SOCIÉTÉ HELVÉTIQUE DES SCIENCES NATURELLES
SCHWEIZ. NATURFORSCHENDE GESELLSCHAFT

PROCÈS-VERBAUX
de la 105e et de la 106e séance de la
COMMISSION GÉODÉSIQUE
SUISSE
tenues à Bad Balgach
le 4 septembre 1959
et au Palais fédéral à Berne
le 2 avril 1960
avec des extraits des rapports sur l'activité de l'année 1959

PROTOKOLLE
der der 105. und der 106. Sitzung der
SCHWEIZ. GEODÄTISCHEN
KOMMISSION
vom 4. September 1959
im Bad Balgach
und vom 2. April 1960
im Parlamentsgebäude in Bern
mit Auszügen aus den Berichten über die Tätigkeit im Jahre 1959

NEUCHATEL
IMPRIMERIE PAUL ATTINGER S.A.
1960
PROCÈS-VERBAUX
de la 105e et de la 106e séance de la
COMMISSION GÉODÉSIQUE
SUISSE
tenues à Bad Balgach
le 4 septembre 1959
et au Palais fédéral à Berne
le 2 avril 1960
avec des extraits des rapports sur l'activité de l'année 1959

PROTOKOLLE
der 105. und der 106. Sitzung der
SCHWEIZ GEODÄTISCHEN
KOMMISSION
vom 4. September 1959
im Bad Balgach
und vom 2. April 1960
im Parlamentsgebäude in Bern
mit Auszügen aus den Berichten über die Tätigkeit
im Jahre 1959
Adresses des membres de la Commission géodésique suisse

Président honoraire: M. le professeur C.-F. Baschlin, Dammstrasse 25, Zollikon près Zurich.

Vice-président: M. le professeur M. Schürer, directeur de l’Institut astronomique de l’Université, Berne.

Trésorier: M. M. de Räm y, ancien vice-directeur du Service topographique fédéral, Kapellenstrasse 22, Berne.

M. le professeur W.-K. Bachmann, Ecole polytechnique de l’Université, Lausanne.

M. le professeur S. Bertschmann, ancien directeur du Service topographique fédéral, Germaniastrasse 19, Zurich 6.

M. le professeur E. Guyot, ancien directeur de l’Observatoire, Neuchâtel.

M. E. Huber, directeur du Service topographique fédéral, Wabern près Berne.

M. le professeur M. Waldmire, directeur de l’Observatoire fédéral, Zurich.

La correspondance doit être adressée au président ou au secrétaire.

Les envois de publications sont à adresser à la Commission géodésique suisse, Ecole polytechnique fédérale, salle 15e, Zurich 6.

105e Séance de la Commission géodésique suisse
le 4 septembre 1959, à Bad Balgach

Ordre du jour:
1. Communications du président.
2. Rapports sur l’état des travaux.
3. Divers.

Le président ouvre la séance à 10h 50m et salue la présence d’un nouveau membre, M. Huber, qui assiste pour la première fois à une séance.

Le président annonce qu’une conférence d’introduction sur la mesure de la base de Heerbrugg aura lieu à 14h 15m et sera suivie vers 15h d’une visite au cours de laquelle des équipes de mesure pourront être vues au travail sur la base.

Le président communique que l’ingénieur Fischer est engagé à partir de juillet sur le budget de l’Ecole polytechnique fédérale. A partir de 1960, il en sera de même pour l’ingénieur Wunderlin.

2. Rapports sur l’état des travaux

L’étude du Théodolite DKM3 est continuée par M. Wunderlin. L’instrument a été équipé d’un nouveau niveau.
Les calculs en relation avec l'étude des déviations de la verticale dans l'Oberland bernois ont également été continués par M. Wunderlin.

Les ingénieurs Wunderlin et Fischer ont pourtant dû consacrer la plupart de leur temps à la préparation de la mesure de base dans la vallée du Rhin.

M. Hunziker rapporte sur la publication des travaux de gravimétrie. L'impression se fera par procédé offset et l'on espère que la publication sortira à la fin de l'année ou au début de 1960.

M. Gassmann mentionne des travaux effectués en vue de la projection de la base de Heerbrugg sur le géoïde. Lors de ces travaux, des déterminations de densité des roches, ainsi que des mesures gravimétriques sur des montagnes seront nécessaires, ce qui représentera un grand travail. M. Kobold signale que les mesures de base doivent être réduites au géoïde pour servir de base pour la triangulation européenne. Une réduction directe des distances obliques entre les points sera aussi faite en vue d'obtenir des distances étonal pour les nouveaux instruments électroniques de mesure de distance.

M. Huber demande si des mesures d'angles verticaux sont également prévues. M. Kobold répond que le nivellement est suffisamment précis pour calculer ces angles.

M. Kobold fait remarquer que le programme de mesure de base est en avance grâce au temps favorable qui a régénéré au cours des travaux. Pour le réseau d'agrandissement des mesures nocturnes et diurnes sont exécutées.

3. Divers

M. Huber propose que la Commission exprite à M. E. Berchtold, de la maison Wild, ses vifs remerciements pour le grand travail accompli dans le cadre de la mesure de base. Cette proposition est acceptée.

La séance est levée à 11h 35m.

106e Séance de la Commission géodésique suisse
le 2 avril 1960, au Palais fédéral à Berne

Excusé: M. M. Waldmeier.

Ordre du jour:
1. Communications du président.
2. Discussion des rapports présentés par les ingénieurs sur leurs travaux.
3. Rapport sur les mesures de base à Heerbrugg.
5. Centenaire de la Commission géodésique suisse.

1. Communications du président.

Le président ouvre la séance à 9h 15m et oriente la Commission sur un nombre de séances qui ont eu lieu au sujet de la mesure de base de Heerbrugg. M. Kobold signale l'Assemblée générale de l'U.G.G.I. qui se tiendra à Helsinki du 26 juillet
au 6 août 1960. Le président de la Commission est proposé comme délégué du Conseil fédéral à ce congrès, tandis que M. Schürer y assistera comme délégué de la Commission. M. Huber, ainsi que M. Gassmann participeront également aux travaux de ce congrès comme représentants de leurs institutions. M. Blaser prendra part aux travaux du congrès dans le cadre de la réorganisation du Service international des latitudes. Un symposium de la Commission pour la compensation du réseau de triangulation européen se tiendra à fin avril à Lisbonne. La Commission estime qu’il serait important que la Suisse y participât.

