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VORWORT 

Frau Claudia Flohrer-Urschl bearbeitet in der vorliegenden Publikation das Problem, aus Zeitreihen unter-
schiedlicher Satelliten-Beobachtungstechniken und entsprechenden Bahnberechnungen Aussagen über die 
Genauigkeit der Satellitenbahnen und über mögliche systematische Fehler in den Beobachtungen zu 
machen. Frau Flohrer nutzte dazu (a) Mikrowellen-Messungen der Globalen Navigations-Satelliten-
Systeme (GNSS), insbesondere des amerikanischen GPS und des russischen GLONASS, (b) Laufzeit-
messungen (SLR) zu GNSS-Satelliten, die mit Laser-Reflektoren ausgerüstet sind sowie zu spezialisierten 
Lasersatelliten und (c) astrometrische Beobachtungen dieser Satelliten. Damit musste sich Frau Flohrer 
mit allen Beobachtungsarten der modernen Fundamentalastronomie befassen (mit Ausnahme von Very 
Long Baseline Interferometry, der Beobachtung von Quasaren mit Radioteleskopen), insbesondere mit den 
Feinheiten aller Beobachtungsarten und den Eigenschaften und Eigenheiten der daraus abgeleiteten 
Resultate. Die wichtigsten Resultate der Arbeit sind: 

Validierung der vom CODE-Rechenzentrum bestimmten GPS- und GLONASS-Satellitenbahnen mit 
Hilfe von SLR-Beobachtungen des weltweiten Netzes von SLR-Stationen (inklusive Zimmerwald). Frau 
Flohrer gelang erstmals der Nachweis, dass es nicht nur einen bereits von Tim Springer (SGK, Band 60, 
2000) beschriebenen systematischen Offset von 3-5 cm zwischen SLR-Beobachtungen und den aus den 
GNSS-Bahnen abgeleiteten Distanzen, sondern auch umlaufsperiodische systematische Fehler mit einer 
Amplitude von 5-10 cm gibt. Dadurch gelang es, Einsicht in die Struktur der Systematiken zu gewinnen 
und, was noch wichtiger ist, die „Schuld“ eindeutig den GNSS-Bahnen zuzuschieben. Erst nach diesem 
Resultat war und ist es sinnvoll, die zur Modellierung der GNSS-Bahnen bei CODE (und anderen 
Zentren) verwendeten Modelle für die Kräfte in Frage zu stellen und gründlichen Prüfungen zu 
unterziehen. 

Überprüfung der CODE-Modelle: Frau Flohrer hat eine eindrückliche Reihe von Experimenten mit 
unterschiedlichen Modellen mit langen Zeitreihen von GNSS-Beobachtungen (vier Jahre) durchgeführt. 
Keines der Modelle konnte die oben erwähnten Systematiken befriedigend erklären. Man hat aber aus 
ihren Experimenten sehr viel gelernt und wird bei Folgeuntersuchungen auf ihren Resultaten aufbauen 
können. 

Validierung der CCD-Beobachtungstechnik mit GNSS und Laser-Satelliten. Hier konnten jahrelange 
Zeitreihen von Richtungsbeobachtungen zu Satelliten (schnell bewegten Objekten) mit Hilfe der mit GPS 
und Laser bestimmten Bahnen validiert werden. Alle verwendeten CCD-Beobachtungen (CCD = Charge--
Coupled Devices = Halbleiter-Sensoren digitaler Kameras) stammen vom Observatorium Zimmerwald. 
Drei Resultate seien erwähnt: (a) Die auf anderem Weg geschätzte Beobachtungsgenauigkeit von etwa 
0.2“ konnte unabhängig bestätigt werden, (b) gelegentlich auftretende systematische Fehler in der 
Registrierung der Beobachtungszeit konnten eindeutig lokalisiert und zum grösseren Teil sogar korrigiert 
werden, (c) ein systematischer deklinationsabhängiger Fehler konnte zweifelsfrei einem der verwendeten 
Sternkataloge zugewiesen werden. Aus (b) wurde auch ein Vorschlag für eine routinemässige Kali-
brierung der CCD-Aufnahmen abgeleitet. 

Untersuchungen zur Kombination verschiedener Beobachtungstechniken (insbesondere GNSS und 
SLR): Frau Flohrer konnte zeigen, dass SLR einen wichtigen Beitrag zur Bahnbestimmung von GNSS-
Satelliten zu leisten vermag, falls genügend SLR-Beobachtungen zur Verfügung stehen. 

Die SGK bedankt sich bei der Akademie der Naturwissenschaften Schweiz (scnat) für die Übernahme der 
Druckkosten.  
 
 
 
 
 
 
 
Prof. Dr. W. Gurtner Prof. Dr. A. Geiger 
Direktor Observatorium Zimmerwald ETH Zürich  
Universität Bern  Präsident der SGK 



PREFACE 

Dans cette présente publication, en se basant sur des séries temporelles de différent types d’observations 
satellitaires ainsi que sur le calcul des orbites correspondants, Claudia Flohrer-Urschl s’est principalement 
intéressée à la problématique de la validation de la précision des orbites des satellites et des possibles erreurs 
systématiques qui entachent les observations. Claudia Flohrer a notamment utilisé (a) des observations micro-
ondes des systèmes globaux de navigation par satellites (GNSS), en particulier à celles des systèmes 
américains (GPS) et russes (GLONASS), (b) des mesures temps de vol (SLR) sur les satellites GNSS qui sont 
équipés de réflecteurs laser ainsi que sur les satellites laser spécialisés, et finalement, (c) des observations 
astrométriques de tous ces satellites. Par conséquent, Claudia Flohrer a dû travailler avec toutes les 
observables de l’astronomie fondamentale moderne (à l’exception de celles du système Very Long Baseline 
Interferometry, l’observation de quasars à l’aide de radiotélescopes), plus spécialement avec les subtilités des 
trois techniques d’observations, et des propriétés et particularités des résultats qui en découlent. Les résultats 
majeurs de ses recherches sont: 

Validation des orbites des satellites GPS et GLONASS, déterminés par le centre de calcul CODE, à l’aide 
d’observations SLR du réseau global des stations SLR (y compris celles de Zimmerwald). Claudia Flohrer a 
pu prouver pour la première fois qu’il n’y a pas seulement un écart systématique de 3-5 cm entre les 
observations SLR et les distances dérivées des orbites micro-ondes GNSS, comme décrit par Tim Springer 
(CGS, volume 60, 2000), mais également des erreurs systématiques périodiques orbitales d’une amplitude de 
5 à 10 cm. Cela a permis une meilleure compréhension de la structure de tels systématismes et plus important 
encore, cela a offert la possibilité de pouvoir assigner, sans ambiguïté, la source de ces erreurs aux orbites 
GNSS. C’est seulement une fois ce fait identifié, qu’il a été pertinent de remettre en question la modélisation 
des forces des modèles d’orbites GNSS utilisés par le CODE (et les autres centres de calculs) et de les 
soumettre à des analyses en profondeur. 

Examen des modèles du CODE. Claudia Flohrer a réalisé une impressionnante série d’expériences avec 
différents modèles en utilisant de longue séries temporelles d’observations GNSS sur une durée d’environ 
quatre ans. Aucun modèle ne peut expliquer de manière satisfaisante les erreurs systématiques mentionnées 
plus haut. Nous avons toutefois beaucoup appris de ses expériences et pouvons nous baser sur ses résultats 
pour de futures investigations.  

Validation des techniques d’observations CCD sur GNSS et satellites lasers. De longues séries temporelles 
d’observations directionnelles de satellites (objets en mouvement rapide) ont pu être validées à l’aide 
d’orbites estimées avec GPS et laser. Toutes les observations CCD utilisées (CCD = Charge-Coupled Devices 
= senseurs semi-conducteurs des caméras digitales) proviennent de l’observatoire de Zimmerwald. Trois 
résultats peuvent être mentionnés : (a) la précision des observations de 0.2 secondes d’arc obtenue par une 
autre méthode a pu être confirmée de façon indépendante ; (b) les erreurs systématiques occasionnelles des 
déterminations de l’époque des observations ont pu être confirmées et identifiées (et en grande partie 
corrigées) ; (c) une erreur systématique dépendante de la déclinaison a pu être assignée, sans aucun doute 
possible, à l’un des catalogues d’étoiles utilisé pour la détermination des positions des étoiles et des objets. De 
plus, une routine de calibration des images CCD est proposée sur la base de (b). 

Etudes sur la combinaison de différentes techniques d’observations (en particulier GNSS et SLR): 
Claudia Flohrer a pu montrer que si un nombre suffisant d’observations SLR sont disponibles, le système 
SLR est en mesure d’apporter une importante contribution à la détermination des orbites des satellites GNSS. 

La CGS remercie l’académie des sciences des sciences naturelles suisses (scnat) pour la prise en charge des 
frais d’impression. 
 
 
 
 
 
 
 
 
Prof. Dr. Werner Gurtner Prof. Dr. A. Geiger 
Directeur de l’Observatoire de Zimmerwald ETH Zürich 
Université de Berne Président de la CGS 



FOREWORD 

In this publication Mrs. Claudia Flohrer-Urschl focuses on the problem of assessing the accuracies of time 
series from diverse satellite observation techniques and corresponding orbit computations about orbits and 
possible systematic errors within the observations. 

Mrs. Flohrer’s work is based on (a) Microwave observations to Global Navigation Satellite Systems (GNSS), 
(b) SLR measurements (SLR = Satellite Laser Ranging) to GNSS satellites equipped with laser retro-
reflectors or to specialized laser satellites and (c) Astrometric observations to these satellites. Mrs. Flohrer had 
to deal with all types of observables of modern fundamental astronomy (with the exception of Very Long 
Baseline Interferometry, the observation of quasars by radio telescopes), especially with the subtleties of all 
observation techniques and the properties and peculiarities of the derived results. The most important results 
of her studies are: 

Validation of the GPS and GLONASS satellite orbits, as determined by the CODE analysis center by means 
of SLR observations of the global network of SLR stations (including Zimmerwald). For the first time, Mrs. 
Flohrer proved that, in addition to the systematic offset of 3-5 cm between SLR observations and ranges 
derived from GNSS microwave orbits as already described by Tim Springer (SGC, Volume 60, 2000), there 
are also orbit-periodic systematic errors with an amplitude of 5 to 10 cm. This led to an improved 
comprehension of the structure of such systematics and, more important, to the possibility to unambiguously 
attribute the source of these errors to the GNSS orbits. Only now it made sense to question the underlying 
force models of the GNSS orbits used by CODE (and other analysis centers) and to perform an in-depth error 
analysis. 

Examination of the CODE models: Mrs. Flohrer performed an impressive series of experiments with 
different force models using long time series of GNSS observations of about four years. However, none of the 
models could sufficiently explain the systematic errors mentioned above. But we have learned a lot from her 
experiments and we will be able to build on her results for subsequent future studies. 

Validation of the CCD observation technique by GNSS and laser satellites. Multiple-year time series of 
optical position (direction) observations to satellites (fast moving objects) could be validated using orbits 
determined by microwave GPS and SLR observations. All optical CCD observations (CCD = charge-coupled 
device = semiconductor sensors of digital cameras) have been collected at the Zimmerwald observatory. 
Three results are worth to be mentioned: (a) The accuracy of optical observations estimated elsewhere to be 
about 0.2 arc seconds could be confirmed independently; (b) systematic errors occasionally showing up in the 
registration of the observation epoch could be confirmed and identified (and even corrected to a large extent); 
(c) a systematic declination-dependent error could be attributed to one of the star catalogues used for the 
derivation of the star and object positions. (b) led to a proposal for a routine calibration of CCD images. 

Investigations about the combination of various observation techniques (especially GNSS and SLR): 
Mrs. Flohrer proved that SLR is capable to significantly contribute to the orbit determination of GNSS 
satellites provided there are sufficient SLR observations available. 

The SGC is grateful to the Swiss Academy of Sciences (scnat) for covering the printing costs of this volume. 
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Director Observatory Zimmerwald ETH Zürich  
University of Bern  President of SGC 
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1. Introduction and Motivation

Global Navigation Satellite Systems (GNSS) provide positioning and timing on a global scale.
For a broad range of scientific and commercial applications the GNSS observation technique is
preferentially used because of its weather independency, its global coverage, and its availability
at any time.

GNSS have been build up since the 1960’s. Currently, the best-known constellation is the
Global Positioning System (GPS), which has been deployed by the U.S. Department of Defence
since the late 1970’s. Today, the GPS constellation consists of more than 30 satellites. It
is the only fully operational GNSS. The Russian counterpart GLObal’naya NAvigatsionnaya
Sputnikovaya Sistema (GLONASS) has been developed in the 1980’s and is expected to reach
full orbit constellation and full availability in 2010. The European Union together with the
European Space Agency is building-up the navigation satellite system Galileo, which will be
the first GNSS under civil control. The first Galileo test-bed satellite has been launched in 2007,
a second one will follow in 2008. China plans to implement an independent GNSS, the Compass
Navigation Satellite System (CNSS).

During the last decades GNSS have become indispensable in satellite geodesy. Satellite geo-
detic techniques are used to determine the Earth’s shape, to observe the Earth’s gravity field, and
to monitor the Earth’s rotational motion. Together with the other space-geodetic techniques, i.e.,
Very Long Baseline Interferometry (VLBI), Satellite and Lunar Laser Ranging (SLR/LLR), and
Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), the GNSS tech-
nique contributes to the determination and maintenance of a global terrestrial reference frame
under the auspices of the International Earth Rotation and Reference Systems Service (IERS).
The main objective of the IERS is to provide the astronomical, geodetic and geophysical com-
munities with the International Celestial Reference System (ICRS) and its realization the In-
ternational Celestial Reference Frame (ICRF), with the International Terrestrial Reference Sys-
tem (ITRS) and its realization the International Terrestrial Reference Frame (ITRF), and with
Earth orientation parameters as transformation parameters between the ICRF and the ITRF
(McCarthy and Petit, 2004).

These well-defined reference frames are the basis for precise positioning used in scientific ap-
plications, e.g., for the detection of geophysical signals down to the millimeter level, or mil-
limeter/year level. Such strong requirements on absolute position and velocity accuracy may
only be met if the available orbits of the GNSS satellites are highly accurate. Orbits of GPS
satellites are routinely computed by different analysis centers of the International GNSS Ser-
vice (IGS), and are known to be consistent at the1 − 2 cm level. Using the microwave-based
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1 Introduction and Motivation

technique GNSS alone does not, however, allow it to assess the“true” orbit accuracy. If there
are any systematic biases in the GNSS orbits due to, e.g., modeling errors, they will affect the
estimated positions and velocities of the site coordinates. As such, technique-specific biases
may become indistinguishable from geophysical signals.

Only the comparison of the GNSS observation technique with other techniques allows it to
assess the absolute accuracy of GNSS orbits and to reveal possible technique-specific systematic
biases. The GNSS satellites are well suited for such comparison studies as they are observable
by different satellite-geodetic techniques, namely by GNSS microwave observations, SLR, and
optical astrometry. The mutual validation of these three observation techniques using GNSS
satellites is subject of this work. The results are used to improve the modeling of GNSS satellite
orbits.

Chapter 2 introduces the observation models used in satellite geodesy. The focus is on modeling
the orbits of artificial Earth satellites. We shortly review the principles of orbit determination.
The force model used to account for the different forces acting on a satellite is presented. The
definitions of the terrestrial and the celestial reference system, and of the Earth orientation
parameters (necessary to transform between both systems) are outlined. Furthermore, we briefly
review the method of least squares used for parameter estimation, and the observation equations
for the three different techniques relevant in our context: GNSS microwave observations, SLR,
and optical astrometry.

Chapter 3 is dedicated to the GNSS satellites. First, we discuss the characteristics of the ex-
isting and future Global Navigation Satellite Systems. Then, each of the three observation
techniques is discussed in detail concerning its capability of determining GNSS satellite posi-
tions. The technique-specific error sources, which have to be treated with in the data analysis,
are addressed.

Chapter 4 contains the key elements of our work, namely the mutual validation of the three
satellite-geodetic techniques. We validate the astrometric observation technique by compar-
ing optical observations of GNSS or Laser satellites with satellite positions derived from the
microwave- or SLR-based orbits. The optical observations were acquired at the observatory in
Zimmerwald of the Astronomical Institute of the University of Bern (AIUB). The validation
method allows the calibration of the optical observation system and accordingly the assessment
of the accuracy of astrometric observations for GNSS and Laser satellites. We then validate
GNSS orbits based on microwave-phase observations by using SLR range measurements. SLR
data are obtained through the International Laser Ranging Service (ILRS). The analysis of the
resulting residuals allows the assessment of the GNSS orbit accuracy mainly in radial direction,
as well as the detection of systematic errors in the GNSS and SLR observation technique.

Chapter 5 looks for potential improvements of the GNSS orbit models, based on the validation
results of Chapter 4. The impact of different solar radiation pressure models on GNSS orbits is
studied in particular.

Chapter 6 addresses the aspects of combining the observations of different techniques. GNSS
satellites can be used for linking the observation techniques in space. If the location of the
technique-specific sensors at the satellite are precisely known the observations from different

2



techniques can be combined for the determination of orbit parameters. Assuming that individual
technique-specific modeling problems are solved beforehand, technique-independent parame-
ters (as, e.g, the orbit parameters) benefit from the combination, i.e., from the strengths of each
observations technique. Results of combined analyses of GNSS microwave and SLR data for
GNSS orbit determination are presented in this chapter.

The last Chapter 7 summarizes the results, draws conclusions, and recommends further investi-
gations.

Our work is a contribution to a central goal in space geodesy: the comparison and combination
of the major space-geodetic techniques in order to improve the consistency of the geodetic
products, to ensure long-term reliability and to contribute to a better understanding of (global)
geophysical processes.
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2. Modeling the Observables in
Satellite Geodesy

In Sect. 2.1 we review the orbit models relevant for our work. Section 2.2 describes the models
related to stations, which are the observing sites or receiving antennas on the Earth’s surface. To
specify the positions of objects in space or on the Earth, reference systems are needed. Both, the
celestial and terrestrial reference systems, as well as the transformation parameters to connect
the systems are discussed in Sect. 2.3. Finally, Sect. 2.4 briefly reviews the method of least
squares used for parameter estimation and the observation equations for the three techniques
relevant for this work.

2.1 The Dynamic Orbit Model for Artificial Satellites

According to Newton’s law of gravitation, the acceleration of a satellite of negligible mass,
compared to the massM of the Earth, is given as a first approximation by

r̈ = −GM
r2

r

r
(2.1)

where r̈ . . . Geocentric acceleration vector of the satellite
G . . . Newtonian gravitational constant
M . . . Total mass of the Earth
r . . . Geocentric position vector of the satellite
r = |r| . . . Distance Earth-satellite.

Equation (2.1) describes the motion of a satellite in the gravity field of one central body - the
Earth, which is assumed to be spherically symmetric. The differential equation (2.1) charac-
terizes the unperturbed two-body problem. The magnitude of the acceleration is proportional
to 1/r2, the inverse of the squared distance from the satellite to the Earth’s center of mass. The
gravitational coefficientGM (including the mass of the Earth’s atmosphere) may be determined
by using SLR observations of artificial Earth satellites (Ries et al., 1989). The value ofGM
may slightly differ for different Earth gravity models.

The equations of motion (a generalization of Eq. (2.1)) together with initial conditions, as, e.g.,
the orbital elements, uniquely specify the orbit of a satellite. The orbital elements will be in-
troduced in the following section. The equations of motion for an artificial Earth satellite are
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presented in Sect. 2.1.2. We will see that Eq. (2.1) has to be expanded to take into account per-
turbing forces acting on the satellite, due to, e.g., the non-sphericity of the Earth’s gravitational
potential. A more detailed description may be found, e.g., in (Beutler, 2005). The perturbing
forces acting on an Earth satellite are discussed in Sect. 2.1.3. In Sect. 2.1.4, the variational
equations are presented, which allow to solve for parameters characterizing the satellite’s orbit.

2.1.1 Orbital Elements

The values of the Cartesian components of the satellite’s position and velocity vector,r andṙ,
fully define a particular Keplerian (unperturbed) orbit, referring to a particular epocht. There-
fore, a set of orbital elements consists always of six parameters, although there are multiple
ways of parameterizing an orbit.

We use the following set of orbital elements and call them Keplerian elements

a . . . Semi-major axis
e . . . Eccentricity
i . . . Inclination with respect to the equatorial plane
Ω . . . Right ascension of the ascending node
ω . . . Argument of perigee
T0 . . . Perigee passing time.

Instead ofT0 we useu0, the argument of latitude of the satellite at the initial time of arct0.

The first two elements,a ande, define the size and the shape of the orbit (e.g., ellipse). The
argument of perigeeω defines the orientation of the orbit in the orbital plane. The orientation

Figure 2.1: Orbital elementsi,Ω, ω
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of the orbital plane in the inertial system is given by the anglesi andΩ. Figure 2.1 shows the
three orbital elements,i,Ω, andω, which are known as the Eulerian angles.

The Keplerian elements can be easily transformed into the satellite’s position and velocity vec-
torsr andṙ (and vice-versa), which are also referred to as state vectors of the orbital motion at
epocht

{r(t), ṙ(t)} ↔ {a, e, i,Ω, ω, u0} . (2.2)

In an unperturbed two-body problem, the Keplerian elements parameterize a conic section type
of orbit (i.e., an ellipse for artificial Earth satellites). The orbit of an Earth satellite is, however,
subject to perturbing forces, which makes the actual orbit differ from the Keplerian orbit. The
perturbed trajectory may be represented as a sequence of instantaneous Keplerian orbits, that
are always tangential to the real trajectory. The set of orbital elements assigned to the satellite’s
state vector at each epocht is called the set of osculating elements

{r(t), ṙ(t)} ↔ {a(t), e(t), i(t),Ω(t), ω(t), u0(t)} , (2.3)

wheret is the osculation epoch.

2.1.2 Equations of Motion of an Artificial Earth Satellite

The equations of motion of an artificial satellite orbiting the Earth may be written in a geocentric
quasi-inertial system as

r̈ = −GM r

r3
+ a(t; r, ṙ, d1, d2, ..., dm) (2.4)

where r̈ . . . Geocentric acceleration vector of the satellite
G . . . Newtonian gravitational constant
M . . . Total mass of the Earth
a . . . Perturbing acceleration
r . . . Geocentric position vector of the satellite
ṙ . . . Geocentric velocity vector of the satellite
dj . . . Dynamical parameters,j = 1 . . .m .

The first term represents the central gravity term, whereas vectora includes the sum of all
perturbing accelerations acting on an artificial Earth satellite. A particular solution of the second
order differential equation system (2.4) is given by adding, e.g., initial conditions at timet0

r(t0) = r0
.
= r(a, e, i,Ω, ω, u0; t0)

ṙ(t0) = ṙ0
.
= ṙ(a, e, i,Ω, ω, u0; t0) . (2.5)

A set of osculating elementsa, e, i,Ω, ω, andu0 and a set of dynamical parametersdj, char-
acterizing the force field, define a particular solution of the equations of motion (2.4). The
differential equation system can be solved by using numerical integration algorithms. Approxi-
mate valuesa0, e0, i0,Ω0, ω0, u00 anddj0 allow the computation of an a priori orbit, which may
serve as a reference orbit for the orbit improvement.
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2 Modeling the Observables in Satellite Geodesy

2.1.3 Perturbing Forces Acting on a Satellite

An artificial Earth satellite experiences a number of accelerations caused by the gravitational at-
traction by celestial bodies but also by non-gravitational forces. Some of the accelerations might
be negligible considering the achievable orbit accuracy, which also depends on the measurement
accuracy of the satellite’s position. The most important perturbations are caused by the actual
(and time varying) Earth’s figure and mass distribution, the gravitational attractions from Moon
and Sun, the Earth’s tidal potential, and the direct solar radiation pressure, depending on the area
to mass ratio of the spacecraft. The perturbing acceleration caused by atmospheric drag has to
be considered for Low Earth Orbiters (LEOs). In the following the different kinds of perturbing
forces are presented. The section concludes with a summary of the various accelerations acting
on a satellite, including their orders of magnitude.

Gravitational Forces

The gravitational acceleration acting on an artificial Earth satellite due to the Earth, Moon, Sun,
and planets is given by the equations of motion. Assuming Moon, Sun and planets being point
masses, the equation of motion of a satellite in the inertial system reads as (see, e.g., Beutler,
2005)

ẍ = −GM
∫
Ve

ρpr

x− xp

|x− xp|3
dVe −G

n∑
j=1

mj
x− xj

|x− xj|3
+

∑
ang (2.6)

where ẍ . . . Acceleration vector of the satellite in the inertial system
x . . . Position vector of the satellite in the inertial system
xe . . . Position vector of the Earth’s center of mass in the inertial system
xj . . . Position vector of the point massj in the inertial system
xp . . . Position vector of a particular volume element of the Earth in the inertial system
Ve . . . Volume of the Earth
ρpr . . . Relative density function (i.e., density in units of the Earth’s mass)
mj . . . Mass of the point massj (e.g., Moon, Sun, planets)
ang . . . Non-gravitational accelerations .

Equation (2.6) refers to the inertial system, in which the Earth is also subject to an acceleration
caused by the Moon and planets

ẍe = −G
n∑

j=1

mj
xe − xj

|xe − xj|3
. (2.7)

Subtracting Eq. (2.7) from Eq. (2.6) leads to the equations of motion of the satellite in the geo-
centric system, also referred to as quasi-inertial system, as its axes are parallel to the axes of the
inertial system

r̈ = ẍ− ẍe = −GM
∫
Ve

ρpr

r − rp

|r − rp|3
dVe −G

n∑
j=1

mj

(
r − rj

|r − rj|3
+

rj

rj
3

)
+

∑
ang (2.8)

8



2.1 The Dynamic Orbit Model for Artificial Satellites

where r . . . Geocentric position vector of the satellite,r = x− xe

rj . . . Geocentric position vector of the point massj, rj = xj − xe

rp . . . Geocentric position vector of a volume element of the Earth,rp = xp − xe .

The first term in the equation of motion (2.8) describes the gravitational acceleration acting on
an artificial Earth satellite due to the Earths gravity potential. The second term includes the
(tidal) accelerations caused by point masses (as, e.g., Moon, Sun, and planets), whereas the
third term represents the sum of all remaining accelerations due to non-gravitational forces.

Assuming a spherically symmetric Earth, the first part of the Eq. (2.8) becomes

r̈ = −GM r

r3
(2.9)

representing the gravity field of a spherically symmetric Earth. This term is also called the
Earth’s monopole, and it is the largest acceleration influencing the satellite’s motion. This ac-
celeration is the quantity to which the various perturbing accelerations have to be compared, in
order to study how much they perturb the actual orbit with respect to an unperturbed Keplerian
orbit.

The most important perturbing force acting on a satellite is caused by the non-spherical part of
theEarth’s gravity potential , due to the non-spherical mass distribution within the Earth. Usu-
ally the gravity potential of the Earth (geopotential)V is represented by a spherical harmonic
expansion

V (r, λ, φ) =
GM

r

∞∑
n=0

Rn

rn

n∑
m=0

Pnm(sinφ){Cnm cos(mλ) + Snm sin(mλ)} (2.10)

where λ, φ . . . Geocentric longitude and latitude of the satellite
R . . . Mean equatorial radius of the Earth
n,m . . . Degree and order of the geopotential term
Pnm . . . Associated Legendre function of degreen and orderm
Cnm, Snm . . . Geopotential coefficients of degreen and orderm .

The coefficientsCnm andSnm are functions of the Earth’s internal mass distribution. We distin-
guish between zonal (m = 0), sectorial (m = n), and tesseral (0 < m < n) coefficients. Note
thatSn0

.
= 0. The termsCn0 are also referred to as

Jn = −Cn0 . (2.11)

For a spherically symmetric Earth the gravitational potential would neither depend on longitude
nor on latitude (n = m = 0). With C00 = 1 the first term in the geopotential expansion
corresponds to the two-body potentialV = GM/r. The first order termsC10, C11, andS11 are
zero, if the origin of the coordinate system is the center of mass.

The perturbing acceleration caused by the Earth’s gravity potential can be written as the gradient
of the gravity potential

a = ∇V . (2.12)
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2 Modeling the Observables in Satellite Geodesy

TheEarth’s oblateness, represented by the zonal termC20 (or−J2), is the largest contribution
to the perturbing accelerations. This term causes, e.g., the precession of the nodal line of the
satellite orbit.

As the internal mass distribution of the Earth is not known, the coefficients of the Earth’s gravity
field cannot be calculated directly, they rather have to be determined from, e.g., the perturbations
seen in the orbits of so-called Low Earth Satellites (LEOs), or from surface gravity data, or from
altimetry, which measures the height of a satellite above the sea surface level. Most of the global
gravity field models combine the data derived from LEO tracking, terrestrial gravimetry, and
altimetry.

The gravitational attraction of Moon and Sun do affect the satellite’s motion, but also the gravity
potential of the Earth. The periodic deformations of the solid Earth caused by Moon and Sun
are calledsolid Earth tides. The oceans’ response to lunisolar tidal perturbations is known as
ocean tides. The Earth’s gravity potential exhibits small periodic variations, due to solid Earth
tides and ocean tides, which in turn influence the satellite’s motion. The changes of the geopo-
tential may be modeled as time-dependent variations of the geopotential coefficientsCnm, Snm

(McCarthy and Petit, 2004).

Non-Gravitational Forces

Non-gravitational forces arise from the interaction of the spacecraft with particles (e.g. airdrag)
and electromagnetic radiation emitted by the Sun and reflected by the Earth. The corresponding
perturbing accelerations depend on the satellites area-to-mass ratio, where the area corresponds
to the cross-section of the satellite normal to the line Sun-satellite (for the direct solar radiation
pressure).

Solar radiation pressure The primary source of radiation affecting the satellite’s orbit
is the Sun. The solar radiation pressure (SRP) acting on an artificial Earth satellite can be
characterized by the pressure

P� =
S

c
(2.13)

where S . . . Solar constant
c . . . Speed of light .

The value of the solar constant is

S = 1367
Watt
m2

(2.14)

(McCarthy, 1996), which corresponds to the total amount of radiated flux from the Sun on a
square meter area, measured on the outer surface of Earth’s atmosphere in a plane perpendicular
to the rays at the mean Sun to Earth distanceae. The mean distanceae is the Astronomical Unit

ae = 149, 597, 870.691 km (2.15)

10



2.1 The Dynamic Orbit Model for Artificial Satellites

(Standish, 1998). As the Sun to Earth distance varies during the year between147 · 106 km
and152 · 106 km, due to the eccentricity of the Earth’s orbit (e ≈ 0.016), the incoming solar
radiation shows annual variations of about±3.3%, since the solar flux decreases with the square
of the distance to the Sun (Montenbruck and Gill, 2000). To account for this effect, the SRP has
to be scaled by ae

2

|r−r�|2 , where|r−r�| is the instantaneous distance between satellite and Sun.

The impact of SRP on the satellite depends also on the satellite’s area-to-mass ratioA
m

, whereA
is the cross-section of the satellite normal to the direction satellite-Sun. Let us now assume a flat
satellite with surfaceA′, whose normal is inclined by an angle ofθ to the direction satellite-Sun.

Depending on the optical properties of the surface, the incoming solar radiation is partly ab-
sorbed, specularly and diffusely reflected. We denote the absorbed fraction of the incoming
radiation withα, the specularly and diffusely reflected fractions withρ andδ, respectively. The
fractions are also referred to as absorbtion, reflection, and diffusion coefficients and they are
related by

α+ ρ+ δ = 1. (2.16)

For each surface component of the satellite three acceleration componentsaα, aρ, andaδ can
be identified, the components due to the absorbed, specularly reflected, and diffusely reflected
part of the incoming solar radiation. For a flat surface one obtains

aα = αC e� (2.17)

aρ = ρC 2 cos θ en (2.18)

aδ = δ C(e� +
2

3
en) (2.19)

with

C = − ae
2

|r − r�|2
P� cos θ

A′

m
= − ae

2

|r − r�|2
P�

A

m
(2.20)

where e� . . . Unit vector pointing from the satellite to the Sun
en . . . Unit vector perpendicular to the satellite’s surface
α . . . Absorbtion coefficient
ρ . . . Reflection coefficient (specularly reflected fraction)
δ . . . Diffusion coefficient (diffusely reflected fraction)
θ . . . Angle between the incident radiatione� and the normal to the surfaceen

ae . . . Astronomical unit
r . . . Geocentric position vector of the satellite
r� . . . Geocentric position vector of the Sun
P� . . . Solar radiation pressure
A′ . . . Satellite surface element
m . . . Satellite mass .

The resulting perturbing acceleration caused by solar radiation for a flat surfaceA′ is the sum
of the three acceleration componentsaf = aα + aρ + aδ and reads as

af = C

[
(α+ δ)e� +

(
2ρ cos θ +

2

3
δ

)
en

]
. (2.21)
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2 Modeling the Observables in Satellite Geodesy

For a cylindric surface, withA′ being the cross-section area presented to an observer whose
line of sight is perpendicular to the axis of the cylinder, the acceleration can be derived with the
expression

ac = C

[
(α+ δ)e� +

(
4

3
ρ cos θ +

π

6
δ

)
en

]
. (2.22)

For a spherical surface the resulting acceleration depends only on the diffusion coefficient

as = C

(
1 +

4

9
δ

)
e�. (2.23)

The optical surface properties of a spacecraft are also often described by two optical parame-
tersυ andµ. The reflectivityυ, ranging between 0 (black) and 1 (white), is the fraction of the
incoming light that is reflected. The specularityµ, ranging between 0 (diffuse) and 1 (specular),
denotes the fraction of the reflected light that is specularly reflected. The following relations
hold

υ = ρ+ δ, µ =
ρ

ρ+ δ
. (2.24)

The surface of Earth orbiting satellites may consist of surface elements with different optical
properties. For each surface element a corresponding acceleration vector may be calculated.
The sum of the individual vector accelerations gives the total perturbing acceleration acting
on the satellite. The knowledge of the instantaneous attitude of the satellite (see Sect. 3.1.2) is
necessary for accurate radiation pressure modeling (except for spherically symmetric satellites).

Eclipsing periods, i.e., periods when the satellite passes the shadow cast by the Earth (or the
Moon), have to be considered for modeling the impact of SRP on the satellite. We may ac-
count for this shadow effect by using an eclipse factor for scaling the resulting acceleration in
Eqs. (2.21, 2.22, 2.23) (see Sect. 3.1.2).

Earth albedo radiation pressure Incident solar radiation is reradiated by the Earth and/or
its atmosphere and may produce a perturbing acceleration on a satellite. This effect is referred
to as Earth albedo radiation pressure (EAP). The resulting perturbing acceleration on a satellite
is difficult to model, as it varies significantly due to the Earth’s changing surface characteristics
and the cloud coverage. In a simple model approach (see, e.g., (Beutler et al., 1994)) a spherical
Earth is assumed, divided inton × m surface elements with the same surface areads. Only
the diffuse reradiation, derived from Lambert’s law, which is emitted by each surface element
of the Earth, is considered. The energy reradiated by a surface element is proportional to the
surface areads and the Sun’s zenith anglez� with respect to the surface element. The perturbing
acceleration caused by a surface element of areads that is acting on a flat satellite surface of
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2.1 The Dynamic Orbit Model for Artificial Satellites

areaA′ may be written in an analogous way as to the equations developed for the solar radiation
pressure (Eqs. (2.21, 2.22, 2.23)). For a flat, cylindrical or spherical surface we have

af = B

[
(α+ δ)es +

(
2ρ cosφ+

2

3
δ

)
en

]
(2.25)

ac = B

[
(α+ δ)es +

(
4

3
ρ cosφ+

π

6
δ

)
en

]
(2.26)

as = B

(
1 +

4

9
δ

)
es (2.27)

with

B = − ae
2

|r − r�|2
P� cosφ

A′

m
k(ds) cos zs cos z� ds (2.28)

where ae . . . Astronomical unit
r . . . Geocentric position vector of the satellite
r� . . . Geocentric position vector of the Sun
P� . . . Solar radiation pressure
A′ . . . Satellite surface element
m . . . Satellite mass
ds . . . Area of the Earth surface element
k(ds) . . . Albedo radiation of the surface element
z� . . . Zenith distance of the Sun with respect to the surface element
zs . . . Zenith distance of the satellite with respect to the surface element
es . . . Unit vector pointing from the satellite to the surface element
en . . . Unit vector perpendicular to the satellite’s surfaceA′

φ . . . Angle between incident radiationes and normal to the satellite’s
surfaceen .

As opposed to Eqs. (2.21, 2.22, 2.23) the factorB instead ofC is used and the direction of the
incident radiation acting on the satellite’s surface is no longer stemming directly from the Sun
but from the surface element of the Earth. Thus, the angleφ between the incident radiation and
the surface normal, is the angle betweenes (unit vector pointing from the satellite to the Earth
surface element) anden (normal of satellite’s surface). A simple approximation for the albedo
radiationk(ds) is a constant value for all surface elementsds of the Earth

k(ds) = k = 0.3 = const. (2.29)

The total acceleration due to EAP is obtained as the sum of the EAPs over all surface elements
of the Earth, which are illuminated by the Sun and which are in the field of view of the satellite.

As the acceleration caused by EAP is much smaller than the one caused by SRP, perturbations
due to EAP are often ignored. Although the EAP effect on a GNSS satellite is less than1%
of the perturbing acceleration caused by SRP, it may have to be considered for precise orbit
determination.
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2 Modeling the Observables in Satellite Geodesy

Thermal reradiation Most of the solar energy absorbed by the satellite is reradiated as
heat by the same surface having absorbed the radiation. The accelerations acting on a satellite
orbit due to thermal reradiation (TRR) is much larger for the spacecraft body than for the solar
panel arrays. The solar panels are thin and the back and front surface temperatures are nearly
the same. Thus, the resulting TRR force from the solar panels nearly cancels out and is only
about1% of the total SRP force acting on the satellite. The TRR force from the spacecrafts
body is around3.9% of the SRP force for Block I, and around5% for Block II/IIA satellites
and Block IIR satellites (Fliegel et al., 1992), but it may reach up to10% due to the blackened
multi-layered insulation covering most of the satellite bus (Ziebart et al., 2005).

According to Fliegel et al. (1992), the absorbed and reradiated energy of the spacecraft body
is proportional to(1 − υ) (assuming that there is no thermal conduction). We may account for
thermal reradiation by adapting the reflectivity and specularity coefficientsυ → υ̃ andµ→ µ̃
with

υ̃ = 1, µ̃ = µυ, (2.30)

or by adapting the absorbtion, reflection and diffusion coefficients correspondinglyα→ α̃,
ρ→ ρ̃, andδ → δ̃ with

α̃ = 0, ρ̃ = ρ, δ̃ = 1− ρ (2.31)

in Eqs. (2.21, 2.22, 2.23).

Atmospheric Drag Perturbing accelerations caused by atmospheric drag, i.e., the interac-
tion of the spacecraft with particles of the atmosphere, depend on the atmospheric density at the
satellite height. Atmospheric drag is negligible for the high orbiting GNSS satellites. For LEOs,
atmospheric drag becomes, however, the most important non-gravitational force influencing the
satellite’s motion. A detailed discussion may be found in (Montenbruck and Gill, 2000).

General Relativistic Correction

The correction to the Newtonian equation of motion due to the theory of general relativity is
called general relativistic correction. As the differences between the relativistic and the New-
tonian motion of an artificial satellite are small, the relativistic correction to the acceleration of
an artificial Earth satellite due to the main relativistic effects described by the Schwarzschild
field of the Earth may be approximated by the simple formula (McCarthy and Petit, 2004)

a =
GM

c2r3

{[
4
GM

r
− ṙ2

]
r + 4(r · ṙ)ṙ

}
. (2.32)

It is based on the parameterized post-Newtonian (PPN) approximation of the correct general-
relativistic formulations of the equations of motion and on the assumption of a spherically sym-
metric Earth. The perturbing force lies in the instantaneous orbital plane and generates, among
others, a small rotation of the satellite’s perigee. The effects of Lense-Thirring precession and
geodesic (de Sitter) precession have been neglected here, as the impact of those effects on GNSS
satellite orbits is one or two orders of magnitude smaller than that of the Schwarzschild term.
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2.1 The Dynamic Orbit Model for Artificial Satellites

Summary of Perturbing Forces

Table 2.1 shows the order of magnitude of accelerations caused by the perturbing forces for
GNSS satellites. The values have been computed for GPS satellites, orbiting the Earth at about
20 200 km altitude, by Beutler (2005). The accelerations are given in decreasing order. In
addition, the impact on the satellite’s orbit after one day is shown.

Perturbing force Acceleration Orbit error after one day
(m/s2) (m)

Earth’s monopole 0.57 330 000 000
Earth’s oblateness 5.1 · 10−5 35 500
Lunar attraction 4.5 · 10−6 1 800
Solar attraction 2.0 · 10−6 1 300
Geopotential harmonics (higher terms) 4.2 · 10−7 450
Direct solar radiation pressure 9.7 · 10−8 200
Y-bias 1.0 · 10−9 8
Solid Earth tides 5.0 · 10−9 0.4

Table 2.1: Accelerations acting on GPS satellites due to perturbing forces

The dominant perturbation for GNSS satellites is due to the Earth’s oblateness (C20-term), fol-
lowed by the gravitational attraction by Moon and Sun and the higher terms of the Earth’s
gravity field. Accelerations due to the direct solar radiation pressure are of considerable size
causing orbit errors at the level of100−200 meters after one day. Although the Y-bias (acceler-
ation along the solar panel axis due to solar radiation pressure, see Sect. 3.1.2) is much smaller,
it has to be considered for precise orbit determination, as well as accelerations due to solid Earth
tides and general relativistic effects. Accelerations due to thermal reradiation and Earth albedo
may cause orbit errors at the decimeter level after one day, whereas accelerations caused by the
gravitational attraction of planets and ocean tides may cause orbit errors at the centimeter level.

2.1.4 Variational Equations

Within the scope of this work, orbit determination actually means orbit improvement of a
known a priori orbitr0(t). The positions of Earth, Sun, Moon, and planets are assumed to
be known (e.g., from the Jet Propulsion Laboratory (JPL) ephemerides). Currently the Devel-
opment Ephemerides DE200 (Standish, 1990) and the latest version DE405 (Standish, 1998)
are widely used. They are necessary for the computation of the satellite’s motion, in order to
model tidal deformations of the Earth and third body effects, when computing the gravitational
attraction acting on a satellite. In addition, some of the dynamical parametersdj describing
the force field are known a priori with high accuracy (e.g., gravity field coefficients), but others
have to be determined.

