the uncertainties of all
the states except a few of VDM parameters were reduced significantly, which indicates the
observability of them, even during this relatively short availability period (100 seconds) for
stand-alone satellite positioning. The uncertainties of those few VDM parameters were not
increased either, which indicates no divergence is expected on their estimation.

As expected, during GNSS outage (bottom part of Figure 5.8), the uncertainty of position and
velocity has grown. The uncertainty of attitude was reduced by a factor of 0.3 for roll, and
increased by factors of only 1.2 and 2.3 for pitch and yaw, respectively, which is considered an
excellent performance in attitude determination after 5 minutes of autonomous navigation.
The uncertainty of rotation rates was reduced, thanks to direct measurements from the IMU.
The uncertainties of all VDM parameters were kept more or less constant during GNSS outage,
which means the filter has been able to maintain the estimation of them even in the absence
of GNSS measurements. Conceptually, this is achieved by the redundancy of information
on linear accelerations and rotation rates provided by VDM and IMU. The uncertainty of
IMU error terms was almost unchanged, as well. Finally, the uncertainty of wind velocity has
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experienced an increase of almost 4 times, which is still a quite useful result for navigation.
Further improvement can also be expected with the use of airspeed sensor observations, as long
as the uncertainty of such observations are low with respect to the uncertainty of estimated
values by the filter without them.

Figure 5.8 – Ratios of uncertainties of states during GNSS presence and GNSS outage periods
(navigation starts with GNSS available at t = 0s, GNSS outage begins at t = 100s, and
navigation ends at t = 400s) (adapted from [38])

Figure 5.9 depicts the correlation coefficients among all the states within the filter at the end
of the navigation. As can be seen, the navigation, IMU error, and wind velocity states are well
decorrelated in general, which indicates their good observability. The VDM parameters block
shows the highest level of correlations, especially among different aerodynamic coefficients
for any specific moment component (this is distinguishable as almost all white small square
blocks on the diagonal). This means that rather than individual VDM parameters, groups
of VDM parameters are getting estimated within the filter. Decorrelating individual VDM
parameters demands longer time, more dynamic maneuvers, and possibly longer periods of
GNSS availability. Considering the fact that these are practically constants for a particular
platform, their better estimation can be carried only once during a calibration scenario. This
shall result in lower uncertainties of their initial values for subsequent scenarios. Anyway, for
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the purpose of navigation, and not necessarily parameter estimation, Monte-Carlo simulations
reveal that the VDM parameters are estimated well enough to enable the proposed VDM-based
navigation reaching much better performance compared to inertial coasting.

The other point to notice is how well the VDM parameters are decorrelated from other states
of the filter. There remains also a considerable level of correlation between wind velocity
components and position and velocity of the UAV. As depicted in Figure 5.7, the uncertainty
of wind velocity estimation grows steadily, yet slowly as time passes during GNSS outage.
This is in relation to the level of process noise on the wind model. When gustier conditions
are expected, higher values on this process noise can be used to allow capturing more sudden
changes in wind velocity, at the price of increasing the uncertainty of navigation solution
during GNSS outage, as well. However, including airspeed observations might be a good answer
to such compromise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Correlation Coefficient

Figure 5.9 – Correlation matrix at the end of navigation (adapted from [38])

Last but not least, as the observability concerns during GNSS outage are mainly related to
VDM parameters and they are expected to be more or less constant under normal condition,
one may exclude such parameters from estimation during GNSS outages. This means that the
last estimated values of these parameters are kept constant and used within the filter. To be
extremely cautious, the same can be done for IMU error terms, although the results presented
in this section do not hint at necessity of such action.
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5.2 Evaluation of Wind Effects

This section presents some simulation results, performed to evaluate the effects of wind velocity
on performance of the proposed VDM-based navigation system. The sensor setup, flight plan
(waypoints), and error statistics are the same as those used in Section 5.1. Most wordings and
results in this section are borrowed from a peer reviewed published paper [39].

In Section 5.1 (and [38]), 100 runs were performed using the same trajectory and realization of
time-varying wind velocity, while the sensor errors and initialization errors changed randomly
in each individual run (Called “case A” throughout this section). Here in contrary, 50 runs
have been performed with wind velocity, coming from real 3D data [43], changing in each run
while keeping one representative realization of sensor errors and initialization errors for all the
runs (Called “case B” throughout this section). The selected realization of sensor errors and
initialization errors here is the one with closest position error to the RMS of all the 100 runs
in case A. To investigate further the effect of wind power on navigation performance, the 50
runs of case B have been performed again with scaled up (2 times) real wind velocity. The
process model noise within the filter have been modified accordingly once (Called “case C”
throughout this section), and kept unchanged another time (Called “case D” throughout this
section). Table 5.2 presents a summary of mentioned Monte-Carlo simulation cases.

Table 5.2 – Summary of Monte-Carlo simulation cases (adapted from [39])

Variations on
Case Sensor and

initialization errors
Wind velocity

data
Scaled up

wind velocity
Modified

process noise

A [38] X
B X
C X X X
D X X

Although the trajectory may be slightly different in each realization here due to changes in
wind velocity, the way-points has been kept the same, so all the 50 trajectories are close to
each other, corresponding to the one depicted in Figure 5.1.

Table 5.3 reveals some statistics of the 50 wind velocity realizations for case B. Turbulence
intensity at each direction is defined as the RMS of eddy velocity (equivalent to standard
deviation of velocity) at that direction divided by mean wind speed. Turbulence kinetic energy
is defined as the mean kinetic energy per mass due to eddy velocity. Eddy velocity is the
difference between instantaneous and mean wind velocity.

The results of Monte-Carlo simulations are presented in Sections 5.2.1 and 5.2.2.

5.2.1 Navigation States

Figure 5.10 shows comparison of RMS of position and yaw errors for all the 50 runs between
proposed VDM-based and classical INS-based navigation systems over the whole 400 s interval
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Table 5.3 – Wind velocity statistics for case B (adapted from [39])

Characteristic Minimum Maximum Mean RMS

Mean Wind Speed 2.0 5.0 3.5 3.6
Streamwise Turbulence Intensity 0.017 0.097 0.042 0.046
Transversal Turbulence Intensity 0.014 0.072 0.036 0.038
Vertical Turbulence Intensity 0.004 0.032 0.013 0.014
Turbulence Kinetic Energy

[j/kg]
0.003 0.057 0.022 0.026

for case B. The availability of GNSS positioning is assumed only during the first 100 s, while
the remaining 300 s is left to autonomous navigation. While the RMS of position error is
14.3 km for classical INS coasting after 5 minutes (300 s), this is reduced to less than 86 m with
VDM-based navigation under exactly the same situations. This represents an improvement
of more than two orders of magnitude in position accuracy. The attitude determination also
shows an improvement of 1 to 2 orders of magnitude, which will be detailed shortly. It is worth
mentioning here that the improved estimation of yaw is noticeable with the proposed filter
also during the availability of GNSS observations.

Figure 5.10 – Comparison between INS-based and VDM-based navigation: RMS of position
and yaw errors from 50 Monte-Carlo runs (case B) (adapted from [39])

The position error for all the 50 Monte-Carlo runs is presented in Figure 5.11 for case B.
The graphs show how the error grows as time passes after GNSS outage starts, and how the
overall behavior is more or less similar for individual runs. An empirical RMS is calculated
from these individual errors and plotted against the predicted confidence level (1σ). The
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close correspondence between empirical and predicted confidence levels of positioning reveals
relevant stochastic assumptions in filter setup.

Figure 5.11 – Position errors for all the 50 Monte-Carlo runs (case B) (adapted from [39])

Figure 5.12 depicts the empirical RMS of attitude errors for all the 50 runs, with associated
predicted values of confidence (1σ) for case B. The results are promising in terms of preserved
navigation accuracy, with the RMS of error to be only 0.04◦ for roll, 0.08◦ for pitch, and 1.34◦
for yaw after 5 minutes of autonomous navigation during GNSS outage. In comparison, the
classical INS coasting would result in errors of 3.36◦ for roll, 1.77◦ for pitch, and 26.87◦ for
yaw under exactly the same situations.

For all the cases, A to D, the maximum RMS of errors after 5 minutes of autonomous navigation
during GNSS outage is summarized in Table 5.4. As can be seen in this table, in cases C and D
where the wind speed was two times bigger, the error in navigation states experienced also an
increase of almost two time. This is considered here as a positive result, since the navigation
error grows only proportionally against wind speed, yet stays significantly smaller compared
to INS coasting. As mentioned at the beginning of Section 5.2, the only difference between
cases C and D is the modification to the process model noise within the filter to adapt to
the change in wind speed. This modification was done in case C and avoided in case D. The
navigation errors were quite comparable in these two cases, revealing low sensitivity to the
stochastic setup of wind model within the filter. The main difference was in the predicted
confidence levels (1σ). While in cases A, B, and C, they were in good agreement with actual
errors, the predicted confidence levels were too optimistic (by a factor of 2) with respect to
the actual errors in case D.