2. Discussion des rapports présentés par les ingénieurs sur leurs travaux.

a) Auszug aus dem Bericht des Herrn Dr. E. Hunziker über:

Gravimetermessungen auf Punkten der Basis Heerbrugg.

Es war vorgesehen, auf den Endpunkten der Basis und mindestens auf einem ungefähr in der Basismet gleichen Punkte die Schwere zu bestimmen. Im Hinblick auf die komplizierten geologischen Verhältnisse im Gebiete des Basisendes Süd, ist die Gelegenheit benutzt worden, auf acht Punkten der Basis Gravimetermessungen durchzuführen.

1. Stationsverzeichnis.

Die Angaben über die beiden Punkte des Schweregrundnetzes werden im Band 25, Abschnitt 1,3 des Kapitels 1, «Das Schweizerische Schweregrundnetz» zu finden sein.

Basisende Süd auf dem Montlinger Berg. Pfeiler mit ungefähr bodenebenem zylinderförmigen Sockel. Meereshöhe der Pfeileroberfläche 477,53 m. Gravimeter-Bodenpunkt auf dem Zementsockel in der Richtung nach Basisende Nord, 0,37 m vom Pfeiler entfernt. Stativhöhe 0,65 m; Abstich – 1,36 m (Pfeilerhöhe).

Pfeiler A. Meereshöhe der Pfeileroberfläche 449,62 m; Pfeilerhöhe 1,10 m; Beobachtungen zentratisch auf Pfeiler.

Pfeiler B. Meereshöhe der Pfeileroberfläche 520,56 m; Pfeilerhöhe 1,20 m; Beobachtungen zentratisch auf Pfeiler.

BP2. Stativwelle, 1,14 m über Bolzen, Höhe der drei Nocken über Teller 0,82 m; Meereshöhe des Stativwellers 521,85 m; Beobachtungen zentratisch auf Stativweller.

BP4. Stativwelle, 1,065 m über Bolzen; Meereshöhe des Stativwellers 419,89 m; Beobachtungen zentratisch auf Stativweller.

BP5. Stativwelle, 1,325 m über Bolzen; Meereshöhe des Stativwellers 418,48 m; Beobachtungen zentratisch auf Stativweller.

BP7. Stativwelle, 1,065 m über Bolzen; Meereshöhe des Stativwellers 415,60 m; Beobachtungen zentratisch auf Stativweller.

Basisende Nord, linkzeitiges Widderlager der Dimpoldsauer-Brücke, Seite flussaufwärts. Pfeiler. Pfeilerhöhe 1,19 m; Meereshöhe der Pfeileroberfläche 415,75 m; Beobachtungen zentratisch auf Pfeiler.

Zur Kontrolle in Zürich vorgenommene Einstellungen ergaben in der Zeitspanne vom 6. bis 10. Oktober eine bemerkenswerte kleine Drift von nur + 0,065 mgal. Während der Feldmessungen trat am Vormittag des 9. Oktober — absolut genommen — die grösste Drift auf, nämlich ~ 0,08 mgal/Stunde. Der Einfluss der täglichen
Veränderung der Schwere wurde bei der Ableitung dieses Wertes berücksichtigt.

3. Auswertung und Ergebnisse der Beobachtungen.

Die Auswertung der Beobachtungen ging in bekannter Weise vor sich ; das benutzte Verfahren ist im Band 25, Kapitel I, Abschnitt 4.1 und 4.2, sowie im Kapitel II, Abschnitt 5.1 beschrieben.

An den zwei Tagen gehen aus je 3 Einzelwerten die folgenden, in Trommeleinheiten ausgedrückten Schwereunterschiede zwischen Altstätten und St. Margrethen hervor:

<table>
<thead>
<tr>
<th>Altstätten-St. Margrethen</th>
<th>8. Okt. 21,99 Tr. E.</th>
<th>9. Okt. 21,94</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittel 21,965 Tr. E.</td>
<td></td>
</tr>
</tbody>
</table>

Dem Schweregrundnetz entnimmt man:

Altstätten-St. Margrethen 21,33 mgal

Man erhält für die Trommeleinheit R die zwei Werte:

8. Okt. 1959 \(R = 0,970 \) mgal
9. Okt. \(R = 0,972 \) mgal

Mittel \(R = 0,971 \) mgal (= 10 Skalenteile)

Die Erstellerfirma «Texas Instruments Incorporated » in Houston gibt an:

\(R = 0,970(6) \) mgal.

Zur weiteren Auswertung der Messungen ist

\(R = 0,971 \) mgal

verwendet worden.

Die Schwere auf den Basispunkten wurde doppelt, sowohl mit als auch ohne Berücksichtigung der täglichen Veränderung abgeleitet ; dem Beobachtungsverfahren entsprechend, fallen die Ergebnisse identisch aus.

Im System des Schweregrundnetzes:

Zürich, Fundamentalstation, \(g = 980 \ 667,90 \) mgal, Einheit abgeleitet aus der Eichstrecke Châtellerau - Toulouse - Bagnères, ergeben die am 8. und 9. Oktober 1959 ausgeführten Bestimmungen die nachstehenden Schwerebeschleunigungen.

Basisende Süd, Monthlinger Berg
Gravimeterstandort 980 619,18 mgal
Bodenpunkt (Zementsockel) 980 619,38 mgal
Pfeileroberfläche 980 618,96 mgal
Pfeiler A. Pfeileroberfläche (Grav.-Standort) 980 653,59 mgal
Pfeiler B. Pfeileroberfläche (Grav.-Standort) 980 632,57 mgal
BP2. Stativteller (Grav.-Standort) 980 626,63 mgal
Bodenpunkt, Bolzen 980 626,98 mgal
BP4. Stativteller (Grav.-Standort) 980 626,84 mgal
Bodenpunkt, Bolzen 980 627,17 mgal
BP5. Stativteller (Grav.-Standort) 980 627,09 mgal
Bodenpunkt, Bolzen 980 627,50 mgal
BP7. Stativteller (Grav.-Standort) 980 629,20 mgal
Bodenpunkt, Bolzen 980 629,53 mgal
Basisende Nord, Rheinbrücke
Pfeileroberfläche (Grav.-Standort) 980 631,48 mgal

Après avoir soulevé quelques questions concernant la méthode de réduction, le rapporteur, M. Bachmann, estime que la précision obtenue est excellente.

b) Auszug aus dem Bericht des Herrn Dr. E. Hunziker über :

Untersuchung von Lotkrümmungen.

Die Lotkrümmungskomponente im Azimut \(\alpha \) ist durch den Ausdruck \(A-A' = \frac{dE}{ds} \) bestimmt.