For each orbit determination process, at least six initial conditions have to be determined, i.e.,
the satellite position and velocity vectorsr andṙ, or the orbital elementsa , e , i , Ω , ω , andu0.
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2 Modeling the Observables in Satellite Geodesy

In additionm dynamical parameters may be taken into account. This leads to a total number
of n = 6 +m parameterspi (i = 1, . . . , n) defined by, e.g.,

{p1, p2, . . . , pn} = {r, ṙ, d1, d2, . . . , dm} (2.33)

or by
{p1, p2, . . . , pn} = {a, e, i,Ω, ω, u0, d1, d2, . . . , dm} . (2.34)

As the geocentric position vector of the satellite is a non-linear function of the orbital ele-
mentsa, e, i,Ω, ω, u0 and the dynamical parametersdj, the unknown satellite positionr(t) has
to be linearized, in order to solve for the orbit parameters using least squares algorithms. The
satellite position vector can be written as a linear function of the unknown parameterspi, by
developing it into a Taylor series truncated after the first-order terms

r(t) = r0(t) +
n∑

i=1

zpi
(pi − pi0) (2.35)

where

zpi
(t) =

∂r0(t)

∂pi

(2.36)

denotes the partial derivatives of the known a priori orbitr0(t) with respect to the orbit parame-
terspi ∈ {p1, p2, . . . , pn}.
To obtain the partial derivativeszpi

, the total derivative of the equation of motion ( 2.4) with
respect to the unknown orbit parameters has to be computed. The equations of motion are also
called the primary equations in this context. They may be written also as

r̈ = f(t; r, ṙ, d1, d2, ..., dm) = f(t; p1, p2, . . . , pn) . (2.37)

They yield to the following differential equation system for each unknown parameterpi

z̈pi
= A0

∂r0(t)

∂pi

+ A1
∂ṙ0(t)

∂pi

+
∂f

∂pi

. (2.38)

Using the3× 3 matricesA0 andA1 with the elementsi, k

A0ik
=

∂fi

∂r0k
(t)

i, k = 1, 2, 3 (2.39)

A1ik
=

∂fi

∂ṙ0k
(t)

i, k = 1, 2, 3 (2.40)

the Eq. (2.38) may be simplified to

z̈pi
= A0zpi

+ A1żpi
+
∂f

∂pi

. (2.41)
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2.2 Station Coordinates

The differential equations (2.41) are called the variational equations. The corresponding initial
conditions of the variational equations,zpi

(t0) and żpi
(t0), are obtained by taking the partial

derivatives of the initial conditions (Eq. (2.5)) of the primary equations

zpi
(t0) =

∂r0(t0)

∂pi

and żpi
(t0) =

∂ṙ0(t0)

∂pi

. (2.42)

The variational equations are a system of linear differential equations of second order and of
dimension three. For parameterspi (i ≤ 6) the system is even homogeneous, as the partial
derivative of the force field with respect to the initial conditions is a zero vector

∂f

∂pi

= 0 for i ≤ 6 . (2.43)

Forpi (i > 6) the opposite holds

∂f

∂pi

6= 0 for i > 6 , (2.44)

but the initial conditions do not depend on the force field

zpi
(t0) = ż(t0) = 0 for i > 6 . (2.45)

The homogenous part of the variational equations(A0zpi
+ A1żpi

) is common to all parame-
terspi.

This means in summary that for each orbit improvement step one system of the non-linear
primary equations (2.4, 2.5), and one system of the linear variational equations (2.41, 2.42)
have to be solved for each parameterpi, in order to obtain the partial derivativezpi

of the
orbit positionr(t) with respect to the parameterpi. Due to the linearization of the orbit (see
Eq. (2.35)) orbit improvement is in principle an iterative process, where the orbit parameters
estimated in one step have to be used as new a priori values for the next orbit improvement step.

2.2 Station Coordinates

Station positions on the Earth’s surface are changing over time with respect to an Earth-fixed ref-
erence system (or a Tisserand system in the case of deformable bodies) due to various reasons.
Plate motions cause station drifts up to several centimeters per year. This effect is accounted
for by assigning velocities to each station. Tidal forces due to Moon and Sun deform the Earth
and are responsible for solid Earth tides and ocean tides. Site displacements caused by solid
Earth tides may reach amplitudes up to40 cm and should be modeled when estimating sta-
tion positions (McCarthy and Petit, 2004). They also produce (as already mentioned) temporal
variations of the Earth’s gravity field.
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In addition, ocean tides induce temporal variations of the ocean mass distribution. The asso-
ciated periodic deformation of the Earth’s crust is known as ocean tide loading. Vertical site
displacements due to ocean tide loading may reach values of several centimeters for coastal
sites (Baker et al., 1995). In geodetic analysis, ocean tide loading models are used to account
for these displacements.

Deformations of the Earth may be also induced by other than tidal loading effects, e.g., by
atmospheric pressure loading. Atmospheric pressure loading is caused by the redistribution
of air masses due to atmospheric circulation. The associated vertical crust displacements may
reach up to20 mm (Van Dam and Wahr, 1987). Thus, atmospheric pressure loading should also
be accounted for in high precision geodetic analysis.

Due to the fact that the Earth is not rigid and has fluid components, there is a relative motion
between the Earth’s center of mass and a network of observing sites. This motion is often
referred to as geocenter motion.

In general, positions of geodetic reference points fixed to the Earth’s crust, which are mainly
tracking instruments or geodetic markers, are expressed in a terrestrial reference frame (see
Sect. 2.3.1). According to McCarthy and Petit (2004), the instantaneous actual position of a
point on the Earth’s surface at epocht, X(t), can be written as a sum of a regularized posi-
tion XR(t) and position corrections∆X i(t) that add various time changing effects

X(t) = XR(t) +
∑

i

∆X i(t) . (2.46)

Thus, a position with time variationsX(t) is obtained. The modeled time variations include
effects of, e.g., solid Earth tides (the full correction including the permanent tide), ocean tides,
tidal and non-tidal loading, post-glacial rebound, and geocenter motion.

The positionXR(t) at epocht is modeled as linear function of the site position at a reference
epocht0 and the site velocity

XR(t) = X0 +
∑

i

∆Ẋ(t− t0) . (2.47)

The linear motions may be derived from tectonic plate motion models.

2.3 Reference Systems

In order to define positions of objects in space or on the Earth’s surface the definition of refer-
ence systems is essential. The equations of motion for artificial Earth satellites are described in a
celestial reference system, whereas a terrestrial reference system rotating with the Earth is used
for the description of site positions. We have to distinguish between the terms reference system
and reference frame. A reference system is the set of prescriptions and conventions together
with the modeling required to define at any time a triad of axes (IERS2000). A reference frame
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is the realization of the reference system by means of either station coordinates and velocities
(for a terrestrial reference frame) or by means of coordinates of quasars or other celestial objects
(for a celestial reference frame). To relate the celestial to the terrestrial reference frame Earth
orientation parameters are required.

2.3.1 The Terrestrial Reference System

The International Terrestrial Reference System (ITRS) is a particular terrestrial reference sys-
tem. It is a right-handed orthogonal coordinate system. Its orientation is equatorial, i.e., the
z-axis is the direction of the IERS Reference Pole (IRP). The x-axis is the line of intersection
between the Earth’s equator and the IERS Reference Meridian (IRM), which is close to the
Greenwich meridian. The y-axis completes the system.

The ITRS follows these criteria (McCarthy and Petit, 2004):

• The ITRS origin is geocentric at the center of mass of the whole Earth, including at-
mosphere and oceans.

• Its unit of length is the meter (SI), defined in a geocentric local frame as governed by the
relativistic theory of gravitation.

• The orientation of its axes is consistent with that of the Bureau International de l’Heure
(BIH) System at epoch 1984.0. BIH was the forerunner of the IERS and transferred its
activities to the IERS at the start of 1988 (Boucher and Altamimi, 1996). The IRP and the
IRM are consistent with the corresponding directions in the BIH Terrestrial System (BTS)
(McCarthy, 1996).

• The time evolution of the system is ensured by using a no-net-rotation condition with
regard to horizontal tectonic motions over the whole Earth.

The ITRS is realized by the International Terrestrial Reference Frame (ITRF), formerly known
as the IERS Terrestrial Reference Frame, that was established and is maintained by the IERS.
The ITRF consists of lists of coordinates and velocities for a selected number of IERS sites (i.e.,
tracking stations or related ground markers) observed by VLBI, SLR, LLR, GPS, and DORIS.
The construction of the ITRF is based on the combination of the individual TRF solutions
provided by the combination centers of each observation technique.

The first ITRF solution was published in 1988. ITRF solutions are published by the IERS
Product Center in the“Technical Notes” (cf. (Boucher et al., 2004)).

2.3.2 The Celestial Reference Systems

An ideal celestial reference system would provide an inertial frame that could be used for all
frequencies of the electro-magnetic spectrum, and for objects of all magnitudes. However, there
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are no celestial reference sources radiating at all frequencies such that the position determined
at one frequency can be accurately related to those determined at another frequency. Thus we
have to deal with different sets of reference sources in the optical, radio, and X-ray frequencies.
In addition the dynamical range for all observing systems is limited. Therefore it is difficult to
realize a reference frame observable at all frequencies (Seidelmann, 1992).

We distinguish between stellar and extragalactic reference systems, both realizing a celestial
reference system (i.e., a reference frame), but based on different sources. The International
Celestial Reference System is based on extragalactic radio sources that are observed by VLBI.

The Extragalactic Reference System

The celestial reference system provided and maintained by the IERS is called the International
Celestial Reference System (ICRS). The ICRS origin is the barycenter of the solar system and
the directions of the axes are fixed with respect to the quasars. Its fundamental plane is defined
to coincide (as closely as possible) with the mean equator at J2000.0. The x-axis of the ICRS is
the intersection of the mean planes of the ecliptic and the equator of the dynamical equinox at
J2000.0, being the origin of right ascension.

According to McCarthy and Petit (2004), the ICRS is materialized by the International Celestial
Reference Frame (ICRF). The ICRF is a set of precise polar coordinates (right ascensionα,
declinationδ) referring to the mean equator and equinox at J2000.0 of about 600 extragalactic
radio sources determined from VLBI observations. These sources are sufficiently far away to
ignore their expected proper motions. A first ICRF was provided in 1995 by a reanalysis of the
available VLBI observations. VLBI is used for the maintenance of the primary frame, as this
technique provides the most precise directions to the quasars. Access to the ICRS is provided
by the catalog of source coordinates published in the IERS annual reports, cf. (Dick and Richter,
2001).

The celestial reference system used for satellite geodesy is not a barycentric, but a geocentric
celestial reference system (GCRS), which is also called a quasi-inertial reference system (be-
cause the origin performs an accelerated motion). The orientation of the GCRS is identical to
that of the ICRS, but its origin is shifted from the barycenter to the geocenter.

The Stellar Reference System

A stellar reference system is realized by a stellar reference frame that can be determined op-
tically. The Fifth Fundamental Catalog FK5 (Fricke et al., 1988) is a star catalog realizing a
celestial reference frame based on optical observations of stars. The FK5 catalog provides po-
sitions and proper motions of about 4600 fundamental stars and serves as a reference frame
for measurements of other stellar positions and proper motions. Its fundamental plane is the
equatorial plane referring to a particular epoch. Its origin is a meridian of zero right ascension.
The zero points of right ascension and declination, given implicitly by the star positions and
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proper motions, coincides (as closely as possible) with the mean equator and equinox referred
to a particular epoch.

FK6, the successor of FK5, includes observations provided by the Hipparcos catalog (HIP)
(Perryman and ESA, 1997) resulting from the Hipparcos mission (1989-1993). The HIP star
positions and proper motions are much more accurate than those of the FK5. In addition,
coordinates from a few extragalactic radio sources are included, providing a direct link to the
extragalactic reference system. Until now, the FK6 star catalog represents the most accurate
realization of the CRF in the optical domain.

Other star catalogs providing many more stellar positions and proper motions with different
levels of accuracies are, e.g., the Tycho catalogs Tycho and Tycho2 (also gained from the Hip-
parcos mission) with about 1 and 2 million stars, respectively, or the USNO-B1.0 catalog from
the U.S. Naval Observatory with about one million stars. These catalogs are defined within
the Hipparcos and the FK5 reference frames, respectively, but not used for reference frame
realization.

2.3.3 Earth Orientation Parameters

The ITRS is related to the ICRS as a function of time by rotation matrices between the two
systems describing the Earth’s rotation (McCarthy and Petit, 2004). In principle the Earth’s
orientation can be expressed by three independent angles, the Euler angles. However, for routine
monitoring of the Earth’s orientation five Earth orientation parameters (EOP) are used, giving
corrections to the uniform diurnal rotation and the model for precession and nutation.

The gravitational attraction of Moon, Sun, and planets exert torques on the oblate Earth, which
cause the equatorial plane to precess with respect to an inertial system. This motion is reflected
by a precession of the equatorial plane. In astronomy, the lunisolar precession, which is a long-
periodic motion of the mean pole of the equatorial plane around the pole of the ecliptic plane
with a period of about 26 000 years, is distinguished from nutation, which denotes the periodic
motion of the true pole around the mean pole. The main period at 18.6 years is due to the
precession of the lunar orbital plane around the pole of the ecliptic plane.

The EOPs refer to a fictitious axis, the Celestial Intermediate Pole (CIP) (formerly known as
Celestial Ephemeris Pole (CEP)), which is defined by the precession-nutation model and its
corrections (the celestial pole offsetsdψ, dε). The diurnal rotation of the rotating system around
the CIP is given by the Earth rotation angleθ defining the sidereal rotation of the Earth. For
common use, the IERS does not provideθ but its associated time scale UT1 (universal time)
given in mean solar time. The excess of the rotation period with respect to the mean period
is called the excess of the length of day (LOD). The CIP is referred to the polar axis of the
terrestrial reference frame by two small rotation angles (polar motion), called the polar coordi-
nates (xp, yp).

Thus the five EOPs measured by space-geodetic techniques and provided by the IERS are the
celestial pole offsets (dψ, dε), the correction to the universal time showing the variations of the
Earths angular velocity (UT1−UTC), and the polar coordinates (xp, yp). The Earth orientation
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is then obtained by inserting these parameters into the transformation matrices used to relate the
ITRS to the ICRS. According to McCarthy and Petit (2004) the following transformation has to
be applied to transform coordinates from the ITRS into the ICRS at epocht

XC = P(t)N(t)R(t)W(t)XT (2.48)

where XT . . . Vector in the ITRS
XC . . . Vector in the ICRS
P . . . Transformation matrix containing precession parameters
N . . . Transformation matrix containing nutation parameters
R . . . Transformation matrix containing the Earth rotation angle
W . . . Transformation matrix containing the polar coordinates .

In practise, the term Earth Rotation Parameters (ERP) is often used, meaning three of the EOPs
specifying the motion of the rotation axis with respect to the ITRF, which are the polar coordi-
nates (xp, yp) and the universal time (UT1-UTC) or LOD, respectively.

2.4 Parameter Estimation

For the estimation of model parameters (e.g., orbit parameters, EOP, coordinates, tropospheric
parameters, etc.) the method of least squares was used throughout this work. First we briefly
review the basic algorithms of least squares adjustment. Then the observation equations for
all three observation types – GNSS microwave, SLR, and astrometric CCD observations – are
presented.

2.4.1 Method of Least Squares

Each observation may be expressed as a function of parameters of a given mathematical model.
Based on the vectorial model functionF the system of observation equations can be formulated
in the presence of observation errors as

L + v = F (X), (2.49)

or in its linearized form as
L + v = F (X0) + Ax (2.50)

where L . . . Vector of actual observations
v . . . Vector of observation corrections (residual vector)
F (X) . . . Vector of the model function
X . . . Vector of unknown model parameters to be adjusted,X = X0 + x
X0 . . . Vector of approximate model parameters
x . . . Vector of model parameter corrections (solution vector)
A . . . First design matrix (Jacobi matrix).
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The first design matrix contains the derivatives of the functionF with respect to the model
parameters

A =
∂F (X)

∂X

∣∣∣∣
X=X0.

(2.51)

Solving the linearized observation equations (2.50) for the residual vectorv leads to the system
of correction equations

v = Ax− (L− F (X0)) = Ax− l (2.52)

wherel
.
= L− F (X0) corresponds to the term“observed-minus-computed” (O-C).

The observation errors are described by the stochastic model

P = Q−1
ll = σ0

2 C−1
ll (2.53)

where P . . . Weight matrix of observations
Qll . . . Cofactor matrix of observations
Cll . . . Covariance matrix of observations
σ0 . . . A priori standard deviation of unit weight.

If the observations are uncorrelated, the weight matrixP is a diagonal matrix with elements

Pll =
σ0

2

σl
2

(2.54)

whereσ2
l is the a priori variance of the corresponding observation.

To solve the system of correction equations (2.52) the method of least squares sets up a condition
that minimizes the sum of the squared weighted residualsvTPv. The resulting normal equation
system reads as

(ATPA)x = ATPl (2.55)

or by substitutingN = ATPA andb = ATPl as

Nx = b (2.56)

where N . . . Normal equation matrix
b . . . Right hand side of the normal equation system.

The normal equation matrixN is a quadratic and symmetric matrix. By invertingN the solution
vectorx is obtained

x = (ATPA)−1ATPl = N−1b. (2.57)

The estimated standard deviation of unit weightm0 is computed as

m0 =

√
vTPv

f
if f > 0 (2.58)
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where f = n− u . . . Degree of freedom (DOF) for the least squares adjustment
n . . . Number of observation
u . . . Number of unknowns (adjusted model parameters).

The covariance matrix of adjusted model parameters is given by

Cxx = m0
2 Qxx = m0

2 N−1 (2.59)

where Cxx . . . Covariance matrix of adjusted model parameters
Qxx . . . Cofactor matrix of adjusted model parameters.

The diagonal elements ofCxx contain the estimated standard deviations of the individual model
parameters that can be computed as

mx =
√
Cxx = m0

√
Qxx , (2.60)

whereas from the off-diagonal elements ofCxx the correlation coefficientρ between two model
parameters can be derived

ρ =
Cxy

mxmy

(2.61)

where mx . . . Standard deviation of a model parameterx
Cxx . . . Diagonal element ofCxx

Qxx . . . Diagonal element ofQxx

ρ . . . Correlation coefficient between model parametersx andy
my . . . Standard deviation of a model parametery
Cxy . . . Off-diagonal element ofCxx .

For special applications, as, e.g., data analysis over longer time spans or combination of dif-
ferent observation types, it is convenient to combine solutions on the normal equation level. If
the arraysN, b,X0, l

TPl, n, u and the associated parameter characterization for each individ-
ual normal equation system are saved, a set of normal equation systems can be subsequently
stacked as, e.g., described by Brockmann (1997). The stacked solution is comparable with the
solution that would be obtained by setting up only one big normal equation system. Correlations
in time between observations are usually unknown and thus neglected. It is generally assumed
that there are no correlations in time between parameters of consecutive days.

2.4.2 Observation Equations

GNSS Microwave Observations

We will briefly review the GNSS code and phase observation equations. For a detailed dis-
cussion we refer to the GPS literature, e.g., (Teunissen and Kleusberg, 1998) or (Hofmann-
Wellenhof et al., 1992).
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GNSS observations are based on microwave signals transmitted by the GNSS satellites and
recorded by receivers located on (or near) the Earth’s surface. The GNSS observables are
understood as ranges derived from measured time or phase differences between received signals
and receiver-generated signals. Two carrier frequencies are transmitted by the GNSS satellites.
Pseudo-random noise (PRN) codes are generated and modulated on the carriers. The satellite
clock reading at emission timeT s is transmitted via the PRN code. The difference between
the receiver clock reading at signal reception timeTr and the satellite clock reading at signal
emission timeT s corresponds to the propagation time if satellite and receiver clocks would be
synchronized. The difference between the two clock readings (Tr−T s) multiplied by the speed
of light yields the pseudorange.

As different clocks are involved, a common reference time – the GPS system time – must be
defined. This time is aligned to the coordinated universal time UTC (USNO) without taking
into account the leap seconds. The GPS time therefore corresponds in essence to the interna-
tional atomic time TAI with a constant offset of−19 s. The delays of the clocks with respect
to GPS system time are termed∆tr and ∆ts. As two clocks, the satellite and the receiver
clock, are used, the ranges are biased by satellite and receiver clock errors and thus denoted as
pseudoranges. The code observation equation reads as

P = c (Tr − T s) = ρ+ c (∆tr −∆ts) + ∆ρtrop + ∆ρion + ε (2.62)

where P . . . Code pseudorange
c . . . Speed of light
ρ . . . Range between observer attr and satellite atts, ρ = c (tr − ts)
Tr . . . Receiver clock reading at signal reception time,Tr = tr + ∆tr
T s . . . Satellite clock reading at signal transmission time,T s = ts + ∆ts

tr . . . GPS time at signal reception
ts . . . GPS time at signal transmission
∆tr . . . Receiver clock error
∆ts . . . Satellite clock error
∆ρtrop . . . Signal delay due to troposphere
∆ρion . . . Signal delay due to ionosphere
ε . . . Signal delay due to unmodeled effects.

The rangeρ corresponds to the geometric distance between the position of the satellite at signal
transmission timets and the position of the receiver’s antenna at signal reception timetr, both
epochs measured in GPS system time.

The pseudoranges are affected by systematic errors and random noise. The systematic errors can
be modeled and give rise to additional terms in the observation equation – the clock offsets∆tr,
and∆ts, and the path delays∆ρtrop and∆ρion due to tropospheric refraction and ionospheric
refraction. Remaining unmodeled effects, as observation noise and multipath effects, which
occur due to multiple reflections of the signal near the receiving antenna, are summarized in the
residual termε.

25



2 Modeling the Observables in Satellite Geodesy

Satellite and receiver specific hardware delays have to be taken into account as well. They are
not explicitly listed in Eq. (2.62) as they cannot be separated from the clock offsets. Conse-
quently the clock offsets are implicitly compensating for the hardware delays.

The geometric range termρ includes antenna phase center offsets and variations. Antenna phase
center offsets describe the difference between the antenna phase center (the point to which the
microwave measurement is referred to) and the physical antenna center.

The phase of the received carrier with respect to the phase of a carrier generated by the re-
ceiver is far more precise than the code pseudorange. The phase observation equation for an
electromagnetic wave of wavelengthλ as observed at the receiving site yields

L = λ (φr − φs +N) (2.63)

where L . . . Phase pseudorange
λ . . . Carrier wavelength
φr . . . Carrier phase of the reference signal at receiving timeTr

φs . . . Carrier phase of the transmitted signal at transmission timeT s

N . . . Initial carrier phase ambiguity expressed in integer cycles ofλ.

The receiver generates a reference signal (nominally) of the same wavelength as the satellite.
Thus, the basic phase observable is the difference between the reference phaseφr at receiving
time Tr and the phaseφs generated by the satellite at transmission timeT s multiplied by the
wavelengthλ. The initial integer number of cycles or ambiguityN between receiver and satel-
lite is unknown and must be estimated together with the other unknowns.N remains constant
as long as there is no loss of the signal lock.

In analogy to Eq. (2.62), Eq. (2.63) may be written in the following form

L = ρ+ c(∆tr −∆ts) + ∆ρtrop −∆ρion + λB + ε (2.64)

where φ . . . Phase pseudorange
B . . . Ambiguity term expressed in cycles ofλ
λ . . . Carrier wavelength.

The bias termB is a real-valued number containing the initial carrier phase ambiguityN as well
as satellite and receiver hardware delays, which cannot be separated fromN . The major dif-
ference between phase and code pseudorange are the phase ambiguities. In addition, the effect
of polarization induced phase-windup (Wu et al., 1993) is effecting carrier phase observations.
Furthermore the ionospheric correction has the opposite sign compared to the code pseudorange
(phase advance as opposed to signal delay).

In principle, one bias parameterB has to be determined per satellite pass, receiver, and fre-
quency. Discontinuities in the carrier phase observations due to a loss of signal lock, resulting
in so-called cycle-slips, have to be compensated by the set up of additional bias parametersB.
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Systematic effects can be eliminated by differencing the observables. Differencing observa-
tions to the same satellite that are acquired quasi-simultaneously by two receivers eliminates
satellite-specific biases. This receiver difference is called (station) single-difference. Differenc-
ing two single-differences, thus including the difference between two satellites – called double-
difference – eliminates satellite-specific biases. In addition linear combinations of different
frequencies may be formed at each level of differentiation in order to eliminate specific error
sources. The most frequently used linear combination is the ionosphere-free linear combina-
tion, which eliminates the ionospheric refraction term. For more information on GNSS data
combinations the reader is referred to Hofmann-Wellenhof et al. (1992).

For high-precision geodetic applications the carrier phase observables are used primarily, as the
code observations are up to three orders of magnitude less accurate than the phase observations.
Carrier phase observations exhibit a thermal noise of the receiver at the millimeter level. In
addition carrier phases are much less affected by multipath effects than code observations.

Astrometric CCD Observations

Astrometric CCD observations are optical observations based on Charge Coupled Device (CCD)
sensors. Astrometric observations provide the astrometric direction of an observed object (e.g.,
a satellite). Usually this direction is measured relative to reference stars, the coordinates of
which are available in an inertial reference frame. The observables are right ascensionα and
declinationδ describing the apparent topocentric place of an object at timet. They are defined
as follows

ρ
.
= |r(t− ρ

c
)−R(t)| (2.65)

e
.
=

r(t− ρ
c
)−R(t)

ρ
(2.66)

α = arctan
ey

ex

(2.67)

δ = arcsin ez (2.68)

where ρ . . . Distance between the observatory at time t and the satellite at
time t−∆t (slant range)

r(t− ρ
c
) . . . Geocentric position vector of the satellite at timet−∆t

.
= t− ρ

c

R(t) . . . Geocentric position vector of the observatory at timet
t . . . Observation time
c . . . Speed of light
e . . . Unit vector pointing from the observatory to the satellite in the

equatorial system
α . . . Right ascension
δ . . . Declination.

In order to derive the observables from the raw data represented by a CCD exposure several
reduction steps are necessary. The raw observations are given in a detector coordinate system.
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This system is related to the celestial sphere by transformations, which are in general described
by a model (mapping model). The model may take into account the various characteristics of
the optical system and the orientation of the detector system with respect to the optical system
and may thus become rather complex. For the estimation of the transformation parameters,
observations to neighboring objects (e.g., reference stars), which are linked to the celestial
reference frame, are used.

During the reduction process, several effects contributing to the error budget of astronomical
observations have to be considered. The following overview is based on (Schildknecht, 1994).
The error values given here refer to astrometric observations of the ZIMLAT telescope, the 1 m
laser ranging and astrometry telescope located at the Zimmerwald Observatory. A description
of the ZIMLAT CCD system is given in Sect. 3.3.

Radial non-linear deformations stemming from imperfect optics cause deviations from the lin-
ear projection model. Depending on the detector size these deviations may reach values up
to 0.3′′ for ZIMLAT. These deformations are taken into account in the actual mapping model.

To compute the center of light of an observed object, moment centroiding algorithms (see,
e.g., Verdun (1993)) are used. The centroiding error for bright objects, as GNSS satellites,
is about0.1 pixel. The pixel scale for the ZIMLAT camera is about1′′/pixel, i.e., one pixel
corresponds to1′′ of the mapped sky. With a centroiding error of0.1 pixel the precision of the
measured astrometric positions is supposed to be at the level of0.1′′ per angular coordinate with
respect to the stellar catalog reference frame (Schildknecht, 1994).

The effect of atmospheric refraction has to be considered, too. The astronomical refraction is
the angle between the apparent direction of an object as seen by the observer and the“true
direction” of the object, i.e., the direction that would be observed in the absence of the at-
mosphere. As an exposure maps only a small section of the celestial sphere, the main part of
refraction is similar for all objects within one frame. The remaining differences in refraction
are called differential refraction and have to be reduced. The error in differential refraction for
zenith distances below 60◦ may reach about 3 mas for an absolute refraction error of1′′, in the
worst case (Schildknecht, 1994). For finite distancesρ < 105 km, as for Earth orbiting satel-
lites, the so-called parallactic refraction correction has to be added in addition. This correction
characterizes the differences in refraction between an object observed at infinite and at finite
distances.

Atmospheric turbulences may cause variations of the apparent brightness and/or color of objects
(scintillation), variations of the point spread function (PSF) producing a blurring of objects, and
variations of the centroid position. As these seeing conditions are high-frequency effects their
impact on the measured object position may be assumed as random with expected mean values
of zero.

The epoch registration accuracy is limited by the mechanical and electronic shutter timing tech-
nique. Epoch registration errors may be of stochastic but also of systematic nature. Depending
on the velocity of the observed object a shuttering error leads to position errors of different size
(i.e., larger position errors for faster objects).

The precision of astrometric CCD measurements is dominated by the quality of the optical sys-
tem, the seeing conditions, the pixel scale, the signal-to-noise ratio (SNR), and the integration
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interval, i.e., the time interval used for an exposure. All these effects contribute to the error
budget, which gives a theoretical value for the measurement precision.

The formal error of the astrometric reduction process is a first estimate of the actual precision of
the astrometric positions. The astrometric reduction for ZIMLAT data is done with ZimControl,
the software system used for data acquisition and data processing (Flohrer et al., 2007). The
astrometric error estimated by ZimControl is about0.2′′ for observations of GNSS satellites ac-
quired with ZIMLAT. This precision results from the analysis of reference stars only. Reduction
errors with respect to the satellite as well as position errors of the reference stars do not show
up. Star position errors produce a systematic bias depending on the catalog accuracy including
star positions and proper motions.

In order to assess the value for the CCD measurement accuracy, an external calibration by
comparing the satellite’s position derived from the astrometric observation with the satellite’s
precise ephemeris may be used, see Sect. 4.1.

SLR Observations

SLR observations are based on the round trip time of flight measurements of short light pulses.
These pulses are generated by a laser and directed by a telescope to a given satellite. Corner cube
retroreflectors mounted on the satellite reflect the pulses and send them back to the telescope.
A time interval counter records the flight time∆t of the pulses. The measured light travel time
of a transmitted pulse multiplied by the velocity of the pulse, which travels with the speed of
light, leads to twice the distanceρ from the observing station to the satellite at timetm

ρ(tm) =
c∆t

2
+ ∆ρsro + ∆ρtrop + ∆ρbias

.
= |r(tm)−R(tm)| (2.69)

where ρ(tm) . . . One-way range between the observatory and the satellite at timetm
c . . . Speed of light
∆t . . . Light travel time
r (tm) . . . Geocentric position vector of the satellite at timetm
R (tm) . . . Geocentric position vector of the observatory at timetm
∆ρsro . . . Satellite retroreflector offset
∆ρtrop . . . Signal delay due to the troposphere
∆ρbias . . . Signal delay due to various biases.

The timetm is derived from the pulse emission timet1 and the pulse reception timet2, recorded
by, e.g., an event timer

tm =
t1 + t2

2
. (2.70)

Note that Eq. (2.69) is“only” a good approximation as it neglects the non-linear part of the
station motion during the time interval∆t (due to Earth rotation).

The satellite retroreflector offset∆ρsro is the optical distance from the satellite’s center of mass
to the center of reflection of the laser retroreflector array (LRA). This offset has to be added to
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the measured range, as the orbit determination conventionally refers to the satellite’s center of
mass. For GNSS satellites, the center of mass of the satellite is expected to move over the life
of the mission due to the loss of mass (fuel), i.e. for GPS satellites by about4.6 mm (Degnan
and Pavlis, 1994). Thus, the retroreflector offset is changing slightly over time and the offset
values used in SLR data analysis always represent an average position.

The atmospheric delay∆ρtrop is influenced mainly by the dry component of the troposphere.
Traditionally, the correction of the atmospheric delay at optical wavelengths was derived from
the formulation of Marini and Murray (1973). The model includes the zenith delay of a signal
and the mapping function, in order to project the zenith delay to a given elevation angle. In 2002
Mendes et al. (2002) have developed new mapping functions for optical wavelengths using a
large data base of ray tracing radiosonde profiles. These mapping functions can be combined
with different zenith delay models and represent a significant improvement over other (older)
mapping functions (McCarthy and Petit, 2004). Therefore the ILRS recommends the use of the
Mendes-Pavlis refraction model.

Systematic errors in the measured distance to the satellite may be caused by the SLR tracking
system or by external factors introduced by the atmosphere or the satellite. Such error sources
cause biases, characterized by∆ρbias in Eq. (2.69).

Station-dependent range biases may exist, which are (hopefully) constant over a satellite pass
or any other period of time. They might be caused by instrumental problems (e.g., ranging
electronics), or incorrect calibration measurements. Satellite-specific range biases depend on
the satellite signature and the detection mode of the laser system. In the multi-photon detection
mode, the measured range might be too short, if the LRA is very large and the inclination angle
of the reflected light is very small as for low elevation observations (Otsubo et al., 2001). For
single-photon detection the noise level will be increased. Range biases may reach values of
several millimeters up to few centimeters.

Systematic time errors due to epoch registration can cause station- and pass-specific time biases.
Scale biases may occur due to frequency errors of the event timer. Errors in the temperature
measurement or the barometer readings cause troposphere biases or pressure biases, respec-
tively. These kinds of biases are very difficult to separate from range biases. For a detailed
discussion of SLR systematic biases we refer to Degnan (1993) and Pearlman (1984).

The individual SLR observations are known as fullrate data. In SLR data analyses so-called
normal points are used that are generated on-site by averaging the individual range measure-
ments over a certain time interval (e.g., over 5 min for GNSS satellites). The standard deviation
of these normal points is at the5− 10 mm level for GNSS satellites.

The main advantages of SLR observations (compared to microwave observations) are

• essentially unbiased measurements with mm- to cm-accuracy, and

• much better knowledge (mm to cm) of the atmospheric delays when standard meteoro-
logical measurements (temperature, pressure, humidity) are available.

These advantages make the SLR technique a calibration tool for microwave observation tech-
niques.
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3. Observing GNSS Satellites

The models described in Chapter 2 are valid for satellite geodetic analyses in general. Let us
now in particular focus on the GNSS satellites, which can be observed by various techniques.
The primary observation type is the GNSS microwave observation technique. We describe the
GNSS orbit products based on the microwave data. Furthermore, GNSS satellites may be also
observed with optical telescopes. The astrometric CCD observations acquired for this work are
introduced. As two of the GPS satellites and all GLONASS satellites are equipped with laser
retroreflector arrays (LRAs), these satellites may also be tracked by the SLR technique. We
present the SLR observations of GNSS satellites that were used in our studies.

3.1 Characteristics of the Global Navigation Satellite
Systems (GNSS)

This section introduces the two existing and two future Global Navigation Satellite Systems.
The American GPS was the first GNSS with full operational capacity in 1994. The Russian
counterpart GLONASS started operation in 1983, and was fully operational for a short time
period (1995 and 1996). Today, it is not yet fully completed. The European Galileo System,
which is the first GNSS under civil control, is currently being developed. China is deploying an
independent GNSS, the Compass Navigation Satellite System (CNSS).

3.1.1 GNSS Overview

GPS – the American GNSS

The American GNSS, officially designated as NAVSTAR GPS (NAVigation Signal Timing And
Ranging Global Positioning System), is commonly known as Global Positioning System, GPS.
The GPS configuration nominally consist of 24 satellites, but actually more than 24 satellites
are available since 1994. The spacing of the GPS satellites is arranged in such a way that at
each point of the Earth’s surface and at each epocht a minimum of four satellites is in view.
Nominally, four satellites, actually on the average five, are in each orbital plane. The six orbital
planes have an inclination of55◦ with respect to the Earth’s equator and are separated in the
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3 Observing GNSS Satellites

equator by60◦. The satellites orbit the Earth at about 20,200 km altitude above the Earth’s sur-
face in almost circular orbits. The sidereal revolution period of the GPS satellites is11h58m02s,
which is precisely half a sidereal day. Consequently, the Earth-satellite constellation repeats
itself every23h56m. This in turn brings the GPS satellites into a deep (2:1) resonance with the
Earth rotation, causing resonance perturbations (Beutler, 1998). Due to the perturbing forces
the GPS satellite constellation is not stable. In order to maintain the satellite configuration so-
called station keeping maneuvers have to be performed approximately once per year for each of
the GPS satellites.

Figure 3.1 shows the“ground-tracks” (the projection of the satellite’s position on the Earth)
of 30 GPS satellites in October 2006. After two revolutions the ground-tracks repeat almost
perfectly for all GPS satellites. As long as the constellation stays the same, the same ground-
track pattern results for each day. This in turn improves the day-to-day repeatability for GPS
site coordinates, but it might also be a weakness of the GPS by probably causing systematics
in the estimated parameters (e.g, orbit parameters, site coordinates), as each satellite is always
observed by the same subset of sites.

As opposed to the Earth-satellite constellation, the same Sun-Earth-satellite constellation re-
peats itself only after about 352.4 days due to the regression of the nodes of the orbital planes.
After that time period the satellite is observed over the same point of the Earth’s surface at the
same time of the day. This period is called the draconitic GPS year. The draconitic revolution
period is the time that elapses between two passages of the satellite through its ascending node,
the point of its orbit where it crosses the equator from the southern to the northern hemisphere.
It differs from the sidereal period because the satellite’s line of nodes typically recesses slowly.
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Figure 3.1: Ground-tracks of 30 GPS satellites over two orbital revolutions, for October 28,
2006
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3.1 Characteristics of the Global Navigation Satellite Systems (GNSS)

Revolution periods of the GPS satellites
Sidereal period 11h58m02s

Draconitic period 11h57m57s

Synodic period 11h59m01s

Table 3.1: Selected revolution periods of the GPS satellites

The regression rate of the ascending node is about−0.039◦/d for GPS satellites. Thus the dif-
ferences between sidereal and draconitic revolution period are very small (a few seconds, see
Table 3.1) for the GPS satellites. The synodic revolution period is larger by about one minute.
This period is the average time that elapses between two successive epochs with equal right
ascension of the satellite and the mean Sun.

Up to now, four generations of GPS satellites have been put in orbit. The satellite vehicle
numbers SVN 1 through 11 are designated as Block I, which have been put in orbit from 1978
to 1985. The Block I satellites have been experimental satellites to validate the space-based nav-
igation concept. As the mean mission duration is about ten years, all Block I satellites already
have been decommissioned. The operational GPS satellites are designated as Block II (SVN
13-21), Block IIA (SVN 22-40), and Block IIR (SVN 41-62), see Fig. 3.2. The first mod-
ern Block II satellite was launched in February 1989, whereas the system achieved full op-
erational capability in January 1997, when the Block IIR satellites started replacing the older
Block II/IIAs. The Block IIR satellites are now going to be modernized to transmit the new mili-
tary (M-Code) signal as well as the more robust civil signal L2C. The first modernized Block IIR
satellite, designated as Block IIR-M, was launched in September 2005. Figure 3.3 (left) shows
the steadily increasing number of GPS satellites since 1978 as well as the number of operational
GPS satellites. The graph is based on the satellites launch and decommission dates. Altogether
54 GPS satellites have been launched until mid 2007. There have been 31 operational satel-
lites at the beginning of 2008. Two of the Block IIA satellites (SVN 35 and 36) are equipped

Figure 3.2: GPS Block IIA and Block IIR satellite types
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Figure 3.3: Number of launched and operational GNSS satellites,left: GPS,right: GLONASS

with LRAs of about20 cm diameter in order to calibrate the GNSS measurement technique by
measuring optical ranges to the satellites using SLR (see Fig. 3.4).

The next generation of GPS satellites, Block IIF, will transmit a new civil signal on a third
frequency (L5). The launch of the first Block IIF satellite is expected in 2008. The next GPS
satellite generation is already under development. The designated Block III satellites will have
two more channels providing navigation signals for civil use. The first Block III satellite is
scheduled for launch in 2012. The entire constellation is expected to remain fully operational
through at least 2030. New satellites, additional frequencies, and signals will turn the GPS into
a triple frequency system within the next few years. The equipment of all Block III satellites
with LRAs is currently under consideration.

Table A.1 in the Appendix A provides a list of all GPS satellites (as per January 29, 2008) in-
cluding the following satellite-specific information: PRN number, SVN, Block type, COSPAR-
ID, launch and decommissioning date, satellite mass, and number of the orbital plane. The PRN
numbers are preceded by a one-character system identifier (G for GPS, R for GLONASS), as
used in the RINEX (Receiver Independent Exchange Format) observation files. This satellite
numbering is also used throughout this work for the indication of the satellites. Note that the
PRN numbers are only valid for the corresponding time window (as given in Table A.1).

Figure 3.4: Laser retroreflector array mounted on two Block IIA GPS satellites (Courtesy of
HTSI)
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3.1 Characteristics of the Global Navigation Satellite Systems (GNSS)

GLONASS – the Russian GNSS

The system design of the Russian GLONASS is similar to that of the GPS. The complete nom-
inal GLONASS constellation consists also of 24 satellites. Each of the three orbital planes
contains eight satellites, equally spaced by a45◦ shift in the argument of latitude. The orbital
planes are separated by120◦ and inclined by about64.8◦ with respect to the equator. Thus
the high latitude regions are better covered by GLONASS than by GPS. The orbits are almost
circular at an altitude of 19 100 km above the Earth’s surface, which is 1 100 km lower than
the GPS constellation. The sidereal period needed for one orbital revolution is11h15m48s, cor-
responding to 8/17 of a sidereal day. Therewith the deep (2:1) resonance perturbations (with
respect to the Earth rotation) are avoided and station keeping maneuvers are not necessary as
they are for the GPS satellites. The GLONASS satellites perform21

8
revolutions per sidereal

day, causing a (17:8) commensurability with the Earth rotation (whereas the GPS satellites
perform precisely 2 revolutions within the same time). As there are eight equally-spaced satel-
lites in each orbital plane the GLONASS constellation repeats itself after one sidereal day with
the individual satellites shifted by45◦ (assuming a complete constellation). The Earth-satellite
constellation repeats after eight sidereal days, which corresponds to 17 orbital revolutions. The
Sun-Earth-satellite constellation repeats only after about 354.4 days, which is the draconitic
GLONASS year, caused by the regression of the orbital node in the equator with a regression
rate of about−0.033◦/d.

Figure 3.5 shows the ground-tracks of 12 GLONASS satellites, active in October 2006, for 17 or-
bital revolutions. Within 8 days (or 17 revolutions) a GLONASS satellite will be observed from
every tracking site of a given latitude. Thus, possibly occurring systematics in the estimated pa-
rameters due to an unchanged satellite-site constellation are avoided, which might be a strength
of the GLONASS compared to the GPS. In October 2006 only two of the three orbital planes
(planes 1 and 3) have been occupied. The ground-tracks of all satellites of orbital plane 1 inter-
fere with those of plane 3 (as opposed to the GPS satellites). Even the ground-tracks of the six
new GLONASS satellites that have been placed in plane 2 (in December 2006 and 2007) would
not change the figure, as these ground-tracks also interfere with those of the other planes.