5.2.2 Auxiliary States

Successful estimation of auxiliary states is a key enabler of navigation improvement within
the filter. Due to general similarity of results to case A, the results for case B are presented in
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Figure 5.12 – RMS of position and attitude errors from 50 Monte-Carlo runs (case B) (adapted
from [39])

Table 5.4 – Summary of maximum navigation errors for cases A to D [39]

Case Navigation
RMS of errors

position roll [◦] pitch [◦] yaw [◦]

A
INS-based 11.7 km 2.62 1.47 16.61
VDM-based 110 m 0.01 0.02 0.38

B
INS-based 14.3 km 3.35 1.77 26.87
VDM-based 86 m 0.04 0.08 1.34

C
INS-based 14.1 km 2.49 2.80 25.10
VDM-based 185 m 0.09 0.15 2.20

D
INS-based 14.1 km 2.49 2.80 25.10
VDM-based 199 m 0.11 0.14 2.24
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this section in a less detailed manner. All the reported values were calculated as an RMS of
the values for all the 50 Monte-Carlo runs for case B.

Figure 5.13 shows the empirical RMS of errors in estimation of IMU error terms for all the 50
runs. The time correlated part of the IMU error gets estimated quickly during the first tens
of seconds of navigation and remains rather unchanged afterwards, even during the GNSS
outage period. The estimation error has an average of 4.9% for the three accelerometers and
an average of 5.2% for the three gyroscopes at the end of the whole navigation period.

Figure 5.13 – RMS of estimation error for IMU error terms from 50 Monte-Carlo runs, together
with the amplitude of simulated errors

The mean error in estimation of VDM parameters shows a sharp decrease from the initial value
of 9.13% to 5.86% during the first 40 seconds with GNSS available, which is followed by a slowly
decreasing trend until the end. The reason behind the second regime is the correlation between
some parameters within the set. In such situations, the groups of parameters are estimated
rather than individual parameters, and those individual errors contribute to increasing the
mean error for the whole set.
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Figure 5.14 – RMS of estimation error for VDM parameters from 50 Monte-Carlo runs

Finally, the wind velocity is estimated well during GNSS availability period, reaching an error
of only 5.1% for wind speed after 100 seconds. As depicted in Figure 5.15, the estimation error
starts to grow when GNSS outage begins. However, the rate of this growth is well controlled,
and the error is still below 12.7% after 5 minutes of GNSS outage.

5.3 Validation of Simulations

This sections presents the results of one of the experiments performed to validate the simulations.
The flight was performed with TOPO plane 1, described in Section 4.2. While only the
standalone GNSS data were used in navigation, PPK GNSS data provided cm-level position
information ad reference for evaluation of navigation performance. Another use for the
high accuracy GNSS data was generating waypoints for the emulation scenario. Similar to
Section 5.1, a Monte-Carlo simulation was performed on emulated sensor data with 100 runs
each having a different realization of random terms on sensor errors, initialization errors, and
VDM parameters error. As presented in Section 5.3.1 and 5.3.2, closeness of navigation results
in simulation and experimental scenarios reveals the realistic setup and validity of the former.
Most wordings and results in this section are taken from a peer reviewed paper [41] and an
under review paper [40]

As real data are involved in experiments in this section, Earth rotation and curvature were
considered in navigation, which was not the case in synthetic scenario presented in Sections 5.1
and 5.2. There, a flat non-rotating Earth model was considered for both generating the
reference and sensor data as well as the navigation. Therefore, no considerable difference was
expected by ignoring Earth rotation and curvature, there. This was also confirmed in some
complementary tests.
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Figure 5.15 – RMS of wind estimation errors from 50 Monte-Carlo runs (case B) (adapted
from [39])

Barometric altimeter measurements were used in all simulation and experimental results, for
both conventional INS-based and proposed VDM-based navigation systems, unless stated
otherwise.

In order to make the emulation scenario as close as possible to the experimental one, the
following points were considered:

• The waypoints used in flight simulation were taken from the high accuracy GNSS data
in experimental trajectory. Then, the flight simulation was run to fly through these
waypoints and emulate reference data and sensor data for Monte-Carlo simulation. As
can be seen in Figure 5.16 and 5.22, the trajectories for simulation and experimental
scenarios were very similar and visually indistinguishable, at least in terms of position.

• The wind data used in the above-mentioned flight simulation came from real wind
measurements [43].

• The values of VDM parameters used in simulations were the same as the ones related to
the real platform used in experimental scenario navigation.

• The sensor errors used in the Monte-Carlo emulation scenario were generated by stochastic
models that were identified for the real sensors onboard the real plane in static conditions,
as described in Section 4.2.2.

• The sensor error stochastic models that were used in the navigation filter were the same
for both simulation and experimental scenarios. These are simplified versions of what
was obtained from sensor identification. More details are provided in Section 4.3.1.
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5.3.1 Emulation Scenario

A Monte-Carlo simulation has been performed with 100 runs, using real 3D wind velocity
data [43]. While the trajectory and the real wind velocity has been kept the same in all
realizations, the errors in observations, initialization, and VDM parameters have changed
randomly for each individual run (realization).

Figure 5.16 provides horizontal view of the reference trajectory, as well as the solutions from
a sample run of Monte-Carlo simulation. The trajectory emulates that of the experimental
flight. It has an approximate ground footprint of 1000 m× 500 m and about 50 m change in
altitude. The sensor setup is also simulated as close as possible to the one used in the real
flight. Detailed results of Monte-Carlo simulations are presented in Sections 5.3.1 and 5.3.1.

Figure 5.16 – Horizontal view of reference trajectory in Monte-Carlo simulations and navigation
solutions from a sample run with GNSS signals available during first 100s only (adapted
from [40])

Navigation States

Figure 5.17 depicts position errors for all the 100 Monte Carlo runs, as well as the RMS
of them and predicted uncertainty by the filter (1σ). As can be seen, during 3 minutes of
GNSS outage, maximum RMS of position errors for VDM-based navigation reached only
38 m and this error is in good agreement with filter predicted confidence, which confirms
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proper stochastic configuration. Under exact same emulation scenario, the error for INS-based
navigation was 681 m, almost 18 times larger.

Figure 5.17 – Position error in Monte-Carlo simulation for VDM-based navigation, with
maximum RMS of 38 m during 3 minutes of GNSS outage. The same error for INS-based
navigation was 681 m (adapted from [40]).

RMS of attitude errors for all the 100 Monte Carlo runs, as well as predicted uncertainty (1σ)
are depicted in Figure 5.18. As can be seen, during 3 minutes of GNSS outage, maximum RMS
of errors for VDM-based navigation reached only 0.20◦, 0.19◦, and 0.96◦ for roll, pitch, and
yaw, respectively. The attitude uncertainty prediction in filter (1σ) was conservative slightly
for roll and pitch and rather considerably for yaw. This may be related to over-pessimistic
setup of process model noise in rotational dynamics part. Under exact same emulation scenario
for INS-based navigation, maximum RMS errors for roll, pitch, and yaw were 0.67◦, 0.68◦,
and 7.28◦, respectively.

Discarding barometer data made navigation errors considerably larger for INS-based navigation
as errors in vertical channel were no longer limited, while it had very little to no impact on
VDM-based navigation results. A summary of navigation errors with and without barometer
data is provided in Table 5.5.

Auxiliary States

Figure 5.19 shows the empirical RMS of errors in estimation of IMU error terms obtained
from all the 100 runs. The predicted uncertainties (1σ) are close to empirical RMS, and the
accuracy of the estimation is satisfactory in comparison to the amplitude of simulated errors
(i.e., realization values) plotted on the same graph.

The empirical RMS of mean error in estimation of VDM parameters obtained from all the 100
runs is plotted in Figure 5.20. Here, the filter is slightly optimist in predicting the estimation
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Figure 5.18 – RMS of attitude errors in 100 Monte-Carlo simulation runs for VDM-based
navigation, with maximum RMS of 0.20◦, 0.19◦, and 0.96◦ for roll, pitch, and yaw, respectively,
during 3 minutes of GNSS outage. The same errors for INS-based navigation were 0.67◦, 0.68◦,
and 7.28◦ (adapted from [40]).

Table 5.5 – Maximum RMS of position and attitude estimation error in Monte-Carlo simulations
with and without barometric altimeter [40]

Error
With barometer Without barometer

VDM-
based

INS-based VDM-
based

INS-based

Position [m] 38 681 39 2856

Roll [◦] 0.20 0.67 0.20 2.30

Pitch [◦] 0.19 0.68 0.19 2.30

Yaw [◦] 0.96 7.28 1.02 7.64
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Figure 5.19 – RMS of estimation error for IMU error terms from 100 Monte-Carlo runs for
VDM-based navigation, together with the amplitude of simulated errors (realization values)
(adapted from [40])

accuracy, but the difference does not exceed 20%. The evolution of this error reveals that there
is a sharp decrease in the mean error of parameter estimation from the initial 10% error to
6% during the first 40 seconds with GNSS available, which is followed by a slowly decreasing
trend afterwards. The reason behind the second regime seems to be the correlation between
some parameters within the set. Normally, the groups of parameters are estimated rather than
individual parameters in such situations, and those individual errors contribute to increasing
the mean error for the whole set. More details on this can be found in Section 5.3.3 when
discussing the observability of the filter states. Note that the mean error is calculated in an
RMS sense for all the parameters at any given time to cover both the mean value and the
standard deviation.