Es bedeuten \(A \) die Lotabweichungskomponente im Azimut \(\alpha \) im Oberflächenpunkt P, \(A' \) die Lotabweichungskomponente im Punkte \(P' \) des Schnittes der Lotlinie mit dem Geoid und \(s \) die Entfernung zweier Profilpunkte.

Die Durchschnittswerte \(dE \) liegen für alle Intervalle in den Profilen der schweizerischen astronomischen Nivellemente gerechnet vor. Sie sind für die beiden Profilstücke Oberalp - Pizzo Mascarpino und Herisau - Diepoldsau graphisch ausgewertet worden. Die so
erhaltenen Lotkrümmungskomponenten weisen bei den Gipfellpunkten beträchtliche Unsicherheit auf, weil dort schleifende Schnitte auftreten. Dementsprechend sind die \((\xi - \xi')\) der Punkte Pizzo del Corno, Pizzo Zambaroide und Pizzo Mascarpino (Höhen zwischen 2450 und 2500 m), sowie das \((\eta - \eta')\) des Punktes Gäbris, schlecht bestimmt, — im Gegensatz zu den Punkten in den Hängen.

Nachstehend findet man die Otobewechungskomponenten \(\xi\) und \(\eta\) an der Erdoberfläche, die Lotkrümmungsbeträge \((\xi - \xi')\) und \((\eta - \eta')\), sowie die Otobewechungskomponenten \(\xi'\) und \(\eta'\) im Geoid, der beiden Teilstücke der Profile zusammengestellt.

Die \(\xi'\) - und \(\eta'\)-Werte verlaufen bedeutend ruhiger als die Oberflächenwerte \(\xi\) und \(\eta\). In den Profilstücken Oberalp-G’fallenberg (Punkte 37-38b) und im Gebiet des Pizzo Zambaroide (Punkte 43b-44a) trifft dies in auffallender Weise zu. In steilen Hängen sind bis über 60 % des Oberflächenwertes der Lotabweichungskomponente der Lotkrümmung zuzuordnen (Punkte 40a und 44a).

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Station</th>
<th>Meereshöhe</th>
<th>(\xi)</th>
<th>(\xi')</th>
<th>(\eta)</th>
<th>(\eta')</th>
</tr>
</thead>
<tbody>
<tr>
<td>36a</td>
<td>Oberalp</td>
<td>2310</td>
<td></td>
<td>+173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Firstplange</td>
<td>1994</td>
<td>+7,0</td>
<td>+25</td>
<td>+4,5</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>G’fallenberg</td>
<td>2190</td>
<td>+8,3</td>
<td>+3,4</td>
<td>+4,9</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Giubing</td>
<td>2169</td>
<td>+0,1</td>
<td>-4,3</td>
<td>+4,4</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Airolo</td>
<td>1980</td>
<td>+0,5</td>
<td>-3,5</td>
<td>+4,0</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Pizzo del Corno</td>
<td>2040</td>
<td>+9,3</td>
<td>+7,0</td>
<td>+2,3</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Pizzo Zambaroide</td>
<td>2026</td>
<td>+4,6</td>
<td>+6,0</td>
<td>-1,4</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Pizzo Mascarpino</td>
<td>2130</td>
<td>+0,7</td>
<td>+0,3</td>
<td>+0,4</td>
<td></td>
</tr>
<tr>
<td>44a</td>
<td>2460</td>
<td>+2,6</td>
<td>+4,1</td>
<td>+1,0</td>
<td>+1,6</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>2777</td>
<td>+8,4</td>
<td>-8,0</td>
<td>-6,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40a</td>
<td>2777</td>
<td>-15,1</td>
<td>-10,3</td>
<td>-4,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1929</td>
<td>-11,6</td>
<td>-4,9</td>
<td>+1,5</td>
<td>-6,4</td>
<td></td>
</tr>
<tr>
<td>44a</td>
<td>1740</td>
<td>+5,7</td>
<td>+7,0</td>
<td>-1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2501</td>
<td>-0,9</td>
<td>+1,0</td>
<td>-1,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42a</td>
<td>2510</td>
<td>-7,9</td>
<td>-5,3</td>
<td>-2,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42b</td>
<td>2010</td>
<td>+0,1</td>
<td>+6,8</td>
<td>-6,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>2484</td>
<td>-3,9</td>
<td>+1,0</td>
<td>-4,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43a</td>
<td>2280</td>
<td>-10,8</td>
<td>-2,0</td>
<td>-8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>2450</td>
<td>-15,0</td>
<td>-7,0</td>
<td>-8,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44a</td>
<td>1680</td>
<td>-20,4</td>
<td>-12,4</td>
<td>-8,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diese Untersuchung erfolgte auf Veranlassung des Herrn Prof. F. Gassmann. Aus den sichtbaren Massen ist die Lotanziehungskomponente in der Richtung der Basis für die Punkte P, Q', Q", P' der Lotlinie mit den Meereshöhen 475 m (Oberflächenpunkt), 300 m, 150 m und 0 m topographisch gerechnet worden. Die sichtbaren Massen wurden bis zu einer Entfernung von 2 km einbezogen.

Der nicht einfache geologische Aufbau des Untergrundes fand auf die nachstehende angegebene Weise Berücksichtigung. Es stand eine von Herrn Dr. Pavoni vom Geophysikalischen Institut der ETH. im Massstab 1:25 000 gezeichnete kleine Karte mit der Topographie der Massen von der Dichte 2,7 (Kalkgestein) zur Verfügung. Die Deckfläche dieser Massen bezeichnen wir als unteres Relief, im Gegensatz zum oberen Relief, der Erdoberfläche, dargestellt in den Landeskarten 1:25 000. Für die zwischen unterm und oberem Relief liegenden Schottermassen ist eine Dichte von 1,9 angenommen worden. An den Stellen, wo das Kalkgestein aus dem Schotter herausragt, fallen unteres und oberes Relief zusammen.

Im Sinne Pizzettis können wir uns die Projektion der Lotlinie auf die Vertikalebene Basisende Süd - Basisende Nord durch einen Kreisbogen ersetzen denken. Der Abstand \(q \) in der Basisrichtung — vom Durchstoßpunkt der Projektion im Oberflächenpunkt geradlinig verlängerten Lotlinie zum Durchstoßpunkt der gekrümmten Lotlinie — beträgt dann im Geoid:

\[
q \approx \frac{A_1 - A_4}{2} \cdot H = +0,76 \text{ mm.}
\]

Zu einer besseren Annäherung führt die Annahme, die Projektion der Lotlinie habe zwischen den Punktspaaren PQ, QP, QP' Kreisform, sie könne als Korbogen angesehen werden. In diesem Falle liefern die einzelnen Abschnitte die folgenden Beiträge an die Verschiebung \(q \).