In October 1982 the first three test satellites have been put into orbit. The first operational
satellites were launched in December 1983. Initially, the system was intended to be fully oper-
ational in 1991, but it reached this status only for a short time period during 1995-1996. Today,
there are altogether more then 90 GLONASS satellites in orbit, but due to the lifetime of about
three years, the majority of them has been already decommissioned (see Fig. 3.3, right). Since
March 2008, there are 16 operational GLONASS satellites in orbit. In September as well as in

Revolution periods of the GLONASS satellites
Sidereal period 11h15m48s

Draconitic period 11h15m44s

Synodic period 11h16m47s

Table 3.2: Selected revolution periods of the GLONASS satellites
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Figure 3.5: Ground-tracks of 12 GLONASS satellites over 17 orbital revolutions, for October 28
- November 4, 2006

December 2008 the next GLONASS satellite launches, of three GLONASS-M satellites each,
are expected.

With the nominal configuration of 24 satellites, a minimum of five satellites would be in view
at any given time anywhere on the globe. Today, at least four satellites are visible approxi-
mately95% of the time. As opposed to the GPS, all satellites of the GLONASS constellation
are equipped with LRAs for calibrating the radio signals by optical range measurements (SLR).
With about60 cm diameter the GLONASS LRAs are three times larger than the LRAs on GPS
satellites and therefore much easier to track by the SLR technique.

Figure 3.6 shows the different GLONASS satellite types. The new modernized GLONASS
satellites are called GLONASS-M satellites with a planned mission time of seven years. The
first GLONASS-M satellite was launched in December 2003. Today, 13 GLONASS-M satel-
lites are in orbit. The next satellite generation, GLONASS-K, is further improved with a reduced
weight and an extended operational lifetime of 10-12 years. Its development costs are shared
with India. A third frequency for civil use is introduced. The first GLONASS-K launch is
scheduled for 2008. The configuration is proposed to become fully operational in 2010. The
next long-term plan is the construction and deployment of the GLONASS-MK satellite genera-
tion.

A list of all GLONASS satellites (as per January 29, 2008) is provided in Table A.2 in the Ap-
pendix A including the following satellite-specific information: PRN number, SVN, GLONASS
type, COSPAR-ID, launch date, status or decommissioning date, satellite mass, number of the
orbital plane and slot number. The satellites are identified by their slot number, which defines
the corresponding orbital plane and the satellite’s position within the plane. For the three planes,
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3.1 Characteristics of the Global Navigation Satellite Systems (GNSS)

Figure 3.6: GLONASS, GLONASS-M, and GLONASS-K satellite types

the numbers 1-8, 9-16, and 17-24 are used. Hence, if an old satellite is replaced by a new one,
it gets an“old” number. The slot number together with the system identifier“R” is used in the
RINEX format for the satellite identification. In this work, this number is referred to as“PRN
number” (although there is no“PRN” for GLONASS) to be consistent with the notation of the
GPS satellites.

Galileo – the European GNSS

Galileo, Europe’s GNSS, is currently under development. Unlike GPS and GLONASS, both of
which are (at least partly) under military control, Galileo will be under civil control. The first
experimental Galileo satellite GIOVE-A (Galileo In Orbit Validation Element) was launched
in December 2005. The second satellite GIOVE-B is supposed to be deployed in April 2008.
The Galileo constellation is scheduled to reach full operational capability within the time frame
2010-2013.

The nominal Galileo satellite constellation will be a so-called Walker 27/3/1 constellation con-
sisting of 30 satellites, of which three are spares. The satellites will orbit at an altitude of
23,222 km, which is 3000 km higher than the GPS constellation. In each of the three orbital
planes there will be nine operational satellites separated by40◦, and one spare. The inclination

Figure 3.7: GIOVE-A satellite
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of the orbital planes is56◦ with respect to the equatorial plane. The satellites draconitic period is
about 14h, which avoids resonance perturbations due to Earth rotation. The Earth-satellite con-
stellation repeats after 17 orbital revolutions corresponding to 10 sidereal days, which causes
a (10:17) commensurability with Earth rotation.

Compass – the Chinese GNSS

China is developing the Compass Navigation Satellite System (CNSS), also known as Beidou-2.
The current Beidou-1 system (consisting of four satellites) is experimental and has limited cov-
erage and application. The new Compass system will be a constellation of 35 satellites, which
includes five satellites in the geostationary orbit (GEO) and 30 satellites in the medium Earth
orbit (MEO) that will offer complete coverage of the globe. Two levels of service will be
provided: a free service and a licensed service for the military. Two Compass satellites were
launched early in 2007. In the next few years, China plans to continue experimentation and
system setup operations. The system is scheduled to be fully operational in 2010.
With GPS, GLONASS, Galileo, and Compass a total number of more than 100 GNSS satellite
may become available to the user community within the next 10 years. Combined receivers
are currently developed, which will be able to receive the signals from GPS, GLONASS, and
Galileo.

3.1.2 GNSS Satellite Attitude

As the GNSS satellites are not of spherical shape but rather complex with large solar panels,
the attitude of the satellite with respect to Sun and Earth is important for modeling the non-
gravitational forces (e.g., solar radiation pressure or Earth albedo) acting on the satellite orbits
(as well as for the knowledge of the location of the microwave antenna and the laser retroreflec-
tor array at any time).

The satellite’s body-fixed coordinate system (X, Y, Z) is a right-handed system. Figure 3.8
illustrates the (X, Y, Z) system of a simplified GNSS satellite model, consisting of a box-like
body and two solar panels. The system origin is the satellite’s center of mass. The X-axis points
into the hemisphere containing the Sun. The Y-axis points along the solar panel axis, and the
Z-axis points to the Earth’s center. For GPS satellites of type Block IIR the orientation of the
X-axis, specified by the manufacturer, is in opposite direction (-X). But we will always refer to
the X-axis as defined above for all GNSS satellite types.

An on board attitude system maintains the nominal pointing of the satellite through yaw and
pitch control. Yaw rotates the satellite around the Z-axis, whereas pitch rotates the solar panels
around the Y-axis. The navigation antennas along the positive Z-axis are supposed to always
point towards the geocenter. The solar panel arrays mounted on the Y-axis should remain per-
pendicular to the incoming solar radiation, i.e., the normal vector of the solar panel surfaces
should always point to the Sun when the satellite is not in eclipse. To meet these two conditions
the satellite has to yaw and pitch continuously.
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Figure 3.8: GNSS satellite’s body-fixed coordinate system (X, Y, Z)

The nadir pointing attitude is determined by static Earth sensors that are mounted on the +Z
surface and measure the IR detection of the Earth’s horizon. A pair of Sun sensors mounted
on each solar panel determine the yaw attitude. Data from these sensors are processed and any
measured attitude error is corrected by applying torques using one of two sets of actuators. For
GPS satellites, the three-axis stabilized attitude control is provided by a system of four reaction
wheels (RW). In most cases attitude errors are corrected by commanding changes in the RW
speeds. The RWs are designed to maintain spacecraft pointing within±0.5◦ in the roll, pitch,
and yaw axis (Violet et al., 1999). For GLONASS satellites the attitude is maintained in a
similar way by means of controlling flywheel engines. The Earth orientation is maintained with
a maximum error of3◦, and the deviation of the normal to the solar panel surface from the
direction to the Sun is at maximum5◦ (Roscosmos, 2004).

In addition to the body-fixed satellite system, we have to define a Sun-oriented satellite sys-
tem (D, Y, B) for solar radiation pressure (SRP) modeling. The system origin is in the satellite’s
center of mass. The D-axis points towards the incoming solar radiation. The Y-axis is already
known as axis along the solar panels. The third axis B points into the hemisphere containing
the geocenter and complements the right-handed system.

Yaw bias

The yaw attitude is singular at two points, the intersection of the satellite orbit with the Earth-
Sun line. At the point where the satellite is closest to the Sun any yaw angle allows optimal
view of the Sun, whereas at the other singularity, when the satellite is in the Earth’s shadow, the
Sun sensor output is zero. But even a small amount of noise may trigger an unpredictable yaw
rotation.

To allow modeling of the yaw attitude of GPS Block II/IIA satellites, the Sun sensors are bi-
ased by a small, but fixed, amount, which was set to0.5◦ on all Block II/IIA satellites since
November 1995 (Bar-Sever, 1996). As a result the yaw attitude is always about0.5◦ in error
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with respect to the nominal orientation. During shadow periods the satellite will yaw at full
speed in the direction of the bias. Thus the yaw attitude upon shadow exit can be calculated
and the Sun recover maneuver can be modeled, as well. The yaw maneuvers from shadow entry
until nominal attitude is reached again are referred to as midnight maneuvers. At the opposite
side, when the satellite is closest to the Sun, a similar maneuver takes place referred to as noon
maneuver, starting when the nominal yaw rate gets larger than the maximal yaw rate and ending
when the nominal yaw gets below the maximal yaw rate again.

The yaw biasb1 is an angle describing the rotation of the solar panel surface around an axis
perpendicular to the panel axis Y and lying in the panel surface. The resulting yaw angle bias
(i.e., the correction of the yaw angle due to the yaw bias)∆Ψ is given by

sin ∆Ψ =
sin b1
sinE

(3.1)

where ∆Ψ . . . Yaw angle bias induced by the yaw bias
b1 . . . Yaw bias
E . . . Phase angle referred to the geocenter, angle Sun-satellite-geocenter .

The elongation angleE ′, being the angle Sun-geocenter-satellite, is given by

cosE ′ = cos β0 cos ∆u (3.2)

where β0 . . . Elevation of the Sun above the orbital plane
∆u . . . Argument of latitude of the satellite w.r.t. the argument of latitude of the Sun .

As the distance satellite-Sun is much larger than the distance satellite-Earth, we assume that the
unit vector pointing from the geocenter to the Sun is parallel to the unit vector pointing from the
satellite to the Sun. Thus, the elongation angle is set equal toE ′ = 180◦ − E, whereE is the

Figure 3.9: Anglesβ0,∆u, andE in the Sun-satellite-Earth system
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phase angle referred to the geocenter, i.e., the angle Sun-satellite-geocenter (see Fig. 3.9). This
approximation neglects an angle difference of about0.01◦. Hence, angleE can be approximated
by

cosE = − cos β0 cos ∆u. (3.3)

The yaw angle bias induced byb1 may reach significant values only for small values ofsinE.
At noon maneuver entry, whenE ∼ 5◦ the yaw angle bias∆Ψ reaches6◦. Midnight maneuvers
already start atE = 13◦, which results in∆Ψ = 2◦.

If the angleE is smaller than the yaw bias (E < 0.5◦) Eq. (3.1) becomes undefined. Then the
nominal orientation of the satellite can no longer be achieved by a yaw rotation. But this has no
effect on the actual yaw rotation because for small values ofE the satellite is in a midnight or
noon maneuver and already yawing at full rate.

For Block IIR satellites no yaw bias is introduced. For angles|β| < 1.6◦ Block IIR satellites
switch from yaw steering to a fixed yaw mode (Bar-Sever, 1997). In this regime, the spacecraft
does not perform a midnight or noon turn and is commanded to travel in a fixed yaw orientation
aligning the negative X-axis roughly parallel to the velocity vector.

Y-bias

Assuming nominal attitude, the solar radiation force vector is strictly confined to the body-fixed
X-Z plane. In the 1980s, an unmodeled along-track acceleration was observed for the GPS
satellites, produced by a force (per mass) along the solar panel axis direction. This acceleration
(or force per satellite mass) is referred to as Y-bias. It is of the order of10−9 m/s2 and it is
different for each GPS satellite and changes slowly over a few weeks. Its physical nature is
still unclear. Three possible explanations have been proposed by Fliegel et al. (1992): (1) the
solar panel center beams are not perfectly straight and/or normal to the spacecraft body median
plane, (2) the solar sensors are not perfectly aligned with the Z-axis, or (3) heat generated in
the spacecraft body is reradiated from louvres on just one Y-side. A misalignment of the solar
sensors between0.5◦ and1◦ would account for the observed Y-bias. The reported yaw bias
(b1 = 0.5◦) is the most likely explanation.

For radiation pressure modeling, it is recommended to estimate for each satellite a scale fac-
torD0 for the direct radiation force and a Y-biasY 0, as quantities that may change slowly over
days and weeks.

Eclipses

During eclipse phases, when the direct solar radiation is blocked by the Earth or the Moon, no
SRP force is acting on the satellite. Although the effect of partial shadowing of the sunlight
by the Moon on the satellite orbit is very small, it must be taken into account for precise orbit
modeling. Here we will, however, focus on the shadowing of the sunlight by the Earth only.
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For GNSS satellites, eclipsing seasons caused by the Earth’s shadow occur twice per year and
last for about 30 days, during which a satellite passes the shadow once per revolution. For orbit
modeling, the impact of SRP is switched off at shadow entry and switched on again at shadow
exit in the Bernese GPS Software. Thus, the eclipse factor used to scale the accelerations caused
by SRP (Eqs. (2.21, 2.22, 2.23)) is set either to zero (inside the shadow) or to one (outside the
shadow).

The shadow modeling is based on the following simplifying assumptions. We assume a spheri-
cal Earth with radiusre. We further assume that the solar radiation is parallel within the Earth’s
environment. Thus, the shadow boundary in space is assumed to be a cylinder with radiusre.
Its axis coincides with the line Sun-Earth. As the angular diameter of the Sun is about0.5◦,
two shadow cones, one for umbra and one for penumbra should be used instead of a cylinder.
Umbra is the region of total shadow, whereas penumbra specifies the region of partial shadow
where the total solar irradiance is partially occluded by the Earth. The cylindrical approxima-
tion is, however, a sufficient approximation, as the penumbra period for GNSS satellites is only
about 1 minute and the neglected accelerations before and after crossing the cylinder bound-
aries almost compensate each other (Beutler, 2005). The Earth’s atmosphere causing refraction
effects is not taken into account.

The longest duration of the eclipse phase results if the Sun lies in the orbital plane, i.e., if the
elevation angle of the Sun above the orbital plane isβ0 = 0. This is the case if the Sun is
near the ecliptic node of the orbital plane. For the GNSS satellites the longest eclipse period is
about 55 minutes. Eclipses occur for|β0| ≤ 14◦, which is the angular radius of the Earth at the
distance of the GNSS satellites.

For GPS the satellite’s rotational behavior during shadow periods is well known, whereas for
GLONASS satellites the behavior is not known. For GPS Block II/IIA satellites the yaw direc-
tion is always the same within the shadow given by the sign of the yaw biasb1. But outside
the shadow the yaw direction may be changing. Thus, the satellite might have to reverse its
yaw rotation upon shadow entry. During the shadow phase, if the satellite is in yaw rate mode
(see Sect. 3.1.2), the GPS Block II/IIA satellites rotate around the Z-axis with maximum rate of
about0.12 ◦/s (Bar-Sever, 1994). The actual maximum rotation rates may slightly differ from
that value. After shadow exit, the satellites may need up to 30 minutes to reach their nominal
attitude.

For SLR analysis the position of the LRA with respect to the satellite’s center of mass and thus
the satellite’s attitude have to be known precisely. As opposed to the GLONASS satellites, the
LRA of the GPS satellites is not centered on the Z-axis, which results in biased SLR range
measurements during the eclipse phase, if the rotation rate is not modeled correctly. Therefore,
we apply the rotation rates provided by JPL for eclipsing GPS satellites in our SLR analysis
(see Sect. 4.2.2).

GPS Satellite Maneuvers

In general, station-keeping maneuvers for GPS satellites are performed 1-2 times a year using
thruster firings. These satellite maneuvers are necessary for active GPS satellites to keep them in
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their nominal positions in the orbital planes. The satellites leave their nominal positions due to
resonance effects of the satellites motion with terms of the geopotential, as the orbital periods of
the GPS satellites are in 2:1 commensurability with the rotation period of the Earth. According
to Hugentobler (1998), the most important geopotential terms responsible for resonance for
circular orbits with non-zero inclination are the termsC32 andS32, followed byC44 andS44.
These terms give raise to resonance perturbations of the semi-major axis. In addition, the Y-bias
(a force acting perpendicular to the direction to the Sun) induces a long-periodic drift in the
semi-major axis of up to nearly20% of the effect stemming from geopotential terms.

3.1.3 GNSS Solar Radiation Pressure Modeling

Solar radiation pressure is the most important non-gravitational force acting on GNSS satel-
lites. Therefore, the SRP effect has to be modeled with high accuracy for generating most
accurate GNSS orbits. Improved models of all effects, which have an impact on the satellite’s
position, help to reduce the uncertainty in other parameters derived from GNSS analysis (e.g.,
troposphere parameters). In recent years, various techniques for SRP modeling were developed,
ranging from purely empirical approaches to purely analytical models. In the following sections
we present three of them, a very simple as well as a more sophisticated analytical model, and
an empirical model.

From the scientific point of view, it is important to understand the physical effects affecting the
dynamics of a satellite. The ROCK radiation pressure models are based on a purely physical
model, but for easy use they were represented by Fourier series as a function of the phase
angleE between the Sun and the Z-axis of the spacecraft. Thus the physical parameters of
the model, as optical or surface properties, are not available. They cannot be established by
estimating parameter improvements from the observations. Possible model errors cannot be
removed from the Fourier series.

As opposed to a physical model, the CODE radiation pressure model is based on an empirical
approach. This is particularly effective, if a long time series of data is available from a dense,
globally distributed network. However, the use of empirical parameters to absorb unmodeled
effects provides no insight into the physical mechanism responsible for these effects.

A simple boxwing model allows the estimation of the optical properties of the spacecraft’s
surfaces. Various surface components may be specified by the user. In this way, different body
shapes, ranging from very simple shapes to more complex shapes, can be modeled.

More sophisticated purely analytical models, which take care, e.g., of secondary intersection
effects when light is reflected from one surface and then strikes another, have been developed
by Ziebart et al. (2005).

Rock Models

The ROCK models have been developed by Rockwell International for the GPS Block I and
Block II satellites (Fliegel et al., 1992). The Fortran computer subroutine that implemented the
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Rockwell solar radiation pressure models became known as ROCK4 (Fliegel et al., 1985) and
ROCK42 (Fliegel and Gallini, 1989) for the Block I and Block II satellites, respectively. There
are two different model types, the standard model (S) and the thermal model (T) including
accelerations due to reradiated heat. For Block I satellites the models are denoted as S10 and
T10, for Block II satellites as S20 and T20, and for Block IIR satellites a S30 and T30. The
Rock models treat a satellite as a set of flat or cylindrical surfaces. First, the contribution of
all major surfaces to the accelerations caused by solar radiation pressure are computed. Input
parameters are the shape, area, and optical parameters (µ, υ) of the various surfaces. First order
shadowing effects are considered, as, e.g., the shadow caused by an antenna on the satellite’s
body. The resulting accelerations are expressed in the satellite’s body-fixed coordinate system
(see Sect. 3.1.2). The acceleration components can be represented as Fourier series (with few
terms) as a function of the phase angleE, that is the angle between the direction to the Sun
and the positive Z-axis. If the attitude of the satellite is nominal, the acceleration due to solar
radiation pressure always lies in the (X,Z) plane.

As it is recommended in the IERS conventions (McCarthy and Petit, 2004) to use the T-models
due to the inclusion of thermal reradiation (TRR), we repeat only the resulting formulas for the
T10 and T20 models from (Fliegel et al., 1992) and for the T30 model from (Fliegel and Gallini,
1996). The SRP force acting on a GPS satellite is given in X-, and Z-components using units
of 10−5N and angleE in radians.

For Block I satellites the T10 model reads

fX = −4.55 sinE + 0.08 sin(2E + 0.9)− 0.06 cos(4E + 0.08) + 0.08

fZ = −4.54 cosE + 0.20 sin(2E − 0.3)− 0.03 sin(4E). (3.4)

For Block II/IIA satellites the T20 model reads

fX = −8.96 sinE + 0.16 sin(3E) + 0.10 sin(5E)− 0.07 sin(7E)

fZ = −8.43 cosE. (3.5)

For Block IIR satellites the T30 model reads

fX = −11.0 sinE − 0.2 sin(3E) + 0.2 sin(5E)

fZ = −11.3 cosE + 0.1 cos(3E) + 0.2 cos(5E). (3.6)

The resulting acceleration is the sum of the two components divided by the satellite’s massm

arock =
(fXeX + fZeZ)

m
(3.7)

where eX . . . Unit vector in the satellite’s body-fixed coordinate system in X-direction
eZ . . . Unit vector in the satellite’s body-fixed coordinate system in Z-direction .
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The Eqs. (3.4, 3.5, 3.6) represent the ROCK4 and ROCK42 output with a maximum error of
about1.5%, which occurs only during eclipse seasons, whenE is close to180◦. The more im-
portant contribution to model errors are given by the ROCK4 and ROCK42 models themselves.
According to Fliegel et al. (1992), there remain about3% error in the force components, caused
by spacecraft components that are not modeled, second order shadowing effects, or aging ef-
fects of the optical properties. This error can be accounted for by estimating a scale factor (D0)
in addition to the use of the a priori radiation pressure models T10, T20, and T30. It is also
recommended to estimate a Y-bias (Y0) (see Sect. 3.1.2).

CODE Models

CODE (introduced in Sect. 3.2.2), developed a SRP model for GPS Block II and Block IIA
satellites in 1998.

The CODE SRP model is not based on a physical model, as the Rock model is, but rather on
empirical parameters (Springer, 2000). GPS orbits, generated by using the Rock SRP models,
were used as pseudo-observations for orbit determination. For the orbit determination step no
a priori SRP model was introduced. A set of six orbit parameters consisting of three constant
and three periodic terms was estimated for each orbital arc

Constant terms:D0, Y 0, B0
Periodic terms: Z1 sin(∆u), X1 sin(∆u), X3 sin(3∆u),

where angle∆u = u− u0 is the argument of latitude of the satellite relative to the argument of
latitude of the Sun. Thus, the dependency on the Sun’s position with respect to the orbital plane
is taken into account. The orbital arc-length is of five days each.

A long time series covering almost six years starting in 1996 of estimates for the six selected
orbit parameters was generated. Analyzing the time series yields a new deterministic SRP
model. For each of the six parameters aβ0-dependent function was derived. The angleβ0 is
the elevation of the Sun above the orbital plane. Significant periodic terms were found for the
constant termsD0, Y 0, B0, and the once-per-revolution termsZ1, X1, andX3. The resulting
functions read as

D0(β0) = D00 + D0C2 cos(2β0) +D0C4 cos(4β0)

Y 0(β0) = Y 00 + Y 0C2 cos(2β0)

B0(β0) = B00 + B0C2 cos(2β0)

Z1(β0) = Z10 + Z1C2 cos(2β0) + Z1S2 sin(2β0) + Z1C4 cos(4β0) + Z1S4 sin(4β0)

X1(β0) =X10 +X1C2 cos(2β0) + X1S2 sin(2β0)

X3(β0) =X30 +X3C2 cos(2β0) + X3S2 sin(2β0).

(3.8)

Thus, the perturbing acceleration on a Block II/IIA GPS satellite due to SRP may be written as

acode =D0(β0)eD + Y 0(β0)eY +B0(β0)eB + Z1(β0) sin(∆u) eZ

+[X1(β0) sin(∆u) +X3(β0) sin(3∆u)]eX (3.9)
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where eD . . . Unit vector pointing from the satellite to the Sun
eY . . . Unit vector along the spacecraft’s solar panel axis
eB . . . Unit vector completing the system (D, Y, B):eB = eD × eY

eX . . . Unit vector completing the system (X, Y, Z):eX = eY × eZ

eZ . . . Unit vector pointing from the satellite to the geocenter.

Remember that X and Z are the axes of the body-fixed coordinate system (X, Y, Z) (see Fig. 3.8),
whereas D and B correspond to the Sun-oriented coordinate system (D, Y, B). The direction of Y
is defined such that X points into the hemisphere containing the Sun and B into the hemisphere
containing the geocenter.

The constant termsD00, Y 00, andB00 are satellite-specific, whereasZ10 is block-specific. For
the values of all CODE SRP model parameters we refer to Springer (2000).

In 2006, the model coefficients were checked and improved based on six years of GPS data
starting in 2000. The time series included Block IIR satellites, which were not available before.
New values for the coefficients and slightly changed model parameters were estimated. The
acceleration derived from the improved CODE SRP model is given by

acode =D0(β0)eD + Y 0(β0)eY +B0(β0)eB + Z1(β0) sin(∆u) eZ (3.10)

with the coefficients

D0(β0) =D00 +D0C2 cos(2β0) +D0C4 cos(4β0)

Y 0(β0) = Y 00 + Y 0C2 cos(2β0)

B0(β0) = B00 + B0C2 cos(2β0) + B0C4 cos(4β0)

Z1(β0) = Z10 + Z1C2 cos(2β0) + Z1S2 sin(2β0) + Z1C4 cos(4β0) + Z1S4 sin(4β0) .

(3.11)

Note that there are no longer anyX1- andX3-terms as for the previous model.

In addition, a similar approach was used for deriving for the first time a SRP model for GLONASS
satellites. The resulting acceleration reads as

acode =D0(β0)eD + Y 0(β0)eY + Z1(β0) sin(∆u) eZ (3.12)

with the coefficients

D0(β0) =D00 +D0C2 cos(2β0)

Y 0(β0) = Y 00 + Y 0C2 cos(2β0)

Z1(β0) = Z10 + Z1C2 cos(2β0) + Z1C6 cos(6β0) .

(3.13)

There are no accelerations in Y-direction, except for one specific GLONASS satellite (R18), for
which the functionY 0(β0) was estimated. The coefficientZ10 is satellite-specific.
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Boxwing Model

We developed a simple boxwing radiation pressure model, consisting of a six-sided box and a
flat-plate wing representing the satellite’s body and the solar panel arrays. Each of the satellite’s
surfaces has two optical properties, reflectivityυ and specularityµ, which might be transformed
into three coefficients each for the absorbed, the specularly reflected and the diffusely reflected
fraction of the incoming solar radiation. The surfaces are assumed to be flat. The model does
not only account for solar radiation pressure, but also for thermal reradiation effects (neglecting
thermal conduction).

For each of the satellite surfaces a perturbing acceleration due to solar radiation pressure can be
derived from Eq. (2.21) in Sect. 2.1.3. The formula is repeated here for better readability

af = C

[
(α+ δ)e� +

(
2ρ cos θ +

2

3
δ

)
en

]
(3.14)

with

C = − ae
2

|r − r�|2
P�

A

m
. (3.15)

From Eq. (2.16) we form the relationα = 1−δ−ρ. Replacingα changes Eq. (3.14) accordingly

af = C

[
(1− ρ)e� +

(
2ρ cos θ +

2

3
δ

)
en

]
. (3.16)

Including thermal reradiation effects by using relations (2.31) yields

af = C

[
(1− ρ)e� +

(
2ρ cos θ +

2

3
(1− ρ)

)
en

]
. (3.17)

The total acceleration is derived by accumulating the accelerations of all illuminated surfaces.
For a spacecraft consisting of flat surfaces only we get the following expression

abw =
∑

afi
=

∑
Ci

[
(1− ρi)e� +

(
2ρi cos θi +

2

3
(1− ρi)

)
eni

]
(3.18)

with

Ci = − ae
2

|r − r�|2
P�

Ai

m
. (3.19)

Only surfaces actually illuminated by the Sun are taken into account.

The model input parameters for the a priori model have to be specified, which are the properties
of the surfaces: shape, area, and the specularity and reflectivity coefficients. The orientation of
each surface is given by two angles each, defining the surface normal. Components belonging
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to the spacecraft’s body are treated as body fixed surfaces, whereas the solar panels are rotating
in the body-fixed coordinate system. The solar panel normal is assumed to be aligned with the
direction to the Sun. A misorientation of the solar panels can be described by two anglesb1
andb2, where the yaw-biasb1 reflects the rotation of the solar panel around an axis lying in the
panel plane and perpendicular to the Y-axis, andb2 reflects the rotation of the solar panel around
the Y-axis. The yaw bias angleb1 has a nominal value of0.5◦ for GPS Block II/IIA satellites
and is related to the yaw bias∆Ψ (see Sect. 3.1.2).

Within the scope of this work, the boxwing model was implemented in a development version
of the Bernese GPS Software. It is possible to define an arbitrary number of surfaces with
the corresponding optical properties for each of the GNSS satellites and to compute a satellite-
specific a priori radiation pressure model.

In contrast to other radiation pressure models, the boxwing model may be used not only as
a priori model but also to improve the model parametersµ andυ, or δ andρ respectively, for
each surface specified. The corresponding implementation of the parameter estimation process
could not be completed within the scope of this work. It should be possible to estimate the yaw
biasb1 in addition to the optical parameters. The angleb2 cannot be estimated together withb1
in one parameter estimation process, as it linearly depends onb1. Also the estimation of the
albedo parameterk would be of interest. Once the parameter estimation is implemented, the
main problem will be the correct interpretation of the estimated parameter values.

Spherical satellites will be much easier to deal with than boxwing satellites. The acceleration
due to SRP and EAP for a spherical satellites is given by

as = (1 +
4

9
δ)(Bes + Ce�), (3.20)

and including thermal reradiation by

as = (
13

9
− 4

9
ρ)(Bes + Ce�) . (3.21)

Modeling SRP for spherical Laser satellites as, e.g., LAGEOS, will be of interest for orbit
determination based on SLR observations.

3.2 GNSS Orbit Determination Based on Microwave
Observations

High precision GNSS orbits are a fundamental product of the International GNSS Service (IGS).
GNSS microwave data and orbits, as well as other IGS products, are made available to the IGS
user community trough the internet. They support a wide range of scientific and engineering
applications. Within the IERS GNSS data and products contribute to the improvement and den-
sification of the geodetic reference frames and to the determination of Earth rotation parameters.

This section introduces the IGS orbit products and their quality. The orbit generation at the
Center for Orbit Determination in Europe (CODE), which is one of ten IGS Analysis centers,
is presented in more detail.
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GNSS Satellite Ephemerides Accuracy Latency Updates

GPS final < 5 cm ∼ 13 days weekly

rapid < 5 cm 17 hours daily

ultra-rapid (observed part)< 5 cm 3 hours four times daily

ultra-rapid (predicted part)≤ 10 cm real time four times daily

GLONASS Final 15 cm 2 weeks weekly

Table 3.3: IGS orbit products

3.2.1 The IGS Orbit Products

The IGS is an approved service of the International Association of Geodesy (IAG). It began
routine operations on January 1, 1994. Among other GNSS products, the IGS provides the
official IGS orbits based on contributions from the IGS Analysis Centers (ACs). The required
microwave tracking data are collected by an international network of over 300 continuously
operating dual-frequency GPS stations and about 50 GNSS stations, the latter tracking GPS as
well as GLONASS satellites. The ACs analyze the IGS station data and submit the derived
orbit solutions to the Analysis Center Coordinator (ACC), who combines the ACs’ submissions
to form the official IGS orbit products. Currently, there are three official IGS product lines,
namely the IGS final-, the IGS rapid-, and the IGS ultra-rapid products (see Table 3.3). The IGS
final orbits have the highest quality of all IGS orbits. They are generated on a weekly basis with
a 2 weeks delay. The IGS rapid products have a quality comparable to that of the final products.
They are made available on a daily basis with 17 hours delay after the end of the observation
day. The ultra rapid products are available for real time use. They contain an orbit part based
on real data and a predicted orbit part. As the ultra rapid products are provided twice per day,
the average age of the predictions is reduced to 9 hours.

The orbit products are satellite ephemerides given in the International Terrestrial Reference
System (ITRS) with a 15 min spacing. The IGS orbit accuracies specified in Table 3.3 are,
except for the predicted orbits, based on comparisons with independent SLR measurements.
For GLONASS orbits only final products are generated, as the constellation is not yet fully
operational.

3.2.2 GNSS Orbit Determination at CODE

CODE, the Center for Orbit Determination in Europe, is one of the ten IGS Analysis Centers.
It is a joint venture of the Federal Office of Topography (swisstopo) in Wabern, Switzerland;
the Federal Agency of Cartography and Geodesy (BKG) in Frankfurt, Germany; and the Astro-
nomical Institute of the University of Bern (AIUB) in Bern, Switzerland. CODE is located at
the AIUB.

CODE contributes to all official IGS orbit products. The orbit solutions are generated with
the latest development version of the Bernese GPS Software (Dach et al., 2007). The models
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used are those provided by the IERS Conventions (McCarthy and Petit, 2004). They contain
conventional models, constants and standards. Changes in the IERS conventions are taken over
by CODE as soon as possible.

At present, the CODE orbit is based on the following foundation: The JPL Development
Ephemeris (DE405) are used to compute the positions of Sun and Moon, both of which are
treated as point masses. The geopotential is modeled with the JGM-3 model (Tapley et al.,
1996) up to degree and order 12. Ocean tidal forces are treated by the CSR 3.0 ocean tide hight
model (Eanes and Bettadpur, 1992).

CODE uses the Extended Orbit Model (ECOM) described by Beutler et al. (1994). The accel-
eration of a satellite due to solar radiation pressure (SRP) is defined as

asrp = asrp0 +D(u)eD + Y (u)eY +B(u)eB (3.22)

with the coefficients

D(u) =D0 +DC cosu +DS sinu

Y (u) = Y 0 + Y C cosu + Y S sinu

B(u) = B0 + BC cosu + BS sinu

(3.23)

where asrp . . . Acceleration due to the SRP
asrp0 . . . Acceleration derived from the a priori SRP model
u . . . Argument of latitude of the satellite .

The SRP a priori model used for the computation ofasrp0 is the CODE SRP model for GPS
satellites since November 2005 (the ROCK model was used before). From November 2005 until
November 2007 the CODE SRP model was used for the GLONASS satellites. Since November
2007 no SRP model is used for the GLONASS satellites. The estimated orbit parameters are a
set of six osculating elements (referring to the initial epoch) plus five solar radiation pressure
parameters, namely the three constant accelerations (D0, Y 0, B0) in D-, Y-, and B-direction
as well as periodic once-per-revolution terms (BS,BC) in B-direction. The Earth shadow is

Figure 3.10: Geographical distribution of GNSS tracking stations
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assumed to be cylindrical. The Moon shadow model takes umbra and penumbra into account.
Pseudo-stochastic pulses (small velocity changes) are estimated once per revolution. The nu-
merical integration algorithms used for orbit integration were developed by Beutler (2005). The
integration step size is one hour. Within hourly time intervals, the orbit is represented by a poly-
nomial of degree 10, which in turn approximates the true solution of the equations of motion on
the sub-millimeter level.

General relativistic corrections are taken into account. The arc length of rapid and final orbit
products is 72 hours or three solar days.

It is worth-while to mention that CODE generates consistent GPS and GLONASS satellite orbits
from a combined analysis since mid 2003. Data of about 30 GPS/GLONASS tracking IGS sites
are analyzed for that purpose together with about 150 GPS-only sites. Figure 3.10 shows the
geographical distribution of the GPS-only and GPS/GLONASS tracking sites in July 2007.

The geodetic datum definition of the site coordinates is realized by a subset of up to 100 IGS
core sites. Three no-net-rotation conditions are imposed with respect to the adopted IGS refer-
ence frame.

3.2.3 GNSS Orbit Accuracy

In order to assess the quality of the microwave-based GNSS orbits, independent measurements
are necessary. SLR observations are very useful for such an independent orbit validation (see
Sect. 3.4). As all GLONASS satellites carry LRAs on board, inter-technique comparisons are
possible, whereas for GPS they are limited with only two satellites carrying LRAs.

The microwave technique alone does not allow it to assess the“true” orbit accuracy but to study
the internal consistency of the orbits. The formal errors of the estimated orbit parameters are
indicators of the orbit quality. Furthermore, orbits derived from microwave data, but obtained
with different modeling approaches or different data sets may be compared.

Formal Orbit Errors

One result of the least square adjustment process is the variance-covariance matrixC. The
diagonal elementsCxx contain the formal errorsmx of the estimated parameter, e.g. the oscu-
lating elements, whereas the off-diagonal elementsCxy characterize the correlations between
individual parametersx andy

Cxx = m2
x , Cxy = %xymxmy. (3.24)

The formal errors of satellite positions at any given epoch may be computed through error
propagation formulas from the variance-covariance matrix. The analysis of orbit errors over
time shows the typical development of orbit precision over the entire arc: The orbit is well
defined in the center of the arc, whereas it gets weaker towards the arc boundaries. This is
expected as there are no stabilizing observations at the boundaries. For detailed studies we refer
to Rothacher (1992).
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Orbit Comparisons

Orbit comparisons are routinely performed by the IGS ACC. The individual contributions of
the ACs are compared to the official IGS orbit products. It is important to note that these
comparisons do not assess the accuracy of the orbits but only the consistency of the individual
contributions. GPS final and rapid orbits of the individual ACs are proven to be consistent at
the1− 2 cm level, and the GLONASS orbits at the5 cm level. GLONASS orbits have a lower
precision than GPS orbits, because the number of combined GPS/GLONASS tracking receivers
(and therefore the number of GLONASS observations available for the parameter estimation
process) is much smaller than that available for the GPS satellites.

Orbits derived from different data sets may be compared as well. Orbit overlap studies analyze
the differences between two orbital parts stemming from two different orbits, which overlap in
time, i.e., partly similar data sets have been used for the determination of both orbital arcs.
In general, the middle of an orbital arc is better defined than the arc boundaries. Overlap
differences derived from the central part of an arc and a boundary part of another arc, both
of which were estimated with the same orbit model, are an indicator for the quality of the
orbit model. If the orbit model is not sufficient to perfectly represent the orbit given by the
measurements, the overlap differences become larger with increasing arc length, in particular if
long-periodic effects were neglected.

Similar information may be gained from the differences of satellite position at the arc bound-
aries derived from two consecutive arcs. A systematic behavior of satellite positions at arc
boundaries of successive arcs was reported by Slabinski (2006). Large along-track discontinu-
ities of several centimeters are not randomly distributed but show a systematic pattern in time.
Such comparisons indicate that the accuracy of the microwave-based orbits is lower than the
precision (derived from the formal errors) and the consistency between orbits from different
ACs let us expect.

3.3 Astrometric CCD Observations of GNSS Satellites

Observation of GNSS satellites are acquired for different reasons by optical telescopes. One
principle reason is the generation and maintenance of a catalog of orbital elements of artificial
satellites (active and passive satellites, fragments, and rocket bodies) for space surveillance and
space situational awareness purposes. On the other hand, GNSS satellites may be used for the
calibration of optical observation facilities (e.g., for the calibration of the telescope pointing, or
of the epoch registration), as for GNSS satellites very precise ephemerides data are available
from GNSS orbit determination based on microwave measurements. In principle any satellite
with precise ephemerides is suited for this purpose.

The build-up and maintenance of a catalog of orbits is the main aim of space surveillance
networks (SSN). Today, there are two operating SSNs, the U.S. SSN (Johnson, 1993) and the
Russian SSN. A European SSN is currently under study (Donath et al., 2005). Orbital data from
the U.S. SSN are published as so-called Two Line Elements (TLE), which are mean orbital
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elements over a certain time period. The U.S. TLE catalog includes all GNSS satellites (active
or inactive, seewww.space-track.org ).

Satellites with well known ephemerides may be used for the calibration and validation of optical
observations. The sensitivity of the optical telescope has to be at the level of about 14-16 mag
depending on the phase angle of the satellite, in order to observe GNSS satellites. The Space-
Based Visible (SBV) telescope, a space-based sensor contributing to the U.S. SSN, tracks GPS
satellites for the estimation of its sensor accuracy (Gaposchkin et al., 2000). The ESA (European
Space Agency) space debris telescope at Tenerife, a 1 m telescope dedicated to space debris
surveys (Schildknecht, 2007; Flury et al., 2000) makes also use of GPS satellites for calibration
purposes.

At the Zimmerwald observatory there are two telescopes, ZIMLAT (Zimmerwald Laser Rang-
ing and Astrometry Telescope) and ZimSMART (Zimmerwald Small Aperture Robotic Tele-
scope), capable of tracking GNSS satellites for the calibration of the epoch registration biases
and for the verification of the astrometric accuracy. ZIMLAT (see Fig. 3.11) is a 1 m telescope
designed as a multi-purpose instrument that may be used to perform SLR observations to artifi-
cial satellites as well as astrometric observations using CCD detectors. The astrometric obser-
vations of ZIMLAT are primarily acquired to maintain the orbits of faint space debris objects
(Flohrer et al., 2007; Schildknecht et al., 1999). Within the scope of this work astrometric
observations of GNSS satellites were acquired covering about four years.

Using ZIMLAT’s f/4 focal station the effective field of view (FoV) on the CCD detectors is
about20′ × 20′. Since November 2004, a CCD camera from Astrocam with E2V42-40 CCD

Figure 3.11: The 1 m telescope ZIMLAT at the Zimmerwald Observatory
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Figure 3.12: CCD exposure of a GNSS satellite, which is tracked by laser, acquired with Zim-
SMART; the prominent white line is the laser beam generated by ZIMLAT, at the
upper end of the beam is a small streak visible that is the laser-tracked GNSS
satellite

chips has been used. Its predecessor was the Photometrics camera equipped with a PM1024B
CCD chip. The PM1042B consists of1024 × 1024 pixels, which have a size of24µ × 24µ
each. The E2V42-40 CCD is an array of2048 × 2048 pixels of 13.5µ × 13.5µ. In the case
of the Astrocam camera pixel binning (combination of pixels) is applied during readout, which
reduces the effective number of pixels to1024×1024.

Since 2006 ZimSMART is operational and used to monitor objects in high-altitude regions.
Figure 3.12 shows a very interesting exposure acquired with ZimSMART illustrating both, SLR
tracking (ZIMLAT) and astrometric observation (ZimSMART) of a GNSS satellite at the Zim-
merwald Observatory. The satellite is indicated by the small narrow line at the upper end of the
laser beam. The exposure was, as a matter of fact, not intended to track the GNSS satellites,
but to search for an object in the geostationary orbit region. Therefore, the satellite as well as
the reference stars are mapped as streaks. When observing GNSS satellites, ZIMLAT tracks
the satellite. Then the satellite appears as a point and the reference stars as streaks on the CCD
frame.
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Figure 3.13: CCD observations of GPS satellites
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Figure 3.14: CCD observations of GLONASS satellites
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Figure 3.15: CCD observations of the two LAGEOS satellites
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Figure 3.16: Number of CCD observations of GNSS satellites

Astrometric CCD Observations Acquired at the Zimmerwald Observatory

Figures 3.13-3.15 show the distribution of CCD observations from 2003 to 2007 for the GPS,
GLONASS, and LAGEOS satellites. The satellites are labeled by the identification used in the
RINEX format. If a satellite of a GNSS constellation is replaced by a new one, both satel-
lites may get the same number. Therefore a doubling of numbers, as, e.g., visible in the GPS
observation plot (Fig. 3.13), is possible.

Figure 3.16 provides the number of observations as a function of time. It shows large variation,
as the number of observations depends on the available observation time, which is limited by
weather conditions and the length of the night, by the (quasi-simultaneous) acquisition of SLR
observations, and by the GNSS campaign priority. The time interval chosen (day of year (DoY):
040/2003 - 365/2006) is the time interval used for the validation of the CCD observations using
microwave-based GNSS orbits (see Sec. 4.1).