Finally, the RMS of error in estimation of wind speed obtained from all the 100 runs is
depicted in Figure 5.21. Again, the filter has been able to provide a close prediction on the
estimation uncertainty, and the accuracy is good enough for navigation purposes, especially
when considering the fact that no airspeed sensor was considered in the system and the
estimation is provided just as a courtesy of the UAV dynamic model. As revealed by the slow
growth of predicted error, the wind speed estimation accuracy is expected to decrease as time
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Figure 5.20 – RMS of estimation error for VDM parameters from 100 Monte-Carlo runs
(adapted from [40])

passes during GNSS outage. However, the rate of this growth is well controlled, reaching only
0.3 m/s after 3 minutes of GNSS outage. It is worth noting that all the three components of
the wind velocity are estimated within the filter, which are converted to the wind speed for
more comprehensive presentation in the plot of Figure 5.21.

5.3.2 Experimental Scenario

The results of a real flight are presented in this section. The experimental setup used for the
tests is introduced in Section 4.2.

Figures 5.22 shows the reference trajectory obtained from PPK GNSS solution (not used
within the navigation system), as well as the navigation solution from proposed VDM-based
navigation. Available standalone GNSS position data that are used in navigation are also
depicted in this figure. The duration of GNSS outage is 3 minutes.

As can be seen in Figure 5.22, in contrary to inertial coasting, the VDM-based solution after
3 minutes of autonomous navigation (during GNSS outage) is still following the reference
trajectory qualitatively. To get quantitative measures on navigation quality, the 3D position
error over the whole trajectory is depicted in Figure 5.23.

The maximum position error after 3 minutes of GNSS outage is 53 m for proposed VDM-based
navigation. Under exact same conditions, this error is almost 39 times higher at 2076m for
the INS-based navigation. Note that the error in vertical channel is limited by barometer
data. For both conventional and proposed navigation systems, the predicted uncertainty is in
good agreement with the actual error. The experimental results are also in good agreement
with those obtained by simulation. Based on experimenting with longer availability periods
for GNSS, one main reason why experimental errors are slightly higher than the ones in
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Figure 5.21 – RMS of estimation error for wind speed from 100 Monte-Carlo runs, together
with real wind speed (adapted from [40])

simulations seems to be the unresolved part of initialization errors. Unmodeled sensor errors
and misalignments among sensors, unmodeled dynamics of the UAV, higher uncertainty in
initial values of VDM parameters, and the noise on control input from autopilot that was not
considered in simulations, can be other reasons for this difference.

Figure 5.24 depicts the velocity components provided by the VDM-based navigation versus
reference values coming from PPK GNSS data. Despite being a bit noisy, VDM-based results
capture the trend and follow the reference values closely, even in absence of GNSS position
updates for the last 3 minutes of the flight. Note that no GNSS velocity measurement was
used in the navigation.

It is worth mentioning that prior to running the VDM-based navigation in this experimental
scenario, the VDM parameters were calibrated to some extent. On another piece of the
trajectory in the same flight, VDM-based navigation was performed without any GNSS outage
to mainly estimate the VDM parameters. Then the estimated parameters at the end of that
phase were used as priors in the evaluation phase, results of which were presented in this
section. However, a more systematic and reliable approach to VDM parameters calibration
with two separate flights for calibration and evaluation will be detailed in Section 5.4.

5.3.3 Observability Discussions for Emulation Scenario

The results and discussions presented in this section are very similar to what was presented in
Section 5.1.3 for a different trajectory. There are subtle differences, though, which is why such
discussions are presented here, as well.

This section discusses some aspects of observability of filter states. The discussion is based on
analysis of covariance matrix throughout the time. Close agreement between the resulted errors
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Figure 5.22 – Horizontal view of reference trajectory in the real flight and navigation solutions
with GNSS signals available during first 100s only (altitude change ' 50m) (adapted from [40])

and the predicted confidence levels through the covariance matrix as revealed in Section 5.3.1
and 5.3.2, supports the validity of the stochastic configuration, so that the subsequent discussion
can take place.

The covariance and correlation plots presented in this section are related to one sample
Monte-Carlo run, since the stochastic aspects discussed here are very similar for all the 100
runs.

Figure 5.25 shows the ratios of uncertainties of states during GNSS presence (top) and GNSS
outage (bottom) periods. During GNSS presence period, uncertainties of all the states except
a few of VDM parameters were reduced significantly, which indicates observability of them,
even during this relatively short duration (100 seconds). Uncertainties of weakly observable
VDM parameters were not increased either, which indicates no divergence is expected in their
estimation.

During GNSS outage, as expected, uncertainties of position and velocity have grown. This
growth was small in vertical channel, thanks to barometric altimeter data. Uncertainties of
attitude were reduced by a factor of 0.8 for pitch, and increased by factors of only 1.3 and
5.6 for roll and yaw, respectively, which is considered an excellent performance in attitude
determination after 3 minutes of autonomous navigation in relation to the inertial sensor
quality. Uncertainties of rotation rates slightly decreased, thanks to the direct measurements
from IMU. The uncertainty of none of VDM parameters increased during GNSS outage, which
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Figure 5.23 – Position error in the real flight for VDM-based navigation, with maximum value
of 53 m during 3 minutes of GNSS outage. The same error for INS-based navigation was
2076 m (adapted from [40]).

means their estimation is preserved even in the absence of GNSS measurements. The same is
true for IMU error terms. Finally, uncertainties of wind velocity have increased 2.8 times in
horizontal channels, and decreased 0.8 times in vertical channel, the latter thanks to barometric
altimeter data. The combined uncertainty for wind speed increased by almost 4 times, which
is still quite a useful result for the navigation purposes. Further improvement can also be
expected with the use of airspeed sensor observations, as long as the uncertainty of such
observations are low with respect to the uncertainty of estimated values by the filter without
them.

Figure 5.26 depicts correlation coefficients among all the states within the filter at the end of the
trajectory++. As can be seen, the states are well decorrelated in general, which is an indicator
of their observability. The VDM parameters block shows the highest level of correlations,
especially among different aerodynamic coefficients for any specific moment component (this
is distinguishable as very bright small square blocks on the diagonal). This means that rather
than individual VDM parameters, groups of VDM parameters are getting estimated within
the filter. In this scenario, decorrelating individual VDM parameters demands longer time,
higher dynamic maneuvers, and possibly longer periods of GNSS availability. Considering the
fact that the VDM parameters are normally constant for a particular platform, their better
estimation can be potentially carried out during a calibration scenario. This shall result in
lower uncertainties of their initial values for subsequent usages. Anyway, for the purpose of
navigation, and not necessarily for VDM parameter estimation, the simulation results reveal
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Figure 5.24 – Velocity components for VDM-based navigation with GNSS signals available
during first 100s only (adapted from [40])

that the VDM parameters are estimated well enough to enable the proposed VDM-based
navigation reaching much better performance compared to inertial coasting.

The other point to notice is how well the VDM parameters are decorrelated from other states of
the filter. There remains a considerable level of correlation between wind velocity components
and position and velocity of the UAV. As depicted in Figure 5.21, the uncertainty of wind
velocity estimation grows steadily, yet slowly, as time passes during GNSS outage. This is
in relation to the level of process noise on the wind model. When more gusty conditions are
expected, higher values on this process noise can be used to allow capturing more sudden
changes in wind velocity, at the price of increasing the uncertainty of navigation solution
during GNSS outage, though. Therefore, including airspeed observations might be a good
answer to such compromise.

As mentioned in Section 5.1.3, the observability of VDM parameters are limited during GNSS
outage. Since they are expected to be more or less constant under normal condition, one may
exclude such parameters from estimation during GNSS outages. This means that the last
estimated values for them will be kept constant and used within the filter. To be extremely
cautious, the same can be done for IMU error terms, although the results presented in this
section does not hint at necessity of such action.
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Figure 5.25 – Ratios of uncertainties of states during GNSS presence and GNSS outage periods
in a sample Monte-Carlo run (GNSS outage begins at t = 100s, and navigation ends at
t = 280s) (adapted from [40])

5.3.4 Observability Discussions for Experimental Scenario

As depicted in Figure 5.27 and Figure 5.28, results on covariance matrix in real tests are
very similar to those obtained in emulations. This makes most of the arguments made in
Section 5.3.3 directly applicable to experimental scenario.

However, one noticeable difference is uncertainty evolution of lateral and vertical velocity
components during GNSS presence period being greater than 1, while the same values in
simulation results were smaller than 1. Again, this seems to be due to initialization errors that
are likely larger and not fully resolved within 100 s of GNSS presence. Inclusion of GNSS
velocity observations is expected to improve this. Another difference to notice in Figure 5.28
is that the VDM parameters are decorrelated better among themselves, which may be caused
by more dynamic excitation of the platform and stabilization commands by the autopilot in
real scenario.
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Figure 5.26 – Correlation matrix at the end of navigation in in a sample Monte-Carlo run
(adapted from [40])
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Figure 5.27 – Ratios of uncertainties of states during GNSS presence and GNSS outage periods
in the real flight (GNSS outage begins at t = 100s, and navigation ends at t = 280s) (adapted
from [40])
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Figure 5.28 – Correlation matrix at the end of navigation in the real flight (adapted from [40])

5.4 Further Experimental Results

In the last section of this chapter, some results from two additional flights are presented,
employing a different UAV, TOPO plane 2, as described in Section 4.2.1. In order to ensure
about validity of model calibration and applicability of the designed navigation system in
real scenarios, two separate flights were performed on two different days. The first flight
contained some highly dynamic maneuvers, and the second one contained an area mapping
type trajectory with less harsh maneuvers. Data from the first flight were used to calibrate
VDM parameters, using internal capabilities of the navigation system for estimation of them.
In this phase, cm-level PPK GNSS observations (position and velocity) were used. These
VDM parameters were then used in the second flight, to evaluate navigation performance in
GNSS outages.