- Abschnitt zwischen P und Q': +0,47 mm
- Abschnitt zwischen Q' und Q: +0,35
- Abschnitt zwischen Q' und P': +0,03

Gesamtverschiebung \(q = +0,85 \text{ mm.} \)

Wegen der Krümmung der Lotlinie im Basisendpunkte Süd wäre demnach an die genormte Basislänge die Korrektur — 0,8 mm anzubringen. Der Einfluss der Lotkrümmung im Basisende Nord dürfte vernachlässigbar sein.

Weiter oben wurde gesagt, die Massen seien nur bis zu einer Entfernung von 2 km berücksichtigt worden. Um zu prüfen bis zu welcher Entfernung die sichtbaren Massen noch einen nennenswerten Einfluss auf die Lotkrümmung ausüben, war es angezeigt, die Beiträge der einzelnen Ringzonen gesondert zu bestimmen. Die zusammengezogenen Ergebnisse sind:

<table>
<thead>
<tr>
<th>Ringzone</th>
<th>Beitrag an die Lotkrümmungskomponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 0,1 km</td>
<td>+0,317</td>
</tr>
<tr>
<td>0,1 - 0,5</td>
<td>+0,310</td>
</tr>
<tr>
<td>0,5 - 1,0</td>
<td>+0,023</td>
</tr>
<tr>
<td>1,0 - 2,0</td>
<td>-0,003</td>
</tr>
<tr>
<td>0,0 - 2,0 km</td>
<td>+0,767</td>
</tr>
</tbody>
</table>

Es zeigt sich, dass weitaus der grösste Beitrag von den Massen in unmittelbarer Stationsnähe herrührt. Mit der Entfernung nimmt die Einwirkung der sichtbaren Massen auf die Lotkrümmung rasch ab. Im vorliegenden Falle bleiben schon von einem Kilometer Entfernung an die sichtbaren Massen ohne Einfluss.

Au cours de la discussion de ce travail M. Kobold signale l’importance de principe de telles mesures, même si les corrections trouvées pour la base de Heerbrugg sont insignifiantes. M. Gassmann estime que l’incertitude principale reste toujours l’ignorance des densités exactes des roches sous-jacentes.

c) Auszug aus dem Bericht des Herrn Dr. E. Hunziker über:

Entwurf eines schweizerischen Schwerenetzes erster Ordnung.

Die Stationen des bestehenden schweizerischen Schweregrundnetzes liegen auf Linien des Eißen, Prüfionsnivelements; einzig die beiden Flughäfen Kloten und Locarno machen eine Ausnahme. Ebenso sind die Stationen der schweizerischen Teilstätke des REUN (Réseau européen unifié de nivellement) linienförmig angeordnet.

Im Netz erster Ordnung sollen natürlich so zahlreich als möglich bereits vorhandene Stationen des Grundnetzes und der Linien der schweizerischen Teilstücke des REUN enthalten sein. Bei der Wahl neuer Stationen sind die folgenden Bedingungen zu beachten: gleichmäßige Stationsverteilung; verkehrstechnisch günstige Lage; bekannte Meereshöhe; gute Punktversicherung. Diese Bedingungen entsprechend liegen die Neupunkte im gebirgigen Gebiet in den Tälern oder auf Passstrassen.

Im vorliegenden Entwurf sind im ganzen 211 Stationen vorgesehen. Sie verteilen sich folgendermassen:

<table>
<thead>
<tr>
<th>Anzahl der Stationen</th>
<th>81</th>
<th>23</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundnetz vorhanden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REUN neu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neupunkte total</td>
<td></td>
<td></td>
<td>211</td>
</tr>
</tbody>
</table>

In den beiden nachstehenden Verzeichnissen findet man die Stationen des Grundnetzes, des REUN und die neu anzuschliessenden Stationen einzeln aufgeführt.

Niethammer nimmt im Alpengebiet und im Jura eine Unsicherheit der Gesteinsdichte von ca. ±0,05 und im Molassegebiet von ca. ±0,08 an (Band 16, Seite 182). Die Unsicherheit der berechneten Reduktion der beobachteten Schwerewerte auf Meeresniveau weist für die Pendelstationen die folgende Verteilung auf:

<table>
<thead>
<tr>
<th>Unsicherheit der berechneten Reduktionen</th>
<th>Anzahl der Stationen in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,6 - 0,9 mgal</td>
<td>10</td>
</tr>
<tr>
<td>1,0 - 1,9 mgal</td>
<td>72</td>
</tr>
<tr>
<td>2,0 - 2,9 mgal</td>
<td>63</td>
</tr>
<tr>
<td>3,0 - 3,9 mgal</td>
<td>50</td>
</tr>
<tr>
<td>4,0 - 4,9 mgal</td>
<td>21</td>
</tr>
<tr>
<td>5,0 - 5,9 mgal</td>
<td>12</td>
</tr>
<tr>
<td>6,0 - 6,9 mgal</td>
<td>3</td>
</tr>
<tr>
<td>0,6 - 6,9 mgal</td>
<td>231</td>
</tr>
</tbody>
</table>

Bevor es gelingt die Unsicherheit der berechneten Reduktion ganz wesentlich hinunter zu drücken, hat es keinen Sinn eine neue Isogammenkarte zu entwerfen.
Stationen des Grundnetzes und der REUN — Linien

<table>
<thead>
<tr>
<th>Schleife 1</th>
<th>Schleife 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 Lauterbrunnen</td>
<td>69 Thusis</td>
</tr>
<tr>
<td>37 Jungfrauoch</td>
<td>76 Andeer</td>
</tr>
<tr>
<td>38 Buckten</td>
<td>71 Splügen</td>
</tr>
<tr>
<td>39 Basel</td>
<td>72 S. Bernardino, Dorf</td>
</tr>
<tr>
<td>40 Stei (Aargau)</td>
<td>73 Cama</td>
</tr>
<tr>
<td>41 Koblenz</td>
<td>74 Castione</td>
</tr>
<tr>
<td>42 Kaisersuhl</td>
<td>75 Osogna</td>
</tr>
<tr>
<td>43 Neerach</td>
<td>76 Giornico</td>
</tr>
<tr>
<td>44 Kloten</td>
<td>77 Faido</td>
</tr>
<tr>
<td>45 Zürich</td>
<td>78 Airolo</td>
</tr>
<tr>
<td>46 Pfäffikon</td>
<td>79 Locarno</td>
</tr>
<tr>
<td>47 Goldau</td>
<td>80 Brissago, Confine</td>
</tr>
<tr>
<td>81 Genève Flughafen</td>
<td>82 Cointrin</td>
</tr>
</tbody>
</table>