3.4 SLR Observations of GNSS Satellites

SLR observations of GNSS satellites are provided by the International Laser Ranging Ser-
vice (ILRS) for a subset of those satellites carrying LRAs. GNSS orbit determination based
on SLR data is quite possible, but those SLR-based orbits do not reach the accuracy of pure
microwave-based orbits, due to the sparse tracking network and the comparably low number
and uneven distribution of observations. For the validation of GNSS orbits the SLR data are,
however, very useful. This section introduces the ILRS activities related to GNSS tracking. The
orbit validation method and validation results are reported in Chapter 4.2.
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3.4 SLR Observations of GNSS Satellites

The ILRS Support for GNSS Satellites

The ILRS is one of the space geodetic services of the IAG. One of its main objectives is to
support geodetic and geophysical research activities through satellite laser ranging data (Gurtner
et al., 2004). Since 1993 and 1994 the two GPS satellites G05 and G06, equipped with LRAs,
are routinely tracked by the ILRS network, in order to provide independent, high-precision
measurements of satellite positions (Degnan and Pavlis, 1994).

The ILRS support for GLONASS satellites started in the early 1990’s. Up to now, SLR data have
been obtained of more than 25 different GLONASS satellites. In October 1998 the ILRS support
of the International GLONASS EXperiment (IGEX-98) started and was scheduled for three
months (and a five months extension). IGEX-98 was the first global GLONASS observation
campaign for geodetic and geodynamics applications. It was followed by the International
GLONASS Service (IGLOS), a service of the IGS to track and analyze data of the GLONASS
constellation. In May 1999 the ILRS decided to continue its support of IGLOS“indefinitely”,
but the number of GLONASS satellites observed by the ILRS was reduced from nine to three.
Currently, three of the GLONASS satellites (R07, R15, R24) are tracked in support of IGLOS.

Today, the ILRS tracking network consists of about 40 sites, of which about 15 are tracking
the GNSS satellites routinely, including a number of 11 ILRS core sites. Figure 3.17 shows the
geographical distribution of the SLR sites tracking GNSS satellites. Unfortunately, most of the
sites are on the Northern hemisphere. The number of observations greatly varies from station
to station, as the SLR systems but also the weather conditions are very different. Stations in
dry regions (e.g., in Australia) may have a much better performance than others. SLR sites
indicated by black triangles in Fig. 3.17 have a very good performance in tracking GPS as well
as GLONASS satellites. Sites with gray triangles are mostly tracking GLONASS satellites,
whereas white triangles indicate stations with very few GNSS observations.

Figure 3.18 shows the total number of SLR observations per day for GPS and GLONASS
satellites separately. These numbers refer to the time interval used for the validation of the
microwave-based GNSS orbits (DoY: 040/2003-365/2006) and only for the SLR sites marked
with black and gray triangles. The SLR station ID is the so-called Crustal Dynamics Project

Figure 3.17: Global distribution of the SLR stations that observe GNSS satellites
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040/2003-365/2006))

(CDP) number, a 4-digit code. The corresponding site locations can be found in the SLR site
listing in Table A.3, given in the Appendix A. The station ID 7810 corresponds to the observa-
tory in Zimmerwald. It is one of the ILRS core sites and shows a very good performance with
more than 15 000 observations of GNSS satellites within four years.

Figure 3.19 shows the number of SLR observations for GNSS satellites of all SLR sites as a
function of time. As most SLR systems can track the GNSS satellites only during the night,
the SLR observation statistic has a daily period. The size of the LRAs impacts the SLR mea-
surement. For larger arrays the number of successful laser range measurements, but also their
scatter, is higher. GPS satellites are equipped with LRAs of 32 corner cubes arranged in a flat
panel of19 × 24 cm. The LRAs on the GLONASS satellites are larger; 132 corner cubes are
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Figure 3.19: Number of SLR observations of GNSS satellites
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3.4 SLR Observations of GNSS Satellites

mounted on a circular area of66 cm diameter (ILRS, 2008). Therefore, the GLONASS satel-
lites are much easier to track and consequently the number of SLR observations of GLONASS
satellites is higher than that of GPS satellites. But a larger scatter of the range measurements is
expected for GLONASS. In addition, if multi-photon laser measurements are used, the satellite
signature may cause a maximum range bias of8 cm for GLONASS satellites at low elevation.

SLR observations (normal points) of GNSS satellites are formed by averaging the differences of
the individual range measurements to an a priori orbit over 5-min intervals. On a daily average,
only 5 to 20 normal points for each GPS satellite and about 10 to 40 normal points for each
GLONASS satellite are available.

For satellite tracking, CPF prediction files are used by the SLR stations. The CPF files for
GNSS satellites are provided by the CODE AC, and based on the orbit predictions derived
from microwave data. The accuracy of the predicted orbits is about20 − 50 cm for the first
prediction day. If CODE orbit predictions are not available due to, e.g., microwave tracking
problems, SLR-based predictions from the Honeywell Technical Services, Inc. (HTSI) may be
used instead.
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4. Mutual Validation of the Different
Satellite-Geodetic Techniques

This chapter presents the mutual validation of three satellite-geodetic techniques: GNSS, SLR,
and optical astrometry using CCDs. First, we validate the astrometric observation technique by
comparing the astrometric observations of GNSS or Laser satellites, acquired at the observatory
in Zimmerwald, with the satellite orbits estimated either from GNSS or SLR data. This method
allows the calibration of the optical observation system and the validation of the processed data.
The accuracy of astrometric observations for GNSS or Laser satellites can be assessed.

Furthermore, we validate GNSS orbits based on microwave-phase observations by using SLR
range measurements. The analysis of the resulting residuals allows the assessment of the GNSS
orbit accuracy in radial direction, as well as the detection of systematic errors in the GNSS
and/or SLR observation technique.

All computations have been performed using a development version of the Bernese GPS Soft-
ware (Dach et al., 2007).

4.1 Validating the Astrometric Observation Technique

The directions given by the astrometric CCD observations of GNSS satellites are compared with
the directions derived from microwave-based GNSS orbits. We use astrometric observations
acquired with ZIMLAT at the Zimmerwald Observatory during four years (2003-2006). This
data set is presented in Sect. 3.3. The microwave-based orbits are three-day arcs generated with
the CODE orbit model (see Sect. 3.2.2).

In addition SLR-based orbits of the two LAser GEOdynamics Satellites LAGEOS-1 and
LAGEOS-2 are used for the validation of the astrometric CCD observations. Both satellites
are aluminium-covered brass spheres with a diameter of60 cm and a mass of about400 kg,
entirely covered with 462 retroreflectors (see Fig. 4.1). They orbit at an altitude of5900 km
and5600 km, respectively. The inclination of the two orbital planes is109.8◦ for LAGEOS-1
and52.6◦ for LAGEOS-2. We use LAGEOS SLR-based orbits with an arc length of seven days,
provided by DGFI (Deutsches Geodätisches Forschungsinstitut, Munich, Germany).
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4 Mutual Validation of the Different Satellite-Geodetic Techniques

Figure 4.1: Illustration of the LAGEOS-1 sphere with its retroreflectors

4.1.1 Validation Procedure for Astrometric Observations

In order to compare an astrometric direction to a satellite with the direction derived from a
microwave-based or SLR-based orbit, both directions have to be given in the same reference
frame. The astrometric CCD observations are topocentric directions, given in the polar co-
ordinates right ascensionαCCD and declinationδCCD, and refer to the celestial reference sys-
tem (CRS) of the mean equator and equinox J2000.0. This CRS is a local inertial system moving
with the Earth’s geocenter.

As a matter of fact, the topocentric directions to the satellite are measured in a celestial refer-
ence frame (CRF), i.e., a realization of the CRS defined by the set of used reference stars (the
star catalog). The positions of the reference stars given by the catalog have to be transformed
into the detector coordinate system. First, corrections for proper motion, precession, nutation,
annual and diurnal abberation, and refraction are applied. Using these corrected star positions
the transformation parameters, describing the mapping model (which maps the detector coor-
dinate system to the celestial sphere, see Sect. 3.3), are estimated. The position of the satellite
can now be determined with respect to the reference star positions in the detector coordinate
system. In order to transform the satellite position into the CRS, corrections for refraction,
diurnal abberation, nutation, and precession are applied again. Thus the resulting topocentric
astrometric directions of the satellite are already corrected for annual aberration effects.

We developed a FORTRAN program namedORBTRAin the environment of the Bernese GPS
Software to compute the residuals in right ascension and in declination between the astrometric
directions from a topocentric observer to a satellite and the corresponding directions derived
from the microwave-based or SLR-based orbits. The programORBTRAperforms the necessary
transformations.

Table 4.1 gives the corresponding procedure of transformations and corrections, which are ap-
plied to the Cartesian coordinatesXORB (indicated by↓) and to the astrometric directions
αCCD, δCCD (indicated by↑). The coordinatesXORB are the geocentric satellite position at ob-
servation time derived from the microwave-based or SLR-based orbit and defined in the ITRF.
The numbers given in the first column refer to the following transformation and correction
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4.1 Validating the Astrometric Observation Technique

CRD Reference system Observer Correction Transformation

XORB ITRF geocentric

↓1 polar motion, UT1

CRF – ToD geocentric

↓2 nutation, precession

CRF – J2000 geocentric

↓3 geocentric parallax

↓4 correction for light time

F CRF – J2000 topocentric

↑5 parallactic refraction

α, δCCD CRF – J2000 topocentric

Table 4.1: Procedure of coordinate transformations and corrections for the validation of the as-
trometric observation technique in programORBTRA

steps. Steps 1-4 are applied to the geocentric positionXORB, whereas step 5 is applied to the
astrometric directionsαCCD, δCCD:

1. Polar motion and Earth rotation (see Sect. 2.3.3) are applied to transform the coordinates
from the ITRF into the GCRF of true system of date (ToD), i.e., the system of true equator
and equinox at observation epoch.

2. Nutation and precession are applied according to Eq. (2.48), to transform the coordinates
from ToD into the mean system J2000.0 (i.e., referring to the mean equator and equinox
J2000.0).

3. The geocentric parallax is applied to transform the geocentric coordinates to the topocen-
ter by

X∗
ORB = XORB −XSTA (4.1)

where the site coordinates of the observing telescopeXSTA were also transformed from
the ITRF into the GCRF using the transformation steps 1 and 2.

4. The correction for light-time is applied by

X∗∗
ORB = X∗

ORB − Ẋ
∗
ORB

r

c
(4.2)

where r . . . Topocentric distance of the satellite
c . . . Speed of light.

This correction takes into account the time∆t required for the light to travel from the
object to the observer. The measured position therefore corresponds to the position of the
object at timet−∆t and the observer at timet, wheret is the epoch of measurement.
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4 Mutual Validation of the Different Satellite-Geodetic Techniques

5. The parallactic refraction correction∆γ (see Sect. 2.4.2) is applied to the observed zenith
distancez, which is derived from the astrometric direction. This correction has to be taken
into account for objects at distancesρ . 105 km. Assuming a satellite with highth� r
and a standard atmosphere, the parallactic refraction correction (in radians) may be ap-
proximated, according to Schildknecht (1994) by

∆γ = −2.34 tan z

h cos z
, (4.3)

whereh is given in meters. It is, of course, also possible to apply the parallactic refraction
correction (with opposite sign) to the satellite position derived from the orbit.

At point F in Tab. 4.1 both coordinate sets refer to the same system. The Cartesian coor-
dinatesX∗∗

ORB are then transformed into polar coordinatesαORB, δORB. The CCD residuals
∆α∗,∆δ are computed as

∆α∗
.
= (αCCD − αORB) cos δ = ∆α cos δ (4.4)

∆δ
.
= δCCD − δORB . (4.5)

Figure 4.2 shows the resulting residuals. For∆α∗ the differences in right ascension∆α have
to be multiplied withcos δ, assuming that∆δ is small and that the observations do not occur
close to the celestial pole. For ZIMLAT at Zimmerwald the maximum possible declinationδ of
GNSS satellites is about 72◦.

For test purposes it is possible to introduce a time bias in programORBTRA, which is added to
the CCD observation epoch. In addition to the computation of residuals,ORBTRAmay also be
used to transform Cartesian coordinates derived from orbit positions into astrometric directions.

Figure 4.2: Validation method for the astrometric observation technique
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4.1 Validating the Astrometric Observation Technique

4.1.2 Validation Results for Astrometric Observations Using
Microwave-based GNSS Orbits

With the validation procedure outlined in Sect. 4.1.1 we generated two time series of CCD
residuals∆α∗ and ∆δ over a time interval of about four years (DoY: 40/2003 - 365/2006)
for GPS and GLONASS satellites. The data set is described in detail in Sect. 3.3. Altogether
about 7300 observations are available within this time interval. Figure 4.3 shows the residuals
(in arcseconds) as a function of time. Outliers due to object misidentifications have been re-
moved previously. Misidentifications may be caused, e.g., by star occultation, when the object
image partly coincides with a star, or by reflection effects within the optical components of the
telescope.

A significant offset in the∆α∗ residuals and a significant change in the scattering of the∆δ resi-
duals is noticeable in November 2004. Both effects can be traced back to a problem at the epoch
registration. A time bias will produce such an offset in right ascension, as the GNSS satellites
are always moving in positive direction of right ascension, whereas in declination different
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Figure 4.3: Raw CCD residuals∆α∗ and∆δ for the GNSS satellites as a function of time
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directions of movement are possible, in positive direction before the culmination and in negative
direction after the culmination (in the (α, δ) system). A time bias thus increases the scattering
of the residuals in declination. In addition, a time bias is always clearly reflected in the residuals
in along-track direction, which will show a constant offset, whereas the out-of-plane residuals
should not show any biases.

Figure 4.4 shows both series of residuals (in along-track and out-of-plane) as a function of time.
The points in dark gray correspond to the observation, which are not affected by any time biases,
whereas the black dots correspond to the observations affected by a time bias. The mean value
of the along-track residuals is about41 meters, corresponding to a time bias of−0.01 seconds.
We found this time bias of−0.01 seconds starting from DoY 313/2004 for the presented time
series of residuals. The problem is correlated in time with the change of the camera and the
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Figure 4.4: CCD residuals in along-track and out-of-plane direction for the GNSS satellites
as a function of time; gray dots indicate residuals without any time bias; black
dots indicate residuals with negative time bias (negative mean value in along-track
direction) due to camera change; light gray dots indicate residuals with positive time
bias (postive mean value in along-track direction) due to smear mode problems
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4.1 Validating the Astrometric Observation Technique

CCD chip (see Sec. 3.3) and the corresponding change in the epoch registration technique for
ZIMLAT in November 2004. Indeed the problem was detected in the electronics of the epoch
registration of the new camera in December 2007. A determined correction of−0.0084 seconds
has to be applied to all observation epochs. This value corresponds nicely to the time bias found
in our analysis.

In addition there was a known problem with the smear mode for some observations acquired
in January 2005. The smear mode is a built-in function of the CCD camera used at that time
and allows small row shifts of the register at start and end of each exposure, indicating start and
end epochs with small streaks at the exposure (see Schildknecht, 1994). For the time intervals
where the smear mode was erroneously turned off, we found a time offset of0.015 seconds. It
is also clearly visible in the along-track residuals (see Fig. 4.4) indicated by the light gray dots.
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Figure 4.5: CCD residuals∆α∗ and∆δ for the GNSS satellites as a function of time corrected
for time biases due to camera change and smear mode problems; mean values over
ten day intervals (black dots); regression line (black line); the distribution of the
residuals is shown in the histogram
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Both estimated time offsets due to camera change and the smear mode problem were added
to the epoch of the CCD observations for the further validation. The recomputed residuals are
shown in Fig. 4.5 as a function of time. The statistical information of the residual series is
summarized in Table 4.2. The first column specifies the considered residuals (as a function of
a specific parameter, as, e.g., timet). The standard deviationσ is given in the second column,
the mean valuēx with its formal error in the third column. The slopem of the regression line,
which is derived by least squares adjustment from the single residual values, is specified in the
fourth column. All values are given in arcseconds. Column five lists the approximate number
of CCD residuals #res. The last column provides the figure numbers with the corresponding
residual series.

The standard deviations of both series of residuals∆α∗ and∆δ decrease from0.3′′ (for the
uncorrected residuals) to about0.2′′ (for the residuals corrected for time offsets). Also the mean
values decrease to about0.02′′ and0.08′′ for ∆α∗and∆δ, respectively. The black dots in Fig. 4.5
represent mean values of the residuals over time intervals of ten days. The black horizontal line
is the regression line. There is no significant slope of the regression line for the CCD residuals
as a function of time. The∆α∗ residuals are normally distributed, centered at a mean value
of zero, which is shown by the histogram in Fig. 4.5. For∆δ there is, however, an offset of
about0.1′′. Also, the histogram indicates that the∆δ residuals are not normally distributed.

We try to understand this systematic behavior of the∆δ residuals. First we check the residuals
in elevation as a function of elevation, which would indicate an error in the applied refraction
model. Such refraction errors might be reflected in the residuals in declination. Figure 4.6

Residuals σ (′′) x̄ (′′) m (′′/deg) # res Fig.

∆α∗(t) uncorrected 0.268 −0.132± 0.003 7300 4.3

∆δ(t) uncorrected 0.301 0.058± 0.004 7300 4.3

∆α∗(t) 0.198 0.015± 0.002 0.000 7300 4.5

∆δ(t) 0.208 0.081± 0.002 0.000 7300 4.5

∆e(e) 0.213 0.006± 0.002 0.000 7300 4.6

∆δ(a) 0.208 0.081± 0.002 0.000 7300 4.9

∆δ(e) 0.208 0.081± 0.002 0.003 7300 4.9

∆δ(α) 0.208 0.081± 0.002 0.000 7300 4.9

∆δ(δ) 0.208 0.081± 0.002 0.003 7300 4.9

∆δ(δ) 100% USNO-B1.0 0.180 0.172± 0.004 0.002 2570 4.12

∆δ(δ) 100% UCAC2 0.184 −0.002± 0.007 0.000 640 4.13

∆δ(δ) > 80% UCAC2 0.177 0.005± 0.003 0.001 3000 4.14

Table 4.2: Statistical information of the CCD residuals for the GNSS satellites: standard devia-
tion σ, mean valuēx with formal errors, slope of the regression linem, approximate
number of CCD residuals # res; the last column specifies the corresponding figures
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Figure 4.6: CCD residuals∆e for the GNSS satellites as a function of elevatione; mean values
over 3◦ intervals (black dots); regression line (black line)

shows the residuals in elevation∆e as a function of the elevation. There is no significant offset
or pattern. The standard deviation of about0.2′′ is similar to that of the∆α∗ and∆δ residuals.
This leads to the conclusion that there are no significant systematic errors in the refraction
modeling.

In order to explain the offset in the∆δ residuals we examine now the∆δ residuals as a function
of azimutha, elevatione, right ascensionα, and declinationδ. Therefore, we first have a look
at the distribution of the observations in right ascension and declination and in azimuth and
elevation.

Figure 4.7 gives the declination for each observation as a function of the right ascension. Ob-
servations of GPS satellites are represented by gray dots, those of GLONASS satellites by black
dots. The differences in maximum declination are due to the different inclinations of the orbital
planes of about55◦and64◦, respectively. For the GPS satellites we note a slight degrading of
the maximum declination with increasing right ascension, which is due to small differences in
the inclinations of the six orbital planes.

The two large areas without observations are due to restrictions set by the location of the Milky
Way. No exposures were acquired for regions of galactic latitude|l| < 20◦, as in these regions
the very large number of stars could likely cause that the object appears in front of a star and
thus prevent the object identification.

The distribution of the observations in each coordinate is given by the histograms. Most of
the observations are located at high declinations between50◦−60◦. These observations at high
declination map into right ascensions between 6−8 hours and 14−18 hours.

Figure 4.8 shows the elevation for each observation as a function of the azimuth and the cor-
responding histograms, giving the distribution of the observations. The regions of high decli-
nation correspond to ‘caustics’ in the azimuth-elevation plot. The caustics are at azimuths of
about0◦−60◦and about300◦−360◦, and at elevations of40◦−90◦.

Let us now check the residuals shown in the four subfigures of Fig. 4.9, which show the∆δ resid-
uals as a function of azimuth, elevation, right ascension, and declination, respectively. Mean
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Figure 4.7: Distribution of the CCD observations for the GPS (in gray) and the GLONASS
(in black) satellites in right ascensionα and declinationδ; the distribution of the
observations is shown in the histograms
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Figure 4.8: Distribution of the CCD observations for the GPS (in gray) and the GLONASS (in
black) satellites in azimutha and elevatione; the distribution of the observations is
shown in the histograms

values and regression lines are provided in addition. The corresponding statistical information
is contained in Table 4.2.

The residuals inδ as a function of the declination (fourth plot in Fig. 4.9) show a strong depen-
dency on the declination. The slope of the regression line is about0.003′′/◦, which corresponds
to 0.27′′/90◦. In addition, we see in all figures that significant positive mean values of the∆δ
residuals occur for high declinations (50◦−60◦). In this region of high declination the largest
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Figure 4.9: CCD residuals∆δ for the GNSS satellites as a function of azimutha, elevatione,
right ascensionα, and declinationδ; mean values over 3◦ (for a andα) and 10◦

(for e andδ) intervals (black dots); regression lines (black lines)
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amount of observations were acquired, which map, as explained before, in different regions of
right ascension, azimuth and elevation.

We now know that there is a systematic positive offset for∆δ residuals corresponding to obser-
vations at high declinations. This dependency is reflected in the residuals∆δ as a function of
right ascension, declination, azimuth, and elevation. The strongest dependency is that on decli-
nation. A declination-specific effect is very unlikely caused by systematic orbit errors. Hence
we concentrate on the analysis of the astrometric observations as other possible source. The
corrections applied in the astrometric reduction process are not declination-specific. But the
catalogs used for the reference star positions have different limits of their declination coverage.

Five different catalogs were used for the reference star positions: Hipparcos, Tycho2, UCAC2,
USNO-B1.0, and GSC. The catalogs are listed in decreasing order of astrometric accuracy. The
most accurate star positions and proper motions are provided by the Hipparcos catalog. As
the star catalogs cover different areas of the celestial sphere with different spatial density and
different magnitude ranges, a mixture of the five catalogs is used for processing each CCD
exposure, where the catalog providing the highest accuracy is preferred. All reference star
positions of an exposure are used with the same weight for the estimation of the transformation
parameters, independently of the catalog accuracy.

Figure 4.10 shows the number of reference stars used for each exposure as a function of time.
The number of Hipparcos reference stars is limited to 2−3. Also the number of Tycho2 ref-
erence stars is rather small with 10−20 for one CCD exposure. The GSC catalog was used
only in 2003. It is not as accurate as the other catalogs, which explains the larger scattering of
the CCD residuals in the first two quarters of 2003. Most reference star positions (up to 150)
are taken from the UCAC2 catalog, which became available in July 2003. It covers the area
−90◦≤ δ ≤ 40◦, going up to52◦ in some areas (Zacharias et al., 2004). Its position accuracy at
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Figure 4.10: Number of reference stars used from the catalogs UCAC2, GSC, USNO-B1.0,
Tycho2, and Hipparcos
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Figure 4.11: Number of observations (%) of GNSS satellites as a function of the usage of
USNO-B1.0 reference stars (%) from a total of UNSO-B1.0 and UCAC reference
stars

J2000 is0.015′′ − 0.070′′, depending on the star magnitude. But also USNO-B1.0 star position
are frequently used with up to 100 positions per exposure. The position accuracy at J2000 of
the USNO-B1.0 catalog is, however, limited to0.2′′ (Monet et al., 2003).

Let us now focus on the two most frequently used star catalogs UCAC2 and USNO-B1.0. The
histogram in Fig. 4.11 shows the number of reference stars used from USNO-B1.0 (in percent-
age) from a total of UCAC2 and USNO-B1.0 reference stars. The other three catalogs are not
considered. For about44% of the CCD exposures the USNO-B1.0 catalog was used exclu-
sively, whereas for about10% of observations, the UCAC2 catalog was used exclusively. For
the remaining45% both catalogs were used, but the larger part of reference stars (up to80%)
was taken from the UCAC2 catalog. Thus the number of used reference stars is well separated,
either the USNO-B1.0 catalog is used or the UCAC2 catalog together with a small percentage
(up to20%) of USNO-B1.0.

The residuals∆δ corresponding to CCD observations generated with USNO-B1.0 reference
star positions only are provided in Fig.4.12. The statistical information related to the residuals
may be found in Table 4.2. The standard deviation of these residuals is0.18′′. A significant
offset in declination of about0.17′′ is seen.

Figure 4.13 shows the residuals∆δ corresponding to observations, where only UCAC2 refer-
ence stars were used. The standard deviation is also about0.18′′, but there is no offset in declina-
tion. The maximum declination for which only UCAC2 reference stars were used is about50◦,
as the catalog coverage is restricted toδ < 52◦. For higher declinations the USNO-B1.0 cata-
log is used exclusively. The large number of residuals in Fig. 4.12 between50◦and60◦is thus
explained. Most of the observations occur in the declination area, where only the USNO-B1.0
catalog can be used. We may thus conclude that there is an offset in declination for CCD
observations processed with USNO-B1.0 reference star positions.

In Fig. 4.13 (where only UCAC2 reference stars were used) only10% of all CCD observations
are included, which might limit the validity of our conclusions. Thus we include in Fig. 4.14
all observation, where80 − 100% of UCAC2 reference stars were used, which corresponds to
about55% of all CCD observations. This figure does not reveal significant offsets, although a
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Figure 4.12: CCD residuals∆δ for the GNSS satellites as a function of declinationδ; all ref-
erence stars are from USNO-B1.0; mean values over 3◦ intervals (black dots);
regression line (black line)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-20 -10  0  10  20  30  40  50  60  70

∆δ
 (

ar
cs

ec
)

δ (deg)

Figure 4.13: CCD residuals∆δ for the GNSS satellites as a function of declinationδ; all refer-
ence stars are from UCAC2; mean values over 3◦ intervals (black dots); regression
line (black line)
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Figure 4.14: CCD residuals∆δ for the GNSS satellites as a function of declinationδ; more
than80% of the reference stars are from UCAC2 (from a total of USNO-B1.0 and
UCAC2); mean values over3◦ intervals (black dots); regression line (black line)
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4.1 Validating the Astrometric Observation Technique

small systematic slope of the regression line is seen, which might be due to the up to20% usage
of USNO-B1.0 star positions.

In summary we conclude that there is an offset in declination of about0.17′′ related to USNO-
B1.0 reference star positions. This offset was previously unknown. It is, however, within the
specified position accuracy of0.2′′ given by Monet et al. (2003).

4.1.3 Validation Results for Astrometric Observations Using
SLR-based Orbits

In order to validate the astrometric CCD observations, we may also use SLR orbits for the SLR
satellites LAGEOS-1 and LAGEOS-2 and CCD observations of the two satellites. Seven-day
SLR orbits produced by DGFI and CCD observations made by the ZIMLAT are used for this
purpose. Due to the reduced height above the Earth surface and the larger orbital velocity (the
apparent angular velocity is about30′′/s for the GPS and about240′′/s for the LAGEOS satel-
lites) the apparent motion of the LAGEOS satellites is much larger than that of either GPS or
GLONASS satellites. Therefore, LAGEOS-1 and LAGEOS-2 are well suited for the calibra-
tion of the epoch registration of the CCD observation system (time biases are expected to show
larger values in the CCD residuals for LAGEOS compared to GNSS satellites). CCD observa-
tions of LAGEOS acquired with ZIMLAT are available for about 6 months in 2005. We expect
to find the same time biases as those detected for the GNSS satellites.

Figure 4.15 shows the CCD residuals in right ascension∆α∗ and declination∆δ for LAGEOS-1
(in gray) and LAGEOS-2 (in black) as a function of time. As expected both satellites show
an offset in right ascension and a large scattering in declination indicating a time bias. The
corresponding statistical information are summarized in Table 4.3. The standard deviation of
the residuals is about1′′. For LAGEOS-1 there is a positive mean value of about1′′, and for
LAGEOS-2 a negative mean value of about−1.4′′ in right ascension. The opposite signs result
from the opposite crossing directions of the satellites with respect to the right ascension.

Figure 4.16 shows the distribution of the observations in right ascension and declination. In
the observation period LAGEOS-1 moves from low to high right ascensions and declinations,
whereas LAGEOS-2 moves from high to low right ascensions and declinations (indicated by

Residuals σL1 (′′) x̄L1 (′′) σL2 (′′) x̄L2 (′′) Fig.

∆α∗(t) uncorrected 0.970 1.029 0.752 −1.400 4.15

∆δ(t) uncorrected 1.034 1.021 1.138 −0.329 4.15

∆α∗(t) 0.271 0.010 0.263 0.023 4.17

∆δ(t) 0.311 0.055 0.280 0.072 4.17

Table 4.3: Statistical information of the CCD residuals for LAGEOS-1 (L1) and LAGEOS-
2 (L2): standard deviationσ, mean valuēx with formal errors; the last column spec-
ifies the corresponding figures
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Figure 4.15: Raw CCD residuals∆α∗ and∆δ for the LAGEOS satellites as a function of time

 0

 30

 60

 0  2  4  6  8  10  12  14  16  18  20  22  24

δ 
(d

eg
)

α (hours)

LAGEOS−1

LAGEOS−2

Figure 4.16: Distribution of the CCD observations for LAGEO-1 and LAGEOS-2 satellites
in ∆α∗ and∆δ; the arrows indicate the direction of movement

76



4.1 Validating the Astrometric Observation Technique

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

MayAprMarFebJan

∆α
∗  (

ar
cs

ec
)

Month of year 2005

LAGEOS−1
LAGEOS−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

MayAprMarFebJan

∆δ
 (

ar
cs

ec
)

Month of year 2005

LAGEOS−1
LAGEOS−2

Figure 4.17: CCD residuals∆α∗ and∆δ for the LAGEOS satellites as a function of time cor-
rected for time bias due to camera change

the arrows in Fig. 4.16), due to the different inclination of the orbital planes. As only obser-
vations prior or after the culmination of the satellites are available, we also see a mean offset
in declination. Introducing a time bias of about 0.01 seconds (which was already found in the
previous section) removes the offsets in the residuals series and reduces the standard deviation
of the residuals∆α∗ and∆δ to 0.03′′ (see Fig. 4.17 and Table 4.3). This formal error is slightly
larger than for the GNSS satellites due to the higher velocity of the satellites. The reference
stars are mapped on the exposure with longer streaks, which may weaken the estimation of the
center of light.

Conclusions

We validated about four years of astrometric CCD observations of GNSS satellites acquired
with ZIMLAT using GNSS orbits based on microwave-phase observations. In addition CCD
observations of the two LAGEOS satellites were validated using SLR-based orbits. The valida-
tion allows the estimation of the CCD observation accuracy and the identification of systematic
errors. The RMS error of the CCD residuals with respect to the microwave orbits is of the order
of 0.2′′, which reflects the accuracy of the CCD observations acquired with ZIMLAT. System-
atic errors of the order of0.1′′ are not present neither for the astrometric observation technique
itself nor for the data reduction procedure of the observation.
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In addition, the validation of the astrometric observation technique using GNSS satellite has
revealed the presence of two systematic effects. An epoch registration offset was detected with
a value of 0.01 seconds. After correcting the CCD residuals for that time bias the formal errors
of both time series of residuals in right ascension and declination have the same size of0.2′′,
indicating that there are no more systematic effects in the epoch registration. Further, we found
a significant offset of about0.17′′ in the∆δ residuals. This effect could very well be explained
by a systematic catalog offset in declination of the USNO-B1.0 catalog.

We conclude that our validation technique is well suited for the calibration and monitoring
of the critical epoch registration related to optical observations of fast moving objects. Low
Earth Satellites (LEOs) as the LAGEOS satellites are particularly suitable for the calibration
and monitoring of the epoch registration system. Thus we propose the continuous (once per
observation-night, at least once per month) acquisition of a small number of optical LAGEOS
observations, which can be compared with SLR-based orbits. Our proposed method consumes
only very little observation time, and it can be executed in principle with any optical observation
system. Thinking of future networks of optical observation systems (such as space surveillance)
the development of a standardized procedure based on our method is highly recommended.

Further this validation technique allows the detection of other systematic effects that might be
present in the data reduction process.

As reference stars from a given star catalog define a specific CRF, the optical observation of
artificial Earth satellites allows also the validation of stellar reference frames. This idea is not
new. In 1984, Bauerš́ıma (1984) proposed a project called the“Coupled Quasar, Satellite, and
Star Positioning (CQSSP)”: Artificial satellites should be used to provide a direct link between
the celestial reference frames (see also Schildknecht et al. (1991)). On the one hand, if the satel-
lite is observed together with reference stars by optical telescopes, the satellite position is well
defined in the stellar reference frame. On the other hand, the orbit of the satellite is well known
in the terrestrial reference frame. The orientation of the terrestrial reference frame with respect
to the quasar-based reference frame is given by the Earth orientation parameters (EOPs). Thus,
optical astrometric observation of satellites would allow it to monitor the transformation be-
tween the quasar-based (using radio telescopes) and the stellar-based (using optical telescopes)
reference frames.

Today the limiting factor still is the accuracy of the astrometric observations. To validate the
EOPs the optical observation accuracy has to be improved by a factor of 100. The catalog offset
found in declination at a size of about0.17′′ is, however, a good example for the capability to
validate stellar reference frames with artificial Earth satellites. But the idea of CQSSP was not
to detect such comparable large catalog errors. In principle a direct comparison of star positions
from different catalogs would be a more appropriate (i.e., easier) way for the identification of
catalog errors, unless the stars are not covered by both catalogs. In this case our validation
method still allows catalog validation and moreover the assessment of the catalog accuracy,
however, limited by the CCD observation accuracy.
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4.2 Validating Microwave-based GNSS Orbits Using
SLR Observations

In order to validate GNSS orbits based on microwave observations, the measured laser ranges
are compared with the ranges derived from the orbital information (from GNSS analyses) and
the SLR site position. This validation method is well known and several results have been
published during the last 10 years. Degnan and Pavlis (1994) studied range residuals of the
GPS satellite G05 for 100 days in 1993. Pavlis and Beard (1995) derived SLR orbits for the
same satellite from 14 days measurements in November 1993. They compared the SLR orbits
with GPS microwave orbits. Range residual analysis of both GPS satellites, G05 and G06, were
carried out by Watkins et al. (1996) for SLR measurements from 1995, by Zhu et al. (1997) for
measurements from November 1993 to January 1996, and by Springer (2000) for measurements
from January 1995 to July 1999. Eanes et al. (1999) and Ineichen et al. (2000) studied range
residuals for GLONASS satellites from 1998 and 1999. Appleby and Otsubo (2000) used data
from January 1999 to May 2000 for range residuals analysis of both, GPS and GLONASS
satellites.

Most of these studies revealed a bias of about−5.5 cm for GPS satellites between the micro-
wave-based orbits and the SLR measurements. The GPS orbit accuracy was estimated to
about5 cm. For the GLONASS satellites, there was also a negative offset found of about−4 cm.
The accuracy of the GLONASS orbits was at the10− 15 cm level.

The validation studies performed within the scope of this work are based on the analysis of
range residuals for the two GPS satellites equipped with laser retroreflector arrays (LRA) G05
and G06, and for four GLONASS satellites using about four years of SLR data, starting in 2002
until early 2006. R07 is a new GLONASS-M type satellite and replaced the GLONASS satellite
R24 in the SLR tracking scheme in August 2005. The final orbit products from three of the IGS
analysis centers, namely from CODE, GFZ, JPL (see Table 4.4), as well as the combined IGS

Orbit Institution Software used Model description

CODE Center for Orbit Bernese GPS Software (Hugentobler et al., in press)
Determination in Europe, Version 5.0
Bern, Switzerland

GFZ GeoForschungsZentrum EPOS.P.V2 (Ge et al., in press)
Potsdam, Germany

JPL Caltech/NASA Jet GIPSY/ OASIS-II (Vigue-Rodi et al., in press)
Propulsion Laboratory,
Pasadena, U.S.A.

IGS Combined orbit, generated by the IGS (Gendt and Nischan, in press)
Analysis Center Coordinator (ACC)

Table 4.4: Summary of the validated orbits
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orbit product were validated. The final orbits are the central 24 hours of three-day arcs in the
case of CODE and GFZ, and of 30-hours arcs in the case of JPL.

4.2.1 SLR Validation Procedure

To validate GNSS orbits using SLR, the ‘ranges’ or distances between the satellite and the
observing site obtained from both, SLR range and microwave measurements, are compared.
The difference between the observed SLR range and the range computed using the SLR site
coordinates and the orbital information obtained from microwave phase data is known as range
residual∆r, illustrated in Figure 4.18.

The range residuals are primarily an indicator for the radial accuracy of the microwave orbits,
because the maximum angle of incidence of the laser pulse onto the satellite’s LRA is only
about 14◦ due to the high altitude of the GNSS satellites.

As the orbits derived from microwave data refer to the satellite’s center of mass, the difference
vector between the center of mass and the LRA center of reflection has to be added to the laser
range measurement (see Sect. 2.4.2) in the validation procedure. This difference vector is com-
monly known as retroreflector offset. Table 4.5 lists the used satellites and the corresponding
retroreflector offsets as provided by the ILRS (ILRS, 2008). They are expressed in the satellites’
body-fixed coordinate system (see Sect. 3.1.2). The GLONASS-M reflector offset differs from
that of the other GLONASS type satellites. The LRA does no longer coincide with the z-axis as
it was the case for the older GLONASS satellites. Furthermore, it is worth to note that a change

Figure 4.18: SLR validation method
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Satellite type PRN COSPAR-ID x (m) y (m) z (m)

GPS G05 1993-054A 0.8626 −0.5245 0.6695
G06 1994-016A 0.8626 −0.5245 0.6717

GLONASS R03 2001-053B 0.0000 0.0000 1.5550
R22 2002-060A 0.0000 0.0000 1.5550
R24 2000-063B 0.0000 0.0000 1.5550

GLONASS-M R07 2004-053B 0.1370 0.0030 1.8740

Table 4.5: Retroreflector offsets for the used GNSS satellites

in the z-offset for the two GPS satellites by about1 cm is due to a tray segment between the
LRA and the spacecraft, which was not considered before (Davis et al., 2005).

For the attitude modeling of GPS Block IIA satellites passing the Earth’s shadow, we apply yaw
rotation rates provided by JPL (Bar-Sever, 1994). Disregarding the rotational behavior of GPS
satellites during eclipse phase would lead to biased range measurements reaching values up
to 40 cm. Figure 4.19 shows range residuals during an eclipse phase for the satellite G06 with-
out (left) and with (right) applying JPL’s yaw rotation rates. Range residuals outside eclipses
are marked in black, whereas residuals from observations during eclipse are marked in gray.
The figure indicates that correct modeling of the satellite’s attitude within the Earth’s shadow
decreases significantly the resulting SLR residuals.

The SLR site coordinates are given in the reference frame ITRF2000, whereas the orbit determi-
nation refers to the IGS00 reference frame, which is the IGS realization of the ITRF2000. The
IGS00 is aligned to the ITRF2000, ensuring consistency between the two frames. The datum
definition for the orbit determination is done with network constraints, i.e., a no-net-rotation
condition is imposed for a set of well defined IGS core site. A translation of the network is
allowed and accordingly estimated during the parameter adjustment. Hence, the orbits may be
shifted with respect to the ITRF2000 reference frame. As this shift is not known to us for all of
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Figure 4.19: SLR residuals∆r derived from CODE final orbits for the GPS satellite G06 outside
and during eclipse as a function of time;left: without applying yaw rotation rates;
right: with applying yaw rotation rates
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the used orbits, we have to neglect those network translations and thus accept small inconsis-
tencies between orbits and SLR site coordinates.

SLR normal points causing residuals larger than 1 meter were excluded as outliers. In addition
only normal points based on more than 12 data points were taken into account. In general
about 100 single measurements contribute to one normal point, which is valid over time interval
of 5 minutes.

4.2.2 SLR Validation Results

This section presents the validation results derived from the orbits of various analysis centers.
The statistical information of the individual solutions are summarized in Table 4.6. It gives the
standard deviation and the associated range biases in cm for all final orbit products considered.
The last column gives the approximate number of used normal points.

In all solutions, the standard deviation (i.e., the root mean square deviation from the arithmetic
mean) of the range residuals for the GPS orbits is about2 − 3 cm. This value stands primarily
for the radial accuracy of the three-day arcs. The mean bias (i.e., the arithmetic mean) for GPS
satellites is between−3 cm and−4 cm. It differs by up to1 cm between the orbit solutions,
reflecting the orbital scale differences. The negative sign indicates that the distance to the satel-
lite measured with SLR is shorter than the distance derived from the microwave-based orbits.
For the GLONASS satellites the standard deviation of the range residuals is about5 cm. The
lower orbit quality compared to GPS is mainly due to the much sparser IGS tracking network
for GLONASS satellites. The mean range bias for the GLONASS satellites does not differ
significantly from zero.

Figure 4.20 shows the range residuals∆r derived from the CODE final orbits for the two GPS
satellites G05 and G06, and Figure 4.21 for the GLONASS satellites R03, R22, R24, and the

PRN σ (cm) x̄ (cm) #∆r

CODE GFZ JPL IGS CODE GFZ JPL IGS

G05 2.2 2.3 2.2 1.9 −3.5 −3.6 −2.6 −3.1 11400

G06 2.7 2.7 2.5 2.5 −3.8 −3.9 −2.8 −2.8 10900

R03 4.9 −1.0 17600

R22 4.6 −0.4 21000

R24 5.1 −0.3 12600

R07 5.7 0.5 3200

Table 4.6: Statistical information of the SLR residuals derived from more than four years of
microwave-based GNSS orbits (final orbits of CODE, GFZ, JPL, and combined IGS
final orbits): standard deviationσ, mean value (range bias)x̄ with formal errors, and
approximate number of SLR residuals (#∆r)
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Figure 4.20: SLR residuals∆r derived from CODE final orbits for the GPS satellites G05 and
G06 as a function of time; shaded areas indicate eclipse seasons
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Figure 4.21: SLR residuals∆r derived from CODE final orbits for the GLONASS satellites
R03, R22, R24, and R07 as a function of time
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GLONASS-M satellite R07. The residuals are given as a function of time. For the GPS orbits,
we observe a periodic pattern with residuals of up to10 cm amplitude, systematically point-
ing into negative direction. The largest residuals occur when the satellite is observed within
the Earth’s shadow during eclipse seasons (indicated with shaded areas in Figure 4.20). But
systematically large residuals are not restricted to shadow periods. The repeat period of this
pattern is about 352 days, which corresponds to the draconitic GPS year (see Sect. 3.1.1). As
both, observation geometry as well as the orbit-Sun geometry, repeat with this period, it is not
easily possible to identify the source of the periodic pattern. It is not possible either to attach
the effect to the SLR or to the microwave observation technique.