5.4.1 Calibration Flight

The procedure to calibrate the VDM parameters is briefed as following.
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Step 1. The center of mass of the UAV and the lever-arms for sensors was directly measured
with cm-level accuracy.

Step 2. Flight data were processed with INS-based navigation filter employing PPK GNSS
solution. The outputs of this step were the navigation states (PVA), IMU error, and
possibly refined GNSS lever-arm. One should note that this provides the lever-arm
between the IMU and GNSS antenna phase center. For use in VDM-based navigation,
this needs to be then superposed with the lever-arm between the IMU and body frame
origin. Barometer was pre-calibrated using PPK GNSS altitude data.

Step 3. Flight data were processed with VDM-based navigation filter employing the INS-based
PVA solution (from previous step) as observations. Considering the high number of
states and limited observability of some of them, this strategy was found much more
effective than using only the unprocessed sensor data in the VDM-based navigation
filter. The prioirs on IMU errors, as well as refined GNSS lever-arm were directly
imported from INS-based solution. Considering the large initial uncertainty of VDM
parameters at this stage, sensor mounting misalignments were not estimated within
the filter, but the coarse values known a priori were applied. This yielded a better
performance in evaluation phase (next step) compared to the case in which sensor
mounting misalignments were estimated in the filter. However, the difference was not
drastic and no divergence was observed when trying to estimate sensor mounting
misalignments.

Step 4. One should note that in the real flight there was no reference on the values of VDM
parameters and the ultimate goal was improving navigation performance rather than
precise determination of VDM parameters. Therefore, position error in VDM-based
navigation was used to evaluate indirectly the goodness of VDM parameter calibration.
Using the calibrated VDM parameters, flight data were processed with VDM-based
navigation once again, this time using only stand alone GNSS solution (position and
velocity) and introducing a GNSS outage of 3 minutes at the end. The position error
during GNSS outage was then checked, and a few iterations were made to previous
step to refine the estimation of VDM parameters so that the quality is acceptable for
VDM-based navigation purposes.

Discussion on VDM Parameter Calibration

One should consider the possibility that the calibrated VDM parameters as just described,
may not have converged to true values (which are unknown) necessarily. However, certain
sufficiency of this set for VDM-based navigation purposes was established by assessing the
navigation error not only for the same trajectory as in calibration flight, but also for a different
trajectory from an evaluation flight performed on a different day. Getting closer to true values
for at least some of VDM parameters for any specific platform at hand could be possible via
methods such as CFD analysis, wind tunnel testing, and performing exhaustive calibration
maneuvers exciting only a subset of dynamics at a time. However, the goal here is to minimize
the design effort by exploiting internal estimation capabilities of the VDM-based navigation
to a level that achieves a substantial improvement in the quality of autonomous navigation in
comparison to inertial coasting.
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Calibration Trajectory

The trajectory of the calibration flight is shown in Figure 5.29. The trajectory has an approxi-
mate ground footprint of 350 m× 600 m and a total change of almost 120 m in altitude. Its
duration was over 6.5 minutes, over which the average speed was 16.3 m/s.

Figure 5.29 – Horizontal view (left) and altitude profile (right) for the reference trajectory
used in VDM parameters calibration

State Estimation

The evolution of IMU errors determined in Step 2 is shown in Figure 5.30.
Refinement of GNSS lever-arm over time in Step 2 is shown in Figure 5.31. At the end of the
calibration, the initial values of −45 cm, 0 cm, and −4 cm along the three axes, were refined
to −32 cm, 0 cm, and 9 cm, respectively. As the phase center of the GNSS antenna does not
necessarily lie within its body, the resulting refinement is not unexpected.
The relative change in some sample VDM parameters (CFzα, CFxβ2, and CMxω̃x) and the mean
of absolute values for all of them during calibration in Step 3 is depicted in Figure 5.32. As
can be observed in the figure, this change is relatively big with the mean of absolute values
reaching over 350%.
Finally, when applying the calibrated VDM parameters within the same calibration flight, the
maximum position error in 3 minutes of GNSS outage for VDM-based navigation was 65 m,
while this error for INS-based navigation under the same conditions was 1207 m. Figure 5.33
depicts the evolution of position error for VDM-based and INS-based navigation.
Note that for the evaluations (Step 4 in calibration flight and in evaluation flight), the
standalone GNSS observations were used instead of PPK observations. The standalone
observations come from the same receiver and the same antenna, which means that the
lever-arm is also the same.
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Figure 5.30 – IMU error estimated via INS-based navigation filter in Step 2

5.4.2 Evaluation Flight

The evaluation flight data were processed with VDM-based navigation filter in the same way
as in Step 4 of Section 5.4.1 (i.e., using the priors on VDM parameters as obtained in the
calibration flight).

The trajectory of the evaluation flight is shown in Figure 5.34. The trajectory has an approxi-
mate ground footprint of 350 m× 750 m and a total change of almost 90 m in altitude. Its
duration was 6 minutes, over which the average speed was 16.6 m/s.

The maximum position error in 3 minutes of GNSS outage on the calibration flight trajectory
using the calibrated VDM parameters was 75 m, with its evolution being depicted in Figure 5.35.
This error for INS-based navigation under the same conditions reached 1220 m.

Figure 5.36 depicts the velocity components provided by the VDM-based navigation versus
reference values coming from PPK GNSS. Despite being a bit noisy, VDM-based results
capture the trend and follow the reference values closely, even in absence of GNSS position
and velocity updates for the last 3 minutes of the flight.
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Figure 5.31 – Refinement of GNSS lever-arm via INS-based navigation filter in Step 2

Figure 5.32 – Relative change in VDM parameters during calibration via VDM-based navigation
filter in Step 3: mean of absolute values for all parameters and 3 sample ones
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Figure 5.33 – Position error in evaluation of VDM parameters calibration in Step 4 with
3 minutes of GNSS outage at the end

Note on Airspeed Sensor Data

Due to high noise level of the airspeed sensor data as mentioned in Section 4.2.2 (σ = 1 m/s),
inclusion of such data did not provide any meaningful improvement to navigation results.
Therefore, airspeed measurements were not used in navigation. However, such measurements
are expected to be helpful in case of higher wind velocities, as well as longer GNSS outages.
Further investigation on effects of using airspeed sensor data is the subject of one of the
suggestions for future research presented in Section 7.2.
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Figure 5.34 – Horizontal view (left) and altitude profile (right) for the reference trajectory
used in evaluation flight with VDM-based navigation solution for 3 minutes of GNSS outage
at the end

Figure 5.35 – Position error in evaluation flight with 3 minutes of GNSS outage at the end
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Figure 5.36 – Velocity components for VDM-based navigation in evaluation flight with 3 minutes
of GNSS outage at the end
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Chapter 6

Further Analyses

Overview
This chapter presents some further results and analyses on VDM-based navigation.
First, a global sensitivity analysis is presented to rank the VDM parameters based on the
effect of their uncertainty on navigation performance.
Afterwards, a scenario is studied, in which no IMU data is used in navigation. The main goal
is to assess the ability of VDM-based navigation in attitude determination without using
IMU data, which might be helpful in case of IMU failure or malfunction for the purpose of
UAV control.
Finally, a brief discussion is presented on computational cost of VDM-based navigation.

6.1 Global Sensitivity Analysis

VDM contains a number of parameters related to the specific platform at hand. Some
parameters such as mass, or those directly related to geometrical measures, can be determined
a priori with rather high confidence. However, the aerodynamic coefficients are in general more
difficult to measure or calculate, and are therefore associated with higher levels of uncertainty.
The methods to estimate these coefficients vary in time and cost required to setup, such as
estimation within the navigation system through a calibration scenario, CFD analyses, and
wind tunnel tests. Based on a [rough] prior knowledge of parameter values, sensitivity analysis
provides a quantitative base to assess the effect of errors in each parameter on VDM output
and order the parameters in terms of their influence. This might help in taking decisions on
refinement of parameters and the strategy for calibration.

As explained in the following section, local sensitivity analyses fail to consider the wide range
of inputs/parameters in the models. Considering the need to cover a large portion of flight
envelope in VDM-navigation, a global sensitivity analysis is performed, theory of which is
briefly described in the following.

105



Further Analyses

6.1.1 Theory

Sensitivity analysis is a term of many definitions and interpretations, and even more methods
to perform. A possible definition for “sensitivity analysis” is given in [65] as “the study of
how the uncertainty in the output of a model (numerical or otherwise) can be apportioned to
different sources of uncertainty in the model input”. A related practice, which is sometimes
mistakenly used instead of sensitivity analysis, is “uncertainty analysis”, meaning quantification
of uncertainty in model output. Ideally, these two analyses should be performed in a chain
with the uncertainty analysis preceding [66].

Two main categories for sensitivity analyses are local and global analyses. Local sensitivity
analysis is the one with the longer history, as a measure of the effect of a given parameter (or
input) of the model on a given output. To assess this measure, a single point in parameter space
is considered, and the output variation due to variation of a single parameter is estimated. In
case there exists a closed form mathematical model, this task can be accomplished via partial
derivatives. Many reports on the sensitivity analyses found in physical science journals are
local analyses, which is not always the appropriate approach [65]. For a system of the form
Y = f(X1, X2, . . . , Xn), sigma normalized derivatives can be considered as local sensitivity
indices and are calculated as [66]

SσXi
= σXi∂Y

σY ∂Xi
. (6.1.1)

They provide a measure of how changes in Xi are magnified in Y , via ∂Y
∂Xi

, which is further
normalized by σXi to give more importance to parameters with a wider range of variation,
and by σY to make interpretation of results easier as ∑n

i=1

(
SσXi

)2
= 1.