Schleife 4

<table>
<thead>
<tr>
<th>Schleife 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 Rafz</td>
</tr>
<tr>
<td>49 Schaffhausen</td>
</tr>
<tr>
<td>50 Stein a. Rhein</td>
</tr>
<tr>
<td>51 Berlingen</td>
</tr>
<tr>
<td>52 Kreuzlingen</td>
</tr>
<tr>
<td>53 Uttwil</td>
</tr>
<tr>
<td>54 Rorschach</td>
</tr>
<tr>
<td>55 St. Margrethen</td>
</tr>
<tr>
<td>56 Altstätten</td>
</tr>
<tr>
<td>57 Gams</td>
</tr>
<tr>
<td>58 Sargans</td>
</tr>
<tr>
<td>59 Murg</td>
</tr>
<tr>
<td>60 Niederurnen</td>
</tr>
</tbody>
</table>

Schleife 6

<table>
<thead>
<tr>
<th>Schleife 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>69 Thusis</td>
</tr>
<tr>
<td>76 Andeer</td>
</tr>
<tr>
<td>71 Splügen</td>
</tr>
<tr>
<td>72 S. Bernardino, Dorf</td>
</tr>
<tr>
<td>73 Cama</td>
</tr>
<tr>
<td>74 Castione</td>
</tr>
<tr>
<td>75 Osogna</td>
</tr>
<tr>
<td>76 Giornico</td>
</tr>
<tr>
<td>77 Faido</td>
</tr>
<tr>
<td>78 Airolo</td>
</tr>
<tr>
<td>79 Locarno</td>
</tr>
<tr>
<td>80 Brissago, Confine</td>
</tr>
<tr>
<td>81 Genève Flughafen</td>
</tr>
<tr>
<td>82 Cointrin</td>
</tr>
</tbody>
</table>

Schleife 7

<table>
<thead>
<tr>
<th>Gebiet der Schleife 1 und Wallis</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 Delémont</td>
</tr>
<tr>
<td>36 Porrentruy</td>
</tr>
<tr>
<td>37 Boncourt</td>
</tr>
<tr>
<td>38 Mervelier</td>
</tr>
<tr>
<td>39 Montier</td>
</tr>
<tr>
<td>40 Laufen</td>
</tr>
<tr>
<td>41 Reigoldswil</td>
</tr>
<tr>
<td>77 Lichtensteig</td>
</tr>
<tr>
<td>78 Nessau</td>
</tr>
</tbody>
</table>

Gebiet der Schleife 3 und Bernerland

<table>
<thead>
<tr>
<th>Gebiet der Schleife 3 und Bernerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 Utzenstorf</td>
</tr>
<tr>
<td>43 Herzogenbuchsee</td>
</tr>
<tr>
<td>44 Murgenthal</td>
</tr>
<tr>
<td>45 Burgdorf</td>
</tr>
<tr>
<td>46 Sumiswald</td>
</tr>
<tr>
<td>47 Zell</td>
</tr>
<tr>
<td>48 Langnau</td>
</tr>
<tr>
<td>49 Schlangnau</td>
</tr>
<tr>
<td>50 Schöpfheim</td>
</tr>
<tr>
<td>51 Wolffhusen</td>
</tr>
<tr>
<td>52 Grindelwald</td>
</tr>
<tr>
<td>53 Guttenne</td>
</tr>
</tbody>
</table>

Gebiet der Schleife 5 und Tessin

<table>
<thead>
<tr>
<th>Gebiet der Schleife 5 und Tessin</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Chaux-du-Milieu</td>
</tr>
<tr>
<td>31 Chaux-de-Fonds</td>
</tr>
<tr>
<td>32 St.-Imier</td>
</tr>
<tr>
<td>33 Saignelégier</td>
</tr>
<tr>
<td>34 Glovelier</td>
</tr>
<tr>
<td>68 Wil</td>
</tr>
<tr>
<td>69 Bischofszell</td>
</tr>
<tr>
<td>70 Herisau</td>
</tr>
<tr>
<td>71 Appenzell</td>
</tr>
<tr>
<td>72 Uster</td>
</tr>
<tr>
<td>73 Saland</td>
</tr>
<tr>
<td>74 Wald</td>
</tr>
<tr>
<td>75 Horgen</td>
</tr>
<tr>
<td>76 Uznach</td>
</tr>
<tr>
<td>77 Lichtensteig</td>
</tr>
<tr>
<td>78 Nessau</td>
</tr>
<tr>
<td>87 Eutal</td>
</tr>
<tr>
<td>88 S. Gons</td>
</tr>
<tr>
<td>89 Obervile</td>
</tr>
<tr>
<td>90 Brienz</td>
</tr>
<tr>
<td>91 Bigasco</td>
</tr>
<tr>
<td>92 Pecia</td>
</tr>
<tr>
<td>93 Cimalmotta</td>
</tr>
<tr>
<td>94 Rizzo</td>
</tr>
<tr>
<td>95 Greubünden Ost</td>
</tr>
<tr>
<td>96 Tiefencastel</td>
</tr>
<tr>
<td>97 Bergün</td>
</tr>
<tr>
<td>98 Malegns</td>
</tr>
<tr>
<td>99 Avra</td>
</tr>
<tr>
<td>100 Maloja</td>
</tr>
<tr>
<td>101 Castasega</td>
</tr>
<tr>
<td>102 Samaden</td>
</tr>
<tr>
<td>103 Saanfs</td>
</tr>
<tr>
<td>104 Berninapass</td>
</tr>
<tr>
<td>105 Poschiavo</td>
</tr>
<tr>
<td>106 Punta la Brossa</td>
</tr>
<tr>
<td>107 Münster</td>
</tr>
</tbody>
</table>
Le rapporteur, M. Bachmann, approuve de façon générale la disposition des stations et fait valoir la nécessité d’accomplir ce travail rapidement. M. Gassmann estime que le nouveau réseau de 1er ordre ne doit pas être destiné à la confection d’une carte gravimétrique. En effet, pour une telle carte, les points devraient être beaucoup plus serrés et disposés différemment. M. Baschlin constate que le réseau gravimétrique suisse est excellent et qu’une carte gravimétrique n’est pas nécessaire pour des buts géodésiques, une fois la gravité connue le long des parcours de nivellement. Par surcroît la confection d’une nouvelle carte gravimétrique ne serait pas une tâche rentrant dans les attributions de notre Commission.