For further investigation of the periodic signature, the following experiment was performed.
As the residuals for both GPS satellites show the same pattern, we analyze them together. We
subtract the mean bias from the range residuals, and color the resulting residuals∆r∗ according
to their values as displayed in Figure 4.22.

These colored range residuals are now no longer displayed as a function of time, but rather in a
system that takes into account the position of the Sun with respect to the satellite – the (∆u, β0)
coordinate system, where the angle∆u is the argument of latitude of the satellite with respect
to the argument of latitude of the Sun and the angleβ0 is the elevation of the Sun above the
satellite’s orbital plane (see Sect. 3.1.2). Figure 4.23 shows the color-coded range residuals∆r∗

for both GPS satellites derived from the CODE final orbits in this system. Thus, the residuals
are projected to the celestial sphere with the Earth’s shadow at the center of the figure using a
plate carée projection. The phase angleE, the angle Sun-satellite-Earth (geocenter), is indicated
with circles spaced by15◦. Each circle represents a line of equal phase angle.E is 0◦ at the plot
center (∆u = 180◦ andβ0 = 0◦), and180◦ at (∆u = 0◦ andβ0 = 0◦).

During its orbital revolution a satellite crosses the figure on a horizontal line from left to right.
If β0 = 0◦, the Sun lies in the orbital plane and if, in addition,∆u = 180◦, the satellite is
in the deepest shadow. At the opposite side of the orbital plane (β0 = 0◦,∆u = 0◦) no SLR
observations are available, as the satellite is too close to the Sun for laser observations. We
observe a systematic pattern with the largest values for shadow passes, but large systematic
effects are not restricted to the shadow passes.

Figure 4.23 (bottom) shows the projection of the residuals onto the∆u-axis, whereas the
Fig. 4.23 (left) shows the projection onto theβ0-axis. The dependency of the residuals on
the satellite’s position within the orbital plane is clearly visible, and hence indicates problems
in the microwave orbit modeling.

The same signature is observed when considering the range residuals stationwise. In Fig. 4.24,
the range residuals are given for four SLR sites (Riyadh (7832), Herstmonceux (7840), Yarra-
gadee (7090), and Zimmerwald (7810)). For each SLR site, although located at very different
geographical locations, a similar pattern can be observed.

The SLR residuals derived from the IGS, GFZ as well as the JPL microwave-based orbits show
a similar pattern, which is clearly not dependent on the SLR stations. The corresponding figures
can be found in the Appendix B (Figs. B.1, B.2, B.3).

We conclude that the periodic pattern is not caused by the SLR observations, but must be due
to deficiencies of the models used in the microwave data analysis.
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Figure 4.22: SLR residuals∆r∗ derived from CODE final orbits for the GPS satellites G05 and
G06 as a function of time
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Figure 4.23: SLR residuals∆r∗ derived from CODE final orbits for the GPS satellites G05 and
G06 in the(∆u, β0) coordinate system;bottom: projection onto∆u-axis; left:
projection ontoβ0-axis; circles represent the phase angleE, 15◦ spacing,0◦ at
center (∆u = 180◦ andβ0 = 0◦), 180◦ at (∆u = 0◦ andβ0 = 0◦)

The CODE final orbits were generated with the CODE orbit model ECOM (see Sect. 3.2.2). Six
orbital elements and five dynamical parameter, namely three constant parameters (D0, Y 0,B0)
and two once-per-revolution parameter (BS, BC), were estimated. For the validated CODE
GPS orbits, the ROCK models T20 and T30 (see Sect. 3.1.3) were used as a priori solar radi-
ation pressure (SRP) models until a model change to the CODE SRP model (see Sect. 3.1.3)
in November 2005. The T20 and T30 models were also used for the GFZ orbits, but only
two constant acceleration parameters,D0 andY 0, were estimated. JPL uses the JPL empirical
model (a ROCK-like model) for GPS Block II/IIA, and the Lockheed Martin SRP model (Bar-
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Figure 4.24: Station-specific SLR residuals∆r∗ derived from CODE final orbits for the GPS
satellite G05 in the(∆u, β0) coordinate system
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Figure 4.25: SLR residuals∆r∗ derived from CODE final orbits for the GLONASS satellites
R03, R22, R2, and R07 in the(∆u, β0) coordinate system;bottom: projec-
tion onto∆u-axis; left: projection ontoβ0-axis; circles represent the phase an-
gle E, 15◦ spacing,0◦ at center (∆u = 180◦ andβ0 = 0◦), 180◦ at (∆u = 0◦

andβ0 = 0◦)
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Sever, 1998) for Block IIR satellites. Two SRP parameters,D0 andY 0, and three stochastic
parameters were estimated in addition.

Figure 4.25 shows the color-coded range residuals for one of the GLONASS satellites (R22)
derived from the CODE final orbits. There is no systematic pattern observable for this satellite
as well as for none of the other validated GLONASS satellites, but rather randomly distributed
(although larger) residuals. It is interesting to note that for the GLONASS orbits no SRP a priori
model was used.

Conclusions

SLR range measurements are extremely useful for an independent validation of microwave-
based GNSS orbits. Although the GPS orbits of the individual IGS analysis centers are consis-
tent at the2 cm level (see Sect. 3.2.3), we found two systematic effects for the GPS satellites at
the few-cm level.

First, there is a constant bias of the order of−3 to−4 cm between the laser ranges and the orbits
derived from microwave data. This bias is still as that reported in the previous studies, reduced
by the recently found1 cm LRA offset. Further studies are needed to understand the source of
this inter-technique bias.

Second, the range residuals for the GPS satellites show significant systematic patterns with
amplitudes between5 cm and10 cm and periods correlated to the eclipsing seasons. These
periodic patterns have not been identified before. We have shown that the patterns are not
caused by the SLR tracking data, but are due to the GNSS microwave analysis. The dependency
of the residual pattern on the satellite’s position with respect to the Sun most likely indicates
deficiencies in the dynamic orbit model for GPS satellites.

An improved radiation pressure model, developed from the analysis of GPS orbits of the past
ten years, might cure the problem. Deficiencies in the attitude model as, e.g., a satellite-specific
misorientation of the z-axis may cause a similar periodic pattern in the range residuals. The
well-known Y-bias (see Sect. 3.1.2) indicates already that attitude modeling problems exist
(Fliegel et al., 1992).

Earth albedo radiation pressure (EAP) (see Sect. 2.1.3), which is not yet taken into account in
the GNSS analysis at CODE, might have a non-negligible effect on the orbit, as well. A radial
acceleration due to EAP (directed from the Earth to the satellite) of about10−9m/s2 would lead
to a radial error of about−2 cm. The semi-major axis is expected to be slightly reduced using
an EAP model. Ziebart et al. (2007) showed the impact of EAP on GPS orbit determination
for five days. In these tests the range bias between the GPS orbits and the SLR measurements
is reduced by2.1 cm with the used EAP. Longer time spans should be used to confirm these
results. As the force due to EAP is varying with the satellite’s revolution, a periodic impact on
the GNSS orbits is expected.

The impact of EAP on GNSS satellites should be of the same order of magnitude for GPS and
GLONASS satellites. Differences in the satellites’ revolution periods, altitudes, and sizes of
the solar panels have to be considered. It is, however, interesting to note that we did not find
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4 Mutual Validation of the Different Satellite-Geodetic Techniques

any systematic pattern in the SLR residuals of GLONASS satellites nor a significant range bias
for GLONASS satellites. The differences in behavior for GPS and GLONASS satellites is an
argument against EAP as an explanation for the modeling problems.

As only two of the GPS satellites are equipped with retroreflector arrays, both of type Block IIA,
statements based on SLR validation can only be made for the Block IIA satellites. This means
the assumed orbit model deficiencies are only valid for the GPS Block IIA satellites, so far.
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5. Improvement of the GNSS Orbit
Model

The validation studies of the GNSS orbits based on microwave-phase observations using SLR in
Chapter 4 revealed deficiencies in the GNSS orbit model, at least for GPS Block IIA satellites.
The question arises, whether it is possible to improve the GNSS orbit model by applying a solar
radiation pressure (SRP) a priori model different from the ROCK model.

For this purpose three GNSS orbit time series are generated using three different SRP a pri-
ori models. The orbits are then validated with SLR measurements. This validation defines
the absolute model accuracy. In addition we compare the three orbit types, in order to study
dependencies on the orbital planes and on different Block-types.

Furthermore, we compute orbit predictions using the different SRP models. The differences
analyzed for a particular orbit model and a particular satellite are|~rp(t) − ~rt(t)|, where the
indexp stands for the predicted andt for the true orbit (as a matter of fact the orbit estimated
with the observations of the particular day). These differences are also indicators for the SRP
model accuracy.

We also analyze the orbit differences|~ri(t) − ~ri+1(t)| for each satellite and each model type,
where the indexi characterizes the orbit generated with the observations of dayi, and conse-
quentlyi+1 the orbit generated with the observations of dayi+1. The difference|~ri(t)−~ri+1(t)|
is evaluated at the day boundary between daysi and i + 1; it is referred to as overlap error.
Overlap errors of one-day and three-day arcs are analyzed with the goal to detect a systematic
behavior, and if so, to clarify whether the use of different SRP models affects this behavior.

Moreover, we study the impact of the SRP models on the estimated station coordinates by
analyzing the translation parameters (geocenter coordinates) estimated for the GNSS tracking
network.

Last, but not least, we analyze the impact of different sets of dynamic orbit parameters and dif-
ferent argument angles (used for the periodic once-per-revolution parameters) on the estimated
orbit.

We used a development version of the Bernese GPS Software (Dach et al., 2007) for all com-
putations.
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5 Improvement of the GNSS Orbit Model

5.1 Different Solar Radiation Pressure Models

Studying the impact of different SRP a priori models on GNSS orbits requires a consistent time
series of GNSS orbits. The orbits of each time series have to be generated using identical
parameters and observation models (except, of course, SRP models). The time series of CODE
final orbits, analyzed in Sect. 4.2, is inhomogeneous because of various model changes over the
four years covered. We therefore reprocessed this time series three times using three different
SRP a priori models. We did not, however, start reprocessing the raw data, but used the already
preprocessed phase observations. These observations are single difference phase observations,
which have been screened for outliers and cycle slips; the initial phase ambiguities on the double
difference level are already resolved (to the extend possible). Differences in the preprocessing
options as well as the impact of the SRP models on the preprocessing (assumed to be minor)
are neglected.

The new orbit time series cover about four years of data starting from DoY 040/2003 until
365/2006. For each day, one-day arcs are computed and the corresponding normal equations
are saved. Three consecutive normal equations are then stacked to generate the three-day arc
solutions. The processing strategy including the observation model and the set up of parameters
is the same as the processing scheme at CODE. The CODE final orbits of the validated time
series in Sect. 4.2 have been determined in that way.

The Niell mapping functions (Niell, 1996) were used for modeling the tropospheric zenith path
delay. Although absolute models for antenna phase center offsets and variations for receiver
and satellite antennas are used today, we applied the relative antenna phase center models,
only valid for receiver antennas, to stay consistent with the old orbit time series. For the same
reason, we used the IGS00 reference frame (a realization of the ITRF2000) for the geodetic
datum definition. The new ITRF2005 realization IGS05, available since October 2006, is used
in today’s GNSS analyses.

The following parameters are estimated: ambiguities, tropospheric zenith path delays, trans-
lation parameters for the set of IGS core sites, site coordinates for all sites, ERPs, and orbit
parameters. The network translation parameters describe the difference between the origin of
the reference frame IGS00 and the apparent geocenter (as determined by the GPS technique).
Thus, these translation parameters may also be interpreted as geocenter coordinates.

The orbit parameters are the six osculating orbital elements and five dynamical parameters of
the ECOM model (see Sect. 3.2.2), i.e., three constant accelerations (D0, Y 0, B0) and two once-
per-revolution accelerations (BS,BC). In addition, stochastic pulses (small velocity changes)
in radial, along-track and out-of-plane directions are estimated every 12 hours, at noon and at
the day boundaries.

We generated the three orbit time series using the same observations, parameters, and models
as described above, except for the SRP a priori model. The three SRP models used are listed
below. The model name (in bold letters) will be used in this chapter to distinguish between the
models.
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5.1 Different Solar Radiation Pressure Models

1. ROCK : The ROCK SRP models T20 and T30 (see Sect. 3.1.3) for GPS Block II/IIA and
Block IIR, respectively, were used.

2. CODE: The CODE SRP model (see Sect. 3.1.3), which was updated in 2006 and provides
values for both, GPS and GLONASS satellites, was used.

3. NONE: No SRP a priori model was used.

Note that no a priori SRP model is used for the GLONASS satellites for the orbit solutions
using the ROCK model, as the ROCK model is available for the GPS satellites. The impact of
the GPS satellites, which are processed together with the GLONASS satellites, on GLONASS
orbit determination is expected to be very small. There will be, however, small differences
between the GLONASS orbit solutions using the ROCK and the NONE model. Therefore, we
distinguish also for the GLONASS satellites between these two solutions.

Figure 5.1 shows the accelerations derived from the different SRP a priori models for the GPS
Block IIA satellite G06. The accelerations are given in the directions D (top), Y (middle), and
B (bottom). For the definition of the (D, Y, B) system see Sect. 3.1.2. Each subfigure contains
five sections, covering 24 hours each, which correspond to different observation times with
different elevation anglesβ0 of the Sun above the orbital plane. The five sections are arranged
in such a way that the angleβ0 decreases from the left hand side of the subfigure (maximum
β0 value) to the right hand side of the subfigure (β0 = 0). The accelerations due to the ROCK
model T20 are gray, those due to the CODE model are black. For obvious reasons“NONE” is
missing in Fig. 5.1.

Although the ROCK model per se does not include any accelerations in Y-direction, constant
a priori values for the D- and Y-directions are introduced in the Bernese GPS Software. For the
satellite G06 this a priori acceleration in Y-direction is 0.07·10−8m/s2, and in D-direction about
-0.35·10−10m/s2.

Figure 5.1 shows a twice-per-revolution signal in D-direction and a once-per-revolution sig-
nal in B-direction (GPS satellites perform two revolutions in 24 hours). The amplitudes of
these periodic signals increase with decreasingβ0 angle. The D-accelerations are of the order
of 9 · 10−8 m/s2. The peak to peak variations of about0.7 · 10−8 m/s2 are similar to the peak-
to-peak variations for the B-accelerations. Note that the D- and B-accelerations of the ROCK
and the CODE model are not in phase. Moreover the two accelerations are shifted in phase
by 90◦. This striking phase shift of precisely90◦, while a coherence in phase would be expected
requires a detailed assessment of the implementation of the two models.

The accelerationasrp due to SRP estimated from the least squares adjustment is given in
Fig. 5.2, withasrp being the sum of the SRP a priori values and the values estimated for the
five parameters of the ECOM model (D0, Y 0, B0, BS,BC). In D-direction only a constant
parameterD0 was estimated. The resulting D-accelerations are shifted by constant values com-
pared to the a priori value. Their mean values are similar for the ROCK and CODE model, in
contrary to the values estimated when using no a priori model (i.e., the NONE model, indicated
by the dashed lines in the figures). Actually, we expected the mean values of all solutions to be
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5 Improvement of the GNSS Orbit Model

the same as the estimated accelerations already include the a priori values. The difference be-
tween the estimated values using the NONE model and the other SRP models is not understood
so far and has to be investigated.

In addition a constant acceleration in Y-directionY 0 (the so-called Y-bias) was estimated. The
values of these Y-biases are almost the same for all three SRP models.

In B-direction a constant and two once-per-revolution parameters were estimated. As the CODE
SRP model mainly contains an once-per-revolution signal in B, the estimated B-accelerations
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Figure 5.1: Accelerations due to SRP acting on the GPS satellite G06 (Block IIA), derived from
the SRP a priori models ROCK (gray) and CODE (black)
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are similar for the CODE and the NONE model. The major part of the CODE SRP model is
reflected by the parameters of the ECOM model. The only differences of the CODE model
compared to the parameters of the ECOM model are the periodic terms as a function ofβ0 (see
Eqs. 3.10 and 3.11 in Sect. 3.1.3).

For largeβ0 angles (Sun high above the orbital plane) the B-accelerations using the ROCK
model are similar to the that of the other models, i.e., the estimated parameters compensate for
the 90◦ phase shift. For small angles ofβ0 the B-accelerations differ, however, for different
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Figure 5.2: Estimated accelerations due to SRP acting on the GPS satellite G06 (Block IIA),
derived from parameter adjustment using the SRP a priori models ROCK (gray),
CODE (black), and NONE (dashed)
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SRP models. This is due to the pronounced signal of the ROCK model at smallβ0 angles
superimposing the once-per-revolution signal.

Figures C.1 and C.2, given in the Appendix C, show the a priori D-, Y-, and B-accelerations for
a Block IIR satellite (G16) and the estimated accelerations, respectively. As the SRP models
are block-specific, the accelerations differ in amplitude and size from that for the Block IIA
satellite. The general characteristics described in this section remain the same, however.

5.2 Assessing the Quality of the Orbit Model

Let us now study the generated orbit time series in order to find out to what extent the a priori
SRP model impacts the GNSS orbits, and, last but not least, which of the SRP model yields the
best orbits.

5.2.1 . . . by Analyzing SLR Residuals

An independent validation of the orbit time series using SLR measurements is possible only
for the two Block IIA GPS satellites equipped with retroreflectors, G05 and G06, and the four
GLONASS satellites R03, R07, R22, and R24, which were tracked by the ILRS during the
considered time interval.

As a translation of the GNSS receiver network (i.e., geocenter coordinates) is estimated during
the parameter adjustment process, the orbits may be shifted with respect to the ITRF2000 refer-
ence frame. For the orbit validation both, the SLR site coordinates, given in ITRF2000, and the
orbits, have to refer to the same reference frame. Therefore, we apply the estimated geocenter
coordinates to the SLR site coordinates (which is in essence a shift of the orbits, by translating
the orbit positions with opposite sign). SLR site coordinates and orbit positions then both refer
to the geocentric frame.

Table 5.1 summarizes the statistical information of the SLR residuals derived from the three
time series of the reprocessed microwave-based GNSS orbits, using the SRP a priori models
ROCK, CODE, and NONE.

The standard deviation of the range residuals for the GPS satellite orbits of the first solution
(using the ROCK model) are2.2 cm and2.6 cm. These values are similar to the results derived
from the validation of the CODE final orbits, presented in Sect. 4.2.2. This was expected, as
for the CODE final orbits the ROCK SRP model was used, until a model change occurred to
the CODE SRP model in November 2005. Figure 5.3 shows the SLR residuals∆r∗, which are
color coded and reduced by their mean value of about−4 cm, as a function of∆u andβ0. A
comparison with Fig. 4.23 (in Sect. 4.2.2, page 85 ) shows a similar systematic pattern. The
largest residuals, up to−10 cm, occur close to the shadow region (center of figure), when the
satellites pass the Earth’s shadow.
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Figure 5.3: SLR residuals∆r∗ derived from reprocessed orbits using the ROCK SRP model
for the GPS satellites G05 and G06 in the(∆u, β0) coordinate system;bottom:
projection onto∆u-axis; left: projection ontoβ0-axis; circles represent the phase
angleE, 15◦ spacing,0◦ at center (∆u = 180◦ andβ0 = 0◦), 180◦ at (∆u = 0◦

andβ0 = 0◦)

The range residuals derived from the orbit time series using the CODE and the NONE SRP
model, show standard deviations of1.9 cm and2.1 cm for the satellites G05 and G06, respec-
tively. These values are significantly smaller (by about0.5 cm ) than those for the orbit series
using the ROCK SRP model. We find the explanation in Fig. 5.4, which shows the range

-15

-10

-5

 0

 5

 10

2007200620052004

∆r
 (

cm
)

Year

ROCK
CODE

Figure 5.4: SLR residuals∆r derived from microwave-based orbits using the ROCK and the
CODE SRP a priori model for the GPS satellites G05 and G06 as a function of time
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Figure 5.5: SLR residuals∆r∗ derived from reprocessed orbits using the CODE SRP model
for the GPS satellites G05 and G06 in the(∆u, β0) coordinate system;bottom:
projection onto∆u-axis; left: projection ontoβ0-axis; circles represent the phase
angleE, 15◦ spacing,0◦ at center (∆u = 180◦ andβ0 = 0◦), 180◦ at (∆u = 0◦

andβ0 = 0◦)
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Figure 5.6: SLR residuals∆r∗ derived from reprocessed orbits using the NONE SRP model
for the GPS satellites G05 and G06 in the(∆u, β0) coordinate system;bottom:
projection onto∆u-axis; left: projection ontoβ0-axis; circles represent the phase
angleE, 15◦ spacing,0◦ at center (∆u = 180◦ andβ0 = 0◦), 180◦ at (∆u = 0◦

andβ0 = 0◦)
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PRN σ (cm) x̄ (cm) #∆r

ROCK CODE NONE ROCK CODE NONE

G05 2.2 1.9 1.9 −4.2 −3.9 −3.7 10700

G06 2.6 2.1 2.2 −4.4 −3.8 −3.6 10400

R03 4.9 5.0 4.9 −1.2 −1.2 −1.3 25000

R22 4.8 4.9 4.8 −0.8 −0.9 −0.8 24400

R24 5.1 5.0 5.0 −1.0 −0.8 −0.8 12100

R07 5.3 5.4 5.3 −0.0 −0.2 −0.2 6900

Table 5.1: Statistical information of the SLR residuals derived from more than four years of
microwave-based GNSS orbits using different SRP a priori models (ROCK, CODE,
NONE): standard deviationσ, mean value (range bias)x̄, and approximated number
of SLR residuals #∆r

residuals∆r of the two GPS satellites as a function of time for the two orbit time series using
the ROCK and the CODE model. The large negative residuals of−10 to−15 cm (including the
range bias of about−4 cm) that occur for the orbit series using the ROCK model are reduced
for the orbits using the CODE model. This fact is also well illustrated by Fig. 5.5, showing
the color-coded range residuals∆r∗ in the(∆u, β0) coordinate system for GPS orbits using the
CODE SRP model. A range bias of about−4 cm was subtracted from the residuals. Although
there is still a systematic pattern, it is much reduced. Note that the largest residuals of−10 cm
in the center of the figure, and thus close to the shadow region, disappear. The same is true
for orbits using the NONE model, i.e. using no SRP a priori model at all, see Fig. 5.6. Both,
Figs. 5.5 and 5.6, and thus both series of range residual are very similar.

This means that both, the use of the CODE SRP a priori model and not using any SRP a priori
model, reduce the SLR residuals and thus improve the GPS orbits, at least for the two GPS
satellites G05 and G06. This result is supported by the validation results of the GFZ and the
JPL final orbits presented in the previous chapter in Sect. 4.2.2. Both analysis centers, GFZ and
JPL, use ROCK or ROCK-like SRP a priori models and show similar periodic patterns in the
SLR residuals.

At the European Space Operations Centre (ESOC, Darmstadt, Germany) SLR validation of GPS
final orbits was performed for 2006 using another software package, namely the Navigation
Package for Earth Orbiting Satellites (NAPEOS). The validated orbit series have been the final
orbits of CODE, JPL, MIT (Massachusetts Institute of Technology, Cambridge, U.S.A.), and
SIO (Scripps Institution of Oceanography, San Diego, U.S.A.). The orbits of CODE and JPL
have been generated using the ROCK or a ROCK-like model, whereas the orbits of MIT and
SIO have been generated without using any SRP a priori model. For the CODE and JPL orbits
the periodic pattern is clearly visible in the SLR residuals, for the MIT and SIO orbits there is
no significant pattern observable (Springer, 2008). These results confirm our conclusion that the
ROCK model causes the periodic signature in the SLR residuals and should thus not be used,
at least not for the Block II/IIA satellites. Unfortunately, there is no independent validation
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possible for Block IIR type satellites, as only two of the GPS satellites of type Block IIA are
equipped with LRAs.

In principle, a SRP a priori model is applied to account for (existing) signals that cannot be
reconstructed by the estimated parameters. An a priori model may, however, be destructive, if
it includes non-existing signals, which might be the case for the ROCK model.

The mean biases of the SLR residuals are also given in Table 5.1. We found a negative range bias
of about−4.3 cm for the GPS satellite orbits using the ROCK model. This value is about0.5 cm
larger than the mean bias of the range residuals derived from the CODE final orbits in the
previous chapter. As opposed to the validation of the CODE final orbits, we now applied the
translations estimated for the GNSS network, in order to obtain orbit and SLR site coordinates
in the same reference frame. This translation causes the increase of the range biases, because
the SLR sites are not very well distributed and most of the sites are located in the Northern
hemisphere.

The range biases for the orbits using the CODE or the NONE SRP model are between−3.6 cm
and−3.9 cm, which is smaller by about0.5 cm compared to the orbits using the ROCK model.
This is due to the large negative residuals that are no longer present when using the CODE or
the NONE model.

The standard deviations of the range residuals for the GLONASS satellites, given in Table 5.1,
are about5 cm, which is twice the value as for the GPS satellites. There is no significant
difference in the standard deviations of the three orbit series using different SRP a priori models.
The same holds for the GLONASS range biases. They are about−1 cm for the GLONASS
satellites and close to zero for the GLONASS-M satellite R07. The impact on GLONASS orbits
of using the ROCK or the NONE model for GPS satellites is negligibly small as expected. No
systematic pattern was found in the GLONASS range residuals for the three orbit series, which
confirms the GLONASS orbit validation results in Sect. 4.2.2.

5.2.2 . . . by Analyzing Orbit Differences

In this section we study the orbit differences between the three orbit series generated for the
GPS satellites using different SRP a priori models. As opposed to the SLR validation, the
orbit differences are available for all GPS satellites. In addition, all ranges of∆u andβ0 are
covered when analyzing more than one year of orbit series. This analysis does not, however,
provide absolute information on the orbit accuracy, but only relative information of one orbit
with respect to the other.

The orbit differences in radial direction can be compared with the SLR residuals. Although
the radial direction may differ slightly from the direction SLR site-satellite, only about3%
(at maximum) of the radial orbit differences do not map into the SLR residual for a satellite
observed at low elevation.

For each day of the year 2005 the radial differences between the orbits estimated using the
ROCK SRP model and those using the CODE SRP model are analyzed. Figure 5.7 shows

98



5.2 Assessing the Quality of the Orbit Model

∆u (deg)

β 0
 (

de
g)

G01

360270180900

45

0

-45

β 0
 (

de
g)

G10
45

0

-45

β 0
 (

de
g)

G15
45

0

-45

β 0
 (

de
g)

G06
45

0

-45

β 0
 (

de
g)

G05
45

0

-45

β 0
 (

de
g)

G08

Plane 1

Block II/IIA Block IIR

45

0

-45

∆u (deg)

Plane 6

G23

360270180900

Plane 5

G20

G02

Plane 4

G26

Plane 3

G16

Plane 2

Figure 5.7: Radial orbit differences between orbits estimated using the ROCK and the CODE
SRP a priori model for the GPS satellites in 2005; the color code is identical to
Fig. 5.3, red corresponds to6 cm, yellow corresponds to0 cm, blue corresponds
to−6 cm

99



5 Improvement of the GNSS Orbit Model

∆u (deg)

β 0
 (

de
g)

G01

360270180900

45

0

-45

β 0
 (

de
g)

G10
45

0

-45

β 0
 (

de
g)

G15
45

0

-45

β 0
 (

de
g)

G06
45

0

-45

β 0
 (

de
g)

G05
45

0

-45

β 0
 (

de
g)

G08

Plane 1

Block II/IIA Block IIR

45

0

-45

∆u (deg)

Plane 6

G23

360270180900

Plane 5

G20

G02

Plane 4

G26

Plane 3

G16

Plane 2

Figure 5.8: Radial orbit differences between orbits estimated using the CODE and the NONE
SRP a priori model for the GPS satellites in 2005; the color code is identical to
Fig. 5.3, red corresponds to6 cm, yellow corresponds to0 cm, blue corresponds
to−6 cm

100



5.2 Assessing the Quality of the Orbit Model

these differences as a function of∆u andβ0 for two GPS satellites of each of the six orbital
planes, except for plane 1 (there was no Block IIR satellite in this plane during the analyzed
time interval). The orbit differences in the first column refer to Block II/IIA satellites whereas
the second column shows orbit differences for Block IIR satellites. The range ofβ0 is given by
the maximum elevation angle, which depends on the orbital plane, and changes slowly in time,
i.e., with the regression rate of the ascending nodes of about14◦/year (see Sect. 3.1.1).

For comparison with the SLR residuals, the graphical presentation and the color code are the
same as in the figures of Sect. 5.2.1, which show the SLR residuals as a function of∆u andβ0.
We observe a pattern for the radial orbit differences of all Block II/IIA satellites that is similar to
the SLR residuals of the satellites G05 and G06. In the center of the figure (around∆u = 180◦)
negative orbit differences up to−6 cm (in blue) are present, whereas at the edges (around
∆u = 0◦) the differences are positive and reach up to+6 cm (in red). Note that the orbit dif-
ferences for the Block IIR satellites show the inverted pattern of the orbit differences for the
Block II/IIA satellites.

We conclude that the orbit differences (using the ROCK and the CODE SRP model) are clearly
block-specific. We already know from the SLR validation that for the satellites G05 and G06
the use of the CODE SRP model improves the orbits. We therefore assume that the CODE SRP
model is superior to the ROCK model for all satellites of Block II/IIA, as the presented orbit
differences are similar for all Block II/IIA satellites.

It was already pointed out that an independent validation of the orbits of Block IIR satellites
using SLR is not possible. Therefore we cannot prove that the CODE model is superior to the
ROCK model for all satellite types.

Figure 5.8 shows the orbit differences between orbits estimated using the CODE and the NONE
model. Apart from small differences on the millimeter level both orbits are similar for Block
II/IIA and Block IIR satellites, at least in the analyzed radial direction. The CODE SRP a priori
model does not seem to be relevant, if in addition the dynamical parametersD0, Y 0, B0, BS,
BC are estimated. The values of the resulting accelerations due to SRP are similar when using
the CODE or no SRP a priori model.

The difference between the accelerations derived from the ECOM model using the CODE and
no SRP a priori model was illustrated in Fig. 5.2. Figure 5.2 shows the estimated accelera-
tions for the GPS satellite G06 using the three different SRP a priori models ROCK, CODE,
and NONE. The Y-accelerations are almost identical for all three models. In B-direction the
accelerations of CODE and NONE are very similar. The accelerations of the ROCK model are
similar to that of the other models only for high values ofβ0 ≥ 45◦. In D-direction, the acceler-
ations derived with the CODE model show small variations with a twice-per-revolution period.
Their mean values should correspond to the constant values of the NONE model (according to
the theory of least squares, which they do not in Fig. 5.2 for unknown reasons). Thus the D-
accelerations due to the CODE model are much closer to those derived with the NONE model
than the D-accelerations derived with the ROCK model. The latter show large variations, espe-
cially for small angles ofβ0, due to the a priori model. We conclude that the main accelerations
due to the CODE SRP a priori model can be very well reproduced by the estimation of the five
SRP parameters (D0, Y 0, B0, BS,andBC) (without using any SRP a priori model).
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As both, the CODE and the NONE model, seem to lead to better orbits than the ROCK model
(at least for the Block II/IIA satellites), the question arises whether an a priori SRP model is
necessary at all. If dynamical orbit parameters, i.e., constant values in D-, Y-, and B-direction
and periodic terms in B-direction, are estimated, GNSS orbit determination could be done with-
out the use of an a priori SRP model (at least for Block II/IIA type satellites), unless a better
model is found. For orbit prediction a good SRP a priori model is, however, indispensable, as
there are no observations available that allow to estimate the dynamic orbit parameters.

5.2.3 . . . by Analyzing Orbit Predictions

In this section we show that good a priori models are necessary for orbit predictions. It is
possible to assess the quality of the a priori models by analyzing orbit predictions. We will now
compare orbit predictions that have been generated by using the three different a priori models
ROCK, CODE, and NONE.

The orbits are predicted over 15 days by expanding the estimated three-day arc over the 15 days.
This is done by numerical integration using the parameters of the three-day arc. These estimated
orbits used for integration are exactly those introduced in Sect. 5.1, i.e., they correspond to
the CODE final orbit product, but differ in the used SRP a priori model. The estimated orbit
parameters are the six Keplerian elements and the two dynamical parametersD0 andY 0, which
are the direct SRP and the Y-bias, respectively. No other dynamical parameters are estimated.
The orbit predictions are generated for 73 days in 2005.

For the SRP model verification we analyze for each day the difference|~rp(t) − ~rt(t)| between
the 15th day of prediction and the estimated orbit of the same day. Figure 5.9 shows the mean
values of the orbit differences|~rp(t) − ~rt(t)|, averaged over one day, as a function of time for
six GPS satellites in six orbital planes. Each daily mean value is represented by a dot. The gray
dots correspond to orbits based on the ROCK model, the black dots are based on the CODE
model, and the empty dots on the NONE model. On the vertical axis (left), the scale of the orbit
differences is given in meters. The gray line represents the elevation angleβ0 of the Sun above
the orbital plane. The corresponding scale is provided on the right-hand side.

The orbit differences are dominated by the along-track component. They are of the order of
about10 − 100 m. In fact, after 15 days of prediction, without any use of observation data,
the predicted GPS orbit differ by about100 m in maximum. In most cases the orbits using the
CODE SRP model show smaller values than those using the ROCK or the NONE model.

Figure 5.9 tells that the orbit prediction is of excellent quality, if the satellites are never in the
Earth’s shadow (planes 1, 4, 6). Figure 5.10 repeats this figure with an extended scale of the
ordinate. The superiority of the CODE model for orbit prediction is now obvious.

Figure 5.9 also tells that orbit prediction is problematic whenever a satellite is in the Earth’s
shadow (for|β0| ≤ 14◦) at some time in the prediction interval (see planes 2, 3, and 5). This
underlines that the behavior of the satellites during eclipse may not be predicted in a reliable
way. In particular for the Block II/IIA type satellites the satellite’s attitude is unknown for up
to 30 min after the re-entry of the satellite into sunlight (see Sect. 3.1.2).
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Figure 5.9: Orbit differences for the GPS satellites (one per orbital plane) between the 15th day
of prediction and the corresponding estimated orbit for all three SRP models used:
ROCK, CODE, and NONE; in addition the Sun elevation angleβ0 is indicated by
the gray line
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Figure 5.10: Orbit differences for the GPS satellites (one per orbital plane) between the 15th day
of prediction and the corresponding estimated orbit for all three SRP models used:
ROCK, CODE, and NONE; in addition the Sun elevation angleβ0 is indicated by
the gray line (the scale differs from Fig. 5.9)
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Satellite G05 in orbital plane 2 (see Fig. 5.9, second subfigure) is a Block IIA satellite. Un-
fortunately, 12 days of estimated orbits (DoY 232-243) were missing for G05, which leads to
the missing orbit predictions (DoY 247-258). From DoY 225 until 255 the satellite passes the
Earth’s shadow once per revolution; at DoY 240 the maximum duration of the shadow passing
is reached, asβ0 = 0. These shadow passings affect the orbit predictions from DoY 240-270.
In this time period there are (beside the missing days) easily recognizable large orbit differences
(up to 250 m) for the Block IIA type satellite G05. At DoY 271 the orbit differences get small
again, as the first day used for the generation of the orbit prediction of DoY 271 is the first
day (DoY 256) after the eclipsing period, for which no further shadow passes occur.

A similar behavior of the orbit differences can be found for the satellite G31 in plane 3 (see third
subfigure in Fig. 5.9). This satellite is also of type Block IIA and shows large orbit differences
of up to300 m when shadow passings occur. In contrary to the Block IIA satellites, the attitude
of the Block IIR satellite is known. Thus the orbit predictions are much better, as we can see for
the Block IIR satellite G20 in plane 5 (subfigure 5 in Fig. 5.9). The maximum orbit differences
are about100 m.

Figure 5.11 shows the daily mean values of the orbit differences for two GLONASS satellites in
two different orbital planes. (The third plane was not occupied in 2005). For both planes satellite
eclipses occur. For the predictions not affected by occultations, the orbit differences are at the
order of a few 10 meters. There is no difference between ROCK and NONE observable for the
GLONASS satellites, as the impact of the GPS satellites on GLONASS orbit determination is
negligible small. Modeling problems during eclipse periods are obvious.
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Figure 5.11: Orbit differences for the GLONASS satellites (one per orbital planes) between
the 15th day of prediction and the corresponding estimated orbit for all three SRP
models used: ROCK, CODE, and NONE; in addition the Sun elevation angleβ0 is
indicated by the gray line
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Figure 5.12 shows the root mean square (RMS) deviation of the daily mean values of the or-
bit differences from their arithmetic mean for all GPS satellites used, and Fig. 5.13 for all
GLONASS satellites used. On the horizontal axis the satellite numbers are given ordered by
orbital planes.

The daily mean values of the orbit differences for eclipsing orbits of Block IIA satellite have
been excluded from the RMS computation, i.e. for the GPS satellites G05 and G30 in plane 2,
for G03, G06, G07, and G31 in plane 3, and for G10 in plane 5. The orbit predictions generated
with the CODE SRP model show much smaller RMS values than those generated with the

 0

 25

 50

 75

 100

 125

 150

G
08

G
09

G
25

G
27

G
05

G
16

G
28

G
30

G
03

G
06

G
07

G
19

G
31

G
02

G
04

G
11

G
15

G
21

G
24

G
10

G
18

G
20

G
22

G
01

G
13

G
14

G
23

G
26

R
M

S
 o

f o
rb

it 
di

ffe
re

nc
es

 (
m

)

Plane 1 Plane 2 Plane 3 Plane 4 Plane 5 Plane 6

  ROCK
CODE
NONE

Figure 5.12: RMS of 73 orbit differences for the GPS satellites between the 15th day of predic-
tion and the corresponding estimated orbit for the three SRP models used: ROCK,
CODE, and NONE
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ROCK or the NONE model. There is no significant difference observable between the ROCK
and the NONE model.

In the case of GLONASS it makes only sense to compare the CODE and the NONE model,
as the impact of the ROCK model (used for the GPS satellites) on the GLONASS orbits is
negligible small. The orbit solutions using the ROCK and the NONE model are thus similar
for the GLONASS satellites. As for the GPS Block IIA satellites, we excluded the daily mean
values of the orbit differences for eclipsing GLONASS orbits for the RMS computation. The
differences derived from orbits using the CODE model show much larger RMS values than
those derived from orbits based on no SRP model at all. This is surprising, because it means
that the CODE SRP model for GLONASS satellites degrades the orbit predictions and should
thus not be used. A better and independent parameterization for the estimation of the CODE
SRP model is necessary, as the current parameterization was adapted from the CODE SRP
model used for the GPS satellites.

5.2.4 . . . by Analyzing Orbit Overlap Errors of One-day and
Three-day Arcs

In this section we analyze orbit overlap errors at the day boundaries of the three GNSS orbit
series generated using the ROCK, the CODE and the NONE SRP a priori models. Remember
that these orbits have been generated by computing one-day arc solutions first, which were
stacked to obtain the three-day arcs. We have therefore orbit series available with arc-lengths
of one and of three days, respectively, for each of the three SRP models. The orbits resulting
from the three-day arc solution are the central 24 hours of the three-day arcs. The orbit overlap
errors are computed for each satellite as the difference|~ri(t)− ~ri+1(t)| of two consecutive arcs
evaluated at the day boundary of daysi and i + 1. The overlap errors are then transformed
into the radial, along-track and out-of-plane directions. Overlap time series covering about four
years were analyzed for the one- and three-day arc orbit solutions listed in Table 5.2.

The analyses of these long time series of orbit overlap errors should answer the following ques-
tions: Are there systematic discontinuities at the day boundaries indicating errors in the GNSS
orbits? If yes, what is the impact of using different SRP a priori models?

Orbit overlaps based on one-day arc length three-day arc length

ROCK CODE NONE ROCK CODE NONE

GPS X X X X - X

GLONASS - X X - - X

Table 5.2: Overlap time series analyzed for one-day and three-day arc orbit solutions
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Overlap Errors of Daily One-day Arc Solutions for GPS Satellites

Figure 5.14 shows the orbit overlap errors in all three directions (radial, along-track, and out-
of-plane) for one GPS Block IIA satellite (G05) derived from the one-day arc solutions using
the ROCK model (in gray) and the CODE model (in black). We can clearly see a systematic
behavior of the overlap errors in time in all three components. The systematic pattern repeats
with a nearly annual period. The largest component is the along-track component, for which
the overlap errors may reach values up to±30 cm. The standard deviations of the overlap errors
are3.6 cm, 9.5 cm, and5.5 cm in radial, along-track, and out-of-plane direction, respectively.
The mean values are about−0.4 cm for the radial and about−1 cm for the other two compo-
nents.

There are only very small differences between the two orbit solutions using the ROCK and
the CODE SRP model. The general characteristic of the overlap time series remains the same,
independently of the used SRP a priori model. This result was not expected for the Block IIA
satellite, as we have seen large differences between the Block IIA orbits using the ROCK and
the CODE model (see Sect. 5.2.1). The overlap errors for the NONE model are not included in
the figure, as they are almost identical with those of the CODE model.
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Figure 5.14: Orbit overlap errors of the GPS satellite G05 derived from one-day arcs using the
ROCK and the CODE SRP a priori model
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The along-track components of the overlap errors of 24 GPS satellites are shown in Fig. 5.15.
Although 35 GPS satellites were observed during the considered time interval, 11 satellites were
not available for the entire time span of our analysis. The orbits in Fig. 5.15 are one-day arcs
using the CODE model. For most of the GPS satellites there is no obvious difference when
using another SRP a priori model. We show the along-track component as it has the largest
overlap values with a very systematic behavior. In the Appendix C also the corresponding
figures for the radial (Fig. C.3) and the out-of-plane (Fig. C.5) components can be found.

The along-track overlap errors are shown separately for each satellite and the satellites are
sorted according to their orbital plane. The overlap errors for the first satellite G05 were already
shown in Fig. 5.14, from which the scale of the graphs can be derived. For the satellites in
orbital plane 2 we observe a clear systematic pattern repeating nearly annually and similarly for
all satellites. The same pattern can be observed for the satellites of planes 3 and 1, whereas the
prominent amplitudes decrease from plane 2 over plane 3 to plane 1.

The maximum values of the Sun’s elevation angle over the orbital plane decreases from about
|β0| ≈ 78◦ for plane 2 to|β0| ≈ 70◦ for plane 1. The values ofβ0 are given by the gray lines.
The overlap errors themselves are marked in gray for time spans during which|β0| < 14◦ when
the satellites are passing the Earth’s shadow during one orbital revolution. We could, however,
not find a correlation between the periodic pattern of the overlap errors and the eclipsing periods.
The main structure of the overlap pattern remains similar in time for the satellites of planes 1,
2, and 3, whereas the eclipsing periods for each orbital plane are shifted in time. The overlap
errors of the satellites of the remaining planes 4, 5, and 6 also show a plane-specific behavior,
but the pattern is not similar to the one of the other orbital planes.