Global analyses, on the other hand, can take into account the effect of all parameters. In
such methods, based on a given distribution of all parameters, a measure is obtained for each
parameter that reflects how much the output is affected by the variation of that parameter.
This gives a measure that is averaged over the entire parameter space and takes into account
the combined effect of any group of parameters rather than the single ones. For a system of
the form Y = f(X1, X2, . . . , Xn), conditional variances can be considered as global sensitivity
indices. The first order indices are calculated as

Si = VXi (EX∼i (Y |Xi))
V (Y ) . (6.1.2)

The term EX∼i (Y |Xi) is the average of Y value when Xi is fixed at some value (Y |Xi) and all
other parameters (X∼i) vary. VXi (EX∼i (Y |Xi)) is the variance of this conditional average, if
the fixed value of Xi is changed over all its possible values. Normalizing this variance by V (Y )
ensures 0 ≤ Si ≤ 1 for easier interpretations. A high value for Si reveals a high importance of
Xi. However, a small Si does not necessarily represent an unimportant Xi, because Si contains
information only on direct (first order) effects of Xi on Y , and not on how variation of Xi in
combination with variations of other parameters affects the variance of Y .
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If the variance of Y is conditioned on more than one parameter, higher order sensitivity indices
emerge naturally. For example, for i 6= j and in general case,

VXi,Xj

(
EX∼i,j (Y |Xi, Xj)

)
V (Y ) ≥ VXi (EX∼i (Y |Xi))

V (Y ) +
VXj

(
EX∼j (Y |Xj)

)
V (Y ) ,

which hints to define second order sensitivity index Sij with i 6= j as

Sij =
VXi,Xj

(
EX∼i,j (Y |Xi, Xj)

)
V (Y ) − VXi (EX∼i (Y |Xi))

V (Y ) −
VXj

(
EX∼j (Y |Xj)

)
V (Y )

=
VXi,Xj

(
EX∼i,j (Y |Xi, Xj)

)
V (Y ) − Si − Sj . (6.1.3)

Total effects index for Xi is then defined as sum of all possible sensitivity indices of any order
that contains Xi.

ST i = Si +
n∑

j=1,j 6=i
Sij +

n∑
j=1,j 6=i

n∑
k=1,k 6=i,k 6=j

Sijk + . . .+ S123...n (6.1.4)

Since the sum of all possible sensitivity indices of any order should sum up to 1, total effects
index ST i can be calculated from

ST i = 1− VX∼i (EXi (Y |X∼i))
V (Y ) , (6.1.5)

in which VX∼i(EXi
(Y |X∼i))

V (Y ) is equivalent to the sum of all sensitivity indices that do not contain
Xi.

Although for a system with n parameters, there are 2n−1 sensitivity indices, “a good, synthetic,
though nonexhaustive characterization of the sensitivity pattern for a model with n factors is
given by the total set of first-order terms plus the total effects” [66]. This translates into 2n
indices only.

Numerical evaluation of sensitivity indices is performed based on a Monte-Carlo method
proposed in Chapter 4 of [66].

6.1.2 Results

Any effect from VDM parameters on navigation quality comes from calculated values of
aerodynamic forces and moments utilizing those parameters. Therefore, sensitivity analysis is
performed on aerodynamic forces and moments rather than on navigation solution, which is
directly influenced by the former.

One has to notice that the global sensitivity analysis performed here gives an overall image of
sensitivity over a wide range of values for states and flight conditions. In case of any specific
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maneuver, the order of importance for parameters may change compared to what global
sensitivity analysis suggests. Therefore, if the navigation sensitivity in any specific maneuver
is intended to be studied, the described sensitivity analysis should be performed by defining a
navigation quality measure as the output function and adjusting the distribution of states
according to the specific maneuver. However, due to very limited application of scenarios of
such kind and considering the fact that the navigation system is normally expected to work
over a wide range of maneuvers, the global sensitivity analysis is preferred in this research
over local analyses.

Distribution of states for the global sensitivity analysis was considered as following, where
δe(level) denotes the value of δe to perform a straight leveled flight at 15 m/s, and Xvp(nominal)
is the vector of nominal (unperturbed) VDM parameters presented in Table 4.6.

Velocity: vbx ∼ N
(
15, 52) , vby ∼ N

(
0, 32) , vbz ∼ N

(
0, 32)

Attitude: r ∼ N
(
0, (π/6)2) , p ∼ N

(
0, (π/6)2)

Rotation rate: ωx ∼ N
(
0, (π/3)2) , ωy ∼ N

(
0, (π/3)2) , ωz ∼ N

(
0, (π/3)2)

Wind velocity: wN ∼ N
(
0, 42) , wE ∼ N

(
0, 42) , wD ∼ N

(
0, 12)

Actuator states: δa ∼ N
(
0, 0.12) , δe ∼ N

(
δe(level), 0.12

)
, δr ∼ N

(
0, 0.12) ,

ωp ∼ N
(
100, 102)

VDM parameters:
Xvp ∼ N

(
Xvp(nominal), (0.2|Xvp(nominal)|)2

)

Aerodynamic Forces

Values of sensitivity indices for VDM parameters affecting the magnitude of deviation in
aerodynamic forces are presented in Table 6.1.

Table 6.1 – First order (S) and total effects (ST ) indices in sensitivity analysis of aerodynamic
forces (limited to 3 decimal digits)

Index CFzα CFT 1 CFT 2 CFT 3 CFx1 CFz1 CFy1 CFxβ2 CFxα CFxα2

S 0.055 0.023 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ST 0.101 0.052 0.006 0.005 0.002 0.002 0.002 0.002 0.002 0.002

As can be seen, CFzα was identified as the most influential parameter, while CFxα2 was among
the least influential ones. One should be aware that due to very close values of sensitivity indices
for least influential parameters while considering the uncertainties in numerical evaluation of
indices, the sorting gets less confident towards the end of the ordered list of parameters. Also,
relatively low values of sensitivity indices for VDM parameters shall not be interpreted as low
importance of them in general. This is because a large share of the variance in the output is
due to variations in factors other than VDM parameters, such as navigation states and wind
velocity.

108



Global Sensitivity Analysis

As a sample demonstration of how these parameters can affect the navigation performance,
the test scenario presented in Section 5.3 was considered again. VDM-based navigation was
performed on real and simulated data using nominal set of VDM parameters (as used in
Section 5.3) and four additional sets with the most and the least influential parameters
(CFzα and CFxα2, respectively) perturbed by ±20%. The reference trajectory is depicted in
Figure 5.16 for simulation and in Figure 5.22 for experimental data. Stochastic models to
simulate sensor error come from Section 4.2.2, and filter setup, such as initialization and
observation error statistics, is in accordance with the details presented in Section 4.3. Table 6.2
summarizes maximum positioning error during 3 minutes of GNSS outage.

Table 6.2 – Maximum position error during 3 minutes of GNSS outage with perturbations on
most and least influential VDM parameters in aerodynamic forces

VDM parameters Nominal CFzα+20% CFzα-20% CFxα2 +20% CFxα2-20%

Position error [m] in
simulation results

38.3 38.6 38.2 38.4 38.1

Position error [m] in
experimental results

53.4 259.9 59.4 60.2 78.8

There are a number of points to notice in Table 6.2. In simulation results, an error of 20% in
neither of the parameters had a considerable effect on positioning error, which can be explained
by most of the parameters being estimated very well within the filter. In experimental results,
though, one can see that the change in positioning error is in accordance with what the
sensitivity analysis suggested, where CFzα was expected to be more influential than CFxα2.
Also, increasing parameter errors in a specific direction (+ or -) can sometimes work against
other error sources such as sensor errors and thus have a very different effect than the same
error in the opposite direction. This is, however, highly case-dependent and therefore difficult
to predict. For this reason, perturbations were made in both directions in this demonstration.

Aerodynamic Moments

Values of sensitivity indices for VDM parameters affecting the magnitude of deviation in
aerodynamic moments are presented in Table 6.3.

Table 6.3 – First order (S) and total effects (ST ) indices in sensitivity analysis of aerodynamic
moments (limited to 3 decimal digits)

Index CMye CMxa CMzβ CMzr CMzω̃z CMxω̃x CMyω̃y CMy1 CMyα CMxβ CMxω̃z

S 0.012 0.010 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ST 0.031 0.020 0.014 0.013 0.006 0.004 0.004 0.003 0.000 0.000 0.000

Here, CMye was identified as the most influential parameter, while CMxω̃z was among the
least influential ones. The sample demonstration for aerodynamic forces was repeated for
aerodynamic moments, as well, results of which are summarized in Table 6.2.
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Table 6.4 – Maximum position error during 3 minutes of GNSS outage with perturbations on
most and least influential VDM parameters in aerodynamic moments

VDM parameters Nominal CMye+20% CMye-20% CMxω̃z +20% CMxω̃z -20%

Position error [m] in
simulation results

38.3 38.8 38.0 38.7 38.0

Position error [m] in
experimental results

53.4 67.5 55.9 63.9 62.3

The observations related to simulation results are very similar to what they were in case of
aerodynamic forces. The experimental results, though, do not reflect exactly what the sensitivity
analysis suggested on relative importance of parameters. This may highlight two points. First,
isolated performance evaluations with specific trajectories may be misleading on how different
parameters affect system performance over a larger portion of flight envelope.Therefore,
generalization of sample observations shall be avoided. Second, sorting important parameters
according to a formal sensitivity analysis in a global sense does not reflect in all the sample
cases, and should be interpreted in an average sense over entire distribution of parameters
and inputs considered in the analysis.