La Commission approuve les rapports présentés par M. Hunziker et adresse ses remerciements à l’auteur ainsi qu’au rapporteur, M. Bachmann.

d) Auszug aus dem Bericht des Herrn Ing. N. Wunderlin über:

Zeitbestimmungen mit dem astronomischen Theodoliten DKM3 — A.

An ihrer Sitzung vom 18. April 1959 hatte die Schweizerische Geodätische Kommission beschlossen, die schon 1958 begonnenen Untersuchungen über die mit dem Theodoliten DKM3 — A der Firma Kern, Aravau, erreichbaren Genaigkeiten bei Zeitbestimmungen aus Meridianrückbildungen weiterzuführen. Im Sommer und Herbst 1959 wurden deshalb in Zürich und auf dem Rigi durch die beiden Beobachter Fischer und Wunderlin weitere Versuche vorgenommen, so dass schliesslich folgende Beobachtungen vorlagen:

<table>
<thead>
<tr>
<th>Datum</th>
<th>Ort</th>
<th>Anzahl Durchgänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>Sept. 5.</td>
<td>Zürich ETH</td>
</tr>
<tr>
<td></td>
<td>Sept. 6.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept. 11.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept. 19.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zu übertragen</td>
<td></td>
</tr>
</tbody>
</table>

Übertrag 4 50

1959 Juli 9. Zürich ETH 12
 Juli 20.
 Juli 23.
 Sept. 24. Rigi Kulm 13
 Sept. 29.
 Sept. 30.
 Sept. 30.
 Okt. 1.
 Okt. 2. 12

<table>
<thead>
<tr>
<th>Datum</th>
<th>Ort</th>
<th>Anzahl Durchgänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Juli 9.</td>
<td>Zürich ETH</td>
</tr>
<tr>
<td></td>
<td>Juli 20.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juli 23.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept. 24.</td>
<td>Rigi Kulm</td>
</tr>
<tr>
<td></td>
<td>Sept. 29.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept. 30.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept. 30.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Okt. 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Okt. 2.</td>
<td></td>
</tr>
</tbody>
</table>

13 172

Eine einzelne Durchgangsbeobachtung verlief in der Weise, dass der bewegliche Faden des unpersönlichen Mikrometers dem Stern vor und nach seinem Meridianrückgang einige Zeit nachgeführt wurde, während dazwischen, zur ungefähren Durchgangszeit, der Wechsel der Fernrohrlage erfolgte. Das Niveau wurde kurz vor Beginn und unmittelbar nach Abschluss jeder Beobachtung abgelesen. Die Kontakte des Mikrometers und der Uhr (Marinechronometer Nardin) wurden auf einem Uhrwerkchronographen Favag registriert, ebenso die mit einem kleinen Empfänger RT 77/GRIC aufgenommenen Radiozeiteichen FYA 7428 kHz (Paris) RWM 7690 kHz und 10 050 kHz (Moskau) und DIZ 4525 kHz (Nauen).

Die Auswertung erfolgte durch Ausgleichung nach der Methode der kleinsten Quadrate mit folgenden Fehlergleichungen:

$$\alpha_{app} = (U_{kor} + v) + \sin \delta \frac{\sin a}{\cos \delta} + AU$$

worin die wegen Achsneigung b, Kollimationsfehler c (tägliche Aberration und 1/2 Toter Gang) und Uhrstellung Γ korrigierte Durchgangszeit U_{kor} als mit Verbesserung zu verschlüsselte «Beobachtung» auftritt, während das Atrium a der Horizontlachse (als konstant betrachtet für die ganze Beobachtungserie) und die Uhrkorrektur AU auf scheinbare Ortssternzeit (für einen bestimmten Zeitpunkt) die zu bestimmenden Unbekannten sind. Diesen Fehlergleichungen wurden folgende Gewichte zugewiesen:

$$\delta, 25^\circ 30^\circ 35^\circ 40^\circ 45^\circ 50^\circ 55^\circ 60^\circ 65^\circ$$

$$p, 0,75 0,90 0,95 0,90 0,75 0,60 0,40 0,30 0,20$$
Die Berechnung der Durchgangszeit durch die Stellung 10,000 Rev. des beweglichen Fadens erfolgte wie üblich durch Bildung des Mittels aus den beiden Kontaktzeiten des gleichen Kontaktes (Kontaktmittel) vor und nach dem Durchgang und Mittelung mehrerer auf diese Weise erhaltener Werte. Aus der Streuung der einzelnen Bestimmungen um das Mittel ergab sich für jeden Durchgang der mittlere Fehler eines Doppelkontaktes (mittlerer Fehler einer aus einem Kontakt paar erhaltenen Durchgangszeit), und mit dem üblichen Ansatz für das Gesetz dieses Fehlers

\[m = \sqrt{(k^2 + (p \text{ sec } \delta)^2) \text{ sec } \delta} \]

wurden die Koeffizienten \(k \) und \(p \) durch eine Ausgleichung bestimmt, und zwar getrennt für die Beobachtungen in Zürich und auf dem Rigi. Es ergab sich

Zürich \(m = \sqrt{0 + (0,054 \text{ sec } \delta)^2} \)

Rigi \(m = \sqrt{(0,038)^2 + (0,041 \text{ sec } \delta)^2} \)

Hierzu ist zu bemerken, dass der zu hohe Wert des Koeffizienten \(p \) (mit entsprechend zu kleinem \(k \)) bei den Zürcher Beobachtungen davon herrührt, dass die Nachführungsradials des Mikrometers aus konstruktiven Gründen etwas klein sind, was das Verfolgen langsamer Sterne erschwert. Durch Aufsetzen eines Bakelitkränzes auf die Rädchen lässt sich dieser Nachteil aber leicht beheben, wie die normalen Resultate auf dem Rigi zeigen.

Um die mit zunehmender Declination abnehmende Genauigkeit der Durchgangszeitbestimmung zu berücksichtigen, wurden je nach der Grösse des mittleren Fehlers eines Doppelkontaktes 10, 20 oder 30 Kontaktstelle zur Bildung der gemittelten Durchgangszeit benützt, wodurch erreicht wurde, dass deren mittlere Fehler nur wenig verschieden sind.