Although the patterns of each orbital plane seem not to be correlated with the plane-specific
eclipsing periods, we observe for planes 2 and 3 the most prominent peaks in the overlap pattern
at maximum values ofβ0. As the orbital planes are affecting each other within one parameter
estimation process, it is imaginable that the pattern caused by one orbital plane (e.g., plane 2
or 3) impacts the other planes. To find out whether this is true, it would be interesting to see
what happens to the overlap errors if the satellites of the (supposedly) causing orbital plane
would be skipped in the parameter estimation (for future studies).

Table 5.3 summarizes the standard deviations and mean values of the overlap errors in the
along-track direction for the GPS satellites (ordered in the same way as in Fig. 5.15). The first
three columns give the standard deviations of the overlap errors derived from the one-day arc
solutionsσ1d for the three orbit time series using the ROCK, the CODE, and the NONE SRP
a priori model. The values ofσ1d are very similar for the three orbit series. They are also
similar for all satellites corresponding to the same orbital plane. But the standard deviations
decrease from plane 2 with the largest maximum value of angle|β0| ≈ 78◦ to plane 5 with the
smallest maximum value of|β0| ≈ 40◦, due to the plane-specific periodic pattern. Thusσ1d is
about9−10 cm for plane 2,8−9 cm for plane 3,7−8 cm for plane 1,6−7 cm for plane 4,6 cm
for plane 6, and5 − 6 cm for plane 5. The mean values of the along-track overlap errors are
mainly negative and assume values between−6 cm and+1 cm.
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Figure 5.15: Orbit overlap errors in along-track direction of 24 GPS satellites derived from one-
day arcs using the CODE SRP a priori model; the elevation angleβ0 of the Sun
above the orbital plane is given by the gray line; eclipsing periods are marked in
gray; for the scale of the y-axis see Fig. 5.14
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PRN σ1d (cm) σ3d (cm) x̄1d (cm) x̄3d (cm)

ROCK CODE NONE ROCK NONE ROCK CODE NONE ROCK NONE

Plane 2

G05 9.5 9.5 9.5 8.6 8.6 −0.7 −1.4 −1.4 −2.2 −2.2
G16 9.0 9.4 9.4 8.6 8.5 −2.4 −2.8 −2.8 −2.3 −2.4
G28 9.9 9.9 9.9 8.5 8.6 −5.3 −6.2 −6.2 −2.5 −2.6
G30 9.3 9.3 9.3 8.6 8.6 −0.6 −1.1 −1.1 −2.2 −2.1

Plane 3

G03 9.2 9.3 9.3 7.8 7.7 0.7 0.7 0.7 −2.2 −2.2
G06 8.4 8.9 8.9 7.3 7.2 0.3 0.7 0.6 −1.9 −1.9
G07 8.4 8.7 8.7 7.7 7.5 −2.1 −2.0 −2.1 −2.0 −2.2

Plane 1

G08 7.8 7.8 7.8 6.1 6.0 −0.4 −1.2 −1.2 −1.4 −1.4
G09 7.6 7.6 7.7 5.8 5.7 −0.8 −1.9 −1.8 −1.4 −1.3
G25 7.2 7.2 7.2 5.4 5.4 −0.3 −1.6 −1.6 −1.3 −1.3
G27 7.1 7.5 7.5 5.6 5.5 −1.0 −1.9 −1.9 −1.4 −1.5

Plane 4

G04 6.1 6.5 6.4 2.7 2.7 −2.1 −2.3 −2.3 −0.8 −0.9
G11 7.1 7.1 7.1 3.5 3.4 −3.5 −4.2 −4.2 −1.1 −1.2
G15 6.4 6.7 6.7 2.8 2.8 −1.4 −0.8 −0.9 −0.7 −0.7
G21 6.0 6.1 6.1 2.8 2.7 −2.2 −1.6 −1.7 −0.6 −0.6
G24 6.0 6.3 6.3 3.4 3.4 −0.9 −0.8 −0.9 −0.8 −0.8

Plane 6

G01 5.7 5.8 5.9 1.4 1.4 −0.6 −1.4 −1.4 −0.1 −0.1
G13 5.7 5.5 5.5 1.4 1.5 −2.5 −3.7 −3.8 −0.2 −0.3
G14 5.7 5.9 5.9 1.4 1.5 −1.2 −1.5 −1.5 −0.1 −0.1
G26 5.8 6.0 5.9 1.6 1.6 −0.6 −1.6 −1.5 −0.1 −0.1
G29 8.3 8.4 8.3 6.4 6.6 0.5 −0.4 −0.3 0.2 0.3

Plane 5

G10 5.5 5.5 5.4 2.1 2.0 −0.7 −1.0 −0.9 0.3 0.3
G18 5.8 5.8 5.8 1.9 1.9 −1.4 −1.3 −1.3 0.3 0.3
G20 5.5 5.2 5.3 2.0 2.0 −2.4 −3.2 −3.2 0.1 0.0

Table 5.3: Statistical information for along-track orbit overlap errors of 24 GPS satellites de-
rived from one-day and three-day arcs using the three SRP a priori models ROCK,
CODE, and NONE: standard deviationsσ1d andσ3d, and mean values̄x1d and x̄3d

given in cm
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5 Improvement of the GNSS Orbit Model

The pattern for the satellite G29 of plane 6 differs significantly from the other satellites of
the same orbital plane. This satellite is known to have attitude control problems making orbit
modeling very challenging.

The standard deviation of the overlap errors in radial direction are given in Table C.1 in the
Appendix C, as well as the corresponding Fig. C.3, which shows the overlap errors of the one-
day arc solution using the CODE SRP a priori model. For the radial component we do not see
a plane-specific behavior of the overlap errors, although there is still a significant systematic
pattern visible in the overlap errors for each satellite. The standard deviation is about3 −
5 cm, except for the satellite G29, for which it is9 cm. The mean values of the radial overlap
components range between−1 cm and+1 cm.

The statistical information for the out-of-plane component is also given in the Appendix C in
Table C.2. Figure C.5 shows the corresponding overlap errors for the one-day arcs using the
CODE SRP a priori model. The patterns are systematic, but they are not plane-specific, as for
the radial component. The standard deviations of the out-of-plane overlap components seem,
however, to be plane-specific. They increase from plane 2 with values of about5 − 6 cm to
about7− 8 cm for plane 5. This behavior is opposite to that of the along-track component.

Thus it is interesting to note that a Y-bias, i.e., an acceleration along the solar panel axis, cor-
responds to an acceleration in the along-track component if the Sun is perpendicular above the
orbital plane with|β0| = 90◦, and it corresponds to an acceleration in the out-of-plane com-
ponent if the Sun is within the orbital plane withβ0 = 0◦(except for singularities at noon and
midnight turns).

Figure 5.16 shows the estimated Y-biases (without the satellite-specific a priori values) for each
of the GPS satellites as a function of time. For a better visibility the Y-biases are alternatingly
marked in black and gray. As the a priori values (not considered in Figure 5.16) differ between
the satellites (between about0 and10−9 m/s2), we do not care about the different offsets of the
Y-biases at the moment.

More interesting is the general structure of the Y-biases. We observe plane-specific periodic
patterns, repeating nearly annually. The peak-to-peak variation of the Y-biases is of the order
of 10−9 m/s2. The largest values of the Y-biases seem to be correlated with extreme values ofβ0

(which is given in Fig. 5.16 by the gray line for each plane). Let us now display the Y-biases as
a function ofβ0 (see Fig. 5.17), to figure out a possible correlation. The Y-biases show similar
patterns for some satellites of one orbital plane, but not for all satellites of that plane; e.g., G05
and G16 show very similar Y-biases, whereas G28 and G30, which are in the same orbital plane,
show Y-biases different from those of G05 and G16.

A clear indication for the nearly annual period of the Y-bias pattern is given by the fact that for
each satellite the Y-biases repeat as a function ofβ0. This means the satellite-specific Y-biases
are repeating with the draconitic period. Further analyses are strongly needed to interpret the
systematic behavior of the one-day overlaps for GPS satellites and the corresponding Y-biases,
which show also a very significant pattern and a clear dependency onβ0.

For all three components of the overlap errors (radial, along-track, and out-of-plane) there are no
significant differences for different SRP a priori models. Also we did not find any dependencies
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Figure 5.16: Y-bias of 24 GPS satellites derived from one-day arcs using the CODE SRP a priori
model; the elevation angleβ0 of the Sun above the orbital plane is given by the gray
line

113



5 Improvement of the GNSS Orbit Model

G20

G18

G10

G29

G26

G14

G13

G01

G24

G21

G15

G11

G04

G27

G25

G09

G08

G07

G06

G03

G30

G28

G16

G05

−90 −60 −30  0  30  60  90

Y
−

bi
as

β0 (deg)

Plane 5

Plane 6

Plane 4

Plane 1

Plane 3

Plane 2

Figure 5.17: Y-bias of 24 GPS satellites derived from one-day arcs using the CODE SRP a priori
model as a function of the elevation angleβ0 of the Sun above the orbital plane
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Figure 5.18: Amplitude spectra of GPS orbit overlap errors derived from one-day arcs using the
CODE SRP model

on the specific Block types of the GPS satellites. The Block type of each satellite can be found
in Table A.1 in the Appendix A.

In order to find the spectral behavior of the overlap errors, we performed a Fourier spectral
analysis of the satellite-specific time series of the orbit overlap errors (derived from the one-day
arc solution using the CODE SRP a priori model) for all 24 GPS satellites. The amplitude spec-
tra are shown in Fig. 5.18. The amplitudes are given in millimeters as a function of the period
for each of the three components. We see a main period of about 355 days with an amplitude
of about2 cm in all three overlap components. This period cannot be assessed accurately by
the Fourier analysis, as the length of the time series is only four years. The basic period at
355 days as well as the higher harmonics at 44.4, 50.7, 59.2, 71.0, 88.7, and 118.3 days are
integer divisors of the time series length of 1419 days.
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In order to improve the spectral resolution for the basic period, the length of the time series
was varied from 1360 to 1480 days in one-day steps. For lengths larger than 1419 days zero
values were padded at the end. Thus the basic period of the Fourier spectra varied from 340 to
370 days. The period showing the largest amplitude may be assumed to correspond to the actual
period. We expected the basic period to be similar for all satellites (at least for all satellites of
one orbital plane) and to be close to the draconitic GPS year of 352 days. The basic periods es-
timated for the different GPS satellites did, however, differ significantly assuming between 340
and 370 days. We did not find a dependency of the period on the satellite type or on the satel-
lites’ orbital planes.

In this context, a spectral analysis of the Y-biases, which seem to repeat with the draconitic
period, would be very interesting. After a draconitic GPS year the Sun-Earth-satellite constel-
lation repeats. We conclude that the systematic pattern in the overlap errors of one-day arcs
indicate orbit modeling errors. The use of different SRP a priori models does, however, not
have a significant impact on the overlap patterns.

A more detailed analysis of the spectral behavior in a future work (e.g., studying the differences
between the spectra of the three overlap components) might contribute to understanding the
cause for the systematic patterns of the overlap errors.

Overlap Errors of Daily Three-day Arc Solutions for GPS Satellites

After having studied the daily overlap errors of GPS orbits based on one-day arc solutions, we
now inspect the daily overlap errors based on three-day arc solutions. Figure 5.19 shows the
overlap errors for orbits of the GPS satellite G05 using the ROCK and the NONE model for
SRP a priori modeling. The figure has the same scale as the one-day solutions (Fig. 5.14). We
see a clear reduction of the standard deviations of all three overlap components compared to
the one-day arc overlap errors - which is, by the way, a clear argument for using overlapping
three-day arcs.

There are, however, noticeably large overlap values in along-track for 2004 for both orbit so-
lutions, using the ROCK and the NONE SRP model. We believe that this large scatter may be
caused by erroneously changing the processing options when generating the three-day arc so-
lutions, which was done independently for each year. We were not able to resolve the problem,
but we rule out orbit modeling errors causing the large scatter.

The problem is present for all GPS satellites, as can bee seen in Fig. 5.20, showing the along-
track overlap errors for the 24 GPS satellites. The corresponding statistical information is con-
tained in Table 5.3, where the variablesσ3d andx̄3d are used for the standard deviations and the
mean values of the overlap errors for the three-day arcs. The standard deviations decreased by
about1.5 cm for satellites of the orbital planes 1-3 and by about3 cm for satellites of planes 4-6
compared to the overlap errors of the one-day solutions.

The mean values also changed. They show a plane-specific behavior decreasing from plane 2 to
plane 5. Remember that the orbital planes are sorted in descending order of the maximum value
of angleβ0, i.e.: planes 2, 3, 1, 4, 6, 5. Thusx̄3d is about−2.5 cm for plane 2, about−2 cm for

116



5.2 Assessing the Quality of the Orbit Model

−40

−20

 0

 20

 40

R
ad

ia
l 

 o
ve

rla
p 

er
ro

rs
(c

m
)

NONE
ROCK

−40

−20

 0

 20

 40

A
lo

ng
−

tr
ac

k 
 o

ve
rla

p 
er

ro
rs

 (
cm

)

−40

−20

 0

 20

 40

2007200620052004

O
ut

−
of

−
pl

an
e 

 o
ve

rla
p 

er
ro

rs
 (

cm
)

Year

Figure 5.19: Orbit overlap errors of the GPS satellite G05 derived from three-day arcs using the
ROCK and the NONE SRP a priori model

plane 3, about−1.5 cm for plane 1, between−1.2 cm and−0.6 cm for plane 4, about−0.2 cm
for plane 6, and about0.3 cm for plane 5. Satellite G29 shows a different behavior from that of
the other satellites in the same orbital plane. Note that the mean values of the first two orbital
planes, planes 2 and 3 (which show the largest pattern), were very different for the satellites
of the one-day arc solution, but they are now very similar for all satellites of the three-day arc
solution with about−2 cm to−2.5 cm.

In radial direction the standard deviations of the overlap errors are about1 cm, which is smaller
compared to those of the one-day solution. The mean values of the radial overlap errors are
close to zero. We see again a plane-specific behavior for the out-of-plane overlap errors for
which the standard deviations increase from2 cm for plane 2 up to6− 7 cm for plane 5.

The figures and statistical information for the radial and out-of-plane overlap components are
provided in the Appendix C (Figs. C.4 and C.6, and Tables C.1 and C.2). There is no significant
difference between orbits generated with the ROCK or the NONE SRP a priori model.

Overlap errors of the three-day arc orbit solution using the CODE model were not generated.
For the one-day orbit solutions we have already noticed that there were no significant differences
between the orbits based on the ROCK, CODE, and NONE model. There is also no difference
between the three-day arc solutions using the ROCK and the NONE model. Thus, we did not
expect any new insights from overlaps of the three-day arcs based on the CODE model. We
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Figure 5.20: Orbit overlap errors in along-track direction of 24 GPS satellites derived from
three-day arcs using the NONE SRP a priori model; the elevation angleβ0 of the
Sun above the orbital plane is given by the gray line; eclipsing periods are marked
in gray; for the scale of the y-axis see Fig. 5.19
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Figure 5.21: Amplitude spectra of GPS orbit overlap errors derived from three-day arcs using
the NONE SRP model

assume that the overlap errors of the CODE solution will not differ from the ROCK and the
NONE solutions. Therefore, we skipped the computation of orbit overlaps for three-day arcs
generated with the CODE SRP model.

The amplitude spectra of the orbit overlap errors derived from the three-day arc solutions are
shown in Fig. 5.21. The gray arrows indicate the periods found for the overlap errors of the one-
day arcs. There are no spectral lines visible for the radial component. In the along-track and
out-of-plane directions the amplitudes decreased significantly for most of the 24 GPS satellites.
The most prominent remaining period is at 177.5 days for the out-of-plane component with
an amplitude of about3 cm, which is half of the amplitude for the one-day arc solutions. In
the along-track and out-of-plane directions the period at about 355 days is visible for some of
the GPS satellites, but with a much smaller amplitude (about1 cm) than for the one-day arc
overlaps.
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Overlap Errors of Daily One-day Arc Solutions for GLONASS Satellites

We now perform the same analysis as for the GPS satellites for 10 satellites of the GLONASS
constellation, namely for those with a long observation time span to generate good solutions
during the entire or at least large parts of the 3.5 year time interval.

Figure 5.22 shows the orbit overlap errors for one GLONASS satellite R22 in all three compo-
nents, namely in the radial, along-track, and out-of-plane components. Observe the difference
in scale compared to the corresponding figures for the GPS satellites. In general, the GLONASS
overlap errors are larger than the GPS overlap errors. This is due to the much sparser network
of GLONASS receivers. The comparatively small number of observations leads to less well
defined satellite orbits.

The figure shows both solutions, i.e., the overlap errors derived from one-day arcs using the
CODE and the NONE SRP a priori model. There is no significant difference between them, as
for the GPS satellites. The radial overlap errors show a slightly systematic behavior, whereas
no systematic behavior is observed in the out-of-plane component. The standard deviations are
about15 cm in the radial and about16 cm in the out-of-plane component.

The standard deviation of the overlap errors in along-track direction is about30 cm. The mean
value of the along-track component is also noticeably larger (33 cm). We found similar mean
values for the other GLONASS satellites ranging between32 cm and38 cm. Deficiencies of
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Figure 5.22: Orbit overlap errors of the GLONASS satellite R22 derived from one-day arcs
using the CODE and the NONE SRP a priori model
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5.2 Assessing the Quality of the Orbit Model

the relative antenna phase center correction (PCC) model used (i.e., antenna phase center off-
set (PCO) and phase center variation (PCV)) may explain an error in the semi-major axis (caus-
ing along-track errors). Therefore we generated a new orbit series using the CODE SRP model
and the absolute antenna PCC model, which provides antenna phase center offsets and varia-
tions for the receivers and the satellites. The resulting overlap errors are shown in Fig. 5.23.

The solution using the relative PCC model (named CODE) is given in black, whereas the new
solution using the absolute PCC model (named CODE-A) is given in gray. Note that the mean
offset of the along-track overlap errors is now about−3 cm for the CODE-A orbit solution. This
indicates wrong values in the relative PCC model for the GLONASS satellites. For most of the
GLONASS satellites the antenna phase center offsets are unknown. To build the absolute PCC
model the phase center offsets and variations have been estimated from the observations. The
absolute antenna phase center offsets in Z-direction for the GLONASS satellites are about2 m.
According to Zhu et al. (2003), about95% of the Z-offset is absorbed by the satellite clock
corrections. The remaining5% correspond to a change of the semi-major axis of about2 cm,
which could produce an along-track error of about35 cm after one day. This value corresponds
nicely to the mean values found for the overlap along-track components (ranging between32 cm
and38 cm) of the orbit solution using the relative PCC model. The change of the semi-major
axis of about 2 cm is reflected by the radial overlap component of the CODE solution (see
Table C.3), which is between 1−3 cm for all GLONASS satellites (expect for R05).
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Figure 5.23: Orbit overlap errors of the GLONASS satellite R22 derived from one-day arcs
using the CODE SRP a priori model using the relative (CODE) and the ab-
solute (CODE-A) antenna PCC model
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The systematic behavior observed in the radial component for the CODE solution is no longer
visible in the CODE-A solution. Consequently the standard deviation of the radial component
decreases and is about12 cm for CODE-A. In the along-track direction the standard deviation
is then about27 cm.

Figure 5.24 shows the along-track overlap errors of the one-day arc solution using the CODE
SRP a priori model and the absolute PCC model for the 10 GLONASS satellites. They are
sorted according to the orbital planes. Only two planes (of three), plane 1 and 3, were occupied
during the time interval analyzed. The elevation angleβ0 of the Sun above the orbital plane
is given by the gray line. The eclipsing periods are marked in gray. Table 5.4 contains the
corresponding statistical information in columns 3 (σ1d) and 7 (̄x1d). The statistical information
for the CODE and the NONE solution are provided, as well. Both series of overlap errors are
similar. Only the CODE-A solution differs due to the absolute antenna PCC model and the
corresponding correction of the mean value of the overlap errors. The standard deviations of
the CODE-A overlap errors range between24 cm and28 cm, the mean values between−2 cm
and−4 cm (except for satellite R05, for which it is+4.3 cm).

The along-track components of the satellites in the orbital plane 3 all show a similar systematic
behavior repeating nearly annually. The radial components (see Fig. C.7 and Table C.3 in the
Appendix C) and the out-of-plane components (see Fig. C.9 and Table C.4 in the Appendix C)
also reveal slight plane-specific systematic patterns.

PRN σ1d (cm) σ3d (cm) x̄1d (cm) x̄3d (cm)

CODE CODE-A NONE NONE CODE CODE-A NONE NONE

Plane 1

R02 25.2 22.7 25.3 4.9 35.9 −2.0 35.8 1.4
R03 29.7 26.5 29.0 6.5 34.5 −3.2 34.1 1.9
R04 28.8 24.1 29.1 5.7 33.8 −3.7 34.2 1.3
R05 32.1 29.4 32.0 7.0 36.2 4.3 36.0 2.2

Plane 3

R17 30.2 28.4 30.1 10.3 34.1 −2.9 34.1 −0.5
R18 28.3 27.6 28.3 13.3 32.3 −2.8 32.3 −0.3
R21 28.8 28.7 28.7 10.4 32.1 −2.0 32.4 −0.5
R22 29.6 26.6 29.7 10.2 33.2 −3.2 33.1 −0.6
R23 28.3 27.3 28.4 11.3 34.7 −4.3 34.6 −0.6
R24 30.1 28.9 30.1 11.0 37.8 −2.3 37.6 −0.2

Table 5.4: Statistical information for along-track orbit overlap errors of 10 GLONASS satellites
derived from one-day and three-day arcs using the two SRP a priori models CODE
and NONE; for the CODE-A solution the CODE SRP a priori model and the absolute
antenna PCC model were used: standard deviationsσ1d andσ3d, and mean values̄x1d

andx̄3d given in cm
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Figure 5.24: Orbit overlap errors in along-track direction of 10 GLONASS satellites derived
from one-day arcs using the CODE SRP a priori model and the absolute antenna
PCC model; the elevation angleβ0 of the Sun above the orbital plane is given by
the gray line; eclipsing periods are marked in gray; for the scale of the y-axis see
Fig. 5.23
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Figure 5.25: Amplitude spectra of GLONASS orbit overlap errors derived from one-day arcs
using the NONE SRP model

Figure 5.25 gives the amplitude spectra of the orbit overlap errors derived from the one-day
arc solutions using the NONE SRP model for each of the 10 GLONASS satellites. The mean
offsets were subtracted from the satellite-specific overlap series before performing the Fourier
analysis. In radial direction there is a significant peak around 186 days, the largest amplitudes
of 4− 6 cm are associated with the satellites in plane 3. The peak around 120 days is associated
with satellite R18. This satellite repeatedly has data gaps (due to a“switch off” during eclipsing
periods probably due to battery problems) which may cause the unexpected period. The spectral
lines of this satellite therefore are marked in gray.

There are no significant periods in the along-track and out-of-plane direction common to all
satellites at first sight. But there are noticeably large peaks around 8 days with amplitudes up
to 10 cm in the along-track direction. Figure 5.26 shows the interval between 2 and 10 days
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Figure 5.26: Amplitude spectra of GLONASS orbit overlap errors derived from one-day arcs
using the NONE SRP model (zoomed)

of Fig. 5.25. We find three peaks mainly in the along-track component at about 7.6, 7.8,
and 8.0 days and their second harmonics at about 3.8, 3.9, and 4.0 days.

The period of 8 days corresponds to the repeat period of the GLONASS satellites (which is
7.98 days). The remaining two periods may be caused by a superposition of periods. The
sidereal revolution period of GLONASS satellites (11h15m48s) sampled at 24 hour intervals
leads to a beat period of 7.6 days, whereas the synodic period (11h16m47s) sampled at 24 hour
intervals would lead to a 7.8 day beat period. We conclude that there are systematic once-per-
revolution errors in the GLONASS orbits, which might be caused by the use of the relative
PCC model. Unfortunately, a spectral analysis of the CODE-A solution, which would give the
answer to this speculation, was not performed at the time of our analysis.
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5 Improvement of the GNSS Orbit Model

Overlap Errors of Daily Three-day Arc Solutions for GLONASS Satellites

Figure 5.27 shows the three overlap components for the GLONASS satellite R22 (using no SRP
a priori model). We see that the overlap errors are reduced significantly compared to the one-
day arc overlaps. The overlap errors for the year 2004 show larger values, as it was the case for
GPS. The standard deviations of the overlap errors in the three components are1.5 cm,10 cm,
and7 cm, for radial, along-track, and out-of-plane, respectively.

Figure 5.28 shows the along-track overlap errors for the 10 GLONASS satellites for the three-
day arc solutions using the NONE SRP a priori model. The corresponding statistical infor-
mation is summarized in Table 5.4. The standard deviations of the overlap errors range be-
tween5 cm and7 cm for satellites of plane 1, whereas they are larger for the satellites of plane 3
with about10− 11 cm. Only satellite R18 shows a significantly different standard deviation of
about13 cm, which is due to the systematic pattern in the along-track time series. There is a
prominent linear trend with alternating sign at semi-annual intervals, probably due to attitude
problems.

The mean values of the along-track overlap errors are also plane-specific with about2 cm for
plane 1 satellites, and about−0.5 cm for plane 3 satellites. It is interesting to note that the bias
of about30 cm disappeared (as it did for the one-day arc solutions when using the absolute
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Figure 5.27: Orbit overlap errors of the GLONASS satellite R22 derived from three-day arcs
using the CODE and the NONE SRP a priori model
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from three-day arcs using the NONE SRP a priori model; the elevation angleβ0

of the Sun above the orbital plane is given by the gray line; eclipsing periods are
marked in gray; for the scale of the y-axis see Fig. 5.27
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5 Improvement of the GNSS Orbit Model

antenna PCC model), despite using the relative antenna PCC model. In this case the semi-
major axis, which determines the mean motion of the satellite, is better determined by the orbit
dynamics for the longer arc-length of three days. Other parameters, as the satellite clocks, are
then implicitly compensating for wrong values of the relative PCC model. The remaining2 cm
and−0.5 cm for plane 1 and 3 might still be the result of the used relative PCC model. An
overlap analysis of the CODE-A solution for three-day arcs, which was not performed in this
work, would thus be very valuable.

More information concerning the radial and out-of-plane component are provided in the Appen-
dix C (see Figs. C.8 and C.10, and Tables C.3 and C.4). In radial direction the standard deviation
of the overlap errors is between1.3 cm and3.5 cm. The mean values of the radial overlap errors
are close to zero. The standard deviations for the 10 GLONASS satellites vary between7 cm
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Figure 5.29: Amplitude spectra of GLONASS orbit overlap errors derived from three-day arcs
using the NONE SRP model
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5.2 Assessing the Quality of the Orbit Model

and10 cm in the out-of-plane component. The overlap mean values in out-of-plane direction
show a plane-specific behavior with about−0.3 cm for plane 1 satellites and about0.3 cm for
plane 3 satellites.

Figure 5.29 shows the spectra for the overlap components derived from the three-day arc solu-
tions using the NONE SRP model. There are no significant spectral lines except for the satellite
R18. We conclude that the arc-length of three days improves (as expected) the GNSS orbit
quality, compared to an arc-length of only one day. Contrary to our expectation, the overlap
errors do not depend on the specific SRP model used.

5.2.5 . . . by Analyzing the Geocenter Coordinates

Up to now we analyzed the orbits in order to assess the quality of the underlying model. It is
also possible (and makes sense) to study the impact of the orbit model on other parameters of the
daily analyses at CODE. Here we study in particular the impact on the geocenter coordinates.
The position of the Earth’s center of mass (which is determined by the satellite orbits) with
respect to the ITRF-origin is referred to as the geocenter coordinates. These coordinates are
estimated in the least squares adjustment as translation parameters of the set of IGS core sites
with respect to the ITRF-origin.

Daily values for the geocenter coordinates were estimated for a time span of about four years
(040/2003 until 365/2006) for each of the three-day solutions, using the ROCK, the CODE, and
the NONE SRP a priori model. The amplitude spectra of the three geocenter time series for the
Z-component may be inspected in Fig. 5.30.

The largest spectral line, with an amplitude of about9 mm, resides at a period of 352.3 days.
This spectral line belongs to the ROCK model time series (indicated in gray). The period is
that of the draconitic GPS year. As our time series of about four years is too short for pre-
cisely estimating this period we reconstruct it from the harmonics at 175.1, 117.4, 70.5, and
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5 Improvement of the GNSS Orbit Model

50.3 days. The prominent spectral lines indicate orbit modeling problems. The amplitude de-
creases significantly to about2 mm for the CODE (in black) and the NONE (dashed) model.
This confirms the previous results, namely that the use of the CODE SRP a priori model or of
“no SRP” a priori model leads to improved GNSS orbits, provided that the five SRP parame-
ters (D0, Y 0, B0, BS,BC) are estimated in addition to the six orbit parameters.

Also interesting is the fact that the peaks at 50.3, 70.5, and 117.4 days are odd factors (1
7
, 1

5
, 1

3
)

of the main period of about 352 days. The factors1
4

and1
6

are missing. Is there a signal divisible
by seven causing the very significant peak at 50.3 days, which is about6.5 mm for the solution
using the ROCK model, and about4 mm for the CODE and the NONE model? In this context
it is interesting to note that the intersection of the six orbital planes with the equatorial plane
yields equally spaced nodal lines, whereas the intersection of the orbital planes with the ecliptic
plane do not yield to equally spaced nodal lines. Moreover the smallest distance between the
nodal lines occurs for the two orbital planes, for whichβ0 is largest. Surprisingly this distance
is about 50 days. There might be a correlation between these 50 days and the similar spectral
line in the geocenter Z-coordinate.

According to Steigenberger (2007), the geocenter Z-coordinates derived from a reprocessing
of a global GPS network over 11 years (Steigenberger et al., 2006) show a similar prominent
spectral line at about 50 days. The ROCK model was used as SRP a priori model for the re-
processing. Steigenberger found the same spectral line for the geocenter Z-component derived
from a reprocessing of the GPS data of TIGA (GPS Tide Gauge Benchmark Monitoring) sta-
tions by GFZ using another software package“EPOS Potsdam-7”. Thus, we can rule out any
software problems causing the 50 day period. The period is“real” and has to be understood.
Further analysis are necessary to find the cause for the spectral line in the geocenter time series.

5.3 Estimating Different Sets of Dynamic Orbit
Parameters

So far, the five dynamic orbit parametersD0, Y 0, B0, BS, andBC were estimated according
to Eq. (3.22) for the generation of GNSS orbits. The argument for the periodic terms isu, that is
the argument of latitude of the satellite. We already know from analyzing the SLR residuals that
the range residuals show a systematic pattern in the (∆u, β0)-space, where∆u is the argument
of latitude of the satellite with respect to the argument of latitude of the Sun. We believe that
the angle∆u = u − u0 (corresponding to the synodic period) is better suited to describe the
impact of SRP on the satellite than the angleu (corresponding to the draconitic period). The
difference between the synodic and the draconitic period is about one minute, which might be
important for SRP parameter estimation. Therefore we modified the orbit model by replacing
the argument angleu of the periodic orbit parameters by∆u. The resulting acceleration of a
satellite due to SRP is thus written as

asrp = asrp0 +D(∆u)eD + Y (∆u)eY +B(∆u)eB (5.1)
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5.3 Estimating Different Sets of Dynamic Orbit Parameters

with the coefficients

D(∆u) =D0 +DC cos(∆u) +DS sin(∆u)

Y (∆u) = Y 0 + Y C cos(∆u) + Y S sin(∆u)

B(∆u) = B0 + BC cos(∆u) + BS sin(∆u)

(5.2)

where asrp . . . Acceleration due to the SRP
asrp0 . . . Acceleration derived from the a priori SRP model
∆u = u− u0 . . . Argument of latitude of the satellite relative to the argument

of latitude of the Sun .

We repeated the orbit determination using the five dynamic parameters (D0, Y 0, B0, BS,BC)
as before, but with the angle∆u as independent argument, to find out whether a change in
the argument angle changes the resulting orbits. Three-day solutions were generated for each
day of 2006. We did not use any SRP a priori model, which corresponds to the NONE model
solution. The resulting orbits were then validated using SLR observations.

The SLR validation results are compared with the validation results of Sect. 5.2.1 for the three-
day arcs using the NONE model and the argument angleu. The range residuals of the two orbit
solutions using eitheru or ∆u differ at the sub-mm level only. This result may be due to the fact
that the argument angle is only relevant for theBS andBC terms in our parameter estimation.

This is why we generated a new orbit time series by estimating the full set of nine dynamic
parameters, i.e., three constant terms (D0, Y 0, B0) and six once-per-revolution terms in all
three directions (DS,DC, Y S, Y C,BS,BC) using the argument∆u. For comparison we also
generated the corresponding orbit time series estimating the nine SRP parameters and using the
argument angleu.

Figures 5.31(a) and 5.31(b) show the SLR residuals∆r derived from the microwave-based
orbits of the GPS satellite G06, estimated by using different argument angles for the once-per-
revolution orbit parameters. In Fig. 5.31(a) angleu was used, whereas in Fig. 5.31(b) angle∆u
was used. The range residuals are shown as a function of the elevation angleβ0 of the Sun above
the orbital plane. Residuals corresponding to the nominal setup of the five dynamic parameters
for orbit determination are indicated with black dots. Those corresponding to the full set of nine
dynamic parameters are given in gray.

Figures 5.32(a) and 5.32(b) show the corresponding range residuals for the GLONASS satel-
lite R22. We observe residuals of a comparable size for the orbits generated with five SRP
parameters and the different argument anglesu and∆u for both satellites, G05 and R22. The
orbits generated with the full set of nine SRP parameters differ significantly from those gen-
erated using five SRP parameters, mainly in radial direction as indicated by the range residu-
als. A dependency on the angleβ0 is also apparent. The range residuals grow rapidly for an-
gles|β0| > 30◦. For the maximumβ0 angle the residuals for the GPS satellite reach values up
to 40 cm, and up to100 cm for the GLONASS satellite. The resulting orbits derived by estimat-
ing nine SRP parameters are therefore not realistic. This may be caused by correlations between
certain orbit parameters with other parameters estimated in the adjustment process. According

131



5 Improvement of the GNSS Orbit Model

-20

-10

 0

 10

 20

 30

 40

 50

 60

-90 -60 -30  0  30  60  90

∆r
 (

cm
)

β0 (deg)

9 SRP parameters
5 SRP parameters

(a) Argument angleu

-20

-10

 0

 10

 20

 30

 40

 50

 60

-90 -60 -30  0  30  60  90

∆r
 (

cm
)

β0 (deg)

9 SRP parameters
5 SRP parameters

(b) Argument angle∆u

Figure 5.31: SLR residuals∆r for the GPS satellite G06 derived from microwave-based orbits
generated by estimating five (black) and nine (gray) SRP parameters, and by using
the anglesu and ∆u, respectively, as independent arguments; the residuals are
given as a function ofβ0

to Springer et al. (1999) the optimized orbit parameterization consists of five parameters of
the ECOM model, namely the three constant accelerations in D-, Y-, and B-direction and two
periodic terms (sine and cosine) in B-direction. Springer et al. (1999) have shown that the es-
timation of additional periodic terms in D- and Y-direction significantly increases the formal
errors of the LOD estimates. Therefore the use of the five parametersD0, Y 0, B0, BS,andBC
is recommended. The use of additional SLR observations in a combined analysis of microwave
and SLR data for orbit determination may contribute to a reduction of the correlations between
the orbit parameters, and thus allow the experimental use of more orbit parameters in future
analyses.
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Figure 5.32: SLR residuals∆r for the GLONASS satellite R22 derived from microwave-based
orbits generated by estimating five (black) and nine (gray) SRP parameters, and by
using the anglesu and∆u, respectively, as independent arguments; the residuals
are given as a function ofβ0

5.4 Conclusions

The analysis of SLR residuals derived from GNSS microwave-based orbits has revealed de-
ficiencies in GNSS orbit modeling on the5 − 10 cm level. As SRP is the most important
non-gravitational force acting on GNSS satellites, we used different SRP a priori models and
checked their impact on GNSS orbits.

The SLR validation results of Sect. 5.2.1 allow it to draw the following conclusions. The orbits
for the two Block IIA GPS satellites (equipped with LRAs) improve when using the CODE or
no SRP a priori model instead of the ROCK model. The use of the ROCK model leads to a
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5 Improvement of the GNSS Orbit Model

systematic pattern of the SLR residuals with a once-per-revolution period. The SLR residuals
show maximum values close to the shadow region, when the satellite passes through the Earth’s
shadow. If the CODE model or no SRP a priori model is used instead this pattern decreases
significantly. A range bias of about−4 cm is still present and not explained. For GLONASS
satellites there is no significant pattern in the SLR residuals, independently of using the CODE
model or not using any a priori model. A range bias of about−1 cm was estimated for the
GLONASS satellites, but with a value close to zero for the GLONASS-M satellite.

SLR observations are only available for the two Block IIA satellite. In order to check the orbits
of the other Block IIA and Block IIR GPS satellite we compared the GPS orbits based on the
different SRP models in Sect. 5.2.2. The comparison was carried out in radial direction to
make the orbit differences comparable with the SLR residuals. We found a clear block-specific
behavior of the orbit differences. For the two satellites G05 and G06, which have been already
validated with SLR, the orbit differences between the orbits using the ROCK and the CODE
model show a pattern similar to that of the SLR residuals derived from the orbits based on
the ROCK model. From this result we conclude that the CODE model or no SRP model at
all is superior to the ROCK model for all Block IIA satellites. For the Block IIR satellites
we cannot decide which SRP model is better suited, due to the absence of absolute validation
methods. Furthermore, there is no significant difference between the orbits based on the CODE
and the NONE model. Orbits of comparable quality can thus be obtained by determining GNSS
orbits without any SRP a priori model, if in addition the five SRP parameters of the ECOM
model (D0, Y 0, B0, BS,BC) are estimated, as these parameters reflect the major part of the
CODE SRP model.

A good SRP a priori model is, however, required for orbit predictions. This result was obtained
in Sect. 5.2.3. Orbit predictions based on the three SRP models are compared with estimated
orbits (at the time of the prediction) to assess the quality of the models. The CODE SRP model
yields better orbits for most of the GPS satellites, independently of the Block type, except for
the orbits, which are partially eclipsed. The satellite’s attitude is unknown for Block IIA satel-
lites during eclipse (up to 30 min after re-entry into the sunlight), whereas the attitude is known
for Block IIR satellites. Therefore orbit predictions for Block IIA satellites during eclipse pe-
riods show much larger differences with respect to the estimated orbit than the predictions for
Block IIR satellites.

Orbit predictions for the GLONASS satellites based on the CODE model reveal larger differ-
ences with respect to the orbits estimated (using the observations at the time of the predictions)
than orbit predictions generated without an a priori model. Therefore, the CODE model should
not be used for the GLONASS satellites. At CODE the model is no longer in use for GLONASS
since November 2007.

In Sect. 5.2.4 we analyzed the orbit overlap errors of one-day and three-day arcs of GPS and
GLONASS satellites to search for systematic discontinuities at the day boundaries. In fact, the
overlap components show strong systematic patterns, but no dependencies on the used SRP
model were found, which was not expected. The patterns are similar for the three solutions
using the three SRP a priori models.
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We see a plane-specific pattern for the GPS one-day arcs, in particular for the along-track com-
ponent repeating after about 355 days. As the length of the analyzed time series is only approxi-
mately four years, it cannot be estimated accurately using Fourier analysis. The pattern is larger
for planes for which the elevation angleβ0 of the Sun above the orbital plane reaches large
values. The pattern decreases with decreasing maximumβ0. We did not find a clear correlation
between the pattern and the eclipsing periods. It might well be that a specific problem exists for
one particular orbital plane, which affects the other planes.

The overlap errors are much larger for one-day than for three-day arcs. We observe significant
mean values in along-track direction for the three-day arcs of about−2 cm for all satellites
of the orbital planes 2 and 3 (with the largest values ofβ0), which still have to be explained.
Further studies are necessary to explain the systematic patterns in the overlap errors.

For GLONASS, we also found systematic patterns in the orbit overlaps errors. A spectral analy-
sis of the one-day arcs revealed spectral lines at the beat periods 7.6 days and 7.8 days (the
sidereal and synodic revolution period sampled at 24 hour intervals) and the repeat period of
8 days, indicating systematic once-per-revolution orbit errors. These might be caused by the
used relative antenna PCC model, which does not provide any values for the GLONASS satel-
lites. The PCO values of the absolute PCC model are about2 m for most of the GLONASS
satellites in Z-direction, which may cause along-track errors of about30 cm. Along-track errors
of this size were found in the one-day arc overlap studies, whereas they disappeared when using
the absolute antenna PCC model. The analysis of three-day arcs was done only with the NONE
model. The spectral lines at about 8 days are no longer present. But there are still significant
mean values of2 cm for plane 1 and of−0.5 cm for plane 3, which might disappear when using
the absolute PCC model. Therefore, we recommend to analyze the overlap errors for three-day
arcs based on the absolute antenna PCC model.

A spectral analysis of the geocenter Z-coordinate was performed to assess the impact of the
different SRP a priori models on the geocenter (defined by the GNSS satellite orbits). The
ROCK model shows the largest peak at a spectral line of 352 days, indicating once more orbit
modeling problems. Using the CODE a priori SRP model or not using any SRP a priori model
reduces this peak significantly, which confirms the results of the previous analyses that the
ROCK model shows model deficiencies and should thus not be used. In addition, a period of
about 50 days was found, which is1

7
of 352 days, and which is still unexplained. This period

is also present in time series of other analysis centers using other software packages. Further
investigations are needed to understand this effect.

Last but not least, we estimated different sets of dynamical orbit parameters, namely five and
nine parameters of the ECOM model (D0, Y 0, B0, BS,BC andD0, Y 0, B0, DS,DC, Y S,
Y C,BS,BC). We used the angle∆u as independent argument (instead ofu) for the five para-
meter solution, but did not find significant differences. Solutions using the set of nine dynamical
parameters could not be used for further studies, as the parameters are not well determined due
to the correlations between the parameters. Using in addition SLR observations might improve
the GNSS orbit determination.

Our results confirm that we are facing deficiencies of the GNSS orbit model. Using the CODE
SRP models improves the GPS orbits (compared to the use of the ROCK model). There are,
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however, small systematic patterns visible in the SLR residuals and more prominently in the
overlap errors for the orbits based on the CODE model, which need to be explained. Indepen-
dent studies, e.g., Ray et al. (2008), indicate effects due to GNSS orbit mismodeling, who found
a period of about 350 days (close to the draconitic period) in time series of GPS coordinates.