6.2 VDM-based Navigation without IMU

Although not as probable as GNSS outage, IMU failure or malfunction is a potential problem
in navigation/control system of UAVs, a reason for which there is a recent appearance of
redundant IMUs in autopilots even for MAVs [4]. Most navigation systems for UAVs are relying
mainly on inertial observations for attitude determination, and with faulty or unavailable IMU
data, attitude determination becomes impossible or of very poor quality, even in presence of
GNSS position and velocity observations. Considering the role of attitude determination in
flight control, this can have a severe impact on flight performance and stability of the platform.

This section presents the results of an investigation performed to assess the feasibility of
using VDM-based navigation as an emergency solution for attitude determination with no
IMU data. The simulation and experimental flight data described in Section 5.4.2 –reference
trajectory of which is shown in Figure 5.34– were processed again. VDM-based navigation
was performed with aiding from standalone GNSS position and velocity data, results of which
were compared with those of INS-based navigation with the same aiding GNSS data. The
respective results are described in the Section 6.2.1 for emulation scenario and in Section 6.2.2
for experimental scenario. Stochastic models to simulate sensor error come from Section 4.2.2,
and filter setup, such as initialization and observation error statistics, is in accordance with
the details presented in Section 4.3.

6.2.1 Emulation Scenario

A Monte-Carlo simulation with 100 runs was performed on the emulated trajectory resulted
from the experimental flight, reference trajectory of which shown in Figure 5.34.
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Figure 6.1 – Roll errors for all the 100 runs of Monte-Carlo simulation with empirical RMS

Figure 6.1 shows the comparison of roll error for VDM/GNSS and INS/GNSS navigation setups.
After the first minute of navigation when the effect of initialization errors was considerably
mitigated, the RMS of roll error for 100 runs did not exceed 0.30◦ for INS/GNSS. This error
was 0.69◦ for VDM/GNSS, which is still acceptable for guidance and control of the UAV.

Pitch errors for VDM/GNSS and INS/GNSS navigation setups are compared in Figure 6.2.
After leaving out the first minute for mitigation of initialization errors, the maximum value
of RMS of pitch error for 100 runs was 0.20◦ for INS/GNSS. This error went up to 0.97◦ for
VDM/GNSS, which should be still acceptable for the purpose of guidance and control of the
UAV.

Finally, Figure 6.3 shows the comparison of yaw error for VDM/GNSS and INS/GNSS
navigation setups. Discarding the first minute of navigation for mitigation of initialization
errors, the RMS of yaw error for 100 runs reached a maximum of 1.05◦ for INS/GNSS and
1.61◦ for VDM/GNSS, which is again an acceptable result for UAV guidance and control.

The summary of attitude errors is presented in Table 6.5, providing also the maximum RMS
of errors during the first minute.

Table 6.5 – Maximum RMS of attitude errors for VDM/GNSS and INS/GNSS navigation in
emulation scenario, during and after the first minute for mitigation of initialization errors

Navigation Roll error[◦] Pitch error[◦] Yaw error[◦]
type t ≤ 60s t > 60s t ≤ 60s t > 60s t ≤ 60s t > 60s

VDM/GNSS 3.70 0.69 6.87 0.97 5.13 1.61
INS/GNSS 2.90 0.30 2.94 0.20 5.35 1.05
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Figure 6.2 – Pitch errors for all the 100 runs of Monte-Carlo simulation with empirical RMS

Figure 6.3 – Yaw errors for all the 100 runs of Monte-Carlo simulation with empirical RMS
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6.2.2 Experimental Scenario

Attitude errors for experimental scenario are depicted in Figures 6.4 to 6.6. The reference
values were obtained from fusion of the same IMU data with PPK GNSS data in an INS/GNSS
filter. Due to use of the same IMU data, this is not an entirely independent reference, but the
best available. Note that the GNSS data used in the test came from stand-alone mode.

Figure 6.4 – Roll error for experimental data

As evident from the figures and summarized in Table 6.6, attitude errors for VDM/GNSS
navigation are typically an order of magnitude bigger than the those for INS/GNSS, and
probably too large for the purpose of UAV control. This is considerably different from what was
observed in simulation scenario. The reason behind such large errors in VDM/GNSS navigation
seems to be unresolved errors in VDM parameters. The calibrated set of VDM parameters was
sufficiently good for autonomous positioning during GNSS outage with positioning accuracy
improvement of one to two orders of magnitude in comparison to inertial coasting (as seen in
Section 5.4.2). However, the remaining errors –supposably in moment related parameters– are
too large to perform attitude determination without IMU data.

Table 6.6 – VDM/GNSS and INS/GNSS attitude errors in experimental scenario

Navigation Roll error[◦] Pitch error[◦] Yaw error[◦]
type Maximum Mean Maximum Mean Maximum Mean

VDM/GNSS 40.6 5.3 17.9 4.8 18.0 3.8
INS/GNSS 2.3 0.3 2.8 1.1 2.7 0.7
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Figure 6.5 – Pitch error for experimental data

Figure 6.6 – Yaw error for experimental data
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6.3 Computational Cost

An increase in computational cost due to higher number of states and more complicated
equations may be a concern with VDM-based navigation. This subject is briefly discussed
here.

Conventional INS-based navigation is widely used and even older embedded systems have
enough processing power to run it. Therefore, a relative comparison is made here between
proposed VDM-based and conventional INS-based navigation algorithms. A trajectory of
5 minutes with GNSS observations at 1 Hz was emulated and post-processed 100 times at
IMU frequency of 100 Hz on a personal computer. Mean and standard deviation of required
computation time for both algorithms are presented in Table 6.7. Normalization is done with
respect to 16-states INS-based navigation.

Table 6.7 – Computation time comparison (VDM-based 1 and 2: without and with VDM
parameters estimation, respectively)

Navigation
algorithm

Number of states
Normalized

computation time
Absolute Normalized Mean Standard deviation

INS-based 16 1 1 0.02
VDM-based 1 23 1.44 1.7 0.01
VDM-based 2 49 3.06 2.7 0.07

As can be seen in Table 6.7, VDM-based navigation (with VDM parameters estimation) has a
computation time of only 2.7 times higher than INS-based navigation, which can be further
reduced to 1.7 times by disabling VDM parameters estimation (in case these parameters are
pre-calibrated, for example). Although these results were obtained using MATLAB codes
running on a PC1, it seems safe to assume that with available computation resources on most
small UAVs today, running the proposed VDM-based navigation should be possible. On the
other hand, such difference in computational cost gets less importance as time passes and
embedded computers get more powerful.

1personal computer
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Chapter 7

Conclusions and Suggestions

This research aimed at development of a new navigation algorithm for UAVs to considerably
improve navigation accuracy during GNSS outages, as a prerequisite for safer operations and
expanding operational scenarios, with three main characteristics:

1. Preserving navigation autonomy in a wide range of conditions. This means that envi-
ronment dependent sensors such as cameras are not considered to avoid dependency on
lighting conditions, signal propagation, terrain texture, etc.

2. Avoiding extra cost and weight due to additional sensors, which is a critical issue for
small civilian UAVs.

3. Avoiding complex and time consuming design and setup procedures compared to normal
operations of small civilian UAVs.

With these requirements in mind, a VDM-based navigation system was proposed that benefits
from information on motion dynamics of UAVs in navigation. After a brief presentation of
the preliminary concepts, the general theory and architecture of the proposed navigation
system were detailed. Implementation was then presented for a specific fixed-wing UAV and
the experimental setup was described, which was followed by simulation and experimental
analyses. Further analyses were performed on sensitivity of navigation accuracy to errors in
VDM parameters, and on navigation in absence of IMU data using VDM/GNSS setup as a
backup solution for IMU failure and malfunction. In the following, conclusion remarks and
suggestions for future research are presented.

7.1 Conclusions Remarks

1. Hundreds of simulations performed in Monte-Carlo scheme revealed improvements of one
to two orders of magnitude in position determination through autonomous navigation
during GNSS outages of 5 minutes, when compared to conventional INS-based navigation
under the same conditions. Consistent prediction of error levels for both navigation and
auxiliary states by the navigation filter revealed proper stochastic setup of the filter and
provided a basis for observability discussions based on covariance matrix analysis.

119



Conclusions and Suggestions

2. Monte-Carlo simulations using real 3D wind velocity data revealed an almost linear
dependency of navigation error to wind speed, when only internal capabilities of the
navigation filter were exploited to estimate wind velocity (i.e., in absence of airspeed
sensor). Navigation accuracy was insensitive to improper settings of process noise for
wind velocity within the filter.

3. In Monte-Carlo simulations, IMU errors and wind velocity were estimated with errors
typically bellow 10%. The average error on VDM parameters estimation, on the other
hand, stayed almost unchanged after an initial sharp decrease. Covariance matrix analysis
revealed the reason being some degree of unobservability for VDM parameters that
prevented individual parameters to be decorrelated with the available observations and
the performed maneuver. Carefully designed calibration maneuvers with higher dynamics
and longer periods are expected to result in better decorrelation of VDM parameters.