Die Neigungen \(b \) der Horizontalachse wurden, um die Ausgleichungen nicht zu komplizieren, nicht als Beobachtungen in die Fehlergleichungen eingeführt, sondern die Neigungskorrekturren \(\cos z \) \(b \) an den beobachteten Durchgangszeiten wurden als gegebene, \(\cos \delta \) nicht mehr zu verbessernde Grössen aufgefasst.

Damit schien aber die Verwendung der tatsächlich bei jedem Durchgang beobachteten Neigung für die Berechnung der betreffenden Neigungskorrektur gefährlich wegen der offensichtlich beschränkten Zuverlässigkeit der einzelnen Niveauallagen, die in den grossen Zacken des Linienzuges "Neigung in Funktion der Zeit" sich ausdrückte. Durch einmaliges "Glätten" dieses Linienzuges wurden die im Folgenden "glättet" genannten Neigungen erhalten, und durch Legen einer Ausgleichskurve oder -geraden durch die beobachteten Neigungswerte die im Weiten als "ausgeglichen" bezeichneten Neigungen.

Für jeden der 13 Beobachtungsserien wurde die Ausgleichung zur Bestimmung der Uhrkorrektion \(\Delta \) und des Achsazimutes \(\alpha \) mit allen drei Arten von Neigungen: beobachtet, glättet, ausgeglichen durchgeführt. Die Durchschnittswerte der dabei erhaltenen mittleren Fehler des "Abendwertes" der Uhrkorrektion sind in der folgenden Tabelle zusammengestellt:

<table>
<thead>
<tr>
<th>Ort</th>
<th>Anzahl Serien</th>
<th>Anzahl Durchgangszeiten pro Serie (Durchschnitt)</th>
<th>Mittlerer Fehler des "Abendwertes" der Uhrkorrektion (Durchschnitt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zürich</td>
<td>7</td>
<td>13</td>
<td>0,025, 0,020, 0,020</td>
</tr>
<tr>
<td>Rigi</td>
<td>6</td>
<td>14</td>
<td>0,026, 0,021, 0,014</td>
</tr>
<tr>
<td>Gesamt</td>
<td>13</td>
<td>13,5</td>
<td>0,025, 0,020, 0,017</td>
</tr>
</tbody>
</table>

Es wurde versucht, den mittleren Fehler \(\mu \) der Grösse \(\Delta \) eines einzelnen Sterndurchgangs in Komponenten zu zerlegen nach folgendem Ansatz:

\[\mu^2 = m_a^2 + m_b^2 + \left(\frac{\sin z}{\cos \delta} \right)^2 m_a^2 + \left(\frac{\cos z}{\cos \delta} \right)^2 m_b^2 \]

Darin bedeuten:

- \(m_a \) mittlerer Fehler der Rectaszension, angenommen zu

\[m_a = \pm \sqrt{0,5 \times (1 + \text{sec}^2 \delta)} \times 10^{-3} \text{s} \]

- \(m_b \) mittlerer Fehler der beobachteten Durchgangszeit, angenommen zu

\[m_b = \pm 1,5 \times \text{mittlerer Fehler eines Doppelkontaktes} \frac{\sqrt{\text{Anzahl der Doppelkontakte}}}{9 \text{ sec } \delta} \times 10^{-3} \text{s} \]

\[m_{a+b} = \pm \sqrt{m_a^2 + m_b^2} \]
mit mittlerer Fehler der Konstanz des Horizontalachsazimutes angenommen zu
\[m_a = \pm 0^\circ 050 \text{ s} \]

\(m_b \) mittlerer Fehler der Neigungsbestimmung der Horizontalachse.

Für \(m_b \) konnte eine Abschätzung auf folgende Weise gefunden werden: Durch Wahl eines geeigneten Wertes für \(m_b \) sollte die Kurve \(\mu(\delta) \) sich möglichst gut drei Werten von \(m_a(\delta) = \sqrt{\frac{[\text{vv}]}{n-2}} \) anpassen, wobei \(\text{v} \) Verbesserungen an den beobachteten Durchgangszeiten (aus den Ausgleichungen mit «ausgeglichenen» Neigungen) bedeuten und die Summierung sich über die einzelnen, in der folgenden Tabelle angegebenen Deklationsbereiche erstreckt. Das Vorherrn musste für Zürich und Rigi getrennt angewendet werden, wegen der unterschiedlichen Genauigkeit der Beobachtungen.

<table>
<thead>
<tr>
<th>(\delta) - Bereich</th>
<th>(\delta_{\text{mittel}})</th>
<th>(n - \text{Anzahl v})</th>
<th>(m_a(\delta) = \sqrt{\frac{[\text{vv}]}{n-2}})</th>
<th>(\text{Zürich})</th>
<th>(\text{Rigi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°-41°</td>
<td>34°</td>
<td>30 27</td>
<td>0°059</td>
<td>0°045</td>
<td></td>
</tr>
<tr>
<td>41°-56°</td>
<td>47°</td>
<td>31 27</td>
<td>0°069</td>
<td>0°050</td>
<td></td>
</tr>
<tr>
<td>56°-65°</td>
<td>60°</td>
<td>29 28</td>
<td>0°086</td>
<td>0°056</td>
<td></td>
</tr>
</tbody>
</table>

Damit ergeben sich, wie aus der folgenden Tabelle der mittleren Fehler \(\mu(\delta) \) einer Durchgangsbeobachtung in Funktion der Deklination hervorgeht, für die mittleren Fehler einer Neigungsbestimmung («ausgeglichene» Neigungen) die Werte
\[m_b = \pm 0^\circ 040 \quad \text{für Zürich} \]
\[m_b = \pm 0^\circ 025 \quad \text{für Rigi} \]

Es zeigt sich also, dass mit dem astronomenischen Theodoliten DKM3A aus 12 bis 15 zeitnahen Meridiodurchgängen Zeitbestimmungen mit einem inneren mittleren Fehler von \(\pm 0^\circ 020 \) bis \(\pm 0^\circ 010 \) durchgeführt werden können, wobei die erreichbare Genauigkeit in erster Linie von der Güte der Neigungsbestimmung der Horizontalachse abhängen scheint und erst in zweiter Linie von der «Nachführungsgenauigkeit» mit dem beweglichen Faden des unpersönlichen Mikrometers. Die äussere Genauigkeit, d.h. die Streuung der einzelnen Abendwerte der Zeitbestimmung unter sich und die Große der instrumentellen und persönlichen Gleichung, kann erst nach Eintreffen der Heure definitive der benützten Zeitzeichen abgeklärt werden.