Ostini (2007) analyzed time series of GPS coordinates using GNSS orbits that were generated
using three SRP a priori models (ROCK, CODE, and NONE). The results of a spectral analysis
of the site coordinates confirm the period of about 350 days independently of the SRP model
used, as there is no significant difference in the spectra of the three different solutions using the
ROCK, the CODE, or no SRP model.
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6. Improving GNSS Orbits with SLR

In the scope of this work studies on combination were carried out to verify whether and (if
yes) to what extend the combined analysis of microwave and SLR measurements improves the
GNSS orbits.

Section 6.1 presents the combined analysis of microwave and SLR tracking data and is based
on the publications Urschl et al. (2005) and Urschl et al. (2007).

Section 6.2 presents first orbit determination results for the Galileo test-bed satellite GIOVE-A
based on SLR data only. This study was already presented in Urschl et al. (2006).

6.1 GNSS Orbit Determination Based on Combined
Microwave and SLR Data Analysis

The combination of space-geodetic techniques is considered as an important tool for improving
the accuracy and consistency of the resulting geodetic products. For GNSS satellites, tracking
data are regularly collected by both, the microwave and the SLR observation technique.

In Sect. 6.1.2 we study the impact of a combined analysis of microwave and SLR observations
on precise orbit determination of GNSS satellites. Combined orbits are generated for the two
GPS satellites equipped with laser retroreflector arrays (LRAs) and for three GLONASS satel-
lites, which were observed by the ILRS network at the time of the analysis. The combination
is done at the observation level, implying that all parameters common to both techniques are
derived from both observation types. Several experimental orbits are determined using different
observation weights. As the bias between SLR measurements and GPS microwave orbits is un-
explained (see Sect. 4.2.2), range biases as well as satellite retroreflector offsets are estimated
in addition to the orbit parameters. The different orbit solutions are then compared in order
to determine whether and to what extent the SLR measurements influence a microwave orbit
primarily derived from microwave observations.

Note, that the offsets of the LRAs onboard of the GPS satellites of about1 cm (Davis et al.,
2005) have not been known at the time when the following analyses were carried out. Hence,
the mean value of the range bias between SLR measurements and the microwave orbits is always
reported to be about−5 cm. The correct value considering the corrected LRA offset would have
been about−4 cm.
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In Sect. 6.1.3 variance-covariance analyses are performed in order to study the impact of a
combined analysis of microwave and SLR data on GNSS orbit determination independently
of (existing) inter-technique modeling problems (as a correct modeling can be assumed). This
kind of analysis allows to check easily (without using actual observations) whether a specific
observation scenario (specified only by the observation epochs) is well suited for orbit improve-
ment.

We simulated regularly collected SLR data for GPS and GLONASS satellites and show the
contribution of these SLR data on GNSS orbit determination. In addition, we show for the first
Galileo test-bed satellite GIOVE-A (see Sect. 3.1.1) the possible positive impact of SLR data
on orbit determination. GIOVE-A orbit determination based on microwave data relied initially
on a very limited number of observations. Therefore, the additional use of SLR data in a com-
bined analysis gives an important contribution to precise orbit determination. As no microwave
data were available at the time our analysis was performed, we simulated the microwave data
of GIOVE-A and made a variance-covariance analysis using real SLR data and simulated mi-
crowave data.

6.1.1 Combination Strategy

We combine the measurements of different types on the observation level (using microwave
double difference phase observations in ionosphere-free linear combinations and SLR range
observations). Technically, the technique-specific normal equation contributions are stacked.
Parameters common to both observation types are derived from the normal equations of both
techniques. Common parameters are orbit parameters, EOPs, geocenter coordinates, and coor-
dinates of collocated sites constrained with local ties. As our analysis focuses on the estimation
of orbit parameters only, we constrain all other parameters to highly accurate a priori values.
The geocenter is constrained to the origin of the ITRF2000. EOPs are constrained to the weekly
EOPs, derived from the CODE final orbit solution. For the datum definition, the coordinates of
the laser tracking sites and the sites with microwave receivers are constrained to their ITRF2000
estimates.

6.1.2 Combined Analysis of Microwave and SLR Observations

Two types of combined orbits using microwave and SLR data were generated, namely one-day
and three-day arcs. For the three-day arcs the orbit dynamics is a stronger constraint than for
the one-day arcs, which reduces the impact of the SLR observations on the resulting orbit. The
CODE orbit model (see Sect. 3.2.2) was used. The six orbital elements, nine dynamical orbit
parameters and one stochastic pulse at noon and, for the three-day arcs, at the day boundaries
were estimated. Combined orbits were computed for the two GPS satellites (G05 and G06)
equipped with laser retroreflectors and three of the GLONASS satellites (R03, R22, R24), which
were tracked by the ILRS network at the time of this analysis.
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Data Set

The microwave phase measurements from 157 GNSS sites as well as the laser ranging measure-
ments from 13 SLR sites were used to generate a time series of 41 days in 2004 (DoY 305-345).
Figure 6.1 shows the global distribution of the used SLR (triangle) and GNSS (circles) sites.
Most of the sparsely distributed SLR sites tracking GNSS satellites are located on the North-
ern hemisphere. Only 27 of the 157 sites with microwave receivers tracked both, GPS and
GLONASS satellites, whereas the majority of stations (i.e. 130) tracked only GPS satellites.

The number of observations available for the parameter estimation process differs greatly be-
tween the two techniques and the two satellite systems, GPS and GLONASS. About 20 000
microwave measurements for each GPS satellite and about 3 000 for each GLONASS satellite
were used to generate a combined orbit (one-day arc), considering a sampling rate of 180 sec-
onds. On a daily average, SLR measurements of only 5 to 20 normal points for each GPS
satellite and about 10 to 40 normal points for each GLONASS satellite are available from the
selected sites during the considered time interval. Figure 6.2 shows the varying number of
normal points for each satellite over the analyzed time interval.

Figure 6.1: SLR and GNSS sites (triangle, SLR; circle, GNSS)
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Figure 6.2: SLR normal points of the GNSS satellites over the considered time interval
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6 Improving GNSS Orbits with SLR

Combination Experiments

We performed three combination experiments:

Experiment 1 is a “quick-look” experiment to study the impact of SLR observations on
the combined orbits without making the attempt to model the range bias between SLR and
microwave observations. We address the question whether the microwave observation model
is able to absorb this bias by, e.g., adapting phase ambiguities or receiver clocks, or whether
the orbit dynamics is strong enough not to absorb the bias. The former effect would result in
a scaling of the orbit, while the latter would more and more deform the orbit, when increasing
the weight of the SLR observations.

Experiment 2 Daily range biases for each station and each satellite are estimated in addition
to the orbit parameters. Due to these range biases the SLR contribution is strongly reduced in
this experiment. Only the pass-specific SLR information contributes to the combined orbit. The
question remains: what is the impact of the pass-specific SLR contribution on the orbit?

Experiment 3 The mean range biases are modeled by estimating two satellite reflector off-
sets in the radial direction (pointing to the geocenter), one for the two GPS satellites and one
for the three GLONASS satellites. These offsets absorb the mean bias of all SLR observations
to GPS and GLONASS satellites, each over the considered time interval. Compared to the sec-
ond experiment, the SLR observations to GPS satellites have more influence on the resulting
orbit, because the day to day variations of the laser ranges contribute to the orbit determination.
Therefore, the third experiment is the most interesting one to study the impact of additional
laser measurements on the microwave measurements-dominated orbit.

Several orbits are determined for each experiment. We characterize the orbits with a scheme
of “solution IDs” that is used throughout this section. Table 6.1 lists the solution IDs and
the corresponding characteristics. The table contains three parts, corresponding to the three
experiments.

The initial character of the solution ID characterizes the observation weighting, the second char-
acter corresponds to the experiment number. We use four different weight scenarios,A,B,C
andD. The a priori sigma of the microwave observations (double difference phase, ionosphere-
free linear combination)σMW is 1 cm in all cases, whereas the a priori sigma of the range
measurements changes in such a way that the weight of the SLR observations increases with
consecutive solution IDs.

In caseA the a priori sigma of the SLR measurementsσA is set to infinity, which corresponds
to a weight of zero, implying that the SLR measurements do not contribute to the orbit determi-
nation (i.e., orbitA1 is a microwave-only orbit). The a priori sigmaσB corresponds in order of
magnitude to the actual measurement accuracy of the range measurements as well as toσMW .
Both measurement types have approximately the same weight. CasesC andD increase the
weight of the range measurements with respect to the microwave measurements.
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Orbit ID SLR weighting Additional parameters

Experiment 1

A1 σA = ∞
B1 σB = 10 mm (≡ σMW )

C1 σC = 1 mm

D1 σD = 0.1 mm

Experiment 2

B2 σB = 10 mm range bias

C2 σC = 1 mm range bias

Experiment 3

B3 σB = 10 mm satellite reflector offset

C3 σC = 1 mm satellite reflector offset

Table 6.1: Listing of orbit solution IDs

In the first experiment, we compute four different orbit solutions with the four different weight-
ing cases. In the second and third experiment only weight typesB andC are considered.

Results

When increasing the weight of the range observations we expect the SLR residuals to have
smaller mean values and standard deviations. The residuals indicate whether the small amount
of SLR observations is able to“influence” an orbit determined by microwave observations.
They do not allow it, however, to draw conclusions on the orbit accuracy.

In order to assess the“deformation” of the orbits, we compare the orbits directly (in radial,
along-track, and out-of plane direction). The parameters of a Helmert transformation will reveal
in addition possible translation, rotation and scaling effects.

Orbit quality is assessed by the orbit overlap errors, i.e., the position differences of consecutive
orbital arcs evaluated at the day boundaries. If the orbits are well defined, consecutive arcs
should fit together well and the overlap error should be small.

Discussion of Experiment 1 For the first experiment, we compute one-day arcs of the
orbit typesA1, B1, C1, andD1 (see Table 6.1) for each of the 41 days in the considered time
interval.

Figure 6.3 shows the SLR residuals for one of the GPS satellites (G05). Table 6.2 lists the
mean values and standard deviations of the SLR residuals for all GNSS satellites. For the
microwave-only solutionA1 the standard deviation of the SLR residuals is about2 cm for the
GPS satellites and about5 cm for the GLONASS satellites, which corresponds to the microwave
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Figure 6.3: SLR residuals derived from one-day arc orbit solutionsA1, B1, C1, andD1 for the
GPS satellite G05

orbit accuracy of one-day arc solutions. The mean values of the residual are similar for the two
GPS satellites with−5.7 cm and−5.8 cm, whereas they differ for the three GLONASS satellites
with −3 cm,0 cm and1 cm, respectively.

As expected, the SLR residuals become smaller with increasing weight of the SLR observations.
For solutionB1, significant changes in the SLR residuals can be noticed already, particularly for
the GLONASS satellites. The mean value of the range residuals for the GLONASS satellites
approaches zero when increasing the weight of the SLR observations. The mean offset for
the GPS satellites, however, remains at the−5 cm to−6 cm level for orbit solutionB1, but
decreases to0.1 cm for solutionD1.

Satellite A1 B1 C1 D1

x̄ σ x̄ σ x̄ σ x̄ σ

G05 −5.7 1.7 −5.0 1.4 −0.6 0.8 −0.1 0.5

G06 −5.8 3.5 −5.5 3.3 −1.2 1.3 −0.1 0.6

R03 −3.1 5.6 −0.5 2.3 0.0 1.5 0.0 1.3

R22 0.0 5.0 −0.3 2.3 0.0 1.0 0.0 0.9

R24 1.1 6.3 0.0 2.4 0.0 0.7 0.0 0.6

Table 6.2: Mean values and standard deviations (cm) of the SLR residuals derived from the
solutionsA1, B1, C1, andD1
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6.1 GNSS Orbit Determination Based on Combined Microwave and SLR Data Analysis

Let us now compare the microwave-only orbitA1 with the combined orbitsB1, C1, andD1.
Helmert transformation parameters for each one-day arc are estimated for the solutions pairs
A1−B1, A1− C1, andA1−D1. There are no significant rotations. Table 6.3 displays
the mean values and standard deviations of the translation parameters and the scale differ-
ence averaged over the considered 41 days. The mean values of the Helmert parameters of
the pairA1− B1 are zero for the GPS orbits. For GLONASS, we see variations of up to4 cm.
Both, translation parameters and scale difference, increase with the weight of the SLR observa-

Satellite A1−B1 A1− C1 A1−D1

x̄ σ x̄ σ x̄ σ

x-translation (cm)

G05 0.0 0.2 −0.4 1.0 −0.4 1.2

G06 0.0 0.1 −0.6 0.9 −1.4 1.9

R03 0.0 2.6 −0.3 3.5 −0.9 6.4

R22 0.2 1.0 0.7 3.1 1.6 8.5

R24 −0.1 1.0 0.2 2.1 3.7 12.2

y-translation (cm)

G05 0.0 0.1 −0.7 1.1 −0.7 1.3

G06 −0.1 0.1 −1.2 1.4 −1.7 1.9

R03 2.0 4.0 3.7 7.3 −1.1 22.9

R22 0.9 1.5 2.3 3.4 1.4 7.7

R24 1.2 1.8 2.8 4.0 4.9 12.7

z-translation (cm)

G05 0.0 0.2 −0.3 1.1 −0.6 1.5

G06 −0.1 0.2 −1.0 1.5 −1.0 2.8

R03 −2.0 3.5 −4.7 9.7 −2.7 5.4

R22 1.3 1.7 2.7 3.3 4.0 7.7

R24 1.6 3.0 2.4 5.9 3.5 14.1

scale difference (ppb)

G05 −0.1 0.1 −0.7 0.6 −0.9 0.8

G06 0.0 0.0 −0.3 0.4 −0.4 0.6

R03 −0.4 0.6 −0.7 1.0 −0.6 1.3

R22 −0.1 0.3 −0.2 0.6 −0.4 1.6

R24 −0.1 0.2 −0.1 0.6 −0.2 2.3

Table 6.3: Mean values and standard deviations of the Helmert transformation parameters aver-
aged over 41 days between the solutionsA1−B1, A1− C1, andA1−D1
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tions. ForA1−D1 the translation parameters for GLONASS orbits vary by up to23 cm about
a mean value of up to5 cm. For GPS the mean value is at−1 cm with a variation of up to3 cm.
The influence of SLR measurements on GLONASS satellites is larger due to the larger number
of normal points and the smaller number of microwave measurements when compared to GPS
satellites. The scale difference is about0.6 ppb (1.3 cm in radial direction) on the average, but
may reach values up to1 ppb for some orbit solutions.

Table 6.4 gives the standard deviations of the daily orbit differences over the 41 days for each
GNSS satellite after the Helmert transformation. These standard deviations increase with in-
creasing SLR weight. The along-track component shows the largest values. For the pairA1 −
D1 the standard deviations of the orbit differences reach values up to5 cm for the GPS and up
to 40 cm for the GLONASS satellites.

Figures 6.4(a) and 6.4(b) display the radial overlap components for the satellites G05 and R22.
The overlap error for solutionA1 is about5 cm for the GPS orbits. This value is much larger for
the GLONASS orbits, due to the low number of GLONASS tracking sites. The overlap errors
in the along-track and out-of-plane directions are of the same order of magnitude. We found

Satellite A1−B1 A1− C1 A1−D1

radial (cm)

G05 0.2 1.2 1.6

G06 0.1 1.9 3.3

R03 2.8 5.2 13.4

R22 1.4 2.8 6.7

R24 1.7 3.8 15.1

along-track (cm)

G05 0.2 1.6 2.6

G06 0.2 2.8 4.8

R03 8.5 15.1 38.5

R22 3.6 7.8 20.7

R24 4.1 10.4 41.6

out-of-plane (cm)

G05 0.2 2.2 3.5

G06 0.1 1.5 2.2

R03 2.3 4.2 8.7

R22 1.4 3.2 10.1

R24 1.7 3.4 15.3

Table 6.4: Standard deviations of orbit differences of 41 days between the solutionsA1 −
B1, A1− C1, andA1−D1, after Helmert transformation
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Figure 6.4: Orbit overlap errors in radial direction of the one-day arc orbit solutionsA1, B1,
C1, andD1 for the GPS satellite G05 and the GLONASS satellite R22
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6 Improving GNSS Orbits with SLR

that the orbit overlap errors become larger for the combined orbits with increasing weight of the
SLR observations. The overlap error of the combined orbitB1 does not change significantly
compared to the microwave orbitA1, while it gets larger in casesC1 andD1.

Discussion of Experiment 2 We estimate daily range biases for each station and satel-
lite when generating the combined orbit in order to absorb the mean offsets (solution IDsB2
andC2). As a result, the impact of the SLR observations on the orbit is greatly reduced.

The SLR residuals derived from the combined orbitsB2 andC2 have a zero mean value with a
standard deviation of about1− 2 cm (see Table 6.5).

The mean values of the Helmert parameters between the one-day arc orbitsA1 andB2 are about
zero (no table included). For GLONASS orbits the translation parameters show variations of
about1 cm. With increasing weight of the SLR observations (solutionC2) the mean translation
parameters of the GLONASS orbits have values of about2 cm. The variations of the translation
parameters increase to3 cm for GLONASS and to0.5 cm for GPS orbits. The scale change is
negligible. The GLONASS orbits show a slight scale variation with zero mean values for the
differenceA1− C2.

Comparing the combined orbits with the microwave orbits we see no significant changes for the
GPS satellites, neither forA1−B2 nor forA1−C2 comparisons. The standard deviation of the
daily GPS orbit comparisons is below the one cm level, see Table 6.6. But for the GLONASS
satellites we observe orbit differences of up to5 − 10 cm, which are due to the fact that pass-
specific patterns in the range measurements are much larger for the GLONASS than for the GPS
satellites. Figure 6.5 demonstrates the improvement of the range residual pattern for one pass
of the GLONASS satellite R24 observed by the SLR site 7090 (Yarragadee) when increasing
the weight of the range measurements.

-6

-4

-2

0

2

4

6

15 15.5 16 16.5 17 17.5 18

R
an

ge
 r

es
id

ua
ls

 (
cm

)

Hours

 A1
 B2
 C2

Figure 6.5: Pass-specific range residuals of the GLONASS satellite R24 observed by the SLR
site 7090 for the orbit solutionsA1, B2, andC2
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The size of the orbit overlap errors does not change significantly when increasing the SLR
weight, neither for theB2 nor for theC2 solutions (no figures included).

Satellite B2 C2

x̄ σ x̄ σ

G05 0.0 0.6 0.0 0.5

G06 0.0 1.6 0.0 0.8

R03 0.0 1.8 0.0 1.4

R22 0.0 1.4 0.0 0.9

R24 0.0 1.6 0.0 0.7

Table 6.5: Mean values and standard deviations (cm) of the SLR residuals derived from the
solutionsB2 andC2

Satellite A1−B2 A1− C2

radial (cm)

G05 0.0 0.2

G06 0.0 0.4

R03 1.7 3.2

R22 0.5 1.9

R24 1.1 2.6

along-track (cm)

G05 0.0 0.2

G06 0.0 0.7

R03 5.3 10.0

R22 1.4 4.7

R24 2.6 5.6

out-of-plane (cm)

G05 0.0 0.1

G06 0.0 0.4

R03 0.6 3.6

R22 0.6 1.9

R24 0.9 2.5

Table 6.6: Standard deviations of orbit differences of 41 days between the solutionsA1 − B2
andA1− C2, after Helmert transformation
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Discussion of Experiment 3 For the third set of combined orbit solutions we estimate
retroreflector offsets together with the orbit parameters instead of constraining the reflector
offsets to their a priori values. Two offsets (satellite-type-specific) in radial direction are deter-
mined, one offset for the GPS satellites and one for the GLONASS satellites. Thus, we allow
for an additional constant offset for each satellite-type, but not for each satellite and not for each
station (as in Experiment 2).

Table 6.7 shows the estimated retroreflector offsets with respect to the a priori values for the
GPS and GLONASS satellites and the one-day arc solutionsB3, C3. The a priori retroreflector
offsets in radial direction are0.6584 m for the GPS and1.5416 m for the GLONASS satellites.
The estimated reflector offset correction is about5 cm for the GPS satellites and close to zero
for the GLONASS satellites. As expected, these values correspond to the range biases estimated
in the first experiment.

As for the second experiment, the SLR residuals derived from the combined orbitsB3 andC3
vary around zero but with a slightly larger standard deviation of about1− 3 cm (see Table 6.8),
as expected from the significantly smaller number of estimated parameters.

The Helmert parameters for the solution pairsA1−B3 andA1−C3 are slightly larger than for
the pairsA1−B2 andA1−C2 from the second experiment. The mean values of the translation
parameters between solutionA1 andB3 are zero for the GPS orbits. The GLONASS orbits
show mean translations of about1 cm forA1 − B3 (no table included). When increasing the
weight of the SLR observations (C3) the mean translations increase up to3 cm for GLONASS

Satellite B3 C3

GPS 5.56± 0.06 cm 5.55± 0.02 cm

GLONASS 0.50± 0.08 cm 1.44± 0.05 cm

Table 6.7: Estimated satellite retroreflector offset correction in radial direction (in cm) and for-
mal RMS for GPS and GLONASS satellites from solutionsB3 andC3

Satellite B3 C3

x̄ σ x̄ σ

G05 −0.1 1.6 0.0 0.6

G06 −0.3 3.3 −0.1 1.1

R03 −0.5 2.2 0.0 1.4

R22 −0.1 2.2 0.0 1.0

R24 0.2 2.4 0.0 0.7

Table 6.8: Mean values and standard deviations (cm) of the SLR residuals derived from the
solutionsB3 andC3
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with variations of up to5 cm. The scale differences of the GPS orbits is at the zero level. For
the GLONASS orbits the scale differences between the solutionsA1 andC3 is about0.5 ppb.

Table 6.9 shows the standard deviations of the daily orbit differences. Only small differences
are encountered between the microwave orbitA1 and the combined orbitsB3 andC3 for the
GPS satellites.

For solutionB3 the orbit overlap errors are similar to that of solutionA1, whereas they are
larger for solutionC3. Figures 6.6(a) and 6.6(b) show the overlap errors in radial direction for
G05 and R22.

Three-day arcs were analyzed in an analogous manner as the one-day arcs for all three exper-
iments. As observations from the adjacent days are included for orbit determination, the orbit
overlaps of the three-day arcs are always better defined than the same overlaps of the corre-
sponding one-day arcs. The overlap errors of the combined orbits are, however, not decreased
compared to those of the microwave orbits. The resulting SLR residuals and orbit parameters
for the three-day arc solutions do not show any significant differences to the analysis results of
the one-day arc solutions.

Satellite A1−B3 A1− C3

radial (cm)

G05 0.1 0.4

G06 0.1 1.2

R03 2.6 4.8

R22 1.4 2.7

R24 1.7 3.1

along-track (cm)

G05 0.1 0.5

G06 0.1 1.4

R03 7.9 12.8

R22 3.5 7.4

R24 4.1 8.1

out-of-plane (cm)

G05 0.1 0.5

G06 0.0 0.7

R03 2.2 3.8

R22 1.3 2.9

R24 1.8 3.1

Table 6.9: Standard deviations of orbit differences of 41 days between the solutionsA1 − B3
andA1− C3, after Helmert transformation
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Figure 6.6: Orbit overlap errors in radial direction of the one-day arc orbit solutionsA1, B3,
andC3 for the GPS satellite G05 and the GLONASS satellite R22
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Conclusions

From the first experiment we conclude that the generated combined orbits are sensitive to in-
troducing additional range measurements. Depending on the SLR weighting (with respect to
the microwave observations), SLR observations have an impact on an orbit dominated by mi-
crowave observations, even if the number of SLR measurements is about three orders of magni-
tude smaller than the number of microwave measurements. A range observation is the geomet-
ric distance of an observatory to a satellite and is, therefore, much“stronger” than a microwave
phase measurement, which corresponds to a range biased by ambiguity and clock corrections.

Table 6.2 shows that the mean values and standard deviations of the resulting SLR residuals
decrease with increasing SLR weight. Even for solutionB1, with the smallest SLR weight,
improvements of the standard deviation especially for the GLONASS satellites are observed.

The radial bias between microwave- and SLR-derived GPS orbits of about−5 cm does not dis-
appear without“damaging” the combined orbit. By“overweighting” the SLR measurements,
the bias decreases to zero, but the resulting orbit is deformed rather than scaled. The observed
scale change (Table 6.3) and the change of the along-track component (Table 6.4) correspond
radially to about1 cm, only. This indicates that the microwave observations determine the
satellite orbit and scale rather well, and that the orbit dynamics is strong enough not to absorb
the5 cm-bias.

In the second experiment we changed the observation model. Daily range biases were estimated
in addition to the orbit parameters already set up in Experiment 1. These range biases were
found to absorb the main range information. When solving for such parameters, the impact of
SLR observations on the combined orbits becomes very small. However, for the GLONASS
satellites orbit differences between the microwave orbitA1 and the combined orbitsB2 andC2
of up to10 cm are seen (see Table 6.6) due to the pass-specific residual patterns that are much
larger for the GLONASS than for the GPS satellites (see, e.g., Fig. 6.5).

The values of the overlap errors do not change significantly with increasing weight of the SLR
observations. But the SLR residuals show clear improvements in the pass-specific patterns (see
Fig. 6.5) when including SLR observations into the orbit determination process.

The 5 cm-bias for GPS satellites between microwave- and SLR-determined orbits might be
attributed to unidentified errors in the location of the retroreflector arrays with respect to the
satellite’s center of mass (Appleby and Otsubo, 2004). Thus, we adapted the observation model
in the third experiment and estimated only two additional parameters, one constant retroreflector
offset for all GPS and one for all GLONASS satellites in radial direction. The estimated offset
for the GPS satellites correspond with about−5 cm to the mean range bias derived from the
microwave-only orbit (Table 6.7). The average of the resulting range residuals decreases to
zero. But there are still significant differences of several centimeters in the orbit positions
between the microwave-only orbit solutionA1 and the combined solutionsB3 andC3 for the
GLONASS satellites (Table 6.9), showing the impact of SLR observations. The overlap errors
of the combined orbits do not change significantly when compared to the microwave orbit.

We have shown that from the technical point of view a combined orbit determination analysis
of microwave and SLR tracking data is no problem. Range measurements have an impact
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on a combined microwave-SLR orbit, where the impact depends on the observation weight.
Significant biases between the two observation techniques do not allow a rigorous combination
for GNSS orbit determination without modifying the observation model. The estimation of
additional satellite retroreflector offsets absorbs the bias between the microwave orbits and the
SLR measurements. The pass-specific patterns of the SLR residuals improve with increasing
weight of the SLR observations.

We have seen that the impact of SLR on GLONASS orbits is much larger than on GPS orbits due
to the small number of GLONASS microwave tracking sites. A similar situation can be expected
for the new Galileo system in its startup phase. Therefore, the use of SLR measurements to
the Galileo satellites should considerably improve the orbits (as compared to pure microwave
orbits).

6.1.3 Variance-Covariance Studies for the Combined Analysis of
Microwave and SLR Observations of GPS and GLONASS
Satellites

In the previous section we showed that SLR tracking data can be used in a combined analysis
together with microwave data for GNSS orbit determination. The combination of two different
techniques is only reasonable, however, if inter-technique modeling problems are solved before.

Therefore, variance-covariance studies are most appropriate (before the mentioned modeling
problems have been solved) to assess the impact of SLR data on GNSS orbit determination.
The variance-covariance studies are based on a user defined observation scenario, character-
ized by the observation epochs, the observing sites, the satellites involved, and the observation
types. Furthermore, the error models for the observations of all types have to be specified, e.g.
observation errors with expectation values“zero” and a user-defined variance. The individual
observations are assumed to be uncorrelated. With this information it is possible to calculate
the resulting variance-covariance matrix of all parameters (without using actual observations),
which usually is fully populated. The variance-covariance matrix of the resulting parameters
may then be used to calculate, e.g., the standard deviations of satellite positions at any time.

The variance-covariance matrix associated with the orbit parameters, as derived from microwave
and SLR data, will now be established for different observation scenarios. Our analysis should
answer the question whether a combined analysis of microwave and SLR data makes sense for
GNSS orbit determination under the assumption that the existing modeling problems can be
solved.

Realistic Scenario

For our study we used microwave observations (double difference phase, ionosphere-free linear
combination) at epochs separated by 180 seconds from over 150 IGS sites and SLR observations
from 13 ILRS sites. The mean errors of the microwave observations were assumed to be1 cm.
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Figure 6.7: Formal errors of the radial orbit component for the GPS satellite G05, derived from
real data; observation epochs are indicated on the abscissa

For the SLR observations, three different observation weights were used. In the first case, the
a priori sigmaσSLR was set to infinity, corresponding to a weight of zero, implying that the
SLR observations do not contribute to the orbit determination. In the second case,σSLR was
set to1 cm, and in the third case to1 mm. The covariance study was done for 41 one-day
arcs (DoY 255 - 295, 2005). For each arc, the six osculating elements and five dynamical
orbit parameters of the ECOM model (see Sect. 3.2.2) were set up. The dynamical parameters
represent solar radiation pressure (SRP) parameters, i.e. constant acceleration in D-, Y-, and
B-direction and an once-per-revolution accelerations in direction B. For the definition of the
(D, Y, B) system see Sect. 3.1.2.

Figure 6.7 shows the formal errors of the radial orbit component derived from the covariance
matrices for three consecutive one-day arcs of the GPS satellite G05. The three lines refer to
the different SLR observation weights, where the upper line corresponds toσSLR = ∞, the
middle line toσSLR = 1 cm, and the lower line toσSLR = 1 mm. The SLR observation epochs
are indicated on the abscissa. No significant improvements can be found when using SLR
observations with1 cm measurement noise. An improvement of the formal errors occurs only
when using heavy SLR weights, and only around epochs where SLR data were available. The
same is true for the along-track and the out-of-plane directions (not shown here). This result
was expected, as the SLR tracking data are very sparse and not very well distributed (as opposed
to the microwave observations).

Idealized Scenario

How does the situation change, if SLR observations cover the complete satellite arc? To an-
swer this question, we simulated evenly distributed SLR observations, i.e., observation epochs.
Those observation epochs were assumed to be equally spaced at 15 min intervals for altogether
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6 Improving GNSS Orbits with SLR

Figure 6.8: SLR site distribution for SLR data simulation

four globally distributed SLR sites, in North and South America, Europe, and Australia respec-
tively (see Figure 6.8). Three different computations were performed, using either two, three,
or four sites, indicated in Figure 6.8 with black, white, and gray triangles. The data of two SLR
sites cover about50% of a GNSS orbit (one-day arc), the data of three sites cover almost75%
and that of four sites cover as much as90%.

Figure 6.9 shows the formal orbit errors in radial direction for the satellite G05 assuming evenly
distributed observations of four SLR sites in addition. Shaded areas on the abscissa denote
the90% data coverage. As opposed to Figure 6.7 (derived from real SLR data), the formal error
does significantly improve if SLR observations of1 cm noise (line in the middle) were used.
The errors are even more reduced when the SLR weight increases by a factor of 100.

In order to study the results for several arcs we focus on the formal error of the semi-major
axis. Figure 6.10 shows the formal errors of the semi-major axis of the satellite G06 for the
41 consecutive one-day arcs. The four line types indicate the number of SLR sites from which
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Figure 6.9: Formal errors of the radial orbit component for the GPS satellite G05, derived from
simulated data; observation epochs are indicated on the abscissa
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6.1 GNSS Orbit Determination Based on Combined Microwave and SLR Data Analysis
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Figure 6.10: Formal errors of the semi-major axis for the GPS satellite G06, derived from sim-
ulated data for a different number of SLR sites

simulated observations were used for the combined solution. The first line flagged with“0”
corresponds to the microwave-only solution. The remaining three are derived from the com-
bined solutions, using simulated SLR observations of either two, three, or four SLR sites. The
general variation of the orbit error within one solution is due to the high correlation of the orbit
parameters with the elevation of the Sun above the orbital plane. The formal errors are in the
range of2− 6 mm. This order of magnitude is too optimistic, as model errors, formal errors of
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Figure 6.11: Formal errors of the semi-major axis for the GLONASS satellite R03, derived from
simulated data for a different number of SLR sites
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6 Improving GNSS Orbits with SLR

introduced parameters, as well as correlations in time between consecutive microwave observa-
tions are not considered in this variance-covariance study. Using SLR observations of two sites
(corresponding to a50% coverage of the arc) the formal error of the semi-major axis decreases
by about 20%. With three sites the formal error decreases even more. The inclusion of the
observations of the fourth site does not further improve the solution.

The formal errors of the semi-major axis for the GLONASS satellite R03 are shown in Fig. 6.11.
The formal errors are one order of magnitude larger compared to the GPS satellites, as the num-
ber of microwave observations for GLONASS (∼3 000) is much lower than for GPS (∼20 000).
Therefore the impact of additional SLR data on the quality of GLONASS orbits is larger than
for GPS. Figure 6.11 indicates an improvement of about 50%.

Conclusions

The combined analysis of microwave phase and SLR range measurements for GNSS orbit de-
termination would improve the orbit, compared to a pure microwave-based solution under the
following assumptions: Inter-technique biases have to be understood and modeled, and the orbit
modeling has to be improved.

The currently available small number of SLR measurements (in general not well distributed
over the day) represents a challenge when trying to improve GNSS orbits by using SLR data. A
good distribution of SLR data over the entire orbital arc is important. A small network of three
“globally distributed” SLR sites, tracking GNSS satellites continuously, is sufficient to cover
a great portion of the orbital arc. From the variance-covariance analysis we conclude that the
semi-major axis improves by about20% for GPS and about50% for GLONASS satellites, if
three SLR sites are continuously tracking the satellites.

The contribution of SLR data to GNSS orbits is even more important if the microwave tracking
network is sparse, as it is the case for the GLONASS satellites.

6.1.4 Variance-Covariance Studies for the Combined Analysis of
Microwave and SLR Observations of the GIOVE-A Satellite

We have seen that the impact of SLR on GLONASS orbits is much larger than on GPS orbits
due to the small number of GLONASS microwave tracking sites. A similar situation can be
expected for the new Galileo system in its startup phase. The microwave-based GIOVE-A
orbits as well as the first Galileo orbits in the In Orbit Validation (IOV) phase initially will rely
on microwave tracking data of a very limited number of microwave tracking receivers. SLR is
therefore expected to contribute significantly to precise orbit determination.

This section demonstrates the possible contribution of SLR to GIOVE-A orbit determination
through a combined analysis of microwave and SLR data. As no microwave tracking data of
GIOVE-A were available at the time of our analysis, we performed a variance-covariance analy-
sis using SLR data from the tracking campaigns and simulated microwave data of GIOVE-A.
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6.1 GNSS Orbit Determination Based on Combined Microwave and SLR Data Analysis

Figure 6.12: GIOVE-A microwave tracking sites (circles) and SLR tracking sites (triangles)

Microwave phase observations were simulated for 13 GIOVE-A tracking sites, selected at pro-
posed sites of the first Galileo tracking network. Their distribution is indicated by circles in
Fig. 6.12. In addition we used the true SLR observations of the SLR sites (represented with
triangles).

The microwave phase observations are spaced by 30 seconds with an assumed accuracy of1 mm.
Observation equations were set up for microwave phase zero difference observations and SLR
normal points. Satellite clocks, ambiguities, and orbit parameters were included in the para-
meter estimation process. Other parameters, such as station coordinates, receiver clocks, tro-
pospheric zenith path delays, and EOPs are assumed to be known, e.g., from a global analysis
of GPS and GLONASS data.

The variance-covariance matrix is derived from the normal equation system. The formal errors
of the orbit parameters are then computed from the variance-covariance matrix. We solved for
six osculating elements and nine SRP parameters for GIOVE-A, i.e., for constant and once-per-
revolution accelerations in D-, Y-, and B-direction. In summary 57 overlapping three-day arcs
were determined.

Three analyses with different SLR observation weight scenarios were performed to assess the
impact of additional SLR observation on GIOVE-A orbit determination. The first solution
corresponds to a pure microwave solution. The SLR observation weight is set to zero by
σSLR = ∞. In the second case,σSLR = 1 cm, in the third case, the SLR observation weight
is increased (withσSLR = 1 mm), and corresponds to the microwave observation weight.

We calculate the formal errors of the satellite position in the inertial system from the variance-
covariance matrix associated with the orbit parameters. Figure 6.13 shows the formal errors of
the satellite position in radial, along-track, and out-of plane components for the three different
solutions of a GIOVE-A three-day arc, where the upper line corresponds toσSLR = ∞, the
middle line toσSLR = 1 cm, and the lower line toσSLR = 1 mm.

The resulting errors are too optimistic, as the error scales with the number of observations.
We used microwave observation sampled at 30 seconds intervals, but did neglect any temporal
correlations between consecutive observations. Observation sampled at 180 seconds intervals
should rather be used for further studies.
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Figure 6.13: Formal orbit errors for a GIOVE-A three-day arc; the three lines indicate the differ-
ent orbit solutions using different a priori sigmasσSLR for the SLR observations;
the bars on the horizontal axis indicate the SLR observation epochs

The parameters (e.g., station coordinates, troposphere parameters), which are assumed to be
known from the GPS/GLONASS analysis, are not error-free. Neglecting the formal errors of
these parameters, and of temporal correlations between observations, is responsible for too
optimistic formal errors.

In this analysis we are not interested in the absolute errors, but rather in the difference of these
errors for the three solutions. These differences may be used to assess the impact of SLR obser-
vations on GIOVE-A (or Galileo) orbits. The major impact of SLR data on the resulting orbit
accuracy is given in the radial orbit component. The radial orbit accuracy may be improved by
about 60-80%, depending on the SLR weight and the number and distribution of SLR observa-
tions. The orbit error in along-track and out-of-plane components decreases only when using
heavy SLR weights. A good distribution of the SLR observations over the entire arc is always
necessary.

We conclude that SLR data provide an important contribution to GIOVE-A orbits. A signifi-
cant orbit improvement (mainly in radial direction) was demonstrated, if well distributed SLR
observations are (would be) available. For the upcoming Galileo system we assume a similar
beneficial impact of SLR data as the number of Galileo microwave tracking sites initially will
be very small.
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6.2 GIOVE-A Orbit Determination Based on SLR Observations

6.2 GIOVE-A Orbit Determination Based on SLR
Observations

GIOVE-A, the first test-bed satellite of the European navigation system Galileo, carries a retrore-
flector array and therefore may be observed by SLR. For evaluating the performance of the
on-board atomic clocks a first SLR tracking campaign of GIOVE-A was initiated, which lasted
for nine weeks. Between 22 May and 24 July 2006, 14 globally well-distributed SLR stations
participated in the campaign.These SLR data are publicly available for GIOVE-A orbit deter-
mination (as opposed to the microwave data).

We present orbit determination results for GIOVE-A based on SLR data only. Different solu-
tions with varying arc-lengths were generated. In order to assess the orbit quality, differences
of orbit overlaps were analyzed. In addition, the orbits were predicted and the quality of the
predictions was assessed by comparing the predicted orbits with the orbits derived from real
tracking data.

SLR data of the first GIOVE-A SLR tracking campaign, made available by the ILRS, was used.
The triangles in Fig. 6.14 indicate the geographical locations of the 11 SLR sites included in our
analysis. The numbering of the triangles allows the identification of the SLR sites by using Ta-
ble A.3 in the Appendix A. We did not use the SLR measurements of San Juan (located in South
America), as no reliable coordinates were available at the time of analysis. The distribution of
the SLR tracking data in time is given in Fig. 6.15. SLR observation epochs are indicated with
a bar. The varying data coverage is clearly visible. Therefore, the quality of the orbits derived
from these data will vary as well, depending on the availability of SLR data.

In each orbit determination process six osculating elements and nine dynamical orbit parame-
ters of the ECOM model were estimated. The nine dynamical parameters are three constant
acceleration (in D-, Y-, and B-direction) as well as six once-per-revolution sinusoidal acceler-
ations (sine and cosine in D-, Y-, and B-direction). Different solutions were generated using
arc-lengths of n-days (n = 5, 7, 9, 11, 14) in order to find out the optimal arc-length leading to
the best orbit quality.
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Figure 6.14: Geographical location of the 11 SLR sites used for GIOVE-A orbit determination
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6 Improving GNSS Orbits with SLR

Figure 6.15: SLR data coverage of the GIOVE-A SLR tracking campaign

For each solution type we generated between 32 and 50 n-day arcs within the 60 days of the
SLR tracking campaign of GIOVE-A. Consecutive n-day arcs are shifted by one day each,
which is why we have overlapping arcs. The differences of the orbit overlaps are an indication
of the orbit quality. Small differences indicate a good quality, whereas large ones indicate a bad
quality of the determined orbit. We expect that the central part of an arc is best defined and that
the boundary parts of an arc are of inferior quality.

The overlap analysis compares the central day of an arc“i” with the corresponding last day
of arc“i+k” of the same arc-length, as illustrated in Fig. 6.16, where each line represents a 9-
day arc (k=4) with tic marks as day boundaries. The arrows indicate the orbital parts that are
compared. Figure 6.17 shows the overlap differences of the GIOVE-A 9-day arcs. This arc
length of 9 days has turned out to be the best one.

The orbit overlap differences vary significantly, as the orbit quality is highly correlated with
the number and (temporal) distribution of the SLR observations. Arcs with few observations

Figure 6.16: Overlapping 9-day arcs; center day of arc“i” is compared to end day of arc“i+4”
for overlap studies
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Figure 6.17: Orbit overlap differences of SLR-based 9-day arcs of GIOVE-A

are not well determined. Satellite maneuvers also cause problems, if they are not known. The
radial overlap differences show values of up to10 cm. The radial component is best defined,
as SLR observes mainly the radial component. Orbit overlap differences in the along-track
and out-of-plane components reach values up to1 m and2 m, respectively. For arcs with a
good distribution of SLR data the overlap differences are smaller with values up to0.5 m in the
along-track and1 m in the out-of-plane components.

Figure 6.18 displays the range residuals derived from the 9-day arcs. The standard deviation
of the residuals is about2 cm, which is within the accuracy of the SLR observations. SLR
observations are assumed to be accurate at the1− 2 cm level.
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Figure 6.18: Range residuals derived from SLR-based 9-day arcs of GIOVE-A
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Figure 6.19: Orbit overlap differences of 5-day predictions based on GIOVE-A 9-day arcs

In addition to the SLR-based 9-day arcs, we computed consecutive 5-day orbit predictions. For
the computation of the overlap differences, each predicted day is compared with the correspond-
ing central day of the orbit part covered by SLR observations. Thus, for each 9-day arc overlap
differences of the five prediction days are generated.

Figure 6.19 shows the orbit overlap differences for all prediction days of all orbital arcs. The
predictions are getting worse in time due to a slightly erroneous semi-major axis (and therefore
mean motion). The overlap differences are dominated by the along-track error of the orbital arc.

Figure 6.19 shows the orbit overlap differences as a function of the prediction time. The quality
of the predictions is on one hand dictated by the correctness of the underlying orbit model and
on the other hand by the actual errors of the estimated orbit parameters. A small error in the
semi-major axis is translated into a small error of the mean motion, which in turn results in an
error in along-track direction growing linearly with time. This is why the errors of Fig. 6.19
are mainly along-track (not documented here). After five days of prediction the accuracy of the
predicted orbits is of about20− 30 m.