4. Simulations were validated by exploiting experimental flight data collected by a custom
made fixed-wing MAV. First, Monte-Carlo simulation on emulated flight data based on
the trajectory of the real flight showed again an improvement of one to two orders of
magnitude in navigation accuracy during 3 minutes of GNSS outage. Second, similar
improvement and comparable absolute errors in autonomous navigation were observed
in reprocessing real flight data using cm-level GNSS positioning as the reference.

5. Further experimental tests were conducted with another realization of the same fixed-
wing UAV platform. VDM parameters were estimated in a “calibration flight” and then
used for navigation in an “evaluation flight” performed on another day with a different
trajectory. Maximum position error during 3 minutes of navigation with GNSS outage
was similar to the previous emulation and experiment, and also differed only by 15%
between the calibration and evaluation flights, showing the applicability of the performed
VDM calibration as far as autonomous navigation is concerned.

6. Computation requirements were evaluated for VDM-based navigation in a post processing
scheme on an emulated trajectory, for a setup with 23 states (fixed VDM parameters)
and 49 states (re-estimated VDM parameters). The measured computation times were
respectively 1.7 and 2.7 times longer than those of conventional INS-based navigation
with 16 states. Repeating the simulations 100 times resulted in respective standard
deviations of 0.01 and 0.07 for the reported numbers. The excessive computational cost
gets less importance as time passes and processing capabilities grow.

7. Simplified calculations estimated the impacts of ignoring Earth rotation and curvature
on autonomous navigation. It was shown that even in flights limited to speed of 20 m/s,
range of 1 km, and duration of 3 minutes, a flat non-rotating Earth assumption would
result in positioning errors of several tens of meters for inertial coasting, which is at the
same level of errors produced by VDM-based navigation during GNSS outages.

8. Results of individual local sensitivity analyses differed considerably from those of the
global sensitivity analysis that considered a wider range of possible flight conditions
and ranked the VDM parameters based on how their errors affect VDM output and
therefore VDM-based navigation accuracy. This emphasizes the limitations of making
general conclusions based on local sensitivity analyses.
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9. Simulation results showed that in absence of IMU data, due to sensor failure for example,
VDM-based navigation was able to provide attitude estimation with an accuracy compa-
rable to that of INS-based navigation with healthy data from the considered MEMES
IMU. The attitude error for VDM/GNSS navigation was at most 5 times larger than
that of INS/GNSS, keeping error of under 1 degree for roll and pitch and under 2 degrees
for yaw. This is sufficient for control of the UAV in case of IMU failure or malfunction,
provided that proper fault detection and exclusion is implemented. In the experimental
scenario, however, such performance for VDM/GNSS navigation was not achieved.

Some unanswered questions or unexpected observations encountered in this research, such as
the one just mentioned on VDM/GNSS attitude estimation, are mentioned in the next section
where suggestions for future research are presented.

7.2 Suggestions for Future Research

Compared to INS-based navigation with more than half a century of history for INS and more
than a quarter of century for INS/GNSS integration, VDM-based navigation is still in its
infancy. Therefore, there are various directions for further research and development on the
subject. This section briefly mentions a few, more in line with the observations made in this
research.

1. As one of the main objectives of this research was keeping the effort required for
implementation of the proposed VDM-based navigation for any specific UAV, VDM
parameters calibration was performed using only internal estimation capabilities of the
navigation filter. This approach proved to be effective as far as autonomous positioning
accuracy in GNSS outage conditions is concerned. However, further investigations
related to navigation without IMU data revealed a vast difference between experimental
and simulation results, hinting at insufficiency of the calibration procedure performed
for “IMU-free” attitude estimation. Furthermore, no direct evaluation of calibrated
VDM parameters was performed. Since VDM parameters are of great importance on
navigation performance, establishing and implementing more rigorous procedures for
VDM parameters calibration and evaluation can be a major contribution to the field.

2. In this research ,the integration with GNSS observations was performed in a loose
coupling scheme, where range and Doppler frequency measurements are preprocessed to
provide position and velocity data. However, direct use of range and Doppler frequency
measurements, which is possible in a tight coupling scheme, has numerous benefits for
navigation quality and is well worthy of investigation. Benefiting from partial GNSS
data in marginal conditions when there are less than four usable ranges to get a position
fix in loose coupling scheme is one of the benefits. Direct use of raw measurements also
provides better stochastic modeling and hence higher accuracy.

3. Although models for including airspeed sensor in navigation were developed and im-
plemented, the practical benefits of using this instrument for VDM-based navigation
are yet to be confirmed. The main reason is the relatively high noise level (σ ≈ 1 m/s)
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of the instrument that prevented the beneficial usage within the navigation system in
current setup. Therefore, there is still the need for further investigation on how a better
sensor could improve wind velocity estimation in VDM-based navigation, or whether the
same sensor is still useful above a certain level of wind speed or in longer GNSS outages.

4. There are some auxiliary parameters, further refinement of which may let VDM-based
navigation to further improve the autonomous navigation performance. Some sensor
mounting misalignment parameters are examples of those. However, high correlation
of these parameters within themselves and with other parameters and states such as
sensor errors and VDM parameters makes their estimation challenging, on which further
research can be focused.

5. In this research, actuator dynamics was considered for the propeller and ignored for the
control surfaces, due to fast response of the employed servos. However, further research
may be conducted on modeling actuator dynamics and to evaluate in detail the effect of
unmodeled or mismodeled dynamics.

6. An alternative to modeling actuator dynamics and feeding such models with control
commands is direct measurement of actuator states (such as propeller speed and aileron
deflection) using proper sensors. Further research can investigate the feasibility and
added value of such approach.

7. As VDM-based navigation treats IMU as a sensor providing observations, multiple IMUs
can be independently used within the navigation system. While redundant IMUs are
proven to be able to deliver better performance in INS-based navigation systems, the
extent of their effectiveness in VDM-based navigation can be further investigated.

8. Online implementation on a small platform is a big step ahead for VDM-based navigation
and requires overcoming many scientific and engineering challenges worth of further
research, including but not limited to possible reduction in number of states and model
complexity guided by analysis of remaining correlations among some states, online access
to control commands or direct measurement of actuator states, as well as design and
implementation of a switching algorithm to automatically perform the transition between
INS-based and VDM-based navigations when the UAV takes off or lands.

9. Finally, implementation of VDM-based navigation on other types of platforms such as
quadcopters is a valuable research direction. Early simulation results, not provided in
this thesis, were promising on the improvements that VDM-based navigation can bring
to quadcopters for positioning during GNSS outages.
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Appendix A

Manual Model Linearization for a
Simplified Case

In this appendix, the manual linearization of the process model for a simplified case. Compared
to the final model used in this research and presented in Chapters 3 and 4, the following
simplifications/changes are recognized, despite of which the linearization is tedious and rather
complex.

• The state vector here contains only the navigation states Xn.

• A flat non rotating Earth model is assumed with a constant gravity model.

• Attitude is represented using Euler angles rather than quaternions.

• Velocity is expressed in body frame rather than the local level frame.

The state vector is presented as

X =
[
xN , xE , xD, v

b
x, v

b
y, v

b
z, r, p, y, ωx, ωy, ωz

]T
. (A.0.1)

The VDM can now be formulated as following.ẋNẋE
ẋD

 = Cl
b

vbxvby
vbz

 , Cb
l = C1(r) C2(p) C3(y) (A.0.2)

v̇bxv̇by
v̇bz

 =

 −g sin p
g sin r cos p
g cos r cos p

+ 1
m


FT0

0

+ Cb
w

FwxFwy
Fwz


−

ωyvbz − ωzvbyωzv
b
x − ωxvbz

ωxv
b
y − ωyvbx

 (A.0.3)

ṙṗ
ẏ

 = Cω

ωxωy
ωz

 , Cω =

1 tan p sin r tan p cos r
0 cos r − sin r
0 sin r/ cos p cos r/ cos p

 (A.0.4)
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ω̇xω̇y
ω̇z

 = (Ib)−1


M b

x

M b
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M b
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−
ωxωy
ωz

× Ib

ωxωy
ωz


 (A.0.5)

Calculating the partial derivative of Ẋ with respect to X produces the F matrix.

F = ∂Ẋ
∂X (A.0.6)

Rows 1 to 3 of F matrix

The first three rows are easily calculated according to Equation (A.0.2).