M. Schürer, qui rapporte sur ce travail, estime que les erreurs du théodolite étudié proviennent principalement de l'inclinaison de l'axe horizontal. Il critique la méthode utilisée par M. Wunderlin, consistant à égaliser les mesures d'inclinaison, au lieu d'utiliser les valeurs lues pour chaque étoile. Ce procédé ne change pas le résultat de la mesure, mais a comme effet de réduire l'erreur moyenne déterminée, ce qui n'est pas bon dans le cas de l'étude d'un instrument. Une assez longue discussion
s'engage ensuite, au cours de laquelle le problème soulevé par le rapporteur est traité par MM. Bachmann, Baeschlin, Blaser, Hunziker, Kobold et Wunderlin. M. Schürer résume en faisant remarquer que le seul progrès véritable serait de renoncer à l'utilisation d'un niveau en faisant, par exemple, des visées du nadir à l'aide d'un bain de mercure.

Le président donne ensuite la parole à M. l'ingénieur Wunderlin qui rapporte sur son travail :

c) Mesures d'angles verticaux dans l'Oberland bernois.

M. Wunderlin signale que le matériel d'observation est de qualité très inégale et que des erreurs de l'ordre de deux secondes d'arc se trouvent fréquemment lorsque les conditions d'observation étaient mauvaises. Il énumère ensuite les différents calculs de compensation qui ont été faits. Les corrections des angles verticaux sont de l'ordre de six nouvelles secondes. On a pu déterminer les différences de hauteur relativement au géoïde et à l'ellipsoïde terrestre. M. Kobold fait remarquer que l'on a l'intention d'introduire plus tard la courbure de la verticale, ce qui peut améliorer sensiblement l'accord interne des mesures. Il propose que ces travaux soient publiés de façon provisoire pour pouvoir être présentés au congrès de Helsinki, MM. Blaser et Schürer posent la question de l'incertitude de la réfraction dont on n'a pas tenu compte de façon détaillée dans les réductions. M. Kobold répond qu'on a constaté que les variations de réfraction en haute montagne sont très faibles.

La Commission approuve les rapports présentés par M. Wunderlin et remercie l'auteur ainsi que le rapporteur, M. Schürer.

3. Rapport sur les mesures de base à Heerbrugg.

M. Kobold signale que les mesures se sont faites dans un esprit de collaboration très efficace avec l'Allemagne et l'Autriche et ont été favorisées par un temps exceptionnellement beau. La précision obtenue a correspondu aux espérances ; elle est de 2 mm environ pour la base entière.

M. Kobold signale comme travail urgent la mesure des déviations et courbures de la verticale aux points du réseau d'agrandissement de la base de Heerbrugg. M. Gassmann a mis au point à cet effet une nouvelle méthode gravimétrique permettant de déterminer la courbure de la verticale. M. Kobold résume le programme : Il consisterait dans la mesure des latitudes et longitudes astronomiques en quatre points suisses du réseau d'agrandissement. Dans un de ces points, la courbure de la verticale serait estimée d'après la méthode de M. Gassmann. La mesure de l'heure se ferait par passages d'étoiles au méridien et la détermination de la latitude par des distances zénithales méridiennes. M. Kobold propose que les observations de référence pour la détermination des équations personnelles soient faites au Rigi, ce qui permettrait en même temps de mesurer l'azimut Rigi-Lägerl à l'aide de la méthode de l'étoile polaire.

M. Huber demande si le programme de travail prévoit aussi des mesures au telluromètre. M. Kobold répond que tant l'Allemagne que l'Autriche entreprendront des mesures au telluromètre et au géodimètre. Il pense que pour l'équipe suisse il ne restera pas suffisamment de temps pour en faire autant.

Le président donne la parole ensuite à M. Blaser qui rapporte sur l'état d'avancement des travaux concernant le service horaire de campagne qui est en construction. M. Blaser fait remarquer que les travaux qui sont en cours à l'Institut d'électrotechnique de l'EPF n'ont pas beaucoup avancé depuis l'année passée, mais qu'il devrait être possible de terminer pour fin mai 1960 l'appareil qui consiste en une horloge à quartz, un enregistreur de contacts et un dispositif de chronographe imprimant. Il sera toutefois nécessaire de procéder à des essais dans des conditions semblables à celles des travaux de campagne, de façon à contrôler la sécurité du fonctionnement. Pour l'émission des signaux horaires, Radio-Suisse mettra à disposition de la Commission un émetteur de Münchenerbuche, ce qui représente une solution économique et rapide.
5. Centenaire de la Commission géodésique suisse.

Le président M. Kobold signale que la Commission géodésique a été fondée en 1861. Il propose que cet événement soit fêté par une séance particulière qui pourrait se diviser en une séance administrative, par exemple un vendredi après-midi, plus une séance de fête qui pourrait avoir lieu le samedi matin, et à laquelle un nombre de personnalités scientifiques, ainsi que des représentants des autorités seraient invités. Il pense également qu’une publication devrait être faite à l’occasion du centenaire, mentionnant les travaux exécutés par la Commission et discutant les problèmes actuels et futurs. Dans la discussion, MM. Gassmann et Baschlin estiment qu’un peu de propagande doit être faite pour les travaux de la Commission, car ceux-ci ne sont pas suffisamment connus. La publication du centenaire devrait-elle être de caractère scientifique ou de vulgarisation? M. Baschlin pense que la possibilité de publier à cette occasion des travaux scientifiques serait très souhaitable, mais se demande si le temps n’est pas déjà trop court.

Le caissier, M. de Remy, donne quelques explications au sujet des comptes 1959. Pour la première fois on a demandé cette année au caissier un relevé de l’état de la fortune. M. Kobold fait remarquer que la fortune se verra fortement diminuée par l’achat des appareils nécessaires au service horaire de campagne. M. Huber relève que le poste pour vente des publications lui paraît bien modeste, mais le président répond que pratiquement toutes les institutions intéressées obtiennent les publications gratuitement à titre d’échange. Les comptes 1959 sont approuvés à l’unanimité avec remerciements au caissier.

Le caissier signale qu’au projet de budget 1961 figure un nouveau salaire. En effet, la nécessité impérieuse d’engager un dessinateur-technicien a été reconnue depuis longtemps par les collaborateurs de la Commission. M. Baschlin pense qu’il sera nécessaire de prévoir au budget 1961 des dépenses extraordinaires pour le centenaire de la Commission.

M. Huber renseigne la Commission sur les résultats très intéressants du symposium qui s’est tenu à Liverpool en 1959, et dont les comptes rendus viennent d’être publiés dans le Bulletin géodésique.

Le président lève la séance à 12h 50m.

Le secrétaire:
J.-P. Blaser.