Conclusions

We presented GIOVE-A orbit determination results based on SLR observations of the first
GIOVE-A SLR tracking campaign. Orbits with varying arc-lengths were determined and com-
pared. Nine-day arcs proved to provide the best orbits. No a priori SRP model was introduced in
the orbit determination, but constant accelerations and once-per-orbit-revolution accelerations
were estimated. The orbit accuracy of a 9-day arc is about10 cm,0.5 m, and1 m in the radial,
along-track, and out-of-plane components, except if the observation coverage is poor. Orbit
predictions are at the20− 30 m accuracy level after five days.
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7. Conclusions and
Recommendations

The main objective of this work was the mutual validation of the three satellite-geodetic tech-
niques: GNSS, SLR, and optical astrometry. Based on the validation results we checked the
GNSS orbit model and discussed model improvements.

In the first part of our analysis we validated the astrometric observation technique by using
GNSS and LAGEOS satellites. The CCD observations are compared with the positions derived
from microwave-based or SLR-based orbits. We used astrometric observations of 53 GNSS
and the two LAGEOS satellites acquired for this purpose by the ZIMLAT telescope at the Zim-
merwald Observatory during four years (2003-2006). Optical observations of GNSS satellites
acquired from a single observing system covering a time span of several years are unique so far.

The validation method allows the calibration of the optical observation system and the assess-
ment of the accuracy of astrometric CCD observations. The RMS error of the CCD observations
with respect to the positions derived from microwave-based orbits is of the order of0.2′′, reflect-
ing the accuracy of the CCD observations acquired with ZIMLAT. This determined observation
accuracy corresponds well with the already known accuracy of CCD observations of stars and
minor planets using ZIMLAT.

Furthermore, our validation has revealed the existence of two systematic effects. First, an epoch
registration offset of0.01 seconds was detected. Second, a significant offset of about0.2′′ was
found in the CCD residuals in declination. This offset could be attributed to a systematic catalog
offset in declination of the USNO-B1.0 star catalog.

Our method is well suited for calibrating and monitoring the epoch registration procedure re-
lated to optical observations of fast moving objects. Low Earth satellites as the LAGEOS satel-
lites are particularly well suited for this purpose. We therefore recommend the continuous
(preferably once per observation-night, but at least once per month) acquisition of a small num-
ber of optical LAGEOS observations, which can be compared with SLR-based orbits, and the
development of a standardized procedure based on our method. Such a procedure consumes
only little observation time, and it can be performed with any optical observation system. It
is therefore of interest for tracking networks of telescopes. The ILRS may consider providing
LAGEOS orbits as official product to the scientific community.

The optical observation of artificial Earth satellites allows also the validation of stellar refer-
ence frames, as reference stars from a given star catalog define a specific reference frame. The
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CQSSP project (Bauerš́ıma, 1984) proposed the use of artificial satellites to provide a direct link
between the celestial reference frames and, in particular, to monitor the transformation between
the quasar-based (using radio telescopes) and the stellar-based (using optical telescopes) refer-
ence frames. The limiting factor for CQSSP still is the accuracy of the astrometric observations.
The identification of a systematic catalog offset is, however, a good example for the suitability
of validating stellar reference frames using artificial Earth satellites.

In the second part of the validation analysis we validated GNSS orbits, based on microwave
observations, by using SLR measurements. The measured laser ranges are compared with the
ranges derived from SLR site coordinates and GNSS orbits. Previous studies, carried out by
different authors (between 1993 and 1999) revealed a range bias of about−5.5 cm for the GPS
satellites, and of about−4 cm for the GLONASS satellites. The accuracy of the GPS orbits
was estimated to be5 cm, that of the GLONASS orbits10 − 15 cm. For the validation studies
performed in this work, we used about four years of SLR data, from 2002 until early 2006. We
validated the final orbit products from different IGS analysis centers for the two GPS satellites
equipped with retroreflector arrays and for four of the GLONASS satellites.

The accuracy of the GNSS orbits improved significantly within the last years. The validation
revealed an accuracy for the GPS orbits of2−3 cm, and for the GLONASS orbits of about5 cm
(both in radial direction). Range biases of−3 cm to−4 cm were estimated for the GPS satel-
lites, confirming the bias reported in previous studies, reduced by the1 cm offset of the laser
retroreflector array (LRA), which was not considered before (Davis et al., 2005). Further stud-
ies are needed to understand the source of this inter-technique bias. One possible explanation
might be an unidentified error in the location of the LRA with respect to the satellite’s center of
mass. The range biases estimated for the GLONASS satellites are small with about−1 cm. No
significant range bias was found for the GLONASS-M satellite R07.

In addition, our validation revealed a periodic signature in the SLR residuals for the GPS satel-
lites, which was not identified before and clearly indicates GNSS orbit modeling problems. The
periodic signature becomes obvious when displaying the SLR residuals as a function of the an-
gles∆u (argument of latitude of the satellite with respect to the argument of latitude of the Sun)
andβ0 (elevation angle of the Sun above the orbital plane). Therewith the dependency of the
residual pattern on the satellite’s position with respect to the Sun is described. This dependency
indicates deficiencies in the dynamic orbit model.

We generated three orbit time series using the ROCK model, the CODE model, and no solar
radiation pressure (SRP) a priori model at all. The analysis of these orbits showed that the
periodic pattern of the residuals is mainly caused by the ROCK SRP model. But this conclusion
can only be drawn for the GPS satellites of type Block IIA, as SLR observations (which allow
for an independent validation) are only available for the two Block IIA satellites. The analysis
of orbit predictions revealed, however, that the CODE model is superior to the ROCK model for
most of the GPS satellites, independently from the Block type. The ROCK model may include
signals without corresponding physical source (in particular for small Sun elevation anglesβ0)
that cannot be compensated by the estimated SRP parameters. In conclusion, we recommend
the use of the CODE SRP model for GPS orbit determination. The analysis of orbit predictions
for the GLONASS satellites revealed better orbits if no SRP model instead of the CODE model
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is used. Therefore, we recommend not to use an a priori SRP model for GLONASS orbit
determination.

The analysis of the one-day and three-day arcs for GPS and GLONASS satellites using different
SRP models raises questions and provides some answers. Follow-on studies will have to be
performed to answer the following questions:

• What causes the systematic discontinuities at the day boundaries, in particular for GPS
one-day arcs? The spectral analysis of the overlap errors revealed signals with a period
of about 355 days (see Sect. 5.2.4). Due to the limited length of the time series of about
four years, this period cannot be assessed accurately using Fourier analysis. One may
nevertheless ask the question what the reason of this period is? The estimated Y-biases
show a systematic pattern. Does this pattern repeat with the period of the draconitic
GPS year of 352 days? A spectral analysis of the Y-bias should answer this question.
Moreover, an overlap analysis of a reprocessed orbit time series, considering the advances
in observation models (e.g., absolute antenna phase center models) and IERS conventions,
is recommended.

• What causes the period of about 50 days for the geocenter Z-coordinate (see Sect. 5.2.5)?
This period corresponds well to352

7
days, but does this allow to conclude that it is a

harmonic of 352 days (draconitic GPS year)? The intersection of the six orbital planes
with the ecliptic plane yields not evenly distributed nodal lines. The smallest distance
between two nodal lines appears for the orbital planes with the largest elevation of the
Sun above the orbital plane, and this distance is about 50 days.

• Should the estimation of the selected set of five dynamic orbit parameters (D0, Y 0, B0,
BS,BC) be reconsidered (see Sect. 5.3)? A combined analysis with SLR data might
improve the orbit determination.

For future studies we recommend the use of a simple boxwing model for SRP modeling. The
boxwing model may be used not only as a priori model but also to estimate the model parameters
describing the surface properties of the satellite. In addition, Earth albedo parameters may be
estimated. A study of the adjusted parameters may contribute to a better understanding of the
impact of SRP on GNSS orbits.

Finally, we demonstrated that the combination of microwave phase and SLR observations for
GNSS orbit determination would result in better orbits, compared to a pure microwave-based
solution, provided that inter-technique biases have been understood and modeled, and that well-
distributed SLR data covering the entire orbital arc are available. Already a small network of
three“globally distributed” SLR sites, tracking GNSS satellites continuously, would be suffi-
cient. The contribution of SLR data to GNSS orbits is even more important if the microwave
tracking network is sparse, as it is the case for the GLONASS satellites or as it will be the case
for the upcoming Galileo system (at least initially).

The observed inconsistencies between different observation techniques underline the need for
co-location of measurement types not only at sites on the Earth surface, but also on the satellites.
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7 Conclusions and Recommendations

SLR retroreflector arrays should not be considered as a luxury for new GNSS satellites. At least
one reflector array for each satellite type and orbital plane is a necessity.
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A. Observing GNSS Satellites

A.1 GNSS Satellite Information

Table A.1 provides a list of all GPS satellites (as per January 29, 2008) including the following
satellite-specific information: PRN number, SVN, Block type, COSPAR-ID, launch and end
date, satellite mass, and number of the orbital plane. The PRN numbers are preceded by a
one-character system identifier (G for GPS, R for GLONASS), as used in the RINEX (Receiver
Independent Exchange Format) observation files. This notation is also used throughout this
work for the identification of the satellites. Note that the PRN numbers are only valid for
the corresponding time window. The satellites are sorted by their COSPAR-IDs, and thus in
chronological order. The two satellites equipped with LRAs, G05 and G06, are marked in gray.

Table A.2 provides a list of all GLONASS satellites launched since 1992 (as per January 29,
2008) including the following satellite-specific information: PRN number, SVN, GLONASS
type, COSPAR-ID, launch and end date (or status), satellite mass, number of the orbital plane,
and slot number. Decommissioning phases are indicated by“decomm. phase”. The slot number
together with the system identifier“R” is used in the RINEX format for the satellite identifica-
tion. In this work, this number is referred to as“PRN number” to be consistent with the notation
of the GPS satellites. The satellites are sorted by their COSPAR-IDs, and thus in chronological
order. The four satellites used in this work for SLR validation, R03, R07, R22, and R24, are
marked in gray.
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A Observing GNSS Satellites

PRN SVN Block COSPAR-ID Launch date Date withdrawn Mass Plane Change of

yyyy mm dd yyyy mm dd (kg) PRN code

G04 01 I 1978-020A 1978 02 22 1985 07 17 521.8

G07 02 I 1978-047A 1978 05 13 1981 07 16 453.8

G06 03 I 1978-093A 1978 10 06 1992 05 18 453.8

G08 04 I 1978-112A 1978 12 10 1989 10 14 440.9

G05 05 I 1980-011A 1980 02 09 1983 11 28 521.8

G09 06 I 1980-032A 1980 04 26 1991 03 06 462.6

G11 08 I 1983-072A 1983 07 14 1993 05 04 519.8 3

G13 09 I 1984-059A 1984 06 13 1994 06 20 520.4 3

G12 10 I 1984-097A 1984 09 08 1995 11 18 519.8 1

G03 11 I 1985-093A 1985 10 09 1994 04 13 521.8 3

G14 14 II 1989-013A 1989 02 14 2000 04 14 880.0 5

G02 13 II 1989-044A 1989 06 10 2004 05 12 880.0 2

G16 16 II 1989-064A 1989 08 18 2000 10 13 880.0 5

G19 19 II 1989-085A 1989 10 21 2001 09 11 880.0 1

G17 17 II 1989-097A 1989 12 11 2005 02 22 880.0 4

G18 18 II 1990-008A 1990 01 24 2000 08 18 880.0 6

G20 20 II 1990-025A 1990 03 26 1996 05 10 880.0 2

G21 21 II 1990-068A 1990 08 02 2003 01 27 880.0 5

G15 15 II 1990-088A 1990 10 01 2007 03 14 880.0 4

G23/32 23 IIA 1990-103A 1990 11 26 975.0 5 23→32 (12/06)

G24 24 IIA 1991-047A 1991 07 04 975.0 4

G25 25 IIA 1992-009A 1992 02 23 975.0 1

G28 28 IIA 1992-019A 1992 04 10 1997 08 16 975.0 3

G26 26 IIA 1992-039A 1992 07 07 975.0 6

G27 27 IIA 1992-058A 1992 09 09 975.0 1

G01 32 IIA 1992-079A 1992 11 22 975.0 6

G29 29 IIA 1992-089A 1992 12 18 2007 10 23 975.0 6

G22 22 IIA 1993-007A 1993 02 03 2003 08 06 975.0 2

G31 31 IIA 1993-017A 1993 03 30 2005 10 24 975.0 3

G07 37 IIA 1993-032A 1993 05 13 2007 12 20 975.0 3

G09 39 IIA 1993-042A 1993 06 26 975.0 1

G05 35 IIA 1993-054A 1993 08 30 975.0 2

G04 34 IIA 1993-068A 1993 10 26 975.0 4

G06 36 IIA 1994-016A 1994 03 10 975.0 3

G03 33 IIA 1996-019A 1996 03 28 975.0 3

G10 40 IIA 1996-041A 1996 07 16 975.0 5

G30 30 IIA 1996-056A 1996 09 12 975.0 2

G08 38 IIA 1997-067A 1997 11 06 975.0 1

G13 43 IIR-A 1997-035A 1997 07 23 1100.0 6
...
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A.1 GNSS Satellite Information

PRN SVN Block COSPAR-ID Launch date Date withdrawn Mass Plane Change of

yyyy mm dd yyyy mm dd (kg) PRN code
...

G11 46 IIR-A 1999-055A 1999 10 07 1100.0 4

G20 51 IIR-A 2000-025A 2000 05 11 1100.0 5

G28 44 IIR-A 2000-040A 2000 07 16 1100.0 2

G14 41 IIR-A 2000-071A 2000 11 10 1100.0 6

G18 54 IIR-A 2001-004A 2001 01 30 1100.0 5

G16 56 IIR-A 2003-005A 2003 01 29 1100.0 2

G21 45 IIR-A 2003-010A 2003 03 31 1100.0 4

G22 47 IIR-B 2003-058A 2003 12 21 1100.0 5

G19 59 IIR-B 2004-009A 2004 03 20 1100.0 3

G23 60 IIR-B 2004-023A 2004 06 23 1100.0 6

G02 61 IIR-B 2004-045A 2004 11 06 1100.0 4

G17 53 IIR-M 2005-038A 2005 09 26 1100.0 3

G31 52 IIR-M 2006-042A 2006 09 25 1100.0 1

G12 58 IIR-M 2006-052A 2006 11 17 1100.0 2

G15 55 IIR-M 2007-047A 2007 10 17 1100.0 6

G29 57 IIR-M 2007-062A 2007 12 20 1100.0 6

Table A.1: List of GPS satellites, providing satellite-specific information as per January 29,
2008
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A Observing GNSS Satellites

PRN GLONASS COSPAR-ID Launch date Date withdrawn Mass Plane Slot Slot

No. Type yyyy mm dd yyyy mm dd (kg) change

R03 768 1992-005A 1992 01 29 1993 06 29 900.0 1 3

R08 769 1992-005B 1992 01 29 1997 06 24 900.0 1 8

R01 771 1992-005C 1992 01 29 1996 12 21 900.0 1 1

R24 774 1992-047A 1992 07 30 1996 08 26 900.0 3 24

R18/21 756 1992-047B 1992 07 30 1997 08 05 900.0 3 18→21

R21 772 1992-047C 1992 07 30 1994 08 27 900.0 3 21

R02 773 1993-010A 1993 02 17 1994 08 17 900.0 1 2

R03 757 1993-010B 1993 02 17 1997 08 23 900.0 1 3

R06/07 759 1993-010C 1993 02 17 1997 08 05 900.0 1 6→7 (12/94)

R17 760 1994-021A 1994 04 11 1999 09 09 900.0 3 17

R23 761 1994-021B 1994 04 11 1997 08 29 900.0 3 23

R18 758 1994-021C 1994 04 11 2000 01 15 900.0 3 18

R12 767 1994-050A 1994 08 11 1999 02 03 900.0 2 12

R16 775 1994-050B 1994 08 11 2000 09 28 900.0 2 16

R14 770 1994-050C 1994 08 11 2000 01 15 900.0 2 14

R03 763 1994-076A 1994 11 20 1999 10 05 900.0 1 3

R06 764 1994-076B 1994 11 20 1999 11 30 900.0 1 6

R04 762 1994-076C 1994 11 20 1999 11 19 900.0 1 4

R20 765 1995-009A 1995 03 07 1999 11 19 900.0 3 20

R22 766 1995-009B 1995 03 07 2001 02 05 900.0 3 22

R19 777 1995-009C 1995 03 07 1997 12 26 900.0 3 19

R15 780 1995-037A 1995 07 24 1999 04 06 900.0 2 15

R10 781 1995-037B 1995 07 24 2001 10 15 900.0 2 10

R11 785 1995-037C 1995 07 24 2001 04 06 900.0 2 11

R13 782 1995-068A 1995 12 14 2001 10 15 900.0 2 13

R09/15 778 1995-068B 1995 12 14 2001 12 30 900.0 2 9→15 (04/99)

R09 776 1995-068C 1995 12 14 2000 09 28 900.0 2 9

R01 779 1998-077A 1998 12 30 2002 07 08 900.0 1 1

R08 784 1998-077B 1998 12 30 2003 12 19 900.0 1 8

R07 786 1998-077C 1998 12 30 2003 10 20 900.0 1 7

R17 787 2000-063A 2000 10 13 2007 04 16 900.0 3 17

R24 788 2000-063B 2000 10 13 2006 03 29 900.0 3 24

R18 783 2000-063C 2000 10 13 2007 11 23 900.0 3 18

R05 711 2001-053A 2001 12 01 decomm. phase 900.0 1 5

R03 789 2001-053B 2001 12 01 decomm. phase 1415.0 1 3

R06 790 2001-053C 2001 12 01 2003 12 19 1415.0 1 6

R22 791 2002-060A 2002 12 25 2007 11 30 1480.0 3 22

R23/20 793 2002-060B 2002 12 25 2007 04 16 1480.0 3 23→20 (02/06)

R21 792 2002-060C 2002 12 25 decomm. phase 1480.0 3 21
...
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A.1 GNSS Satellite Information

PRN GLONASS COSPAR-ID Launch date Date withdrawn Mass Plane Slot Slot

No. Type yyyy mm dd yyyy mm dd (kg) change
...

R06 701 M 2003-056A 2003 12 10 1415.0 1 6

R02 794 2003-056B 2003 12 10 decomm. phase 900.0 1 2

R04 795 2003-056C 2003 12 10 900.0 1 4

R01 796 2004-053A 2004 12 26 900.0 1 1

R07 712 M 2004-053B 2004 12 26 1415.0 1 7

R08 797 2004-053C 2004 12 26 900.0 1 8

R23 714 M 2005-050A 2005 12 25 1415.0 3 23

R24 713 M 2005-050B 2005 12 25 1415.0 3 24

R19/22 798 2005-050C 2005 12 25 decomm. phase 900.0 3 19→22 (10/07)

R15 716 M 2006-062A 2006 12 25 1415.0 2 15

R10 717 M 2006-062B 2006 12 25 1415.0 2 10

R14 715 M 2006-062C 2006 12 25 1415.0 2 14

R19 720 M 2007-052A 2007 10 26 1415.0 3 19

R20 719 M 2007-052B 2007 10 26 1415.0 3 20

R17 718 M 2007-052C 2007 10 26 1415.0 3 17

R13 721 M 2007-065A 2007 12 25 1415.0 2 13

R09 722 M 2007-065B 2007 12 25 1415.0 2 9

R11 723 M 2007-065C 2007 12 25 1415.0 2 11

Table A.2: List of GLONASS satellites, providing satellite-specific information as per
January 29, 2008
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A Observing GNSS Satellites

A.2 SLR Sites

Table A.3 provides a list of the SLR sites that observed GNSS satellites between 2003 and
2006. The station ID is the so-called Crustal Dynamics Project (CDP) number, a 4-digit code.
Further the location and country of the SLR sites are given, as well as the corresponding IERS
DOMES numbers. DOMES (Directory Of MERIT Sites) is a numbering system for the space
geodetic sites. It was designed at the start of the MERIT (Monitoring of Earth Rotation and
Intercomparison of the Techniques of Observation and Analysis) campaign in early 80s in order
to give an unambiguous identifier to all instrument reference points and markers involved in this
MERIT campaign. The numbers in the last column correspond to the numbers used in Fig. 6.14
in Sect. 6.2 that shows the geographical distribution of the SLR sites used for GIOVE-A orbit
determination.

SLR station ID Location name Country IERS DOMES number

1864 Maidanak 1 Uzbekistan 12340S002

7080 McDonald Observatory Texas, U.S.A. 40442M006 (6)

7090 Yarragadee Australia 50107M001 (10)

7105 Greenbelt Maryland, U.S.A. 40451M105 (3)

7110 Monument Peak California, U.S.A. 40497M001 (7)

7210 Haleakala Hawaii 40445M001

7237 Changchun China 21611S001 (1)

7501 Hartebeesthoek South Africa 30302M003

7810 Zimmerwald Switzerland 14001S007 (11)

7825 Mt Stromlo Australia 50119S003 (8)

7832 Riyadh Saudi Arabia 20101S001

7839 Graz Austria 11001S002 (2)

7840 Herstmonceux United Kingdom 13212S001 (4)

7845 Grasse France 10002S002

7941 Matera Italy 12734S008 (5)

8834 Wettzell Germany 14201S018 (9)

Table A.3: Listing of SLR sites, including the 4-digit station ID, the SLR site location and
country, and the IERS DOMES number
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B. Mutual Validation of the Different
Satellite-Geodetic Techniques

B.1 SLR Residuals

Figures B.1, B.2, and B.3 show the color-coded SLR residuals∆r∗ for the two GPS satellite
G05 and G06 as a function of the angle∆u (argument of latitude of the satellite with respect to
the argument of latitude of the Sun) and the angleβ0 (elevation of the Sun above the satellite’s
orbital plane). The residuals are derived from the GFZ, JPL, and IGS final orbits, respectively.
Further details are given in Sect. 4.2.2.
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Figure B.1: SLR residuals∆r∗ derived from GFZ final orbits for the GPS satellites G05 and
G06 in the(∆u, β0) coordinate system;bottom: projection onto∆u-axis; left:
projection ontoβ0-axis; circles represent the phase angleE, 15◦ spacing,0◦ at
center (∆u = 180◦ andβ0 = 0◦), 180◦ at (∆u = 0◦ andβ0 = 0◦)
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B Mutual Validation of the Different Satellite-Geodetic Techniques
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Figure B.2: SLR residuals∆r∗ derived from JPL final orbits for the GPS satellites G05 and
G06 in the(∆u, β0) coordinate system;bottom: projection onto∆u-axis; left:
projection ontoβ0-axis; circles represent the phase angleE, 15◦ spacing,0◦ at
center (∆u = 180◦ andβ0 = 0◦), 180◦ at (∆u = 0◦ andβ0 = 0◦)
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Figure B.3: SLR residuals∆r∗ derived from IGS final orbits for the GPS satellites G05 and
G06 in the(∆u, β0) coordinate system;bottom: projection onto∆u-axis; left:
projection ontoβ0-axis; circles represent the phase angleE, 15◦ spacing,0◦ at
center (∆u = 180◦ andβ0 = 0◦), 180◦ at (∆u = 0◦ andβ0 = 0◦)
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C. Improvement of the GNSS Orbit
Model

C.1 Accelerations Due to Different Solar Radiation
Pressure Models

Figures C.1 and C.2 show the a priori and the estimated accelerations in D-, Y-, and B-direction
due to different SRP a priori models for a Block IIR satellite (G16). The accelerations estimated
when using no a priori model (i.e., the NONE model) are indicated by the dashed lines. Further
details are given in Sect. 5.1.
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C Improvement of the GNSS Orbit Model
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Figure C.1: Accelerations due to SRP acting on the GPS satellite G16 (Block IIR), derived from
the SRP a priori models ROCK (gray) and CODE (black)
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C.1 Accelerations Due to Different Solar Radiation Pressure Models
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Figure C.2: Estimated accelerations due to SRP acting on the GPS satellite G16 (Block IIR),
derived from parameter adjustment using the SRP a priori models ROCK (gray),
CODE (black), and NONE (dashed)
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C Improvement of the GNSS Orbit Model

C.2 Overlap Errors of One-day and Three-day Arcs

The following figures show the radial and the out-of-plane components of the overlap errors
analyzed in Sect. 5.2.4. In that section only the along-track components are shown, but a dis-
cussion of the figures and of the statistical information is done for all three components.

Figures C.3 and C.4 show the radial components of the overlap errors of 24 GPS satellites
derived from the one-day and three-day arc solutions, respectively. The overlap errors of the
one-day arc solutions are based on the CODE SRP a priori model, whereas the overlap errors of
the three-day arc solution are based on the NONE model. Table C.1 provides the corresponding
statistical information.

Figures C.5 and C.6 show the out-of-plane components of the overlap errors of the one-day and
three-day solutions, respectively. The statistical information of the out-of-plane components is
summarized in Table C.2.

The corresponding figures of the along-track components of the one-day and three-day solutions
can be found on page 110 (Fig. 5.15) and page 118 (Fig. 5.20), respectively.

Figures C.7 and C.8 show the radial components of the overlap errors of 10 GLONASS satellites
derived from the one-day and three-day arc solutions, respectively. The overlap errors of the
one-day arc solutions are based on the CODE SRP a priori model and the absolute antenna
PCC model. The overlap errors of the three-day arc solution are based on the NONE model.
Table C.3 provides the corresponding statistical information.

Figures C.9 and C.10 show the out-of-plane components of the overlap errors of the one-day
and three-day solutions, respectively, for the GLONASS satellites. The statistical information
of the out-of-plane components is summarized in Table C.4.

The corresponding figures of the along-track components of the one-day and three-day solutions
for the GLONASS satellites can be found on page 123 (Fig. 5.24) and page 127 (Fig. 5.28),
respectively.
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C.2 Overlap Errors of One-day and Three-day Arcs
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Figure C.3: Orbit overlap errors in radial direction of 24 GPS satellites derived from one-day
arcs using the CODE SRP a priori model; the elevation angleβ0 of the Sun above
the orbital plane is given by the gray line; eclipsing periods are marked in gray; for
the scale of the y-axis see Fig. 5.14
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C Improvement of the GNSS Orbit Model
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Figure C.4: Orbit overlap errors in radial direction of 24 GPS satellites derived from three-day
arcs using the NONE SRP a priori model; the elevation angleβ0 of the Sun above
the orbital plane is given by the gray line; eclipsing periods are marked in gray; for
the scale of the y-axis see Fig. 5.19
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C.2 Overlap Errors of One-day and Three-day Arcs

PRN σ1d (cm) σ3d (cm) x̄1d (cm) x̄3d (cm)

ROCK CODE NONE ROCK NONE ROCK CODE NONE ROCK NONE

Plane 2

G05 3.6 3.7 3.7 0.8 0.7 −0.4 −0.4 −0.4 −0.1 −0.1
G16 3.0 3.0 3.1 0.8 0.8 −0.6 0.6 0.6 −0.1 −0.1
G28 4.4 4.7 5.0 0.7 0.8 −0.1 0.1 0.1 −0.1 −0.1
G30 3.0 3.1 3.0 0.7 0.5 −0.6 −0.4 −0.4 −0.1 −0.1

Plane 3

G03 4.4 4.1 4.2 0.7 0.6 −0.2 −0.1 −0.1 −0.2 −0.2
G06 3.4 3.4 3.4 0.6 0.5 0.4 0.1 0.1 −0.1 −0.1
G07 3.9 3.8 3.8 1.2 1.1 −0.7 −0.6 −0.6 −0.2 −0.2

Plane 1

G08 3.9 3.9 4.0 0.6 0.6 0.9 1.0 1.1 −0.1 −0.1
G09 3.8 3.7 3.6 0.9 0.9 −0.5 −0.5 −0.6 −0.1 −0.1
G25 3.0 3.0 3.0 0.7 0.7 −0.3 −0.0 −0.1 −0.1 −0.1
G27 3.6 3.5 3.7 0.6 0.6 0.4 0.6 0.7 −0.1 −0.1

Plane 4

G04 3.4 3.4 3.4 0.6 0.6 0.0 −0.2 −0.3 −0.1 −0.1
G11 4.4 4.1 4.1 0.7 0.6 −0.4 −0.1 −0.1 −0.1 −0.1
G15 4.1 3.9 4.0 1.4 1.4 −0.2 −0.8 −0.8 −0.1 −0.1
G21 2.9 3.3 3.3 0.9 0.7 −0.3 −0.3 −0.3 −0.1 −0.1
G24 4.2 4.2 4.1 2.0 2.0 0.2 −0.1 −0.1 −0.1 −0.1

Plane 6

G01 3.3 3.2 3.2 0.6 0.6 0.1 −0.2 −0.1 −0.1 −0.1
G13 4.0 3.5 3.5 0.7 0.7 −0.7 0.2 0.2 −0.1 −0.1
G14 3.8 4.5 4.3 0.7 0.7 1.0 0.1 0.2 −0.0 −0.1
G26 3.8 3.8 3.7 0.5 0.5 0.3 0.1 0.0 −0.1 −0.1
G29 8.8 9.0 9.0 7.5 7.6 −0.1 −0.3 −0.3 −0.2 −0.2

Plane 5

G10 3.2 3.1 3.0 0.7 0.7 −0.9 −1.3 −1.3 −0.2 −0.2
G18 2.9 3.3 3.2 0.7 0.6 0.1 −0.4 −0.4 −0.1 −0.1
G20 4.2 3.8 3.8 0.9 0.9 0.1 0.2 0.2 −0.1 −0.1

Table C.1: Statistical information for radial orbit overlap errors of 24 GPS satellites derived
from one-day and three-day arcs using the three SRP a priori models ROCK, CODE,
and NONE: standard deviationsσ1d andσ3d, and mean values̄x1d andx̄3d
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C Improvement of the GNSS Orbit Model
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Figure C.5: Orbit overlap errors in out-of-plane direction of 24 GPS satellites derived from
one-day arcs using the CODE SRP a priori model; the elevation angleβ0 of the Sun
above the orbital plane is given by the gray line; eclipsing periods are marked in
gray; for the scale of the y-axis see Fig. 5.14
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C.2 Overlap Errors of One-day and Three-day Arcs

G20

G18

G10

G29

G26

G14

G13

G01

G24

G21

G15

G11

G04

G27

G25

G09

G08

G07

G06

G03

G30

G28

G16

G05

2007200620052004

O
ut

−
of

−
pl

an
e 

ov
er

la
p 

er
ro

rs

Year

β02
≤ 78°

β03
≤ 76°

β01
≤ 70°

β04
≤ 61°

β06
≤ 51°

β05
≤ 40°

Plane 5

Plane 6

Plane 4

Plane 1

Plane 3

Plane 2

Figure C.6: Orbit overlap errors in out-of-plane direction of 24 GPS satellites derived from
three-day arcs using the NONE SRP a priori model; the elevation angleβ0 of the
Sun above the orbital plane is given by the gray line; eclipsing periods are marked
in gray; for the scale of the y-axis see Fig. 5.19
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C Improvement of the GNSS Orbit Model

PRN σ1d (cm) σ3d (cm) x̄1d (cm) x̄3d (cm)

ROCK CODE NONE ROCK NONE ROCK CODE NONE ROCK NONE

Plane 2

G05 5.8 5.3 5.4 2.3 2.2 −1.1 −1.3 −1.3 −0.1 −0.1
G16 5.2 5.9 6.0 2.2 2.2 −0.1 0.3 0.2 0.1 0.1
G28 4.7 5.5 5.6 2.0 2.0 0.1 −0.2 −0.1 −0.0 −0.0
G30 5.3 5.2 5.0 2.1 2.1 −1.3 −1.4 −1.5 −0.2 −0.2

Plane 3

G03 5.4 5.9 5.8 3.9 3.9 0.2 0.3 0.2 0.1 0.0
G06 6.1 6.1 6.1 4.0 4.0 −0.1 −0.1 −0.1 0.5 0.4
G07 5.8 6.0 6.0 3.7 3.8 −0.3 −0.3 −0.3 −0.2 −0.1

Plane 1

G08 7.1 6.8 6.8 5.6 5.5 1.6 1.1 1.2 0.6 0.5
G09 6.7 7.0 7.1 5.5 5.5 −0.8 −1.2 −1.2 0.2 0.2
G25 6.8 6.9 6.8 5.5 5.5 −1.2 −0.7 −0.7 −0.7 −0.6
G27 7.7 7.4 7.4 5.8 5.7 2.4 1.9 2.0 0.5 0.4

Plane 4

G04 7.8 8.1 8.1 6.7 6.7 0.5 0.6 0.7 0.1 0.1
G11 7.3 7.0 7.0 6.4 6.4 −0.6 0.1 0.1 −0.7 −0.5
G15 8.0 7.4 7.5 6.7 6.7 −2.0 −1.4 −1.3 −0.0 0.0
G21 7.2 7.2 7.3 6.4 6.3 −0.8 −0.9 −0.9 0.4 0.2
G24 8.2 8.4 8.4 6.8 6.8 0.3 −0.1 −0.0 0.1 −0.0

Plane 6

G01 7.3 7.6 7.6 6.6 6.5 −0.8 0.0 −0.0 −0.9 −0.8
G13 7.8 7.7 7.8 7.0 7.0 2.0 2.6 2.6 0.1 0.2
G14 7.3 7.7 7.6 7.0 6.9 −2.4 −1.4 −1.5 −0.6 −0.4
G26 7.4 7.6 7.6 6.6 6.6 0.2 −0.3 −0.3 0.4 0.3
G29 8.9 8.7 8.8 7.8 7.8 0.9 0.4 0.5 1.0 1.0

Plane 5

G10 7.6 7.5 7.5 6.9 6.9 1.9 1.6 1.7 0.6 0.5
G18 7.4 8.3 8.3 6.6 6.5 −1.7 −1.5 −1.5 0.1 0.0
G20 7.0 7.7 7.7 6.2 6.3 0.3 1.1 1.1 −0.4 −0.2

Table C.2: Statistical information for out-of-plane orbit overlap errors of 24 GPS satellites de-
rived from one-day and three-day arcs using the three SRP a priori models ROCK,
CODE, and NONE: standard deviationsσ1d andσ3d, and mean values̄x1d andx̄3d
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Figure C.7: Orbit overlap errors in radial direction of 10 GLONASS satellites derived from one-
day arcs using the CODE SRP a priori model and the absolute antenna PCC model;
the elevation angleβ0 of the Sun above the orbital plane is given by the gray line
below each orbital plane; eclipsing periods are marked in gray; for the scale of the
y-axis see Fig. 5.23
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Figure C.8: Orbit overlap errors in radial direction of 10 GLONASS satellites derived from
three-day arcs using the NONE SRP a priori model; the elevation angleβ0 of the
Sun above the orbital plane is given by the gray line; eclipsing periods are marked
in gray; for the scale of the y-axis see Fig. 5.27
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Figure C.9: Orbit overlap errors in out-of-plane direction of 10 GLONASS satellites derived
from one-day arcs using the CODE SRP a priori model and the absolute antenna
PCC model; the elevation angleβ0 of the Sun above the orbital plane is given by
the gray line; eclipsing periods are marked in gray; for the scale of the y-axis see
Fig. 5.23
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Figure C.10: Orbit overlap errors in out-of-plane direction of 10 GLONASS satellites derived
from three-day arcs using the NONE SRP a priori model; the elevation angleβ0

of the Sun above the orbital plane is given by the gray line; eclipsing periods are
marked in gray; for the scale of the y-axis see Fig. 5.27

188



C.2 Overlap Errors of One-day and Three-day Arcs

PRN σ1d (cm) σ3d (cm) x̄1d (cm) x̄3d (cm)

CODE CODE-A NONE NONE CODE CODE-A NONE NONE

Plane 1

R02 11.6 9.3 11.2 1.3 2.4 1.1 1.5 0.2
R03 12.8 10.6 12.3 2.0 1.2 0.2 0.3 0.0
R04 12.8 10.3 12.5 1.4 3.4 1.5 2.6 0.2
R05 15.7 12.8 15.3 1.8 −0.9 −0.5 −1.9 −0.1

Plane 3

R17 14.8 11.4 14.6 1.8 2.4 1.3 1.6 0.2
R18 15.9 11.9 15.8 2.1 0.7 0.7 0.7 0.0
R21 14.4 11.3 14.6 1.9 2.5 1.0 1.8 0.0
R22 14.9 11.6 14.7 1.5 1.0 0.1 0.3 0.0
R23 14.5 12.5 14.8 3.5 2.4 1.2 1.8 0.0
R24 15.0 12.3 15.0 2.8 0.6 1.1 0.1 0.1

Table C.3: Statistical information for radial orbit overlap errors of 10 GLONASS satellites de-
rived from one-day and three-day arcs using the two SRP a priori models CODE and
NONE; for the CODE-A solution the CODE SRP a priori model and the absolute
antenna PCC model were used: standard deviationsσ1d andσ3d, and mean values̄x1d

andx̄3d

PRN σ1d (cm) σ3d (cm) x̄1d (cm) x̄3d (cm)

CODE CODE-A NONE NONE CODE CODE-A NONE NONE

Plane 1

R02 15.1 13.7 15.0 7.8 −1.0 −0.7 −0.9 −0.3
R03 16.8 16.1 16.7 9.6 −1.5 −0.8 −1.6 −0.3
R04 14.9 13.8 14.8 8.3 −0.7 −0.7 −0.6 −0.4
R05 17.4 16.1 17.4 10.0 0.4 0.6 0.3 −0.4

Plane 3

R17 18.9 16.2 18.8 8.1 −0.7 0.4 −0.5 0.3
R18 18.9 17.7 18.9 10.3 −1.2 −0.5 −1.2 0.0
R21 18.4 17.3 18.4 8.6 −0.1 0.6 −0.2 0.3
R22 16.4 15.6 16.3 6.8 0.7 1.6 0.8 0.4
R23 17.4 16.7 17.4 8.3 0.1 0.4 0.1 0.2
R24 18.2 16.5 18.4 9.4 −0.3 −0.0 −0.2 0.1

Table C.4: Statistical information for out-of-plane orbit overlap errors of 10 GLONASS satel-
lites derived from one-day and three-day arcs using the two SRP a priori models
CODE and NONE; for the CODE-A solution the CODE SRP a priori model and the
absolute antenna PCC model were used: standard deviationsσ1d andσ3d, and mean
valuesx̄1d andx̄3d
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A. Jäggi, C. Urschl, L. Mervart, M. Rothacher, E. Brockmann, D. Ineichen, A. Wiget,
U. Wild, and H. Habricht (in press), CODE IGS analysis center technical report 2003/2004, in
International GPS Service 2003-2004 Technical Report, IGS Central Bureau, Jet Propulsion
Laboratory, Pasadena, California, U.S.A.

193



Bibliography

ILRS (2008), SLR Satellite Center-of-Mass Offset Information, available at http://ilrs.gsfc.
nasa.gov/satellitemissions/centerof mass/index.html, March 2008.

Ineichen, D., T. A. Springer, and G. Beutler (2000), Combined processing of the IGS and the
IGEX network,Journal of Geodesy, 75, pp. 575–586.

Johnson, N. L. (1993), U.S. Space Surveillance,Advances in Space Research, 13 (8), pp. (8)5–
(8)20.

Marini, J. W., and C. W. Murray (1973), Correction of Laser range tracking data for atmospheric
refraction at elevations above 10 degrees,X–591–73–351, NASA GSFC.

McCarthy, D. D. (1996), IERS Conventions (1996),IERS Technical Note 21, Observatoire de
Paris, Paris, July 1996.

McCarthy, D. D., and G. Petit (2004), IERS Conventions (2003),IERS Technical Note 32,
Bundesamt f̈ur Kartographie und Geodäsie, Franfkurt am Main.

Mendes, V. B., G. Prates, E. C. Pavlis, D. E. Pavlis, and R. B. Langley (2002), Improved map-
ping functions for atmospheric refraction correction in SLR,Geophysical Research Letters,
29 (10), pp. 1414.

Monet, D. G., S. E. Levine, B. Canzian, H. D. Ables, A. R. Bird, C. C. Dahn, H. H. Guetter,
H. C. Harris, A. A. Henden, S. K. Leggett, H. F. Levison, C. B. Luginbuhl, J. Martini, A. K. B.
Monet, J. A. Munn, J. R. Pier, A. R. Rhodes, B. Riepe, S. Sell, R. C. Stone, F. J. Vrba, R. L.
Walker, G. Westerhout, R. J. Brucato, I. N. Reid, W. Schoening, M. Hartley, M. A. Read, and
S. B. Tritton (2003), The USNO-B catalog,The Astronomical Journal, 125, pp. 984–993.

Montenbruck, O., and E. Gill (2000),Satellite Orbits, Springer, ISBN 3-540-67280-X.

Niell, A. E. (1996), Global mapping functions for the atmosphere delay at radio wavelengths,
Journal of Geophysical Research, 101 (B2), pp. 3227–3246.

Ostini, L. (2007), Analysis of GNSS Station Coordinate Time Series, Diploma thesis, As-
tronomisches Institut, Universität Bern.

Otsubo, T., G. Appleby, and P. Gibbs (2001), GLONASS laser ranging accuracy with satellite
signature effect,Surveys in Geophysics, 22, pp. 506–516.

Pavlis, E. C., and Ronald L. Beard (1995), The laser retroreflector experiment on GPS-35 and
36, in GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications, edited by
Beutleret al., pp. 154–158, Springer.

Pearlman, M. R. (1984), Laser system characterization, inProc. of 5th International Workshop
on Laser Ranging Instrumentation, Vol. 1, edited by J. Gaignebet, pp. 66–83, Groupe de
Recherches de Geodesie Spatiale, Herstmonceux Castle, U.K., September 10–14 1984.

194



Bibliography

Perryman, M. A. C., and ESA (eds.) (1997),The HIPPARCOS and TYCHO catalogues. Astro-
metric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry
Mission, Vol. 1200 ofESA Special Publication.

Ray, J., Z. Altamimi, X. Collilieux, and T. van Dam (2008), Anomalous harmonics in the spectra
of GPS position estimates,GPS Solutions, 12 (1), pp. 55–64.

Ries, J. C., R. J. Eanes, C. Huang, B. E. Schutz, C. K. Shum, B. D. Tapley, M. M. Watkins, and
D. N. Yuan (1989), Determination of the gravitational coefficient of the Earth from near-Earth
satellites,Geophysical Research Letters, 16 (4), pp. 271–274.

Roscosmos (2004), Access to space,Special Roscosmos series, 16.

Rothacher, M. (1992),Orbits of Satellite Systems in Space Geodesy, Vol. 46 ofGeodätisch-geo-
physikalische Arbeiten in der Schweiz, Schweizerische Geodätische Kommission, Institut für
Geod̈asie und Photogrammetrie, Eidg. Technische Hochschule Zürich, Zürich.
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