F([1 2 3], [4 5 6]) = ∂

∂[vbx vby vbz]T

ẋNẋE
ẋD

 = Cl
b (A.0.7)
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ẋD

 = ∂Cl
b

∂r

vbxvby
vbz

 = CT
3 (y)CT

2 (p)
(
∂

∂r
CT

1 (r)
)vbxvby

vbz

 (A.0.8)
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F([1 2 3], 9) = ∂
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 (A.0.10)

F([1 2 3], [1 2 3 10 11 12]) = ∂

∂[xN xE xD ωx ωy ωz]T

ẋNẋE
ẋD

 = [0]3×6 (A.0.11)

Rows 4 to 6 of F matrix

To calculate rows 4, 5, and 6 of F , Equation (A.0.3) is rewritten asv̇bxv̇by
v̇bz

 = P1 + P2 + P3, (A.0.12)

where

P1 =

 −g sin p
g sin r cos p
g cos r cos p

−
ωyvbz − ωzvbyωzv

b
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ωxv
b
y − ωyvbx
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FT0
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 ,P3 = 1
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w

FwxFwy
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 . (A.0.13)
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The partial derivatives of these three parts (P1,P2,P3) will be calculated separately, and then
summed up at the end. The first part is the easiest to handle. Considering Equation (A.0.13):

F1(4, [5 6 8 11 12]) = ∂

∂[vby vbz p ωy ωz]T
P1(1, 1) = [ωz −ωy − g cos p − vbz vby], (A.0.14)

F1(5, [4 6 7 8 10 12]) = ∂

∂[vbx vbz r p ωx ωz]T
P1(2, 1)

= [−ωz ωx g cos r cos p − g sin r sin p vbz − vbx], (A.0.15)

F1(6, [4 5 7 8 10 11]) = ∂

∂[vbx vby r p ωx ωy]T
P1(3, 1)

= [ωy − ωx − g sin r cos p − g cos r sin p − vby vbx]. (A.0.16)

Before handling the second and the third parts, it is worth calculating the partial derivatives
of V , α, and β, since they will appear frequently in those parts. Recalling Equations (1.1.15)
and (1.1.17), and grouping the concerned variables into η ∈ {vbx, vby, vbz, r, p, y}, it can be easily
seen that

∂V

∂η
= 1
V

(
V.∂V

∂η

)
, η ∈ {vbx, vby, vbz, r, p, y}, (A.0.17)
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Now the second part can be handled more or less easily. According to Equa-
tions (A.0.13), (4.1.19) (replacing h by −xD), and (4.1.1):

F2(4, 3) = ∂

∂xD
P2(1, 1) = 1

m

∂FT
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= 1
m

∂FT
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∂ρ
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ω2
pD

4CFT

∂ρ

∂xD
. (A.0.21)

Considering Equations (A.0.13), (1.1.17), (4.1.1), and (4.1.2), and using Equation (A.0.17):
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(A.0.22)

Finally, the third part is handled as follows. Considering Equations (A.0.13), (1.1.16), (4.1.7), (4.1.5),
and (4.1.3):
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Note that from Equations (4.1.7), (4.1.5), and (4.1.3), it is obvious that

∂

∂ρ

FwxFwy
Fwz

 = 1
ρ

FwxFwy
Fwz

 . (A.0.24)

Before proceeding, partial derivatives of Cb
w, Fwx , Fwy , and Fwz with respect to

η ∈ {vbx, vby, vbz, r, p, y} are calculated. Considering Equations (1.1.16) and (1.1.17), and
using Equations (A.0.18) and (A.0.19):

∂Cb
w

∂η
=
∂
(
C2(α)CT

3 (β)
)

∂η
= ∂C2(α)

∂η
CT

3 (β) + C2(α)∂CT
3 (β)
∂η

= ∂C2(α)
∂α

∂α

∂η
CT

3 (β) + C2(α)∂CT
3 (β)
∂β

∂β

∂η
(A.0.25)

According to Equations (4.1.3), (4.1.4), and (1.1.17), and using Equations (A.0.17), (A.0.18),
and (A.0.19):

∂Fwx
∂η

= SCFx

∂q̄

∂η
+ q̄S

∂CFx

∂η
= SCFxρV

∂V

∂η
+ q̄S

(
∂CFx

∂α

∂α

∂η
+ ∂CFx

∂β

∂β

∂η

)
= SCFxρV

∂V

∂η
+ q̄S

(
(CFxα + 2CFxα2α) ∂α

∂η
+ 2CFxβ2β

∂β

∂η

)
(A.0.26)
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Similarly:

∂Fwy
∂η

= SCFy
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∂η
+ q̄S

∂CFy
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(A.0.27)

∂Fwz
∂η

= SCFz

∂q̄

∂η
+ q̄S

∂CFz

∂η
= SCFzρV

∂V

∂η
+ q̄S

∂CFz

∂α

∂α

∂η

= SCFzρV
∂V

∂η
+ q̄SCFzα

∂α

∂η
(A.0.28)

Now the remaining elements of F3([4 5 6], :) can be calculated as

F3([4 5 6], [4 5 6 7 8 9]) = ∂P3
∂[vbx vby vbz r p y]T

= 1
m

 ∂Cb
w

∂[vbx vby vbz r p y]T

FwxFwy
Fwz

+ Cb
w

∂

∂[vbx vby vbz r p y]T

FwxFwy
Fwz


 . (A.0.29)

Eventually, F([4 5 6], :) is calculated as

F([4 5 6], :) = F1([4 5 6], :) + F2([4 5 6], :) + F3([4 5 6], :). (A.0.30)

Note that all the elements of F1([4 5 6], :), F2([4 5 6], :), and F3([4 5 6], :) that are not
represented, are zero.
Rows 7 to 9 of F matrix

In a more or less similar manner to rows 4, 5, and 6; rows 7, 8, and 9 of F are calculated
according to Equation (A.0.4).

F([7 8 9], [10 11 12]) = ∂

∂[ωx ωy ωz]T

ṙṗ
ẏ

 = Cω (A.0.31)

F([7 8 9], 7) = ∂

∂r

ṙṗ
ẏ

 = ∂Cω

∂r

ωxωy
ωz

 (A.0.32)

F([7 8 9], 8) = ∂

∂p

ṙṗ
ẏ

 = ∂Cω

∂p

ωxωy
ωz

 (A.0.33)

F([7 8 9], [1 2 3 4 5 6 9]) = ∂

∂[xN xE xD vbx v
b
y v

b
z y]T

ṙṗ
ẏ

 = [0]3×7 (A.0.34)
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Rows 10 to 12 of F matrix

To calculate rows 10, 11, and 12 of F , Equation (A.0.5) is rewritten asω̇xω̇y
ω̇z

 = Q1 + Q2, (A.0.35)

where

Q1 = −(Ib)−1


ωxωy
ωz

× Ib

ωxωy
ωz


 ,Q2 = (Ib)−1

M b
x

M b
y

M b
z

 . (A.0.36)

The partial derivatives of these two parts (Q1,Q2) will be calculated separately, and then
summed up at the end. The first part is easy to handle. It is first rewritten as

Q1 =

 ωyωz + J1J2ωy(Ixzωx + Izωz)
1
Iy

(
Ixz(ω2

x − ω2
z)− (Ix − Iz)ωxωz

)
−ωxωy − J1J2ωy(Ixp+ Ixzωz)

 ,
 J1 = 1

IxIz − I2
xz

J2 = −Ix + Iy − Iz.
(A.0.37)

Now F1([10 11 12], :) can be easily calculated as

F1([10 11 12], [10 11 12]) = ∂Q1
∂[ωx ωy ωz]T

=
J1J2Ixzωy J1J2Ixzωx + (1 + J1J2Iz)ωz (1 + J1J2Iz)ωy

1
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Iy

(−2Ixzωz − (Ix − Iz)ωx)

−(1 + J1J2Ix)ωy −(1 + J1J2Ix)ωx − J1J2Ixzωz −J1J2Ixzωy

 .
(A.0.38)

To handle the second part, Q2 is first rewritten as

Q2 =

JxM b
x + JxzM

b
z

JyM
b
y

JxzM
b
x + JzM

b
z

 ,
 Jx 0 Jxz

0 Jy 0
Jxz 0 Jz

 = (Ib)−1 =

 Ix 0 Ixz
0 Iy 0
Ixz 0 Iz


−1

, (A.0.39)

and then partial derivatives of M b
x, M b

y , and M b
z with respect to xD, η ∈ {vbx, vby, vbz, r, p, y}, p,

q, and r are calculated. According to Equations (4.1.12), (1.1.17), (4.1.10), and (4.1.13), and
using Equations (A.0.17), (A.0.18), and (A.0.19):
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(A.0.40)
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(A.0.41)
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∂M b
x

∂p
= q̄Sb2

2V CMxω̃x (A.0.42)

∂M b
x

∂q
= 0 (A.0.43)

∂M b
x

∂r
= q̄Sb2

2V CMxω̃z (A.0.44)

Similarly:
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(A.0.45)
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(A.0.46)

∂M b
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∂p
= 0 (A.0.47)
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4Sc̄
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∂M b
y
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= 0 (A.0.49)

Also:
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)
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(A.0.51)

∂M b
z

∂p
= 0 (A.0.52)

∂M b
z

∂q
= 0 (A.0.53)
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∂M b
z

∂r
= 1

4Sb
2ρCMzω̃zV (A.0.54)

Using Equation (A.0.39) along with Equations (A.0.40) to (A.0.54), F2([10 11 12], :) can be
expressed as

F2([10 11 12], [3 4 5 6 7 8 9 10 11 12]) = ∂[ω̇x ω̇y ω̇z ]T
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y v
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 . (A.0.55)

Eventually, F([10 11 12], :) is calculated as

F([10 11 12], :) = F1([10 11 12], :) + F2([10 11 12], :). (A.0.56)

Note that all the elements of F1([10 11 12], :) and F2([10 11 12], :) that are not represented,
are zero.

At this point, calculation of F is completed for this simplified model. Considering all the
simplifications in VDM mentioned at the beginning of this appendix and the fact that the
state vector contained only the navigation states and the observation models were not
treated here, one can realize how complex the manual linearization would be for the final
model used in this research as presented in Chapters 3 and 4.
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